• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cfg80211 scan result handling
4  *
5  * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2016	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/netdevice.h>
14 #include <linux/wireless.h>
15 #include <linux/nl80211.h>
16 #include <linux/etherdevice.h>
17 #include <linux/crc32.h>
18 #include <linux/bitfield.h>
19 #include <net/arp.h>
20 #include <net/cfg80211.h>
21 #include <net/cfg80211-wext.h>
22 #include <net/iw_handler.h>
23 #include "core.h"
24 #include "nl80211.h"
25 #include "wext-compat.h"
26 #include "rdev-ops.h"
27 
28 /**
29  * DOC: BSS tree/list structure
30  *
31  * At the top level, the BSS list is kept in both a list in each
32  * registered device (@bss_list) as well as an RB-tree for faster
33  * lookup. In the RB-tree, entries can be looked up using their
34  * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35  * for other BSSes.
36  *
37  * Due to the possibility of hidden SSIDs, there's a second level
38  * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39  * The hidden_list connects all BSSes belonging to a single AP
40  * that has a hidden SSID, and connects beacon and probe response
41  * entries. For a probe response entry for a hidden SSID, the
42  * hidden_beacon_bss pointer points to the BSS struct holding the
43  * beacon's information.
44  *
45  * Reference counting is done for all these references except for
46  * the hidden_list, so that a beacon BSS struct that is otherwise
47  * not referenced has one reference for being on the bss_list and
48  * one for each probe response entry that points to it using the
49  * hidden_beacon_bss pointer. When a BSS struct that has such a
50  * pointer is get/put, the refcount update is also propagated to
51  * the referenced struct, this ensure that it cannot get removed
52  * while somebody is using the probe response version.
53  *
54  * Note that the hidden_beacon_bss pointer never changes, due to
55  * the reference counting. Therefore, no locking is needed for
56  * it.
57  *
58  * Also note that the hidden_beacon_bss pointer is only relevant
59  * if the driver uses something other than the IEs, e.g. private
60  * data stored in the BSS struct, since the beacon IEs are
61  * also linked into the probe response struct.
62  */
63 
64 /*
65  * Limit the number of BSS entries stored in mac80211. Each one is
66  * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67  * If somebody wants to really attack this though, they'd likely
68  * use small beacons, and only one type of frame, limiting each of
69  * the entries to a much smaller size (in order to generate more
70  * entries in total, so overhead is bigger.)
71  */
72 static int bss_entries_limit = 1000;
73 module_param(bss_entries_limit, int, 0644);
74 MODULE_PARM_DESC(bss_entries_limit,
75                  "limit to number of scan BSS entries (per wiphy, default 1000)");
76 
77 #define IEEE80211_SCAN_RESULT_EXPIRE	(30 * HZ)
78 
79 /**
80  * struct cfg80211_colocated_ap - colocated AP information
81  *
82  * @list: linked list to all colocated aPS
83  * @bssid: BSSID of the reported AP
84  * @ssid: SSID of the reported AP
85  * @ssid_len: length of the ssid
86  * @center_freq: frequency the reported AP is on
87  * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88  *	that operate in the same channel as the reported AP and that might be
89  *	detected by a STA receiving this frame, are transmitting unsolicited
90  *	Probe Response frames every 20 TUs
91  * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92  * @same_ssid: the reported AP has the same SSID as the reporting AP
93  * @multi_bss: the reported AP is part of a multiple BSSID set
94  * @transmitted_bssid: the reported AP is the transmitting BSSID
95  * @colocated_ess: all the APs that share the same ESS as the reported AP are
96  *	colocated and can be discovered via legacy bands.
97  * @short_ssid_valid: short_ssid is valid and can be used
98  * @short_ssid: the short SSID for this SSID
99  */
100 struct cfg80211_colocated_ap {
101 	struct list_head list;
102 	u8 bssid[ETH_ALEN];
103 	u8 ssid[IEEE80211_MAX_SSID_LEN];
104 	size_t ssid_len;
105 	u32 short_ssid;
106 	u32 center_freq;
107 	u8 unsolicited_probe:1,
108 	   oct_recommended:1,
109 	   same_ssid:1,
110 	   multi_bss:1,
111 	   transmitted_bssid:1,
112 	   colocated_ess:1,
113 	   short_ssid_valid:1;
114 };
115 
bss_free(struct cfg80211_internal_bss * bss)116 static void bss_free(struct cfg80211_internal_bss *bss)
117 {
118 	struct cfg80211_bss_ies *ies;
119 
120 	if (WARN_ON(atomic_read(&bss->hold)))
121 		return;
122 
123 	ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 	if (ies && !bss->pub.hidden_beacon_bss)
125 		kfree_rcu(ies, rcu_head);
126 	ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 	if (ies)
128 		kfree_rcu(ies, rcu_head);
129 
130 	/*
131 	 * This happens when the module is removed, it doesn't
132 	 * really matter any more save for completeness
133 	 */
134 	if (!list_empty(&bss->hidden_list))
135 		list_del(&bss->hidden_list);
136 
137 	kfree(bss);
138 }
139 
bss_ref_get(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)140 static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 			       struct cfg80211_internal_bss *bss)
142 {
143 	lockdep_assert_held(&rdev->bss_lock);
144 
145 	bss->refcount++;
146 
147 	if (bss->pub.hidden_beacon_bss)
148 		bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149 
150 	if (bss->pub.transmitted_bss)
151 		bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152 }
153 
bss_ref_put(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)154 static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 			       struct cfg80211_internal_bss *bss)
156 {
157 	lockdep_assert_held(&rdev->bss_lock);
158 
159 	if (bss->pub.hidden_beacon_bss) {
160 		struct cfg80211_internal_bss *hbss;
161 		hbss = container_of(bss->pub.hidden_beacon_bss,
162 				    struct cfg80211_internal_bss,
163 				    pub);
164 		hbss->refcount--;
165 		if (hbss->refcount == 0)
166 			bss_free(hbss);
167 	}
168 
169 	if (bss->pub.transmitted_bss) {
170 		struct cfg80211_internal_bss *tbss;
171 
172 		tbss = container_of(bss->pub.transmitted_bss,
173 				    struct cfg80211_internal_bss,
174 				    pub);
175 		tbss->refcount--;
176 		if (tbss->refcount == 0)
177 			bss_free(tbss);
178 	}
179 
180 	bss->refcount--;
181 	if (bss->refcount == 0)
182 		bss_free(bss);
183 }
184 
__cfg80211_unlink_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)185 static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
186 				  struct cfg80211_internal_bss *bss)
187 {
188 	lockdep_assert_held(&rdev->bss_lock);
189 
190 	if (!list_empty(&bss->hidden_list)) {
191 		/*
192 		 * don't remove the beacon entry if it has
193 		 * probe responses associated with it
194 		 */
195 		if (!bss->pub.hidden_beacon_bss)
196 			return false;
197 		/*
198 		 * if it's a probe response entry break its
199 		 * link to the other entries in the group
200 		 */
201 		list_del_init(&bss->hidden_list);
202 	}
203 
204 	list_del_init(&bss->list);
205 	list_del_init(&bss->pub.nontrans_list);
206 	rb_erase(&bss->rbn, &rdev->bss_tree);
207 	rdev->bss_entries--;
208 	WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
209 		  "rdev bss entries[%d]/list[empty:%d] corruption\n",
210 		  rdev->bss_entries, list_empty(&rdev->bss_list));
211 	bss_ref_put(rdev, bss);
212 	return true;
213 }
214 
cfg80211_is_element_inherited(const struct element * elem,const struct element * non_inherit_elem)215 bool cfg80211_is_element_inherited(const struct element *elem,
216 				   const struct element *non_inherit_elem)
217 {
218 	u8 id_len, ext_id_len, i, loop_len, id;
219 	const u8 *list;
220 
221 	if (elem->id == WLAN_EID_MULTIPLE_BSSID)
222 		return false;
223 
224 	if (!non_inherit_elem || non_inherit_elem->datalen < 2)
225 		return true;
226 
227 	/*
228 	 * non inheritance element format is:
229 	 * ext ID (56) | IDs list len | list | extension IDs list len | list
230 	 * Both lists are optional. Both lengths are mandatory.
231 	 * This means valid length is:
232 	 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
233 	 */
234 	id_len = non_inherit_elem->data[1];
235 	if (non_inherit_elem->datalen < 3 + id_len)
236 		return true;
237 
238 	ext_id_len = non_inherit_elem->data[2 + id_len];
239 	if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
240 		return true;
241 
242 	if (elem->id == WLAN_EID_EXTENSION) {
243 		if (!ext_id_len)
244 			return true;
245 		loop_len = ext_id_len;
246 		list = &non_inherit_elem->data[3 + id_len];
247 		id = elem->data[0];
248 	} else {
249 		if (!id_len)
250 			return true;
251 		loop_len = id_len;
252 		list = &non_inherit_elem->data[2];
253 		id = elem->id;
254 	}
255 
256 	for (i = 0; i < loop_len; i++) {
257 		if (list[i] == id)
258 			return false;
259 	}
260 
261 	return true;
262 }
263 EXPORT_SYMBOL(cfg80211_is_element_inherited);
264 
cfg80211_copy_elem_with_frags(const struct element * elem,const u8 * ie,size_t ie_len,u8 ** pos,u8 * buf,size_t buf_len)265 static size_t cfg80211_copy_elem_with_frags(const struct element *elem,
266 					    const u8 *ie, size_t ie_len,
267 					    u8 **pos, u8 *buf, size_t buf_len)
268 {
269 	if (WARN_ON((u8 *)elem < ie || elem->data > ie + ie_len ||
270 		    elem->data + elem->datalen > ie + ie_len))
271 		return 0;
272 
273 	if (elem->datalen + 2 > buf + buf_len - *pos)
274 		return 0;
275 
276 	memcpy(*pos, elem, elem->datalen + 2);
277 	*pos += elem->datalen + 2;
278 
279 	/* Finish if it is not fragmented  */
280 	if (elem->datalen != 255)
281 		return *pos - buf;
282 
283 	ie_len = ie + ie_len - elem->data - elem->datalen;
284 	ie = (const u8 *)elem->data + elem->datalen;
285 
286 	for_each_element(elem, ie, ie_len) {
287 		if (elem->id != WLAN_EID_FRAGMENT)
288 			break;
289 
290 		if (elem->datalen + 2 > buf + buf_len - *pos)
291 			return 0;
292 
293 		memcpy(*pos, elem, elem->datalen + 2);
294 		*pos += elem->datalen + 2;
295 
296 		if (elem->datalen != 255)
297 			break;
298 	}
299 
300 	return *pos - buf;
301 }
302 
cfg80211_gen_new_ie(const u8 * ie,size_t ielen,const u8 * subie,size_t subie_len,u8 * new_ie,size_t new_ie_len)303 static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
304 				  const u8 *subie, size_t subie_len,
305 				  u8 *new_ie, size_t new_ie_len)
306 {
307 	const struct element *non_inherit_elem, *parent, *sub;
308 	u8 *pos = new_ie;
309 	u8 id, ext_id;
310 	unsigned int match_len;
311 
312 	non_inherit_elem = cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
313 						  subie, subie_len);
314 
315 	/* We copy the elements one by one from the parent to the generated
316 	 * elements.
317 	 * If they are not inherited (included in subie or in the non
318 	 * inheritance element), then we copy all occurrences the first time
319 	 * we see this element type.
320 	 */
321 	for_each_element(parent, ie, ielen) {
322 		if (parent->id == WLAN_EID_FRAGMENT)
323 			continue;
324 
325 		if (parent->id == WLAN_EID_EXTENSION) {
326 			if (parent->datalen < 1)
327 				continue;
328 
329 			id = WLAN_EID_EXTENSION;
330 			ext_id = parent->data[0];
331 			match_len = 1;
332 		} else {
333 			id = parent->id;
334 			match_len = 0;
335 		}
336 
337 		/* Find first occurrence in subie */
338 		sub = cfg80211_find_elem_match(id, subie, subie_len,
339 					       &ext_id, match_len, 0);
340 
341 		/* Copy from parent if not in subie and inherited */
342 		if (!sub &&
343 		    cfg80211_is_element_inherited(parent, non_inherit_elem)) {
344 			if (!cfg80211_copy_elem_with_frags(parent,
345 							   ie, ielen,
346 							   &pos, new_ie,
347 							   new_ie_len))
348 				return 0;
349 
350 			continue;
351 		}
352 
353 		/* Already copied if an earlier element had the same type */
354 		if (cfg80211_find_elem_match(id, ie, (u8 *)parent - ie,
355 					     &ext_id, match_len, 0))
356 			continue;
357 
358 		/* Not inheriting, copy all similar elements from subie */
359 		while (sub) {
360 			if (!cfg80211_copy_elem_with_frags(sub,
361 							   subie, subie_len,
362 							   &pos, new_ie,
363 							   new_ie_len))
364 				return 0;
365 
366 			sub = cfg80211_find_elem_match(id,
367 						       sub->data + sub->datalen,
368 						       subie_len + subie -
369 						       (sub->data +
370 							sub->datalen),
371 						       &ext_id, match_len, 0);
372 		}
373 	}
374 
375 	/* The above misses elements that are included in subie but not in the
376 	 * parent, so do a pass over subie and append those.
377 	 * Skip the non-tx BSSID caps and non-inheritance element.
