1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27
28 /**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64 /*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77 #define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79 /**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100 struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114 };
115
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138 }
139
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142 {
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146
147 if (bss->pub.hidden_beacon_bss)
148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150 if (bss->pub.transmitted_bss)
151 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 struct cfg80211_internal_bss *bss)
156 {
157 lockdep_assert_held(&rdev->bss_lock);
158
159 if (bss->pub.hidden_beacon_bss) {
160 struct cfg80211_internal_bss *hbss;
161 hbss = container_of(bss->pub.hidden_beacon_bss,
162 struct cfg80211_internal_bss,
163 pub);
164 hbss->refcount--;
165 if (hbss->refcount == 0)
166 bss_free(hbss);
167 }
168
169 if (bss->pub.transmitted_bss) {
170 struct cfg80211_internal_bss *tbss;
171
172 tbss = container_of(bss->pub.transmitted_bss,
173 struct cfg80211_internal_bss,
174 pub);
175 tbss->refcount--;
176 if (tbss->refcount == 0)
177 bss_free(tbss);
178 }
179
180 bss->refcount--;
181 if (bss->refcount == 0)
182 bss_free(bss);
183 }
184
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 struct cfg80211_internal_bss *bss)
187 {
188 lockdep_assert_held(&rdev->bss_lock);
189
190 if (!list_empty(&bss->hidden_list)) {
191 /*
192 * don't remove the beacon entry if it has
193 * probe responses associated with it
194 */
195 if (!bss->pub.hidden_beacon_bss)
196 return false;
197 /*
198 * if it's a probe response entry break its
199 * link to the other entries in the group
200 */
201 list_del_init(&bss->hidden_list);
202 }
203
204 list_del_init(&bss->list);
205 list_del_init(&bss->pub.nontrans_list);
206 rb_erase(&bss->rbn, &rdev->bss_tree);
207 rdev->bss_entries--;
208 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 rdev->bss_entries, list_empty(&rdev->bss_list));
211 bss_ref_put(rdev, bss);
212 return true;
213 }
214
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 const struct element *non_inherit_elem)
217 {
218 u8 id_len, ext_id_len, i, loop_len, id;
219 const u8 *list;
220
221 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 return false;
223
224 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 return true;
226
227 /*
228 * non inheritance element format is:
229 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 * Both lists are optional. Both lengths are mandatory.
231 * This means valid length is:
232 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 */
234 id_len = non_inherit_elem->data[1];
235 if (non_inherit_elem->datalen < 3 + id_len)
236 return true;
237
238 ext_id_len = non_inherit_elem->data[2 + id_len];
239 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 return true;
241
242 if (elem->id == WLAN_EID_EXTENSION) {
243 if (!ext_id_len)
244 return true;
245 loop_len = ext_id_len;
246 list = &non_inherit_elem->data[3 + id_len];
247 id = elem->data[0];
248 } else {
249 if (!id_len)
250 return true;
251 loop_len = id_len;
252 list = &non_inherit_elem->data[2];
253 id = elem->id;
254 }
255
256 for (i = 0; i < loop_len; i++) {
257 if (list[i] == id)
258 return false;
259 }
260
261 return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)265 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
266 const u8 *ie, size_t ie_len,
267 u8 **pos, u8 *buf, size_t buf_len)
268 {
269 if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
270 elem->data + elem->datalen > ie + ie_len))
271 return 0;
272
273 if (elem->datalen + 2 > buf + buf_len - *pos)
274 return 0;
275
276 memcpy(*pos, elem, elem->datalen + 2);
277 *pos += elem->datalen + 2;
278
279 /* Finish if it is not fragmented */
280 if (elem->datalen != 255)
281 return *pos - buf;
282
283 ie_len = ie + ie_len - elem->data - elem->datalen;
284 ie = (const u8 *)elem->data + elem->datalen;
285
286 for_each_element(elem, ie, ie_len) {
287 if (elem->id != WLAN_EID_FRAGMENT)
288 break;
289
290 if (elem->datalen + 2 > buf + buf_len - *pos)
291 return 0;
292
293 memcpy(*pos, elem, elem->datalen + 2);
294 *pos += elem->datalen + 2;
295
296 if (elem->datalen != 255)
297 break;
298 }
299
300 return *pos - buf;
301 }
302
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)303 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
304 const u8 *subie, size_t subie_len,
305 u8 *new_ie, size_t new_ie_len)
306 {
307 const struct element *non_inherit_elem, *parent, *sub;
308 u8 *pos = new_ie;
309 u8 id, ext_id;
310 unsigned int match_len;
311
312 non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
313 subie, subie_len);
314
315 /* We copy the elements one by one from the parent to the generated
316 * elements.
317 * If they are not inherited (included in subie or in the non
318 * inheritance element), then we copy all occurrences the first time
319 * we see this element type.
320 */
321 for_each_element(parent, ie, ielen) {
322 if (parent->id == WLAN_EID_FRAGMENT)
323 continue;
324
325 if (parent->id == WLAN_EID_EXTENSION) {
326 if (parent->datalen < 1)
327 continue;
328
329 id = WLAN_EID_EXTENSION;
330 ext_id = parent->data[0];
331 match_len = 1;
332 } else {
333 id = parent->id;
334 match_len = 0;
335 }
336
337 /* Find first occurrence in subie */
338 sub = cfg80211_find_elem_match(id, subie, subie_len,
339 &ext_id, match_len, 0);
340
341 /* Copy from parent if not in subie and inherited */
342 if (!sub &&
343 cfg80211_is_element_inherited(parent, non_inherit_elem)) {
344 if (!cfg80211_copy_elem_with_frags(parent,
345 ie, ielen,
346 &pos, new_ie,
347 new_ie_len))
348 return 0;
349
350 continue;
351 }
352
353 /* Already copied if an earlier element had the same type */
354 if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
355 &ext_id, match_len, 0))
356 continue;
357
358 /* Not inheriting, copy all similar elements from subie */
359 while (sub) {
360 if (!cfg80211_copy_elem_with_frags(sub,
361 subie, subie_len,
362 &pos, new_ie,
363 new_ie_len))
364 return 0;
365
366 sub = cfg80211_find_elem_match(id,
367 sub->data + sub->datalen,
368 subie_len + subie -
369 (sub->data +
370 sub->datalen),
371 &ext_id, match_len, 0);
372 }
373 }
374
375 /* The above misses elements that are included in subie but not in the
376 * parent, so do a pass over subie and append those.
377 * Skip the non-tx BSSID caps and non-inheritance element.
378 */
379 for_each_element(sub, subie, subie_len) {
380 if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
381 continue;
382
383 if (sub->id == WLAN_EID_FRAGMENT)
384 continue;
385
386 if (sub->id == WLAN_EID_EXTENSION) {
387 if (sub->datalen < 1)
388 continue;
389
390 id = WLAN_EID_EXTENSION;
391 ext_id = sub->data[0];
392 match_len = 1;
393
394 if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
395 continue;
396 } else {
397 id = sub->id;
398 match_len = 0;
399 }
400
401 /* Processed if one was included in the parent */
402 if (cfg80211_find_elem_match(id, ie, ielen,
403 &ext_id, match_len, 0))
404 continue;
405
406 if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
407 &pos, new_ie, new_ie_len))
408 return 0;
409 }
410
411 return pos - new_ie;
412 }
413
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)414 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
415 const u8 *ssid, size_t ssid_len)
416 {
417 const struct cfg80211_bss_ies *ies;
418 const struct element *ssid_elem;
419
420 if (bssid && !ether_addr_equal(a->bssid, bssid))
421 return false;
422
423 if (!ssid)
424 return true;
425
426 ies = rcu_access_pointer(a->ies);
427 if (!ies)
428 return false;
429 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
430 if (!ssid_elem)
431 return false;
432 if (ssid_elem->datalen != ssid_len)
433 return false;
434 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
435 }
436
437 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)438 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
439 struct cfg80211_bss *nontrans_bss)
440 {
441 const struct element *ssid_elem;
442 struct cfg80211_bss *bss = NULL;
443
444 rcu_read_lock();
445 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
446 if (!ssid_elem) {
447 rcu_read_unlock();
448 return -EINVAL;
449 }
450
451 /* check if nontrans_bss is in the list */
452 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
453 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
454 ssid_elem->datalen)) {
455 rcu_read_unlock();
456 return 0;
457 }
458 }
459
460 rcu_read_unlock();
461
462 /*
463 * This is a bit weird - it's not on the list, but already on another
464 * one! The only way that could happen is if there's some BSSID/SSID
465 * shared by multiple APs in their multi-BSSID profiles, potentially
466 * with hidden SSID mixed in ... ignore it.
467 */
468 if (!list_empty(&nontrans_bss->nontrans_list))
469 return -EINVAL;
470
471 /* add to the list */
472 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
473 return 0;
474 }
475
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)476 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
477 unsigned long expire_time)
478 {
479 struct cfg80211_internal_bss *bss, *tmp;
480 bool expired = false;
481
482 lockdep_assert_held(&rdev->bss_lock);
483
484 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
485 if (atomic_read(&bss->hold))
486 continue;
487 if (!time_after(expire_time, bss->ts))
488 continue;
489
490 if (__cfg80211_unlink_bss(rdev, bss))
491 expired = true;
492 }
493
494 if (expired)
495 rdev->bss_generation++;
496 }
497
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)498 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
499 {
500 struct cfg80211_internal_bss *bss, *oldest = NULL;
501 bool ret;
502
503 lockdep_assert_held(&rdev->bss_lock);
504
505 list_for_each_entry(bss, &rdev->bss_list, list) {
506 if (atomic_read(&bss->hold))
507 continue;
508
509 if (!list_empty(&bss->hidden_list) &&
510 !bss->pub.hidden_beacon_bss)
511 continue;
512
513 if (oldest && time_before(oldest->ts, bss->ts))
514 continue;
515 oldest = bss;
516 }
517
518 if (WARN_ON(!oldest))
519 return false;
520
521 /*
522 * The callers make sure to increase rdev->bss_generation if anything
523 * gets removed (and a new entry added), so there's no need to also do
524 * it here.
