• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Generic process-grouping system.
3  *
4  *  Based originally on the cpuset system, extracted by Paul Menage
5  *  Copyright (C) 2006 Google, Inc
6  *
7  *  Notifications support
8  *  Copyright (C) 2009 Nokia Corporation
9  *  Author: Kirill A. Shutemov
10  *
11  *  Copyright notices from the original cpuset code:
12  *  --------------------------------------------------
13  *  Copyright (C) 2003 BULL SA.
14  *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
15  *
16  *  Portions derived from Patrick Mochel's sysfs code.
17  *  sysfs is Copyright (c) 2001-3 Patrick Mochel
18  *
19  *  2003-10-10 Written by Simon Derr.
20  *  2003-10-22 Updates by Stephen Hemminger.
21  *  2004 May-July Rework by Paul Jackson.
22  *  ---------------------------------------------------
23  *
24  *  This file is subject to the terms and conditions of the GNU General Public
25  *  License.  See the file COPYING in the main directory of the Linux
26  *  distribution for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include "cgroup-internal.h"
32 
33 #include <linux/bpf-cgroup.h>
34 #include <linux/cred.h>
35 #include <linux/errno.h>
36 #include <linux/init_task.h>
37 #include <linux/kernel.h>
38 #include <linux/magic.h>
39 #include <linux/mutex.h>
40 #include <linux/mount.h>
41 #include <linux/pagemap.h>
42 #include <linux/proc_fs.h>
43 #include <linux/rcupdate.h>
44 #include <linux/sched.h>
45 #include <linux/sched/task.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/hashtable.h>
51 #include <linux/idr.h>
52 #include <linux/kthread.h>
53 #include <linux/atomic.h>
54 #include <linux/cpuset.h>
55 #include <linux/proc_ns.h>
56 #include <linux/nsproxy.h>
57 #include <linux/file.h>
58 #include <linux/fs_parser.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/sched/deadline.h>
61 #include <linux/psi.h>
62 #include <net/sock.h>
63 
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/cgroup.h>
66 #undef CREATE_TRACE_POINTS
67 
68 #include <trace/hooks/cgroup.h>
69 
70 #define CGROUP_FILE_NAME_MAX		(MAX_CGROUP_TYPE_NAMELEN +	\
71 					 MAX_CFTYPE_NAME + 2)
72 /* let's not notify more than 100 times per second */
73 #define CGROUP_FILE_NOTIFY_MIN_INTV	DIV_ROUND_UP(HZ, 100)
74 
75 /*
76  * To avoid confusing the compiler (and generating warnings) with code
77  * that attempts to access what would be a 0-element array (i.e. sized
78  * to a potentially empty array when CGROUP_SUBSYS_COUNT == 0), this
79  * constant expression can be added.
80  */
81 #define CGROUP_HAS_SUBSYS_CONFIG	(CGROUP_SUBSYS_COUNT > 0)
82 
83 /*
84  * cgroup_mutex is the master lock.  Any modification to cgroup or its
85  * hierarchy must be performed while holding it.
86  *
87  * css_set_lock protects task->cgroups pointer, the list of css_set
88  * objects, and the chain of tasks off each css_set.
89  *
90  * These locks are exported if CONFIG_PROVE_RCU so that accessors in
91  * cgroup.h can use them for lockdep annotations.
92  */
93 DEFINE_MUTEX(cgroup_mutex);
94 DEFINE_SPINLOCK(css_set_lock);
95 
96 #ifdef CONFIG_PROVE_RCU
97 EXPORT_SYMBOL_GPL(cgroup_mutex);
98 EXPORT_SYMBOL_GPL(css_set_lock);
99 #endif
100 
101 DEFINE_SPINLOCK(trace_cgroup_path_lock);
102 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
103 static bool cgroup_debug __read_mostly;
104 
105 /*
106  * Protects cgroup_idr and css_idr so that IDs can be released without
107  * grabbing cgroup_mutex.
108  */
109 static DEFINE_SPINLOCK(cgroup_idr_lock);
110 
111 /*
112  * Protects cgroup_file->kn for !self csses.  It synchronizes notifications
113  * against file removal/re-creation across css hiding.
114  */
115 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
116 
117 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem);
118 EXPORT_SYMBOL_GPL(cgroup_threadgroup_rwsem);
119 
120 #define cgroup_assert_mutex_or_rcu_locked()				\
121 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
122 			   !lockdep_is_held(&cgroup_mutex),		\
123 			   "cgroup_mutex or RCU read lock required");
124 
125 /*
126  * cgroup destruction makes heavy use of work items and there can be a lot
127  * of concurrent destructions.  Use a separate workqueue so that cgroup
128  * destruction work items don't end up filling up max_active of system_wq
129  * which may lead to deadlock.
130  */
131 static struct workqueue_struct *cgroup_destroy_wq;
132 
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
137 };
138 #undef SUBSYS
139 
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146 
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148 #define SUBSYS(_x)								\
149 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key);			\
150 	DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key);			\
151 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key);			\
152 	EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
155 
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
159 };
160 #undef SUBSYS
161 
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
165 };
166 #undef SUBSYS
167 
168 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
169 
170 /* the default hierarchy */
171 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
172 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
173 
174 /*
175  * The default hierarchy always exists but is hidden until mounted for the
176  * first time.  This is for backward compatibility.
177  */
178 static bool cgrp_dfl_visible;
179 
180 /* some controllers are not supported in the default hierarchy */
181 static u16 cgrp_dfl_inhibit_ss_mask;
182 
183 /* some controllers are implicitly enabled on the default hierarchy */
184 static u16 cgrp_dfl_implicit_ss_mask;
185 
186 /* some controllers can be threaded on the default hierarchy */
187 static u16 cgrp_dfl_threaded_ss_mask;
188 
189 /* The list of hierarchy roots */
190 LIST_HEAD(cgroup_roots);
191 static int cgroup_root_count;
192 
193 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
194 static DEFINE_IDR(cgroup_hierarchy_idr);
195 
196 /*
197  * Assign a monotonically increasing serial number to csses.  It guarantees
198  * cgroups with bigger numbers are newer than those with smaller numbers.
199  * Also, as csses are always appended to the parent's ->children list, it
200  * guarantees that sibling csses are always sorted in the ascending serial
201  * number order on the list.  Protected by cgroup_mutex.
202  */
203 static u64 css_serial_nr_next = 1;
204 
205 /*
206  * These bitmasks identify subsystems with specific features to avoid
207  * having to do iterative checks repeatedly.
208  */
209 static u16 have_fork_callback __read_mostly;
210 static u16 have_exit_callback __read_mostly;
211 static u16 have_release_callback __read_mostly;
212 static u16 have_canfork_callback __read_mostly;
213 
214 /* cgroup namespace for init task */
215 struct cgroup_namespace init_cgroup_ns = {
216 	.ns.count	= REFCOUNT_INIT(2),
217 	.user_ns	= &init_user_ns,
218 	.ns.ops		= &cgroupns_operations,
219 	.ns.inum	= PROC_CGROUP_INIT_INO,
220 	.root_cset	= &init_css_set,
221 };
222 
223 static struct file_system_type cgroup2_fs_type;
224 static struct cftype cgroup_base_files[];
225 static struct cftype cgroup_psi_files[];
226 
227 /* cgroup optional features */
228 enum cgroup_opt_features {
229 #ifdef CONFIG_PSI
230 	OPT_FEATURE_PRESSURE,
231 #endif
232 	OPT_FEATURE_COUNT
233 };
234 
235 static const char *cgroup_opt_feature_names[OPT_FEATURE_COUNT] = {
236 #ifdef CONFIG_PSI
237 	"pressure",
238 #endif
239 };
240 
241 static u16 cgroup_feature_disable_mask __read_mostly;
242 
243 static int cgroup_apply_control(struct cgroup *cgrp);
244 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
245 static void css_task_iter_skip(struct css_task_iter *it,
246 			       struct task_struct *task);
247 static int cgroup_destroy_locked(struct cgroup *cgrp);
248 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
249 					      struct cgroup_subsys *ss);
250 static void css_release(struct percpu_ref *ref);
251 static void kill_css(struct cgroup_subsys_state *css);
252 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
253 			      struct cgroup *cgrp, struct cftype cfts[],
254 			      bool is_add);
255 
256 /**
257  * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
258  * @ssid: subsys ID of interest
259  *
260  * cgroup_subsys_enabled() can only be used with literal subsys names which
261  * is fine for individual subsystems but unsuitable for cgroup core.  This
262  * is slower static_key_enabled() based test indexed by @ssid.
263  */
cgroup_ssid_enabled(int ssid)264 bool cgroup_ssid_enabled(int ssid)
265 {
266 	if (!CGROUP_HAS_SUBSYS_CONFIG)
267 		return false;
268 
269 	return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
270 }
271 
272 /**
273  * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274  * @cgrp: the cgroup of interest
275  *
276  * The default hierarchy is the v2 interface of cgroup and this function
277  * can be used to test whether a cgroup is on the default hierarchy for
278  * cases where a subsystem should behave differently depending on the
279  * interface version.
280  *
281  * List of changed behaviors:
282  *
283  * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
284  *   and "name" are disallowed.
285  *
286  * - When mounting an existing superblock, mount options should match.
287  *
288  * - rename(2) is disallowed.
289  *
290  * - "tasks" is removed.  Everything should be at process granularity.  Use
291  *   "cgroup.procs" instead.
292  *
293  * - "cgroup.procs" is not sorted.  pids will be unique unless they got
294  *   recycled in-between reads.
295  *
296  * - "release_agent" and "notify_on_release" are removed.  Replacement
297  *   notification mechanism will be implemented.
298  *
299  * - "cgroup.clone_children" is removed.
300  *
301  * - "cgroup.subtree_populated" is available.  Its value is 0 if the cgroup
302  *   and its descendants contain no task; otherwise, 1.  The file also
303  *   generates kernfs notification which can be monitored through poll and
304  *   [di]notify when the value of the file changes.
305  *
306  * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
307  *   take masks of ancestors with non-empty cpus/mems, instead of being
308  *   moved to an ancestor.
309  *
310  * - cpuset: a task can be moved into an empty cpuset, and again it takes
311  *   masks of ancestors.
312  *
313  * - blkcg: blk-throttle becomes properly hierarchical.
314  *
315  * - debug: disallowed on the default hierarchy.
316  */
cgroup_on_dfl(const struct cgroup * cgrp)317 bool cgroup_on_dfl(const struct cgroup *cgrp)
318 {
319 	return cgrp->root == &cgrp_dfl_root;
320 }
321 
322 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)323 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
324 			    gfp_t gfp_mask)
325 {
326 	int ret;
327 
328 	idr_preload(gfp_mask);
329 	spin_lock_bh(&cgroup_idr_lock);
330 	ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
331 	spin_unlock_bh(&cgroup_idr_lock);
332 	idr_preload_end();
333 	return ret;
334 }
335 
cgroup_idr_replace(struct idr * idr,void * ptr,int id)336 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
337 {
338 	void *ret;
339 
340 	spin_lock_bh(&cgroup_idr_lock);
341 	ret = idr_replace(idr, ptr, id);
342 	spin_unlock_bh(&cgroup_idr_lock);
343 	return ret;
344 }
345 
cgroup_idr_remove(struct idr * idr,int id)346 static void cgroup_idr_remove(struct idr *idr, int id)
347 {
348 	spin_lock_bh(&cgroup_idr_lock);
349 	idr_remove(idr, id);
350 	spin_unlock_bh(&cgroup_idr_lock);
351 }
352 
cgroup_has_tasks(struct cgroup * cgrp)353 static bool cgroup_has_tasks(struct cgroup *cgrp)
354 {
355 	return cgrp->nr_populated_csets;
356 }
357 
cgroup_is_threaded(struct cgroup * cgrp)358 bool cgroup_is_threaded(struct cgroup *cgrp)
359 {
360 	return cgrp->dom_cgrp != cgrp;
361 }
362 
363 /* can @cgrp host both domain and threaded children? */
cgroup_is_mixable(struct cgroup * cgrp)364 static bool cgroup_is_mixable(struct cgroup *cgrp)
365 {
366 	/*
367 	 * Root isn't under domain level resource control exempting it from
368 	 * the no-internal-process constraint, so it can serve as a thread
369 	 * root and a parent of resource domains at the same time.
370 	 */
371 	return !cgroup_parent(cgrp);
372 }
373 
374 /* can @cgrp become a thread root? Should always be true for a thread root */
cgroup_can_be_thread_root(struct cgroup * cgrp)375 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
376 {
377 	/* mixables don't care */
378 	if (cgroup_is_mixable(cgrp))
379 		return true;
380 
381 	/* domain roots can't be nested under threaded */
382 	if (cgroup_is_threaded(cgrp))
383 		return false;
384 
385 	/* can only have either domain or threaded children */
386 	if (cgrp->nr_populated_domain_children)
387 		return false;
388 
389 	/* and no domain controllers can be enabled */
390 	if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
391 		return false;
392 
393 	return true;
394 }
395 
396 /* is @cgrp root of a threaded subtree? */
cgroup_is_thread_root(struct cgroup * cgrp)397 bool cgroup_is_thread_root(struct cgroup *cgrp)
398 {
399 	/* thread root should be a domain */
400 	if (cgroup_is_threaded(cgrp))
401 		return false;
402 
403 	/* a domain w/ threaded children is a thread root */
404 	if (cgrp->nr_threaded_children)
405 		return true;
406 
407 	/*
408 	 * A domain which has tasks and explicit threaded controllers
409 	 * enabled is a thread root.
410 	 */
411 	if (cgroup_has_tasks(cgrp) &&
412 	    (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
413 		return true;
414 
415 	return false;
416 }
417 
418 /* a domain which isn't connected to the root w/o brekage can't be used */
cgroup_is_valid_domain(struct cgroup * cgrp)419 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
420 {
421 	/* the cgroup itself can be a thread root */
422 	if (cgroup_is_threaded(cgrp))
423 		return false;
424 
425 	/* but the ancestors can't be unless mixable */
426 	while ((cgrp = cgroup_parent(cgrp))) {
427 		if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
428 			return false;
429 		if (cgroup_is_threaded(cgrp))
430 			return false;
431 	}
432 
433 	return true;
434 }
435 
436 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)437 static u16 cgroup_control(struct cgroup *cgrp)
438 {
439 	struct cgroup *parent = cgroup_parent(cgrp);
440 	u16 root_ss_mask = cgrp->root->subsys_mask;
441 
442 	if (parent) {
443 		u16 ss_mask = parent->subtree_control;
444 
445 		/* threaded cgroups can only have threaded controllers */
446 		if (cgroup_is_threaded(cgrp))
447 			ss_mask &= cgrp_dfl_threaded_ss_mask;
448 		return ss_mask;
449 	}
450 
451 	if (cgroup_on_dfl(cgrp))
452 		root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
453 				  cgrp_dfl_implicit_ss_mask);
454 	return root_ss_mask;
455 }
456 
457 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)458 static u16 cgroup_ss_mask(struct cgroup *cgrp)
459 {
460 	struct cgroup *parent = cgroup_parent(cgrp);
461 
462 	if (parent) {
463 		u16 ss_mask = parent->subtree_ss_mask;
464 
465 		/* threaded cgroups can only have threaded controllers */
466 		if (cgroup_is_threaded(cgrp))
467 			ss_mask &= cgrp_dfl_threaded_ss_mask;
468 		return ss_mask;
469 	}
470 
471 	return cgrp->root->subsys_mask;
472 }
473 
474 /**
475  * cgroup_css - obtain a cgroup's css for the specified subsystem
476  * @cgrp: the cgroup of interest
477  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
478  *
479  * Return @cgrp's css (cgroup_subsys_state) associated with @ss.  This
480  * function must be called either under cgroup_mutex or rcu_read_lock() and
481  * the caller is responsible for pinning the returned css if it wants to
482  * keep accessing it outside the said locks.  This function may return
483  * %NULL if @cgrp doesn't have @subsys_id enabled.
484  */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)485 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
486 					      struct cgroup_subsys *ss)
487 {
488 	if (CGROUP_HAS_SUBSYS_CONFIG && ss)
489 		return rcu_dereference_check(cgrp->subsys[ss->id],
490 					lockdep_is_held(&cgroup_mutex));
491 	else
492 		return &cgrp->self;
493 }
494 
495 /**
496  * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
497  * @cgrp: the cgroup of interest
498  * @ss: the subsystem of interest
499  *
500  * Find and get @cgrp's css associated with @ss.  If the css doesn't exist
501  * or is offline, %NULL is returned.
502  */
cgroup_tryget_css(struct cgroup * cgrp,struct cgroup_subsys * ss)503 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
504 						     struct cgroup_subsys *ss)
505 {
506 	struct cgroup_subsys_state *css;
507 
508 	rcu_read_lock();
509 	css = cgroup_css(cgrp, ss);
510 	if (css && !css_tryget_online(css))
511 		css = NULL;
512 	rcu_read_unlock();
513 
514 	return css;
515 }
516 
517 /**
518  * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
519  * @cgrp: the cgroup of interest
520  * @ss: the subsystem of interest (%NULL returns @cgrp->self)
521  *
522  * Similar to cgroup_css() but returns the effective css, which is defined
523  * as the matching css of the nearest ancestor including self which has @ss
524  * enabled.  If @ss is associated with the hierarchy @cgrp is on, this
525  * function is guaranteed to return non-NULL css.
526  */
cgroup_e_css_by_mask(struct cgroup * cgrp,struct cgroup_subsys * ss)527 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
528 							struct cgroup_subsys *ss)
529 {
530 	lockdep_assert_held(&cgroup_mutex);
531 
532 	if (!ss)
533 		return &cgrp->self;
534 
535 	/*
536 	 * This function is used while updating css associations and thus
537 	 * can't test the csses directly.  Test ss_mask.
538 	 */
539 	while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
540 		cgrp = cgroup_parent(cgrp);
541 		if (!cgrp)
542 			return NULL;
543 	}
544 
545 	return cgroup_css(cgrp, ss);
546 }
547 
548 /**
549  * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
550  * @cgrp: the cgroup of interest
551  * @ss: the subsystem of interest
552  *
553  * Find and get the effective css of @cgrp for @ss.  The effective css is
554  * defined as the matching css of the nearest ancestor including self which
555  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
556  * the root css is returned, so this function always returns a valid css.
557  *
558  * The returned css is not guaranteed to be online, and therefore it is the
559  * callers responsibility to try get a reference for it.
560  */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)561 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
562 					 struct cgroup_subsys *ss)
563 {
564 	struct cgroup_subsys_state *css;
565 
566 	if (!CGROUP_HAS_SUBSYS_CONFIG)
567 		return NULL;
568 
569 	do {
570 		css = cgroup_css(cgrp, ss);
571 
572 		if (css)
573 			return css;
574 		cgrp = cgroup_parent(cgrp);
575 	} while (cgrp);
576 
577 	return init_css_set.subsys[ss->id];
578 }
579 
580 /**
581  * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
582  * @cgrp: the cgroup of interest
583  * @ss: the subsystem of interest
584  *
585  * Find and get the effective css of @cgrp for @ss.  The effective css is
586  * defined as the matching css of the nearest ancestor including self which
587  * has @ss enabled.  If @ss is not mounted on the hierarchy @cgrp is on,
588  * the root css is returned, so this function always returns a valid css.
589  * The returned css must be put using css_put().
590  */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)591 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
592 					     struct cgroup_subsys *ss)
593 {
594 	struct cgroup_subsys_state *css;
595 
596 	if (!CGROUP_HAS_SUBSYS_CONFIG)
597 		return NULL;
598 
599 	rcu_read_lock();
600 
601 	do {
602 		css = cgroup_css(cgrp, ss);
603 
604 		if (css && css_tryget_online(css))
605 			goto out_unlock;
606 		cgrp = cgroup_parent(cgrp);
607 	} while (cgrp);
608 
609 	css = init_css_set.subsys[ss->id];
610 	css_get(css);
611 out_unlock:
612 	rcu_read_unlock();
613 	return css;
614 }
615 EXPORT_SYMBOL_GPL(cgroup_get_e_css);
616 
cgroup_get_live(struct cgroup * cgrp)617 static void cgroup_get_live(struct cgroup *cgrp)
618 {
619 	WARN_ON_ONCE(cgroup_is_dead(cgrp));
620 	css_get(&cgrp->self);
621 }
622 
623 /**
624  * __cgroup_task_count - count the number of tasks in a cgroup. The caller
625  * is responsible for taking the css_set_lock.
626  * @cgrp: the cgroup in question
627  */
__cgroup_task_count(const struct cgroup * cgrp)628 int __cgroup_task_count(const struct cgroup *cgrp)
629 {
630 	int count = 0;
631 	struct cgrp_cset_link *link;
632 
633 	lockdep_assert_held(&css_set_lock);
634 
635 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
636 		count += link->cset->nr_tasks;
637 
638 	return count;
639 }
640 
641 /**
642  * cgroup_task_count - count the number of tasks in a cgroup.
643  * @cgrp: the cgroup in question
644  */
cgroup_task_count(const struct cgroup * cgrp)645 int cgroup_task_count(const struct cgroup *cgrp)
646 {
647 	int count;
648 
649 	spin_lock_irq(&css_set_lock);
650 	count = __cgroup_task_count(cgrp);
651 	spin_unlock_irq(&css_set_lock);
652 
653 	return count;
654 }
655 
of_css(struct kernfs_open_file * of)656 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
657 {
658 	struct cgroup *cgrp = of->kn->parent->priv;
659 	struct cftype *cft = of_cft(of);
660 
661 	/*
662 	 * This is open and unprotected implementation of cgroup_css().
663 	 * seq_css() is only called from a kernfs file operation which has
664 	 * an active reference on the file.  Because all the subsystem
665 	 * files are drained before a css is disassociated with a cgroup,
666 	 * the matching css from the cgroup's subsys table is guaranteed to
667 	 * be and stay valid until the enclosing operation is complete.
668 	 */
669 	if (CGROUP_HAS_SUBSYS_CONFIG && cft->ss)
670 		return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
671 	else
672 		return &cgrp->self;
673 }
674 EXPORT_SYMBOL_GPL(of_css);
675 
676 /**
677  * for_each_css - iterate all css's of a cgroup
678  * @css: the iteration cursor
679  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
680  * @cgrp: the target cgroup to iterate css's of
681  *
682  * Should be called under cgroup_[tree_]mutex.
683  */
684 #define for_each_css(css, ssid, cgrp)					\
685 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	\
686 		if (!((css) = rcu_dereference_check(			\
687 				(cgrp)->subsys[(ssid)],			\
688 				lockdep_is_held(&cgroup_mutex)))) { }	\
689 		else
690 
691 /**
692  * for_each_e_css - iterate all effective css's of a cgroup
693  * @css: the iteration cursor
694  * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
695  * @cgrp: the target cgroup to iterate css's of
696  *
697  * Should be called under cgroup_[tree_]mutex.
698  */
699 #define for_each_e_css(css, ssid, cgrp)					    \
700 	for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++)	    \
701 		if (!((css) = cgroup_e_css_by_mask(cgrp,		    \
702 						   cgroup_subsys[(ssid)]))) \
703 			;						    \
704 		else
705 
706 /**
707  * do_each_subsys_mask - filter for_each_subsys with a bitmask
708  * @ss: the iteration cursor
709  * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
710  * @ss_mask: the bitmask
711  *
712  * The block will only run for cases where the ssid-th bit (1 << ssid) of
713  * @ss_mask is set.
714  */
715 #define do_each_subsys_mask(ss, ssid, ss_mask) do {			\
716 	unsigned long __ss_mask = (ss_mask);				\
717 	if (!CGROUP_HAS_SUBSYS_CONFIG) {				\
718 		(ssid) = 0;						\
719 		break;							\
720 	}								\
721 	for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) {	\
722 		(ss) = cgroup_subsys[ssid];				\
723 		{
724 
725 #define while_each_subsys_mask()					\
726 		}							\
727 	}								\
728 } while (false)
729 
730 /* iterate over child cgrps, lock should be held throughout iteration */
731 #define cgroup_for_each_live_child(child, cgrp)				\
732 	list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
733 		if (({ lockdep_assert_held(&cgroup_mutex);		\
734 		       cgroup_is_dead(child); }))			\
735 			;						\
736 		else
737 
738 /* walk live descendants in pre order */
739 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)		\
740 	css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL))	\
741 		if (({ lockdep_assert_held(&cgroup_mutex);		\
742 		       (dsct) = (d_css)->cgroup;			\
743 		       cgroup_is_dead(dsct); }))			\
744 			;						\
745 		else
746 
747 /* walk live descendants in postorder */
748 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp)		\
749 	css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL))	\
750 		if (({ lockdep_assert_held(&cgroup_mutex);		\
751 		       (dsct) = (d_css)->cgroup;			\
752 		       cgroup_is_dead(dsct); }))			\
753 			;						\
754 		else
755 
756 /*
757  * The default css_set - used by init and its children prior to any
758  * hierarchies being mounted. It contains a pointer to the root state
759  * for each subsystem. Also used to anchor the list of css_sets. Not
760  * reference-counted, to improve performance when child cgroups
761  * haven't been created.
762  */
763 struct css_set init_css_set = {
764 	.refcount		= REFCOUNT_INIT(1),
765 	.dom_cset		= &init_css_set,
766 	.tasks			= LIST_HEAD_INIT(init_css_set.tasks),
767 	.mg_tasks		= LIST_HEAD_INIT(init_css_set.mg_tasks),
768 	.dying_tasks		= LIST_HEAD_INIT(init_css_set.dying_tasks),
769 	.task_iters		= LIST_HEAD_INIT(init_css_set.task_iters),
770 	.threaded_csets		= LIST_HEAD_INIT(init_css_set.threaded_csets),
771 	.cgrp_links		= LIST_HEAD_INIT(init_css_set.cgrp_links),
772 	.mg_src_preload_node	= LIST_HEAD_INIT(init_css_set.mg_src_preload_node),
773 	.mg_dst_preload_node	= LIST_HEAD_INIT(init_css_set.mg_dst_preload_node),
774 	.mg_node		= LIST_HEAD_INIT(init_css_set.mg_node),
775 
776 	/*
777 	 * The following field is re-initialized when this cset gets linked
778 	 * in cgroup_init().  However, let's initialize the field
779 	 * statically too so that the default cgroup can be accessed safely
780 	 * early during boot.
781 	 */
782 	.dfl_cgrp		= &cgrp_dfl_root.cgrp,
783 };
784 
785 static int css_set_count	= 1;	/* 1 for init_css_set */
786 
css_set_threaded(struct css_set * cset)787 static bool css_set_threaded(struct css_set *cset)
788 {
789 	return cset->dom_cset != cset;
790 }
791 
792 /**
793  * css_set_populated - does a css_set contain any tasks?
794  * @cset: target css_set
795  *
796  * css_set_populated() should be the same as !!cset->nr_tasks at steady
797  * state. However, css_set_populated() can be called while a task is being
798  * added to or removed from the linked list before the nr_tasks is
799  * properly updated. Hence, we can't just look at ->nr_tasks here.
800  */
css_set_populated(struct css_set * cset)801 static bool css_set_populated(struct css_set *cset)
802 {
803 	lockdep_assert_held(&css_set_lock);
804 
805 	return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
806 }
807 
808 /**
809  * cgroup_update_populated - update the populated count of a cgroup
810  * @cgrp: the target cgroup
811  * @populated: inc or dec populated count
812  *
813  * One of the css_sets associated with @cgrp is either getting its first
814  * task or losing the last.  Update @cgrp->nr_populated_* accordingly.  The
815  * count is propagated towards root so that a given cgroup's
816  * nr_populated_children is zero iff none of its descendants contain any
817  * tasks.
818  *
819  * @cgrp's interface file "cgroup.populated" is zero if both
820  * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
821  * 1 otherwise.  When the sum changes from or to zero, userland is notified
822  * that the content of the interface file has changed.  This can be used to
823  * detect when @cgrp and its descendants become populated or empty.
824  */
cgroup_update_populated(struct cgroup * cgrp,bool populated)825 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
826 {
827 	struct cgroup *child = NULL;
828 	int adj = populated ? 1 : -1;
829 
830 	lockdep_assert_held(&css_set_lock);
831 
832 	do {
833 		bool was_populated = cgroup_is_populated(cgrp);
834 
835 		if (!child) {
836 			cgrp->nr_populated_csets += adj;
837 		} else {
838 			if (cgroup_is_threaded(child))
839 				cgrp->nr_populated_threaded_children += adj;
840 			else
841 				cgrp->nr_populated_domain_children += adj;
842 		}
843 
844 		if (was_populated == cgroup_is_populated(cgrp))
845 			break;
846 
847 		cgroup1_check_for_release(cgrp);
848 		TRACE_CGROUP_PATH(notify_populated, cgrp,
849 				  cgroup_is_populated(cgrp));
850 		cgroup_file_notify(&cgrp->events_file);
851 
852 		child = cgrp;
853 		cgrp = cgroup_parent(cgrp);
854 	} while (cgrp);
855 }
856 
857 /**
858  * css_set_update_populated - update populated state of a css_set
859  * @cset: target css_set
860  * @populated: whether @cset is populated or depopulated
861  *
862  * @cset is either getting the first task or losing the last.  Update the
863  * populated counters of all associated cgroups accordingly.
864  */
css_set_update_populated(struct css_set * cset,bool populated)865 static void css_set_update_populated(struct css_set *cset, bool populated)
866 {
867 	struct cgrp_cset_link *link;
868 
869 	lockdep_assert_held(&css_set_lock);
870 
871 	list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
872 		cgroup_update_populated(link->cgrp, populated);
873 }
874 
875 /*
876  * @task is leaving, advance task iterators which are pointing to it so
877  * that they can resume at the next position.  Advancing an iterator might
878  * remove it from the list, use safe walk.  See css_task_iter_skip() for
879  * details.
880  */
css_set_skip_task_iters(struct css_set * cset,struct task_struct * task)881 static void css_set_skip_task_iters(struct css_set *cset,
882 				    struct task_struct *task)
883 {
884 	struct css_task_iter *it, *pos;
885 
886 	list_for_each_entry_safe(it, pos, &cset->task_iters, iters_node)
887 		css_task_iter_skip(it, task);
888 }
889 
890 /**
891  * css_set_move_task - move a task from one css_set to another
892  * @task: task being moved
893  * @from_cset: css_set @task currently belongs to (may be NULL)
894  * @to_cset: new css_set @task is being moved to (may be NULL)
895  * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
896  *
897  * Move @task from @from_cset to @to_cset.  If @task didn't belong to any
898  * css_set, @from_cset can be NULL.  If @task is being disassociated
899  * instead of moved, @to_cset can be NULL.
900  *
901  * This function automatically handles populated counter updates and
902  * css_task_iter adjustments but the caller is responsible for managing
903  * @from_cset and @to_cset's reference counts.
904  */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)905 static void css_set_move_task(struct task_struct *task,
906 			      struct css_set *from_cset, struct css_set *to_cset,
907 			      bool use_mg_tasks)
908 {
909 	lockdep_assert_held(&css_set_lock);
910 
911 	if (to_cset && !css_set_populated(to_cset))
912 		css_set_update_populated(to_cset, true);
913 
914 	if (from_cset) {
915 		WARN_ON_ONCE(list_empty(&task->cg_list));
916 
917 		css_set_skip_task_iters(from_cset, task);
918 		list_del_init(&task->cg_list);
919 		if (!css_set_populated(from_cset))
920 			css_set_update_populated(from_cset, false);
921 	} else {
922 		WARN_ON_ONCE(!list_empty(&task->cg_list));
923 	}
924 
925 	if (to_cset) {
926 		/*
927 		 * We are synchronized through cgroup_threadgroup_rwsem
928 		 * against PF_EXITING setting such that we can't race
929 		 * against cgroup_exit()/cgroup_free() dropping the css_set.