378 	 */
379 	for_each_element(sub, subie, subie_len) {
380 		if (sub->id == WLAN_EID_NON_TX_BSSID_CAP)
381 			continue;
382 
383 		if (sub->id == WLAN_EID_FRAGMENT)
384 			continue;
385 
386 		if (sub->id == WLAN_EID_EXTENSION) {
387 			if (sub->datalen < 1)
388 				continue;
389 
390 			id = WLAN_EID_EXTENSION;
391 			ext_id = sub->data[0];
392 			match_len = 1;
393 
394 			if (ext_id == WLAN_EID_EXT_NON_INHERITANCE)
395 				continue;
396 		} else {
397 			id = sub->id;
398 			match_len = 0;
399 		}
400 
401 		/* Processed if one was included in the parent */
402 		if (cfg80211_find_elem_match(id, ie, ielen,
403 					     &ext_id, match_len, 0))
404 			continue;
405 
406 		if (!cfg80211_copy_elem_with_frags(sub, subie, subie_len,
407 						   &pos, new_ie, new_ie_len))
408 			return 0;
409 	}
410 
411 	return pos - new_ie;
412 }
413 
is_bss(struct cfg80211_bss * a,const u8 * bssid,const u8 * ssid,size_t ssid_len)414 static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
415 		   const u8 *ssid, size_t ssid_len)
416 {
417 	const struct cfg80211_bss_ies *ies;
418 	const struct element *ssid_elem;
419 
420 	if (bssid && !ether_addr_equal(a->bssid, bssid))
421 		return false;
422 
423 	if (!ssid)
424 		return true;
425 
426 	ies = rcu_access_pointer(a->ies);
427 	if (!ies)
428 		return false;
429 	ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
430 	if (!ssid_elem)
431 		return false;
432 	if (ssid_elem->datalen != ssid_len)
433 		return false;
434 	return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
435 }
436 
437 static int
cfg80211_add_nontrans_list(struct cfg80211_bss * trans_bss,struct cfg80211_bss * nontrans_bss)438 cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
439 			   struct cfg80211_bss *nontrans_bss)
440 {
441 	const struct element *ssid_elem;
442 	struct cfg80211_bss *bss = NULL;
443 
444 	rcu_read_lock();
445 	ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
446 	if (!ssid_elem) {
447 		rcu_read_unlock();
448 		return -EINVAL;
449 	}
450 
451 	/* check if nontrans_bss is in the list */
452 	list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
453 		if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
454 			   ssid_elem->datalen)) {
455 			rcu_read_unlock();
456 			return 0;
457 		}
458 	}
459 
460 	rcu_read_unlock();
461 
462 	/*
463 	 * This is a bit weird - it's not on the list, but already on another
464 	 * one! The only way that could happen is if there's some BSSID/SSID
465 	 * shared by multiple APs in their multi-BSSID profiles, potentially
466 	 * with hidden SSID mixed in ... ignore it.
467 	 */
468 	if (!list_empty(&nontrans_bss->nontrans_list))
469 		return -EINVAL;
470 
471 	/* add to the list */
472 	list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
473 	return 0;
474 }
475 
__cfg80211_bss_expire(struct cfg80211_registered_device * rdev,unsigned long expire_time)476 static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
477 				  unsigned long expire_time)
478 {
479 	struct cfg80211_internal_bss *bss, *tmp;
480 	bool expired = false;
481 
482 	lockdep_assert_held(&rdev->bss_lock);
483 
484 	list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
485 		if (atomic_read(&bss->hold))
486 			continue;
487 		if (!time_after(expire_time, bss->ts))
488 			continue;
489 
490 		if (__cfg80211_unlink_bss(rdev, bss))
491 			expired = true;
492 	}
493 
494 	if (expired)
495 		rdev->bss_generation++;
496 }
497 
cfg80211_bss_expire_oldest(struct cfg80211_registered_device * rdev)498 static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
499 {
500 	struct cfg80211_internal_bss *bss, *oldest = NULL;
501 	bool ret;
502 
503 	lockdep_assert_held(&rdev->bss_lock);
504 
505 	list_for_each_entry(bss, &rdev->bss_list, list) {
506 		if (atomic_read(&bss->hold))
507 			continue;
508 
509 		if (!list_empty(&bss->hidden_list) &&
510 		    !bss->pub.hidden_beacon_bss)
511 			continue;
512 
513 		if (oldest && time_before(oldest->ts, bss->ts))
514 			continue;
515 		oldest = bss;
516 	}
517 
518 	if (WARN_ON(!oldest))
519 		return false;
520 
521 	/*
522 	 * The callers make sure to increase rdev->bss_generation if anything
523 	 * gets removed (and a new entry added), so there's no need to also do
524 	 * it here.
525 	 */
526 
527 	ret = __cfg80211_unlink_bss(rdev, oldest);
528 	WARN_ON(!ret);
529 	return ret;
530 }
531 
cfg80211_parse_bss_param(u8 data,struct cfg80211_colocated_ap * coloc_ap)532 static u8 cfg80211_parse_bss_param(u8 data,
533 				   struct cfg80211_colocated_ap *coloc_ap)
534 {
535 	coloc_ap->oct_recommended =
536 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
537 	coloc_ap->same_ssid =
538 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
539 	coloc_ap->multi_bss =
540 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
541 	coloc_ap->transmitted_bssid =
542 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
543 	coloc_ap->unsolicited_probe =
544 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
545 	coloc_ap->colocated_ess =
546 		u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
547 
548 	return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
549 }
550 
cfg80211_calc_short_ssid(const struct cfg80211_bss_ies * ies,const struct element ** elem,u32 * s_ssid)551 static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
552 				    const struct element **elem, u32 *s_ssid)
553 {
554 
555 	*elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
556 	if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
557 		return -EINVAL;
558 
559 	*s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
560 	return 0;
561 }
562 
cfg80211_free_coloc_ap_list(struct list_head * coloc_ap_list)563 static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
564 {
565 	struct cfg80211_colocated_ap *ap, *tmp_ap;
566 
567 	list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
568 		list_del(&ap->list);
569 		kfree(ap);
570 	}
571 }
572 
cfg80211_parse_ap_info(struct cfg80211_colocated_ap * entry,const u8 * pos,u8 length,const struct element * ssid_elem,int s_ssid_tmp)573 static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
574 				  const u8 *pos, u8 length,
575 				  const struct element *ssid_elem,
576 				  int s_ssid_tmp)
577 {
578 	/* skip the TBTT offset */
579 	pos++;
580 
581 	/* ignore entries with invalid BSSID */
582 	if (!is_valid_ether_addr(pos))
583 		return -EINVAL;
584 
585 	memcpy(entry->bssid, pos, ETH_ALEN);
586 	pos += ETH_ALEN;
587 
588 	if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
589 		memcpy(&entry->short_ssid, pos,
590 		       sizeof(entry->short_ssid));
591 		entry->short_ssid_valid = true;
592 		pos += 4;
593 	}
594 
595 	/* skip non colocated APs */
596 	if (!cfg80211_parse_bss_param(*pos, entry))
597 		return -EINVAL;
598 	pos++;
599 
600 	if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
601 		/*
602 		 * no information about the short ssid. Consider the entry valid
603 		 * for now. It would later be dropped in case there are explicit
604 		 * SSIDs that need to be matched
605 		 */
606 		if (!entry->same_ssid)
607 			return 0;
608 	}
609 
610 	if (entry->same_ssid) {
611 		entry->short_ssid = s_ssid_tmp;
612 		entry->short_ssid_valid = true;
613 
614 		/*
615 		 * This is safe because we validate datalen in
616 		 * cfg80211_parse_colocated_ap(), before calling this
617 		 * function.
618 		 */
619 		memcpy(&entry->ssid, &ssid_elem->data,
620 		       ssid_elem->datalen);
621 		entry->ssid_len = ssid_elem->datalen;
622 	}
623 	return 0;
624 }
625 
cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies * ies,struct list_head * list)626 static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
627 				       struct list_head *list)
628 {
629 	struct ieee80211_neighbor_ap_info *ap_info;
630 	const struct element *elem, *ssid_elem;
631 	const u8 *pos, *end;
632 	u32 s_ssid_tmp;
633 	int n_coloc = 0, ret;
634 	LIST_HEAD(ap_list);
635 
636 	elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
637 				  ies->len);
638 	if (!elem)
639 		return 0;
640 
641 	pos = elem->data;
642 	end = pos + elem->datalen;
643 
644 	ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
645 	if (ret)
646 		return 0;
647 
648 	/* RNR IE may contain more than one NEIGHBOR_AP_INFO */
649 	while (pos + sizeof(*ap_info) <= end) {
650 		enum nl80211_band band;
651 		int freq;
652 		u8 length, i, count;
653 
654 		ap_info = (void *)pos;
655 		count = u8_get_bits(ap_info->tbtt_info_hdr,
656 				    IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
657 		length = ap_info->tbtt_info_len;
658 
659 		pos += sizeof(*ap_info);
660 
661 		if (!ieee80211_operating_class_to_band(ap_info->op_class,
662 						       &band))
663 			break;
664 
665 		freq = ieee80211_channel_to_frequency(ap_info->channel, band);
666 
667 		if (end - pos < count * length)
668 			break;
669 
670 		/*
671 		 * TBTT info must include bss param + BSSID +
672 		 * (short SSID or same_ssid bit to be set).
673 		 * ignore other options, and move to the
674 		 * next AP info
675 		 */
676 		if (band != NL80211_BAND_6GHZ ||
677 		    (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
678 		     length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
679 			pos += count * length;
680 			continue;
681 		}
682 
683 		for (i = 0; i < count; i++) {
684 			struct cfg80211_colocated_ap *entry;
685 
686 			entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
687 					GFP_ATOMIC);
688 
689 			if (!entry)
690 				break;
691 
692 			entry->center_freq = freq;
693 
694 			if (!cfg80211_parse_ap_info(entry, pos, length,
695 						    ssid_elem, s_ssid_tmp)) {
696 				n_coloc++;
697 				list_add_tail(&entry->list, &ap_list);
698 			} else {
699 				kfree(entry);
700 			}
701 
702 			pos += length;
703 		}
704 	}
705 
706 	if (pos != end) {
707 		cfg80211_free_coloc_ap_list(&ap_list);
708 		return 0;
709 	}
710 
711 	list_splice_tail(&ap_list, list);
712 	return n_coloc;
713 }
714 
cfg80211_scan_req_add_chan(struct cfg80211_scan_request * request,struct ieee80211_channel * chan,bool add_to_6ghz)715 static  void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
716 					struct ieee80211_channel *chan,
717 					bool add_to_6ghz)
718 {
719 	int i;
720 	u32 n_channels = request->n_channels;
721 	struct cfg80211_scan_6ghz_params *params =
722 		&request->scan_6ghz_params[request->n_6ghz_params];
723 
724 	for (i = 0; i < n_channels; i++) {
725 		if (request->channels[i] == chan) {
726 			if (add_to_6ghz)
727 				params->channel_idx = i;
728 			return;
729 		}
730 	}
731 
732 	request->channels[n_channels] = chan;
733 	if (add_to_6ghz)
734 		request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
735 			n_channels;
736 
737 	request->n_channels++;
738 }
739 
cfg80211_find_ssid_match(struct cfg80211_colocated_ap * ap,struct cfg80211_scan_request * request)740 static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
741 				     struct cfg80211_scan_request *request)
742 {
743 	int i;
744 	u32 s_ssid;
745 
746 	for (i = 0; i < request->n_ssids; i++) {
747 		/* wildcard ssid in the scan request */
748 		if (!request->ssids[i].ssid_len) {
749 			if (ap->multi_bss && !ap->transmitted_bssid)
750 				continue;
751 
752 			return true;
753 		}
754 
755 		if (ap->ssid_len &&
756 		    ap->ssid_len == request->ssids[i].ssid_len) {
757 			if (!memcmp(request->ssids[i].ssid, ap->ssid,
758 				    ap->ssid_len))
759 				return true;
760 		} else if (ap->short_ssid_valid) {
761 			s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
762 					   request->ssids[i].ssid_len);
763 
764 			if (ap->short_ssid == s_ssid)
765 				return true;
766 		}
767 	}
768 
769 	return false;
770 }
771 
cfg80211_scan_6ghz(struct cfg80211_registered_device * rdev)772 static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
773 {
774 	u8 i;
775 	struct cfg80211_colocated_ap *ap;
776 	int n_channels, count = 0, err;
777 	struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
778 	LIST_HEAD(coloc_ap_list);
779 	bool need_scan_psc = true;
780 	const struct ieee80211_sband_iftype_data *iftd;
781 
782 	rdev_req->scan_6ghz = true;
783 
784 	if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
785 		return -EOPNOTSUPP;
786 
787 	iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
788 					       rdev_req->wdev->iftype);
789 	if (!iftd || !iftd->he_cap.has_he)
790 		return -EOPNOTSUPP;
791 
792 	n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
793 
794 	if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
795 		struct cfg80211_internal_bss *intbss;
796 
797 		spin_lock_bh(&rdev->bss_lock);
798 		list_for_each_entry(intbss, &rdev->bss_list, list) {
799 			struct cfg80211_bss *res = &intbss->pub;
800 			const struct cfg80211_bss_ies *ies;
801 
802 			ies = rcu_access_pointer(res->ies);
803 			count += cfg80211_parse_colocated_ap(ies,
804 							     &coloc_ap_list);
805 		}
806 		spin_unlock_bh(&rdev->bss_lock);
807 	}
808 
809 	request = kzalloc(struct_size(request, channels, n_channels) +
810 			  sizeof(*request->scan_6ghz_params) * count +
811 			  sizeof(*request->ssids) * rdev_req->n_ssids,
812 			  GFP_KERNEL);
813 	if (!request) {
814 		cfg80211_free_coloc_ap_list(&coloc_ap_list);
815 		return -ENOMEM;
816 	}
817 
818 	*request = *rdev_req;
819 	request->n_channels = 0;
820 	request->scan_6ghz_params =
821 		(void *)&request->channels[n_channels];
822 
823 	/*
824 	 * PSC channels should not be scanned in case of direct scan with 1 SSID
825 	 * and at least one of the reported co-located APs with same SSID
826 	 * indicating that all APs in the same ESS are co-located
827 	 */
828 	if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
829 		list_for_each_entry(ap, &coloc_ap_list, list) {
830 			if (ap->colocated_ess &&
831 			    cfg80211_find_ssid_match(ap, request)) {
832 				need_scan_psc = false;
833 				break;
834 			}
835 		}
836 	}
837 
838 	/*
839 	 * add to the scan request the channels that need to be scanned
840 	 * regardless of the collocated APs (PSC channels or all channels
841 	 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
842 	 */
843 	for (i = 0; i < rdev_req->n_channels; i++) {
844 		if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
845 		    ((need_scan_psc &&
846 		      cfg80211_channel_is_psc(rdev_req->channels[i])) ||
847 		     !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
848 			cfg80211_scan_req_add_chan(request,
849 						   rdev_req->channels[i],
850 						   false);
851 		}
852 	}
853 
854 	if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
855 		goto skip;
856 
857 	list_for_each_entry(ap, &coloc_ap_list, list) {
858 		bool found = false;
859 		struct cfg80211_scan_6ghz_params *scan_6ghz_params =
860 			&request->scan_6ghz_params[request->n_6ghz_params];
861 		struct ieee80211_channel *chan =
862 			ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
863 
864 		if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
865 			continue;
866 
867 		for (i = 0; i < rdev_req->n_channels; i++) {
868 			if (rdev_req->channels[i] == chan)
869 				found = true;
870 		}
871 
872 		if (!found)
873 			continue;
874 
875 		if (request->n_ssids > 0 &&
876 		    !cfg80211_find_ssid_match(ap, request))
877 			continue;
878 
879 		if (!is_broadcast_ether_addr(request->bssid) &&
880 		    !ether_addr_equal(request->bssid, ap->bssid))
881 			continue;
882 
883 		if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
884 			continue;
885 
886 		cfg80211_scan_req_add_chan(request, chan, true);
887 		memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
888 		scan_6ghz_params->short_ssid = ap->short_ssid;
889 		scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
890 		scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
891 
892 		/*
893 		 * If a PSC channel is added to the scan and 'need_scan_psc' is
894 		 * set to false, then all the APs that the scan logic is
895 		 * interested with on the channel are collocated and thus there
896 		 * is no need to perform the initial PSC channel listen.