525 */
526
527 ret = __cfg80211_unlink_bss(rdev, oldest);
528 WARN_ON(!ret);
529 return ret;
530 }
531
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)532 static u8 cfg80211_parse_bss_param(u8 data,
533 struct cfg80211_colocated_ap *coloc_ap)
534 {
535 coloc_ap->oct_recommended =
536 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
537 coloc_ap->same_ssid =
538 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
539 coloc_ap->multi_bss =
540 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
541 coloc_ap->transmitted_bssid =
542 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
543 coloc_ap->unsolicited_probe =
544 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
545 coloc_ap->colocated_ess =
546 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
547
548 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
549 }
550
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)551 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
552 const struct element **elem, u32 *s_ssid)
553 {
554
555 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
556 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
557 return -EINVAL;
558
559 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
560 return 0;
561 }
562
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)563 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
564 {
565 struct cfg80211_colocated_ap *ap, *tmp_ap;
566
567 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
568 list_del(&ap->list);
569 kfree(ap);
570 }
571 }
572
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)573 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
574 const u8 *pos, u8 length,
575 const struct element *ssid_elem,
576 int s_ssid_tmp)
577 {
578 /* skip the TBTT offset */
579 pos++;
580
581 /* ignore entries with invalid BSSID */
582 if (!is_valid_ether_addr(pos))
583 return -EINVAL;
584
585 memcpy(entry->bssid, pos, ETH_ALEN);
586 pos += ETH_ALEN;
587
588 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
589 memcpy(&entry->short_ssid, pos,
590 sizeof(entry->short_ssid));
591 entry->short_ssid_valid = true;
592 pos += 4;
593 }
594
595 /* skip non colocated APs */
596 if (!cfg80211_parse_bss_param(*pos, entry))
597 return -EINVAL;
598 pos++;
599
600 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
601 /*
602 * no information about the short ssid. Consider the entry valid
603 * for now. It would later be dropped in case there are explicit
604 * SSIDs that need to be matched
605 */
606 if (!entry->same_ssid)
607 return 0;
608 }
609
610 if (entry->same_ssid) {
611 entry->short_ssid = s_ssid_tmp;
612 entry->short_ssid_valid = true;
613
614 /*
615 * This is safe because we validate datalen in
616 * cfg80211_parse_colocated_ap(), before calling this
617 * function.
618 */
619 memcpy(&entry->ssid, &ssid_elem->data,
620 ssid_elem->datalen);
621 entry->ssid_len = ssid_elem->datalen;
622 }
623 return 0;
624 }
625
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)626 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
627 struct list_head *list)
628 {
629 struct ieee80211_neighbor_ap_info *ap_info;
630 const struct element *elem, *ssid_elem;
631 const u8 *pos, *end;
632 u32 s_ssid_tmp;
633 int n_coloc = 0, ret;
634 LIST_HEAD(ap_list);
635
636 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
637 ies->len);
638 if (!elem)
639 return 0;
640
641 pos = elem->data;
642 end = pos + elem->datalen;
643
644 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
645 if (ret)
646 return 0;
647
648 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
649 while (pos + sizeof(*ap_info) <= end) {
650 enum nl80211_band band;
651 int freq;
652 u8 length, i, count;
653
654 ap_info = (void *)pos;
655 count = u8_get_bits(ap_info->tbtt_info_hdr,
656 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
657 length = ap_info->tbtt_info_len;
658
659 pos += sizeof(*ap_info);
660
661 if (!ieee80211_operating_class_to_band(ap_info->op_class,
662 &band))
663 break;
664
665 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
666
667 if (end - pos < count * length)
668 break;
669
670 /*
671 * TBTT info must include bss param + BSSID +
672 * (short SSID or same_ssid bit to be set).
673 * ignore other options, and move to the
674 * next AP info
675 */
676 if (band != NL80211_BAND_6GHZ ||
677 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
678 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
679 pos += count * length;
680 continue;
681 }
682
683 for (i = 0; i < count; i++) {
684 struct cfg80211_colocated_ap *entry;
685
686 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
687 GFP_ATOMIC);
688
689 if (!entry)
690 break;
691
692 entry->center_freq = freq;
693
694 if (!cfg80211_parse_ap_info(entry, pos, length,
695 ssid_elem, s_ssid_tmp)) {
696 n_coloc++;
697 list_add_tail(&entry->list, &ap_list);
698 } else {
699 kfree(entry);
700 }
701
702 pos += length;
703 }
704 }
705
706 if (pos != end) {
707 cfg80211_free_coloc_ap_list(&ap_list);
708 return 0;
709 }
710
711 list_splice_tail(&ap_list, list);
712 return n_coloc;
713 }
714
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)715 static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
716 struct ieee80211_channel *chan,
717 bool add_to_6ghz)
718 {
719 int i;
720 u32 n_channels = request->n_channels;
721 struct cfg80211_scan_6ghz_params *params =
722 &request->scan_6ghz_params[request->n_6ghz_params];
723
724 for (i = 0; i < n_channels; i++) {
725 if (request->channels[i] == chan) {
726 if (add_to_6ghz)
727 params->channel_idx = i;
728 return;
729 }
730 }
731
732 request->channels[n_channels] = chan;
733 if (add_to_6ghz)
734 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
735 n_channels;
736
737 request->n_channels++;
738 }
739
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)740 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
741 struct cfg80211_scan_request *request)
742 {
743 int i;
744 u32 s_ssid;
745
746 for (i = 0; i < request->n_ssids; i++) {
747 /* wildcard ssid in the scan request */
748 if (!request->ssids[i].ssid_len) {
749 if (ap->multi_bss && !ap->transmitted_bssid)
750 continue;
751
752 return true;
753 }
754
755 if (ap->ssid_len &&
756 ap->ssid_len == request->ssids[i].ssid_len) {
757 if (!memcmp(request->ssids[i].ssid, ap->ssid,
758 ap->ssid_len))
759 return true;
760 } else if (ap->short_ssid_valid) {
761 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
762 request->ssids[i].ssid_len);
763
764 if (ap->short_ssid == s_ssid)
765 return true;
766 }
767 }
768
769 return false;
770 }
771
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)772 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
773 {
774 u8 i;
775 struct cfg80211_colocated_ap *ap;
776 int n_channels, count = 0, err;
777 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
778 LIST_HEAD(coloc_ap_list);
779 bool need_scan_psc = true;
780 const struct ieee80211_sband_iftype_data *iftd;
781
782 rdev_req->scan_6ghz = true;
783
784 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
785 return -EOPNOTSUPP;
786
787 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
788 rdev_req->wdev->iftype);
789 if (!iftd || !iftd->he_cap.has_he)
790 return -EOPNOTSUPP;
791
792 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
793
794 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
795 struct cfg80211_internal_bss *intbss;
796
797 spin_lock_bh(&rdev->bss_lock);
798 list_for_each_entry(intbss, &rdev->bss_list, list) {
799 struct cfg80211_bss *res = &intbss->pub;
800 const struct cfg80211_bss_ies *ies;
801
802 ies = rcu_access_pointer(res->ies);
803 count += cfg80211_parse_colocated_ap(ies,
804 &coloc_ap_list);
805 }
806 spin_unlock_bh(&rdev->bss_lock);
807 }
808
809 request = kzalloc(struct_size(request, channels, n_channels) +
810 sizeof(*request->scan_6ghz_params) * count +
811 sizeof(*request->ssids) * rdev_req->n_ssids,
812 GFP_KERNEL);
813 if (!request) {
814 cfg80211_free_coloc_ap_list(&coloc_ap_list);
815 return -ENOMEM;
816 }
817
818 *request = *rdev_req;
819 request->n_channels = 0;
820 request->scan_6ghz_params =
821 (void *)&request->channels[n_channels];
822
823 /*
824 * PSC channels should not be scanned in case of direct scan with 1 SSID
825 * and at least one of the reported co-located APs with same SSID
826 * indicating that all APs in the same ESS are co-located
827 */
828 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
829 list_for_each_entry(ap, &coloc_ap_list, list) {
830 if (ap->colocated_ess &&
831 cfg80211_find_ssid_match(ap, request)) {
832 need_scan_psc = false;
833 break;
834 }
835 }
836 }
837
838 /*
839 * add to the scan request the channels that need to be scanned
840 * regardless of the collocated APs (PSC channels or all channels
841 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
842 */
843 for (i = 0; i < rdev_req->n_channels; i++) {
844 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
845 ((need_scan_psc &&
846 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
847 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
848 cfg80211_scan_req_add_chan(request,
849 rdev_req->channels[i],
850 false);
851 }
852 }
853
854 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
855 goto skip;
856
857 list_for_each_entry(ap, &coloc_ap_list, list) {
858 bool found = false;
859 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
860 &request->scan_6ghz_params[request->n_6ghz_params];
861 struct ieee80211_channel *chan =
862 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
863
864 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
865 continue;
866
867 for (i = 0; i < rdev_req->n_channels; i++) {
868 if (rdev_req->channels[i] == chan)
869 found = true;
870 }
871
872 if (!found)
873 continue;
874
875 if (request->n_ssids > 0 &&
876 !cfg80211_find_ssid_match(ap, request))
877 continue;
878
879 if (!is_broadcast_ether_addr(request->bssid) &&
880 !ether_addr_equal(request->bssid, ap->bssid))
881 continue;
882
883 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
884 continue;
885
886 cfg80211_scan_req_add_chan(request, chan, true);
887 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
888 scan_6ghz_params->short_ssid = ap->short_ssid;
889 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
890 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
891
892 /*
893 * If a PSC channel is added to the scan and 'need_scan_psc' is
894 * set to false, then all the APs that the scan logic is
895 * interested with on the channel are collocated and thus there
896 * is no need to perform the initial PSC channel listen.
897 */
898 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
899 scan_6ghz_params->psc_no_listen = true;
900
901 request->n_6ghz_params++;
902 }
903
904 skip:
905 cfg80211_free_coloc_ap_list(&coloc_ap_list);
906
907 if (request->n_channels) {
908 struct cfg80211_scan_request *old = rdev->int_scan_req;
909 rdev->int_scan_req = request;
910
911 /*
912 * Add the ssids from the parent scan request to the new scan
913 * request, so the driver would be able to use them in its
914 * probe requests to discover hidden APs on PSC channels.
915 */
916 request->ssids = (void *)&request->channels[request->n_channels];
917 request->n_ssids = rdev_req->n_ssids;
918 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
919 request->n_ssids);
920
921 /*
922 * If this scan follows a previous scan, save the scan start
923 * info from the first part of the scan
924 */
925 if (old)
926 rdev->int_scan_req->info = old->info;
927
928 err = rdev_scan(rdev, request);
929 if (err) {
930 rdev->int_scan_req = old;
931 kfree(request);
932 } else {
933 kfree(old);
934 }
935
936 return err;
937 }
938
939 kfree(request);
940 return -EINVAL;
941 }
942
cfg80211_scan(struct cfg80211_registered_device * rdev)943 int cfg80211_scan(struct cfg80211_registered_device *rdev)
944 {
945 struct cfg80211_scan_request *request;
946 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
947 u32 n_channels = 0, idx, i;
948
949 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
950 return rdev_scan(rdev, rdev_req);
951
952 for (i = 0; i < rdev_req->n_channels; i++) {
953 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
954 n_channels++;
955 }
956
957 if (!n_channels)
958 return cfg80211_scan_6ghz(rdev);
959
960 request = kzalloc(struct_size(request, channels, n_channels),
961 GFP_KERNEL);
962 if (!request)
963 return -ENOMEM;
964
965 *request = *rdev_req;
966 request->n_channels = n_channels;
967
968 for (i = idx = 0; i < rdev_req->n_channels; i++) {
969 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
970 request->channels[idx++] = rdev_req->channels[i];
971 }
972
973 rdev_req->scan_6ghz = false;
974 rdev->int_scan_req = request;
975 return rdev_scan(rdev, request);
976 }
977
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)978 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
979 bool send_message)
980 {
981 struct cfg80211_scan_request *request, *rdev_req;
982 struct wireless_dev *wdev;
983 struct sk_buff *msg;
984 #ifdef CONFIG_CFG80211_WEXT
985 union iwreq_data wrqu;
986 #endif
987
988 lockdep_assert_held(&rdev->wiphy.mtx);
989
990 if (rdev->scan_msg) {
991 nl80211_send_scan_msg(rdev, rdev->scan_msg);
992 rdev->scan_msg = NULL;
993 return;
994 }
995
996 rdev_req = rdev->scan_req;
997 if (!rdev_req)
998 return;
999
1000 wdev = rdev_req->wdev;
1001 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1002
1003 if (wdev_running(wdev) &&
1004 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1005 !rdev_req->scan_6ghz && !request->info.aborted &&
1006 !cfg80211_scan_6ghz(rdev))
1007 return;
1008
1009 /*
1010 * This must be before sending the other events!