930 		 */
931 		WARN_ON_ONCE(task->flags & PF_EXITING);
932 
933 		cgroup_move_task(task, to_cset);
934 		list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
935 							     &to_cset->tasks);
936 	}
937 }
938 
939 /*
940  * hash table for cgroup groups. This improves the performance to find
941  * an existing css_set. This hash doesn't (currently) take into
942  * account cgroups in empty hierarchies.
943  */
944 #define CSS_SET_HASH_BITS	7
945 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
946 
css_set_hash(struct cgroup_subsys_state * css[])947 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
948 {
949 	unsigned long key = 0UL;
950 	struct cgroup_subsys *ss;
951 	int i;
952 
953 	for_each_subsys(ss, i)
954 		key += (unsigned long)css[i];
955 	key = (key >> 16) ^ key;
956 
957 	return key;
958 }
959 
put_css_set_locked(struct css_set * cset)960 void put_css_set_locked(struct css_set *cset)
961 {
962 	struct cgrp_cset_link *link, *tmp_link;
963 	struct cgroup_subsys *ss;
964 	int ssid;
965 
966 	lockdep_assert_held(&css_set_lock);
967 
968 	if (!refcount_dec_and_test(&cset->refcount))
969 		return;
970 
971 	WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
972 
973 	/* This css_set is dead. Unlink it and release cgroup and css refs */
974 	for_each_subsys(ss, ssid) {
975 		list_del(&cset->e_cset_node[ssid]);
976 		css_put(cset->subsys[ssid]);
977 	}
978 	hash_del(&cset->hlist);
979 	css_set_count--;
980 
981 	list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
982 		list_del(&link->cset_link);
983 		list_del(&link->cgrp_link);
984 		if (cgroup_parent(link->cgrp))
985 			cgroup_put(link->cgrp);
986 		kfree(link);
987 	}
988 
989 	if (css_set_threaded(cset)) {
990 		list_del(&cset->threaded_csets_node);
991 		put_css_set_locked(cset->dom_cset);
992 	}
993 
994 	kfree_rcu(cset, rcu_head);
995 }
996 
997 /**
998  * compare_css_sets - helper function for find_existing_css_set().
999  * @cset: candidate css_set being tested
1000  * @old_cset: existing css_set for a task
1001  * @new_cgrp: cgroup that's being entered by the task
1002  * @template: desired set of css pointers in css_set (pre-calculated)
1003  *
1004  * Returns true if "cset" matches "old_cset" except for the hierarchy
1005  * which "new_cgrp" belongs to, for which it should match "new_cgrp".
1006  */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])1007 static bool compare_css_sets(struct css_set *cset,
1008 			     struct css_set *old_cset,
1009 			     struct cgroup *new_cgrp,
1010 			     struct cgroup_subsys_state *template[])
1011 {
1012 	struct cgroup *new_dfl_cgrp;
1013 	struct list_head *l1, *l2;
1014 
1015 	/*
1016 	 * On the default hierarchy, there can be csets which are
1017 	 * associated with the same set of cgroups but different csses.
1018 	 * Let's first ensure that csses match.
1019 	 */
1020 	if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
1021 		return false;
1022 
1023 
1024 	/* @cset's domain should match the default cgroup's */
1025 	if (cgroup_on_dfl(new_cgrp))
1026 		new_dfl_cgrp = new_cgrp;
1027 	else
1028 		new_dfl_cgrp = old_cset->dfl_cgrp;
1029 
1030 	if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1031 		return false;
1032 
1033 	/*
1034 	 * Compare cgroup pointers in order to distinguish between
1035 	 * different cgroups in hierarchies.  As different cgroups may
1036 	 * share the same effective css, this comparison is always
1037 	 * necessary.
1038 	 */
1039 	l1 = &cset->cgrp_links;
1040 	l2 = &old_cset->cgrp_links;
1041 	while (1) {
1042 		struct cgrp_cset_link *link1, *link2;
1043 		struct cgroup *cgrp1, *cgrp2;
1044 
1045 		l1 = l1->next;
1046 		l2 = l2->next;
1047 		/* See if we reached the end - both lists are equal length. */
1048 		if (l1 == &cset->cgrp_links) {
1049 			BUG_ON(l2 != &old_cset->cgrp_links);
1050 			break;
1051 		} else {
1052 			BUG_ON(l2 == &old_cset->cgrp_links);
1053 		}
1054 		/* Locate the cgroups associated with these links. */
1055 		link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1056 		link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1057 		cgrp1 = link1->cgrp;
1058 		cgrp2 = link2->cgrp;
1059 		/* Hierarchies should be linked in the same order. */
1060 		BUG_ON(cgrp1->root != cgrp2->root);
1061 
1062 		/*
1063 		 * If this hierarchy is the hierarchy of the cgroup
1064 		 * that's changing, then we need to check that this
1065 		 * css_set points to the new cgroup; if it's any other
1066 		 * hierarchy, then this css_set should point to the
1067 		 * same cgroup as the old css_set.
1068 		 */
1069 		if (cgrp1->root == new_cgrp->root) {
1070 			if (cgrp1 != new_cgrp)
1071 				return false;
1072 		} else {
1073 			if (cgrp1 != cgrp2)
1074 				return false;
1075 		}
1076 	}
1077 	return true;
1078 }
1079 
1080 /**
1081  * find_existing_css_set - init css array and find the matching css_set
1082  * @old_cset: the css_set that we're using before the cgroup transition
1083  * @cgrp: the cgroup that we're moving into
1084  * @template: out param for the new set of csses, should be clear on entry
1085  */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])1086 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1087 					struct cgroup *cgrp,
1088 					struct cgroup_subsys_state *template[])
1089 {
1090 	struct cgroup_root *root = cgrp->root;
1091 	struct cgroup_subsys *ss;
1092 	struct css_set *cset;
1093 	unsigned long key;
1094 	int i;
1095 
1096 	/*
1097 	 * Build the set of subsystem state objects that we want to see in the
1098 	 * new css_set. While subsystems can change globally, the entries here
1099 	 * won't change, so no need for locking.
1100 	 */
1101 	for_each_subsys(ss, i) {
1102 		if (root->subsys_mask & (1UL << i)) {
1103 			/*
1104 			 * @ss is in this hierarchy, so we want the
1105 			 * effective css from @cgrp.
1106 			 */
1107 			template[i] = cgroup_e_css_by_mask(cgrp, ss);
1108 		} else {
1109 			/*
1110 			 * @ss is not in this hierarchy, so we don't want
1111 			 * to change the css.
1112 			 */
1113 			template[i] = old_cset->subsys[i];
1114 		}
1115 	}
1116 
1117 	key = css_set_hash(template);
1118 	hash_for_each_possible(css_set_table, cset, hlist, key) {
1119 		if (!compare_css_sets(cset, old_cset, cgrp, template))
1120 			continue;
1121 
1122 		/* This css_set matches what we need */
1123 		return cset;
1124 	}
1125 
1126 	/* No existing cgroup group matched */
1127 	return NULL;
1128 }
1129 
free_cgrp_cset_links(struct list_head * links_to_free)1130 static void free_cgrp_cset_links(struct list_head *links_to_free)
1131 {
1132 	struct cgrp_cset_link *link, *tmp_link;
1133 
1134 	list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1135 		list_del(&link->cset_link);
1136 		kfree(link);
1137 	}
1138 }
1139 
1140 /**
1141  * allocate_cgrp_cset_links - allocate cgrp_cset_links
1142  * @count: the number of links to allocate
1143  * @tmp_links: list_head the allocated links are put on
1144  *
1145  * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1146  * through ->cset_link.  Returns 0 on success or -errno.
1147  */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1148 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1149 {
1150 	struct cgrp_cset_link *link;
1151 	int i;
1152 
1153 	INIT_LIST_HEAD(tmp_links);
1154 
1155 	for (i = 0; i < count; i++) {
1156 		link = kzalloc(sizeof(*link), GFP_KERNEL);
1157 		if (!link) {
1158 			free_cgrp_cset_links(tmp_links);
1159 			return -ENOMEM;
1160 		}
1161 		list_add(&link->cset_link, tmp_links);
1162 	}
1163 	return 0;
1164 }
1165 
1166 /**
1167  * link_css_set - a helper function to link a css_set to a cgroup
1168  * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1169  * @cset: the css_set to be linked
1170  * @cgrp: the destination cgroup
1171  */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1172 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1173 			 struct cgroup *cgrp)
1174 {
1175 	struct cgrp_cset_link *link;
1176 
1177 	BUG_ON(list_empty(tmp_links));
1178 
1179 	if (cgroup_on_dfl(cgrp))
1180 		cset->dfl_cgrp = cgrp;
1181 
1182 	link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1183 	link->cset = cset;
1184 	link->cgrp = cgrp;
1185 
1186 	/*
1187 	 * Always add links to the tail of the lists so that the lists are
1188 	 * in chronological order.
1189 	 */
1190 	list_move_tail(&link->cset_link, &cgrp->cset_links);
1191 	list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1192 
1193 	if (cgroup_parent(cgrp))
1194 		cgroup_get_live(cgrp);
1195 }
1196 
1197 /**
1198  * find_css_set - return a new css_set with one cgroup updated
1199  * @old_cset: the baseline css_set
1200  * @cgrp: the cgroup to be updated
1201  *
1202  * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1203  * substituted into the appropriate hierarchy.
1204  */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1205 static struct css_set *find_css_set(struct css_set *old_cset,
1206 				    struct cgroup *cgrp)
1207 {
1208 	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1209 	struct css_set *cset;
1210 	struct list_head tmp_links;
1211 	struct cgrp_cset_link *link;
1212 	struct cgroup_subsys *ss;
1213 	unsigned long key;
1214 	int ssid;
1215 
1216 	lockdep_assert_held(&cgroup_mutex);
1217 
1218 	/* First see if we already have a cgroup group that matches
1219 	 * the desired set */
1220 	spin_lock_irq(&css_set_lock);
1221 	cset = find_existing_css_set(old_cset, cgrp, template);
1222 	if (cset)
1223 		get_css_set(cset);
1224 	spin_unlock_irq(&css_set_lock);
1225 
1226 	if (cset)
1227 		return cset;
1228 
1229 	cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1230 	if (!cset)
1231 		return NULL;
1232 
1233 	/* Allocate all the cgrp_cset_link objects that we'll need */
1234 	if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1235 		kfree(cset);
1236 		return NULL;
1237 	}
1238 
1239 	refcount_set(&cset->refcount, 1);
1240 	cset->dom_cset = cset;
1241 	INIT_LIST_HEAD(&cset->tasks);
1242 	INIT_LIST_HEAD(&cset->mg_tasks);
1243 	INIT_LIST_HEAD(&cset->dying_tasks);
1244 	INIT_LIST_HEAD(&cset->task_iters);
1245 	INIT_LIST_HEAD(&cset->threaded_csets);
1246 	INIT_HLIST_NODE(&cset->hlist);
1247 	INIT_LIST_HEAD(&cset->cgrp_links);
1248 	INIT_LIST_HEAD(&cset->mg_src_preload_node);
1249 	INIT_LIST_HEAD(&cset->mg_dst_preload_node);
1250 	INIT_LIST_HEAD(&cset->mg_node);
1251 
1252 	/* Copy the set of subsystem state objects generated in
1253 	 * find_existing_css_set() */
1254 	memcpy(cset->subsys, template, sizeof(cset->subsys));
1255 
1256 	spin_lock_irq(&css_set_lock);
1257 	/* Add reference counts and links from the new css_set. */
1258 	list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1259 		struct cgroup *c = link->cgrp;
1260 
1261 		if (c->root == cgrp->root)
1262 			c = cgrp;
1263 		link_css_set(&tmp_links, cset, c);
1264 	}
1265 
1266 	BUG_ON(!list_empty(&tmp_links));
1267 
1268 	css_set_count++;
1269 
1270 	/* Add @cset to the hash table */
1271 	key = css_set_hash(cset->subsys);
1272 	hash_add(css_set_table, &cset->hlist, key);
1273 
1274 	for_each_subsys(ss, ssid) {
1275 		struct cgroup_subsys_state *css = cset->subsys[ssid];
1276 
1277 		list_add_tail(&cset->e_cset_node[ssid],
1278 			      &css->cgroup->e_csets[ssid]);
1279 		css_get(css);
1280 	}
1281 
1282 	spin_unlock_irq(&css_set_lock);
1283 
1284 	/*
1285 	 * If @cset should be threaded, look up the matching dom_cset and
1286 	 * link them up.  We first fully initialize @cset then look for the
1287 	 * dom_cset.  It's simpler this way and safe as @cset is guaranteed
1288 	 * to stay empty until we return.
1289 	 */
1290 	if (cgroup_is_threaded(cset->dfl_cgrp)) {
1291 		struct css_set *dcset;
1292 
1293 		dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1294 		if (!dcset) {
1295 			put_css_set(cset);
1296 			return NULL;
1297 		}
1298 
1299 		spin_lock_irq(&css_set_lock);
1300 		cset->dom_cset = dcset;
1301 		list_add_tail(&cset->threaded_csets_node,
1302 			      &dcset->threaded_csets);
1303 		spin_unlock_irq(&css_set_lock);
1304 	}
1305 
1306 	return cset;
1307 }
1308 
cgroup_root_from_kf(struct kernfs_root * kf_root)1309 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1310 {
1311 	struct cgroup *root_cgrp = kernfs_root_to_node(kf_root)->priv;
1312 
1313 	return root_cgrp->root;
1314 }
1315 
cgroup_favor_dynmods(struct cgroup_root * root,bool favor)1316 void cgroup_favor_dynmods(struct cgroup_root *root, bool favor)
1317 {
1318 	bool favoring = root->flags & CGRP_ROOT_FAVOR_DYNMODS;
1319 
1320 	/* see the comment above CGRP_ROOT_FAVOR_DYNMODS definition */
1321 	if (favor && !favoring) {
1322 		rcu_sync_enter(&cgroup_threadgroup_rwsem.rss);
1323 		root->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1324 	} else if (!favor && favoring) {
1325 		rcu_sync_exit(&cgroup_threadgroup_rwsem.rss);
1326 		root->flags &= ~CGRP_ROOT_FAVOR_DYNMODS;
1327 	}
1328 }
1329 
cgroup_init_root_id(struct cgroup_root * root)1330 static int cgroup_init_root_id(struct cgroup_root *root)
1331 {
1332 	int id;
1333 
1334 	lockdep_assert_held(&cgroup_mutex);
1335 
1336 	id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1337 	if (id < 0)
1338 		return id;
1339 
1340 	root->hierarchy_id = id;
1341 	return 0;
1342 }
1343 
cgroup_exit_root_id(struct cgroup_root * root)1344 static void cgroup_exit_root_id(struct cgroup_root *root)
1345 {
1346 	lockdep_assert_held(&cgroup_mutex);
1347 
1348 	idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1349 }
1350 
cgroup_free_root(struct cgroup_root * root)1351 void cgroup_free_root(struct cgroup_root *root)
1352 {
1353 	kfree(root);
1354 }
1355 
cgroup_destroy_root(struct cgroup_root * root)1356 static void cgroup_destroy_root(struct cgroup_root *root)
1357 {
1358 	struct cgroup *cgrp = &root->cgrp;
1359 	struct cgrp_cset_link *link, *tmp_link;
1360 
1361 	trace_cgroup_destroy_root(root);
1362 
1363 	cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1364 
1365 	BUG_ON(atomic_read(&root->nr_cgrps));
1366 	BUG_ON(!list_empty(&cgrp->self.children));
1367 
1368 	/* Rebind all subsystems back to the default hierarchy */
1369 	WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1370 
1371 	/*
1372 	 * Release all the links from cset_links to this hierarchy's
1373 	 * root cgroup
1374 	 */
1375 	spin_lock_irq(&css_set_lock);
1376 
1377 	list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1378 		list_del(&link->cset_link);
1379 		list_del(&link->cgrp_link);
1380 		kfree(link);
1381 	}
1382 
1383 	spin_unlock_irq(&css_set_lock);
1384 
1385 	if (!list_empty(&root->root_list)) {
1386 		list_del(&root->root_list);
1387 		cgroup_root_count--;
1388 	}
1389 
1390 	cgroup_favor_dynmods(root, false);
1391 	cgroup_exit_root_id(root);
1392 
1393 	cgroup_unlock();
1394 
1395 	cgroup_rstat_exit(cgrp);
1396 	kernfs_destroy_root(root->kf_root);
1397 	cgroup_free_root(root);
1398 }
1399 
1400 /*
1401  * Returned cgroup is without refcount but it's valid as long as cset pins it.
1402  */
__cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1403 static inline struct cgroup *__cset_cgroup_from_root(struct css_set *cset,
1404 					    struct cgroup_root *root)
1405 {
1406 	struct cgroup *res_cgroup = NULL;
1407 
1408 	if (cset == &init_css_set) {
1409 		res_cgroup = &root->cgrp;
1410 	} else if (root == &cgrp_dfl_root) {
1411 		res_cgroup = cset->dfl_cgrp;
1412 	} else {
1413 		struct cgrp_cset_link *link;
1414 		lockdep_assert_held(&css_set_lock);
1415 
1416 		list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1417 			struct cgroup *c = link->cgrp;
1418 
1419 			if (c->root == root) {
1420 				res_cgroup = c;
1421 				break;
1422 			}
1423 		}
1424 	}
1425 
1426 	BUG_ON(!res_cgroup);
1427 	return res_cgroup;
1428 }
1429 
1430 /*
1431  * look up cgroup associated with current task's cgroup namespace on the
1432  * specified hierarchy
1433  */
1434 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1435 current_cgns_cgroup_from_root(struct cgroup_root *root)
1436 {
1437 	struct cgroup *res = NULL;
1438 	struct css_set *cset;
1439 
1440 	lockdep_assert_held(&css_set_lock);
1441 
1442 	rcu_read_lock();
1443 
1444 	cset = current->nsproxy->cgroup_ns->root_cset;
1445 	res = __cset_cgroup_from_root(cset, root);
1446 
1447 	rcu_read_unlock();
1448 
1449 	return res;
1450 }
1451 
1452 /*
1453  * Look up cgroup associated with current task's cgroup namespace on the default
1454  * hierarchy.
1455  *
1456  * Unlike current_cgns_cgroup_from_root(), this doesn't need locks:
1457  * - Internal rcu_read_lock is unnecessary because we don't dereference any rcu
1458  *   pointers.
1459  * - css_set_lock is not needed because we just read cset->dfl_cgrp.
1460  * - As a bonus returned cgrp is pinned with the current because it cannot
1461  *   switch cgroup_ns asynchronously.
1462  */
current_cgns_cgroup_dfl(void)1463 static struct cgroup *current_cgns_cgroup_dfl(void)
1464 {
1465 	struct css_set *cset;
1466 
1467 	cset = current->nsproxy->cgroup_ns->root_cset;
1468 	return __cset_cgroup_from_root(cset, &cgrp_dfl_root);
1469 }
1470 
1471 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1472 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1473 					    struct cgroup_root *root)
1474 {
1475 	lockdep_assert_held(&cgroup_mutex);
1476 	lockdep_assert_held(&css_set_lock);
1477 
1478 	return __cset_cgroup_from_root(cset, root);
1479 }
1480 
1481 /*
1482  * Return the cgroup for "task" from the given hierarchy. Must be
1483  * called with cgroup_mutex and css_set_lock held.
1484  */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1485 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1486 				     struct cgroup_root *root)
1487 {
1488 	/*
1489 	 * No need to lock the task - since we hold css_set_lock the
1490 	 * task can't change groups.
1491 	 */
1492 	return cset_cgroup_from_root(task_css_set(task), root);
1493 }
1494 
1495 /*
1496  * A task must hold cgroup_mutex to modify cgroups.
1497  *
1498  * Any task can increment and decrement the count field without lock.
1499  * So in general, code holding cgroup_mutex can't rely on the count
1500  * field not changing.  However, if the count goes to zero, then only
1501  * cgroup_attach_task() can increment it again.  Because a count of zero
1502  * means that no tasks are currently attached, therefore there is no
1503  * way a task attached to that cgroup can fork (the other way to
1504  * increment the count).  So code holding cgroup_mutex can safely
1505  * assume that if the count is zero, it will stay zero. Similarly, if
1506  * a task holds cgroup_mutex on a cgroup with zero count, it
1507  * knows that the cgroup won't be removed, as cgroup_rmdir()
1508  * needs that mutex.
1509  *
1510  * A cgroup can only be deleted if both its 'count' of using tasks
1511  * is zero, and its list of 'children' cgroups is empty.  Since all
1512  * tasks in the system use _some_ cgroup, and since there is always at
1513  * least one task in the system (init, pid == 1), therefore, root cgroup
1514  * always has either children cgroups and/or using tasks.  So we don't
1515  * need a special hack to ensure that root cgroup cannot be deleted.
1516  *
1517  * P.S.  One more locking exception.  RCU is used to guard the
1518  * update of a tasks cgroup pointer by cgroup_attach_task()
1519  */
1520 
1521 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1522 
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1523 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1524 			      char *buf)
1525 {
1526 	struct cgroup_subsys *ss = cft->ss;
1527 
1528 	if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1529 	    !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1530 		const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1531 
1532 		snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1533 			 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1534 			 cft->name);
1535 	} else {
1536 		strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1537 	}
1538 	return buf;
1539 }
1540 
1541 /**
1542  * cgroup_file_mode - deduce file mode of a control file
1543  * @cft: the control file in question
1544  *
1545  * S_IRUGO for read, S_IWUSR for write.
1546  */
cgroup_file_mode(const struct cftype * cft)1547 static umode_t cgroup_file_mode(const struct cftype *cft)
1548 {
1549 	umode_t mode = 0;
1550 
1551 	if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1552 		mode |= S_IRUGO;
1553 
1554 	if (cft->write_u64 || cft->write_s64 || cft->write) {
1555 		if (cft->flags & CFTYPE_WORLD_WRITABLE)
1556 			mode |= S_IWUGO;
1557 		else
1558 			mode |= S_IWUSR;
1559 	}
1560 
1561 	return mode;
1562 }
1563 
1564 /**
1565  * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1566  * @subtree_control: the new subtree_control mask to consider
1567  * @this_ss_mask: available subsystems
1568  *
1569  * On the default hierarchy, a subsystem may request other subsystems to be
1570  * enabled together through its ->depends_on mask.  In such cases, more
1571  * subsystems than specified in "cgroup.subtree_control" may be enabled.
1572  *
1573  * This function calculates which subsystems need to be enabled if
1574  * @subtree_control is to be applied while restricted to @this_ss_mask.
1575  */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1576 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1577 {
1578 	u16 cur_ss_mask = subtree_control;
1579 	struct cgroup_subsys *ss;
1580 	int ssid;
1581 
1582 	lockdep_assert_held(&cgroup_mutex);
1583 
1584 	cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1585 
1586 	while (true) {
1587 		u16 new_ss_mask = cur_ss_mask;
1588 
1589 		do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1590 			new_ss_mask |= ss->depends_on;
1591 		} while_each_subsys_mask();
1592 
1593 		/*
1594 		 * Mask out subsystems which aren't available.  This can
1595 		 * happen only if some depended-upon subsystems were bound
1596 		 * to non-default hierarchies.
1597 		 */
1598 		new_ss_mask &= this_ss_mask;
1599 
1600 		if (new_ss_mask == cur_ss_mask)
1601 			break;
1602 		cur_ss_mask = new_ss_mask;
1603 	}
1604 
1605 	return cur_ss_mask;
1606 }
1607 
1608 /**
1609  * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1610  * @kn: the kernfs_node being serviced
1611  *
1612  * This helper undoes cgroup_kn_lock_live() and should be invoked before
1613  * the method finishes if locking succeeded.  Note that once this function
1614  * returns the cgroup returned by cgroup_kn_lock_live() may become
1615  * inaccessible any time.  If the caller intends to continue to access the
1616  * cgroup, it should pin it before invoking this function.
1617  */
cgroup_kn_unlock(struct kernfs_node * kn)1618 void cgroup_kn_unlock(struct kernfs_node *kn)
1619 {
1620 	struct cgroup *cgrp;
1621 
1622 	if (kernfs_type(kn) == KERNFS_DIR)
1623 		cgrp = kn->priv;
1624 	else
1625 		cgrp = kn->parent->priv;
1626 
1627 	cgroup_unlock();
1628 
1629 	kernfs_unbreak_active_protection(kn);
1630 	cgroup_put(cgrp);
1631 }
1632 
1633 /**
1634  * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1635  * @kn: the kernfs_node being serviced
1636  * @drain_offline: perform offline draining on the cgroup
1637  *
1638  * This helper is to be used by a cgroup kernfs method currently servicing
1639  * @kn.  It breaks the active protection, performs cgroup locking and
1640  * verifies that the associated cgroup is alive.  Returns the cgroup if
1641  * alive; otherwise, %NULL.  A successful return should be undone by a
1642  * matching cgroup_kn_unlock() invocation.  If @drain_offline is %true, the
1643  * cgroup is drained of offlining csses before return.
1644  *
1645  * Any cgroup kernfs method implementation which requires locking the
1646  * associated cgroup should use this helper.  It avoids nesting cgroup
1647  * locking under kernfs active protection and allows all kernfs operations
1648  * including self-removal.
1649  */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1650 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1651 {
1652 	struct cgroup *cgrp;
1653 
1654 	if (kernfs_type(kn) == KERNFS_DIR)
1655 		cgrp = kn->priv;
1656 	else
1657 		cgrp = kn->parent->priv;
1658 
1659 	/*
1660 	 * We're gonna grab cgroup_mutex which nests outside kernfs
1661 	 * active_ref.  cgroup liveliness check alone provides enough
1662 	 * protection against removal.  Ensure @cgrp stays accessible and
1663 	 * break the active_ref protection.
1664 	 */
1665 	if (!cgroup_tryget(cgrp))
1666 		return NULL;
1667 	kernfs_break_active_protection(kn);
1668 
1669 	if (drain_offline)
1670 		cgroup_lock_and_drain_offline(cgrp);
1671 	else
1672 		cgroup_lock();
1673 
1674 	if (!cgroup_is_dead(cgrp))
1675 		return cgrp;
1676 
1677 	cgroup_kn_unlock(kn);
1678 	return NULL;
1679 }
1680 
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1681 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1682 {
1683 	char name[CGROUP_FILE_NAME_MAX];
1684 
1685 	lockdep_assert_held(&cgroup_mutex);
1686 
1687 	if (cft->file_offset) {
1688 		struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1689 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
1690 
1691 		spin_lock_irq(&cgroup_file_kn_lock);
1692 		cfile->kn = NULL;
1693 		spin_unlock_irq(&cgroup_file_kn_lock);
1694 
1695 		del_timer_sync(&cfile->notify_timer);
1696 	}
1697 
1698 	kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1699 }
1700 
1701 /**
1702  * css_clear_dir - remove subsys files in a cgroup directory
1703  * @css: target css
1704  */
css_clear_dir(struct cgroup_subsys_state * css)1705 static void css_clear_dir(struct cgroup_subsys_state *css)
1706 {
1707 	struct cgroup *cgrp = css->cgroup;
1708 	struct cftype *cfts;
1709 
1710 	if (!(css->flags & CSS_VISIBLE))
1711 		return;
1712 
1713 	css->flags &= ~CSS_VISIBLE;
1714 
1715 	if (!css->ss) {
1716 		if (cgroup_on_dfl(cgrp)) {
1717 			cgroup_addrm_files(css, cgrp,
1718 					   cgroup_base_files, false);
1719 			if (cgroup_psi_enabled())
1720 				cgroup_addrm_files(css, cgrp,
1721 						   cgroup_psi_files, false);
1722 		} else {
1723 			cgroup_addrm_files(css, cgrp,
1724 					   cgroup1_base_files, false);
1725 		}
1726 	} else {
1727 		list_for_each_entry(cfts, &css->ss->cfts, node)
1728 			cgroup_addrm_files(css, cgrp, cfts, false);
1729 	}
1730 }
1731 
1732 /**
1733  * css_populate_dir - create subsys files in a cgroup directory
1734  * @css: target css
1735  *
1736  * On failure, no file is added.
1737  */
css_populate_dir(struct cgroup_subsys_state * css)1738 static int css_populate_dir(struct cgroup_subsys_state *css)
1739 {
1740 	struct cgroup *cgrp = css->cgroup;
1741 	struct cftype *cfts, *failed_cfts;
1742 	int ret;
1743 
1744 	if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1745 		return 0;
1746 
1747 	if (!css->ss) {
1748 		if (cgroup_on_dfl(cgrp)) {
1749 			ret = cgroup_addrm_files(&cgrp->self, cgrp,
1750 						 cgroup_base_files, true);
1751 			if (ret < 0)
1752 				return ret;
1753 
1754 			if (cgroup_psi_enabled()) {
1755 				ret = cgroup_addrm_files(&cgrp->self, cgrp,
1756 							 cgroup_psi_files, true);
1757 				if (ret < 0)
1758 					return ret;
1759 			}
1760 		} else {
1761 			cgroup_addrm_files(css, cgrp,
1762 					   cgroup1_base_files, true);
1763 		}
1764 	} else {
1765 		list_for_each_entry(cfts, &css->ss->cfts, node) {
1766 			ret = cgroup_addrm_files(css, cgrp, cfts, true);
1767 			if (ret < 0) {
1768 				failed_cfts = cfts;
1769 				goto err;
1770 			}
1771 		}
1772 	}
1773 
1774 	css->flags |= CSS_VISIBLE;
1775 
1776 	return 0;
1777 err:
1778 	list_for_each_entry(cfts, &css->ss->cfts, node) {
1779 		if (cfts == failed_cfts)
1780 			break;
1781 		cgroup_addrm_files(css, cgrp, cfts, false);
1782 	}
1783 	return ret;
1784 }
1785 
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1786 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1787 {
1788 	struct cgroup *dcgrp = &dst_root->cgrp;
1789 	struct cgroup_subsys *ss;
1790 	int ssid, ret;
1791 	u16 dfl_disable_ss_mask = 0;
1792 
1793 	lockdep_assert_held(&cgroup_mutex);
1794 
1795 	do_each_subsys_mask(ss, ssid, ss_mask) {
1796 		/*
1797 		 * If @ss has non-root csses attached to it, can't move.
1798 		 * If @ss is an implicit controller, it is exempt from this
1799 		 * rule and can be stolen.
1800 		 */
1801 		if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1802 		    !ss->implicit_on_dfl)
1803 			return -EBUSY;
1804 
1805 		/* can't move between two non-dummy roots either */
1806 		if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1807 			return -EBUSY;
1808 
1809 		/*
1810 		 * Collect ssid's that need to be disabled from default
1811 		 * hierarchy.
1812 		 */
1813 		if (ss->root == &cgrp_dfl_root)
1814 			dfl_disable_ss_mask |= 1 << ssid;
1815 
1816 	} while_each_subsys_mask();
1817 
1818 	if (dfl_disable_ss_mask) {
1819 		struct cgroup *scgrp = &cgrp_dfl_root.cgrp;
1820 
1821 		/*
1822 		 * Controllers from default hierarchy that need to be rebound
1823 		 * are all disabled together in one go.