897 		 */
898 		if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
899 			scan_6ghz_params->psc_no_listen = true;
900 
901 		request->n_6ghz_params++;
902 	}
903 
904 skip:
905 	cfg80211_free_coloc_ap_list(&coloc_ap_list);
906 
907 	if (request->n_channels) {
908 		struct cfg80211_scan_request *old = rdev->int_scan_req;
909 		rdev->int_scan_req = request;
910 
911 		/*
912 		 * Add the ssids from the parent scan request to the new scan
913 		 * request, so the driver would be able to use them in its
914 		 * probe requests to discover hidden APs on PSC channels.
915 		 */
916 		request->ssids = (void *)&request->channels[request->n_channels];
917 		request->n_ssids = rdev_req->n_ssids;
918 		memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
919 		       request->n_ssids);
920 
921 		/*
922 		 * If this scan follows a previous scan, save the scan start
923 		 * info from the first part of the scan
924 		 */
925 		if (old)
926 			rdev->int_scan_req->info = old->info;
927 
928 		err = rdev_scan(rdev, request);
929 		if (err) {
930 			rdev->int_scan_req = old;
931 			kfree(request);
932 		} else {
933 			kfree(old);
934 		}
935 
936 		return err;
937 	}
938 
939 	kfree(request);
940 	return -EINVAL;
941 }
942 
cfg80211_scan(struct cfg80211_registered_device * rdev)943 int cfg80211_scan(struct cfg80211_registered_device *rdev)
944 {
945 	struct cfg80211_scan_request *request;
946 	struct cfg80211_scan_request *rdev_req = rdev->scan_req;
947 	u32 n_channels = 0, idx, i;
948 
949 	if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
950 		return rdev_scan(rdev, rdev_req);
951 
952 	for (i = 0; i < rdev_req->n_channels; i++) {
953 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
954 			n_channels++;
955 	}
956 
957 	if (!n_channels)
958 		return cfg80211_scan_6ghz(rdev);
959 
960 	request = kzalloc(struct_size(request, channels, n_channels),
961 			  GFP_KERNEL);
962 	if (!request)
963 		return -ENOMEM;
964 
965 	*request = *rdev_req;
966 	request->n_channels = n_channels;
967 
968 	for (i = idx = 0; i < rdev_req->n_channels; i++) {
969 		if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
970 			request->channels[idx++] = rdev_req->channels[i];
971 	}
972 
973 	rdev_req->scan_6ghz = false;
974 	rdev->int_scan_req = request;
975 	return rdev_scan(rdev, request);
976 }
977 
___cfg80211_scan_done(struct cfg80211_registered_device * rdev,bool send_message)978 void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
979 			   bool send_message)
980 {
981 	struct cfg80211_scan_request *request, *rdev_req;
982 	struct wireless_dev *wdev;
983 	struct sk_buff *msg;
984 #ifdef CONFIG_CFG80211_WEXT
985 	union iwreq_data wrqu;
986 #endif
987 
988 	lockdep_assert_held(&rdev->wiphy.mtx);
989 
990 	if (rdev->scan_msg) {
991 		nl80211_send_scan_msg(rdev, rdev->scan_msg);
992 		rdev->scan_msg = NULL;
993 		return;
994 	}
995 
996 	rdev_req = rdev->scan_req;
997 	if (!rdev_req)
998 		return;
999 
1000 	wdev = rdev_req->wdev;
1001 	request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
1002 
1003 	if (wdev_running(wdev) &&
1004 	    (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
1005 	    !rdev_req->scan_6ghz && !request->info.aborted &&
1006 	    !cfg80211_scan_6ghz(rdev))
1007 		return;
1008 
1009 	/*
1010 	 * This must be before sending the other events!
1011 	 * Otherwise, wpa_supplicant gets completely confused with
1012 	 * wext events.
1013 	 */
1014 	if (wdev->netdev)
1015 		cfg80211_sme_scan_done(wdev->netdev);
1016 
1017 	if (!request->info.aborted &&
1018 	    request->flags & NL80211_SCAN_FLAG_FLUSH) {
1019 		/* flush entries from previous scans */
1020 		spin_lock_bh(&rdev->bss_lock);
1021 		__cfg80211_bss_expire(rdev, request->scan_start);
1022 		spin_unlock_bh(&rdev->bss_lock);
1023 	}
1024 
1025 	msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
1026 
1027 #ifdef CONFIG_CFG80211_WEXT
1028 	if (wdev->netdev && !request->info.aborted) {
1029 		memset(&wrqu, 0, sizeof(wrqu));
1030 
1031 		wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
1032 	}
1033 #endif
1034 
1035 	dev_put(wdev->netdev);
1036 
1037 	kfree(rdev->int_scan_req);
1038 	rdev->int_scan_req = NULL;
1039 
1040 	kfree(rdev->scan_req);
1041 	rdev->scan_req = NULL;
1042 
1043 	if (!send_message)
1044 		rdev->scan_msg = msg;
1045 	else
1046 		nl80211_send_scan_msg(rdev, msg);
1047 }
1048 
__cfg80211_scan_done(struct work_struct * wk)1049 void __cfg80211_scan_done(struct work_struct *wk)
1050 {
1051 	struct cfg80211_registered_device *rdev;
1052 
1053 	rdev = container_of(wk, struct cfg80211_registered_device,
1054 			    scan_done_wk);
1055 
1056 	wiphy_lock(&rdev->wiphy);
1057 	___cfg80211_scan_done(rdev, true);
1058 	wiphy_unlock(&rdev->wiphy);
1059 }
1060 
cfg80211_scan_done(struct cfg80211_scan_request * request,struct cfg80211_scan_info * info)1061 void cfg80211_scan_done(struct cfg80211_scan_request *request,
1062 			struct cfg80211_scan_info *info)
1063 {
1064 	struct cfg80211_scan_info old_info = request->info;
1065 
1066 	trace_cfg80211_scan_done(request, info);
1067 	WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1068 		request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1069 
1070 	request->info = *info;
1071 
1072 	/*
1073 	 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1074 	 * be of the first part. In such a case old_info.scan_start_tsf should
1075 	 * be non zero.
1076 	 */
1077 	if (request->scan_6ghz && old_info.scan_start_tsf) {
1078 		request->info.scan_start_tsf = old_info.scan_start_tsf;
1079 		memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1080 		       sizeof(request->info.tsf_bssid));
1081 	}
1082 
1083 	request->notified = true;
1084 	queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1085 }
1086 EXPORT_SYMBOL(cfg80211_scan_done);
1087 
cfg80211_add_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1088 void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1089 				 struct cfg80211_sched_scan_request *req)
1090 {
1091 	lockdep_assert_held(&rdev->wiphy.mtx);
1092 
1093 	list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1094 }
1095 
cfg80211_del_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req)1096 static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1097 					struct cfg80211_sched_scan_request *req)
1098 {
1099 	lockdep_assert_held(&rdev->wiphy.mtx);
1100 
1101 	list_del_rcu(&req->list);
1102 	kfree_rcu(req, rcu_head);
1103 }
1104 
1105 static struct cfg80211_sched_scan_request *
cfg80211_find_sched_scan_req(struct cfg80211_registered_device * rdev,u64 reqid)1106 cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1107 {
1108 	struct cfg80211_sched_scan_request *pos;
1109 
1110 	list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1111 				lockdep_is_held(&rdev->wiphy.mtx)) {
1112 		if (pos->reqid == reqid)
1113 			return pos;
1114 	}
1115 	return NULL;
1116 }
1117 
1118 /*
1119  * Determines if a scheduled scan request can be handled. When a legacy
1120  * scheduled scan is running no other scheduled scan is allowed regardless
1121  * whether the request is for legacy or multi-support scan. When a multi-support
1122  * scheduled scan is running a request for legacy scan is not allowed. In this
1123  * case a request for multi-support scan can be handled if resources are
1124  * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1125  */
cfg80211_sched_scan_req_possible(struct cfg80211_registered_device * rdev,bool want_multi)1126 int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1127 				     bool want_multi)
1128 {
1129 	struct cfg80211_sched_scan_request *pos;
1130 	int i = 0;
1131 
1132 	list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1133 		/* request id zero means legacy in progress */
1134 		if (!i && !pos->reqid)
1135 			return -EINPROGRESS;
1136 		i++;
1137 	}
1138 
1139 	if (i) {
1140 		/* no legacy allowed when multi request(s) are active */
1141 		if (!want_multi)
1142 			return -EINPROGRESS;
1143 
1144 		/* resource limit reached */
1145 		if (i == rdev->wiphy.max_sched_scan_reqs)
1146 			return -ENOSPC;
1147 	}
1148 	return 0;
1149 }
1150 
cfg80211_sched_scan_results_wk(struct work_struct * work)1151 void cfg80211_sched_scan_results_wk(struct work_struct *work)
1152 {
1153 	struct cfg80211_registered_device *rdev;
1154 	struct cfg80211_sched_scan_request *req, *tmp;
1155 
1156 	rdev = container_of(work, struct cfg80211_registered_device,
1157 			   sched_scan_res_wk);
1158 
1159 	wiphy_lock(&rdev->wiphy);
1160 	list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1161 		if (req->report_results) {
1162 			req->report_results = false;
1163 			if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1164 				/* flush entries from previous scans */
1165 				spin_lock_bh(&rdev->bss_lock);
1166 				__cfg80211_bss_expire(rdev, req->scan_start);
1167 				spin_unlock_bh(&rdev->bss_lock);
1168 				req->scan_start = jiffies;
1169 			}
1170 			nl80211_send_sched_scan(req,
1171 						NL80211_CMD_SCHED_SCAN_RESULTS);
1172 		}
1173 	}
1174 	wiphy_unlock(&rdev->wiphy);
1175 }
1176 
cfg80211_sched_scan_results(struct wiphy * wiphy,u64 reqid)1177 void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1178 {
1179 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1180 	struct cfg80211_sched_scan_request *request;
1181 
1182 	trace_cfg80211_sched_scan_results(wiphy, reqid);
1183 	/* ignore if we're not scanning */
1184 
1185 	rcu_read_lock();
1186 	request = cfg80211_find_sched_scan_req(rdev, reqid);
1187 	if (request) {
1188 		request->report_results = true;
1189 		queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1190 	}
1191 	rcu_read_unlock();
1192 }
1193 EXPORT_SYMBOL(cfg80211_sched_scan_results);
1194 
cfg80211_sched_scan_stopped_locked(struct wiphy * wiphy,u64 reqid)1195 void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1196 {
1197 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1198 
1199 	lockdep_assert_held(&wiphy->mtx);
1200 
1201 	trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1202 
1203 	__cfg80211_stop_sched_scan(rdev, reqid, true);
1204 }
1205 EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1206 
cfg80211_sched_scan_stopped(struct wiphy * wiphy,u64 reqid)1207 void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1208 {
1209 	wiphy_lock(wiphy);
1210 	cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1211 	wiphy_unlock(wiphy);
1212 }
1213 EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1214 
cfg80211_stop_sched_scan_req(struct cfg80211_registered_device * rdev,struct cfg80211_sched_scan_request * req,bool driver_initiated)1215 int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1216 				 struct cfg80211_sched_scan_request *req,
1217 				 bool driver_initiated)
1218 {
1219 	lockdep_assert_held(&rdev->wiphy.mtx);
1220 
1221 	if (!driver_initiated) {
1222 		int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1223 		if (err)
1224 			return err;
1225 	}
1226 
1227 	nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1228 
1229 	cfg80211_del_sched_scan_req(rdev, req);
1230 
1231 	return 0;
1232 }
1233 
__cfg80211_stop_sched_scan(struct cfg80211_registered_device * rdev,u64 reqid,bool driver_initiated)1234 int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1235 			       u64 reqid, bool driver_initiated)
1236 {
1237 	struct cfg80211_sched_scan_request *sched_scan_req;
1238 
1239 	lockdep_assert_held(&rdev->wiphy.mtx);
1240 
1241 	sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1242 	if (!sched_scan_req)
1243 		return -ENOENT;
1244 
1245 	return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1246 					    driver_initiated);
1247 }
1248 
cfg80211_bss_age(struct cfg80211_registered_device * rdev,unsigned long age_secs)1249 void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1250                       unsigned long age_secs)
1251 {
1252 	struct cfg80211_internal_bss *bss;
1253 	unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1254 
1255 	spin_lock_bh(&rdev->bss_lock);
1256 	list_for_each_entry(bss, &rdev->bss_list, list)
1257 		bss->ts -= age_jiffies;
1258 	spin_unlock_bh(&rdev->bss_lock);
1259 }
1260 
cfg80211_bss_expire(struct cfg80211_registered_device * rdev)1261 void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1262 {
1263 	__cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1264 }
1265 
cfg80211_bss_flush(struct wiphy * wiphy)1266 void cfg80211_bss_flush(struct wiphy *wiphy)
1267 {
1268 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1269 
1270 	spin_lock_bh(&rdev->bss_lock);
1271 	__cfg80211_bss_expire(rdev, jiffies);
1272 	spin_unlock_bh(&rdev->bss_lock);
1273 }
1274 EXPORT_SYMBOL(cfg80211_bss_flush);
1275 
1276 const struct element *
cfg80211_find_elem_match(u8 eid,const u8 * ies,unsigned int len,const u8 * match,unsigned int match_len,unsigned int match_offset)1277 cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1278 			 const u8 *match, unsigned int match_len,
1279 			 unsigned int match_offset)
1280 {
1281 	const struct element *elem;
1282 
1283 	for_each_element_id(elem, eid, ies, len) {
1284 		if (elem->datalen >= match_offset + match_len &&
1285 		    !memcmp(elem->data + match_offset, match, match_len))
1286 			return elem;
1287 	}
1288 
1289 	return NULL;
1290 }
1291 EXPORT_SYMBOL(cfg80211_find_elem_match);
1292 
cfg80211_find_vendor_elem(unsigned int oui,int oui_type,const u8 * ies,unsigned int len)1293 const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1294 						const u8 *ies,