1011 * Otherwise, wpa_supplicant gets completely confused with
1012 * wext events.
1013 */
1014 if (wdev->netdev)
1015 cfg80211_sme_scan_done(wdev->netdev);
1016
1017 if (!request->info.aborted &&
1018 request->flags & NL80211_SCAN_FLAG_FLUSH) {
1019 /* flush entries from previous scans */
1020 spin_lock_bh(&rdev->bss_lock);
1021 __cfg80211_bss_expire(rdev, request->scan_start);
1022 spin_unlock_bh(&rdev->bss_lock);
1023 }
1024
1025 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1026
1027 #ifdef CONFIG_CFG80211_WEXT
1028 if (wdev->netdev && !request->info.aborted) {
1029 memset(&wrqu, 0, sizeof(wrqu));
1030
1031 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1032 }
1033 #endif
1034
1035 dev_put(wdev->netdev);
1036
1037 kfree(rdev->int_scan_req);
1038 rdev->int_scan_req = NULL;
1039
1040 kfree(rdev->scan_req);
1041 rdev->scan_req = NULL;
1042
1043 if (!send_message)
1044 rdev->scan_msg = msg;
1045 else
1046 nl80211_send_scan_msg(rdev, msg);
1047 }
1048
__cfg80211_scan_done(struct work_struct * wk)1049 void __cfg80211_scan_done(struct work_struct *wk)
1050 {
1051 struct cfg80211_registered_device *rdev;
1052
1053 rdev = container_of(wk, struct cfg80211_registered_device,
1054 scan_done_wk);
1055
1056 wiphy_lock(&rdev->wiphy);
1057 ___cfg80211_scan_done(rdev, true);
1058 wiphy_unlock(&rdev->wiphy);
1059 }
1060
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1061 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1062 struct cfg80211_scan_info *info)
1063 {
1064 struct cfg80211_scan_info old_info = request->info;
1065
1066 trace_cfg80211_scan_done(request, info);
1067 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1068 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1069
1070 request->info = *info;
1071
1072 /*
1073 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1074 * be of the first part. In such a case old_info.scan_start_tsf should
1075 * be non zero.
1076 */
1077 if (request->scan_6ghz && old_info.scan_start_tsf) {
1078 request->info.scan_start_tsf = old_info.scan_start_tsf;
1079 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1080 sizeof(request->info.tsf_bssid));
1081 }
1082
1083 request->notified = true;
1084 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1085 }
1086 EXPORT_SYMBOL(cfg80211_scan_done);
1087
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1088 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1089 struct cfg80211_sched_scan_request *req)
1090 {
1091 lockdep_assert_held(&rdev->wiphy.mtx);
1092
1093 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1094 }
1095
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1096 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1097 struct cfg80211_sched_scan_request *req)
1098 {
1099 lockdep_assert_held(&rdev->wiphy.mtx);
1100
1101 list_del_rcu(&req->list);
1102 kfree_rcu(req, rcu_head);
1103 }
1104
1105 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1106 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1107 {
1108 struct cfg80211_sched_scan_request *pos;
1109
1110 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1111 lockdep_is_held(&rdev->wiphy.mtx)) {
1112 if (pos->reqid == reqid)
1113 return pos;
1114 }
1115 return NULL;
1116 }
1117
1118 /*
1119 * Determines if a scheduled scan request can be handled. When a legacy
1120 * scheduled scan is running no other scheduled scan is allowed regardless
1121 * whether the request is for legacy or multi-support scan. When a multi-support
1122 * scheduled scan is running a request for legacy scan is not allowed. In this
1123 * case a request for multi-support scan can be handled if resources are
1124 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1125 */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1126 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1127 bool want_multi)
1128 {
1129 struct cfg80211_sched_scan_request *pos;
1130 int i = 0;
1131
1132 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1133 /* request id zero means legacy in progress */
1134 if (!i && !pos->reqid)
1135 return -EINPROGRESS;
1136 i++;
1137 }
1138
1139 if (i) {
1140 /* no legacy allowed when multi request(s) are active */
1141 if (!want_multi)
1142 return -EINPROGRESS;
1143
1144 /* resource limit reached */
1145 if (i == rdev->wiphy.max_sched_scan_reqs)
1146 return -ENOSPC;
1147 }
1148 return 0;
1149 }
1150
cfg80211_sched_scan_results_wk(struct work_struct * work)1151 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1152 {
1153 struct cfg80211_registered_device *rdev;
1154 struct cfg80211_sched_scan_request *req, *tmp;
1155
1156 rdev = container_of(work, struct cfg80211_registered_device,
1157 sched_scan_res_wk);
1158
1159 wiphy_lock(&rdev->wiphy);
1160 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1161 if (req->report_results) {
1162 req->report_results = false;
1163 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1164 /* flush entries from previous scans */
1165 spin_lock_bh(&rdev->bss_lock);
1166 __cfg80211_bss_expire(rdev, req->scan_start);
1167 spin_unlock_bh(&rdev->bss_lock);
1168 req->scan_start = jiffies;
1169 }
1170 nl80211_send_sched_scan(req,
1171 NL80211_CMD_SCHED_SCAN_RESULTS);
1172 }
1173 }
1174 wiphy_unlock(&rdev->wiphy);
1175 }
1176
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1177 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1178 {
1179 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1180 struct cfg80211_sched_scan_request *request;
1181
1182 trace_cfg80211_sched_scan_results(wiphy, reqid);
1183 /* ignore if we're not scanning */
1184
1185 rcu_read_lock();
1186 request = cfg80211_find_sched_scan_req(rdev, reqid);
1187 if (request) {
1188 request->report_results = true;
1189 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1190 }
1191 rcu_read_unlock();
1192 }
1193 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1194
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1195 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1196 {
1197 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1198
1199 lockdep_assert_held(&wiphy->mtx);
1200
1201 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1202
1203 __cfg80211_stop_sched_scan(rdev, reqid, true);
1204 }
1205 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1206
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1207 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1208 {
1209 wiphy_lock(wiphy);
1210 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1211 wiphy_unlock(wiphy);
1212 }
1213 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1214
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1215 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1216 struct cfg80211_sched_scan_request *req,
1217 bool driver_initiated)
1218 {
1219 lockdep_assert_held(&rdev->wiphy.mtx);
1220
1221 if (!driver_initiated) {
1222 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1223 if (err)
1224 return err;
1225 }
1226
1227 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1228
1229 cfg80211_del_sched_scan_req(rdev, req);
1230
1231 return 0;
1232 }
1233
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1234 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1235 u64 reqid, bool driver_initiated)
1236 {
1237 struct cfg80211_sched_scan_request *sched_scan_req;
1238
1239 lockdep_assert_held(&rdev->wiphy.mtx);
1240
1241 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1242 if (!sched_scan_req)
1243 return -ENOENT;
1244
1245 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1246 driver_initiated);
1247 }
1248
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1249 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1250 unsigned long age_secs)
1251 {
1252 struct cfg80211_internal_bss *bss;
1253 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1254
1255 spin_lock_bh(&rdev->bss_lock);
1256 list_for_each_entry(bss, &rdev->bss_list, list)
1257 bss->ts -= age_jiffies;
1258 spin_unlock_bh(&rdev->bss_lock);
1259 }
1260
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1261 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1262 {
1263 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1264 }
1265
cfg80211_bss_flush(struct wiphy * wiphy)1266 void cfg80211_bss_flush(struct wiphy *wiphy)
1267 {
1268 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1269
1270 spin_lock_bh(&rdev->bss_lock);
1271 __cfg80211_bss_expire(rdev, jiffies);
1272 spin_unlock_bh(&rdev->bss_lock);
1273 }
1274 EXPORT_SYMBOL(cfg80211_bss_flush);
1275
1276 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1277 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1278 const u8 *match, unsigned int match_len,
1279 unsigned int match_offset)
1280 {
1281 const struct element *elem;
1282
1283 for_each_element_id(elem, eid, ies, len) {
1284 if (elem->datalen >= match_offset + match_len &&
1285 !memcmp(elem->data + match_offset, match, match_len))
1286 return elem;
1287 }
1288
1289 return NULL;
1290 }
1291 EXPORT_SYMBOL(cfg80211_find_elem_match);
1292
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1293 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1294 const u8 *ies,
1295 unsigned int len)
1296 {
1297 const struct element *elem;
1298 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1299 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1300
1301 if (WARN_ON(oui_type > 0xff))
1302 return NULL;
1303
1304 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1305 match, match_len, 0);
1306
1307 if (!elem || elem->datalen < 4)
1308 return NULL;
1309
1310 return elem;
1311 }
1312 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1313
1314 /**
1315 * enum bss_compare_mode - BSS compare mode
1316 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1317 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1318 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1319 */
1320 enum bss_compare_mode {
1321 BSS_CMP_REGULAR,
1322 BSS_CMP_HIDE_ZLEN,
1323 BSS_CMP_HIDE_NUL,
1324 };
1325
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1326 static int cmp_bss(struct cfg80211_bss *a,
1327 struct cfg80211_bss *b,
1328 enum bss_compare_mode mode)
1329 {
1330 const struct cfg80211_bss_ies *a_ies, *b_ies;
1331 const u8 *ie1 = NULL;
1332 const u8 *ie2 = NULL;
1333 int i, r;
1334
1335 if (a->channel != b->channel)
1336 return b->channel->center_freq - a->channel->center_freq;
1337
1338 a_ies = rcu_access_pointer(a->ies);
1339 if (!a_ies)
1340 return -1;
1341 b_ies = rcu_access_pointer(b->ies);
1342 if (!b_ies)
1343 return 1;
1344
1345 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1346 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1347 a_ies->data, a_ies->len);
1348 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1349 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1350 b_ies->data, b_ies->len);
1351 if (ie1 && ie2) {
1352 int mesh_id_cmp;
1353
1354 if (ie1[1] == ie2[1])
1355 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1356 else
1357 mesh_id_cmp = ie2[1] - ie1[1];
1358
1359 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1360 a_ies->data, a_ies->len);
1361 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1362 b_ies->data, b_ies->len);
1363 if (ie1 && ie2) {
1364 if (mesh_id_cmp)
1365 return mesh_id_cmp;
1366 if (ie1[1] != ie2[1])
1367 return ie2[1] - ie1[1];
1368 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1369 }
1370 }
1371
1372 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1373 if (r)
1374 return r;
1375
1376 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1377 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1378
1379 if (!ie1 && !ie2)
1380 return 0;
1381
1382 /*
1383 * Note that with "hide_ssid", the function returns a match if
1384 * the already-present BSS ("b") is a hidden SSID beacon for
1385 * the new BSS ("a").