1824 		 */
1825 		cgrp_dfl_root.subsys_mask &= ~dfl_disable_ss_mask;
1826 		WARN_ON(cgroup_apply_control(scgrp));
1827 		cgroup_finalize_control(scgrp, 0);
1828 	}
1829 
1830 	do_each_subsys_mask(ss, ssid, ss_mask) {
1831 		struct cgroup_root *src_root = ss->root;
1832 		struct cgroup *scgrp = &src_root->cgrp;
1833 		struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1834 		struct css_set *cset, *cset_pos;
1835 		struct css_task_iter *it;
1836 
1837 		WARN_ON(!css || cgroup_css(dcgrp, ss));
1838 
1839 		if (src_root != &cgrp_dfl_root) {
1840 			/* disable from the source */
1841 			src_root->subsys_mask &= ~(1 << ssid);
1842 			WARN_ON(cgroup_apply_control(scgrp));
1843 			cgroup_finalize_control(scgrp, 0);
1844 		}
1845 
1846 		/* rebind */
1847 		RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1848 		rcu_assign_pointer(dcgrp->subsys[ssid], css);
1849 		ss->root = dst_root;
1850 		css->cgroup = dcgrp;
1851 
1852 		spin_lock_irq(&css_set_lock);
1853 		WARN_ON(!list_empty(&dcgrp->e_csets[ss->id]));
1854 		list_for_each_entry_safe(cset, cset_pos, &scgrp->e_csets[ss->id],
1855 					 e_cset_node[ss->id]) {
1856 			list_move_tail(&cset->e_cset_node[ss->id],
1857 				       &dcgrp->e_csets[ss->id]);
1858 			/*
1859 			 * all css_sets of scgrp together in same order to dcgrp,
1860 			 * patch in-flight iterators to preserve correct iteration.
1861 			 * since the iterator is always advanced right away and
1862 			 * finished when it->cset_pos meets it->cset_head, so only
1863 			 * update it->cset_head is enough here.
1864 			 */
1865 			list_for_each_entry(it, &cset->task_iters, iters_node)
1866 				if (it->cset_head == &scgrp->e_csets[ss->id])
1867 					it->cset_head = &dcgrp->e_csets[ss->id];
1868 		}
1869 		spin_unlock_irq(&css_set_lock);
1870 
1871 		if (ss->css_rstat_flush) {
1872 			list_del_rcu(&css->rstat_css_node);
1873 			synchronize_rcu();
1874 			list_add_rcu(&css->rstat_css_node,
1875 				     &dcgrp->rstat_css_list);
1876 		}
1877 
1878 		/* default hierarchy doesn't enable controllers by default */
1879 		dst_root->subsys_mask |= 1 << ssid;
1880 		if (dst_root == &cgrp_dfl_root) {
1881 			static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1882 		} else {
1883 			dcgrp->subtree_control |= 1 << ssid;
1884 			static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1885 		}
1886 
1887 		ret = cgroup_apply_control(dcgrp);
1888 		if (ret)
1889 			pr_warn("partial failure to rebind %s controller (err=%d)\n",
1890 				ss->name, ret);
1891 
1892 		if (ss->bind)
1893 			ss->bind(css);
1894 	} while_each_subsys_mask();
1895 
1896 	kernfs_activate(dcgrp->kn);
1897 	return 0;
1898 }
1899 
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1900 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1901 		     struct kernfs_root *kf_root)
1902 {
1903 	int len = 0;
1904 	char *buf = NULL;
1905 	struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1906 	struct cgroup *ns_cgroup;
1907 
1908 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
1909 	if (!buf)
1910 		return -ENOMEM;
1911 
1912 	spin_lock_irq(&css_set_lock);
1913 	ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1914 	len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1915 	spin_unlock_irq(&css_set_lock);
1916 
1917 	if (len >= PATH_MAX)
1918 		len = -ERANGE;
1919 	else if (len > 0) {
1920 		seq_escape(sf, buf, " \t\n\\");
1921 		len = 0;
1922 	}
1923 	kfree(buf);
1924 	return len;
1925 }
1926 
1927 enum cgroup2_param {
1928 	Opt_nsdelegate,
1929 	Opt_favordynmods,
1930 	Opt_memory_localevents,
1931 	Opt_memory_recursiveprot,
1932 	nr__cgroup2_params
1933 };
1934 
1935 static const struct fs_parameter_spec cgroup2_fs_parameters[] = {
1936 	fsparam_flag("nsdelegate",		Opt_nsdelegate),
1937 	fsparam_flag("favordynmods",		Opt_favordynmods),
1938 	fsparam_flag("memory_localevents",	Opt_memory_localevents),
1939 	fsparam_flag("memory_recursiveprot",	Opt_memory_recursiveprot),
1940 	{}
1941 };
1942 
cgroup2_parse_param(struct fs_context * fc,struct fs_parameter * param)1943 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1944 {
1945 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1946 	struct fs_parse_result result;
1947 	int opt;
1948 
1949 	opt = fs_parse(fc, cgroup2_fs_parameters, param, &result);
1950 	if (opt < 0)
1951 		return opt;
1952 
1953 	switch (opt) {
1954 	case Opt_nsdelegate:
1955 		ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1956 		return 0;
1957 	case Opt_favordynmods:
1958 		ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
1959 		return 0;
1960 	case Opt_memory_localevents:
1961 		ctx->flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1962 		return 0;
1963 	case Opt_memory_recursiveprot:
1964 		ctx->flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1965 		return 0;
1966 	}
1967 	return -EINVAL;
1968 }
1969 
apply_cgroup_root_flags(unsigned int root_flags)1970 static void apply_cgroup_root_flags(unsigned int root_flags)
1971 {
1972 	if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1973 		if (root_flags & CGRP_ROOT_NS_DELEGATE)
1974 			cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1975 		else
1976 			cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1977 
1978 		cgroup_favor_dynmods(&cgrp_dfl_root,
1979 				     root_flags & CGRP_ROOT_FAVOR_DYNMODS);
1980 
1981 		if (root_flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1982 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1983 		else
1984 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS;
1985 
1986 		if (root_flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
1987 			cgrp_dfl_root.flags |= CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1988 		else
1989 			cgrp_dfl_root.flags &= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT;
1990 	}
1991 }
1992 
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1993 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1994 {
1995 	if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1996 		seq_puts(seq, ",nsdelegate");
1997 	if (cgrp_dfl_root.flags & CGRP_ROOT_FAVOR_DYNMODS)
1998 		seq_puts(seq, ",favordynmods");
1999 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
2000 		seq_puts(seq, ",memory_localevents");
2001 	if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT)
2002 		seq_puts(seq, ",memory_recursiveprot");
2003 	return 0;
2004 }
2005 
cgroup_reconfigure(struct fs_context * fc)2006 static int cgroup_reconfigure(struct fs_context *fc)
2007 {
2008 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2009 
2010 	apply_cgroup_root_flags(ctx->flags);
2011 	return 0;
2012 }
2013 
init_cgroup_housekeeping(struct cgroup * cgrp)2014 static void init_cgroup_housekeeping(struct cgroup *cgrp)
2015 {
2016 	struct cgroup_subsys *ss;
2017 	int ssid;
2018 
2019 	INIT_LIST_HEAD(&cgrp->self.sibling);
2020 	INIT_LIST_HEAD(&cgrp->self.children);
2021 	INIT_LIST_HEAD(&cgrp->cset_links);
2022 	INIT_LIST_HEAD(&cgrp->pidlists);
2023 	mutex_init(&cgrp->pidlist_mutex);
2024 	cgrp->self.cgroup = cgrp;
2025 	cgrp->self.flags |= CSS_ONLINE;
2026 	cgrp->dom_cgrp = cgrp;
2027 	cgrp->max_descendants = INT_MAX;
2028 	cgrp->max_depth = INT_MAX;
2029 	INIT_LIST_HEAD(&cgrp->rstat_css_list);
2030 	prev_cputime_init(&cgrp->prev_cputime);
2031 
2032 	for_each_subsys(ss, ssid)
2033 		INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
2034 
2035 	init_waitqueue_head(&cgrp->offline_waitq);
2036 	INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
2037 }
2038 
init_cgroup_root(struct cgroup_fs_context * ctx)2039 void init_cgroup_root(struct cgroup_fs_context *ctx)
2040 {
2041 	struct cgroup_root *root = ctx->root;
2042 	struct cgroup *cgrp = &root->cgrp;
2043 
2044 	INIT_LIST_HEAD(&root->root_list);
2045 	atomic_set(&root->nr_cgrps, 1);
2046 	cgrp->root = root;
2047 	init_cgroup_housekeeping(cgrp);
2048 
2049 	/* DYNMODS must be modified through cgroup_favor_dynmods() */
2050 	root->flags = ctx->flags & ~CGRP_ROOT_FAVOR_DYNMODS;
2051 	if (ctx->release_agent)
2052 		strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
2053 	if (ctx->name)
2054 		strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
2055 	if (ctx->cpuset_clone_children)
2056 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
2057 }
2058 
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)2059 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2060 {
2061 	LIST_HEAD(tmp_links);
2062 	struct cgroup *root_cgrp = &root->cgrp;
2063 	struct kernfs_syscall_ops *kf_sops;
2064 	struct css_set *cset;
2065 	int i, ret;
2066 
2067 	lockdep_assert_held(&cgroup_mutex);
2068 
2069 	ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
2070 			      0, GFP_KERNEL);
2071 	if (ret)
2072 		goto out;
2073 
2074 	/*
2075 	 * We're accessing css_set_count without locking css_set_lock here,
2076 	 * but that's OK - it can only be increased by someone holding
2077 	 * cgroup_lock, and that's us.  Later rebinding may disable
2078 	 * controllers on the default hierarchy and thus create new csets,
2079 	 * which can't be more than the existing ones.  Allocate 2x.
2080 	 */
2081 	ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2082 	if (ret)
2083 		goto cancel_ref;
2084 
2085 	ret = cgroup_init_root_id(root);
2086 	if (ret)
2087 		goto cancel_ref;
2088 
2089 	kf_sops = root == &cgrp_dfl_root ?
2090 		&cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2091 
2092 	root->kf_root = kernfs_create_root(kf_sops,
2093 					   KERNFS_ROOT_CREATE_DEACTIVATED |
2094 					   KERNFS_ROOT_SUPPORT_EXPORTOP |
2095 					   KERNFS_ROOT_SUPPORT_USER_XATTR,
2096 					   root_cgrp);
2097 	if (IS_ERR(root->kf_root)) {
2098 		ret = PTR_ERR(root->kf_root);
2099 		goto exit_root_id;
2100 	}
2101 	root_cgrp->kn = kernfs_root_to_node(root->kf_root);
2102 	WARN_ON_ONCE(cgroup_ino(root_cgrp) != 1);
2103 	root_cgrp->ancestors[0] = root_cgrp;
2104 
2105 	ret = css_populate_dir(&root_cgrp->self);
2106 	if (ret)
2107 		goto destroy_root;
2108 
2109 	ret = cgroup_rstat_init(root_cgrp);
2110 	if (ret)
2111 		goto destroy_root;
2112 
2113 	ret = rebind_subsystems(root, ss_mask);
2114 	if (ret)
2115 		goto exit_stats;
2116 
2117 	ret = cgroup_bpf_inherit(root_cgrp);
2118 	WARN_ON_ONCE(ret);
2119 
2120 	trace_cgroup_setup_root(root);
2121 
2122 	/*
2123 	 * There must be no failure case after here, since rebinding takes
2124 	 * care of subsystems' refcounts, which are explicitly dropped in
2125 	 * the failure exit path.
2126 	 */
2127 	list_add(&root->root_list, &cgroup_roots);
2128 	cgroup_root_count++;
2129 
2130 	/*
2131 	 * Link the root cgroup in this hierarchy into all the css_set
2132 	 * objects.
2133 	 */
2134 	spin_lock_irq(&css_set_lock);
2135 	hash_for_each(css_set_table, i, cset, hlist) {
2136 		link_css_set(&tmp_links, cset, root_cgrp);
2137 		if (css_set_populated(cset))
2138 			cgroup_update_populated(root_cgrp, true);
2139 	}
2140 	spin_unlock_irq(&css_set_lock);
2141 
2142 	BUG_ON(!list_empty(&root_cgrp->self.children));
2143 	BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2144 
2145 	ret = 0;
2146 	goto out;
2147 
2148 exit_stats:
2149 	cgroup_rstat_exit(root_cgrp);
2150 destroy_root:
2151 	kernfs_destroy_root(root->kf_root);
2152 	root->kf_root = NULL;
2153 exit_root_id:
2154 	cgroup_exit_root_id(root);
2155 cancel_ref:
2156 	percpu_ref_exit(&root_cgrp->self.refcnt);
2157 out:
2158 	free_cgrp_cset_links(&tmp_links);
2159 	return ret;
2160 }
2161 
cgroup_do_get_tree(struct fs_context * fc)2162 int cgroup_do_get_tree(struct fs_context *fc)
2163 {
2164 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2165 	int ret;
2166 
2167 	ctx->kfc.root = ctx->root->kf_root;
2168 	if (fc->fs_type == &cgroup2_fs_type)
2169 		ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2170 	else
2171 		ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2172 	ret = kernfs_get_tree(fc);
2173 
2174 	/*
2175 	 * In non-init cgroup namespace, instead of root cgroup's dentry,
2176 	 * we return the dentry corresponding to the cgroupns->root_cgrp.
2177 	 */
2178 	if (!ret && ctx->ns != &init_cgroup_ns) {
2179 		struct dentry *nsdentry;
2180 		struct super_block *sb = fc->root->d_sb;
2181 		struct cgroup *cgrp;
2182 
2183 		cgroup_lock();
2184 		spin_lock_irq(&css_set_lock);
2185 
2186 		cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2187 
2188 		spin_unlock_irq(&css_set_lock);
2189 		cgroup_unlock();
2190 
2191 		nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2192 		dput(fc->root);
2193 		if (IS_ERR(nsdentry)) {
2194 			deactivate_locked_super(sb);
2195 			ret = PTR_ERR(nsdentry);
2196 			nsdentry = NULL;
2197 		}
2198 		fc->root = nsdentry;
2199 	}
2200 
2201 	if (!ctx->kfc.new_sb_created)
2202 		cgroup_put(&ctx->root->cgrp);
2203 
2204 	return ret;
2205 }
2206 
2207 /*
2208  * Destroy a cgroup filesystem context.
2209  */
cgroup_fs_context_free(struct fs_context * fc)2210 static void cgroup_fs_context_free(struct fs_context *fc)
2211 {
2212 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2213 
2214 	kfree(ctx->name);
2215 	kfree(ctx->release_agent);
2216 	put_cgroup_ns(ctx->ns);
2217 	kernfs_free_fs_context(fc);
2218 	kfree(ctx);
2219 }
2220 
cgroup_get_tree(struct fs_context * fc)2221 static int cgroup_get_tree(struct fs_context *fc)
2222 {
2223 	struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2224 	int ret;
2225 
2226 	WRITE_ONCE(cgrp_dfl_visible, true);
2227 	cgroup_get_live(&cgrp_dfl_root.cgrp);
2228 	ctx->root = &cgrp_dfl_root;
2229 
2230 	ret = cgroup_do_get_tree(fc);
2231 	if (!ret)
2232 		apply_cgroup_root_flags(ctx->flags);
2233 	return ret;
2234 }
2235 
2236 static const struct fs_context_operations cgroup_fs_context_ops = {
2237 	.free		= cgroup_fs_context_free,
2238 	.parse_param	= cgroup2_parse_param,
2239 	.get_tree	= cgroup_get_tree,
2240 	.reconfigure	= cgroup_reconfigure,
2241 };
2242 
2243 static const struct fs_context_operations cgroup1_fs_context_ops = {
2244 	.free		= cgroup_fs_context_free,
2245 	.parse_param	= cgroup1_parse_param,
2246 	.get_tree	= cgroup1_get_tree,
2247 	.reconfigure	= cgroup1_reconfigure,
2248 };
2249 
2250 /*
2251  * Initialise the cgroup filesystem creation/reconfiguration context.  Notably,
2252  * we select the namespace we're going to use.
2253  */
cgroup_init_fs_context(struct fs_context * fc)2254 static int cgroup_init_fs_context(struct fs_context *fc)
2255 {
2256 	struct cgroup_fs_context *ctx;
2257 
2258 	ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2259 	if (!ctx)
2260 		return -ENOMEM;
2261 
2262 	ctx->ns = current->nsproxy->cgroup_ns;
2263 	get_cgroup_ns(ctx->ns);
2264 	fc->fs_private = &ctx->kfc;
2265 	if (fc->fs_type == &cgroup2_fs_type)
2266 		fc->ops = &cgroup_fs_context_ops;
2267 	else
2268 		fc->ops = &cgroup1_fs_context_ops;
2269 	put_user_ns(fc->user_ns);
2270 	fc->user_ns = get_user_ns(ctx->ns->user_ns);
2271 	fc->global = true;
2272 
2273 #ifdef CONFIG_CGROUP_FAVOR_DYNMODS
2274 	ctx->flags |= CGRP_ROOT_FAVOR_DYNMODS;
2275 #endif
2276 	return 0;
2277 }
2278 
cgroup_kill_sb(struct super_block * sb)2279 static void cgroup_kill_sb(struct super_block *sb)
2280 {
2281 	struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2282 	struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2283 
2284 	/*
2285 	 * If @root doesn't have any children, start killing it.
2286 	 * This prevents new mounts by disabling percpu_ref_tryget_live().
2287 	 *
2288 	 * And don't kill the default root.
2289 	 */
2290 	if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2291 	    !percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
2292 		cgroup_bpf_offline(&root->cgrp);
2293 		percpu_ref_kill(&root->cgrp.self.refcnt);
2294 	}
2295 	cgroup_put(&root->cgrp);
2296 	kernfs_kill_sb(sb);
2297 }
2298 
2299 struct file_system_type cgroup_fs_type = {
2300 	.name			= "cgroup",
2301 	.init_fs_context	= cgroup_init_fs_context,
2302 	.parameters		= cgroup1_fs_parameters,
2303 	.kill_sb		= cgroup_kill_sb,
2304 	.fs_flags		= FS_USERNS_MOUNT,
2305 };
2306 
2307 static struct file_system_type cgroup2_fs_type = {
2308 	.name			= "cgroup2",
2309 	.init_fs_context	= cgroup_init_fs_context,
2310 	.parameters		= cgroup2_fs_parameters,
2311 	.kill_sb		= cgroup_kill_sb,
2312 	.fs_flags		= FS_USERNS_MOUNT,
2313 };
2314 
2315 #ifdef CONFIG_CPUSETS
2316 static const struct fs_context_operations cpuset_fs_context_ops = {
2317 	.get_tree	= cgroup1_get_tree,
2318 	.free		= cgroup_fs_context_free,
2319 };
2320 
2321 /*
2322  * This is ugly, but preserves the userspace API for existing cpuset
2323  * users. If someone tries to mount the "cpuset" filesystem, we
2324  * silently switch it to mount "cgroup" instead
2325  */
cpuset_init_fs_context(struct fs_context * fc)2326 static int cpuset_init_fs_context(struct fs_context *fc)
2327 {
2328 	char *agent = kstrdup("/sbin/cpuset_release_agent", GFP_USER);
2329 	struct cgroup_fs_context *ctx;
2330 	int err;
2331 
2332 	err = cgroup_init_fs_context(fc);
2333 	if (err) {
2334 		kfree(agent);
2335 		return err;
2336 	}
2337 
2338 	fc->ops = &cpuset_fs_context_ops;
2339 
2340 	ctx = cgroup_fc2context(fc);
2341 	ctx->subsys_mask = 1 << cpuset_cgrp_id;
2342 	ctx->flags |= CGRP_ROOT_NOPREFIX;
2343 	ctx->release_agent = agent;
2344 
2345 	get_filesystem(&cgroup_fs_type);
2346 	put_filesystem(fc->fs_type);
2347 	fc->fs_type = &cgroup_fs_type;
2348 
2349 	return 0;
2350 }
2351 
2352 static struct file_system_type cpuset_fs_type = {
2353 	.name			= "cpuset",
2354 	.init_fs_context	= cpuset_init_fs_context,
2355 	.fs_flags		= FS_USERNS_MOUNT,
2356 };
2357 #endif
2358 
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2359 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2360 			  struct cgroup_namespace *ns)
2361 {
2362 	struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2363 
2364 	return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2365 }
2366 
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2367 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2368 		   struct cgroup_namespace *ns)
2369 {
2370 	int ret;
2371 
2372 	cgroup_lock();
2373 	spin_lock_irq(&css_set_lock);
2374 
2375 	ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2376 
2377 	spin_unlock_irq(&css_set_lock);
2378 	cgroup_unlock();
2379 
2380 	return ret;
2381 }
2382 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2383 
2384 /**
2385  * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2386  * @task: target task
2387  * @buf: the buffer to write the path into
2388  * @buflen: the length of the buffer
2389  *
2390  * Determine @task's cgroup on the first (the one with the lowest non-zero
2391  * hierarchy_id) cgroup hierarchy and copy its path into @buf.  This
2392  * function grabs cgroup_mutex and shouldn't be used inside locks used by
2393  * cgroup controller callbacks.
2394  *
2395  * Return value is the same as kernfs_path().
2396  */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2397 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2398 {
2399 	struct cgroup_root *root;
2400 	struct cgroup *cgrp;
2401 	int hierarchy_id = 1;
2402 	int ret;
2403 
2404 	cgroup_lock();
2405 	spin_lock_irq(&css_set_lock);
2406 
2407 	root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2408 
2409 	if (root) {
2410 		cgrp = task_cgroup_from_root(task, root);
2411 		ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2412 	} else {
2413 		/* if no hierarchy exists, everyone is in "/" */
2414 		ret = strscpy(buf, "/", buflen);
2415 	}
2416 
2417 	spin_unlock_irq(&css_set_lock);
2418 	cgroup_unlock();
2419 	return ret;
2420 }
2421 EXPORT_SYMBOL_GPL(task_cgroup_path);
2422 
2423 /**
2424  * cgroup_attach_lock - Lock for ->attach()
2425  * @lock_threadgroup: whether to down_write cgroup_threadgroup_rwsem
2426  *
2427  * cgroup migration sometimes needs to stabilize threadgroups against forks and
2428  * exits by write-locking cgroup_threadgroup_rwsem. However, some ->attach()
2429  * implementations (e.g. cpuset), also need to disable CPU hotplug.
2430  * Unfortunately, letting ->attach() operations acquire cpus_read_lock() can
2431  * lead to deadlocks.
2432  *
2433  * Bringing up a CPU may involve creating and destroying tasks which requires
2434  * read-locking threadgroup_rwsem, so threadgroup_rwsem nests inside
2435  * cpus_read_lock(). If we call an ->attach() which acquires the cpus lock while
2436  * write-locking threadgroup_rwsem, the locking order is reversed and we end up
2437  * waiting for an on-going CPU hotplug operation which in turn is waiting for
2438  * the threadgroup_rwsem to be released to create new tasks. For more details:
2439  *
2440  *   http://lkml.kernel.org/r/20220711174629.uehfmqegcwn2lqzu@wubuntu
2441  *
2442  * Resolve the situation by always acquiring cpus_read_lock() before optionally
2443  * write-locking cgroup_threadgroup_rwsem. This allows ->attach() to assume that
2444  * CPU hotplug is disabled on entry.
2445  */
cgroup_attach_lock(bool lock_threadgroup)2446 void cgroup_attach_lock(bool lock_threadgroup)
2447 {
2448 	cpus_read_lock();
2449 	if (lock_threadgroup)
2450 		percpu_down_write(&cgroup_threadgroup_rwsem);
2451 }
2452 
2453 /**
2454  * cgroup_attach_unlock - Undo cgroup_attach_lock()
2455  * @lock_threadgroup: whether to up_write cgroup_threadgroup_rwsem
2456  */
cgroup_attach_unlock(bool lock_threadgroup)2457 void cgroup_attach_unlock(bool lock_threadgroup)
2458 {
2459 	if (lock_threadgroup)
2460 		percpu_up_write(&cgroup_threadgroup_rwsem);
2461 	cpus_read_unlock();
2462 }
2463 
2464 /**
2465  * cgroup_migrate_add_task - add a migration target task to a migration context
2466  * @task: target task
2467  * @mgctx: target migration context
2468  *
2469  * Add @task, which is a migration target, to @mgctx->tset.  This function
2470  * becomes noop if @task doesn't need to be migrated.  @task's css_set
2471  * should have been added as a migration source and @task->cg_list will be
2472  * moved from the css_set's tasks list to mg_tasks one.
2473  */
cgroup_migrate_add_task(struct task_struct * task,struct cgroup_mgctx * mgctx)2474 static void cgroup_migrate_add_task(struct task_struct *task,
2475 				    struct cgroup_mgctx *mgctx)
2476 {
2477 	struct css_set *cset;
2478 
2479 	lockdep_assert_held(&css_set_lock);
2480 
2481 	/* @task either already exited or can't exit until the end */
2482 	if (task->flags & PF_EXITING)
2483 		return;
2484 
2485 	/* cgroup_threadgroup_rwsem protects racing against forks */
2486 	WARN_ON_ONCE(list_empty(&task->cg_list));
2487 
2488 	cset = task_css_set(task);
2489 	if (!cset->mg_src_cgrp)
2490 		return;
2491 
2492 	mgctx->tset.nr_tasks++;
2493 
2494 	list_move_tail(&task->cg_list, &cset->mg_tasks);
2495 	if (list_empty(&cset->mg_node))
2496 		list_add_tail(&cset->mg_node,
2497 			      &mgctx->tset.src_csets);
2498 	if (list_empty(&cset->mg_dst_cset->mg_node))
2499 		list_add_tail(&cset->mg_dst_cset->mg_node,
2500 			      &mgctx->tset.dst_csets);
2501 }
2502 
2503 /**
2504  * cgroup_taskset_first - reset taskset and return the first task
2505  * @tset: taskset of interest
2506  * @dst_cssp: output variable for the destination css
2507  *
2508  * @tset iteration is initialized and the first task is returned.
2509  */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2510 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2511 					 struct cgroup_subsys_state **dst_cssp)
2512 {
2513 	tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2514 	tset->cur_task = NULL;
2515 
2516 	return cgroup_taskset_next(tset, dst_cssp);
2517 }
2518 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
2519 
2520 /**
2521  * cgroup_taskset_next - iterate to the next task in taskset
2522  * @tset: taskset of interest
2523  * @dst_cssp: output variable for the destination css
2524  *
2525  * Return the next task in @tset.  Iteration must have been initialized
2526  * with cgroup_taskset_first().
2527  */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2528 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2529 					struct cgroup_subsys_state **dst_cssp)
2530 {
2531 	struct css_set *cset = tset->cur_cset;
2532 	struct task_struct *task = tset->cur_task;
2533 
2534 	while (CGROUP_HAS_SUBSYS_CONFIG && &cset->mg_node != tset->csets) {
2535 		if (!task)
2536 			task = list_first_entry(&cset->mg_tasks,
2537 						struct task_struct, cg_list);
2538 		else
2539 			task = list_next_entry(task, cg_list);
2540 
2541 		if (&task->cg_list != &cset->mg_tasks) {
2542 			tset->cur_cset = cset;
2543 			tset->cur_task = task;
2544 
2545 			/*
2546 			 * This function may be called both before and
2547 			 * after cgroup_taskset_migrate().  The two cases
2548 			 * can be distinguished by looking at whether @cset
2549 			 * has its ->mg_dst_cset set.
2550 			 */
2551 			if (cset->mg_dst_cset)
2552 				*dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2553 			else
2554 				*dst_cssp = cset->subsys[tset->ssid];
2555 
2556 			return task;
2557 		}
2558 
2559 		cset = list_next_entry(cset, mg_node);
2560 		task = NULL;
2561 	}
2562 
2563 	return NULL;
2564 }
2565 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
2566 
2567 /**
2568  * cgroup_migrate_execute - migrate a taskset
2569  * @mgctx: migration context
2570  *
2571  * Migrate tasks in @mgctx as setup by migration preparation functions.
2572  * This function fails iff one of the ->can_attach callbacks fails and
2573  * guarantees that either all or none of the tasks in @mgctx are migrated.
2574  * @mgctx is consumed regardless of success.
2575  */
cgroup_migrate_execute(struct cgroup_mgctx * mgctx)2576 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2577 {
2578 	struct cgroup_taskset *tset = &mgctx->tset;
2579 	struct cgroup_subsys *ss;
2580 	struct task_struct *task, *tmp_task;
2581 	struct css_set *cset, *tmp_cset;
2582 	int ssid, failed_ssid, ret;
2583 
2584 	/* check that we can legitimately attach to the cgroup */
2585 	if (tset->nr_tasks) {
2586 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2587 			if (ss->can_attach) {
2588 				tset->ssid = ssid;
2589 				ret = ss->can_attach(tset);
2590 				if (ret) {
2591 					failed_ssid = ssid;
2592 					goto out_cancel_attach;
2593 				}
2594 			}
2595 		} while_each_subsys_mask();
2596 	}
2597 
2598 	/*
2599 	 * Now that we're guaranteed success, proceed to move all tasks to
2600 	 * the new cgroup.  There are no failure cases after here, so this
2601 	 * is the commit point.
2602 	 */
2603 	spin_lock_irq(&css_set_lock);
2604 	list_for_each_entry(cset, &tset->src_csets, mg_node) {
2605 		list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2606 			struct css_set *from_cset = task_css_set(task);
2607 			struct css_set *to_cset = cset->mg_dst_cset;
2608 
2609 			get_css_set(to_cset);
2610 			to_cset->nr_tasks++;
2611 			css_set_move_task(task, from_cset, to_cset, true);
2612 			from_cset->nr_tasks--;
2613 			/*
2614 			 * If the source or destination cgroup is frozen,
2615 			 * the task might require to change its state.
2616 			 */
2617 			cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2618 						    to_cset->dfl_cgrp);
2619 			put_css_set_locked(from_cset);
2620 
2621 		}
2622 	}
2623 	spin_unlock_irq(&css_set_lock);
2624 
2625 	/*
2626 	 * Migration is committed, all target tasks are now on dst_csets.
2627 	 * Nothing is sensitive to fork() after this point.  Notify
2628 	 * controllers that migration is complete.
2629 	 */
2630 	tset->csets = &tset->dst_csets;
2631 
2632 	if (tset->nr_tasks) {
2633 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2634 			if (ss->attach) {
2635 				tset->ssid = ssid;
2636 				trace_android_vh_cgroup_attach(ss, tset);
2637 				ss->attach(tset);
2638 			}
2639 		} while_each_subsys_mask();
2640 	}
2641 
2642 	ret = 0;
2643 	goto out_release_tset;
2644 
2645 out_cancel_attach:
2646 	if (tset->nr_tasks) {
2647 		do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2648 			if (ssid == failed_ssid)
2649 				break;
2650 			if (ss->cancel_attach) {
2651 				tset->ssid = ssid;
2652 				ss->cancel_attach(tset);
2653 			}
2654 		} while_each_subsys_mask();
2655 	}
2656 out_release_tset:
2657 	spin_lock_irq(&css_set_lock);
2658 	list_splice_init(&tset->dst_csets, &tset->src_csets);
2659 	list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2660 		list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2661 		list_del_init(&cset->mg_node);
2662 	}
2663 	spin_unlock_irq(&css_set_lock);
2664 
2665 	/*
2666 	 * Re-initialize the cgroup_taskset structure in case it is reused
2667 	 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2668 	 * iteration.