1295 						unsigned int len)
1296 {
1297 	const struct element *elem;
1298 	u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1299 	int match_len = (oui_type < 0) ? 3 : sizeof(match);
1300 
1301 	if (WARN_ON(oui_type > 0xff))
1302 		return NULL;
1303 
1304 	elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1305 					match, match_len, 0);
1306 
1307 	if (!elem || elem->datalen < 4)
1308 		return NULL;
1309 
1310 	return elem;
1311 }
1312 EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1313 
1314 /**
1315  * enum bss_compare_mode - BSS compare mode
1316  * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1317  * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1318  * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1319  */
1320 enum bss_compare_mode {
1321 	BSS_CMP_REGULAR,
1322 	BSS_CMP_HIDE_ZLEN,
1323 	BSS_CMP_HIDE_NUL,
1324 };
1325 
cmp_bss(struct cfg80211_bss * a,struct cfg80211_bss * b,enum bss_compare_mode mode)1326 static int cmp_bss(struct cfg80211_bss *a,
1327 		   struct cfg80211_bss *b,
1328 		   enum bss_compare_mode mode)
1329 {
1330 	const struct cfg80211_bss_ies *a_ies, *b_ies;
1331 	const u8 *ie1 = NULL;
1332 	const u8 *ie2 = NULL;
1333 	int i, r;
1334 
1335 	if (a->channel != b->channel)
1336 		return b->channel->center_freq - a->channel->center_freq;
1337 
1338 	a_ies = rcu_access_pointer(a->ies);
1339 	if (!a_ies)
1340 		return -1;
1341 	b_ies = rcu_access_pointer(b->ies);
1342 	if (!b_ies)
1343 		return 1;
1344 
1345 	if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1346 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1347 				       a_ies->data, a_ies->len);
1348 	if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1349 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1350 				       b_ies->data, b_ies->len);
1351 	if (ie1 && ie2) {
1352 		int mesh_id_cmp;
1353 
1354 		if (ie1[1] == ie2[1])
1355 			mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1356 		else
1357 			mesh_id_cmp = ie2[1] - ie1[1];
1358 
1359 		ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1360 				       a_ies->data, a_ies->len);
1361 		ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1362 				       b_ies->data, b_ies->len);
1363 		if (ie1 && ie2) {
1364 			if (mesh_id_cmp)
1365 				return mesh_id_cmp;
1366 			if (ie1[1] != ie2[1])
1367 				return ie2[1] - ie1[1];
1368 			return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1369 		}
1370 	}
1371 
1372 	r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1373 	if (r)
1374 		return r;
1375 
1376 	ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1377 	ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1378 
1379 	if (!ie1 && !ie2)
1380 		return 0;
1381 
1382 	/*
1383 	 * Note that with "hide_ssid", the function returns a match if
1384 	 * the already-present BSS ("b") is a hidden SSID beacon for
1385 	 * the new BSS ("a").
1386 	 */
1387 
1388 	/* sort missing IE before (left of) present IE */
1389 	if (!ie1)
1390 		return -1;
1391 	if (!ie2)
1392 		return 1;
1393 
1394 	switch (mode) {
1395 	case BSS_CMP_HIDE_ZLEN:
1396 		/*
1397 		 * In ZLEN mode we assume the BSS entry we're
1398 		 * looking for has a zero-length SSID. So if
1399 		 * the one we're looking at right now has that,
1400 		 * return 0. Otherwise, return the difference
1401 		 * in length, but since we're looking for the
1402 		 * 0-length it's really equivalent to returning
1403 		 * the length of the one we're looking at.
1404 		 *
1405 		 * No content comparison is needed as we assume
1406 		 * the content length is zero.
1407 		 */
1408 		return ie2[1];
1409 	case BSS_CMP_REGULAR:
1410 	default:
1411 		/* sort by length first, then by contents */
1412 		if (ie1[1] != ie2[1])
1413 			return ie2[1] - ie1[1];
1414 		return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1415 	case BSS_CMP_HIDE_NUL:
1416 		if (ie1[1] != ie2[1])
1417 			return ie2[1] - ie1[1];
1418 		/* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1419 		for (i = 0; i < ie2[1]; i++)
1420 			if (ie2[i + 2])
1421 				return -1;
1422 		return 0;
1423 	}
1424 }
1425 
cfg80211_bss_type_match(u16 capability,enum nl80211_band band,enum ieee80211_bss_type bss_type)1426 static bool cfg80211_bss_type_match(u16 capability,
1427 				    enum nl80211_band band,
1428 				    enum ieee80211_bss_type bss_type)
1429 {
1430 	bool ret = true;
1431 	u16 mask, val;
1432 
1433 	if (bss_type == IEEE80211_BSS_TYPE_ANY)
1434 		return ret;
1435 
1436 	if (band == NL80211_BAND_60GHZ) {
1437 		mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1438 		switch (bss_type) {
1439 		case IEEE80211_BSS_TYPE_ESS:
1440 			val = WLAN_CAPABILITY_DMG_TYPE_AP;
1441 			break;
1442 		case IEEE80211_BSS_TYPE_PBSS:
1443 			val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1444 			break;
1445 		case IEEE80211_BSS_TYPE_IBSS:
1446 			val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1447 			break;
1448 		default:
1449 			return false;
1450 		}
1451 	} else {
1452 		mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1453 		switch (bss_type) {
1454 		case IEEE80211_BSS_TYPE_ESS:
1455 			val = WLAN_CAPABILITY_ESS;
1456 			break;
1457 		case IEEE80211_BSS_TYPE_IBSS:
1458 			val = WLAN_CAPABILITY_IBSS;
1459 			break;
1460 		case IEEE80211_BSS_TYPE_MBSS:
1461 			val = 0;
1462 			break;
1463 		default:
1464 			return false;
1465 		}
1466 	}
1467 
1468 	ret = ((capability & mask) == val);
1469 	return ret;
1470 }
1471 
1472 /* Returned bss is reference counted and must be cleaned up appropriately. */
cfg80211_get_bss(struct wiphy * wiphy,struct ieee80211_channel * channel,const u8 * bssid,const u8 * ssid,size_t ssid_len,enum ieee80211_bss_type bss_type,enum ieee80211_privacy privacy)1473 struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1474 				      struct ieee80211_channel *channel,
1475 				      const u8 *bssid,
1476 				      const u8 *ssid, size_t ssid_len,
1477 				      enum ieee80211_bss_type bss_type,
1478 				      enum ieee80211_privacy privacy)
1479 {
1480 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1481 	struct cfg80211_internal_bss *bss, *res = NULL;
1482 	unsigned long now = jiffies;
1483 	int bss_privacy;
1484 
1485 	trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1486 			       privacy);
1487 
1488 	spin_lock_bh(&rdev->bss_lock);
1489 
1490 	list_for_each_entry(bss, &rdev->bss_list, list) {
1491 		if (!cfg80211_bss_type_match(bss->pub.capability,
1492 					     bss->pub.channel->band, bss_type))
1493 			continue;
1494 
1495 		bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1496 		if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1497 		    (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1498 			continue;
1499 		if (channel && bss->pub.channel != channel)
1500 			continue;
1501 		if (!is_valid_ether_addr(bss->pub.bssid))
1502 			continue;
1503 		/* Don't get expired BSS structs */
1504 		if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1505 		    !atomic_read(&bss->hold))
1506 			continue;
1507 		if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1508 			res = bss;
1509 			bss_ref_get(rdev, res);
1510 			break;
1511 		}
1512 	}
1513 
1514 	spin_unlock_bh(&rdev->bss_lock);
1515 	if (!res)
1516 		return NULL;
1517 	trace_cfg80211_return_bss(&res->pub);
1518 	return &res->pub;
1519 }
1520 EXPORT_SYMBOL(cfg80211_get_bss);
1521 
rb_insert_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * bss)1522 static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1523 			  struct cfg80211_internal_bss *bss)
1524 {
1525 	struct rb_node **p = &rdev->bss_tree.rb_node;
1526 	struct rb_node *parent = NULL;
1527 	struct cfg80211_internal_bss *tbss;
1528 	int cmp;
1529 
1530 	while (*p) {
1531 		parent = *p;
1532 		tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1533 
1534 		cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1535 
1536 		if (WARN_ON(!cmp)) {
1537 			/* will sort of leak this BSS */
1538 			return;
1539 		}
1540 
1541 		if (cmp < 0)
1542 			p = &(*p)->rb_left;
1543 		else
1544 			p = &(*p)->rb_right;
1545 	}
1546 
1547 	rb_link_node(&bss->rbn, parent, p);
1548 	rb_insert_color(&bss->rbn, &rdev->bss_tree);
1549 }
1550 
1551 static struct cfg80211_internal_bss *
rb_find_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * res,enum bss_compare_mode mode)1552 rb_find_bss(struct cfg80211_registered_device *rdev,
1553 	    struct cfg80211_internal_bss *res,
1554 	    enum bss_compare_mode mode)
1555 {
1556 	struct rb_node *n = rdev->bss_tree.rb_node;
1557 	struct cfg80211_internal_bss *bss;
1558 	int r;
1559 
1560 	while (n) {
1561 		bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1562 		r = cmp_bss(&res->pub, &bss->pub, mode);
1563 
1564 		if (r == 0)
1565 			return bss;
1566 		else if (r < 0)
1567 			n = n->rb_left;
1568 		else
1569 			n = n->rb_right;
1570 	}
1571 
1572 	return NULL;
1573 }
1574 
cfg80211_combine_bsses(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * new)1575 static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1576 				   struct cfg80211_internal_bss *new)
1577 {
1578 	const struct cfg80211_bss_ies *ies;
1579 	struct cfg80211_internal_bss *bss;
1580 	const u8 *ie;
1581 	int i, ssidlen;
1582 	u8 fold = 0;
1583 	u32 n_entries = 0;
1584 
1585 	ies = rcu_access_pointer(new->pub.beacon_ies);
1586 	if (WARN_ON(!ies))
1587 		return false;
1588 
1589 	ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1590 	if (!ie) {
1591 		/* nothing to do */
1592 		return true;
1593 	}
1594 
1595 	ssidlen = ie[1];
1596 	for (i = 0; i < ssidlen; i++)
1597 		fold |= ie[2 + i];
1598 
1599 	if (fold) {
1600 		/* not a hidden SSID */
1601 		return true;
1602 	}
1603 
1604 	/* This is the bad part ... */
1605 
1606 	list_for_each_entry(bss, &rdev->bss_list, list) {
1607 		/*
1608 		 * we're iterating all the entries anyway, so take the
1609 		 * opportunity to validate the list length accounting
1610 		 */
1611 		n_entries++;
1612 
1613 		if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1614 			continue;
1615 		if (bss->pub.channel != new->pub.channel)
1616 			continue;
1617 		if (bss->pub.scan_width != new->pub.scan_width)
1618 			continue;
1619 		if (rcu_access_pointer(bss->pub.beacon_ies))
1620 			continue;
1621 		ies = rcu_access_pointer(bss->pub.ies);
1622 		if (!ies)
1623 			continue;
1624 		ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1625 		if (!ie)
1626 			continue;
1627 		if (ssidlen && ie[1] != ssidlen)
1628 			continue;
1629 		if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1630 			continue;
1631 		if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1632 			list_del(&bss->hidden_list);
1633 		/* combine them */
1634 		list_add(&bss->hidden_list, &new->hidden_list);
1635 		bss->pub.hidden_beacon_bss = &new->pub;
1636 		new->refcount += bss->refcount;
1637 		rcu_assign_pointer(bss->pub.beacon_ies,
1638 				   new->pub.beacon_ies);
1639 	}
1640 
1641 	WARN_ONCE(n_entries != rdev->bss_entries,
1642 		  "rdev bss entries[%d]/list[len:%d] corruption\n",
1643 		  rdev->bss_entries, n_entries);
1644 
1645 	return true;
1646 }
1647 
1648 struct cfg80211_non_tx_bss {
1649 	struct cfg80211_bss *tx_bss;
1650 	u8 max_bssid_indicator;
1651 	u8 bssid_index;
1652 };
1653 
cfg80211_update_hidden_bsses(struct cfg80211_internal_bss * known,const struct cfg80211_bss_ies * new_ies,const struct cfg80211_bss_ies * old_ies)1654 static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1655 					 const struct cfg80211_bss_ies *new_ies,
1656 					 const struct cfg80211_bss_ies *old_ies)
1657 {
1658 	struct cfg80211_internal_bss *bss;
1659 
1660 	/* Assign beacon IEs to all sub entries */
1661 	list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1662 		const struct cfg80211_bss_ies *ies;
1663 
1664 		ies = rcu_access_pointer(bss->pub.beacon_ies);
1665 		WARN_ON(ies != old_ies);
1666 
1667 		rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1668 	}
1669 }
1670 
1671 static bool
cfg80211_update_known_bss(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * known,struct cfg80211_internal_bss * new,bool signal_valid)1672 cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1673 			  struct cfg80211_internal_bss *known,
1674 			  struct cfg80211_internal_bss *new,
1675 			  bool signal_valid)
1676 {
1677 	lockdep_assert_held(&rdev->bss_lock);
1678 
1679 	/* Update IEs */
1680 	if (rcu_access_pointer(new->pub.proberesp_ies)) {
1681 		const struct cfg80211_bss_ies *old;
1682 
1683 		old = rcu_access_pointer(known->pub.proberesp_ies);
1684 
1685 		rcu_assign_pointer(known->pub.proberesp_ies,
1686 				   new->pub.proberesp_ies);
1687 		/* Override possible earlier Beacon frame IEs */
1688 		rcu_assign_pointer(known->pub.ies,
1689 				   new->pub.proberesp_ies);
1690 		if (old)
1691 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1692 	} else if (rcu_access_pointer(new->pub.beacon_ies)) {
1693 		const struct cfg80211_bss_ies *old;
1694 
1695 		if (known->pub.hidden_beacon_bss &&
1696 		    !list_empty(&known->hidden_list)) {
1697 			const struct cfg80211_bss_ies *f;
1698 
1699 			/* The known BSS struct is one of the probe
1700 			 * response members of a group, but we're
1701 			 * receiving a beacon (beacon_ies in the new
1702 			 * bss is used). This can only mean that the
1703 			 * AP changed its beacon from not having an
1704 			 * SSID to showing it, which is confusing so
1705 			 * drop this information.