1386 */
1387
1388 /* sort missing IE before (left of) present IE */
1389 if (!ie1)
1390 return -1;
1391 if (!ie2)
1392 return 1;
1393
1394 switch (mode) {
1395 case BSS_CMP_HIDE_ZLEN:
1396 /*
1397 * In ZLEN mode we assume the BSS entry we're
1398 * looking for has a zero-length SSID. So if
1399 * the one we're looking at right now has that,
1400 * return 0. Otherwise, return the difference
1401 * in length, but since we're looking for the
1402 * 0-length it's really equivalent to returning
1403 * the length of the one we're looking at.
1404 *
1405 * No content comparison is needed as we assume
1406 * the content length is zero.
1407 */
1408 return ie2[1];
1409 case BSS_CMP_REGULAR:
1410 default:
1411 /* sort by length first, then by contents */
1412 if (ie1[1] != ie2[1])
1413 return ie2[1] - ie1[1];
1414 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1415 case BSS_CMP_HIDE_NUL:
1416 if (ie1[1] != ie2[1])
1417 return ie2[1] - ie1[1];
1418 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1419 for (i = 0; i < ie2[1]; i++)
1420 if (ie2[i + 2])
1421 return -1;
1422 return 0;
1423 }
1424 }
1425
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1426 static bool cfg80211_bss_type_match(u16 capability,
1427 enum nl80211_band band,
1428 enum ieee80211_bss_type bss_type)
1429 {
1430 bool ret = true;
1431 u16 mask, val;
1432
1433 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1434 return ret;
1435
1436 if (band == NL80211_BAND_60GHZ) {
1437 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1438 switch (bss_type) {
1439 case IEEE80211_BSS_TYPE_ESS:
1440 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1441 break;
1442 case IEEE80211_BSS_TYPE_PBSS:
1443 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1444 break;
1445 case IEEE80211_BSS_TYPE_IBSS:
1446 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1447 break;
1448 default:
1449 return false;
1450 }
1451 } else {
1452 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1453 switch (bss_type) {
1454 case IEEE80211_BSS_TYPE_ESS:
1455 val = WLAN_CAPABILITY_ESS;
1456 break;
1457 case IEEE80211_BSS_TYPE_IBSS:
1458 val = WLAN_CAPABILITY_IBSS;
1459 break;
1460 case IEEE80211_BSS_TYPE_MBSS:
1461 val = 0;
1462 break;
1463 default:
1464 return false;
1465 }
1466 }
1467
1468 ret = ((capability & mask) == val);
1469 return ret;
1470 }
1471
1472 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1473 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1474 struct ieee80211_channel *channel,
1475 const u8 *bssid,
1476 const u8 *ssid, size_t ssid_len,
1477 enum ieee80211_bss_type bss_type,
1478 enum ieee80211_privacy privacy)
1479 {
1480 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1481 struct cfg80211_internal_bss *bss, *res = NULL;
1482 unsigned long now = jiffies;
1483 int bss_privacy;
1484
1485 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1486 privacy);
1487
1488 spin_lock_bh(&rdev->bss_lock);
1489
1490 list_for_each_entry(bss, &rdev->bss_list, list) {
1491 if (!cfg80211_bss_type_match(bss->pub.capability,
1492 bss->pub.channel->band, bss_type))
1493 continue;
1494
1495 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1496 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1497 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1498 continue;
1499 if (channel && bss->pub.channel != channel)
1500 continue;
1501 if (!is_valid_ether_addr(bss->pub.bssid))
1502 continue;
1503 /* Don't get expired BSS structs */
1504 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1505 !atomic_read(&bss->hold))
1506 continue;
1507 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1508 res = bss;
1509 bss_ref_get(rdev, res);
1510 break;
1511 }
1512 }
1513
1514 spin_unlock_bh(&rdev->bss_lock);
1515 if (!res)
1516 return NULL;
1517 trace_cfg80211_return_bss(&res->pub);
1518 return &res->pub;
1519 }
1520 EXPORT_SYMBOL(cfg80211_get_bss);
1521
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1522 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1523 struct cfg80211_internal_bss *bss)
1524 {
1525 struct rb_node **p = &rdev->bss_tree.rb_node;
1526 struct rb_node *parent = NULL;
1527 struct cfg80211_internal_bss *tbss;
1528 int cmp;
1529
1530 while (*p) {
1531 parent = *p;
1532 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1533
1534 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1535
1536 if (WARN_ON(!cmp)) {
1537 /* will sort of leak this BSS */
1538 return;
1539 }
1540
1541 if (cmp < 0)
1542 p = &(*p)->rb_left;
1543 else
1544 p = &(*p)->rb_right;
1545 }
1546
1547 rb_link_node(&bss->rbn, parent, p);
1548 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1549 }
1550
1551 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1552 rb_find_bss(struct cfg80211_registered_device *rdev,
1553 struct cfg80211_internal_bss *res,
1554 enum bss_compare_mode mode)
1555 {
1556 struct rb_node *n = rdev->bss_tree.rb_node;
1557 struct cfg80211_internal_bss *bss;
1558 int r;
1559
1560 while (n) {
1561 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1562 r = cmp_bss(&res->pub, &bss->pub, mode);
1563
1564 if (r == 0)
1565 return bss;
1566 else if (r < 0)
1567 n = n->rb_left;
1568 else
1569 n = n->rb_right;
1570 }
1571
1572 return NULL;
1573 }
1574
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1575 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1576 struct cfg80211_internal_bss *new)
1577 {
1578 const struct cfg80211_bss_ies *ies;
1579 struct cfg80211_internal_bss *bss;
1580 const u8 *ie;
1581 int i, ssidlen;
1582 u8 fold = 0;
1583 u32 n_entries = 0;
1584
1585 ies = rcu_access_pointer(new->pub.beacon_ies);
1586 if (WARN_ON(!ies))
1587 return false;
1588
1589 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1590 if (!ie) {
1591 /* nothing to do */
1592 return true;
1593 }
1594
1595 ssidlen = ie[1];
1596 for (i = 0; i < ssidlen; i++)
1597 fold |= ie[2 + i];
1598
1599 if (fold) {
1600 /* not a hidden SSID */
1601 return true;
1602 }
1603
1604 /* This is the bad part ... */
1605
1606 list_for_each_entry(bss, &rdev->bss_list, list) {
1607 /*
1608 * we're iterating all the entries anyway, so take the
1609 * opportunity to validate the list length accounting
1610 */
1611 n_entries++;
1612
1613 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1614 continue;
1615 if (bss->pub.channel != new->pub.channel)
1616 continue;
1617 if (bss->pub.scan_width != new->pub.scan_width)
1618 continue;
1619 if (rcu_access_pointer(bss->pub.beacon_ies))
1620 continue;
1621 ies = rcu_access_pointer(bss->pub.ies);
1622 if (!ies)
1623 continue;
1624 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1625 if (!ie)
1626 continue;
1627 if (ssidlen && ie[1] != ssidlen)
1628 continue;
1629 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1630 continue;
1631 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1632 list_del(&bss->hidden_list);
1633 /* combine them */
1634 list_add(&bss->hidden_list, &new->hidden_list);
1635 bss->pub.hidden_beacon_bss = &new->pub;
1636 new->refcount += bss->refcount;
1637 rcu_assign_pointer(bss->pub.beacon_ies,
1638 new->pub.beacon_ies);
1639 }
1640
1641 WARN_ONCE(n_entries != rdev->bss_entries,
1642 "rdev bss entries[%d]/list[len:%d] corruption\n",
1643 rdev->bss_entries, n_entries);
1644
1645 return true;
1646 }
1647
1648 struct cfg80211_non_tx_bss {
1649 struct cfg80211_bss *tx_bss;
1650 u8 max_bssid_indicator;
1651 u8 bssid_index;
1652 };
1653
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1654 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1655 const struct cfg80211_bss_ies *new_ies,
1656 const struct cfg80211_bss_ies *old_ies)
1657 {
1658 struct cfg80211_internal_bss *bss;
1659
1660 /* Assign beacon IEs to all sub entries */
1661 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1662 const struct cfg80211_bss_ies *ies;
1663
1664 ies = rcu_access_pointer(bss->pub.beacon_ies);
1665 WARN_ON(ies != old_ies);
1666
1667 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1668 }
1669 }
1670
1671 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1672 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1673 struct cfg80211_internal_bss *known,
1674 struct cfg80211_internal_bss *new,
1675 bool signal_valid)
1676 {
1677 lockdep_assert_held(&rdev->bss_lock);
1678
1679 /* Update IEs */
1680 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1681 const struct cfg80211_bss_ies *old;
1682
1683 old = rcu_access_pointer(known->pub.proberesp_ies);
1684
1685 rcu_assign_pointer(known->pub.proberesp_ies,
1686 new->pub.proberesp_ies);
1687 /* Override possible earlier Beacon frame IEs */
1688 rcu_assign_pointer(known->pub.ies,
1689 new->pub.proberesp_ies);
1690 if (old)
1691 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1692 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1693 const struct cfg80211_bss_ies *old;
1694
1695 if (known->pub.hidden_beacon_bss &&
1696 !list_empty(&known->hidden_list)) {
1697 const struct cfg80211_bss_ies *f;
1698
1699 /* The known BSS struct is one of the probe
1700 * response members of a group, but we're
1701 * receiving a beacon (beacon_ies in the new
1702 * bss is used). This can only mean that the
1703 * AP changed its beacon from not having an
1704 * SSID to showing it, which is confusing so
1705 * drop this information.
1706 */
1707
1708 f = rcu_access_pointer(new->pub.beacon_ies);
1709 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1710 return false;
1711 }
1712
1713 old = rcu_access_pointer(known->pub.beacon_ies);
1714
1715 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1716
1717 /* Override IEs if they were from a beacon before */
1718 if (old == rcu_access_pointer(known->pub.ies))
1719 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1720
1721 cfg80211_update_hidden_bsses(known,
1722 rcu_access_pointer(new->pub.beacon_ies),
1723 old);
1724
1725 if (old)
1726 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1727 }
1728
1729 known->pub.beacon_interval = new->pub.beacon_interval;
1730
1731 /* don't update the signal if beacon was heard on
1732 * adjacent channel.