2669 	 */
2670 	tset->nr_tasks = 0;
2671 	tset->csets    = &tset->src_csets;
2672 	return ret;
2673 }
2674 
2675 /**
2676  * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2677  * @dst_cgrp: destination cgroup to test
2678  *
2679  * On the default hierarchy, except for the mixable, (possible) thread root
2680  * and threaded cgroups, subtree_control must be zero for migration
2681  * destination cgroups with tasks so that child cgroups don't compete
2682  * against tasks.
2683  */
cgroup_migrate_vet_dst(struct cgroup * dst_cgrp)2684 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2685 {
2686 	/* v1 doesn't have any restriction */
2687 	if (!cgroup_on_dfl(dst_cgrp))
2688 		return 0;
2689 
2690 	/* verify @dst_cgrp can host resources */
2691 	if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2692 		return -EOPNOTSUPP;
2693 
2694 	/*
2695 	 * If @dst_cgrp is already or can become a thread root or is
2696 	 * threaded, it doesn't matter.
2697 	 */
2698 	if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2699 		return 0;
2700 
2701 	/* apply no-internal-process constraint */
2702 	if (dst_cgrp->subtree_control)
2703 		return -EBUSY;
2704 
2705 	return 0;
2706 }
2707 
2708 /**
2709  * cgroup_migrate_finish - cleanup after attach
2710  * @mgctx: migration context
2711  *
2712  * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst().  See
2713  * those functions for details.
2714  */
cgroup_migrate_finish(struct cgroup_mgctx * mgctx)2715 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2716 {
2717 	struct css_set *cset, *tmp_cset;
2718 
2719 	lockdep_assert_held(&cgroup_mutex);
2720 
2721 	spin_lock_irq(&css_set_lock);
2722 
2723 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_src_csets,
2724 				 mg_src_preload_node) {
2725 		cset->mg_src_cgrp = NULL;
2726 		cset->mg_dst_cgrp = NULL;
2727 		cset->mg_dst_cset = NULL;
2728 		list_del_init(&cset->mg_src_preload_node);
2729 		put_css_set_locked(cset);
2730 	}
2731 
2732 	list_for_each_entry_safe(cset, tmp_cset, &mgctx->preloaded_dst_csets,
2733 				 mg_dst_preload_node) {
2734 		cset->mg_src_cgrp = NULL;
2735 		cset->mg_dst_cgrp = NULL;
2736 		cset->mg_dst_cset = NULL;
2737 		list_del_init(&cset->mg_dst_preload_node);
2738 		put_css_set_locked(cset);
2739 	}
2740 
2741 	spin_unlock_irq(&css_set_lock);
2742 }
2743 
2744 /**
2745  * cgroup_migrate_add_src - add a migration source css_set
2746  * @src_cset: the source css_set to add
2747  * @dst_cgrp: the destination cgroup
2748  * @mgctx: migration context
2749  *
2750  * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp.  Pin
2751  * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2752  * up by cgroup_migrate_finish().
2753  *
2754  * This function may be called without holding cgroup_threadgroup_rwsem
2755  * even if the target is a process.  Threads may be created and destroyed
2756  * but as long as cgroup_mutex is not dropped, no new css_set can be put
2757  * into play and the preloaded css_sets are guaranteed to cover all
2758  * migrations.
2759  */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct cgroup_mgctx * mgctx)2760 void cgroup_migrate_add_src(struct css_set *src_cset,
2761 			    struct cgroup *dst_cgrp,
2762 			    struct cgroup_mgctx *mgctx)
2763 {
2764 	struct cgroup *src_cgrp;
2765 
2766 	lockdep_assert_held(&cgroup_mutex);
2767 	lockdep_assert_held(&css_set_lock);
2768 
2769 	/*
2770 	 * If ->dead, @src_set is associated with one or more dead cgroups
2771 	 * and doesn't contain any migratable tasks.  Ignore it early so
2772 	 * that the rest of migration path doesn't get confused by it.
2773 	 */
2774 	if (src_cset->dead)
2775 		return;
2776 
2777 	if (!list_empty(&src_cset->mg_src_preload_node))
2778 		return;
2779 
2780 	src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2781 
2782 	WARN_ON(src_cset->mg_src_cgrp);
2783 	WARN_ON(src_cset->mg_dst_cgrp);
2784 	WARN_ON(!list_empty(&src_cset->mg_tasks));
2785 	WARN_ON(!list_empty(&src_cset->mg_node));
2786 
2787 	src_cset->mg_src_cgrp = src_cgrp;
2788 	src_cset->mg_dst_cgrp = dst_cgrp;
2789 	get_css_set(src_cset);
2790 	list_add_tail(&src_cset->mg_src_preload_node, &mgctx->preloaded_src_csets);
2791 }
2792 
2793 /**
2794  * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2795  * @mgctx: migration context
2796  *
2797  * Tasks are about to be moved and all the source css_sets have been
2798  * preloaded to @mgctx->preloaded_src_csets.  This function looks up and
2799  * pins all destination css_sets, links each to its source, and append them
2800  * to @mgctx->preloaded_dst_csets.
2801  *
2802  * This function must be called after cgroup_migrate_add_src() has been
2803  * called on each migration source css_set.  After migration is performed
2804  * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2805  * @mgctx.
2806  */
cgroup_migrate_prepare_dst(struct cgroup_mgctx * mgctx)2807 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2808 {
2809 	struct css_set *src_cset, *tmp_cset;
2810 
2811 	lockdep_assert_held(&cgroup_mutex);
2812 
2813 	/* look up the dst cset for each src cset and link it to src */
2814 	list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2815 				 mg_src_preload_node) {
2816 		struct css_set *dst_cset;
2817 		struct cgroup_subsys *ss;
2818 		int ssid;
2819 
2820 		dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2821 		if (!dst_cset)
2822 			return -ENOMEM;
2823 
2824 		WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2825 
2826 		/*
2827 		 * If src cset equals dst, it's noop.  Drop the src.
2828 		 * cgroup_migrate() will skip the cset too.  Note that we
2829 		 * can't handle src == dst as some nodes are used by both.
2830 		 */
2831 		if (src_cset == dst_cset) {
2832 			src_cset->mg_src_cgrp = NULL;
2833 			src_cset->mg_dst_cgrp = NULL;
2834 			list_del_init(&src_cset->mg_src_preload_node);
2835 			put_css_set(src_cset);
2836 			put_css_set(dst_cset);
2837 			continue;
2838 		}
2839 
2840 		src_cset->mg_dst_cset = dst_cset;
2841 
2842 		if (list_empty(&dst_cset->mg_dst_preload_node))
2843 			list_add_tail(&dst_cset->mg_dst_preload_node,
2844 				      &mgctx->preloaded_dst_csets);
2845 		else
2846 			put_css_set(dst_cset);
2847 
2848 		for_each_subsys(ss, ssid)
2849 			if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2850 				mgctx->ss_mask |= 1 << ssid;
2851 	}
2852 
2853 	return 0;
2854 }
2855 
2856 /**
2857  * cgroup_migrate - migrate a process or task to a cgroup
2858  * @leader: the leader of the process or the task to migrate
2859  * @threadgroup: whether @leader points to the whole process or a single task
2860  * @mgctx: migration context
2861  *
2862  * Migrate a process or task denoted by @leader.  If migrating a process,
2863  * the caller must be holding cgroup_threadgroup_rwsem.  The caller is also
2864  * responsible for invoking cgroup_migrate_add_src() and
2865  * cgroup_migrate_prepare_dst() on the targets before invoking this
2866  * function and following up with cgroup_migrate_finish().
2867  *
2868  * As long as a controller's ->can_attach() doesn't fail, this function is
2869  * guaranteed to succeed.  This means that, excluding ->can_attach()
2870  * failure, when migrating multiple targets, the success or failure can be
2871  * decided for all targets by invoking group_migrate_prepare_dst() before
2872  * actually starting migrating.
2873  */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_mgctx * mgctx)2874 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2875 		   struct cgroup_mgctx *mgctx)
2876 {
2877 	struct task_struct *task;
2878 
2879 	/*
2880 	 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2881 	 * already PF_EXITING could be freed from underneath us unless we
2882 	 * take an rcu_read_lock.
2883 	 */
2884 	spin_lock_irq(&css_set_lock);
2885 	rcu_read_lock();
2886 	task = leader;
2887 	do {
2888 		cgroup_migrate_add_task(task, mgctx);
2889 		if (!threadgroup)
2890 			break;
2891 	} while_each_thread(leader, task);
2892 	rcu_read_unlock();
2893 	spin_unlock_irq(&css_set_lock);
2894 
2895 	return cgroup_migrate_execute(mgctx);
2896 }
2897 
2898 /**
2899  * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2900  * @dst_cgrp: the cgroup to attach to
2901  * @leader: the task or the leader of the threadgroup to be attached
2902  * @threadgroup: attach the whole threadgroup?
2903  *
2904  * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2905  */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2906 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2907 		       bool threadgroup)
2908 {
2909 	DEFINE_CGROUP_MGCTX(mgctx);
2910 	struct task_struct *task;
2911 	int ret = 0;
2912 
2913 	/* look up all src csets */
2914 	spin_lock_irq(&css_set_lock);
2915 	rcu_read_lock();
2916 	task = leader;
2917 	do {
2918 		cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2919 		if (!threadgroup)
2920 			break;
2921 	} while_each_thread(leader, task);
2922 	rcu_read_unlock();
2923 	spin_unlock_irq(&css_set_lock);
2924 
2925 	/* prepare dst csets and commit */
2926 	ret = cgroup_migrate_prepare_dst(&mgctx);
2927 	if (!ret)
2928 		ret = cgroup_migrate(leader, threadgroup, &mgctx);
2929 
2930 	cgroup_migrate_finish(&mgctx);
2931 
2932 	if (!ret)
2933 		TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2934 
2935 	return ret;
2936 }
2937 
cgroup_procs_write_start(char * buf,bool threadgroup,bool * threadgroup_locked,struct cgroup * dst_cgrp)2938 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup,
2939 					     bool *threadgroup_locked,
2940 					     struct cgroup *dst_cgrp)
2941 {
2942 	struct task_struct *tsk;
2943 	pid_t pid;
2944 	bool force_migration = false;
2945 
2946 	if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2947 		return ERR_PTR(-EINVAL);
2948 
2949 	/*
2950 	 * If we migrate a single thread, we don't care about threadgroup
2951 	 * stability. If the thread is `current`, it won't exit(2) under our
2952 	 * hands or change PID through exec(2). We exclude
2953 	 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2954 	 * callers by cgroup_mutex.
2955 	 * Therefore, we can skip the global lock.
2956 	 */
2957 	lockdep_assert_held(&cgroup_mutex);
2958 	*threadgroup_locked = pid || threadgroup;
2959 	cgroup_attach_lock(*threadgroup_locked);
2960 
2961 	rcu_read_lock();
2962 	if (pid) {
2963 		tsk = find_task_by_vpid(pid);
2964 		if (!tsk) {
2965 			tsk = ERR_PTR(-ESRCH);
2966 			goto out_unlock_threadgroup;
2967 		}
2968 	} else {
2969 		tsk = current;
2970 	}
2971 
2972 	if (threadgroup)
2973 		tsk = tsk->group_leader;
2974 
2975 	if (tsk->flags & PF_KTHREAD)
2976 		trace_android_rvh_cgroup_force_kthread_migration(tsk, dst_cgrp, &force_migration);
2977 
2978 	/*
2979 	 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2980 	 * If userland migrates such a kthread to a non-root cgroup, it can
2981 	 * become trapped in a cpuset, or RT kthread may be born in a
2982 	 * cgroup with no rt_runtime allocated.  Just say no.
2983 	 */
2984 	if (!force_migration && (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY))) {
2985 		tsk = ERR_PTR(-EINVAL);
2986 		goto out_unlock_threadgroup;
2987 	}
2988 
2989 	get_task_struct(tsk);
2990 	goto out_unlock_rcu;
2991 
2992 out_unlock_threadgroup:
2993 	cgroup_attach_unlock(*threadgroup_locked);
2994 	*threadgroup_locked = false;
2995 out_unlock_rcu:
2996 	rcu_read_unlock();
2997 	return tsk;
2998 }
2999 
cgroup_procs_write_finish(struct task_struct * task,bool threadgroup_locked)3000 void cgroup_procs_write_finish(struct task_struct *task, bool threadgroup_locked)
3001 {
3002 	struct cgroup_subsys *ss;
3003 	int ssid;
3004 
3005 	/* release reference from cgroup_procs_write_start() */
3006 	put_task_struct(task);
3007 
3008 	cgroup_attach_unlock(threadgroup_locked);
3009 
3010 	for_each_subsys(ss, ssid)
3011 		if (ss->post_attach)
3012 			ss->post_attach();
3013 }
3014 
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3015 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3016 {
3017 	struct cgroup_subsys *ss;
3018 	bool printed = false;
3019 	int ssid;
3020 
3021 	do_each_subsys_mask(ss, ssid, ss_mask) {
3022 		if (printed)
3023 			seq_putc(seq, ' ');
3024 		seq_puts(seq, ss->name);
3025 		printed = true;
3026 	} while_each_subsys_mask();
3027 	if (printed)
3028 		seq_putc(seq, '\n');
3029 }
3030 
3031 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3032 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3033 {
3034 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3035 
3036 	cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3037 	return 0;
3038 }
3039 
3040 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3041 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3042 {
3043 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3044 
3045 	cgroup_print_ss_mask(seq, cgrp->subtree_control);
3046 	return 0;
3047 }
3048 
3049 /**
3050  * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3051  * @cgrp: root of the subtree to update csses for
3052  *
3053  * @cgrp's control masks have changed and its subtree's css associations
3054  * need to be updated accordingly.  This function looks up all css_sets
3055  * which are attached to the subtree, creates the matching updated css_sets
3056  * and migrates the tasks to the new ones.
3057  */
cgroup_update_dfl_csses(struct cgroup * cgrp)3058 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3059 {
3060 	DEFINE_CGROUP_MGCTX(mgctx);
3061 	struct cgroup_subsys_state *d_css;
3062 	struct cgroup *dsct;
3063 	struct css_set *src_cset;
3064 	bool has_tasks;
3065 	int ret;
3066 
3067 	lockdep_assert_held(&cgroup_mutex);
3068 
3069 	/* look up all csses currently attached to @cgrp's subtree */
3070 	spin_lock_irq(&css_set_lock);
3071 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3072 		struct cgrp_cset_link *link;
3073 
3074 		/*
3075 		 * As cgroup_update_dfl_csses() is only called by
3076 		 * cgroup_apply_control(). The csses associated with the
3077 		 * given cgrp will not be affected by changes made to
3078 		 * its subtree_control file. We can skip them.
3079 		 */
3080 		if (dsct == cgrp)
3081 			continue;
3082 
3083 		list_for_each_entry(link, &dsct->cset_links, cset_link)
3084 			cgroup_migrate_add_src(link->cset, dsct, &mgctx);
3085 	}
3086 	spin_unlock_irq(&css_set_lock);
3087 
3088 	/*
3089 	 * We need to write-lock threadgroup_rwsem while migrating tasks.
3090 	 * However, if there are no source csets for @cgrp, changing its
3091 	 * controllers isn't gonna produce any task migrations and the
3092 	 * write-locking can be skipped safely.
3093 	 */
3094 	has_tasks = !list_empty(&mgctx.preloaded_src_csets);
3095 	cgroup_attach_lock(has_tasks);
3096 
3097 	/* NULL dst indicates self on default hierarchy */
3098 	ret = cgroup_migrate_prepare_dst(&mgctx);
3099 	if (ret)
3100 		goto out_finish;
3101 
3102 	spin_lock_irq(&css_set_lock);
3103 	list_for_each_entry(src_cset, &mgctx.preloaded_src_csets,
3104 			    mg_src_preload_node) {
3105 		struct task_struct *task, *ntask;
3106 
3107 		/* all tasks in src_csets need to be migrated */
3108 		list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3109 			cgroup_migrate_add_task(task, &mgctx);
3110 	}
3111 	spin_unlock_irq(&css_set_lock);
3112 
3113 	ret = cgroup_migrate_execute(&mgctx);
3114 out_finish:
3115 	cgroup_migrate_finish(&mgctx);
3116 	cgroup_attach_unlock(has_tasks);
3117 	return ret;
3118 }
3119 
3120 /**
3121  * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3122  * @cgrp: root of the target subtree
3123  *
3124  * Because css offlining is asynchronous, userland may try to re-enable a
3125  * controller while the previous css is still around.  This function grabs
3126  * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3127  */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3128 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3129 	__acquires(&cgroup_mutex)
3130 {
3131 	struct cgroup *dsct;
3132 	struct cgroup_subsys_state *d_css;
3133 	struct cgroup_subsys *ss;
3134 	int ssid;
3135 
3136 restart:
3137 	cgroup_lock();
3138 
3139 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3140 		for_each_subsys(ss, ssid) {
3141 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3142 			DEFINE_WAIT(wait);
3143 
3144 			if (!css || !percpu_ref_is_dying(&css->refcnt))
3145 				continue;
3146 
3147 			cgroup_get_live(dsct);
3148 			prepare_to_wait(&dsct->offline_waitq, &wait,
3149 					TASK_UNINTERRUPTIBLE);
3150 
3151 			cgroup_unlock();
3152 			schedule();
3153 			finish_wait(&dsct->offline_waitq, &wait);
3154 
3155 			cgroup_put(dsct);
3156 			goto restart;
3157 		}
3158 	}
3159 }
3160 
3161 /**
3162  * cgroup_save_control - save control masks and dom_cgrp of a subtree
3163  * @cgrp: root of the target subtree
3164  *
3165  * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
3166  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3167  * itself.
3168  */
cgroup_save_control(struct cgroup * cgrp)3169 static void cgroup_save_control(struct cgroup *cgrp)
3170 {
3171 	struct cgroup *dsct;
3172 	struct cgroup_subsys_state *d_css;
3173 
3174 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3175 		dsct->old_subtree_control = dsct->subtree_control;
3176 		dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3177 		dsct->old_dom_cgrp = dsct->dom_cgrp;
3178 	}
3179 }
3180 
3181 /**
3182  * cgroup_propagate_control - refresh control masks of a subtree
3183  * @cgrp: root of the target subtree
3184  *
3185  * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3186  * ->subtree_control and propagate controller availability through the
3187  * subtree so that descendants don't have unavailable controllers enabled.
3188  */
cgroup_propagate_control(struct cgroup * cgrp)3189 static void cgroup_propagate_control(struct cgroup *cgrp)
3190 {
3191 	struct cgroup *dsct;
3192 	struct cgroup_subsys_state *d_css;
3193 
3194 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3195 		dsct->subtree_control &= cgroup_control(dsct);
3196 		dsct->subtree_ss_mask =
3197 			cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3198 						    cgroup_ss_mask(dsct));
3199 	}
3200 }
3201 
3202 /**
3203  * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3204  * @cgrp: root of the target subtree
3205  *
3206  * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3207  * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3208  * itself.
3209  */
cgroup_restore_control(struct cgroup * cgrp)3210 static void cgroup_restore_control(struct cgroup *cgrp)
3211 {
3212 	struct cgroup *dsct;
3213 	struct cgroup_subsys_state *d_css;
3214 
3215 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3216 		dsct->subtree_control = dsct->old_subtree_control;
3217 		dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3218 		dsct->dom_cgrp = dsct->old_dom_cgrp;
3219 	}
3220 }
3221 
css_visible(struct cgroup_subsys_state * css)3222 static bool css_visible(struct cgroup_subsys_state *css)
3223 {
3224 	struct cgroup_subsys *ss = css->ss;
3225 	struct cgroup *cgrp = css->cgroup;
3226 
3227 	if (cgroup_control(cgrp) & (1 << ss->id))
3228 		return true;
3229 	if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3230 		return false;
3231 	return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3232 }
3233 
3234 /**
3235  * cgroup_apply_control_enable - enable or show csses according to control
3236  * @cgrp: root of the target subtree
3237  *
3238  * Walk @cgrp's subtree and create new csses or make the existing ones
3239  * visible.  A css is created invisible if it's being implicitly enabled
3240  * through dependency.  An invisible css is made visible when the userland
3241  * explicitly enables it.
3242  *
3243  * Returns 0 on success, -errno on failure.  On failure, csses which have
3244  * been processed already aren't cleaned up.  The caller is responsible for
3245  * cleaning up with cgroup_apply_control_disable().
3246  */
cgroup_apply_control_enable(struct cgroup * cgrp)3247 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3248 {
3249 	struct cgroup *dsct;
3250 	struct cgroup_subsys_state *d_css;
3251 	struct cgroup_subsys *ss;
3252 	int ssid, ret;
3253 
3254 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3255 		for_each_subsys(ss, ssid) {
3256 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3257 
3258 			if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3259 				continue;
3260 
3261 			if (!css) {
3262 				css = css_create(dsct, ss);
3263 				if (IS_ERR(css))
3264 					return PTR_ERR(css);
3265 			}
3266 
3267 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3268 
3269 			if (css_visible(css)) {
3270 				ret = css_populate_dir(css);
3271 				if (ret)
3272 					return ret;
3273 			}
3274 		}
3275 	}
3276 
3277 	return 0;
3278 }
3279 
3280 /**
3281  * cgroup_apply_control_disable - kill or hide csses according to control
3282  * @cgrp: root of the target subtree
3283  *
3284  * Walk @cgrp's subtree and kill and hide csses so that they match
3285  * cgroup_ss_mask() and cgroup_visible_mask().
3286  *
3287  * A css is hidden when the userland requests it to be disabled while other
3288  * subsystems are still depending on it.  The css must not actively control
3289  * resources and be in the vanilla state if it's made visible again later.
3290  * Controllers which may be depended upon should provide ->css_reset() for
3291  * this purpose.
3292  */
cgroup_apply_control_disable(struct cgroup * cgrp)3293 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3294 {
3295 	struct cgroup *dsct;
3296 	struct cgroup_subsys_state *d_css;
3297 	struct cgroup_subsys *ss;
3298 	int ssid;
3299 
3300 	cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3301 		for_each_subsys(ss, ssid) {
3302 			struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3303 
3304 			if (!css)
3305 				continue;
3306 
3307 			WARN_ON_ONCE(percpu_ref_is_dying(&css->refcnt));
3308 
3309 			if (css->parent &&
3310 			    !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3311 				kill_css(css);
3312 			} else if (!css_visible(css)) {
3313 				css_clear_dir(css);
3314 				if (ss->css_reset)
3315 					ss->css_reset(css);
3316 			}
3317 		}
3318 	}
3319 }
3320 
3321 /**
3322  * cgroup_apply_control - apply control mask updates to the subtree
3323  * @cgrp: root of the target subtree
3324  *
3325  * subsystems can be enabled and disabled in a subtree using the following
3326  * steps.
3327  *
3328  * 1. Call cgroup_save_control() to stash the current state.
3329  * 2. Update ->subtree_control masks in the subtree as desired.
3330  * 3. Call cgroup_apply_control() to apply the changes.
3331  * 4. Optionally perform other related operations.
3332  * 5. Call cgroup_finalize_control() to finish up.
3333  *
3334  * This function implements step 3 and propagates the mask changes
3335  * throughout @cgrp's subtree, updates csses accordingly and perform
3336  * process migrations.
3337  */
cgroup_apply_control(struct cgroup * cgrp)3338 static int cgroup_apply_control(struct cgroup *cgrp)
3339 {
3340 	int ret;
3341 
3342 	cgroup_propagate_control(cgrp);
3343 
3344 	ret = cgroup_apply_control_enable(cgrp);
3345 	if (ret)
3346 		return ret;
3347 
3348 	/*
3349 	 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3350 	 * making the following cgroup_update_dfl_csses() properly update
3351 	 * css associations of all tasks in the subtree.
3352 	 */
3353 	return cgroup_update_dfl_csses(cgrp);
3354 }
3355 
3356 /**
3357  * cgroup_finalize_control - finalize control mask update
3358  * @cgrp: root of the target subtree
3359  * @ret: the result of the update
3360  *
3361  * Finalize control mask update.  See cgroup_apply_control() for more info.
3362  */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3363 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3364 {
3365 	if (ret) {
3366 		cgroup_restore_control(cgrp);
3367 		cgroup_propagate_control(cgrp);
3368 	}
3369 
3370 	cgroup_apply_control_disable(cgrp);
3371 }
3372 
cgroup_vet_subtree_control_enable(struct cgroup * cgrp,u16 enable)3373 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3374 {
3375 	u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3376 
3377 	/* if nothing is getting enabled, nothing to worry about */
3378 	if (!enable)
3379 		return 0;
3380 
3381 	/* can @cgrp host any resources? */
3382 	if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3383 		return -EOPNOTSUPP;
3384 
3385 	/* mixables don't care */
3386 	if (cgroup_is_mixable(cgrp))
3387 		return 0;
3388 
3389 	if (domain_enable) {
3390 		/* can't enable domain controllers inside a thread subtree */
3391 		if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3392 			return -EOPNOTSUPP;
3393 	} else {
3394 		/*
3395 		 * Threaded controllers can handle internal competitions
3396 		 * and are always allowed inside a (prospective) thread
3397 		 * subtree.
3398 		 */
3399 		if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3400 			return 0;
3401 	}
3402 
3403 	/*
3404 	 * Controllers can't be enabled for a cgroup with tasks to avoid
3405 	 * child cgroups competing against tasks.
3406 	 */
3407 	if (cgroup_has_tasks(cgrp))
3408 		return -EBUSY;
3409 
3410 	return 0;
3411 }
3412 
3413 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3414 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3415 					    char *buf, size_t nbytes,
3416 					    loff_t off)
3417 {
3418 	u16 enable = 0, disable = 0;
3419 	struct cgroup *cgrp, *child;
3420 	struct cgroup_subsys *ss;
3421 	char *tok;
3422 	int ssid, ret;
3423 
3424 	/*
3425 	 * Parse input - space separated list of subsystem names prefixed
3426 	 * with either + or -.
3427 	 */
3428 	buf = strstrip(buf);
3429 	while ((tok = strsep(&buf, " "))) {
3430 		if (tok[0] == '\0')
3431 			continue;
3432 		do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3433 			if (!cgroup_ssid_enabled(ssid) ||
3434 			    strcmp(tok + 1, ss->name))
3435 				continue;
3436 
3437 			if (*tok == '+') {
3438 				enable |= 1 << ssid;
3439 				disable &= ~(1 << ssid);
3440 			} else if (*tok == '-') {
3441 				disable |= 1 << ssid;
3442 				enable &= ~(1 << ssid);
3443 			} else {
3444 				return -EINVAL;
3445 			}
3446 			break;
3447 		} while_each_subsys_mask();
3448 		if (ssid == CGROUP_SUBSYS_COUNT)
3449 			return -EINVAL;
3450 	}
3451 
3452 	cgrp = cgroup_kn_lock_live(of->kn, true);
3453 	if (!cgrp)
3454 		return -ENODEV;
3455 
3456 	for_each_subsys(ss, ssid) {
3457 		if (enable & (1 << ssid)) {
3458 			if (cgrp->subtree_control & (1 << ssid)) {
3459 				enable &= ~(1 << ssid);
3460 				continue;
3461 			}
3462 
3463 			if (!(cgroup_control(cgrp) & (1 << ssid))) {
3464 				ret = -ENOENT;
3465 				goto out_unlock;
3466 			}
3467 		} else if (disable & (1 << ssid)) {
3468 			if (!(cgrp->subtree_control & (1 << ssid))) {
3469 				disable &= ~(1 << ssid);
3470 				continue;
3471 			}
3472 
3473 			/* a child has it enabled? */
3474 			cgroup_for_each_live_child(child, cgrp) {
3475 				if (child->subtree_control & (1 << ssid)) {
3476 					ret = -EBUSY;
3477 					goto out_unlock;
3478 				}
3479 			}
3480 		}
3481 	}
3482 
3483 	if (!enable && !disable) {
3484 		ret = 0;
3485 		goto out_unlock;
3486 	}
3487 
3488 	ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3489 	if (ret)
3490 		goto out_unlock;
3491 
3492 	/* save and update control masks and prepare csses */
3493 	cgroup_save_control(cgrp);
3494 
3495 	cgrp->subtree_control |= enable;
3496 	cgrp->subtree_control &= ~disable;
3497 
3498 	ret = cgroup_apply_control(cgrp);
3499 	cgroup_finalize_control(cgrp, ret);
3500 	if (ret)
3501 		goto out_unlock;
3502 
3503 	kernfs_activate(cgrp->kn);
3504 out_unlock:
3505 	cgroup_kn_unlock(of->kn);
3506 	return ret ?: nbytes;
3507 }
3508 
3509 /**
3510  * cgroup_enable_threaded - make @cgrp threaded
3511  * @cgrp: the target cgroup
3512  *
3513  * Called when "threaded" is written to the cgroup.type interface file and
3514  * tries to make @cgrp threaded and join the parent's resource domain.
3515  * This function is never called on the root cgroup as cgroup.type doesn't
3516  * exist on it.
3517  */
cgroup_enable_threaded(struct cgroup * cgrp)3518 static int cgroup_enable_threaded(struct cgroup *cgrp)
3519 {
3520 	struct cgroup *parent = cgroup_parent(cgrp);
3521 	struct cgroup *dom_cgrp = parent->dom_cgrp;
3522 	struct cgroup *dsct;
3523 	struct cgroup_subsys_state *d_css;
3524 	int ret;
3525 
3526 	lockdep_assert_held(&cgroup_mutex);
3527 
3528 	/* noop if already threaded */
3529 	if (cgroup_is_threaded(cgrp))
3530 		return 0;
3531 
3532 	/*
3533 	 * If @cgroup is populated or has domain controllers enabled, it
3534 	 * can't be switched.  While the below cgroup_can_be_thread_root()
3535 	 * test can catch the same conditions, that's only when @parent is
3536 	 * not mixable, so let's check it explicitly.
3537 	 */
3538 	if (cgroup_is_populated(cgrp) ||
3539 	    cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3540 		return -EOPNOTSUPP;
3541 
3542 	/* we're joining the parent's domain, ensure its validity */
3543 	if (!cgroup_is_valid_domain(dom_cgrp) ||
3544 	    !cgroup_can_be_thread_root(dom_cgrp))
3545 		return -EOPNOTSUPP;
3546 
3547 	/*
3548 	 * The following shouldn't cause actual migrations and should
3549 	 * always succeed.