1706 			 */
1707 
1708 			f = rcu_access_pointer(new->pub.beacon_ies);
1709 			kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1710 			return false;
1711 		}
1712 
1713 		old = rcu_access_pointer(known->pub.beacon_ies);
1714 
1715 		rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1716 
1717 		/* Override IEs if they were from a beacon before */
1718 		if (old == rcu_access_pointer(known->pub.ies))
1719 			rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1720 
1721 		cfg80211_update_hidden_bsses(known,
1722 					     rcu_access_pointer(new->pub.beacon_ies),
1723 					     old);
1724 
1725 		if (old)
1726 			kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1727 	}
1728 
1729 	known->pub.beacon_interval = new->pub.beacon_interval;
1730 
1731 	/* don't update the signal if beacon was heard on
1732 	 * adjacent channel.
1733 	 */
1734 	if (signal_valid)
1735 		known->pub.signal = new->pub.signal;
1736 	known->pub.capability = new->pub.capability;
1737 	known->ts = new->ts;
1738 	known->ts_boottime = new->ts_boottime;
1739 	known->parent_tsf = new->parent_tsf;
1740 	known->pub.chains = new->pub.chains;
1741 	memcpy(known->pub.chain_signal, new->pub.chain_signal,
1742 	       IEEE80211_MAX_CHAINS);
1743 	ether_addr_copy(known->parent_bssid, new->parent_bssid);
1744 	known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1745 	known->pub.bssid_index = new->pub.bssid_index;
1746 
1747 	return true;
1748 }
1749 
1750 /* Returned bss is reference counted and must be cleaned up appropriately. */
1751 struct cfg80211_internal_bss *
cfg80211_bss_update(struct cfg80211_registered_device * rdev,struct cfg80211_internal_bss * tmp,bool signal_valid,unsigned long ts)1752 cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1753 		    struct cfg80211_internal_bss *tmp,
1754 		    bool signal_valid, unsigned long ts)
1755 {
1756 	struct cfg80211_internal_bss *found = NULL;
1757 
1758 	if (WARN_ON(!tmp->pub.channel))
1759 		return NULL;
1760 
1761 	tmp->ts = ts;
1762 
1763 	spin_lock_bh(&rdev->bss_lock);
1764 
1765 	if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1766 		spin_unlock_bh(&rdev->bss_lock);
1767 		return NULL;
1768 	}
1769 
1770 	found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1771 
1772 	if (found) {
1773 		if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1774 			goto drop;
1775 	} else {
1776 		struct cfg80211_internal_bss *new;
1777 		struct cfg80211_internal_bss *hidden;
1778 		struct cfg80211_bss_ies *ies;
1779 
1780 		/*
1781 		 * create a copy -- the "res" variable that is passed in
1782 		 * is allocated on the stack since it's not needed in the
1783 		 * more common case of an update
1784 		 */
1785 		new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1786 			      GFP_ATOMIC);
1787 		if (!new) {
1788 			ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1789 			if (ies)
1790 				kfree_rcu(ies, rcu_head);
1791 			ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1792 			if (ies)
1793 				kfree_rcu(ies, rcu_head);
1794 			goto drop;
1795 		}
1796 		memcpy(new, tmp, sizeof(*new));
1797 		new->refcount = 1;
1798 		INIT_LIST_HEAD(&new->hidden_list);
1799 		INIT_LIST_HEAD(&new->pub.nontrans_list);
1800 		/* we'll set this later if it was non-NULL */
1801 		new->pub.transmitted_bss = NULL;
1802 
1803 		if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1804 			hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1805 			if (!hidden)
1806 				hidden = rb_find_bss(rdev, tmp,
1807 						     BSS_CMP_HIDE_NUL);
1808 			if (hidden) {
1809 				new->pub.hidden_beacon_bss = &hidden->pub;
1810 				list_add(&new->hidden_list,
1811 					 &hidden->hidden_list);
1812 				hidden->refcount++;
1813 
1814 				ies = (void *)rcu_access_pointer(new->pub.beacon_ies);
1815 				rcu_assign_pointer(new->pub.beacon_ies,
1816 						   hidden->pub.beacon_ies);
1817 				if (ies)
1818 					kfree_rcu(ies, rcu_head);
1819 			}
1820 		} else {
1821 			/*
1822 			 * Ok so we found a beacon, and don't have an entry. If
1823 			 * it's a beacon with hidden SSID, we might be in for an
1824 			 * expensive search for any probe responses that should
1825 			 * be grouped with this beacon for updates ...
1826 			 */
1827 			if (!cfg80211_combine_bsses(rdev, new)) {
1828 				bss_ref_put(rdev, new);
1829 				goto drop;
1830 			}
1831 		}
1832 
1833 		if (rdev->bss_entries >= bss_entries_limit &&
1834 		    !cfg80211_bss_expire_oldest(rdev)) {
1835 			bss_ref_put(rdev, new);
1836 			goto drop;
1837 		}
1838 
1839 		/* This must be before the call to bss_ref_get */
1840 		if (tmp->pub.transmitted_bss) {
1841 			struct cfg80211_internal_bss *pbss =
1842 				container_of(tmp->pub.transmitted_bss,
1843 					     struct cfg80211_internal_bss,
1844 					     pub);
1845 
1846 			new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1847 			bss_ref_get(rdev, pbss);
1848 		}
1849 
1850 		list_add_tail(&new->list, &rdev->bss_list);
1851 		rdev->bss_entries++;
1852 		rb_insert_bss(rdev, new);
1853 		found = new;
1854 	}
1855 
1856 	rdev->bss_generation++;
1857 	bss_ref_get(rdev, found);
1858 	spin_unlock_bh(&rdev->bss_lock);
1859 
1860 	return found;
1861  drop:
1862 	spin_unlock_bh(&rdev->bss_lock);
1863 	return NULL;
1864 }
1865 
cfg80211_get_ies_channel_number(const u8 * ie,size_t ielen,enum nl80211_band band,enum cfg80211_bss_frame_type ftype)1866 int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1867 				    enum nl80211_band band,
1868 				    enum cfg80211_bss_frame_type ftype)
1869 {
1870 	const struct element *tmp;
1871 
1872 	if (band == NL80211_BAND_6GHZ) {
1873 		struct ieee80211_he_operation *he_oper;
1874 
1875 		tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1876 					     ielen);
1877 		if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1878 		    tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1879 			const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1880 
1881 			he_oper = (void *)&tmp->data[1];
1882 
1883 			he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1884 			if (!he_6ghz_oper)
1885 				return -1;
1886 
1887 			if (ftype != CFG80211_BSS_FTYPE_BEACON ||
1888 			    he_6ghz_oper->control & IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON)
1889 				return he_6ghz_oper->primary;
1890 		}
1891 	} else if (band == NL80211_BAND_S1GHZ) {
1892 		tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1893 		if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1894 			struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1895 
1896 			return s1gop->oper_ch;
1897 		}
1898 	} else {
1899 		tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1900 		if (tmp && tmp->datalen == 1)
1901 			return tmp->data[0];
1902 
1903 		tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1904 		if (tmp &&
1905 		    tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1906 			struct ieee80211_ht_operation *htop = (void *)tmp->data;
1907 
1908 			return htop->primary_chan;
1909 		}
1910 	}
1911 
1912 	return -1;
1913 }
1914 EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1915 
1916 /*
1917  * Update RX channel information based on the available frame payload
1918  * information. This is mainly for the 2.4 GHz band where frames can be received
1919  * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1920  * element to indicate the current (transmitting) channel, but this might also
1921  * be needed on other bands if RX frequency does not match with the actual
1922  * operating channel of a BSS, or if the AP reports a different primary channel.
1923  */
1924 static struct ieee80211_channel *
cfg80211_get_bss_channel(struct wiphy * wiphy,const u8 * ie,size_t ielen,struct ieee80211_channel * channel,enum nl80211_bss_scan_width scan_width,enum cfg80211_bss_frame_type ftype)1925 cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1926 			 struct ieee80211_channel *channel,
1927 			 enum nl80211_bss_scan_width scan_width,
1928 			 enum cfg80211_bss_frame_type ftype)
1929 {
1930 	u32 freq;
1931 	int channel_number;
1932 	struct ieee80211_channel *alt_channel;
1933 
1934 	channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1935 							 channel->band, ftype);
1936 
1937 	if (channel_number < 0) {
1938 		/* No channel information in frame payload */
1939 		return channel;
1940 	}
1941 
1942 	freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1943 
1944 	/*
1945 	 * In 6GHz, duplicated beacon indication is relevant for
1946 	 * beacons only.
1947 	 */
1948 	if (channel->band == NL80211_BAND_6GHZ &&
1949 	    (freq == channel->center_freq ||
1950 	     abs(freq - channel->center_freq) > 80))
1951 		return channel;
1952 
1953 	alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1954 	if (!alt_channel) {
1955 		if (channel->band == NL80211_BAND_2GHZ) {
1956 			/*
1957 			 * Better not allow unexpected channels when that could
1958 			 * be going beyond the 1-11 range (e.g., discovering
1959 			 * BSS on channel 12 when radio is configured for
1960 			 * channel 11.
1961 			 */
1962 			return NULL;
1963 		}
1964 
1965 		/* No match for the payload channel number - ignore it */
1966 		return channel;
1967 	}
1968 
1969 	if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1970 	    scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1971 		/*
1972 		 * Ignore channel number in 5 and 10 MHz channels where there
1973 		 * may not be an n:1 or 1:n mapping between frequencies and
1974 		 * channel numbers.
1975 		 */
1976 		return channel;
1977 	}
1978 
1979 	/*
1980 	 * Use the channel determined through the payload channel number
1981 	 * instead of the RX channel reported by the driver.
1982 	 */
1983 	if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1984 		return NULL;
1985 	return alt_channel;
1986 }
1987 
1988 /* Returned bss is reference counted and must be cleaned up appropriately. */
1989 static struct cfg80211_bss *
cfg80211_inform_single_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)1990 cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1991 				struct cfg80211_inform_bss *data,
1992 				enum cfg80211_bss_frame_type ftype,
1993 				const u8 *bssid, u64 tsf, u16 capability,
1994 				u16 beacon_interval, const u8 *ie, size_t ielen,
1995 				struct cfg80211_non_tx_bss *non_tx_data,
1996 				gfp_t gfp)
1997 {
1998 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1999 	struct cfg80211_bss_ies *ies;
2000 	struct ieee80211_channel *channel;
2001 	struct cfg80211_internal_bss tmp = {}, *res;
2002 	int bss_type;
2003 	bool signal_valid;
2004 	unsigned long ts;
2005 
2006 	if (WARN_ON(!wiphy))
2007 		return NULL;
2008 
2009 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2010 		    (data->signal < 0 || data->signal > 100)))
2011 		return NULL;
2012 
2013 	channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
2014 					   data->scan_width, ftype);
2015 	if (!channel)
2016 		return NULL;
2017 
2018 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2019 	tmp.pub.channel = channel;
2020 	tmp.pub.scan_width = data->scan_width;
2021 	tmp.pub.signal = data->signal;
2022 	tmp.pub.beacon_interval = beacon_interval;
2023 	tmp.pub.capability = capability;
2024 	tmp.ts_boottime = data->boottime_ns;
2025 	tmp.parent_tsf = data->parent_tsf;
2026 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2027 
2028 	if (non_tx_data) {
2029 		tmp.pub.transmitted_bss = non_tx_data->tx_bss;
2030 		ts = bss_from_pub(non_tx_data->tx_bss)->ts;
2031 		tmp.pub.bssid_index = non_tx_data->bssid_index;
2032 		tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
2033 	} else {
2034 		ts = jiffies;
2035 	}
2036 
2037 	/*
2038 	 * If we do not know here whether the IEs are from a Beacon or Probe
2039 	 * Response frame, we need to pick one of the options and only use it
2040 	 * with the driver that does not provide the full Beacon/Probe Response
2041 	 * frame. Use Beacon frame pointer to avoid indicating that this should
2042 	 * override the IEs pointer should we have received an earlier
2043 	 * indication of Probe Response data.