1733 */
1734 if (signal_valid)
1735 known->pub.signal = new->pub.signal;
1736 known->pub.capability = new->pub.capability;
1737 known->ts = new->ts;
1738 known->ts_boottime = new->ts_boottime;
1739 known->parent_tsf = new->parent_tsf;
1740 known->pub.chains = new->pub.chains;
1741 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1742 IEEE80211_MAX_CHAINS);
1743 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1744 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1745 known->pub.bssid_index = new->pub.bssid_index;
1746
1747 return true;
1748 }
1749
1750 /* Returned bss is reference counted and must be cleaned up appropriately. */
1751 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1752 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1753 struct cfg80211_internal_bss *tmp,
1754 bool signal_valid, unsigned long ts)
1755 {
1756 struct cfg80211_internal_bss *found = NULL;
1757
1758 if (WARN_ON(!tmp->pub.channel))
1759 return NULL;
1760
1761 tmp->ts = ts;
1762
1763 spin_lock_bh(&rdev->bss_lock);
1764
1765 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1766 spin_unlock_bh(&rdev->bss_lock);
1767 return NULL;
1768 }
1769
1770 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1771
1772 if (found) {
1773 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1774 goto drop;
1775 } else {
1776 struct cfg80211_internal_bss *new;
1777 struct cfg80211_internal_bss *hidden;
1778 struct cfg80211_bss_ies *ies;
1779
1780 /*
1781 * create a copy -- the "res" variable that is passed in
1782 * is allocated on the stack since it's not needed in the
1783 * more common case of an update
1784 */
1785 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1786 GFP_ATOMIC);
1787 if (!new) {
1788 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1789 if (ies)
1790 kfree_rcu(ies, rcu_head);
1791 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1792 if (ies)
1793 kfree_rcu(ies, rcu_head);
1794 goto drop;
1795 }
1796 memcpy(new, tmp, sizeof(*new));
1797 new->refcount = 1;
1798 INIT_LIST_HEAD(&new->hidden_list);
1799 INIT_LIST_HEAD(&new->pub.nontrans_list);
1800 /* we'll set this later if it was non-NULL */
1801 new->pub.transmitted_bss = NULL;
1802
1803 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1804 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1805 if (!hidden)
1806 hidden = rb_find_bss(rdev, tmp,
1807 BSS_CMP_HIDE_NUL);
1808 if (hidden) {
1809 new->pub.hidden_beacon_bss = &hidden->pub;
1810 list_add(&new->hidden_list,
1811 &hidden->hidden_list);
1812 hidden->refcount++;
1813
1814 ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1815 rcu_assign_pointer(new->pub.beacon_ies,
1816 hidden->pub.beacon_ies);
1817 if (ies)
1818 kfree_rcu(ies, rcu_head);
1819 }
1820 } else {
1821 /*
1822 * Ok so we found a beacon, and don't have an entry. If
1823 * it's a beacon with hidden SSID, we might be in for an
1824 * expensive search for any probe responses that should
1825 * be grouped with this beacon for updates ...
1826 */
1827 if (!cfg80211_combine_bsses(rdev, new)) {
1828 bss_ref_put(rdev, new);
1829 goto drop;
1830 }
1831 }
1832
1833 if (rdev->bss_entries >= bss_entries_limit &&
1834 !cfg80211_bss_expire_oldest(rdev)) {
1835 bss_ref_put(rdev, new);
1836 goto drop;
1837 }
1838
1839 /* This must be before the call to bss_ref_get */
1840 if (tmp->pub.transmitted_bss) {
1841 struct cfg80211_internal_bss *pbss =
1842 container_of(tmp->pub.transmitted_bss,
1843 struct cfg80211_internal_bss,
1844 pub);
1845
1846 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1847 bss_ref_get(rdev, pbss);
1848 }
1849
1850 list_add_tail(&new->list, &rdev->bss_list);
1851 rdev->bss_entries++;
1852 rb_insert_bss(rdev, new);
1853 found = new;
1854 }
1855
1856 rdev->bss_generation++;
1857 bss_ref_get(rdev, found);
1858 spin_unlock_bh(&rdev->bss_lock);
1859
1860 return found;
1861 drop:
1862 spin_unlock_bh(&rdev->bss_lock);
1863 return NULL;
1864 }
1865
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band,enum cfg80211_bss_frame_type ftype)1866 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1867 enum nl80211_band band,
1868 enum cfg80211_bss_frame_type ftype)
1869 {
1870 const struct element *tmp;
1871
1872 if (band == NL80211_BAND_6GHZ) {
1873 struct ieee80211_he_operation *he_oper;
1874
1875 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1876 ielen);
1877 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1878 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1879 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1880
1881 he_oper = (void *)&tmp->data[1];
1882
1883 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1884 if (!he_6ghz_oper)
1885 return -1;
1886
1887 if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1888 he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1889 return he_6ghz_oper->primary;
1890 }
1891 } else if (band == NL80211_BAND_S1GHZ) {
1892 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1893 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1894 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1895
1896 return s1gop->oper_ch;
1897 }
1898 } else {
1899 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1900 if (tmp && tmp->datalen == 1)
1901 return tmp->data[0];
1902
1903 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1904 if (tmp &&
1905 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1906 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1907
1908 return htop->primary_chan;
1909 }
1910 }
1911
1912 return -1;
1913 }
1914 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1915
1916 /*
1917 * Update RX channel information based on the available frame payload
1918 * information. This is mainly for the 2.4 GHz band where frames can be received
1919 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1920 * element to indicate the current (transmitting) channel, but this might also
1921 * be needed on other bands if RX frequency does not match with the actual
1922 * operating channel of a BSS, or if the AP reports a different primary channel.
1923 */
1924 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width,enum cfg80211_bss_frame_type ftype)1925 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1926 struct ieee80211_channel *channel,
1927 enum nl80211_bss_scan_width scan_width,
1928 enum cfg80211_bss_frame_type ftype)
1929 {
1930 u32 freq;
1931 int channel_number;
1932 struct ieee80211_channel *alt_channel;
1933
1934 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1935 channel->band, ftype);
1936
1937 if (channel_number < 0) {
1938 /* No channel information in frame payload */
1939 return channel;
1940 }
1941
1942 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1943
1944 /*
1945 * In 6GHz, duplicated beacon indication is relevant for
1946 * beacons only.
1947 */
1948 if (channel->band == NL80211_BAND_6GHZ &&
1949 (freq == channel->center_freq ||
1950 abs(freq - channel->center_freq) > 80))
1951 return channel;
1952
1953 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1954 if (!alt_channel) {
1955 if (channel->band == NL80211_BAND_2GHZ) {
1956 /*
1957 * Better not allow unexpected channels when that could
1958 * be going beyond the 1-11 range (e.g., discovering
1959 * BSS on channel 12 when radio is configured for
1960 * channel 11.
1961 */
1962 return NULL;
1963 }
1964
1965 /* No match for the payload channel number - ignore it */
1966 return channel;
1967 }
1968
1969 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1970 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1971 /*
1972 * Ignore channel number in 5 and 10 MHz channels where there
1973 * may not be an n:1 or 1:n mapping between frequencies and
1974 * channel numbers.
1975 */
1976 return channel;
1977 }
1978
1979 /*
1980 * Use the channel determined through the payload channel number
1981 * instead of the RX channel reported by the driver.
1982 */
1983 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1984 return NULL;
1985 return alt_channel;
1986 }
1987
1988 /* Returned bss is reference counted and must be cleaned up appropriately. */
1989 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1990 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1991 struct cfg80211_inform_bss *data,
1992 enum cfg80211_bss_frame_type ftype,
1993 const u8 *bssid, u64 tsf, u16 capability,
1994 u16 beacon_interval, const u8 *ie, size_t ielen,
1995 struct cfg80211_non_tx_bss *non_tx_data,
1996 gfp_t gfp)
1997 {
1998 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1999 struct cfg80211_bss_ies *ies;
2000 struct ieee80211_channel *channel;
2001 struct cfg80211_internal_bss tmp = {}, *res;
2002 int bss_type;
2003 bool signal_valid;
2004 unsigned long ts;
2005
2006 if (WARN_ON(!wiphy))
2007 return NULL;
2008
2009 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2010 (data->signal < 0 || data->signal > 100)))
2011 return NULL;
2012
2013 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
2014 data->scan_width, ftype);
2015 if (!channel)
2016 return NULL;
2017
2018 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2019 tmp.pub.channel = channel;
2020 tmp.pub.scan_width = data->scan_width;
2021 tmp.pub.signal = data->signal;
2022 tmp.pub.beacon_interval = beacon_interval;
2023 tmp.pub.capability = capability;
2024 tmp.ts_boottime = data->boottime_ns;
2025 tmp.parent_tsf = data->parent_tsf;
2026 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2027
2028 if (non_tx_data) {
2029 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
2030 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
2031 tmp.pub.bssid_index = non_tx_data->bssid_index;
2032 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
2033 } else {
2034 ts = jiffies;
2035 }
2036
2037 /*
2038 * If we do not know here whether the IEs are from a Beacon or Probe
2039 * Response frame, we need to pick one of the options and only use it
2040 * with the driver that does not provide the full Beacon/Probe Response
2041 * frame. Use Beacon frame pointer to avoid indicating that this should
2042 * override the IEs pointer should we have received an earlier
2043 * indication of Probe Response data.
2044 */
2045 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2046 if (!ies)
2047 return NULL;
2048 ies->len = ielen;
2049 ies->tsf = tsf;
2050 ies->from_beacon = false;
2051 memcpy(ies->data, ie, ielen);
2052
2053 switch (ftype) {
2054 case CFG80211_BSS_FTYPE_BEACON:
2055 ies->from_beacon = true;
2056 fallthrough;
2057 case CFG80211_BSS_FTYPE_UNKNOWN:
2058 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2059 break;
2060 case CFG80211_BSS_FTYPE_PRESP:
2061 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2062 break;
2063 }
2064 rcu_assign_pointer(tmp.pub.ies, ies);
2065
2066 signal_valid = data->chan == channel;
2067 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2068 if (!res)
2069 return NULL;
2070
2071 if (channel->band == NL80211_BAND_60GHZ) {
2072 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2073 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2074 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2075 regulatory_hint_found_beacon(wiphy, channel, gfp);
2076 } else {
2077 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2078 regulatory_hint_found_beacon(wiphy, channel, gfp);
2079 }
2080
2081 if (non_tx_data) {
2082 /* this is a nontransmitting bss, we need to add it to
2083 * transmitting bss' list if it is not there
2084 */
2085 spin_lock_bh(&rdev->bss_lock);
2086 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2087 &res->pub)) {
2088 if (__cfg80211_unlink_bss(rdev, res)) {
2089 rdev->bss_generation++;
2090 res = NULL;
2091 }
2092 }
2093 spin_unlock_bh(&rdev->bss_lock);
2094
2095 if (!res)
2096 return NULL;
2097 }
2098
2099 trace_cfg80211_return_bss(&res->pub);
2100 /* cfg80211_bss_update gives us a referenced result */
2101 return &res->pub;
2102 }
2103
2104 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2105 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2106 const struct element *mbssid_elem,
2107 const struct element *sub_elem)
2108 {
2109 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2110 const struct element *next_mbssid;
2111 const struct element *next_sub;
2112
2113 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2114 mbssid_end,
2115 ielen - (mbssid_end - ie));
2116
2117 /*
2118 * If it is not the last subelement in current MBSSID IE or there isn't
2119 * a next MBSSID IE - profile is complete.