3550 	 */
3551 	cgroup_save_control(cgrp);
3552 
3553 	cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3554 		if (dsct == cgrp || cgroup_is_threaded(dsct))
3555 			dsct->dom_cgrp = dom_cgrp;
3556 
3557 	ret = cgroup_apply_control(cgrp);
3558 	if (!ret)
3559 		parent->nr_threaded_children++;
3560 
3561 	cgroup_finalize_control(cgrp, ret);
3562 	return ret;
3563 }
3564 
cgroup_type_show(struct seq_file * seq,void * v)3565 static int cgroup_type_show(struct seq_file *seq, void *v)
3566 {
3567 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3568 
3569 	if (cgroup_is_threaded(cgrp))
3570 		seq_puts(seq, "threaded\n");
3571 	else if (!cgroup_is_valid_domain(cgrp))
3572 		seq_puts(seq, "domain invalid\n");
3573 	else if (cgroup_is_thread_root(cgrp))
3574 		seq_puts(seq, "domain threaded\n");
3575 	else
3576 		seq_puts(seq, "domain\n");
3577 
3578 	return 0;
3579 }
3580 
cgroup_type_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3581 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3582 				 size_t nbytes, loff_t off)
3583 {
3584 	struct cgroup *cgrp;
3585 	int ret;
3586 
3587 	/* only switching to threaded mode is supported */
3588 	if (strcmp(strstrip(buf), "threaded"))
3589 		return -EINVAL;
3590 
3591 	/* drain dying csses before we re-apply (threaded) subtree control */
3592 	cgrp = cgroup_kn_lock_live(of->kn, true);
3593 	if (!cgrp)
3594 		return -ENOENT;
3595 
3596 	/* threaded can only be enabled */
3597 	ret = cgroup_enable_threaded(cgrp);
3598 
3599 	cgroup_kn_unlock(of->kn);
3600 	return ret ?: nbytes;
3601 }
3602 
cgroup_max_descendants_show(struct seq_file * seq,void * v)3603 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3604 {
3605 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3606 	int descendants = READ_ONCE(cgrp->max_descendants);
3607 
3608 	if (descendants == INT_MAX)
3609 		seq_puts(seq, "max\n");
3610 	else
3611 		seq_printf(seq, "%d\n", descendants);
3612 
3613 	return 0;
3614 }
3615 
cgroup_max_descendants_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3616 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3617 					   char *buf, size_t nbytes, loff_t off)
3618 {
3619 	struct cgroup *cgrp;
3620 	int descendants;
3621 	ssize_t ret;
3622 
3623 	buf = strstrip(buf);
3624 	if (!strcmp(buf, "max")) {
3625 		descendants = INT_MAX;
3626 	} else {
3627 		ret = kstrtoint(buf, 0, &descendants);
3628 		if (ret)
3629 			return ret;
3630 	}
3631 
3632 	if (descendants < 0)
3633 		return -ERANGE;
3634 
3635 	cgrp = cgroup_kn_lock_live(of->kn, false);
3636 	if (!cgrp)
3637 		return -ENOENT;
3638 
3639 	cgrp->max_descendants = descendants;
3640 
3641 	cgroup_kn_unlock(of->kn);
3642 
3643 	return nbytes;
3644 }
3645 
cgroup_max_depth_show(struct seq_file * seq,void * v)3646 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3647 {
3648 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3649 	int depth = READ_ONCE(cgrp->max_depth);
3650 
3651 	if (depth == INT_MAX)
3652 		seq_puts(seq, "max\n");
3653 	else
3654 		seq_printf(seq, "%d\n", depth);
3655 
3656 	return 0;
3657 }
3658 
cgroup_max_depth_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3659 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3660 				      char *buf, size_t nbytes, loff_t off)
3661 {
3662 	struct cgroup *cgrp;
3663 	ssize_t ret;
3664 	int depth;
3665 
3666 	buf = strstrip(buf);
3667 	if (!strcmp(buf, "max")) {
3668 		depth = INT_MAX;
3669 	} else {
3670 		ret = kstrtoint(buf, 0, &depth);
3671 		if (ret)
3672 			return ret;
3673 	}
3674 
3675 	if (depth < 0)
3676 		return -ERANGE;
3677 
3678 	cgrp = cgroup_kn_lock_live(of->kn, false);
3679 	if (!cgrp)
3680 		return -ENOENT;
3681 
3682 	cgrp->max_depth = depth;
3683 
3684 	cgroup_kn_unlock(of->kn);
3685 
3686 	return nbytes;
3687 }
3688 
cgroup_events_show(struct seq_file * seq,void * v)3689 static int cgroup_events_show(struct seq_file *seq, void *v)
3690 {
3691 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3692 
3693 	seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3694 	seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3695 
3696 	return 0;
3697 }
3698 
cgroup_stat_show(struct seq_file * seq,void * v)3699 static int cgroup_stat_show(struct seq_file *seq, void *v)
3700 {
3701 	struct cgroup *cgroup = seq_css(seq)->cgroup;
3702 
3703 	seq_printf(seq, "nr_descendants %d\n",
3704 		   cgroup->nr_descendants);
3705 	seq_printf(seq, "nr_dying_descendants %d\n",
3706 		   cgroup->nr_dying_descendants);
3707 
3708 	return 0;
3709 }
3710 
cgroup_extra_stat_show(struct seq_file * seq,struct cgroup * cgrp,int ssid)3711 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3712 						 struct cgroup *cgrp, int ssid)
3713 {
3714 	struct cgroup_subsys *ss = cgroup_subsys[ssid];
3715 	struct cgroup_subsys_state *css;
3716 	int ret;
3717 
3718 	if (!ss->css_extra_stat_show)
3719 		return 0;
3720 
3721 	css = cgroup_tryget_css(cgrp, ss);
3722 	if (!css)
3723 		return 0;
3724 
3725 	ret = ss->css_extra_stat_show(seq, css);
3726 	css_put(css);
3727 	return ret;
3728 }
3729 
cpu_stat_show(struct seq_file * seq,void * v)3730 static int cpu_stat_show(struct seq_file *seq, void *v)
3731 {
3732 	struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3733 	int ret = 0;
3734 
3735 	cgroup_base_stat_cputime_show(seq);
3736 #ifdef CONFIG_CGROUP_SCHED
3737 	ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3738 #endif
3739 	return ret;
3740 }
3741 
3742 #ifdef CONFIG_PSI
cgroup_io_pressure_show(struct seq_file * seq,void * v)3743 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3744 {
3745 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3746 	struct psi_group *psi = cgroup_psi(cgrp);
3747 
3748 	return psi_show(seq, psi, PSI_IO);
3749 }
cgroup_memory_pressure_show(struct seq_file * seq,void * v)3750 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3751 {
3752 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3753 	struct psi_group *psi = cgroup_psi(cgrp);
3754 
3755 	return psi_show(seq, psi, PSI_MEM);
3756 }
cgroup_cpu_pressure_show(struct seq_file * seq,void * v)3757 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3758 {
3759 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3760 	struct psi_group *psi = cgroup_psi(cgrp);
3761 
3762 	return psi_show(seq, psi, PSI_CPU);
3763 }
3764 
pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,enum psi_res res)3765 static ssize_t pressure_write(struct kernfs_open_file *of, char *buf,
3766 			      size_t nbytes, enum psi_res res)
3767 {
3768 	struct cgroup_file_ctx *ctx = of->priv;
3769 	struct psi_trigger *new;
3770 	struct cgroup *cgrp;
3771 	struct psi_group *psi;
3772 
3773 	cgrp = cgroup_kn_lock_live(of->kn, false);
3774 	if (!cgrp)
3775 		return -ENODEV;
3776 
3777 	cgroup_get(cgrp);
3778 	cgroup_kn_unlock(of->kn);
3779 
3780 	/* Allow only one trigger per file descriptor */
3781 	if (ctx->psi.trigger) {
3782 		cgroup_put(cgrp);
3783 		return -EBUSY;
3784 	}
3785 
3786 	psi = cgroup_psi(cgrp);
3787 	new = psi_trigger_create(psi, buf, res);
3788 	if (IS_ERR(new)) {
3789 		cgroup_put(cgrp);
3790 		return PTR_ERR(new);
3791 	}
3792 
3793 	smp_store_release(&ctx->psi.trigger, new);
3794 	cgroup_put(cgrp);
3795 
3796 	return nbytes;
3797 }
3798 
cgroup_io_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3799 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3800 					  char *buf, size_t nbytes,
3801 					  loff_t off)
3802 {
3803 	return pressure_write(of, buf, nbytes, PSI_IO);
3804 }
3805 
cgroup_memory_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3806 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3807 					  char *buf, size_t nbytes,
3808 					  loff_t off)
3809 {
3810 	return pressure_write(of, buf, nbytes, PSI_MEM);
3811 }
3812 
cgroup_cpu_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3813 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3814 					  char *buf, size_t nbytes,
3815 					  loff_t off)
3816 {
3817 	return pressure_write(of, buf, nbytes, PSI_CPU);
3818 }
3819 
3820 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
cgroup_irq_pressure_show(struct seq_file * seq,void * v)3821 static int cgroup_irq_pressure_show(struct seq_file *seq, void *v)
3822 {
3823 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3824 	struct psi_group *psi = cgroup_psi(cgrp);
3825 
3826 	return psi_show(seq, psi, PSI_IRQ);
3827 }
3828 
cgroup_irq_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3829 static ssize_t cgroup_irq_pressure_write(struct kernfs_open_file *of,
3830 					 char *buf, size_t nbytes,
3831 					 loff_t off)
3832 {
3833 	return pressure_write(of, buf, nbytes, PSI_IRQ);
3834 }
3835 #endif
3836 
cgroup_pressure_show(struct seq_file * seq,void * v)3837 static int cgroup_pressure_show(struct seq_file *seq, void *v)
3838 {
3839 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3840 	struct psi_group *psi = cgroup_psi(cgrp);
3841 
3842 	seq_printf(seq, "%d\n", psi->enabled);
3843 
3844 	return 0;
3845 }
3846 
cgroup_pressure_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3847 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of,
3848 				     char *buf, size_t nbytes,
3849 				     loff_t off)
3850 {
3851 	ssize_t ret;
3852 	int enable;
3853 	struct cgroup *cgrp;
3854 	struct psi_group *psi;
3855 
3856 	ret = kstrtoint(strstrip(buf), 0, &enable);
3857 	if (ret)
3858 		return ret;
3859 
3860 	if (enable < 0 || enable > 1)
3861 		return -ERANGE;
3862 
3863 	cgrp = cgroup_kn_lock_live(of->kn, false);
3864 	if (!cgrp)
3865 		return -ENOENT;
3866 
3867 	psi = cgroup_psi(cgrp);
3868 	if (psi->enabled != enable) {
3869 		int i;
3870 
3871 		/* show or hide {cpu,memory,io,irq}.pressure files */
3872 		for (i = 0; i < NR_PSI_RESOURCES; i++)
3873 			cgroup_file_show(&cgrp->psi_files[i], enable);
3874 
3875 		psi->enabled = enable;
3876 		if (enable)
3877 			psi_cgroup_restart(psi);
3878 	}
3879 
3880 	cgroup_kn_unlock(of->kn);
3881 
3882 	return nbytes;
3883 }
3884 
cgroup_pressure_poll(struct kernfs_open_file * of,poll_table * pt)3885 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3886 					  poll_table *pt)
3887 {
3888 	struct cgroup_file_ctx *ctx = of->priv;
3889 
3890 	return psi_trigger_poll(&ctx->psi.trigger, of->file, pt);
3891 }
3892 
cgroup_pressure_open(struct kernfs_open_file * of)3893 static int cgroup_pressure_open(struct kernfs_open_file *of)
3894 {
3895 	return (of->file->f_mode & FMODE_WRITE && !capable(CAP_SYS_RESOURCE)) ?
3896 		-EPERM : 0;
3897 }
3898 
cgroup_pressure_release(struct kernfs_open_file * of)3899 static void cgroup_pressure_release(struct kernfs_open_file *of)
3900 {
3901 	struct cgroup_file_ctx *ctx = of->priv;
3902 
3903 	psi_trigger_destroy(ctx->psi.trigger);
3904 }
3905 
cgroup_psi_enabled(void)3906 bool cgroup_psi_enabled(void)
3907 {
3908 	if (static_branch_likely(&psi_disabled))
3909 		return false;
3910 
3911 	return (cgroup_feature_disable_mask & (1 << OPT_FEATURE_PRESSURE)) == 0;
3912 }
3913 
3914 #else /* CONFIG_PSI */
cgroup_psi_enabled(void)3915 bool cgroup_psi_enabled(void)
3916 {
3917 	return false;
3918 }
3919 
3920 #endif /* CONFIG_PSI */
3921 
cgroup_freeze_show(struct seq_file * seq,void * v)3922 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3923 {
3924 	struct cgroup *cgrp = seq_css(seq)->cgroup;
3925 
3926 	seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3927 
3928 	return 0;
3929 }
3930 
cgroup_freeze_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3931 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3932 				   char *buf, size_t nbytes, loff_t off)
3933 {
3934 	struct cgroup *cgrp;
3935 	ssize_t ret;
3936 	int freeze;
3937 
3938 	ret = kstrtoint(strstrip(buf), 0, &freeze);
3939 	if (ret)
3940 		return ret;
3941 
3942 	if (freeze < 0 || freeze > 1)
3943 		return -ERANGE;
3944 
3945 	cgrp = cgroup_kn_lock_live(of->kn, false);
3946 	if (!cgrp)
3947 		return -ENOENT;
3948 
3949 	cgroup_freeze(cgrp, freeze);
3950 
3951 	cgroup_kn_unlock(of->kn);
3952 
3953 	return nbytes;
3954 }
3955 
__cgroup_kill(struct cgroup * cgrp)3956 static void __cgroup_kill(struct cgroup *cgrp)
3957 {
3958 	struct css_task_iter it;
3959 	struct task_struct *task;
3960 
3961 	lockdep_assert_held(&cgroup_mutex);
3962 
3963 	spin_lock_irq(&css_set_lock);
3964 	set_bit(CGRP_KILL, &cgrp->flags);
3965 	spin_unlock_irq(&css_set_lock);
3966 
3967 	css_task_iter_start(&cgrp->self, CSS_TASK_ITER_PROCS | CSS_TASK_ITER_THREADED, &it);
3968 	while ((task = css_task_iter_next(&it))) {
3969 		/* Ignore kernel threads here. */
3970 		if (task->flags & PF_KTHREAD)
3971 			continue;
3972 
3973 		/* Skip tasks that are already dying. */
3974 		if (__fatal_signal_pending(task))
3975 			continue;
3976 
3977 		send_sig(SIGKILL, task, 0);
3978 	}
3979 	css_task_iter_end(&it);
3980 
3981 	spin_lock_irq(&css_set_lock);
3982 	clear_bit(CGRP_KILL, &cgrp->flags);
3983 	spin_unlock_irq(&css_set_lock);
3984 }
3985 
cgroup_kill(struct cgroup * cgrp)3986 static void cgroup_kill(struct cgroup *cgrp)
3987 {
3988 	struct cgroup_subsys_state *css;
3989 	struct cgroup *dsct;
3990 
3991 	lockdep_assert_held(&cgroup_mutex);
3992 
3993 	cgroup_for_each_live_descendant_pre(dsct, css, cgrp)
3994 		__cgroup_kill(dsct);
3995 }
3996 
cgroup_kill_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3997 static ssize_t cgroup_kill_write(struct kernfs_open_file *of, char *buf,
3998 				 size_t nbytes, loff_t off)
3999 {
4000 	ssize_t ret = 0;
4001 	int kill;
4002 	struct cgroup *cgrp;
4003 
4004 	ret = kstrtoint(strstrip(buf), 0, &kill);
4005 	if (ret)
4006 		return ret;
4007 
4008 	if (kill != 1)
4009 		return -ERANGE;
4010 
4011 	cgrp = cgroup_kn_lock_live(of->kn, false);
4012 	if (!cgrp)
4013 		return -ENOENT;
4014 
4015 	/*
4016 	 * Killing is a process directed operation, i.e. the whole thread-group
4017 	 * is taken down so act like we do for cgroup.procs and only make this
4018 	 * writable in non-threaded cgroups.
4019 	 */
4020 	if (cgroup_is_threaded(cgrp))
4021 		ret = -EOPNOTSUPP;
4022 	else
4023 		cgroup_kill(cgrp);
4024 
4025 	cgroup_kn_unlock(of->kn);
4026 
4027 	return ret ?: nbytes;
4028 }
4029 
cgroup_file_open(struct kernfs_open_file * of)4030 static int cgroup_file_open(struct kernfs_open_file *of)
4031 {
4032 	struct cftype *cft = of_cft(of);
4033 	struct cgroup_file_ctx *ctx;
4034 	int ret;
4035 
4036 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
4037 	if (!ctx)
4038 		return -ENOMEM;
4039 
4040 	ctx->ns = current->nsproxy->cgroup_ns;
4041 	get_cgroup_ns(ctx->ns);
4042 	of->priv = ctx;
4043 
4044 	if (!cft->open)
4045 		return 0;
4046 
4047 	ret = cft->open(of);
4048 	if (ret) {
4049 		put_cgroup_ns(ctx->ns);
4050 		kfree(ctx);
4051 	}
4052 	return ret;
4053 }
4054 
cgroup_file_release(struct kernfs_open_file * of)4055 static void cgroup_file_release(struct kernfs_open_file *of)
4056 {
4057 	struct cftype *cft = of_cft(of);
4058 	struct cgroup_file_ctx *ctx = of->priv;
4059 
4060 	if (cft->release)
4061 		cft->release(of);
4062 	put_cgroup_ns(ctx->ns);
4063 	kfree(ctx);
4064 }
4065 
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4066 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
4067 				 size_t nbytes, loff_t off)
4068 {
4069 	struct cgroup_file_ctx *ctx = of->priv;
4070 	struct cgroup *cgrp = of->kn->parent->priv;
4071 	struct cftype *cft = of_cft(of);
4072 	struct cgroup_subsys_state *css;
4073 	int ret;
4074 
4075 	if (!nbytes)
4076 		return 0;
4077 
4078 	/*
4079 	 * If namespaces are delegation boundaries, disallow writes to
4080 	 * files in an non-init namespace root from inside the namespace
4081 	 * except for the files explicitly marked delegatable -
4082 	 * cgroup.procs and cgroup.subtree_control.
4083 	 */
4084 	if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
4085 	    !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
4086 	    ctx->ns != &init_cgroup_ns && ctx->ns->root_cset->dfl_cgrp == cgrp)
4087 		return -EPERM;
4088 
4089 	if (cft->write)
4090 		return cft->write(of, buf, nbytes, off);
4091 
4092 	/*
4093 	 * kernfs guarantees that a file isn't deleted with operations in
4094 	 * flight, which means that the matching css is and stays alive and
4095 	 * doesn't need to be pinned.  The RCU locking is not necessary
4096 	 * either.  It's just for the convenience of using cgroup_css().
4097 	 */
4098 	rcu_read_lock();
4099 	css = cgroup_css(cgrp, cft->ss);
4100 	rcu_read_unlock();
4101 
4102 	if (cft->write_u64) {
4103 		unsigned long long v;
4104 		ret = kstrtoull(buf, 0, &v);
4105 		if (!ret)
4106 			ret = cft->write_u64(css, cft, v);
4107 	} else if (cft->write_s64) {
4108 		long long v;
4109 		ret = kstrtoll(buf, 0, &v);
4110 		if (!ret)
4111 			ret = cft->write_s64(css, cft, v);
4112 	} else {
4113 		ret = -EINVAL;
4114 	}
4115 
4116 	return ret ?: nbytes;
4117 }
4118 
cgroup_file_poll(struct kernfs_open_file * of,poll_table * pt)4119 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
4120 {
4121 	struct cftype *cft = of_cft(of);
4122 
4123 	if (cft->poll)
4124 		return cft->poll(of, pt);
4125 
4126 	return kernfs_generic_poll(of, pt);
4127 }
4128 
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)4129 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
4130 {
4131 	return seq_cft(seq)->seq_start(seq, ppos);
4132 }
4133 
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)4134 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
4135 {
4136 	return seq_cft(seq)->seq_next(seq, v, ppos);
4137 }
4138 
cgroup_seqfile_stop(struct seq_file * seq,void * v)4139 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
4140 {
4141 	if (seq_cft(seq)->seq_stop)
4142 		seq_cft(seq)->seq_stop(seq, v);
4143 }
4144 
cgroup_seqfile_show(struct seq_file * m,void * arg)4145 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
4146 {
4147 	struct cftype *cft = seq_cft(m);
4148 	struct cgroup_subsys_state *css = seq_css(m);
4149 
4150 	if (cft->seq_show)
4151 		return cft->seq_show(m, arg);
4152 
4153 	if (cft->read_u64)
4154 		seq_printf(m, "%llu\n", cft->read_u64(css, cft));
4155 	else if (cft->read_s64)
4156 		seq_printf(m, "%lld\n", cft->read_s64(css, cft));
4157 	else
4158 		return -EINVAL;
4159 	return 0;
4160 }
4161 
4162 static struct kernfs_ops cgroup_kf_single_ops = {
4163 	.atomic_write_len	= PAGE_SIZE,
4164 	.open			= cgroup_file_open,
4165 	.release		= cgroup_file_release,
4166 	.write			= cgroup_file_write,
4167 	.poll			= cgroup_file_poll,
4168 	.seq_show		= cgroup_seqfile_show,
4169 };
4170 
4171 static struct kernfs_ops cgroup_kf_ops = {
4172 	.atomic_write_len	= PAGE_SIZE,
4173 	.open			= cgroup_file_open,
4174 	.release		= cgroup_file_release,
4175 	.write			= cgroup_file_write,
4176 	.poll			= cgroup_file_poll,
4177 	.seq_start		= cgroup_seqfile_start,
4178 	.seq_next		= cgroup_seqfile_next,
4179 	.seq_stop		= cgroup_seqfile_stop,
4180 	.seq_show		= cgroup_seqfile_show,
4181 };
4182 
4183 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)4184 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
4185 {
4186 	struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
4187 			       .ia_uid = current_fsuid(),
4188 			       .ia_gid = current_fsgid(), };
4189 
4190 	if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
4191 	    gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
4192 		return 0;
4193 
4194 	return kernfs_setattr(kn, &iattr);
4195 }
4196 
cgroup_file_notify_timer(struct timer_list * timer)4197 static void cgroup_file_notify_timer(struct timer_list *timer)
4198 {
4199 	cgroup_file_notify(container_of(timer, struct cgroup_file,
4200 					notify_timer));
4201 }
4202 
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)4203 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
4204 			   struct cftype *cft)
4205 {
4206 	char name[CGROUP_FILE_NAME_MAX];
4207 	struct kernfs_node *kn;
4208 	struct lock_class_key *key = NULL;
4209 	int ret;
4210 
4211 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4212 	key = &cft->lockdep_key;
4213 #endif
4214 	kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
4215 				  cgroup_file_mode(cft),
4216 				  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
4217 				  0, cft->kf_ops, cft,
4218 				  NULL, key);
4219 	if (IS_ERR(kn))
4220 		return PTR_ERR(kn);
4221 
4222 	ret = cgroup_kn_set_ugid(kn);
4223 	if (ret) {
4224 		kernfs_remove(kn);
4225 		return ret;
4226 	}
4227 
4228 	if (cft->file_offset) {
4229 		struct cgroup_file *cfile = (void *)css + cft->file_offset;
4230 
4231 		timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
4232 
4233 		spin_lock_irq(&cgroup_file_kn_lock);
4234 		cfile->kn = kn;
4235 		spin_unlock_irq(&cgroup_file_kn_lock);
4236 	}
4237 
4238 	return 0;
4239 }
4240 
4241 /**
4242  * cgroup_addrm_files - add or remove files to a cgroup directory
4243  * @css: the target css
4244  * @cgrp: the target cgroup (usually css->cgroup)
4245  * @cfts: array of cftypes to be added
4246  * @is_add: whether to add or remove
4247  *
4248  * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
4249  * For removals, this function never fails.
4250  */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)4251 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
4252 			      struct cgroup *cgrp, struct cftype cfts[],
4253 			      bool is_add)
4254 {
4255 	struct cftype *cft, *cft_end = NULL;
4256 	int ret = 0;
4257 
4258 	lockdep_assert_held(&cgroup_mutex);
4259 
4260 restart:
4261 	for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
4262 		/* does cft->flags tell us to skip this file on @cgrp? */
4263 		if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
4264 			continue;
4265 		if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
4266 			continue;
4267 		if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
4268 			continue;
4269 		if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
4270 			continue;
4271 		if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
4272 			continue;
4273 		if (is_add) {
4274 			ret = cgroup_add_file(css, cgrp, cft);
4275 			if (ret) {
4276 				pr_warn("%s: failed to add %s, err=%d\n",
4277 					__func__, cft->name, ret);
4278 				cft_end = cft;
4279 				is_add = false;
4280 				goto restart;
4281 			}
4282 		} else {
4283 			cgroup_rm_file(cgrp, cft);
4284 		}
4285 	}
4286 	return ret;
4287 }
4288 
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)4289 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
4290 {
4291 	struct cgroup_subsys *ss = cfts[0].ss;
4292 	struct cgroup *root = &ss->root->cgrp;
4293 	struct cgroup_subsys_state *css;
4294 	int ret = 0;
4295 
4296 	lockdep_assert_held(&cgroup_mutex);
4297 
4298 	/* add/rm files for all cgroups created before */
4299 	css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
4300 		struct cgroup *cgrp = css->cgroup;
4301 
4302 		if (!(css->flags & CSS_VISIBLE))
4303 			continue;
4304 
4305 		ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
4306 		if (ret)
4307 			break;
4308 	}
4309 
4310 	if (is_add && !ret)
4311 		kernfs_activate(root->kn);
4312 	return ret;
4313 }
4314 
cgroup_exit_cftypes(struct cftype * cfts)4315 static void cgroup_exit_cftypes(struct cftype *cfts)
4316 {
4317 	struct cftype *cft;
4318 
4319 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4320 		/* free copy for custom atomic_write_len, see init_cftypes() */
4321 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
4322 			kfree(cft->kf_ops);
4323 		cft->kf_ops = NULL;
4324 		cft->ss = NULL;
4325 
4326 		/* revert flags set by cgroup core while adding @cfts */
4327 		cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL |
4328 				__CFTYPE_ADDED);
4329 	}
4330 }
4331 
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4332 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4333 {
4334 	struct cftype *cft;
4335 	int ret = 0;
4336 
4337 	for (cft = cfts; cft->name[0] != '\0'; cft++) {
4338 		struct kernfs_ops *kf_ops;
4339 
4340 		WARN_ON(cft->ss || cft->kf_ops);
4341 
4342 		if (cft->flags & __CFTYPE_ADDED) {
4343 			ret = -EBUSY;
4344 			break;
4345 		}
4346 
4347 		if (cft->seq_start)
4348 			kf_ops = &cgroup_kf_ops;
4349 		else
4350 			kf_ops = &cgroup_kf_single_ops;
4351 
4352 		/*
4353 		 * Ugh... if @cft wants a custom max_write_len, we need to
4354 		 * make a copy of kf_ops to set its atomic_write_len.
4355 		 */
4356 		if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
4357 			kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
4358 			if (!kf_ops) {
4359 				ret = -ENOMEM;
4360 				break;
4361 			}
4362 			kf_ops->atomic_write_len = cft->max_write_len;
4363 		}
4364 
4365 		cft->kf_ops = kf_ops;
4366 		cft->ss = ss;
4367 		cft->flags |= __CFTYPE_ADDED;
4368 	}
4369 
4370 	if (ret)
4371 		cgroup_exit_cftypes(cfts);
4372 	return ret;
4373 }
4374 
cgroup_rm_cftypes_locked(struct cftype * cfts)4375 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
4376 {
4377 	lockdep_assert_held(&cgroup_mutex);
4378 
4379 	list_del(&cfts->node);
4380 	cgroup_apply_cftypes(cfts, false);
4381 	cgroup_exit_cftypes(cfts);
4382 	return 0;
4383 }
4384 
4385 /**
4386  * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
4387  * @cfts: zero-length name terminated array of cftypes
4388  *
4389  * Unregister @cfts.  Files described by @cfts are removed from all
4390  * existing cgroups and all future cgroups won't have them either.  This
4391  * function can be called anytime whether @cfts' subsys is attached or not.
4392  *
4393  * Returns 0 on successful unregistration, -ENOENT if @cfts is not
4394  * registered.
4395  */
cgroup_rm_cftypes(struct cftype * cfts)4396 int cgroup_rm_cftypes(struct cftype *cfts)
4397 {
4398 	int ret;
4399 
4400 	if (!cfts || cfts[0].name[0] == '\0')
4401 		return 0;
4402 
4403 	if (!(cfts[0].flags & __CFTYPE_ADDED))
4404 		return -ENOENT;
4405 
4406 	cgroup_lock();
4407 	ret = cgroup_rm_cftypes_locked(cfts);
4408 	cgroup_unlock();
4409 	return ret;
4410 }
4411 
4412 /**
4413  * cgroup_add_cftypes - add an array of cftypes to a subsystem
4414  * @ss: target cgroup subsystem
4415  * @cfts: zero-length name terminated array of cftypes
4416  *
4417  * Register @cfts to @ss.  Files described by @cfts are created for all
4418  * existing cgroups to which @ss is attached and all future cgroups will
4419  * have them too.  This function can be called anytime whether @ss is
4420  * attached or not.
4421  *
4422  * Returns 0 on successful registration, -errno on failure.  Note that this
4423  * function currently returns 0 as long as @cfts registration is successful
4424  * even if some file creation attempts on existing cgroups fail.
4425  */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4426 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4427 {
4428 	int ret;
4429 
4430 	if (!cgroup_ssid_enabled(ss->id))
4431 		return 0;
4432 
4433 	if (!cfts || cfts[0].name[0] == '\0')
4434 		return 0;
4435 
4436 	ret = cgroup_init_cftypes(ss, cfts);
4437 	if (ret)
4438 		return ret;
4439 
4440 	cgroup_lock();
4441 
4442 	list_add_tail(&cfts->node, &ss->cfts);
4443 	ret = cgroup_apply_cftypes(cfts, true);
4444 	if (ret)
4445 		cgroup_rm_cftypes_locked(cfts);
4446 
4447 	cgroup_unlock();
4448 	return ret;
4449 }
4450 
4451 /**
4452  * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4453  * @ss: target cgroup subsystem
4454  * @cfts: zero-length name terminated array of cftypes
4455  *
4456  * Similar to cgroup_add_cftypes() but the added files are only used for
4457  * the default hierarchy.
4458  */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4459 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4460 {
4461 	struct cftype *cft;
4462 
4463 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4464 		cft->flags |= __CFTYPE_ONLY_ON_DFL;
4465 	return cgroup_add_cftypes(ss, cfts);
4466 }
4467 EXPORT_SYMBOL_GPL(cgroup_add_dfl_cftypes);
4468 
4469 /**
4470  * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4471  * @ss: target cgroup subsystem
4472  * @cfts: zero-length name terminated array of cftypes
4473  *
4474  * Similar to cgroup_add_cftypes() but the added files are only used for
4475  * the legacy hierarchies.
4476  */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)4477 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4478 {
4479 	struct cftype *cft;
4480 
4481 	for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4482 		cft->flags |= __CFTYPE_NOT_ON_DFL;
4483 	return cgroup_add_cftypes(ss, cfts);
4484 }
4485 EXPORT_SYMBOL_GPL(cgroup_add_legacy_cftypes);
4486 
4487 /**
4488  * cgroup_file_notify - generate a file modified event for a cgroup_file
4489  * @cfile: target cgroup_file
4490  *
4491  * @cfile must have been obtained by setting cftype->file_offset.
