1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4
5 /*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10 #include <uapi/linux/sched.h>
11
12 #include <asm/current.h>
13
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/android_vendor.h>
40 #include <asm/kmap_size.h>
41 #include <linux/android_kabi.h>
42
43 /* task_struct member predeclarations (sorted alphabetically): */
44 struct audit_context;
45 struct backing_dev_info;
46 struct bio_list;
47 struct blk_plug;
48 struct bpf_local_storage;
49 struct bpf_run_ctx;
50 struct capture_control;
51 struct cfs_rq;
52 struct fs_struct;
53 struct futex_pi_state;
54 struct io_context;
55 struct io_uring_task;
56 struct mempolicy;
57 struct nameidata;
58 struct nsproxy;
59 struct perf_event_context;
60 struct pid_namespace;
61 struct pipe_inode_info;
62 struct rcu_node;
63 struct reclaim_state;
64 struct robust_list_head;
65 struct root_domain;
66 struct rq;
67 struct sched_attr;
68 struct sched_param;
69 struct seq_file;
70 struct sighand_struct;
71 struct signal_struct;
72 struct task_delay_info;
73 struct task_group;
74
75 /*
76 * Task state bitmask. NOTE! These bits are also
77 * encoded in fs/proc/array.c: get_task_state().
78 *
79 * We have two separate sets of flags: task->state
80 * is about runnability, while task->exit_state are
81 * about the task exiting. Confusing, but this way
82 * modifying one set can't modify the other one by
83 * mistake.
84 */
85
86 /* Used in tsk->state: */
87 #define TASK_RUNNING 0x00000000
88 #define TASK_INTERRUPTIBLE 0x00000001
89 #define TASK_UNINTERRUPTIBLE 0x00000002
90 #define __TASK_STOPPED 0x00000004
91 #define __TASK_TRACED 0x00000008
92 /* Used in tsk->exit_state: */
93 #define EXIT_DEAD 0x00000010
94 #define EXIT_ZOMBIE 0x00000020
95 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
96 /* Used in tsk->state again: */
97 #define TASK_PARKED 0x00000040
98 #define TASK_DEAD 0x00000080
99 #define TASK_WAKEKILL 0x00000100
100 #define TASK_WAKING 0x00000200
101 #define TASK_NOLOAD 0x00000400
102 #define TASK_NEW 0x00000800
103 #define TASK_RTLOCK_WAIT 0x00001000
104 #define TASK_FREEZABLE 0x00002000
105 #define __TASK_FREEZABLE_UNSAFE (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
106 #define TASK_FROZEN 0x00008000
107 #define TASK_STATE_MAX 0x00010000
108
109 #define TASK_ANY (TASK_STATE_MAX-1)
110
111 /*
112 * DO NOT ADD ANY NEW USERS !
113 */
114 #define TASK_FREEZABLE_UNSAFE (TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
115
116 /* Convenience macros for the sake of set_current_state: */
117 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
118 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
119 #define TASK_TRACED __TASK_TRACED
120
121 #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
122
123 /* Convenience macros for the sake of wake_up(): */
124 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
125
126 /* get_task_state(): */
127 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
128 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
129 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
130 TASK_PARKED)
131
132 #define task_is_running(task) (READ_ONCE((task)->__state) == TASK_RUNNING)
133
134 #define task_is_traced(task) ((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
135 #define task_is_stopped(task) ((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
136 #define task_is_stopped_or_traced(task) ((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
137
138 /*
139 * Special states are those that do not use the normal wait-loop pattern. See
140 * the comment with set_special_state().