2120 */
2121 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2122 !next_mbssid)
2123 return NULL;
2124
2125 /* For any length error, just return NULL */
2126
2127 if (next_mbssid->datalen < 4)
2128 return NULL;
2129
2130 next_sub = (void *)&next_mbssid->data[1];
2131
2132 if (next_mbssid->data + next_mbssid->datalen <
2133 next_sub->data + next_sub->datalen)
2134 return NULL;
2135
2136 if (next_sub->id != 0 || next_sub->datalen < 2)
2137 return NULL;
2138
2139 /*
2140 * Check if the first element in the next sub element is a start
2141 * of a new profile
2142 */
2143 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2144 NULL : next_mbssid;
2145 }
2146
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2147 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2148 const struct element *mbssid_elem,
2149 const struct element *sub_elem,
2150 u8 *merged_ie, size_t max_copy_len)
2151 {
2152 size_t copied_len = sub_elem->datalen;
2153 const struct element *next_mbssid;
2154
2155 if (sub_elem->datalen > max_copy_len)
2156 return 0;
2157
2158 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2159
2160 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2161 mbssid_elem,
2162 sub_elem))) {
2163 const struct element *next_sub = (void *)&next_mbssid->data[1];
2164
2165 if (copied_len + next_sub->datalen > max_copy_len)
2166 break;
2167 memcpy(merged_ie + copied_len, next_sub->data,
2168 next_sub->datalen);
2169 copied_len += next_sub->datalen;
2170 }
2171
2172 return copied_len;
2173 }
2174 EXPORT_SYMBOL(cfg80211_merge_profile);
2175
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2176 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2177 struct cfg80211_inform_bss *data,
2178 enum cfg80211_bss_frame_type ftype,
2179 const u8 *bssid, u64 tsf,
2180 u16 beacon_interval, const u8 *ie,
2181 size_t ielen,
2182 struct cfg80211_non_tx_bss *non_tx_data,
2183 gfp_t gfp)
2184 {
2185 const u8 *mbssid_index_ie;
2186 const struct element *elem, *sub;
2187 size_t new_ie_len;
2188 u8 new_bssid[ETH_ALEN];
2189 u8 *new_ie, *profile;
2190 u64 seen_indices = 0;
2191 u16 capability;
2192 struct cfg80211_bss *bss;
2193
2194 if (!non_tx_data)
2195 return;
2196 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2197 return;
2198 if (!wiphy->support_mbssid)
2199 return;
2200 if (wiphy->support_only_he_mbssid &&
2201 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2202 return;
2203
2204 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2205 if (!new_ie)
2206 return;
2207
2208 profile = kmalloc(ielen, gfp);
2209 if (!profile)
2210 goto out;
2211
2212 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2213 if (elem->datalen < 4)
2214 continue;
2215 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2216 continue;
2217 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2218 u8 profile_len;
2219
2220 if (sub->id != 0 || sub->datalen < 4) {
2221 /* not a valid BSS profile */
2222 continue;
2223 }
2224
2225 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2226 sub->data[1] != 2) {
2227 /* The first element within the Nontransmitted
2228 * BSSID Profile is not the Nontransmitted
2229 * BSSID Capability element.
2230 */
2231 continue;
2232 }
2233
2234 memset(profile, 0, ielen);
2235 profile_len = cfg80211_merge_profile(ie, ielen,
2236 elem,
2237 sub,
2238 profile,
2239 ielen);
2240
2241 /* found a Nontransmitted BSSID Profile */
2242 mbssid_index_ie = cfg80211_find_ie
2243 (WLAN_EID_MULTI_BSSID_IDX,
2244 profile, profile_len);
2245 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2246 mbssid_index_ie[2] == 0 ||
2247 mbssid_index_ie[2] > 46) {
2248 /* No valid Multiple BSSID-Index element */
2249 continue;
2250 }
2251
2252 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2253 /* We don't support legacy split of a profile */
2254 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2255 mbssid_index_ie[2]);
2256
2257 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2258
2259 non_tx_data->bssid_index = mbssid_index_ie[2];
2260 non_tx_data->max_bssid_indicator = elem->data[0];
2261
2262 cfg80211_gen_new_bssid(bssid,
2263 non_tx_data->max_bssid_indicator,
2264 non_tx_data->bssid_index,
2265 new_bssid);
2266 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2267 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2268 profile,
2269 profile_len, new_ie,
2270 IEEE80211_MAX_DATA_LEN);
2271 if (!new_ie_len)
2272 continue;
2273
2274 capability = get_unaligned_le16(profile + 2);
2275 bss = cfg80211_inform_single_bss_data(wiphy, data,
2276 ftype,
2277 new_bssid, tsf,
2278 capability,
2279 beacon_interval,
2280 new_ie,
2281 new_ie_len,
2282 non_tx_data,
2283 gfp);
2284 if (!bss)
2285 break;
2286 cfg80211_put_bss(wiphy, bss);
2287 }
2288 }
2289
2290 out:
2291 kfree(new_ie);
2292 kfree(profile);
2293 }
2294
2295 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2296 cfg80211_inform_bss_data(struct wiphy *wiphy,
2297 struct cfg80211_inform_bss *data,
2298 enum cfg80211_bss_frame_type ftype,
2299 const u8 *bssid, u64 tsf, u16 capability,
2300 u16 beacon_interval, const u8 *ie, size_t ielen,
2301 gfp_t gfp)
2302 {
2303 struct cfg80211_bss *res;
2304 struct cfg80211_non_tx_bss non_tx_data;
2305
2306 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2307 capability, beacon_interval, ie,
2308 ielen, NULL, gfp);
2309 if (!res)
2310 return NULL;
2311 non_tx_data.tx_bss = res;
2312 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2313 beacon_interval, ie, ielen, &non_tx_data,
2314 gfp);
2315 return res;
2316 }
2317 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2318
2319 /* cfg80211_inform_bss_width_frame helper */
2320 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2321 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2322 struct cfg80211_inform_bss *data,
2323 struct ieee80211_mgmt *mgmt, size_t len,
2324 gfp_t gfp)
2325 {
2326 struct cfg80211_internal_bss tmp = {}, *res;
2327 struct cfg80211_bss_ies *ies;
2328 struct ieee80211_channel *channel;
2329 bool signal_valid;
2330 struct ieee80211_ext *ext = NULL;
2331 u8 *bssid, *variable;
2332 u16 capability, beacon_int;
2333 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2334 u.probe_resp.variable);
2335 int bss_type;
2336 enum cfg80211_bss_frame_type ftype;
2337
2338 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2339 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2340
2341 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2342
2343 if (WARN_ON(!mgmt))
2344 return NULL;
2345
2346 if (WARN_ON(!wiphy))
2347 return NULL;
2348
2349 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2350 (data->signal < 0 || data->signal > 100)))
2351 return NULL;
2352
2353 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2354 ext = (void *) mgmt;
2355 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2356 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2357 min_hdr_len = offsetof(struct ieee80211_ext,
2358 u.s1g_short_beacon.variable);
2359 }
2360
2361 if (WARN_ON(len < min_hdr_len))
2362 return NULL;
2363
2364 ielen = len - min_hdr_len;
2365 variable = mgmt->u.probe_resp.variable;
2366 if (ext) {
2367 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2368 variable = ext->u.s1g_short_beacon.variable;
2369 else
2370 variable = ext->u.s1g_beacon.variable;
2371 }
2372
2373 if (ieee80211_is_beacon(mgmt->frame_control))
2374 ftype = CFG80211_BSS_FTYPE_BEACON;
2375 else if (ieee80211_is_probe_resp(mgmt->frame_control))
2376 ftype = CFG80211_BSS_FTYPE_PRESP;
2377 else
2378 ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2379
2380 channel = cfg80211_get_bss_channel(wiphy, variable,
2381 ielen, data->chan, data->scan_width,
2382 ftype);
2383 if (!channel)
2384 return NULL;
2385
2386 if (ext) {
2387 const struct ieee80211_s1g_bcn_compat_ie *compat;
2388 const struct element *elem;
2389
2390 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2391 variable, ielen);
2392 if (!elem)
2393 return NULL;
2394 if (elem->datalen < sizeof(*compat))
2395 return NULL;
2396 compat = (void *)elem->data;
2397 bssid = ext->u.s1g_beacon.sa;
2398 capability = le16_to_cpu(compat->compat_info);
2399 beacon_int = le16_to_cpu(compat->beacon_int);
2400 } else {
2401 bssid = mgmt->bssid;
2402 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2403 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2404 }
2405
2406 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2407 if (!ies)
2408 return NULL;
2409 ies->len = ielen;
2410 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2411 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2412 ieee80211_is_s1g_beacon(mgmt->frame_control);
2413 memcpy(ies->data, variable, ielen);
2414
2415 if (ieee80211_is_probe_resp(mgmt->frame_control))
2416 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2417 else
2418 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2419 rcu_assign_pointer(tmp.pub.ies, ies);
2420
2421 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2422 tmp.pub.beacon_interval = beacon_int;
2423 tmp.pub.capability = capability;
2424 tmp.pub.channel = channel;
2425 tmp.pub.scan_width = data->scan_width;
2426 tmp.pub.signal = data->signal;
2427 tmp.ts_boottime = data->boottime_ns;
2428 tmp.parent_tsf = data->parent_tsf;
2429 tmp.pub.chains = data->chains;
2430 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2431 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2432
2433 signal_valid = data->chan == channel;
2434 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2435 jiffies);
2436 if (!res)
2437 return NULL;
2438
2439 if (channel->band == NL80211_BAND_60GHZ) {
2440 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2441 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2442 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2443 regulatory_hint_found_beacon(wiphy, channel, gfp);
2444 } else {
2445 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2446 regulatory_hint_found_beacon(wiphy, channel, gfp);
2447 }
2448
2449 trace_cfg80211_return_bss(&res->pub);
2450 /* cfg80211_bss_update gives us a referenced result */
2451 return &res->pub;
2452 }
2453
2454 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2455 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2456 struct cfg80211_inform_bss *data,
2457 struct ieee80211_mgmt *mgmt, size_t len,
2458 gfp_t gfp)
2459 {
2460 struct cfg80211_bss *res;
2461 const u8 *ie = mgmt->u.probe_resp.variable;
2462 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2463 u.probe_resp.variable);
2464 enum cfg80211_bss_frame_type ftype;
2465 struct cfg80211_non_tx_bss non_tx_data = {};
2466
2467 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2468 len, gfp);
2469 if (!res)
2470 return NULL;
2471
2472 /* don't do any further MBSSID handling for S1G */
2473 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2474 return res;
2475
2476 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2477 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2478 non_tx_data.tx_bss = res;
2479
2480 /* process each non-transmitting bss */
2481 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2482 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2483 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2484 ie, ielen, &non_tx_data, gfp);
2485
2486 return res;
2487 }
2488 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2489
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2490 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2491 {
2492 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2493 struct cfg80211_internal_bss *bss;
2494
2495 if (!pub)
2496 return;
2497
2498 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2499
2500 spin_lock_bh(&rdev->bss_lock);
2501 bss_ref_get(rdev, bss);
2502 spin_unlock_bh(&rdev->bss_lock);
2503 }
2504 EXPORT_SYMBOL(cfg80211_ref_bss);
2505
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2506 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2507 {
2508 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2509 struct cfg80211_internal_bss *bss;
2510
2511 if (!pub)
2512 return;
2513
2514 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2515
2516 spin_lock_bh(&rdev->bss_lock);
2517 bss_ref_put(rdev, bss);
2518 spin_unlock_bh(&rdev->bss_lock);
2519 }
2520 EXPORT_SYMBOL(cfg80211_put_bss);
2521
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2522 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2523 {
2524 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2525 struct cfg80211_internal_bss *bss, *tmp1;
2526 struct cfg80211_bss *nontrans_bss, *tmp;
2527
2528 if (WARN_ON(!pub))
2529 return;
2530
2531 bss = container_of(pub, struct cfg80211_internal_bss, pub);
2532
2533 spin_lock_bh(&rdev->bss_lock);
2534 if (list_empty(&bss->list))
2535 goto out;
2536
2537 list_for_each_entry_safe(nontrans_bss, tmp,
2538 &pub->nontrans_list,
2539 nontrans_list) {
2540 tmp1 = container_of(nontrans_bss,
2541 struct cfg80211_internal_bss, pub);
2542 if (__cfg80211_unlink_bss(rdev, tmp1))
2543 rdev->bss_generation++;
2544 }
2545
2546 if (__cfg80211_unlink_bss(rdev, bss))
2547 rdev->bss_generation++;
2548 out:
2549 spin_unlock_bh(&rdev->bss_lock);
2550 }
2551 EXPORT_SYMBOL(cfg80211_unlink_bss);
2552
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2553 void cfg80211_bss_iter(struct wiphy *wiphy,
2554 struct cfg80211_chan_def *chandef,
2555 void (*iter)(struct wiphy *wiphy,
2556 struct cfg80211_bss *bss,
2557 void *data),
2558 void *iter_data)
2559 {
2560 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2561 struct cfg80211_internal_bss *bss;
2562
2563 spin_lock_bh(&rdev->bss_lock);
2564
2565 list_for_each_entry(bss, &rdev->bss_list, list) {
2566 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2567 false))
2568 iter(wiphy, &bss->pub, iter_data);
2569 }
2570
2571 spin_unlock_bh(&rdev->bss_lock);
2572 }
2573 EXPORT_SYMBOL(cfg80211_bss_iter);
2574
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)2575 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2576 unsigned int link_id,
2577 struct ieee80211_channel *chan)
2578 {
2579 struct wiphy *wiphy = wdev->wiphy;
2580 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2581 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2582 struct cfg80211_internal_bss *new = NULL;
2583 struct cfg80211_internal_bss *bss;
2584 struct cfg80211_bss *nontrans_bss;
2585 struct cfg80211_bss *tmp;
2586
2587 spin_lock_bh(&rdev->bss_lock);
2588
2589 /*
2590 * Some APs use CSA also for bandwidth changes, i.e., without actually
2591 * changing the control channel, so no need to update in such a case.