2044 	 */
2045 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2046 	if (!ies)
2047 		return NULL;
2048 	ies->len = ielen;
2049 	ies->tsf = tsf;
2050 	ies->from_beacon = false;
2051 	memcpy(ies->data, ie, ielen);
2052 
2053 	switch (ftype) {
2054 	case CFG80211_BSS_FTYPE_BEACON:
2055 		ies->from_beacon = true;
2056 		fallthrough;
2057 	case CFG80211_BSS_FTYPE_UNKNOWN:
2058 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2059 		break;
2060 	case CFG80211_BSS_FTYPE_PRESP:
2061 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2062 		break;
2063 	}
2064 	rcu_assign_pointer(tmp.pub.ies, ies);
2065 
2066 	signal_valid = data->chan == channel;
2067 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2068 	if (!res)
2069 		return NULL;
2070 
2071 	if (channel->band == NL80211_BAND_60GHZ) {
2072 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2073 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2074 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2075 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2076 	} else {
2077 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2078 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2079 	}
2080 
2081 	if (non_tx_data) {
2082 		/* this is a nontransmitting bss, we need to add it to
2083 		 * transmitting bss' list if it is not there
2084 		 */
2085 		spin_lock_bh(&rdev->bss_lock);
2086 		if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2087 					       &res->pub)) {
2088 			if (__cfg80211_unlink_bss(rdev, res)) {
2089 				rdev->bss_generation++;
2090 				res = NULL;
2091 			}
2092 		}
2093 		spin_unlock_bh(&rdev->bss_lock);
2094 
2095 		if (!res)
2096 			return NULL;
2097 	}
2098 
2099 	trace_cfg80211_return_bss(&res->pub);
2100 	/* cfg80211_bss_update gives us a referenced result */
2101 	return &res->pub;
2102 }
2103 
2104 static const struct element
cfg80211_get_profile_continuation(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem)2105 *cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2106 				   const struct element *mbssid_elem,
2107 				   const struct element *sub_elem)
2108 {
2109 	const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2110 	const struct element *next_mbssid;
2111 	const struct element *next_sub;
2112 
2113 	next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2114 					 mbssid_end,
2115 					 ielen - (mbssid_end - ie));
2116 
2117 	/*
2118 	 * If it is not the last subelement in current MBSSID IE or there isn't
2119 	 * a next MBSSID IE - profile is complete.
2120 	*/
2121 	if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2122 	    !next_mbssid)
2123 		return NULL;
2124 
2125 	/* For any length error, just return NULL */
2126 
2127 	if (next_mbssid->datalen < 4)
2128 		return NULL;
2129 
2130 	next_sub = (void *)&next_mbssid->data[1];
2131 
2132 	if (next_mbssid->data + next_mbssid->datalen <
2133 	    next_sub->data + next_sub->datalen)
2134 		return NULL;
2135 
2136 	if (next_sub->id != 0 || next_sub->datalen < 2)
2137 		return NULL;
2138 
2139 	/*
2140 	 * Check if the first element in the next sub element is a start
2141 	 * of a new profile
2142 	 */
2143 	return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2144 	       NULL : next_mbssid;
2145 }
2146 
cfg80211_merge_profile(const u8 * ie,size_t ielen,const struct element * mbssid_elem,const struct element * sub_elem,u8 * merged_ie,size_t max_copy_len)2147 size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2148 			      const struct element *mbssid_elem,
2149 			      const struct element *sub_elem,
2150 			      u8 *merged_ie, size_t max_copy_len)
2151 {
2152 	size_t copied_len = sub_elem->datalen;
2153 	const struct element *next_mbssid;
2154 
2155 	if (sub_elem->datalen > max_copy_len)
2156 		return 0;
2157 
2158 	memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2159 
2160 	while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2161 								mbssid_elem,
2162 								sub_elem))) {
2163 		const struct element *next_sub = (void *)&next_mbssid->data[1];
2164 
2165 		if (copied_len + next_sub->datalen > max_copy_len)
2166 			break;
2167 		memcpy(merged_ie + copied_len, next_sub->data,
2168 		       next_sub->datalen);
2169 		copied_len += next_sub->datalen;
2170 	}
2171 
2172 	return copied_len;
2173 }
2174 EXPORT_SYMBOL(cfg80211_merge_profile);
2175 
cfg80211_parse_mbssid_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 beacon_interval,const u8 * ie,size_t ielen,struct cfg80211_non_tx_bss * non_tx_data,gfp_t gfp)2176 static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2177 				       struct cfg80211_inform_bss *data,
2178 				       enum cfg80211_bss_frame_type ftype,
2179 				       const u8 *bssid, u64 tsf,
2180 				       u16 beacon_interval, const u8 *ie,
2181 				       size_t ielen,
2182 				       struct cfg80211_non_tx_bss *non_tx_data,
2183 				       gfp_t gfp)
2184 {
2185 	const u8 *mbssid_index_ie;
2186 	const struct element *elem, *sub;
2187 	size_t new_ie_len;
2188 	u8 new_bssid[ETH_ALEN];
2189 	u8 *new_ie, *profile;
2190 	u64 seen_indices = 0;
2191 	u16 capability;
2192 	struct cfg80211_bss *bss;
2193 
2194 	if (!non_tx_data)
2195 		return;
2196 	if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2197 		return;
2198 	if (!wiphy->support_mbssid)
2199 		return;
2200 	if (wiphy->support_only_he_mbssid &&
2201 	    !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2202 		return;
2203 
2204 	new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2205 	if (!new_ie)
2206 		return;
2207 
2208 	profile = kmalloc(ielen, gfp);
2209 	if (!profile)
2210 		goto out;
2211 
2212 	for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2213 		if (elem->datalen < 4)
2214 			continue;
2215 		if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2216 			continue;
2217 		for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2218 			u8 profile_len;
2219 
2220 			if (sub->id != 0 || sub->datalen < 4) {
2221 				/* not a valid BSS profile */
2222 				continue;
2223 			}
2224 
2225 			if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2226 			    sub->data[1] != 2) {
2227 				/* The first element within the Nontransmitted
2228 				 * BSSID Profile is not the Nontransmitted
2229 				 * BSSID Capability element.
2230 				 */
2231 				continue;
2232 			}
2233 
2234 			memset(profile, 0, ielen);
2235 			profile_len = cfg80211_merge_profile(ie, ielen,
2236 							     elem,
2237 							     sub,
2238 							     profile,
2239 							     ielen);
2240 
2241 			/* found a Nontransmitted BSSID Profile */
2242 			mbssid_index_ie = cfg80211_find_ie
2243 				(WLAN_EID_MULTI_BSSID_IDX,
2244 				 profile, profile_len);
2245 			if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2246 			    mbssid_index_ie[2] == 0 ||
2247 			    mbssid_index_ie[2] > 46) {
2248 				/* No valid Multiple BSSID-Index element */
2249 				continue;
2250 			}
2251 
2252 			if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2253 				/* We don't support legacy split of a profile */
2254 				net_dbg_ratelimited("Partial info for BSSID index %d\n",
2255 						    mbssid_index_ie[2]);
2256 
2257 			seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2258 
2259 			non_tx_data->bssid_index = mbssid_index_ie[2];
2260 			non_tx_data->max_bssid_indicator = elem->data[0];
2261 
2262 			cfg80211_gen_new_bssid(bssid,
2263 					       non_tx_data->max_bssid_indicator,
2264 					       non_tx_data->bssid_index,
2265 					       new_bssid);
2266 			memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2267 			new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2268 							 profile,
2269 							 profile_len, new_ie,
2270 							 IEEE80211_MAX_DATA_LEN);
2271 			if (!new_ie_len)
2272 				continue;
2273 
2274 			capability = get_unaligned_le16(profile + 2);
2275 			bss = cfg80211_inform_single_bss_data(wiphy, data,
2276 							      ftype,
2277 							      new_bssid, tsf,
2278 							      capability,
2279 							      beacon_interval,
2280 							      new_ie,
2281 							      new_ie_len,
2282 							      non_tx_data,
2283 							      gfp);
2284 			if (!bss)
2285 				break;
2286 			cfg80211_put_bss(wiphy, bss);
2287 		}
2288 	}
2289 
2290 out:
2291 	kfree(new_ie);
2292 	kfree(profile);
2293 }
2294 
2295 struct cfg80211_bss *
cfg80211_inform_bss_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,enum cfg80211_bss_frame_type ftype,const u8 * bssid,u64 tsf,u16 capability,u16 beacon_interval,const u8 * ie,size_t ielen,gfp_t gfp)2296 cfg80211_inform_bss_data(struct wiphy *wiphy,
2297 			 struct cfg80211_inform_bss *data,
2298 			 enum cfg80211_bss_frame_type ftype,
2299 			 const u8 *bssid, u64 tsf, u16 capability,
2300 			 u16 beacon_interval, const u8 *ie, size_t ielen,
2301 			 gfp_t gfp)
2302 {
2303 	struct cfg80211_bss *res;
2304 	struct cfg80211_non_tx_bss non_tx_data;
2305 
2306 	res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2307 					      capability, beacon_interval, ie,
2308 					      ielen, NULL, gfp);
2309 	if (!res)
2310 		return NULL;
2311 	non_tx_data.tx_bss = res;
2312 	cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2313 				   beacon_interval, ie, ielen, &non_tx_data,
2314 				   gfp);
2315 	return res;
2316 }
2317 EXPORT_SYMBOL(cfg80211_inform_bss_data);
2318 
2319 /* cfg80211_inform_bss_width_frame helper */
2320 static struct cfg80211_bss *
cfg80211_inform_single_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2321 cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2322 				      struct cfg80211_inform_bss *data,
2323 				      struct ieee80211_mgmt *mgmt, size_t len,
2324 				      gfp_t gfp)
2325 {
2326 	struct cfg80211_internal_bss tmp = {}, *res;
2327 	struct cfg80211_bss_ies *ies;
2328 	struct ieee80211_channel *channel;
2329 	bool signal_valid;
2330 	struct ieee80211_ext *ext = NULL;
2331 	u8 *bssid, *variable;
2332 	u16 capability, beacon_int;
2333 	size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2334 					     u.probe_resp.variable);
2335 	int bss_type;
2336 	enum cfg80211_bss_frame_type ftype;
2337 
2338 	BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2339 			offsetof(struct ieee80211_mgmt, u.beacon.variable));
2340 
2341 	trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2342 
2343 	if (WARN_ON(!mgmt))
2344 		return NULL;
2345 
2346 	if (WARN_ON(!wiphy))
2347 		return NULL;
2348 
2349 	if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2350 		    (data->signal < 0 || data->signal > 100)))
2351 		return NULL;
2352 
2353 	if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2354 		ext = (void *) mgmt;
2355 		min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2356 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2357 			min_hdr_len = offsetof(struct ieee80211_ext,
2358 					       u.s1g_short_beacon.variable);
2359 	}
2360 
2361 	if (WARN_ON(len < min_hdr_len))
2362 		return NULL;
2363 
2364 	ielen = len - min_hdr_len;
2365 	variable = mgmt->u.probe_resp.variable;
2366 	if (ext) {
2367 		if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2368 			variable = ext->u.s1g_short_beacon.variable;
2369 		else
2370 			variable = ext->u.s1g_beacon.variable;
2371 	}
2372 
2373 	if (ieee80211_is_beacon(mgmt->frame_control))
2374 		ftype = CFG80211_BSS_FTYPE_BEACON;
2375 	else if (ieee80211_is_probe_resp(mgmt->frame_control))
2376 		ftype = CFG80211_BSS_FTYPE_PRESP;
2377 	else
2378 		ftype = CFG80211_BSS_FTYPE_UNKNOWN;
2379 
2380 	channel = cfg80211_get_bss_channel(wiphy, variable,
2381 					   ielen, data->chan, data->scan_width,
2382 					   ftype);
2383 	if (!channel)
2384 		return NULL;
2385 
2386 	if (ext) {
2387 		const struct ieee80211_s1g_bcn_compat_ie *compat;
2388 		const struct element *elem;
2389 
2390 		elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2391 					  variable, ielen);
2392 		if (!elem)
2393 			return NULL;
2394 		if (elem->datalen < sizeof(*compat))