4492  */
cgroup_file_notify(struct cgroup_file * cfile)4493 void cgroup_file_notify(struct cgroup_file *cfile)
4494 {
4495 	unsigned long flags;
4496 
4497 	spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4498 	if (cfile->kn) {
4499 		unsigned long last = cfile->notified_at;
4500 		unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4501 
4502 		if (time_in_range(jiffies, last, next)) {
4503 			timer_reduce(&cfile->notify_timer, next);
4504 		} else {
4505 			kernfs_notify(cfile->kn);
4506 			cfile->notified_at = jiffies;
4507 		}
4508 	}
4509 	spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4510 }
4511 
4512 /**
4513  * cgroup_file_show - show or hide a hidden cgroup file
4514  * @cfile: target cgroup_file obtained by setting cftype->file_offset
4515  * @show: whether to show or hide
4516  */
cgroup_file_show(struct cgroup_file * cfile,bool show)4517 void cgroup_file_show(struct cgroup_file *cfile, bool show)
4518 {
4519 	struct kernfs_node *kn;
4520 
4521 	spin_lock_irq(&cgroup_file_kn_lock);
4522 	kn = cfile->kn;
4523 	kernfs_get(kn);
4524 	spin_unlock_irq(&cgroup_file_kn_lock);
4525 
4526 	if (kn)
4527 		kernfs_show(kn, show);
4528 
4529 	kernfs_put(kn);
4530 }
4531 
4532 /**
4533  * css_next_child - find the next child of a given css
4534  * @pos: the current position (%NULL to initiate traversal)
4535  * @parent: css whose children to walk
4536  *
4537  * This function returns the next child of @parent and should be called
4538  * under either cgroup_mutex or RCU read lock.  The only requirement is
4539  * that @parent and @pos are accessible.  The next sibling is guaranteed to
4540  * be returned regardless of their states.
4541  *
4542  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4543  * css which finished ->css_online() is guaranteed to be visible in the
4544  * future iterations and will stay visible until the last reference is put.
4545  * A css which hasn't finished ->css_online() or already finished
4546  * ->css_offline() may show up during traversal.  It's each subsystem's
4547  * responsibility to synchronize against on/offlining.
4548  */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)4549 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4550 					   struct cgroup_subsys_state *parent)
4551 {
4552 	struct cgroup_subsys_state *next;
4553 
4554 	cgroup_assert_mutex_or_rcu_locked();
4555 
4556 	/*
4557 	 * @pos could already have been unlinked from the sibling list.
4558 	 * Once a cgroup is removed, its ->sibling.next is no longer
4559 	 * updated when its next sibling changes.  CSS_RELEASED is set when
4560 	 * @pos is taken off list, at which time its next pointer is valid,
4561 	 * and, as releases are serialized, the one pointed to by the next
4562 	 * pointer is guaranteed to not have started release yet.  This
4563 	 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4564 	 * critical section, the one pointed to by its next pointer is
4565 	 * guaranteed to not have finished its RCU grace period even if we
4566 	 * have dropped rcu_read_lock() in-between iterations.
4567 	 *
4568 	 * If @pos has CSS_RELEASED set, its next pointer can't be
4569 	 * dereferenced; however, as each css is given a monotonically
4570 	 * increasing unique serial number and always appended to the
4571 	 * sibling list, the next one can be found by walking the parent's
4572 	 * children until the first css with higher serial number than
4573 	 * @pos's.  While this path can be slower, it happens iff iteration
4574 	 * races against release and the race window is very small.
4575 	 */
4576 	if (!pos) {
4577 		next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4578 	} else if (likely(!(pos->flags & CSS_RELEASED))) {
4579 		next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4580 	} else {
4581 		list_for_each_entry_rcu(next, &parent->children, sibling,
4582 					lockdep_is_held(&cgroup_mutex))
4583 			if (next->serial_nr > pos->serial_nr)
4584 				break;
4585 	}
4586 
4587 	/*
4588 	 * @next, if not pointing to the head, can be dereferenced and is
4589 	 * the next sibling.
4590 	 */
4591 	if (&next->sibling != &parent->children)
4592 		return next;
4593 	return NULL;
4594 }
4595 EXPORT_SYMBOL_GPL(css_next_child);
4596 
4597 /**
4598  * css_next_descendant_pre - find the next descendant for pre-order walk
4599  * @pos: the current position (%NULL to initiate traversal)
4600  * @root: css whose descendants to walk
4601  *
4602  * To be used by css_for_each_descendant_pre().  Find the next descendant
4603  * to visit for pre-order traversal of @root's descendants.  @root is
4604  * included in the iteration and the first node to be visited.
4605  *
4606  * While this function requires cgroup_mutex or RCU read locking, it
4607  * doesn't require the whole traversal to be contained in a single critical
4608  * section.  This function will return the correct next descendant as long
4609  * as both @pos and @root are accessible and @pos is a descendant of @root.
4610  *
4611  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4612  * css which finished ->css_online() is guaranteed to be visible in the
4613  * future iterations and will stay visible until the last reference is put.
4614  * A css which hasn't finished ->css_online() or already finished
4615  * ->css_offline() may show up during traversal.  It's each subsystem's
4616  * responsibility to synchronize against on/offlining.
4617  */
4618 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4619 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4620 			struct cgroup_subsys_state *root)
4621 {
4622 	struct cgroup_subsys_state *next;
4623 
4624 	cgroup_assert_mutex_or_rcu_locked();
4625 
4626 	/* if first iteration, visit @root */
4627 	if (!pos)
4628 		return root;
4629 
4630 	/* visit the first child if exists */
4631 	next = css_next_child(NULL, pos);
4632 	if (next)
4633 		return next;
4634 
4635 	/* no child, visit my or the closest ancestor's next sibling */
4636 	while (pos != root) {
4637 		next = css_next_child(pos, pos->parent);
4638 		if (next)
4639 			return next;
4640 		pos = pos->parent;
4641 	}
4642 
4643 	return NULL;
4644 }
4645 EXPORT_SYMBOL_GPL(css_next_descendant_pre);
4646 
4647 /**
4648  * css_rightmost_descendant - return the rightmost descendant of a css
4649  * @pos: css of interest
4650  *
4651  * Return the rightmost descendant of @pos.  If there's no descendant, @pos
4652  * is returned.  This can be used during pre-order traversal to skip
4653  * subtree of @pos.
4654  *
4655  * While this function requires cgroup_mutex or RCU read locking, it
4656  * doesn't require the whole traversal to be contained in a single critical
4657  * section.  This function will return the correct rightmost descendant as
4658  * long as @pos is accessible.
4659  */
4660 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4661 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4662 {
4663 	struct cgroup_subsys_state *last, *tmp;
4664 
4665 	cgroup_assert_mutex_or_rcu_locked();
4666 
4667 	do {
4668 		last = pos;
4669 		/* ->prev isn't RCU safe, walk ->next till the end */
4670 		pos = NULL;
4671 		css_for_each_child(tmp, last)
4672 			pos = tmp;
4673 	} while (pos);
4674 
4675 	return last;
4676 }
4677 
4678 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4679 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4680 {
4681 	struct cgroup_subsys_state *last;
4682 
4683 	do {
4684 		last = pos;
4685 		pos = css_next_child(NULL, pos);
4686 	} while (pos);
4687 
4688 	return last;
4689 }
4690 
4691 /**
4692  * css_next_descendant_post - find the next descendant for post-order walk
4693  * @pos: the current position (%NULL to initiate traversal)
4694  * @root: css whose descendants to walk
4695  *
4696  * To be used by css_for_each_descendant_post().  Find the next descendant
4697  * to visit for post-order traversal of @root's descendants.  @root is
4698  * included in the iteration and the last node to be visited.
4699  *
4700  * While this function requires cgroup_mutex or RCU read locking, it
4701  * doesn't require the whole traversal to be contained in a single critical
4702  * section.  This function will return the correct next descendant as long
4703  * as both @pos and @cgroup are accessible and @pos is a descendant of
4704  * @cgroup.
4705  *
4706  * If a subsystem synchronizes ->css_online() and the start of iteration, a
4707  * css which finished ->css_online() is guaranteed to be visible in the
4708  * future iterations and will stay visible until the last reference is put.
4709  * A css which hasn't finished ->css_online() or already finished
4710  * ->css_offline() may show up during traversal.  It's each subsystem's
4711  * responsibility to synchronize against on/offlining.
4712  */
4713 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4714 css_next_descendant_post(struct cgroup_subsys_state *pos,
4715 			 struct cgroup_subsys_state *root)
4716 {
4717 	struct cgroup_subsys_state *next;
4718 
4719 	cgroup_assert_mutex_or_rcu_locked();
4720 
4721 	/* if first iteration, visit leftmost descendant which may be @root */
4722 	if (!pos)
4723 		return css_leftmost_descendant(root);
4724 
4725 	/* if we visited @root, we're done */
4726 	if (pos == root)
4727 		return NULL;
4728 
4729 	/* if there's an unvisited sibling, visit its leftmost descendant */
4730 	next = css_next_child(pos, pos->parent);
4731 	if (next)
4732 		return css_leftmost_descendant(next);
4733 
4734 	/* no sibling left, visit parent */
4735 	return pos->parent;
4736 }
4737 
4738 /**
4739  * css_has_online_children - does a css have online children
4740  * @css: the target css
4741  *
4742  * Returns %true if @css has any online children; otherwise, %false.  This
4743  * function can be called from any context but the caller is responsible
4744  * for synchronizing against on/offlining as necessary.
4745  */
css_has_online_children(struct cgroup_subsys_state * css)4746 bool css_has_online_children(struct cgroup_subsys_state *css)
4747 {
4748 	struct cgroup_subsys_state *child;
4749 	bool ret = false;
4750 
4751 	rcu_read_lock();
4752 	css_for_each_child(child, css) {
4753 		if (child->flags & CSS_ONLINE) {
4754 			ret = true;
4755 			break;
4756 		}
4757 	}
4758 	rcu_read_unlock();
4759 	return ret;
4760 }
4761 
css_task_iter_next_css_set(struct css_task_iter * it)4762 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4763 {
4764 	struct list_head *l;
4765 	struct cgrp_cset_link *link;
4766 	struct css_set *cset;
4767 
4768 	lockdep_assert_held(&css_set_lock);
4769 
4770 	/* find the next threaded cset */
4771 	if (it->tcset_pos) {
4772 		l = it->tcset_pos->next;
4773 
4774 		if (l != it->tcset_head) {
4775 			it->tcset_pos = l;
4776 			return container_of(l, struct css_set,
4777 					    threaded_csets_node);
4778 		}
4779 
4780 		it->tcset_pos = NULL;
4781 	}
4782 
4783 	/* find the next cset */
4784 	l = it->cset_pos;
4785 	l = l->next;
4786 	if (l == it->cset_head) {
4787 		it->cset_pos = NULL;
4788 		return NULL;
4789 	}
4790 
4791 	if (it->ss) {
4792 		cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4793 	} else {
4794 		link = list_entry(l, struct cgrp_cset_link, cset_link);
4795 		cset = link->cset;
4796 	}
4797 
4798 	it->cset_pos = l;
4799 
4800 	/* initialize threaded css_set walking */
4801 	if (it->flags & CSS_TASK_ITER_THREADED) {
4802 		if (it->cur_dcset)
4803 			put_css_set_locked(it->cur_dcset);
4804 		it->cur_dcset = cset;
4805 		get_css_set(cset);
4806 
4807 		it->tcset_head = &cset->threaded_csets;
4808 		it->tcset_pos = &cset->threaded_csets;
4809 	}
4810 
4811 	return cset;
4812 }
4813 
4814 /**
4815  * css_task_iter_advance_css_set - advance a task iterator to the next css_set
4816  * @it: the iterator to advance
4817  *
4818  * Advance @it to the next css_set to walk.
4819  */
css_task_iter_advance_css_set(struct css_task_iter * it)4820 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4821 {
4822 	struct css_set *cset;
4823 
4824 	lockdep_assert_held(&css_set_lock);
4825 
4826 	/* Advance to the next non-empty css_set and find first non-empty tasks list*/
4827 	while ((cset = css_task_iter_next_css_set(it))) {
4828 		if (!list_empty(&cset->tasks)) {
4829 			it->cur_tasks_head = &cset->tasks;
4830 			break;
4831 		} else if (!list_empty(&cset->mg_tasks)) {
4832 			it->cur_tasks_head = &cset->mg_tasks;
4833 			break;
4834 		} else if (!list_empty(&cset->dying_tasks)) {
4835 			it->cur_tasks_head = &cset->dying_tasks;
4836 			break;
4837 		}
4838 	}
4839 	if (!cset) {
4840 		it->task_pos = NULL;
4841 		return;
4842 	}
4843 	it->task_pos = it->cur_tasks_head->next;
4844 
4845 	/*
4846 	 * We don't keep css_sets locked across iteration steps and thus
4847 	 * need to take steps to ensure that iteration can be resumed after
4848 	 * the lock is re-acquired.  Iteration is performed at two levels -
4849 	 * css_sets and tasks in them.
4850 	 *
4851 	 * Once created, a css_set never leaves its cgroup lists, so a
4852 	 * pinned css_set is guaranteed to stay put and we can resume
4853 	 * iteration afterwards.
4854 	 *
4855 	 * Tasks may leave @cset across iteration steps.  This is resolved
4856 	 * by registering each iterator with the css_set currently being
4857 	 * walked and making css_set_move_task() advance iterators whose
4858 	 * next task is leaving.
4859 	 */
4860 	if (it->cur_cset) {
4861 		list_del(&it->iters_node);
4862 		put_css_set_locked(it->cur_cset);
4863 	}
4864 	get_css_set(cset);
4865 	it->cur_cset = cset;
4866 	list_add(&it->iters_node, &cset->task_iters);
4867 }
4868 
css_task_iter_skip(struct css_task_iter * it,struct task_struct * task)4869 static void css_task_iter_skip(struct css_task_iter *it,
4870 			       struct task_struct *task)
4871 {
4872 	lockdep_assert_held(&css_set_lock);
4873 
4874 	if (it->task_pos == &task->cg_list) {
4875 		it->task_pos = it->task_pos->next;
4876 		it->flags |= CSS_TASK_ITER_SKIPPED;
4877 	}
4878 }
4879 
css_task_iter_advance(struct css_task_iter * it)4880 static void css_task_iter_advance(struct css_task_iter *it)
4881 {
4882 	struct task_struct *task;
4883 
4884 	lockdep_assert_held(&css_set_lock);
4885 repeat:
4886 	if (it->task_pos) {
4887 		/*
4888 		 * Advance iterator to find next entry. We go through cset
4889 		 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4890 		 * the next cset.
4891 		 */
4892 		if (it->flags & CSS_TASK_ITER_SKIPPED)
4893 			it->flags &= ~CSS_TASK_ITER_SKIPPED;
4894 		else
4895 			it->task_pos = it->task_pos->next;
4896 
4897 		if (it->task_pos == &it->cur_cset->tasks) {
4898 			it->cur_tasks_head = &it->cur_cset->mg_tasks;
4899 			it->task_pos = it->cur_tasks_head->next;
4900 		}
4901 		if (it->task_pos == &it->cur_cset->mg_tasks) {
4902 			it->cur_tasks_head = &it->cur_cset->dying_tasks;
4903 			it->task_pos = it->cur_tasks_head->next;
4904 		}
4905 		if (it->task_pos == &it->cur_cset->dying_tasks)
4906 			css_task_iter_advance_css_set(it);
4907 	} else {
4908 		/* called from start, proceed to the first cset */
4909 		css_task_iter_advance_css_set(it);
4910 	}
4911 
4912 	if (!it->task_pos)
4913 		return;
4914 
4915 	task = list_entry(it->task_pos, struct task_struct, cg_list);
4916 
4917 	if (it->flags & CSS_TASK_ITER_PROCS) {
4918 		/* if PROCS, skip over tasks which aren't group leaders */
4919 		if (!thread_group_leader(task))
4920 			goto repeat;
4921 
4922 		/* and dying leaders w/o live member threads */
4923 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks &&
4924 		    !atomic_read(&task->signal->live))
4925 			goto repeat;
4926 	} else {
4927 		/* skip all dying ones */
4928 		if (it->cur_tasks_head == &it->cur_cset->dying_tasks)
4929 			goto repeat;
4930 	}
4931 }
4932 
4933 /**
4934  * css_task_iter_start - initiate task iteration
4935  * @css: the css to walk tasks of
4936  * @flags: CSS_TASK_ITER_* flags
4937  * @it: the task iterator to use
4938  *
4939  * Initiate iteration through the tasks of @css.  The caller can call
4940  * css_task_iter_next() to walk through the tasks until the function
4941  * returns NULL.  On completion of iteration, css_task_iter_end() must be
4942  * called.
4943  */
css_task_iter_start(struct cgroup_subsys_state * css,unsigned int flags,struct css_task_iter * it)4944 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4945 			 struct css_task_iter *it)
4946 {
4947 	memset(it, 0, sizeof(*it));
4948 
4949 	spin_lock_irq(&css_set_lock);
4950 
4951 	it->ss = css->ss;
4952 	it->flags = flags;
4953 
4954 	if (CGROUP_HAS_SUBSYS_CONFIG && it->ss)
4955 		it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4956 	else
4957 		it->cset_pos = &css->cgroup->cset_links;
4958 
4959 	it->cset_head = it->cset_pos;
4960 
4961 	css_task_iter_advance(it);
4962 
4963 	spin_unlock_irq(&css_set_lock);
4964 }
4965 
4966 /**
4967  * css_task_iter_next - return the next task for the iterator
4968  * @it: the task iterator being iterated
4969  *
4970  * The "next" function for task iteration.  @it should have been
4971  * initialized via css_task_iter_start().  Returns NULL when the iteration
4972  * reaches the end.
4973  */
css_task_iter_next(struct css_task_iter * it)4974 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4975 {
4976 	if (it->cur_task) {
4977 		put_task_struct(it->cur_task);
4978 		it->cur_task = NULL;
4979 	}
4980 
4981 	spin_lock_irq(&css_set_lock);
4982 
4983 	/* @it may be half-advanced by skips, finish advancing */
4984 	if (it->flags & CSS_TASK_ITER_SKIPPED)
4985 		css_task_iter_advance(it);
4986 
4987 	if (it->task_pos) {
4988 		it->cur_task = list_entry(it->task_pos, struct task_struct,
4989 					  cg_list);
4990 		get_task_struct(it->cur_task);
4991 		css_task_iter_advance(it);
4992 	}
4993 
4994 	spin_unlock_irq(&css_set_lock);
4995 
4996 	return it->cur_task;
4997 }
4998 
4999 /**
5000  * css_task_iter_end - finish task iteration
5001  * @it: the task iterator to finish
5002  *
5003  * Finish task iteration started by css_task_iter_start().
5004  */
css_task_iter_end(struct css_task_iter * it)5005 void css_task_iter_end(struct css_task_iter *it)
5006 {
5007 	if (it->cur_cset) {
5008 		spin_lock_irq(&css_set_lock);
5009 		list_del(&it->iters_node);
5010 		put_css_set_locked(it->cur_cset);
5011 		spin_unlock_irq(&css_set_lock);
5012 	}
5013 
5014 	if (it->cur_dcset)
5015 		put_css_set(it->cur_dcset);
5016 
5017 	if (it->cur_task)
5018 		put_task_struct(it->cur_task);
5019 }
5020 
cgroup_procs_release(struct kernfs_open_file * of)5021 static void cgroup_procs_release(struct kernfs_open_file *of)
5022 {
5023 	struct cgroup_file_ctx *ctx = of->priv;
5024 
5025 	if (ctx->procs.started)
5026 		css_task_iter_end(&ctx->procs.iter);
5027 }
5028 
cgroup_procs_next(struct seq_file * s,void * v,loff_t * pos)5029 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
5030 {
5031 	struct kernfs_open_file *of = s->private;
5032 	struct cgroup_file_ctx *ctx = of->priv;
5033 
5034 	if (pos)
5035 		(*pos)++;
5036 
5037 	return css_task_iter_next(&ctx->procs.iter);
5038 }
5039 
__cgroup_procs_start(struct seq_file * s,loff_t * pos,unsigned int iter_flags)5040 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
5041 				  unsigned int iter_flags)
5042 {
5043 	struct kernfs_open_file *of = s->private;
5044 	struct cgroup *cgrp = seq_css(s)->cgroup;
5045 	struct cgroup_file_ctx *ctx = of->priv;
5046 	struct css_task_iter *it = &ctx->procs.iter;
5047 
5048 	/*
5049 	 * When a seq_file is seeked, it's always traversed sequentially
5050 	 * from position 0, so we can simply keep iterating on !0 *pos.
5051 	 */
5052 	if (!ctx->procs.started) {
5053 		if (WARN_ON_ONCE((*pos)))
5054 			return ERR_PTR(-EINVAL);
5055 		css_task_iter_start(&cgrp->self, iter_flags, it);
5056 		ctx->procs.started = true;
5057 	} else if (!(*pos)) {
5058 		css_task_iter_end(it);
5059 		css_task_iter_start(&cgrp->self, iter_flags, it);
5060 	} else
5061 		return it->cur_task;
5062 
5063 	return cgroup_procs_next(s, NULL, NULL);
5064 }
5065 
cgroup_procs_start(struct seq_file * s,loff_t * pos)5066 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
5067 {
5068 	struct cgroup *cgrp = seq_css(s)->cgroup;
5069 
5070 	/*
5071 	 * All processes of a threaded subtree belong to the domain cgroup
5072 	 * of the subtree.  Only threads can be distributed across the
5073 	 * subtree.  Reject reads on cgroup.procs in the subtree proper.
5074 	 * They're always empty anyway.
5075 	 */
5076 	if (cgroup_is_threaded(cgrp))
5077 		return ERR_PTR(-EOPNOTSUPP);
5078 
5079 	return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
5080 					    CSS_TASK_ITER_THREADED);
5081 }
5082 
cgroup_procs_show(struct seq_file * s,void * v)5083 static int cgroup_procs_show(struct seq_file *s, void *v)
5084 {
5085 	seq_printf(s, "%d\n", task_pid_vnr(v));
5086 	return 0;
5087 }
5088 
cgroup_may_write(const struct cgroup * cgrp,struct super_block * sb)5089 static int cgroup_may_write(const struct cgroup *cgrp, struct super_block *sb)
5090 {
5091 	int ret;
5092 	struct inode *inode;
5093 
5094 	lockdep_assert_held(&cgroup_mutex);
5095 
5096 	inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
5097 	if (!inode)
5098 		return -ENOMEM;
5099 
5100 	ret = inode_permission(&init_user_ns, inode, MAY_WRITE);
5101 	iput(inode);
5102 	return ret;
5103 }
5104 
cgroup_procs_write_permission(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,struct cgroup_namespace * ns)5105 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
5106 					 struct cgroup *dst_cgrp,
5107 					 struct super_block *sb,
5108 					 struct cgroup_namespace *ns)
5109 {
5110 	struct cgroup *com_cgrp = src_cgrp;
5111 	int ret;
5112 
5113 	lockdep_assert_held(&cgroup_mutex);
5114 
5115 	/* find the common ancestor */
5116 	while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
5117 		com_cgrp = cgroup_parent(com_cgrp);
5118 
5119 	/* %current should be authorized to migrate to the common ancestor */
5120 	ret = cgroup_may_write(com_cgrp, sb);
5121 	if (ret)
5122 		return ret;
5123 
5124 	/*
5125 	 * If namespaces are delegation boundaries, %current must be able
5126 	 * to see both source and destination cgroups from its namespace.
5127 	 */
5128 	if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
5129 	    (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
5130 	     !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
5131 		return -ENOENT;
5132 
5133 	return 0;
5134 }
5135 
cgroup_attach_permissions(struct cgroup * src_cgrp,struct cgroup * dst_cgrp,struct super_block * sb,bool threadgroup,struct cgroup_namespace * ns)5136 static int cgroup_attach_permissions(struct cgroup *src_cgrp,
5137 				     struct cgroup *dst_cgrp,
5138 				     struct super_block *sb, bool threadgroup,
5139 				     struct cgroup_namespace *ns)
5140 {
5141 	int ret = 0;
5142 
5143 	ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp, sb, ns);
5144 	if (ret)
5145 		return ret;
5146 
5147 	ret = cgroup_migrate_vet_dst(dst_cgrp);
5148 	if (ret)
5149 		return ret;
5150 
5151 	if (!threadgroup && (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp))
5152 		ret = -EOPNOTSUPP;
5153 
5154 	return ret;
5155 }
5156 
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,bool threadgroup)5157 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
5158 				    bool threadgroup)
5159 {
5160 	struct cgroup_file_ctx *ctx = of->priv;
5161 	struct cgroup *src_cgrp, *dst_cgrp;
5162 	struct task_struct *task;
5163 	const struct cred *saved_cred;
5164 	ssize_t ret;
5165 	bool threadgroup_locked;
5166 
5167 	dst_cgrp = cgroup_kn_lock_live(of->kn, false);
5168 	if (!dst_cgrp)
5169 		return -ENODEV;
5170 
5171 	task = cgroup_procs_write_start(buf, threadgroup, &threadgroup_locked, dst_cgrp);
5172 	ret = PTR_ERR_OR_ZERO(task);
5173 	if (ret)
5174 		goto out_unlock;
5175 
5176 	/* find the source cgroup */
5177 	spin_lock_irq(&css_set_lock);
5178 	src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
5179 	spin_unlock_irq(&css_set_lock);
5180 
5181 	/*
5182 	 * Process and thread migrations follow same delegation rule. Check
5183 	 * permissions using the credentials from file open to protect against
5184 	 * inherited fd attacks.
5185 	 */
5186 	saved_cred = override_creds(of->file->f_cred);
5187 	ret = cgroup_attach_permissions(src_cgrp, dst_cgrp,
5188 					of->file->f_path.dentry->d_sb,
5189 					threadgroup, ctx->ns);
5190 	revert_creds(saved_cred);
5191 	if (ret)
5192 		goto out_finish;
5193 
5194 	ret = cgroup_attach_task(dst_cgrp, task, threadgroup);
5195 
5196 out_finish:
5197 	cgroup_procs_write_finish(task, threadgroup_locked);
5198 out_unlock:
5199 	cgroup_kn_unlock(of->kn);
5200 
5201 	return ret;
5202 }
5203 
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5204 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
5205 				  char *buf, size_t nbytes, loff_t off)
5206 {
5207 	return __cgroup_procs_write(of, buf, true) ?: nbytes;
5208 }
5209 
cgroup_threads_start(struct seq_file * s,loff_t * pos)5210 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
5211 {
5212 	return __cgroup_procs_start(s, pos, 0);
5213 }
5214 
cgroup_threads_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5215 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
5216 				    char *buf, size_t nbytes, loff_t off)
5217 {
5218 	return __cgroup_procs_write(of, buf, false) ?: nbytes;
5219 }
5220 
5221 /* cgroup core interface files for the default hierarchy */
5222 static struct cftype cgroup_base_files[] = {
5223 	{
5224 		.name = "cgroup.type",
5225 		.flags = CFTYPE_NOT_ON_ROOT,
5226 		.seq_show = cgroup_type_show,
5227 		.write = cgroup_type_write,
5228 	},
5229 	{
5230 		.name = "cgroup.procs",
5231 		.flags = CFTYPE_NS_DELEGATABLE,
5232 		.file_offset = offsetof(struct cgroup, procs_file),
5233 		.release = cgroup_procs_release,
5234 		.seq_start = cgroup_procs_start,
5235 		.seq_next = cgroup_procs_next,
5236 		.seq_show = cgroup_procs_show,
5237 		.write = cgroup_procs_write,
5238 	},
5239 	{
5240 		.name = "cgroup.threads",
5241 		.flags = CFTYPE_NS_DELEGATABLE,
5242 		.release = cgroup_procs_release,
5243 		.seq_start = cgroup_threads_start,
5244 		.seq_next = cgroup_procs_next,
5245 		.seq_show = cgroup_procs_show,
5246 		.write = cgroup_threads_write,
5247 	},
5248 	{
5249 		.name = "cgroup.controllers",
5250 		.seq_show = cgroup_controllers_show,
5251 	},
5252 	{
5253 		.name = "cgroup.subtree_control",
5254 		.flags = CFTYPE_NS_DELEGATABLE,
5255 		.seq_show = cgroup_subtree_control_show,
5256 		.write = cgroup_subtree_control_write,
5257 	},
5258 	{
5259 		.name = "cgroup.events",
5260 		.flags = CFTYPE_NOT_ON_ROOT,
5261 		.file_offset = offsetof(struct cgroup, events_file),
5262 		.seq_show = cgroup_events_show,
5263 	},
5264 	{
5265 		.name = "cgroup.max.descendants",
5266 		.seq_show = cgroup_max_descendants_show,
5267 		.write = cgroup_max_descendants_write,
5268 	},
5269 	{
5270 		.name = "cgroup.max.depth",
5271 		.seq_show = cgroup_max_depth_show,
5272 		.write = cgroup_max_depth_write,
5273 	},
5274 	{
5275 		.name = "cgroup.stat",
5276 		.seq_show = cgroup_stat_show,
5277 	},
5278 	{
5279 		.name = "cgroup.freeze",
5280 		.flags = CFTYPE_NOT_ON_ROOT,
5281 		.seq_show = cgroup_freeze_show,
5282 		.write = cgroup_freeze_write,
5283 	},
5284 	{
5285 		.name = "cgroup.kill",
5286 		.flags = CFTYPE_NOT_ON_ROOT,
5287 		.write = cgroup_kill_write,
5288 	},
5289 	{
5290 		.name = "cpu.stat",
5291 		.seq_show = cpu_stat_show,
5292 	},
5293 	{ }	/* terminate */
5294 };
5295 
5296 static struct cftype cgroup_psi_files[] = {
5297 #ifdef CONFIG_PSI
5298 	{
5299 		.name = "io.pressure",
5300 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IO]),
5301 		.open = cgroup_pressure_open,
5302 		.seq_show = cgroup_io_pressure_show,
5303 		.write = cgroup_io_pressure_write,
5304 		.poll = cgroup_pressure_poll,
5305 		.release = cgroup_pressure_release,
5306 	},
5307 	{
5308 		.name = "memory.pressure",
5309 		.file_offset = offsetof(struct cgroup, psi_files[PSI_MEM]),
5310 		.open = cgroup_pressure_open,
5311 		.seq_show = cgroup_memory_pressure_show,
5312 		.write = cgroup_memory_pressure_write,
5313 		.poll = cgroup_pressure_poll,
5314 		.release = cgroup_pressure_release,
5315 	},
5316 	{
5317 		.name = "cpu.pressure",
5318 		.file_offset = offsetof(struct cgroup, psi_files[PSI_CPU]),
5319 		.open = cgroup_pressure_open,
5320 		.seq_show = cgroup_cpu_pressure_show,
5321 		.write = cgroup_cpu_pressure_write,
5322 		.poll = cgroup_pressure_poll,
5323 		.release = cgroup_pressure_release,
5324 	},
5325 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
5326 	{
5327 		.name = "irq.pressure",
5328 		.file_offset = offsetof(struct cgroup, psi_files[PSI_IRQ]),
5329 		.open = cgroup_pressure_open,
5330 		.seq_show = cgroup_irq_pressure_show,
5331 		.write = cgroup_irq_pressure_write,
5332 		.poll = cgroup_pressure_poll,
5333 		.release = cgroup_pressure_release,
5334 	},
5335 #endif
5336 	{
5337 		.name = "cgroup.pressure",
5338 		.seq_show = cgroup_pressure_show,
5339 		.write = cgroup_pressure_write,
5340 	},
5341 #endif /* CONFIG_PSI */
5342 	{ }	/* terminate */
5343 };
5344 
5345 /*
5346  * css destruction is four-stage process.
5347  *
5348  * 1. Destruction starts.  Killing of the percpu_ref is initiated.
5349  *    Implemented in kill_css().
5350  *
5351  * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
5352  *    and thus css_tryget_online() is guaranteed to fail, the css can be
5353  *    offlined by invoking offline_css().  After offlining, the base ref is
5354  *    put.  Implemented in css_killed_work_fn().