2592 */
2593 if (cbss->pub.channel == chan)
2594 goto done;
2595
2596 /* use transmitting bss */
2597 if (cbss->pub.transmitted_bss)
2598 cbss = container_of(cbss->pub.transmitted_bss,
2599 struct cfg80211_internal_bss,
2600 pub);
2601
2602 cbss->pub.channel = chan;
2603
2604 list_for_each_entry(bss, &rdev->bss_list, list) {
2605 if (!cfg80211_bss_type_match(bss->pub.capability,
2606 bss->pub.channel->band,
2607 wdev->conn_bss_type))
2608 continue;
2609
2610 if (bss == cbss)
2611 continue;
2612
2613 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2614 new = bss;
2615 break;
2616 }
2617 }
2618
2619 if (new) {
2620 /* to save time, update IEs for transmitting bss only */
2621 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2622 new->pub.proberesp_ies = NULL;
2623 new->pub.beacon_ies = NULL;
2624 }
2625
2626 list_for_each_entry_safe(nontrans_bss, tmp,
2627 &new->pub.nontrans_list,
2628 nontrans_list) {
2629 bss = container_of(nontrans_bss,
2630 struct cfg80211_internal_bss, pub);
2631 if (__cfg80211_unlink_bss(rdev, bss))
2632 rdev->bss_generation++;
2633 }
2634
2635 WARN_ON(atomic_read(&new->hold));
2636 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2637 rdev->bss_generation++;
2638 }
2639
2640 rb_erase(&cbss->rbn, &rdev->bss_tree);
2641 rb_insert_bss(rdev, cbss);
2642 rdev->bss_generation++;
2643
2644 list_for_each_entry_safe(nontrans_bss, tmp,
2645 &cbss->pub.nontrans_list,
2646 nontrans_list) {
2647 bss = container_of(nontrans_bss,
2648 struct cfg80211_internal_bss, pub);
2649 bss->pub.channel = chan;
2650 rb_erase(&bss->rbn, &rdev->bss_tree);
2651 rb_insert_bss(rdev, bss);
2652 rdev->bss_generation++;
2653 }
2654
2655 done:
2656 spin_unlock_bh(&rdev->bss_lock);
2657 }
2658
2659 #ifdef CONFIG_CFG80211_WEXT
2660 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2661 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2662 {
2663 struct cfg80211_registered_device *rdev;
2664 struct net_device *dev;
2665
2666 ASSERT_RTNL();
2667
2668 dev = dev_get_by_index(net, ifindex);
2669 if (!dev)
2670 return ERR_PTR(-ENODEV);
2671 if (dev->ieee80211_ptr)
2672 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2673 else
2674 rdev = ERR_PTR(-ENODEV);
2675 dev_put(dev);
2676 return rdev;
2677 }
2678
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2679 int cfg80211_wext_siwscan(struct net_device *dev,
2680 struct iw_request_info *info,
2681 union iwreq_data *wrqu, char *extra)
2682 {
2683 struct cfg80211_registered_device *rdev;
2684 struct wiphy *wiphy;
2685 struct iw_scan_req *wreq = NULL;
2686 struct cfg80211_scan_request *creq;
2687 int i, err, n_channels = 0;
2688 enum nl80211_band band;
2689
2690 if (!netif_running(dev))
2691 return -ENETDOWN;
2692
2693 if (wrqu->data.length == sizeof(struct iw_scan_req))
2694 wreq = (struct iw_scan_req *)extra;
2695
2696 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2697
2698 if (IS_ERR(rdev))
2699 return PTR_ERR(rdev);
2700
2701 if (rdev->scan_req || rdev->scan_msg)
2702 return -EBUSY;
2703
2704 wiphy = &rdev->wiphy;
2705
2706 /* Determine number of channels, needed to allocate creq */
2707 if (wreq && wreq->num_channels)
2708 n_channels = wreq->num_channels;
2709 else
2710 n_channels = ieee80211_get_num_supported_channels(wiphy);
2711
2712 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2713 n_channels * sizeof(void *),
2714 GFP_ATOMIC);
2715 if (!creq)
2716 return -ENOMEM;
2717
2718 creq->wiphy = wiphy;
2719 creq->wdev = dev->ieee80211_ptr;
2720 /* SSIDs come after channels */
2721 creq->ssids = (void *)&creq->channels[n_channels];
2722 creq->n_channels = n_channels;
2723 creq->n_ssids = 1;
2724 creq->scan_start = jiffies;
2725
2726 /* translate "Scan on frequencies" request */
2727 i = 0;
2728 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2729 int j;
2730
2731 if (!wiphy->bands[band])
2732 continue;
2733
2734 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2735 /* ignore disabled channels */
2736 if (wiphy->bands[band]->channels[j].flags &
2737 IEEE80211_CHAN_DISABLED)
2738 continue;
2739
2740 /* If we have a wireless request structure and the
2741 * wireless request specifies frequencies, then search
2742 * for the matching hardware channel.