2395 			return NULL;
2396 		compat = (void *)elem->data;
2397 		bssid = ext->u.s1g_beacon.sa;
2398 		capability = le16_to_cpu(compat->compat_info);
2399 		beacon_int = le16_to_cpu(compat->beacon_int);
2400 	} else {
2401 		bssid = mgmt->bssid;
2402 		beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2403 		capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2404 	}
2405 
2406 	ies = kzalloc(sizeof(*ies) + ielen, gfp);
2407 	if (!ies)
2408 		return NULL;
2409 	ies->len = ielen;
2410 	ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2411 	ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2412 			   ieee80211_is_s1g_beacon(mgmt->frame_control);
2413 	memcpy(ies->data, variable, ielen);
2414 
2415 	if (ieee80211_is_probe_resp(mgmt->frame_control))
2416 		rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2417 	else
2418 		rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2419 	rcu_assign_pointer(tmp.pub.ies, ies);
2420 
2421 	memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2422 	tmp.pub.beacon_interval = beacon_int;
2423 	tmp.pub.capability = capability;
2424 	tmp.pub.channel = channel;
2425 	tmp.pub.scan_width = data->scan_width;
2426 	tmp.pub.signal = data->signal;
2427 	tmp.ts_boottime = data->boottime_ns;
2428 	tmp.parent_tsf = data->parent_tsf;
2429 	tmp.pub.chains = data->chains;
2430 	memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2431 	ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2432 
2433 	signal_valid = data->chan == channel;
2434 	res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2435 				  jiffies);
2436 	if (!res)
2437 		return NULL;
2438 
2439 	if (channel->band == NL80211_BAND_60GHZ) {
2440 		bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2441 		if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2442 		    bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2443 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2444 	} else {
2445 		if (res->pub.capability & WLAN_CAPABILITY_ESS)
2446 			regulatory_hint_found_beacon(wiphy, channel, gfp);
2447 	}
2448 
2449 	trace_cfg80211_return_bss(&res->pub);
2450 	/* cfg80211_bss_update gives us a referenced result */
2451 	return &res->pub;
2452 }
2453 
2454 struct cfg80211_bss *
cfg80211_inform_bss_frame_data(struct wiphy * wiphy,struct cfg80211_inform_bss * data,struct ieee80211_mgmt * mgmt,size_t len,gfp_t gfp)2455 cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2456 			       struct cfg80211_inform_bss *data,
2457 			       struct ieee80211_mgmt *mgmt, size_t len,
2458 			       gfp_t gfp)
2459 {
2460 	struct cfg80211_bss *res;
2461 	const u8 *ie = mgmt->u.probe_resp.variable;
2462 	size_t ielen = len - offsetof(struct ieee80211_mgmt,
2463 				      u.probe_resp.variable);
2464 	enum cfg80211_bss_frame_type ftype;
2465 	struct cfg80211_non_tx_bss non_tx_data = {};
2466 
2467 	res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2468 						    len, gfp);
2469 	if (!res)
2470 		return NULL;
2471 
2472 	/* don't do any further MBSSID handling for S1G */
2473 	if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2474 		return res;
2475 
2476 	ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2477 		CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2478 	non_tx_data.tx_bss = res;
2479 
2480 	/* process each non-transmitting bss */
2481 	cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2482 				   le64_to_cpu(mgmt->u.probe_resp.timestamp),
2483 				   le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2484 				   ie, ielen, &non_tx_data, gfp);
2485 
2486 	return res;
2487 }
2488 EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2489 
cfg80211_ref_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2490 void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2491 {
2492 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2493 	struct cfg80211_internal_bss *bss;
2494 
2495 	if (!pub)
2496 		return;
2497 
2498 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2499 
2500 	spin_lock_bh(&rdev->bss_lock);
2501 	bss_ref_get(rdev, bss);
2502 	spin_unlock_bh(&rdev->bss_lock);
2503 }
2504 EXPORT_SYMBOL(cfg80211_ref_bss);
2505 
cfg80211_put_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2506 void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2507 {
2508 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2509 	struct cfg80211_internal_bss *bss;
2510 
2511 	if (!pub)
2512 		return;
2513 
2514 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2515 
2516 	spin_lock_bh(&rdev->bss_lock);
2517 	bss_ref_put(rdev, bss);
2518 	spin_unlock_bh(&rdev->bss_lock);
2519 }
2520 EXPORT_SYMBOL(cfg80211_put_bss);
2521 
cfg80211_unlink_bss(struct wiphy * wiphy,struct cfg80211_bss * pub)2522 void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2523 {
2524 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2525 	struct cfg80211_internal_bss *bss, *tmp1;
2526 	struct cfg80211_bss *nontrans_bss, *tmp;
2527 
2528 	if (WARN_ON(!pub))
2529 		return;
2530 
2531 	bss = container_of(pub, struct cfg80211_internal_bss, pub);
2532 
2533 	spin_lock_bh(&rdev->bss_lock);
2534 	if (list_empty(&bss->list))
2535 		goto out;
2536 
2537 	list_for_each_entry_safe(nontrans_bss, tmp,
2538 				 &pub->nontrans_list,
2539 				 nontrans_list) {
2540 		tmp1 = container_of(nontrans_bss,
2541 				    struct cfg80211_internal_bss, pub);
2542 		if (__cfg80211_unlink_bss(rdev, tmp1))
2543 			rdev->bss_generation++;
2544 	}
2545 
2546 	if (__cfg80211_unlink_bss(rdev, bss))
2547 		rdev->bss_generation++;
2548 out:
2549 	spin_unlock_bh(&rdev->bss_lock);
2550 }
2551 EXPORT_SYMBOL(cfg80211_unlink_bss);
2552 
cfg80211_bss_iter(struct wiphy * wiphy,struct cfg80211_chan_def * chandef,void (* iter)(struct wiphy * wiphy,struct cfg80211_bss * bss,void * data),void * iter_data)2553 void cfg80211_bss_iter(struct wiphy *wiphy,
2554 		       struct cfg80211_chan_def *chandef,
2555 		       void (*iter)(struct wiphy *wiphy,
2556 				    struct cfg80211_bss *bss,
2557 				    void *data),
2558 		       void *iter_data)
2559 {
2560 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2561 	struct cfg80211_internal_bss *bss;
2562 
2563 	spin_lock_bh(&rdev->bss_lock);
2564 
2565 	list_for_each_entry(bss, &rdev->bss_list, list) {
2566 		if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2567 						     false))
2568 			iter(wiphy, &bss->pub, iter_data);
2569 	}
2570 
2571 	spin_unlock_bh(&rdev->bss_lock);
2572 }
2573 EXPORT_SYMBOL(cfg80211_bss_iter);
2574 
cfg80211_update_assoc_bss_entry(struct wireless_dev * wdev,unsigned int link_id,struct ieee80211_channel * chan)2575 void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2576 				     unsigned int link_id,
2577 				     struct ieee80211_channel *chan)
2578 {
2579 	struct wiphy *wiphy = wdev->wiphy;
2580 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2581 	struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2582 	struct cfg80211_internal_bss *new = NULL;
2583 	struct cfg80211_internal_bss *bss;
2584 	struct cfg80211_bss *nontrans_bss;
2585 	struct cfg80211_bss *tmp;
2586 
2587 	spin_lock_bh(&rdev->bss_lock);
2588 
2589 	/*
2590 	 * Some APs use CSA also for bandwidth changes, i.e., without actually
2591 	 * changing the control channel, so no need to update in such a case.
2592 	 */
2593 	if (cbss->pub.channel == chan)
2594 		goto done;
2595 
2596 	/* use transmitting bss */
2597 	if (cbss->pub.transmitted_bss)
2598 		cbss = container_of(cbss->pub.transmitted_bss,
2599 				    struct cfg80211_internal_bss,
2600 				    pub);
2601 
2602 	cbss->pub.channel = chan;
2603 
2604 	list_for_each_entry(bss, &rdev->bss_list, list) {
2605 		if (!cfg80211_bss_type_match(bss->pub.capability,
2606 					     bss->pub.channel->band,
2607 					     wdev->conn_bss_type))
2608 			continue;
2609 
2610 		if (bss == cbss)
2611 			continue;
2612 
2613 		if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2614 			new = bss;
2615 			break;
2616 		}
2617 	}
2618 
2619 	if (new) {
2620 		/* to save time, update IEs for transmitting bss only */
2621 		if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2622 			new->pub.proberesp_ies = NULL;
2623 			new->pub.beacon_ies = NULL;
2624 		}
2625 
2626 		list_for_each_entry_safe(nontrans_bss, tmp,
2627 					 &new->pub.nontrans_list,
2628 					 nontrans_list) {
2629 			bss = container_of(nontrans_bss,
2630 					   struct cfg80211_internal_bss, pub);
2631 			if (__cfg80211_unlink_bss(rdev, bss))
2632 				rdev->bss_generation++;
2633 		}
2634 
2635 		WARN_ON(atomic_read(&new->hold));
2636 		if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2637 			rdev->bss_generation++;
2638 	}
2639 
2640 	rb_erase(&cbss->rbn, &rdev->bss_tree);
2641 	rb_insert_bss(rdev, cbss);
2642 	rdev->bss_generation++;
2643 
2644 	list_for_each_entry_safe(nontrans_bss, tmp,
2645 				 &cbss->pub.nontrans_list,
2646 				 nontrans_list) {
2647 		bss = container_of(nontrans_bss,
2648 				   struct cfg80211_internal_bss, pub);
2649 		bss->pub.channel = chan;
2650 		rb_erase(&bss->rbn, &rdev->bss_tree);
2651 		rb_insert_bss(rdev, bss);
2652 		rdev->bss_generation++;
2653 	}
2654 
2655 done:
2656 	spin_unlock_bh(&rdev->bss_lock);
2657 }
2658 
2659 #ifdef CONFIG_CFG80211_WEXT
2660 static struct cfg80211_registered_device *
cfg80211_get_dev_from_ifindex(struct net * net,int ifindex)2661 cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2662 {
2663 	struct cfg80211_registered_device *rdev;
2664 	struct net_device *dev;
2665 
2666 	ASSERT_RTNL();
2667 
2668 	dev = dev_get_by_index(net, ifindex);
2669 	if (!dev)
2670 		return ERR_PTR(-ENODEV);
2671 	if (dev->ieee80211_ptr)
2672 		rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2673 	else
2674 		rdev = ERR_PTR(-ENODEV);
2675 	dev_put(dev);
2676 	return rdev;
2677 }
2678 
cfg80211_wext_siwscan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)2679 int cfg80211_wext_siwscan(struct net_device *dev,
2680 			  struct iw_request_info *info,
2681 			  union iwreq_data *wrqu, char *extra)
2682 {
2683 	struct cfg80211_registered_device *rdev;
2684 	struct wiphy *wiphy;
2685 	struct iw_scan_req *wreq = NULL;
2686 	struct cfg80211_scan_request *creq;
2687 	int i, err, n_channels = 0;
2688 	enum nl80211_band band;
2689 
2690 	if (!netif_running(dev))
2691 		return -ENETDOWN;
2692 
2693 	if (wrqu->data.length == sizeof(struct iw_scan_req))
2694 		wreq = (struct iw_scan_req *)extra;
2695 
2696 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2697 
2698 	if (IS_ERR(rdev))
2699 		return PTR_ERR(rdev);
2700 
2701 	if (rdev->scan_req || rdev->scan_msg)
2702 		return -EBUSY;
2703 
2704 	wiphy = &rdev->wiphy;
2705 
2706 	/* Determine number of channels, needed to allocate creq */
2707 	if (wreq && wreq->num_channels)
2708 		n_channels = wreq->num_channels;
2709 	else
2710 		n_channels = ieee80211_get_num_supported_channels(wiphy);
2711 
2712 	creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2713 		       n_channels * sizeof(void *),
2714 		       GFP_ATOMIC);
2715 	if (!creq)
2716 		return -ENOMEM;
2717 
2718 	creq->wiphy = wiphy;
2719 	creq->wdev = dev->ieee80211_ptr;
2720 	/* SSIDs come after channels */
2721 	creq->ssids = (void *)&creq->channels[n_channels];
2722 	creq->n_channels = n_channels;
2723 	creq->n_ssids = 1;
2724 	creq->scan_start = jiffies;
2725 
2726 	/* translate "Scan on frequencies" request */
2727 	i = 0;
2728 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2729 		int j;
2730 
2731 		if (!wiphy->bands[band])
2732 			continue;
2733 
2734 		for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2735 			/* ignore disabled channels */
2736 			if (wiphy->bands[band]->channels[j].flags &
2737 						IEEE80211_CHAN_DISABLED)
2738 				continue;
2739 
2740 			/* If we have a wireless request structure and the
2741 			 * wireless request specifies frequencies, then search
2742 			 * for the matching hardware channel.