5355  *
5356  * 3. When the percpu_ref reaches zero, the only possible remaining
5357  *    accessors are inside RCU read sections.  css_release() schedules the
5358  *    RCU callback.
5359  *
5360  * 4. After the grace period, the css can be freed.  Implemented in
5361  *    css_free_work_fn().
5362  *
5363  * It is actually hairier because both step 2 and 4 require process context
5364  * and thus involve punting to css->destroy_work adding two additional
5365  * steps to the already complex sequence.
5366  */
css_free_rwork_fn(struct work_struct * work)5367 static void css_free_rwork_fn(struct work_struct *work)
5368 {
5369 	struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
5370 				struct cgroup_subsys_state, destroy_rwork);
5371 	struct cgroup_subsys *ss = css->ss;
5372 	struct cgroup *cgrp = css->cgroup;
5373 
5374 	percpu_ref_exit(&css->refcnt);
5375 
5376 	if (ss) {
5377 		/* css free path */
5378 		struct cgroup_subsys_state *parent = css->parent;
5379 		int id = css->id;
5380 
5381 		ss->css_free(css);
5382 		cgroup_idr_remove(&ss->css_idr, id);
5383 		cgroup_put(cgrp);
5384 
5385 		if (parent)
5386 			css_put(parent);
5387 	} else {
5388 		/* cgroup free path */
5389 		atomic_dec(&cgrp->root->nr_cgrps);
5390 		cgroup1_pidlist_destroy_all(cgrp);
5391 		cancel_work_sync(&cgrp->release_agent_work);
5392 
5393 		if (cgroup_parent(cgrp)) {
5394 			/*
5395 			 * We get a ref to the parent, and put the ref when
5396 			 * this cgroup is being freed, so it's guaranteed
5397 			 * that the parent won't be destroyed before its
5398 			 * children.
5399 			 */
5400 			cgroup_put(cgroup_parent(cgrp));
5401 			kernfs_put(cgrp->kn);
5402 			psi_cgroup_free(cgrp);
5403 			cgroup_rstat_exit(cgrp);
5404 			kfree(cgrp);
5405 		} else {
5406 			/*
5407 			 * This is root cgroup's refcnt reaching zero,
5408 			 * which indicates that the root should be
5409 			 * released.
5410 			 */
5411 			cgroup_destroy_root(cgrp->root);
5412 		}
5413 	}
5414 }
5415 
css_release_work_fn(struct work_struct * work)5416 static void css_release_work_fn(struct work_struct *work)
5417 {
5418 	struct cgroup_subsys_state *css =
5419 		container_of(work, struct cgroup_subsys_state, destroy_work);
5420 	struct cgroup_subsys *ss = css->ss;
5421 	struct cgroup *cgrp = css->cgroup;
5422 
5423 	cgroup_lock();
5424 
5425 	css->flags |= CSS_RELEASED;
5426 	list_del_rcu(&css->sibling);
5427 
5428 	if (ss) {
5429 		/* css release path */
5430 		if (!list_empty(&css->rstat_css_node)) {
5431 			cgroup_rstat_flush(cgrp);
5432 			list_del_rcu(&css->rstat_css_node);
5433 		}
5434 
5435 		cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5436 		if (ss->css_released)
5437 			ss->css_released(css);
5438 	} else {
5439 		struct cgroup *tcgrp;
5440 
5441 		/* cgroup release path */
5442 		TRACE_CGROUP_PATH(release, cgrp);
5443 
5444 		cgroup_rstat_flush(cgrp);
5445 
5446 		spin_lock_irq(&css_set_lock);
5447 		for (tcgrp = cgroup_parent(cgrp); tcgrp;
5448 		     tcgrp = cgroup_parent(tcgrp))
5449 			tcgrp->nr_dying_descendants--;
5450 		spin_unlock_irq(&css_set_lock);
5451 
5452 		/*
5453 		 * There are two control paths which try to determine
5454 		 * cgroup from dentry without going through kernfs -
5455 		 * cgroupstats_build() and css_tryget_online_from_dir().
5456 		 * Those are supported by RCU protecting clearing of
5457 		 * cgrp->kn->priv backpointer.
5458 		 */
5459 		if (cgrp->kn)
5460 			RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5461 					 NULL);
5462 	}
5463 
5464 	cgroup_unlock();
5465 
5466 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5467 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5468 }
5469 
css_release(struct percpu_ref * ref)5470 static void css_release(struct percpu_ref *ref)
5471 {
5472 	struct cgroup_subsys_state *css =
5473 		container_of(ref, struct cgroup_subsys_state, refcnt);
5474 
5475 	INIT_WORK(&css->destroy_work, css_release_work_fn);
5476 	queue_work(cgroup_destroy_wq, &css->destroy_work);
5477 }
5478 
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5479 static void init_and_link_css(struct cgroup_subsys_state *css,
5480 			      struct cgroup_subsys *ss, struct cgroup *cgrp)
5481 {
5482 	lockdep_assert_held(&cgroup_mutex);
5483 
5484 	cgroup_get_live(cgrp);
5485 
5486 	memset(css, 0, sizeof(*css));
5487 	css->cgroup = cgrp;
5488 	css->ss = ss;
5489 	css->id = -1;
5490 	INIT_LIST_HEAD(&css->sibling);
5491 	INIT_LIST_HEAD(&css->children);
5492 	INIT_LIST_HEAD(&css->rstat_css_node);
5493 	css->serial_nr = css_serial_nr_next++;
5494 	atomic_set(&css->online_cnt, 0);
5495 
5496 	if (cgroup_parent(cgrp)) {
5497 		css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5498 		css_get(css->parent);
5499 	}
5500 
5501 	if (ss->css_rstat_flush)
5502 		list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5503 
5504 	BUG_ON(cgroup_css(cgrp, ss));
5505 }
5506 
5507 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5508 static int online_css(struct cgroup_subsys_state *css)
5509 {
5510 	struct cgroup_subsys *ss = css->ss;
5511 	int ret = 0;
5512 
5513 	lockdep_assert_held(&cgroup_mutex);
5514 
5515 	if (ss->css_online)
5516 		ret = ss->css_online(css);
5517 	if (!ret) {
5518 		css->flags |= CSS_ONLINE;
5519 		rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5520 
5521 		atomic_inc(&css->online_cnt);
5522 		if (css->parent)
5523 			atomic_inc(&css->parent->online_cnt);
5524 	}
5525 	return ret;
5526 }
5527 
5528 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5529 static void offline_css(struct cgroup_subsys_state *css)
5530 {
5531 	struct cgroup_subsys *ss = css->ss;
5532 
5533 	lockdep_assert_held(&cgroup_mutex);
5534 
5535 	if (!(css->flags & CSS_ONLINE))
5536 		return;
5537 
5538 	if (ss->css_offline)
5539 		ss->css_offline(css);
5540 
5541 	css->flags &= ~CSS_ONLINE;
5542 	RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5543 
5544 	wake_up_all(&css->cgroup->offline_waitq);
5545 }
5546 
5547 /**
5548  * css_create - create a cgroup_subsys_state
5549  * @cgrp: the cgroup new css will be associated with
5550  * @ss: the subsys of new css
5551  *
5552  * Create a new css associated with @cgrp - @ss pair.  On success, the new
5553  * css is online and installed in @cgrp.  This function doesn't create the
5554  * interface files.  Returns 0 on success, -errno on failure.
5555  */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5556 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5557 					      struct cgroup_subsys *ss)
5558 {
5559 	struct cgroup *parent = cgroup_parent(cgrp);
5560 	struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5561 	struct cgroup_subsys_state *css;
5562 	int err;
5563 
5564 	lockdep_assert_held(&cgroup_mutex);
5565 
5566 	css = ss->css_alloc(parent_css);
5567 	if (!css)
5568 		css = ERR_PTR(-ENOMEM);
5569 	if (IS_ERR(css))
5570 		return css;
5571 
5572 	init_and_link_css(css, ss, cgrp);
5573 
5574 	err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5575 	if (err)
5576 		goto err_free_css;
5577 
5578 	err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5579 	if (err < 0)
5580 		goto err_free_css;
5581 	css->id = err;
5582 
5583 	/* @css is ready to be brought online now, make it visible */
5584 	list_add_tail_rcu(&css->sibling, &parent_css->children);
5585 	cgroup_idr_replace(&ss->css_idr, css, css->id);
5586 
5587 	err = online_css(css);
5588 	if (err)
5589 		goto err_list_del;
5590 
5591 	return css;
5592 
5593 err_list_del:
5594 	list_del_rcu(&css->sibling);
5595 err_free_css:
5596 	list_del_rcu(&css->rstat_css_node);
5597 	INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5598 	queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5599 	return ERR_PTR(err);
5600 }
5601 
5602 /*
5603  * The returned cgroup is fully initialized including its control mask, but
5604  * it isn't associated with its kernfs_node and doesn't have the control
5605  * mask applied.
5606  */
cgroup_create(struct cgroup * parent,const char * name,umode_t mode)5607 static struct cgroup *cgroup_create(struct cgroup *parent, const char *name,
5608 				    umode_t mode)
5609 {
5610 	struct cgroup_root *root = parent->root;
5611 	struct cgroup *cgrp, *tcgrp;
5612 	struct kernfs_node *kn;
5613 	int level = parent->level + 1;
5614 	int ret;
5615 
5616 	/* allocate the cgroup and its ID, 0 is reserved for the root */
5617 	cgrp = kzalloc(struct_size(cgrp, ancestors, (level + 1)), GFP_KERNEL);
5618 	if (!cgrp)
5619 		return ERR_PTR(-ENOMEM);
5620 
5621 	ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5622 	if (ret)
5623 		goto out_free_cgrp;
5624 
5625 	ret = cgroup_rstat_init(cgrp);
5626 	if (ret)
5627 		goto out_cancel_ref;
5628 
5629 	/* create the directory */
5630 	kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5631 	if (IS_ERR(kn)) {
5632 		ret = PTR_ERR(kn);
5633 		goto out_stat_exit;
5634 	}
5635 	cgrp->kn = kn;
5636 
5637 	init_cgroup_housekeeping(cgrp);
5638 
5639 	cgrp->self.parent = &parent->self;
5640 	cgrp->root = root;
5641 	cgrp->level = level;
5642 
5643 	ret = psi_cgroup_alloc(cgrp);
5644 	if (ret)
5645 		goto out_kernfs_remove;
5646 
5647 	ret = cgroup_bpf_inherit(cgrp);
5648 	if (ret)
5649 		goto out_psi_free;
5650 
5651 	/*
5652 	 * New cgroup inherits effective freeze counter, and
5653 	 * if the parent has to be frozen, the child has too.
5654 	 */
5655 	cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5656 	if (cgrp->freezer.e_freeze) {
5657 		/*
5658 		 * Set the CGRP_FREEZE flag, so when a process will be
5659 		 * attached to the child cgroup, it will become frozen.
5660 		 * At this point the new cgroup is unpopulated, so we can
5661 		 * consider it frozen immediately.
5662 		 */
5663 		set_bit(CGRP_FREEZE, &cgrp->flags);
5664 		set_bit(CGRP_FROZEN, &cgrp->flags);
5665 	}
5666 
5667 	spin_lock_irq(&css_set_lock);
5668 	for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5669 		cgrp->ancestors[tcgrp->level] = tcgrp;
5670 
5671 		if (tcgrp != cgrp) {
5672 			tcgrp->nr_descendants++;
5673 
5674 			/*
5675 			 * If the new cgroup is frozen, all ancestor cgroups
5676 			 * get a new frozen descendant, but their state can't
5677 			 * change because of this.
5678 			 */
5679 			if (cgrp->freezer.e_freeze)
5680 				tcgrp->freezer.nr_frozen_descendants++;
5681 		}
5682 	}
5683 	spin_unlock_irq(&css_set_lock);
5684 
5685 	if (notify_on_release(parent))
5686 		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5687 
5688 	if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5689 		set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5690 
5691 	cgrp->self.serial_nr = css_serial_nr_next++;
5692 
5693 	/* allocation complete, commit to creation */
5694 	list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5695 	atomic_inc(&root->nr_cgrps);
5696 	cgroup_get_live(parent);
5697 
5698 	/*
5699 	 * On the default hierarchy, a child doesn't automatically inherit
5700 	 * subtree_control from the parent.  Each is configured manually.
5701 	 */
5702 	if (!cgroup_on_dfl(cgrp))
5703 		cgrp->subtree_control = cgroup_control(cgrp);
5704 
5705 	cgroup_propagate_control(cgrp);
5706 
5707 	return cgrp;
5708 
5709 out_psi_free:
5710 	psi_cgroup_free(cgrp);
5711 out_kernfs_remove:
5712 	kernfs_remove(cgrp->kn);
5713 out_stat_exit:
5714 	cgroup_rstat_exit(cgrp);
5715 out_cancel_ref:
5716 	percpu_ref_exit(&cgrp->self.refcnt);
5717 out_free_cgrp:
5718 	kfree(cgrp);
5719 	return ERR_PTR(ret);
5720 }
5721 
cgroup_check_hierarchy_limits(struct cgroup * parent)5722 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5723 {
5724 	struct cgroup *cgroup;
5725 	int ret = false;
5726 	int level = 1;
5727 
5728 	lockdep_assert_held(&cgroup_mutex);
5729 
5730 	for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5731 		if (cgroup->nr_descendants >= cgroup->max_descendants)
5732 			goto fail;
5733 
5734 		if (level > cgroup->max_depth)
5735 			goto fail;
5736 
5737 		level++;
5738 	}
5739 
5740 	ret = true;
5741 fail:
5742 	return ret;
5743 }
5744 
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5745 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5746 {
5747 	struct cgroup *parent, *cgrp;
5748 	int ret;
5749 
5750 	/* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5751 	if (strchr(name, '\n'))
5752 		return -EINVAL;
5753 
5754 	parent = cgroup_kn_lock_live(parent_kn, false);
5755 	if (!parent)
5756 		return -ENODEV;
5757 
5758 	if (!cgroup_check_hierarchy_limits(parent)) {
5759 		ret = -EAGAIN;
5760 		goto out_unlock;
5761 	}
5762 
5763 	cgrp = cgroup_create(parent, name, mode);
5764 	if (IS_ERR(cgrp)) {
5765 		ret = PTR_ERR(cgrp);
5766 		goto out_unlock;
5767 	}
5768 
5769 	/*
5770 	 * This extra ref will be put in cgroup_free_fn() and guarantees
5771 	 * that @cgrp->kn is always accessible.
5772 	 */
5773 	kernfs_get(cgrp->kn);
5774 
5775 	ret = cgroup_kn_set_ugid(cgrp->kn);
5776 	if (ret)
5777 		goto out_destroy;
5778 
5779 	ret = css_populate_dir(&cgrp->self);
5780 	if (ret)
5781 		goto out_destroy;
5782 
5783 	ret = cgroup_apply_control_enable(cgrp);
5784 	if (ret)
5785 		goto out_destroy;
5786 
5787 	TRACE_CGROUP_PATH(mkdir, cgrp);
5788 
5789 	/* let's create and online css's */
5790 	kernfs_activate(cgrp->kn);
5791 
5792 	ret = 0;
5793 	goto out_unlock;
5794 
5795 out_destroy:
5796 	cgroup_destroy_locked(cgrp);
5797 out_unlock:
5798 	cgroup_kn_unlock(parent_kn);
5799 	return ret;
5800 }
5801 
5802 /*
5803  * This is called when the refcnt of a css is confirmed to be killed.
5804  * css_tryget_online() is now guaranteed to fail.  Tell the subsystem to
5805  * initiate destruction and put the css ref from kill_css().
5806  */
css_killed_work_fn(struct work_struct * work)5807 static void css_killed_work_fn(struct work_struct *work)
5808 {
5809 	struct cgroup_subsys_state *css =
5810 		container_of(work, struct cgroup_subsys_state, destroy_work);
5811 
5812 	cgroup_lock();
5813 
5814 	do {
5815 		offline_css(css);
5816 		css_put(css);
5817 		/* @css can't go away while we're holding cgroup_mutex */
5818 		css = css->parent;
5819 	} while (css && atomic_dec_and_test(&css->online_cnt));
5820 
5821 	cgroup_unlock();
5822 }
5823 
5824 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5825 static void css_killed_ref_fn(struct percpu_ref *ref)
5826 {
5827 	struct cgroup_subsys_state *css =
5828 		container_of(ref, struct cgroup_subsys_state, refcnt);
5829 
5830 	if (atomic_dec_and_test(&css->online_cnt)) {
5831 		INIT_WORK(&css->destroy_work, css_killed_work_fn);
5832 		queue_work(cgroup_destroy_wq, &css->destroy_work);
5833 	}
5834 }
5835 
5836 /**
5837  * kill_css - destroy a css
5838  * @css: css to destroy
5839  *
5840  * This function initiates destruction of @css by removing cgroup interface
5841  * files and putting its base reference.  ->css_offline() will be invoked
5842  * asynchronously once css_tryget_online() is guaranteed to fail and when
5843  * the reference count reaches zero, @css will be released.
5844  */
kill_css(struct cgroup_subsys_state * css)5845 static void kill_css(struct cgroup_subsys_state *css)
5846 {
5847 	lockdep_assert_held(&cgroup_mutex);
5848 
5849 	if (css->flags & CSS_DYING)
5850 		return;
5851 
5852 	css->flags |= CSS_DYING;
5853 
5854 	/*
5855 	 * This must happen before css is disassociated with its cgroup.
5856 	 * See seq_css() for details.
5857 	 */
5858 	css_clear_dir(css);
5859 
5860 	/*
5861 	 * Killing would put the base ref, but we need to keep it alive
5862 	 * until after ->css_offline().
5863 	 */
5864 	css_get(css);
5865 
5866 	/*
5867 	 * cgroup core guarantees that, by the time ->css_offline() is
5868 	 * invoked, no new css reference will be given out via
5869 	 * css_tryget_online().  We can't simply call percpu_ref_kill() and
5870 	 * proceed to offlining css's because percpu_ref_kill() doesn't
5871 	 * guarantee that the ref is seen as killed on all CPUs on return.
5872 	 *
5873 	 * Use percpu_ref_kill_and_confirm() to get notifications as each
5874 	 * css is confirmed to be seen as killed on all CPUs.
5875 	 */
5876 	percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5877 }
5878 
5879 /**
5880  * cgroup_destroy_locked - the first stage of cgroup destruction
5881  * @cgrp: cgroup to be destroyed
5882  *
5883  * css's make use of percpu refcnts whose killing latency shouldn't be
5884  * exposed to userland and are RCU protected.  Also, cgroup core needs to
5885  * guarantee that css_tryget_online() won't succeed by the time
5886  * ->css_offline() is invoked.  To satisfy all the requirements,
5887  * destruction is implemented in the following two steps.
5888  *
5889  * s1. Verify @cgrp can be destroyed and mark it dying.  Remove all
5890  *     userland visible parts and start killing the percpu refcnts of
5891  *     css's.  Set up so that the next stage will be kicked off once all
5892  *     the percpu refcnts are confirmed to be killed.
5893  *
5894  * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5895  *     rest of destruction.  Once all cgroup references are gone, the
5896  *     cgroup is RCU-freed.
5897  *
5898  * This function implements s1.  After this step, @cgrp is gone as far as
5899  * the userland is concerned and a new cgroup with the same name may be
5900  * created.  As cgroup doesn't care about the names internally, this
5901  * doesn't cause any problem.
5902  */
cgroup_destroy_locked(struct cgroup * cgrp)5903 static int cgroup_destroy_locked(struct cgroup *cgrp)
5904 	__releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5905 {
5906 	struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5907 	struct cgroup_subsys_state *css;
5908 	struct cgrp_cset_link *link;
5909 	int ssid;
5910 
5911 	lockdep_assert_held(&cgroup_mutex);
5912 
5913 	/*
5914 	 * Only migration can raise populated from zero and we're already
5915 	 * holding cgroup_mutex.
5916 	 */
5917 	if (cgroup_is_populated(cgrp))
5918 		return -EBUSY;
5919 
5920 	/*
5921 	 * Make sure there's no live children.  We can't test emptiness of
5922 	 * ->self.children as dead children linger on it while being
5923 	 * drained; otherwise, "rmdir parent/child parent" may fail.
5924 	 */
5925 	if (css_has_online_children(&cgrp->self))
5926 		return -EBUSY;
5927 
5928 	/*
5929 	 * Mark @cgrp and the associated csets dead.  The former prevents
5930 	 * further task migration and child creation by disabling
5931 	 * cgroup_lock_live_group().  The latter makes the csets ignored by
5932 	 * the migration path.
5933 	 */
5934 	cgrp->self.flags &= ~CSS_ONLINE;
5935 
5936 	spin_lock_irq(&css_set_lock);
5937 	list_for_each_entry(link, &cgrp->cset_links, cset_link)
5938 		link->cset->dead = true;
5939 	spin_unlock_irq(&css_set_lock);
5940 
5941 	/* initiate massacre of all css's */
5942 	for_each_css(css, ssid, cgrp)
5943 		kill_css(css);
5944 
5945 	/* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5946 	css_clear_dir(&cgrp->self);
5947 	kernfs_remove(cgrp->kn);
5948 
5949 	if (cgroup_is_threaded(cgrp))
5950 		parent->nr_threaded_children--;
5951 
5952 	spin_lock_irq(&css_set_lock);
5953 	for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5954 		tcgrp->nr_descendants--;
5955 		tcgrp->nr_dying_descendants++;
5956 		/*
5957 		 * If the dying cgroup is frozen, decrease frozen descendants
5958 		 * counters of ancestor cgroups.
5959 		 */
5960 		if (test_bit(CGRP_FROZEN, &cgrp->flags))
5961 			tcgrp->freezer.nr_frozen_descendants--;
5962 	}
5963 	spin_unlock_irq(&css_set_lock);
5964 
5965 	cgroup1_check_for_release(parent);
5966 
5967 	cgroup_bpf_offline(cgrp);
5968 
5969 	/* put the base reference */
5970 	percpu_ref_kill(&cgrp->self.refcnt);
5971 
5972 	return 0;
5973 };
5974 
cgroup_rmdir(struct kernfs_node * kn)5975 int cgroup_rmdir(struct kernfs_node *kn)
5976 {
5977 	struct cgroup *cgrp;
5978 	int ret = 0;
5979 
5980 	cgrp = cgroup_kn_lock_live(kn, false);
5981 	if (!cgrp)
5982 		return 0;
5983 
5984 	ret = cgroup_destroy_locked(cgrp);
5985 	if (!ret)
5986 		TRACE_CGROUP_PATH(rmdir, cgrp);
5987 
5988 	cgroup_kn_unlock(kn);
5989 	return ret;
5990 }
5991 
5992 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5993 	.show_options		= cgroup_show_options,
5994 	.mkdir			= cgroup_mkdir,
5995 	.rmdir			= cgroup_rmdir,
5996 	.show_path		= cgroup_show_path,
5997 };
5998 
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5999 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
6000 {
6001 	struct cgroup_subsys_state *css;
6002 
6003 	pr_debug("Initializing cgroup subsys %s\n", ss->name);
6004 
6005 	cgroup_lock();
6006 
6007 	idr_init(&ss->css_idr);
6008 	INIT_LIST_HEAD(&ss->cfts);
6009 
6010 	/* Create the root cgroup state for this subsystem */
6011 	ss->root = &cgrp_dfl_root;
6012 	css = ss->css_alloc(NULL);
6013 	/* We don't handle early failures gracefully */
6014 	BUG_ON(IS_ERR(css));
6015 	init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
6016 
6017 	/*
6018 	 * Root csses are never destroyed and we can't initialize
6019 	 * percpu_ref during early init.  Disable refcnting.
6020 	 */
6021 	css->flags |= CSS_NO_REF;
6022 
6023 	if (early) {
6024 		/* allocation can't be done safely during early init */
6025 		css->id = 1;
6026 	} else {
6027 		css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
6028 		BUG_ON(css->id < 0);
6029 	}
6030 
6031 	/* Update the init_css_set to contain a subsys
6032 	 * pointer to this state - since the subsystem is
6033 	 * newly registered, all tasks and hence the
6034 	 * init_css_set is in the subsystem's root cgroup. */
6035 	init_css_set.subsys[ss->id] = css;
6036 
6037 	have_fork_callback |= (bool)ss->fork << ss->id;
6038 	have_exit_callback |= (bool)ss->exit << ss->id;
6039 	have_release_callback |= (bool)ss->release << ss->id;
6040 	have_canfork_callback |= (bool)ss->can_fork << ss->id;
6041 
6042 	/* At system boot, before all subsystems have been
6043 	 * registered, no tasks have been forked, so we don't
6044 	 * need to invoke fork callbacks here. */
6045 	BUG_ON(!list_empty(&init_task.tasks));
6046 
6047 	BUG_ON(online_css(css));
6048 
6049 	cgroup_unlock();
6050 }
6051 
6052 /**
6053  * cgroup_init_early - cgroup initialization at system boot
6054  *
6055  * Initialize cgroups at system boot, and initialize any
6056  * subsystems that request early init.
6057  */
cgroup_init_early(void)6058 int __init cgroup_init_early(void)
6059 {
6060 	static struct cgroup_fs_context __initdata ctx;
6061 	struct cgroup_subsys *ss;
6062 	int i;
6063 
6064 	ctx.root = &cgrp_dfl_root;
6065 	init_cgroup_root(&ctx);
6066 	cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
6067 
6068 	RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
6069 
6070 	for_each_subsys(ss, i) {
6071 		WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
6072 		     "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
6073 		     i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
6074 		     ss->id, ss->name);
6075 		WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
6076 		     "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
6077 
6078 		ss->id = i;
6079 		ss->name = cgroup_subsys_name[i];
6080 		if (!ss->legacy_name)
6081 			ss->legacy_name = cgroup_subsys_name[i];
6082 
6083 		if (ss->early_init)
6084 			cgroup_init_subsys(ss, true);
6085 	}
6086 	return 0;
6087 }
6088 
6089 /**
6090  * cgroup_init - cgroup initialization
6091  *
6092  * Register cgroup filesystem and /proc file, and initialize
6093  * any subsystems that didn't request early init.
6094  */
cgroup_init(void)6095 int __init cgroup_init(void)
6096 {
6097 	struct cgroup_subsys *ss;
6098 	int ssid;
6099 
6100 	BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
6101 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
6102 	BUG_ON(cgroup_init_cftypes(NULL, cgroup_psi_files));
6103 	BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
6104 
6105 	cgroup_rstat_boot();
6106 
6107 	get_user_ns(init_cgroup_ns.user_ns);
6108 
6109 	cgroup_lock();
6110 
6111 	/*
6112 	 * Add init_css_set to the hash table so that dfl_root can link to
6113 	 * it during init.
6114 	 */
6115 	hash_add(css_set_table, &init_css_set.hlist,
6116 		 css_set_hash(init_css_set.subsys));
6117 
6118 	BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
6119 
6120 	cgroup_unlock();
6121 
6122 	for_each_subsys(ss, ssid) {
6123 		if (ss->early_init) {
6124 			struct cgroup_subsys_state *css =
6125 				init_css_set.subsys[ss->id];
6126 
6127 			css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
6128 						   GFP_KERNEL);
6129 			BUG_ON(css->id < 0);
6130 		} else {
6131 			cgroup_init_subsys(ss, false);
6132 		}
6133 
6134 		list_add_tail(&init_css_set.e_cset_node[ssid],
6135 			      &cgrp_dfl_root.cgrp.e_csets[ssid]);
6136 
6137 		/*
6138 		 * Setting dfl_root subsys_mask needs to consider the
6139 		 * disabled flag and cftype registration needs kmalloc,
6140 		 * both of which aren't available during early_init.
6141 		 */
6142 		if (!cgroup_ssid_enabled(ssid))
6143 			continue;
6144 
6145 		if (cgroup1_ssid_disabled(ssid))
6146 			printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
6147 			       ss->name);
6148 
6149 		cgrp_dfl_root.subsys_mask |= 1 << ss->id;
6150 
6151 		/* implicit controllers must be threaded too */
6152 		WARN_ON(ss->implicit_on_dfl && !ss->threaded);
6153 
6154 		if (ss->implicit_on_dfl)
6155 			cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
6156 		else if (!ss->dfl_cftypes)
6157 			cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
6158 
6159 		if (ss->threaded)
6160 			cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
6161 
6162 		if (ss->dfl_cftypes == ss->legacy_cftypes) {
6163 			WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
6164 		} else {
6165 			WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
6166 			WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
6167 		}
6168 
6169 		if (ss->bind)
6170 			ss->bind(init_css_set.subsys[ssid]);
6171 
6172 		cgroup_lock();
6173 		css_populate_dir(init_css_set.subsys[ssid]);
6174 		cgroup_unlock();
6175 	}
6176 
6177 	/* init_css_set.subsys[] has been updated, re-hash */
6178 	hash_del(&init_css_set.hlist);
6179 	hash_add(css_set_table, &init_css_set.hlist,
6180 		 css_set_hash(init_css_set.subsys));
6181 
6182 	WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
6183 	WARN_ON(register_filesystem(&cgroup_fs_type));
6184 	WARN_ON(register_filesystem(&cgroup2_fs_type));
6185 	WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
6186 #ifdef CONFIG_CPUSETS
6187 	WARN_ON(register_filesystem(&cpuset_fs_type));
6188 #endif
6189 
6190 	return 0;
6191 }
6192 
cgroup_wq_init(void)6193 static int __init cgroup_wq_init(void)
6194 {
6195 	/*
6196 	 * There isn't much point in executing destruction path in
6197 	 * parallel.  Good chunk is serialized with cgroup_mutex anyway.
6198 	 * Use 1 for @max_active.
6199 	 *
6200 	 * We would prefer to do this in cgroup_init() above, but that
6201 	 * is called before init_workqueues(): so leave this until after.
6202 	 */
6203 	cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
6204 	BUG_ON(!cgroup_destroy_wq);
6205 	return 0;
6206 }
6207 core_initcall(cgroup_wq_init);
6208 
cgroup_path_from_kernfs_id(u64 id,char * buf,size_t buflen)6209 void cgroup_path_from_kernfs_id(u64 id, char *buf, size_t buflen)
6210 {
6211 	struct kernfs_node *kn;
6212 
6213 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6214 	if (!kn)
6215 		return;
6216 	kernfs_path(kn, buf, buflen);
6217 	kernfs_put(kn);
6218 }
6219 
6220 /*
6221  * cgroup_get_from_id : get the cgroup associated with cgroup id
6222  * @id: cgroup id
6223  * On success return the cgrp or ERR_PTR on failure
6224  * Only cgroups within current task's cgroup NS are valid.
6225  */
cgroup_get_from_id(u64 id)6226 struct cgroup *cgroup_get_from_id(u64 id)
6227 {
6228 	struct kernfs_node *kn;
6229 	struct cgroup *cgrp, *root_cgrp;
6230 
6231 	kn = kernfs_find_and_get_node_by_id(cgrp_dfl_root.kf_root, id);
6232 	if (!kn)
6233 		return ERR_PTR(-ENOENT);
6234 
6235 	if (kernfs_type(kn) != KERNFS_DIR) {
6236 		kernfs_put(kn);
6237 		return ERR_PTR(-ENOENT);
6238 	}
6239 
6240 	rcu_read_lock();
6241 
6242 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6243 	if (cgrp && !cgroup_tryget(cgrp))
6244 		cgrp = NULL;
6245 
6246 	rcu_read_unlock();
6247 	kernfs_put(kn);
6248 
6249 	if (!cgrp)
6250 		return ERR_PTR(-ENOENT);
6251 
6252 	root_cgrp = current_cgns_cgroup_dfl();
6253 	if (!cgroup_is_descendant(cgrp, root_cgrp)) {
6254 		cgroup_put(cgrp);
6255 		return ERR_PTR(-ENOENT);
6256 	}
6257 
6258 	return cgrp;
6259 }
6260 EXPORT_SYMBOL_GPL(cgroup_get_from_id);
6261 
6262 /*
6263  * proc_cgroup_show()
6264  *  - Print task's cgroup paths into seq_file, one line for each hierarchy
6265  *  - Used for /proc/<pid>/cgroup.