2743 */
2744 if (wreq && wreq->num_channels) {
2745 int k;
2746 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2747 for (k = 0; k < wreq->num_channels; k++) {
2748 struct iw_freq *freq =
2749 &wreq->channel_list[k];
2750 int wext_freq =
2751 cfg80211_wext_freq(freq);
2752
2753 if (wext_freq == wiphy_freq)
2754 goto wext_freq_found;
2755 }
2756 goto wext_freq_not_found;
2757 }
2758
2759 wext_freq_found:
2760 creq->channels[i] = &wiphy->bands[band]->channels[j];
2761 i++;
2762 wext_freq_not_found: ;
2763 }
2764 }
2765 /* No channels found? */
2766 if (!i) {
2767 err = -EINVAL;
2768 goto out;
2769 }
2770
2771 /* Set real number of channels specified in creq->channels[] */
2772 creq->n_channels = i;
2773
2774 /* translate "Scan for SSID" request */
2775 if (wreq) {
2776 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2777 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2778 err = -EINVAL;
2779 goto out;
2780 }
2781 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2782 creq->ssids[0].ssid_len = wreq->essid_len;
2783 }
2784 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2785 creq->n_ssids = 0;
2786 }
2787
2788 for (i = 0; i < NUM_NL80211_BANDS; i++)
2789 if (wiphy->bands[i])
2790 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2791
2792 eth_broadcast_addr(creq->bssid);
2793
2794 wiphy_lock(&rdev->wiphy);
2795
2796 rdev->scan_req = creq;
2797 err = rdev_scan(rdev, creq);
2798 if (err) {
2799 rdev->scan_req = NULL;
2800 /* creq will be freed below */
2801 } else {
2802 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2803 /* creq now owned by driver */
2804 creq = NULL;
2805 dev_hold(dev);
2806 }
2807 wiphy_unlock(&rdev->wiphy);
2808 out:
2809 kfree(creq);
2810 return err;
2811 }
2812 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2813
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2814 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2815 const struct cfg80211_bss_ies *ies,
2816 char *current_ev, char *end_buf)
2817 {
2818 const u8 *pos, *end, *next;
2819 struct iw_event iwe;
2820
2821 if (!ies)
2822 return current_ev;
2823
2824 /*
2825 * If needed, fragment the IEs buffer (at IE boundaries) into short
2826 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2827 */
2828 pos = ies->data;
2829 end = pos + ies->len;
2830
2831 while (end - pos > IW_GENERIC_IE_MAX) {
2832 next = pos + 2 + pos[1];
2833 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2834 next = next + 2 + next[1];
2835
2836 memset(&iwe, 0, sizeof(iwe));
2837 iwe.cmd = IWEVGENIE;
2838 iwe.u.data.length = next - pos;
2839 current_ev = iwe_stream_add_point_check(info, current_ev,
2840 end_buf, &iwe,
2841 (void *)pos);
2842 if (IS_ERR(current_ev))
2843 return current_ev;
2844 pos = next;
2845 }
2846
2847 if (end > pos) {
2848 memset(&iwe, 0, sizeof(iwe));
2849 iwe.cmd = IWEVGENIE;
2850 iwe.u.data.length = end - pos;
2851 current_ev = iwe_stream_add_point_check(info, current_ev,
2852 end_buf, &iwe,
2853 (void *)pos);
2854 if (IS_ERR(current_ev))
2855 return current_ev;
2856 }
2857
2858 return current_ev;
2859 }
2860
2861 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2862 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2863 struct cfg80211_internal_bss *bss, char *current_ev,
2864 char *end_buf)
2865 {
2866 const struct cfg80211_bss_ies *ies;
2867 struct iw_event iwe;
2868 const u8 *ie;
2869 u8 buf[50];
2870 u8 *cfg, *p, *tmp;
2871 int rem, i, sig;
2872 bool ismesh = false;
2873
2874 memset(&iwe, 0, sizeof(iwe));
2875 iwe.cmd = SIOCGIWAP;
2876 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2877 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2878 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2879 IW_EV_ADDR_LEN);
2880 if (IS_ERR(current_ev))
2881 return current_ev;
2882
2883 memset(&iwe, 0, sizeof(iwe));
2884 iwe.cmd = SIOCGIWFREQ;
2885 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2886 iwe.u.freq.e = 0;
2887 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2888 IW_EV_FREQ_LEN);
2889 if (IS_ERR(current_ev))
2890 return current_ev;
2891
2892 memset(&iwe, 0, sizeof(iwe));
2893 iwe.cmd = SIOCGIWFREQ;
2894 iwe.u.freq.m = bss->pub.channel->center_freq;
2895 iwe.u.freq.e = 6;
2896 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2897 IW_EV_FREQ_LEN);
2898 if (IS_ERR(current_ev))
2899 return current_ev;
2900
2901 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2902 memset(&iwe, 0, sizeof(iwe));
2903 iwe.cmd = IWEVQUAL;
2904 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2905 IW_QUAL_NOISE_INVALID |
2906 IW_QUAL_QUAL_UPDATED;
2907 switch (wiphy->signal_type) {
2908 case CFG80211_SIGNAL_TYPE_MBM:
2909 sig = bss->pub.signal / 100;
2910 iwe.u.qual.level = sig;
2911 iwe.u.qual.updated |= IW_QUAL_DBM;
2912 if (sig < -110) /* rather bad */
2913 sig = -110;
2914 else if (sig > -40) /* perfect */
2915 sig = -40;
2916 /* will give a range of 0 .. 70 */
2917 iwe.u.qual.qual = sig + 110;
2918 break;
2919 case CFG80211_SIGNAL_TYPE_UNSPEC:
2920 iwe.u.qual.level = bss->pub.signal;
2921 /* will give range 0 .. 100 */
2922 iwe.u.qual.qual = bss->pub.signal;
2923 break;
2924 default:
2925 /* not reached */
2926 break;
2927 }
2928 current_ev = iwe_stream_add_event_check(info, current_ev,
2929 end_buf, &iwe,
2930 IW_EV_QUAL_LEN);
2931 if (IS_ERR(current_ev))
2932 return current_ev;
2933 }
2934
2935 memset(&iwe, 0, sizeof(iwe));
2936 iwe.cmd = SIOCGIWENCODE;
2937 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2938 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2939 else
2940 iwe.u.data.flags = IW_ENCODE_DISABLED;
2941 iwe.u.data.length = 0;
2942 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2943 &iwe, "");
2944 if (IS_ERR(current_ev))
2945 return current_ev;
2946
2947 rcu_read_lock();
2948 ies = rcu_dereference(bss->pub.ies);
2949 rem = ies->len;
2950 ie = ies->data;
2951
2952 while (rem >= 2) {
2953 /* invalid data */
2954 if (ie[1] > rem - 2)
2955 break;
2956
2957 switch (ie[0]) {
2958 case WLAN_EID_SSID:
2959 memset(&iwe, 0, sizeof(iwe));
2960 iwe.cmd = SIOCGIWESSID;
2961 iwe.u.data.length = ie[1];
2962 iwe.u.data.flags = 1;
2963 current_ev = iwe_stream_add_point_check(info,
2964 current_ev,
2965 end_buf, &iwe,
2966 (u8 *)ie + 2);
2967 if (IS_ERR(current_ev))
2968 goto unlock;
2969 break;
2970 case WLAN_EID_MESH_ID:
2971 memset(&iwe, 0, sizeof(iwe));
2972 iwe.cmd = SIOCGIWESSID;
2973 iwe.u.data.length = ie[1];
2974 iwe.u.data.flags = 1;
2975 current_ev = iwe_stream_add_point_check(info,
2976 current_ev,
2977 end_buf, &iwe,
2978 (u8 *)ie + 2);
2979 if (IS_ERR(current_ev))
2980 goto unlock;
2981 break;
2982 case WLAN_EID_MESH_CONFIG:
2983 ismesh = true;
2984 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2985 break;
2986 cfg = (u8 *)ie + 2;
2987 memset(&iwe, 0, sizeof(iwe));
2988 iwe.cmd = IWEVCUSTOM;
2989 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2990 "0x%02X", cfg[0]);
2991 iwe.u.data.length = strlen(buf);
2992 current_ev = iwe_stream_add_point_check(info,
2993 current_ev,
2994 end_buf,
2995 &iwe, buf);
2996 if (IS_ERR(current_ev))
2997 goto unlock;
2998 sprintf(buf, "Path Selection Metric ID: 0x%02X",
2999 cfg[1]);
3000 iwe.u.data.length = strlen(buf);
3001 current_ev = iwe_stream_add_point_check(info,
3002 current_ev,
3003 end_buf,
3004 &iwe, buf);
3005 if (IS_ERR(current_ev))
3006 goto unlock;
3007 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3008 cfg[2]);
3009 iwe.u.data.length = strlen(buf);
3010 current_ev = iwe_stream_add_point_check(info,
3011 current_ev,
3012 end_buf,
3013 &iwe, buf);
3014 if (IS_ERR(current_ev))
3015 goto unlock;
3016 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3017 iwe.u.data.length = strlen(buf);
3018 current_ev = iwe_stream_add_point_check(info,
3019 current_ev,
3020 end_buf,
3021 &iwe, buf);
3022 if (IS_ERR(current_ev))
3023 goto unlock;
3024 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3025 iwe.u.data.length = strlen(buf);
3026 current_ev = iwe_stream_add_point_check(info,
3027 current_ev,
3028 end_buf,
3029 &iwe, buf);
3030 if (IS_ERR(current_ev))
3031 goto unlock;
3032 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3033 iwe.u.data.length = strlen(buf);
3034 current_ev = iwe_stream_add_point_check(info,
3035 current_ev,
3036 end_buf,
3037 &iwe, buf);
3038 if (IS_ERR(current_ev))
3039 goto unlock;
3040 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3041 iwe.u.data.length = strlen(buf);
3042 current_ev = iwe_stream_add_point_check(info,
3043 current_ev,
3044 end_buf,
3045 &iwe, buf);
3046 if (IS_ERR(current_ev))
3047 goto unlock;
3048 break;
3049 case WLAN_EID_SUPP_RATES:
3050 case WLAN_EID_EXT_SUPP_RATES:
3051 /* display all supported rates in readable format */
3052 p = current_ev + iwe_stream_lcp_len(info);
3053
3054 memset(&iwe, 0, sizeof(iwe));
3055 iwe.cmd = SIOCGIWRATE;
3056 /* Those two flags are ignored... */
3057 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3058
3059 for (i = 0; i < ie[1]; i++) {
3060 iwe.u.bitrate.value =
3061 ((ie[i + 2] & 0x7f) * 500000);
3062 tmp = p;
3063 p = iwe_stream_add_value(info, current_ev, p,
3064 end_buf, &iwe,
3065 IW_EV_PARAM_LEN);
3066 if (p == tmp) {
3067 current_ev = ERR_PTR(-E2BIG);
3068 goto unlock;
3069 }
3070 }
3071 current_ev = p;
3072 break;
3073 }
3074 rem -= ie[1] + 2;
3075 ie += ie[1] + 2;
3076 }
3077
3078 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3079 ismesh) {
3080 memset(&iwe, 0, sizeof(iwe));
3081 iwe.cmd = SIOCGIWMODE;
3082 if (ismesh)
3083 iwe.u.mode = IW_MODE_MESH;
3084 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3085 iwe.u.mode = IW_MODE_MASTER;
3086 else
3087 iwe.u.mode = IW_MODE_ADHOC;
3088 current_ev = iwe_stream_add_event_check(info, current_ev,
3089 end_buf, &iwe,
3090 IW_EV_UINT_LEN);
3091 if (IS_ERR(current_ev))
3092 goto unlock;
3093 }
3094
3095 memset(&iwe, 0, sizeof(iwe));
3096 iwe.cmd = IWEVCUSTOM;
3097 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3098 iwe.u.data.length = strlen(buf);
3099 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3100 &iwe, buf);
3101 if (IS_ERR(current_ev))
3102 goto unlock;
3103 memset(&iwe, 0, sizeof(iwe));
3104 iwe.cmd = IWEVCUSTOM;
3105 sprintf(buf, " Last beacon: %ums ago",
3106 elapsed_jiffies_msecs(bss->ts));
3107 iwe.u.data.length = strlen(buf);
3108 current_ev = iwe_stream_add_point_check(info, current_ev,
3109 end_buf, &iwe, buf);
3110 if (IS_ERR(current_ev))
3111 goto unlock;
3112
3113 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3114
3115 unlock:
3116 rcu_read_unlock();
3117 return current_ev;
3118 }
3119
3120
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3121 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3122 struct iw_request_info *info,
3123 char *buf, size_t len)
3124 {
3125 char *current_ev = buf;
3126 char *end_buf = buf + len;
3127 struct cfg80211_internal_bss *bss;
3128 int err = 0;
3129
3130 spin_lock_bh(&rdev->bss_lock);
3131 cfg80211_bss_expire(rdev);
3132
3133 list_for_each_entry(bss, &rdev->bss_list, list) {
3134 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3135 err = -E2BIG;
3136 break;
3137 }
3138 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3139 current_ev, end_buf);
3140 if (IS_ERR(current_ev)) {
3141 err = PTR_ERR(current_ev);
3142 break;
3143 }
3144 }
3145 spin_unlock_bh(&rdev->bss_lock);
3146
3147 if (err)
3148 return err;
3149 return current_ev - buf;
3150 }
3151
3152
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3153 int cfg80211_wext_giwscan(struct net_device *dev,
3154 struct iw_request_info *info,
3155 struct iw_point *data, char *extra)
3156 {
3157 struct cfg80211_registered_device *rdev;
3158 int res;
3159
3160 if (!netif_running(dev))
3161 return -ENETDOWN;
3162
3163 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3164
3165 if (IS_ERR(rdev))
3166 return PTR_ERR(rdev);
3167
3168 if (rdev->scan_req || rdev->scan_msg)
3169 return -EAGAIN;
3170
3171 res = ieee80211_scan_results(rdev, info, extra, data->length);
3172 data->length = 0;
3173 if (res >= 0) {
3174 data->length = res;
3175 res = 0;
3176 }
3177
3178 return res;
3179 }
3180 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3181 #endif
3182