2743 			 */
2744 			if (wreq && wreq->num_channels) {
2745 				int k;
2746 				int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2747 				for (k = 0; k < wreq->num_channels; k++) {
2748 					struct iw_freq *freq =
2749 						&wreq->channel_list[k];
2750 					int wext_freq =
2751 						cfg80211_wext_freq(freq);
2752 
2753 					if (wext_freq == wiphy_freq)
2754 						goto wext_freq_found;
2755 				}
2756 				goto wext_freq_not_found;
2757 			}
2758 
2759 		wext_freq_found:
2760 			creq->channels[i] = &wiphy->bands[band]->channels[j];
2761 			i++;
2762 		wext_freq_not_found: ;
2763 		}
2764 	}
2765 	/* No channels found? */
2766 	if (!i) {
2767 		err = -EINVAL;
2768 		goto out;
2769 	}
2770 
2771 	/* Set real number of channels specified in creq->channels[] */
2772 	creq->n_channels = i;
2773 
2774 	/* translate "Scan for SSID" request */
2775 	if (wreq) {
2776 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2777 			if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2778 				err = -EINVAL;
2779 				goto out;
2780 			}
2781 			memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2782 			creq->ssids[0].ssid_len = wreq->essid_len;
2783 		}
2784 		if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2785 			creq->n_ssids = 0;
2786 	}
2787 
2788 	for (i = 0; i < NUM_NL80211_BANDS; i++)
2789 		if (wiphy->bands[i])
2790 			creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2791 
2792 	eth_broadcast_addr(creq->bssid);
2793 
2794 	wiphy_lock(&rdev->wiphy);
2795 
2796 	rdev->scan_req = creq;
2797 	err = rdev_scan(rdev, creq);
2798 	if (err) {
2799 		rdev->scan_req = NULL;
2800 		/* creq will be freed below */
2801 	} else {
2802 		nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2803 		/* creq now owned by driver */
2804 		creq = NULL;
2805 		dev_hold(dev);
2806 	}
2807 	wiphy_unlock(&rdev->wiphy);
2808  out:
2809 	kfree(creq);
2810 	return err;
2811 }
2812 EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2813 
ieee80211_scan_add_ies(struct iw_request_info * info,const struct cfg80211_bss_ies * ies,char * current_ev,char * end_buf)2814 static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2815 				    const struct cfg80211_bss_ies *ies,
2816 				    char *current_ev, char *end_buf)
2817 {
2818 	const u8 *pos, *end, *next;
2819 	struct iw_event iwe;
2820 
2821 	if (!ies)
2822 		return current_ev;
2823 
2824 	/*
2825 	 * If needed, fragment the IEs buffer (at IE boundaries) into short
2826 	 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2827 	 */
2828 	pos = ies->data;
2829 	end = pos + ies->len;
2830 
2831 	while (end - pos > IW_GENERIC_IE_MAX) {
2832 		next = pos + 2 + pos[1];
2833 		while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2834 			next = next + 2 + next[1];
2835 
2836 		memset(&iwe, 0, sizeof(iwe));
2837 		iwe.cmd = IWEVGENIE;
2838 		iwe.u.data.length = next - pos;
2839 		current_ev = iwe_stream_add_point_check(info, current_ev,
2840 							end_buf, &iwe,
2841 							(void *)pos);
2842 		if (IS_ERR(current_ev))
2843 			return current_ev;
2844 		pos = next;
2845 	}
2846 
2847 	if (end > pos) {
2848 		memset(&iwe, 0, sizeof(iwe));
2849 		iwe.cmd = IWEVGENIE;
2850 		iwe.u.data.length = end - pos;
2851 		current_ev = iwe_stream_add_point_check(info, current_ev,
2852 							end_buf, &iwe,
2853 							(void *)pos);
2854 		if (IS_ERR(current_ev))
2855 			return current_ev;
2856 	}
2857 
2858 	return current_ev;
2859 }
2860 
2861 static char *
ieee80211_bss(struct wiphy * wiphy,struct iw_request_info * info,struct cfg80211_internal_bss * bss,char * current_ev,char * end_buf)2862 ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2863 	      struct cfg80211_internal_bss *bss, char *current_ev,
2864 	      char *end_buf)
2865 {
2866 	const struct cfg80211_bss_ies *ies;
2867 	struct iw_event iwe;
2868 	const u8 *ie;
2869 	u8 buf[50];
2870 	u8 *cfg, *p, *tmp;
2871 	int rem, i, sig;
2872 	bool ismesh = false;
2873 
2874 	memset(&iwe, 0, sizeof(iwe));
2875 	iwe.cmd = SIOCGIWAP;
2876 	iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2877 	memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2878 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2879 						IW_EV_ADDR_LEN);
2880 	if (IS_ERR(current_ev))
2881 		return current_ev;
2882 
2883 	memset(&iwe, 0, sizeof(iwe));
2884 	iwe.cmd = SIOCGIWFREQ;
2885 	iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2886 	iwe.u.freq.e = 0;
2887 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2888 						IW_EV_FREQ_LEN);
2889 	if (IS_ERR(current_ev))
2890 		return current_ev;
2891 
2892 	memset(&iwe, 0, sizeof(iwe));
2893 	iwe.cmd = SIOCGIWFREQ;
2894 	iwe.u.freq.m = bss->pub.channel->center_freq;
2895 	iwe.u.freq.e = 6;
2896 	current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2897 						IW_EV_FREQ_LEN);
2898 	if (IS_ERR(current_ev))
2899 		return current_ev;
2900 
2901 	if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2902 		memset(&iwe, 0, sizeof(iwe));
2903 		iwe.cmd = IWEVQUAL;
2904 		iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2905 				     IW_QUAL_NOISE_INVALID |
2906 				     IW_QUAL_QUAL_UPDATED;
2907 		switch (wiphy->signal_type) {
2908 		case CFG80211_SIGNAL_TYPE_MBM:
2909 			sig = bss->pub.signal / 100;
2910 			iwe.u.qual.level = sig;
2911 			iwe.u.qual.updated |= IW_QUAL_DBM;
2912 			if (sig < -110)		/* rather bad */
2913 				sig = -110;
2914 			else if (sig > -40)	/* perfect */
2915 				sig = -40;
2916 			/* will give a range of 0 .. 70 */
2917 			iwe.u.qual.qual = sig + 110;
2918 			break;
2919 		case CFG80211_SIGNAL_TYPE_UNSPEC:
2920 			iwe.u.qual.level = bss->pub.signal;
2921 			/* will give range 0 .. 100 */
2922 			iwe.u.qual.qual = bss->pub.signal;
2923 			break;
2924 		default:
2925 			/* not reached */
2926 			break;
2927 		}
2928 		current_ev = iwe_stream_add_event_check(info, current_ev,
2929 							end_buf, &iwe,
2930 							IW_EV_QUAL_LEN);
2931 		if (IS_ERR(current_ev))
2932 			return current_ev;
2933 	}
2934 
2935 	memset(&iwe, 0, sizeof(iwe));
2936 	iwe.cmd = SIOCGIWENCODE;
2937 	if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2938 		iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2939 	else
2940 		iwe.u.data.flags = IW_ENCODE_DISABLED;
2941 	iwe.u.data.length = 0;
2942 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
2943 						&iwe, "");
2944 	if (IS_ERR(current_ev))
2945 		return current_ev;
2946 
2947 	rcu_read_lock();
2948 	ies = rcu_dereference(bss->pub.ies);
2949 	rem = ies->len;
2950 	ie = ies->data;
2951 
2952 	while (rem >= 2) {
2953 		/* invalid data */
2954 		if (ie[1] > rem - 2)
2955 			break;
2956 
2957 		switch (ie[0]) {
2958 		case WLAN_EID_SSID:
2959 			memset(&iwe, 0, sizeof(iwe));
2960 			iwe.cmd = SIOCGIWESSID;
2961 			iwe.u.data.length = ie[1];
2962 			iwe.u.data.flags = 1;
2963 			current_ev = iwe_stream_add_point_check(info,
2964 								current_ev,
2965 								end_buf, &iwe,
2966 								(u8 *)ie + 2);
2967 			if (IS_ERR(current_ev))
2968 				goto unlock;
2969 			break;
2970 		case WLAN_EID_MESH_ID:
2971 			memset(&iwe, 0, sizeof(iwe));
2972 			iwe.cmd = SIOCGIWESSID;
2973 			iwe.u.data.length = ie[1];
2974 			iwe.u.data.flags = 1;
2975 			current_ev = iwe_stream_add_point_check(info,
2976 								current_ev,
2977 								end_buf, &iwe,
2978 								(u8 *)ie + 2);
2979 			if (IS_ERR(current_ev))
2980 				goto unlock;
2981 			break;
2982 		case WLAN_EID_MESH_CONFIG:
2983 			ismesh = true;
2984 			if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
2985 				break;
2986 			cfg = (u8 *)ie + 2;
2987 			memset(&iwe, 0, sizeof(iwe));
2988 			iwe.cmd = IWEVCUSTOM;
2989 			sprintf(buf, "Mesh Network Path Selection Protocol ID: "
2990 				"0x%02X", cfg[0]);
2991 			iwe.u.data.length = strlen(buf);
2992 			current_ev = iwe_stream_add_point_check(info,
2993 								current_ev,
2994 								end_buf,
2995 								&iwe, buf);
2996 			if (IS_ERR(current_ev))
2997 				goto unlock;
2998 			sprintf(buf, "Path Selection Metric ID: 0x%02X",
2999 				cfg[1]);
3000 			iwe.u.data.length = strlen(buf);
3001 			current_ev = iwe_stream_add_point_check(info,
3002 								current_ev,
3003 								end_buf,
3004 								&iwe, buf);
3005 			if (IS_ERR(current_ev))
3006 				goto unlock;
3007 			sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3008 				cfg[2]);
3009 			iwe.u.data.length = strlen(buf);
3010 			current_ev = iwe_stream_add_point_check(info,
3011 								current_ev,
3012 								end_buf,
3013 								&iwe, buf);
3014 			if (IS_ERR(current_ev))
3015 				goto unlock;
3016 			sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3017 			iwe.u.data.length = strlen(buf);
3018 			current_ev = iwe_stream_add_point_check(info,
3019 								current_ev,
3020 								end_buf,
3021 								&iwe, buf);
3022 			if (IS_ERR(current_ev))
3023 				goto unlock;
3024 			sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3025 			iwe.u.data.length = strlen(buf);
3026 			current_ev = iwe_stream_add_point_check(info,
3027 								current_ev,
3028 								end_buf,
3029 								&iwe, buf);
3030 			if (IS_ERR(current_ev))
3031 				goto unlock;
3032 			sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3033 			iwe.u.data.length = strlen(buf);
3034 			current_ev = iwe_stream_add_point_check(info,
3035 								current_ev,
3036 								end_buf,
3037 								&iwe, buf);
3038 			if (IS_ERR(current_ev))
3039 				goto unlock;
3040 			sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3041 			iwe.u.data.length = strlen(buf);
3042 			current_ev = iwe_stream_add_point_check(info,
3043 								current_ev,
3044 								end_buf,
3045 								&iwe, buf);
3046 			if (IS_ERR(current_ev))
3047 				goto unlock;
3048 			break;
3049 		case WLAN_EID_SUPP_RATES:
3050 		case WLAN_EID_EXT_SUPP_RATES:
3051 			/* display all supported rates in readable format */
3052 			p = current_ev + iwe_stream_lcp_len(info);
3053 
3054 			memset(&iwe, 0, sizeof(iwe));
3055 			iwe.cmd = SIOCGIWRATE;
3056 			/* Those two flags are ignored... */
3057 			iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3058 
3059 			for (i = 0; i < ie[1]; i++) {
3060 				iwe.u.bitrate.value =
3061 					((ie[i + 2] & 0x7f) * 500000);
3062 				tmp = p;
3063 				p = iwe_stream_add_value(info, current_ev, p,
3064 							 end_buf, &iwe,
3065 							 IW_EV_PARAM_LEN);
3066 				if (p == tmp) {
3067 					current_ev = ERR_PTR(-E2BIG);
3068 					goto unlock;
3069 				}
3070 			}
3071 			current_ev = p;
3072 			break;
3073 		}
3074 		rem -= ie[1] + 2;
3075 		ie += ie[1] + 2;
3076 	}
3077 
3078 	if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3079 	    ismesh) {
3080 		memset(&iwe, 0, sizeof(iwe));
3081 		iwe.cmd = SIOCGIWMODE;
3082 		if (ismesh)
3083 			iwe.u.mode = IW_MODE_MESH;
3084 		else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3085 			iwe.u.mode = IW_MODE_MASTER;
3086 		else
3087 			iwe.u.mode = IW_MODE_ADHOC;
3088 		current_ev = iwe_stream_add_event_check(info, current_ev,
3089 							end_buf, &iwe,
3090 							IW_EV_UINT_LEN);
3091 		if (IS_ERR(current_ev))
3092 			goto unlock;
3093 	}
3094 
3095 	memset(&iwe, 0, sizeof(iwe));
3096 	iwe.cmd = IWEVCUSTOM;
3097 	sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3098 	iwe.u.data.length = strlen(buf);
3099 	current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3100 						&iwe, buf);
3101 	if (IS_ERR(current_ev))
3102 		goto unlock;
3103 	memset(&iwe, 0, sizeof(iwe));
3104 	iwe.cmd = IWEVCUSTOM;
3105 	sprintf(buf, " Last beacon: %ums ago",
3106 		elapsed_jiffies_msecs(bss->ts));
3107 	iwe.u.data.length = strlen(buf);
3108 	current_ev = iwe_stream_add_point_check(info, current_ev,
3109 						end_buf, &iwe, buf);
3110 	if (IS_ERR(current_ev))
3111 		goto unlock;
3112 
3113 	current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3114 
3115  unlock:
3116 	rcu_read_unlock();
3117 	return current_ev;
3118 }
3119 
3120 
ieee80211_scan_results(struct cfg80211_registered_device * rdev,struct iw_request_info * info,char * buf,size_t len)3121 static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3122 				  struct iw_request_info *info,
3123 				  char *buf, size_t len)
3124 {
3125 	char *current_ev = buf;
3126 	char *end_buf = buf + len;
3127 	struct cfg80211_internal_bss *bss;
3128 	int err = 0;
3129 
3130 	spin_lock_bh(&rdev->bss_lock);
3131 	cfg80211_bss_expire(rdev);
3132 
3133 	list_for_each_entry(bss, &rdev->bss_list, list) {
3134 		if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3135 			err = -E2BIG;
3136 			break;
3137 		}
3138 		current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3139 					   current_ev, end_buf);
3140 		if (IS_ERR(current_ev)) {
3141 			err = PTR_ERR(current_ev);
3142 			break;
3143 		}
3144 	}
3145 	spin_unlock_bh(&rdev->bss_lock);
3146 
3147 	if (err)
3148 		return err;
3149 	return current_ev - buf;
3150 }
3151 
3152 
cfg80211_wext_giwscan(struct net_device * dev,struct iw_request_info * info,struct iw_point * data,char * extra)3153 int cfg80211_wext_giwscan(struct net_device *dev,
3154 			  struct iw_request_info *info,
3155 			  struct iw_point *data, char *extra)
3156 {
3157 	struct cfg80211_registered_device *rdev;
3158 	int res;
3159 
3160 	if (!netif_running(dev))
3161 		return -ENETDOWN;
3162 
3163 	rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3164 
3165 	if (IS_ERR(rdev))
3166 		return PTR_ERR(rdev);
3167 
3168 	if (rdev->scan_req || rdev->scan_msg)
3169 		return -EAGAIN;
3170 
3171 	res = ieee80211_scan_results(rdev, info, extra, data->length);
3172 	data->length = 0;
3173 	if (res >= 0) {
3174 		data->length = res;
3175 		res = 0;
3176 	}
3177 
3178 	return res;
3179 }
3180 EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3181 #endif
3182