6266  */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)6267 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
6268 		     struct pid *pid, struct task_struct *tsk)
6269 {
6270 	char *buf;
6271 	int retval;
6272 	struct cgroup_root *root;
6273 
6274 	retval = -ENOMEM;
6275 	buf = kmalloc(PATH_MAX, GFP_KERNEL);
6276 	if (!buf)
6277 		goto out;
6278 
6279 	cgroup_lock();
6280 	spin_lock_irq(&css_set_lock);
6281 
6282 	for_each_root(root) {
6283 		struct cgroup_subsys *ss;
6284 		struct cgroup *cgrp;
6285 		int ssid, count = 0;
6286 
6287 		if (root == &cgrp_dfl_root && !READ_ONCE(cgrp_dfl_visible))
6288 			continue;
6289 
6290 		seq_printf(m, "%d:", root->hierarchy_id);
6291 		if (root != &cgrp_dfl_root)
6292 			for_each_subsys(ss, ssid)
6293 				if (root->subsys_mask & (1 << ssid))
6294 					seq_printf(m, "%s%s", count++ ? "," : "",
6295 						   ss->legacy_name);
6296 		if (strlen(root->name))
6297 			seq_printf(m, "%sname=%s", count ? "," : "",
6298 				   root->name);
6299 		seq_putc(m, ':');
6300 
6301 		cgrp = task_cgroup_from_root(tsk, root);
6302 
6303 		/*
6304 		 * On traditional hierarchies, all zombie tasks show up as
6305 		 * belonging to the root cgroup.  On the default hierarchy,
6306 		 * while a zombie doesn't show up in "cgroup.procs" and
6307 		 * thus can't be migrated, its /proc/PID/cgroup keeps
6308 		 * reporting the cgroup it belonged to before exiting.  If
6309 		 * the cgroup is removed before the zombie is reaped,
6310 		 * " (deleted)" is appended to the cgroup path.
6311 		 */
6312 		if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
6313 			retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
6314 						current->nsproxy->cgroup_ns);
6315 			if (retval >= PATH_MAX)
6316 				retval = -ENAMETOOLONG;
6317 			if (retval < 0)
6318 				goto out_unlock;
6319 
6320 			seq_puts(m, buf);
6321 		} else {
6322 			seq_puts(m, "/");
6323 		}
6324 
6325 		if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
6326 			seq_puts(m, " (deleted)\n");
6327 		else
6328 			seq_putc(m, '\n');
6329 	}
6330 
6331 	retval = 0;
6332 out_unlock:
6333 	spin_unlock_irq(&css_set_lock);
6334 	cgroup_unlock();
6335 	kfree(buf);
6336 out:
6337 	return retval;
6338 }
6339 
6340 /**
6341  * cgroup_fork - initialize cgroup related fields during copy_process()
6342  * @child: pointer to task_struct of forking parent process.
6343  *
6344  * A task is associated with the init_css_set until cgroup_post_fork()
6345  * attaches it to the target css_set.
6346  */
cgroup_fork(struct task_struct * child)6347 void cgroup_fork(struct task_struct *child)
6348 {
6349 	RCU_INIT_POINTER(child->cgroups, &init_css_set);
6350 	INIT_LIST_HEAD(&child->cg_list);
6351 }
6352 
6353 /**
6354  * cgroup_v1v2_get_from_file - get a cgroup pointer from a file pointer
6355  * @f: file corresponding to cgroup_dir
6356  *
6357  * Find the cgroup from a file pointer associated with a cgroup directory.
6358  * Returns a pointer to the cgroup on success. ERR_PTR is returned if the
6359  * cgroup cannot be found.
6360  */
cgroup_v1v2_get_from_file(struct file * f)6361 static struct cgroup *cgroup_v1v2_get_from_file(struct file *f)
6362 {
6363 	struct cgroup_subsys_state *css;
6364 
6365 	css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6366 	if (IS_ERR(css))
6367 		return ERR_CAST(css);
6368 
6369 	return css->cgroup;
6370 }
6371 
6372 /**
6373  * cgroup_get_from_file - same as cgroup_v1v2_get_from_file, but only supports
6374  * cgroup2.
6375  * @f: file corresponding to cgroup2_dir
6376  */
cgroup_get_from_file(struct file * f)6377 static struct cgroup *cgroup_get_from_file(struct file *f)
6378 {
6379 	struct cgroup *cgrp = cgroup_v1v2_get_from_file(f);
6380 
6381 	if (IS_ERR(cgrp))
6382 		return ERR_CAST(cgrp);
6383 
6384 	if (!cgroup_on_dfl(cgrp)) {
6385 		cgroup_put(cgrp);
6386 		return ERR_PTR(-EBADF);
6387 	}
6388 
6389 	return cgrp;
6390 }
6391 
6392 /**
6393  * cgroup_css_set_fork - find or create a css_set for a child process
6394  * @kargs: the arguments passed to create the child process
6395  *
6396  * This functions finds or creates a new css_set which the child
6397  * process will be attached to in cgroup_post_fork(). By default,
6398  * the child process will be given the same css_set as its parent.
6399  *
6400  * If CLONE_INTO_CGROUP is specified this function will try to find an
6401  * existing css_set which includes the requested cgroup and if not create
6402  * a new css_set that the child will be attached to later. If this function
6403  * succeeds it will hold cgroup_threadgroup_rwsem on return. If
6404  * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
6405  * before grabbing cgroup_threadgroup_rwsem and will hold a reference
6406  * to the target cgroup.
6407  */
cgroup_css_set_fork(struct kernel_clone_args * kargs)6408 static int cgroup_css_set_fork(struct kernel_clone_args *kargs)
6409 	__acquires(&cgroup_mutex) __acquires(&cgroup_threadgroup_rwsem)
6410 {
6411 	int ret;
6412 	struct cgroup *dst_cgrp = NULL;
6413 	struct css_set *cset;
6414 	struct super_block *sb;
6415 	struct file *f;
6416 
6417 	if (kargs->flags & CLONE_INTO_CGROUP)
6418 		cgroup_lock();
6419 
6420 	cgroup_threadgroup_change_begin(current);
6421 
6422 	spin_lock_irq(&css_set_lock);
6423 	cset = task_css_set(current);
6424 	get_css_set(cset);
6425 	spin_unlock_irq(&css_set_lock);
6426 
6427 	if (!(kargs->flags & CLONE_INTO_CGROUP)) {
6428 		kargs->cset = cset;
6429 		return 0;
6430 	}
6431 
6432 	f = fget_raw(kargs->cgroup);
6433 	if (!f) {
6434 		ret = -EBADF;
6435 		goto err;
6436 	}
6437 	sb = f->f_path.dentry->d_sb;
6438 
6439 	dst_cgrp = cgroup_get_from_file(f);
6440 	if (IS_ERR(dst_cgrp)) {
6441 		ret = PTR_ERR(dst_cgrp);
6442 		dst_cgrp = NULL;
6443 		goto err;
6444 	}
6445 
6446 	if (cgroup_is_dead(dst_cgrp)) {
6447 		ret = -ENODEV;
6448 		goto err;
6449 	}
6450 
6451 	/*
6452 	 * Verify that we the target cgroup is writable for us. This is
6453 	 * usually done by the vfs layer but since we're not going through
6454 	 * the vfs layer here we need to do it "manually".
6455 	 */
6456 	ret = cgroup_may_write(dst_cgrp, sb);
6457 	if (ret)
6458 		goto err;
6459 
6460 	/*
6461 	 * Spawning a task directly into a cgroup works by passing a file
6462 	 * descriptor to the target cgroup directory. This can even be an O_PATH
6463 	 * file descriptor. But it can never be a cgroup.procs file descriptor.
6464 	 * This was done on purpose so spawning into a cgroup could be
6465 	 * conceptualized as an atomic
6466 	 *
6467 	 *   fd = openat(dfd_cgroup, "cgroup.procs", ...);
6468 	 *   write(fd, <child-pid>, ...);
6469 	 *
6470 	 * sequence, i.e. it's a shorthand for the caller opening and writing
6471 	 * cgroup.procs of the cgroup indicated by @dfd_cgroup. This allows us
6472 	 * to always use the caller's credentials.
6473 	 */
6474 	ret = cgroup_attach_permissions(cset->dfl_cgrp, dst_cgrp, sb,
6475 					!(kargs->flags & CLONE_THREAD),
6476 					current->nsproxy->cgroup_ns);
6477 	if (ret)
6478 		goto err;
6479 
6480 	kargs->cset = find_css_set(cset, dst_cgrp);
6481 	if (!kargs->cset) {
6482 		ret = -ENOMEM;
6483 		goto err;
6484 	}
6485 
6486 	put_css_set(cset);
6487 	fput(f);
6488 	kargs->cgrp = dst_cgrp;
6489 	return ret;
6490 
6491 err:
6492 	cgroup_threadgroup_change_end(current);
6493 	cgroup_unlock();
6494 	if (f)
6495 		fput(f);
6496 	if (dst_cgrp)
6497 		cgroup_put(dst_cgrp);
6498 	put_css_set(cset);
6499 	if (kargs->cset)
6500 		put_css_set(kargs->cset);
6501 	return ret;
6502 }
6503 
6504 /**
6505  * cgroup_css_set_put_fork - drop references we took during fork
6506  * @kargs: the arguments passed to create the child process
6507  *
6508  * Drop references to the prepared css_set and target cgroup if
6509  * CLONE_INTO_CGROUP was requested.
6510  */
cgroup_css_set_put_fork(struct kernel_clone_args * kargs)6511 static void cgroup_css_set_put_fork(struct kernel_clone_args *kargs)
6512 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6513 {
6514 	struct cgroup *cgrp = kargs->cgrp;
6515 	struct css_set *cset = kargs->cset;
6516 
6517 	cgroup_threadgroup_change_end(current);
6518 
6519 	if (cset) {
6520 		put_css_set(cset);
6521 		kargs->cset = NULL;
6522 	}
6523 
6524 	if (kargs->flags & CLONE_INTO_CGROUP) {
6525 		cgroup_unlock();
6526 		if (cgrp) {
6527 			cgroup_put(cgrp);
6528 			kargs->cgrp = NULL;
6529 		}
6530 	}
6531 }
6532 
6533 /**
6534  * cgroup_can_fork - called on a new task before the process is exposed
6535  * @child: the child process
6536  * @kargs: the arguments passed to create the child process
6537  *
6538  * This prepares a new css_set for the child process which the child will
6539  * be attached to in cgroup_post_fork().
6540  * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6541  * callback returns an error, the fork aborts with that error code. This
6542  * allows for a cgroup subsystem to conditionally allow or deny new forks.
6543  */
cgroup_can_fork(struct task_struct * child,struct kernel_clone_args * kargs)6544 int cgroup_can_fork(struct task_struct *child, struct kernel_clone_args *kargs)
6545 {
6546 	struct cgroup_subsys *ss;
6547 	int i, j, ret;
6548 
6549 	ret = cgroup_css_set_fork(kargs);
6550 	if (ret)
6551 		return ret;
6552 
6553 	do_each_subsys_mask(ss, i, have_canfork_callback) {
6554 		ret = ss->can_fork(child, kargs->cset);
6555 		if (ret)
6556 			goto out_revert;
6557 	} while_each_subsys_mask();
6558 
6559 	return 0;
6560 
6561 out_revert:
6562 	for_each_subsys(ss, j) {
6563 		if (j >= i)
6564 			break;
6565 		if (ss->cancel_fork)
6566 			ss->cancel_fork(child, kargs->cset);
6567 	}
6568 
6569 	cgroup_css_set_put_fork(kargs);
6570 
6571 	return ret;
6572 }
6573 
6574 /**
6575  * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6576  * @child: the child process
6577  * @kargs: the arguments passed to create the child process
6578  *
6579  * This calls the cancel_fork() callbacks if a fork failed *after*
6580  * cgroup_can_fork() succeeded and cleans up references we took to
6581  * prepare a new css_set for the child process in cgroup_can_fork().
6582  */
cgroup_cancel_fork(struct task_struct * child,struct kernel_clone_args * kargs)6583 void cgroup_cancel_fork(struct task_struct *child,
6584 			struct kernel_clone_args *kargs)
6585 {
6586 	struct cgroup_subsys *ss;
6587 	int i;
6588 
6589 	for_each_subsys(ss, i)
6590 		if (ss->cancel_fork)
6591 			ss->cancel_fork(child, kargs->cset);
6592 
6593 	cgroup_css_set_put_fork(kargs);
6594 }
6595 
6596 /**
6597  * cgroup_post_fork - finalize cgroup setup for the child process
6598  * @child: the child process
6599  * @kargs: the arguments passed to create the child process
6600  *
6601  * Attach the child process to its css_set calling the subsystem fork()
6602  * callbacks.
6603  */
cgroup_post_fork(struct task_struct * child,struct kernel_clone_args * kargs)6604 void cgroup_post_fork(struct task_struct *child,
6605 		      struct kernel_clone_args *kargs)
6606 	__releases(&cgroup_threadgroup_rwsem) __releases(&cgroup_mutex)
6607 {
6608 	unsigned long cgrp_flags = 0;
6609 	bool kill = false;
6610 	struct cgroup_subsys *ss;
6611 	struct css_set *cset;
6612 	int i;
6613 
6614 	cset = kargs->cset;
6615 	kargs->cset = NULL;
6616 
6617 	spin_lock_irq(&css_set_lock);
6618 
6619 	/* init tasks are special, only link regular threads */
6620 	if (likely(child->pid)) {
6621 		if (kargs->cgrp)
6622 			cgrp_flags = kargs->cgrp->flags;
6623 		else
6624 			cgrp_flags = cset->dfl_cgrp->flags;
6625 
6626 		WARN_ON_ONCE(!list_empty(&child->cg_list));
6627 		cset->nr_tasks++;
6628 		css_set_move_task(child, NULL, cset, false);
6629 	} else {
6630 		put_css_set(cset);
6631 		cset = NULL;
6632 	}
6633 
6634 	if (!(child->flags & PF_KTHREAD)) {
6635 		if (unlikely(test_bit(CGRP_FREEZE, &cgrp_flags))) {
6636 			/*
6637 			 * If the cgroup has to be frozen, the new task has
6638 			 * too. Let's set the JOBCTL_TRAP_FREEZE jobctl bit to
6639 			 * get the task into the frozen state.
6640 			 */
6641 			spin_lock(&child->sighand->siglock);
6642 			WARN_ON_ONCE(child->frozen);
6643 			child->jobctl |= JOBCTL_TRAP_FREEZE;
6644 			spin_unlock(&child->sighand->siglock);
6645 
6646 			/*
6647 			 * Calling cgroup_update_frozen() isn't required here,
6648 			 * because it will be called anyway a bit later from
6649 			 * do_freezer_trap(). So we avoid cgroup's transient
6650 			 * switch from the frozen state and back.
6651 			 */
6652 		}
6653 
6654 		/*
6655 		 * If the cgroup is to be killed notice it now and take the
6656 		 * child down right after we finished preparing it for
6657 		 * userspace.
6658 		 */
6659 		kill = test_bit(CGRP_KILL, &cgrp_flags);
6660 	}
6661 
6662 	spin_unlock_irq(&css_set_lock);
6663 
6664 	/*
6665 	 * Call ss->fork().  This must happen after @child is linked on
6666 	 * css_set; otherwise, @child might change state between ->fork()
6667 	 * and addition to css_set.
6668 	 */
6669 	do_each_subsys_mask(ss, i, have_fork_callback) {
6670 		ss->fork(child);
6671 	} while_each_subsys_mask();
6672 
6673 	/* Make the new cset the root_cset of the new cgroup namespace. */
6674 	if (kargs->flags & CLONE_NEWCGROUP) {
6675 		struct css_set *rcset = child->nsproxy->cgroup_ns->root_cset;
6676 
6677 		get_css_set(cset);
6678 		child->nsproxy->cgroup_ns->root_cset = cset;
6679 		put_css_set(rcset);
6680 	}
6681 
6682 	/* Cgroup has to be killed so take down child immediately. */
6683 	if (unlikely(kill))
6684 		do_send_sig_info(SIGKILL, SEND_SIG_NOINFO, child, PIDTYPE_TGID);
6685 
6686 	cgroup_css_set_put_fork(kargs);
6687 }
6688 
6689 /**
6690  * cgroup_exit - detach cgroup from exiting task
6691  * @tsk: pointer to task_struct of exiting process
6692  *
6693  * Description: Detach cgroup from @tsk.
6694  *
6695  */
cgroup_exit(struct task_struct * tsk)6696 void cgroup_exit(struct task_struct *tsk)
6697 {
6698 	struct cgroup_subsys *ss;
6699 	struct css_set *cset;
6700 	int i;
6701 
6702 	spin_lock_irq(&css_set_lock);
6703 
6704 	WARN_ON_ONCE(list_empty(&tsk->cg_list));
6705 	cset = task_css_set(tsk);
6706 	css_set_move_task(tsk, cset, NULL, false);
6707 	list_add_tail(&tsk->cg_list, &cset->dying_tasks);
6708 	cset->nr_tasks--;
6709 
6710 	if (dl_task(tsk))
6711 		dec_dl_tasks_cs(tsk);
6712 
6713 	WARN_ON_ONCE(cgroup_task_frozen(tsk));
6714 	if (unlikely(!(tsk->flags & PF_KTHREAD) &&
6715 		     test_bit(CGRP_FREEZE, &task_dfl_cgroup(tsk)->flags)))
6716 		cgroup_update_frozen(task_dfl_cgroup(tsk));
6717 
6718 	spin_unlock_irq(&css_set_lock);
6719 
6720 	/* see cgroup_post_fork() for details */
6721 	do_each_subsys_mask(ss, i, have_exit_callback) {
6722 		ss->exit(tsk);
6723 	} while_each_subsys_mask();
6724 }
6725 
cgroup_release(struct task_struct * task)6726 void cgroup_release(struct task_struct *task)
6727 {
6728 	struct cgroup_subsys *ss;
6729 	int ssid;
6730 
6731 	do_each_subsys_mask(ss, ssid, have_release_callback) {
6732 		ss->release(task);
6733 	} while_each_subsys_mask();
6734 
6735 	spin_lock_irq(&css_set_lock);
6736 	css_set_skip_task_iters(task_css_set(task), task);
6737 	list_del_init(&task->cg_list);
6738 	spin_unlock_irq(&css_set_lock);
6739 }
6740 
cgroup_free(struct task_struct * task)6741 void cgroup_free(struct task_struct *task)
6742 {
6743 	struct css_set *cset = task_css_set(task);
6744 	put_css_set(cset);
6745 }
6746 
cgroup_disable(char * str)6747 static int __init cgroup_disable(char *str)
6748 {
6749 	struct cgroup_subsys *ss;
6750 	char *token;
6751 	int i;
6752 
6753 	while ((token = strsep(&str, ",")) != NULL) {
6754 		if (!*token)
6755 			continue;
6756 
6757 		for_each_subsys(ss, i) {
6758 			if (strcmp(token, ss->name) &&
6759 			    strcmp(token, ss->legacy_name))
6760 				continue;
6761 
6762 			static_branch_disable(cgroup_subsys_enabled_key[i]);
6763 			pr_info("Disabling %s control group subsystem\n",
6764 				ss->name);
6765 		}
6766 
6767 		for (i = 0; i < OPT_FEATURE_COUNT; i++) {
6768 			if (strcmp(token, cgroup_opt_feature_names[i]))
6769 				continue;
6770 			cgroup_feature_disable_mask |= 1 << i;
6771 			pr_info("Disabling %s control group feature\n",
6772 				cgroup_opt_feature_names[i]);
6773 			break;
6774 		}
6775 	}
6776 	return 1;
6777 }
6778 __setup("cgroup_disable=", cgroup_disable);
6779 
enable_debug_cgroup(void)6780 void __init __weak enable_debug_cgroup(void) { }
6781 
enable_cgroup_debug(char * str)6782 static int __init enable_cgroup_debug(char *str)
6783 {
6784 	cgroup_debug = true;
6785 	enable_debug_cgroup();
6786 	return 1;
6787 }
6788 __setup("cgroup_debug", enable_cgroup_debug);
6789 
6790 /**
6791  * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6792  * @dentry: directory dentry of interest
6793  * @ss: subsystem of interest
6794  *
6795  * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6796  * to get the corresponding css and return it.  If such css doesn't exist
6797  * or can't be pinned, an ERR_PTR value is returned.
6798  */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6799 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6800 						       struct cgroup_subsys *ss)
6801 {
6802 	struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6803 	struct file_system_type *s_type = dentry->d_sb->s_type;
6804 	struct cgroup_subsys_state *css = NULL;
6805 	struct cgroup *cgrp;
6806 
6807 	/* is @dentry a cgroup dir? */
6808 	if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6809 	    !kn || kernfs_type(kn) != KERNFS_DIR)
6810 		return ERR_PTR(-EBADF);
6811 
6812 	rcu_read_lock();
6813 
6814 	/*
6815 	 * This path doesn't originate from kernfs and @kn could already
6816 	 * have been or be removed at any point.  @kn->priv is RCU
6817 	 * protected for this access.  See css_release_work_fn() for details.
6818 	 */
6819 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6820 	if (cgrp)
6821 		css = cgroup_css(cgrp, ss);
6822 
6823 	if (!css || !css_tryget_online(css))
6824 		css = ERR_PTR(-ENOENT);
6825 
6826 	rcu_read_unlock();
6827 	return css;
6828 }
6829 
6830 /**
6831  * css_from_id - lookup css by id
6832  * @id: the cgroup id
6833  * @ss: cgroup subsys to be looked into
6834  *
6835  * Returns the css if there's valid one with @id, otherwise returns NULL.
6836  * Should be called under rcu_read_lock().
6837  */
css_from_id(int id,struct cgroup_subsys * ss)6838 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6839 {
6840 	WARN_ON_ONCE(!rcu_read_lock_held());
6841 	return idr_find(&ss->css_idr, id);
6842 }
6843 
6844 /**
6845  * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6846  * @path: path on the default hierarchy
6847  *
6848  * Find the cgroup at @path on the default hierarchy, increment its
6849  * reference count and return it.  Returns pointer to the found cgroup on
6850  * success, ERR_PTR(-ENOENT) if @path doesn't exist or if the cgroup has already
6851  * been released and ERR_PTR(-ENOTDIR) if @path points to a non-directory.
6852  */
cgroup_get_from_path(const char * path)6853 struct cgroup *cgroup_get_from_path(const char *path)
6854 {
6855 	struct kernfs_node *kn;
6856 	struct cgroup *cgrp = ERR_PTR(-ENOENT);
6857 	struct cgroup *root_cgrp;
6858 
6859 	root_cgrp = current_cgns_cgroup_dfl();
6860 	kn = kernfs_walk_and_get(root_cgrp->kn, path);
6861 	if (!kn)
6862 		goto out;
6863 
6864 	if (kernfs_type(kn) != KERNFS_DIR) {
6865 		cgrp = ERR_PTR(-ENOTDIR);
6866 		goto out_kernfs;
6867 	}
6868 
6869 	rcu_read_lock();
6870 
6871 	cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6872 	if (!cgrp || !cgroup_tryget(cgrp))
6873 		cgrp = ERR_PTR(-ENOENT);
6874 
6875 	rcu_read_unlock();
6876 
6877 out_kernfs:
6878 	kernfs_put(kn);
6879 out:
6880 	return cgrp;
6881 }
6882 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6883 
6884 /**
6885  * cgroup_v1v2_get_from_fd - get a cgroup pointer from a fd
6886  * @fd: fd obtained by open(cgroup_dir)
6887  *
6888  * Find the cgroup from a fd which should be obtained
6889  * by opening a cgroup directory.  Returns a pointer to the
6890  * cgroup on success. ERR_PTR is returned if the cgroup
6891  * cannot be found.
6892  */
cgroup_v1v2_get_from_fd(int fd)6893 struct cgroup *cgroup_v1v2_get_from_fd(int fd)
6894 {
6895 	struct cgroup *cgrp;
6896 	struct file *f;
6897 
6898 	f = fget_raw(fd);
6899 	if (!f)
6900 		return ERR_PTR(-EBADF);
6901 
6902 	cgrp = cgroup_v1v2_get_from_file(f);
6903 	fput(f);
6904 	return cgrp;
6905 }
6906 
6907 /**
6908  * cgroup_get_from_fd - same as cgroup_v1v2_get_from_fd, but only supports
6909  * cgroup2.
6910  * @fd: fd obtained by open(cgroup2_dir)
6911  */
cgroup_get_from_fd(int fd)6912 struct cgroup *cgroup_get_from_fd(int fd)
6913 {
6914 	struct cgroup *cgrp = cgroup_v1v2_get_from_fd(fd);
6915 
6916 	if (IS_ERR(cgrp))
6917 		return ERR_CAST(cgrp);
6918 
6919 	if (!cgroup_on_dfl(cgrp)) {
6920 		cgroup_put(cgrp);
6921 		return ERR_PTR(-EBADF);
6922 	}
6923 	return cgrp;
6924 }
6925 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6926 
power_of_ten(int power)6927 static u64 power_of_ten(int power)
6928 {
6929 	u64 v = 1;
6930 	while (power--)
6931 		v *= 10;
6932 	return v;
6933 }
6934 
6935 /**
6936  * cgroup_parse_float - parse a floating number
6937  * @input: input string
6938  * @dec_shift: number of decimal digits to shift
6939  * @v: output
6940  *
6941  * Parse a decimal floating point number in @input and store the result in
6942  * @v with decimal point right shifted @dec_shift times.  For example, if
6943  * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6944  * Returns 0 on success, -errno otherwise.
6945  *
6946  * There's nothing cgroup specific about this function except that it's
6947  * currently the only user.
6948  */
cgroup_parse_float(const char * input,unsigned dec_shift,s64 * v)6949 int cgroup_parse_float(const char *input, unsigned dec_shift, s64 *v)
6950 {
6951 	s64 whole, frac = 0;
6952 	int fstart = 0, fend = 0, flen;
6953 
6954 	if (!sscanf(input, "%lld.%n%lld%n", &whole, &fstart, &frac, &fend))
6955 		return -EINVAL;
6956 	if (frac < 0)
6957 		return -EINVAL;
6958 
6959 	flen = fend > fstart ? fend - fstart : 0;
6960 	if (flen < dec_shift)
6961 		frac *= power_of_ten(dec_shift - flen);
6962 	else
6963 		frac = DIV_ROUND_CLOSEST_ULL(frac, power_of_ten(flen - dec_shift));
6964 
6965 	*v = whole * power_of_ten(dec_shift) + frac;
6966 	return 0;
6967 }
6968 
6969 /*
6970  * sock->sk_cgrp_data handling.  For more info, see sock_cgroup_data
6971  * definition in cgroup-defs.h.
6972  */
6973 #ifdef CONFIG_SOCK_CGROUP_DATA
6974 
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6975 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6976 {
6977 	struct cgroup *cgroup;
6978 
6979 	rcu_read_lock();
6980 	/* Don't associate the sock with unrelated interrupted task's cgroup. */
6981 	if (in_interrupt()) {
6982 		cgroup = &cgrp_dfl_root.cgrp;
6983 		cgroup_get(cgroup);
6984 		goto out;
6985 	}
6986 
6987 	while (true) {
6988 		struct css_set *cset;
6989 
6990 		cset = task_css_set(current);
6991 		if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6992 			cgroup = cset->dfl_cgrp;
6993 			break;
6994 		}
6995 		cpu_relax();
6996 	}
6997 out:
6998 	skcd->cgroup = cgroup;
6999 	cgroup_bpf_get(cgroup);
7000 	rcu_read_unlock();
7001 }
7002 
cgroup_sk_clone(struct sock_cgroup_data * skcd)7003 void cgroup_sk_clone(struct sock_cgroup_data *skcd)
7004 {
7005 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7006 
7007 	/*
7008 	 * We might be cloning a socket which is left in an empty
7009 	 * cgroup and the cgroup might have already been rmdir'd.
7010 	 * Don't use cgroup_get_live().
7011 	 */
7012 	cgroup_get(cgrp);
7013 	cgroup_bpf_get(cgrp);
7014 }
7015 
cgroup_sk_free(struct sock_cgroup_data * skcd)7016 void cgroup_sk_free(struct sock_cgroup_data *skcd)
7017 {
7018 	struct cgroup *cgrp = sock_cgroup_ptr(skcd);
7019 
7020 	cgroup_bpf_put(cgrp);
7021 	cgroup_put(cgrp);
7022 }
7023 
7024 #endif	/* CONFIG_SOCK_CGROUP_DATA */
7025 
7026 #ifdef CONFIG_SYSFS
show_delegatable_files(struct cftype * files,char * buf,ssize_t size,const char * prefix)7027 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
7028 				      ssize_t size, const char *prefix)
7029 {
7030 	struct cftype *cft;
7031 	ssize_t ret = 0;
7032 
7033 	for (cft = files; cft && cft->name[0] != '\0'; cft++) {
7034 		if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
7035 			continue;
7036 
7037 		if (prefix)
7038 			ret += snprintf(buf + ret, size - ret, "%s.", prefix);
7039 
7040 		ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
7041 
7042 		if (WARN_ON(ret >= size))
7043 			break;
7044 	}
7045 
7046 	return ret;
7047 }
7048 
delegate_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7049 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
7050 			      char *buf)
7051 {
7052 	struct cgroup_subsys *ss;
7053 	int ssid;
7054 	ssize_t ret = 0;
7055 
7056 	ret = show_delegatable_files(cgroup_base_files, buf + ret,
7057 				     PAGE_SIZE - ret, NULL);
7058 	if (cgroup_psi_enabled())
7059 		ret += show_delegatable_files(cgroup_psi_files, buf + ret,
7060 					      PAGE_SIZE - ret, NULL);
7061 
7062 	for_each_subsys(ss, ssid)
7063 		ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
7064 					      PAGE_SIZE - ret,
7065 					      cgroup_subsys_name[ssid]);
7066 
7067 	return ret;
7068 }
7069 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
7070 
features_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)7071 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
7072 			     char *buf)
7073 {
7074 	return snprintf(buf, PAGE_SIZE,
7075 			"nsdelegate\n"
7076 			"favordynmods\n"
7077 			"memory_localevents\n"
7078 			"memory_recursiveprot\n");
7079 }
7080 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
7081 
7082 static struct attribute *cgroup_sysfs_attrs[] = {
7083 	&cgroup_delegate_attr.attr,
7084 	&cgroup_features_attr.attr,
7085 	NULL,
7086 };
7087 
7088 static const struct attribute_group cgroup_sysfs_attr_group = {
7089 	.attrs = cgroup_sysfs_attrs,
7090 	.name = "cgroup",
7091 };
7092 
cgroup_sysfs_init(void)7093 static int __init cgroup_sysfs_init(void)
7094 {
7095 	return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
7096 }
7097 subsys_initcall(cgroup_sysfs_init);
7098 
7099 #endif /* CONFIG_SYSFS */
7100