141 */
142 #define is_special_task_state(state) \
143 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
144
145 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
146 # define debug_normal_state_change(state_value) \
147 do { \
148 WARN_ON_ONCE(is_special_task_state(state_value)); \
149 current->task_state_change = _THIS_IP_; \
150 } while (0)
151
152 # define debug_special_state_change(state_value) \
153 do { \
154 WARN_ON_ONCE(!is_special_task_state(state_value)); \
155 current->task_state_change = _THIS_IP_; \
156 } while (0)
157
158 # define debug_rtlock_wait_set_state() \
159 do { \
160 current->saved_state_change = current->task_state_change;\
161 current->task_state_change = _THIS_IP_; \
162 } while (0)
163
164 # define debug_rtlock_wait_restore_state() \
165 do { \
166 current->task_state_change = current->saved_state_change;\
167 } while (0)
168
169 #else
170 # define debug_normal_state_change(cond) do { } while (0)
171 # define debug_special_state_change(cond) do { } while (0)
172 # define debug_rtlock_wait_set_state() do { } while (0)
173 # define debug_rtlock_wait_restore_state() do { } while (0)
174 #endif
175
176 /*
177 * set_current_state() includes a barrier so that the write of current->state
178 * is correctly serialised wrt the caller's subsequent test of whether to
179 * actually sleep:
180 *
181 * for (;;) {
182 * set_current_state(TASK_UNINTERRUPTIBLE);
183 * if (CONDITION)
184 * break;
185 *
186 * schedule();
187 * }
188 * __set_current_state(TASK_RUNNING);
189 *
190 * If the caller does not need such serialisation (because, for instance, the
191 * CONDITION test and condition change and wakeup are under the same lock) then
192 * use __set_current_state().
193 *
194 * The above is typically ordered against the wakeup, which does:
195 *
196 * CONDITION = 1;
197 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
198 *
199 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
200 * accessing p->state.
201 *
202 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
203 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
204 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
205 *
206 * However, with slightly different timing the wakeup TASK_RUNNING store can
207 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
208 * a problem either because that will result in one extra go around the loop
209 * and our @cond test will save the day.
210 *
211 * Also see the comments of try_to_wake_up().
212 */
213 #define __set_current_state(state_value) \
214 do { \
215 debug_normal_state_change((state_value)); \
216 WRITE_ONCE(current->__state, (state_value)); \
217 } while (0)
218
219 #define set_current_state(state_value) \
220 do { \
221 debug_normal_state_change((state_value)); \
222 smp_store_mb(current->__state, (state_value)); \
223 } while (0)
224
225 /*
226 * set_special_state() should be used for those states when the blocking task
227 * can not use the regular condition based wait-loop. In that case we must
228 * serialize against wakeups such that any possible in-flight TASK_RUNNING
229 * stores will not collide with our state change.
230 */
231 #define set_special_state(state_value) \
232 do { \
233 unsigned long flags; /* may shadow */ \
234 \
235 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
236 debug_special_state_change((state_value)); \
237 WRITE_ONCE(current->__state, (state_value)); \
238 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
239 } while (0)
240
241 /*
242 * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
243 *
244 * RT's spin/rwlock substitutions are state preserving. The state of the
245 * task when blocking on the lock is saved in task_struct::saved_state and
246 * restored after the lock has been acquired. These operations are
247 * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
248 * lock related wakeups while the task is blocked on the lock are
249 * redirected to operate on task_struct::saved_state to ensure that these
250 * are not dropped. On restore task_struct::saved_state is set to
251 * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
252 *
253 * The lock operation looks like this:
254 *
255 * current_save_and_set_rtlock_wait_state();
256 * for (;;) {
257 * if (try_lock())
258 * break;
259 * raw_spin_unlock_irq(&lock->wait_lock);
260 * schedule_rtlock();
261 * raw_spin_lock_irq(&lock->wait_lock);
262 * set_current_state(TASK_RTLOCK_WAIT);
263 * }
264 * current_restore_rtlock_saved_state();
265 */
266 #define current_save_and_set_rtlock_wait_state() \
267 do { \
268 lockdep_assert_irqs_disabled(); \
269 raw_spin_lock(¤t->pi_lock); \
270 current->saved_state = current->__state; \
271 debug_rtlock_wait_set_state(); \
272 WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT); \
273 raw_spin_unlock(¤t->pi_lock); \
274 } while (0);
275
276 #define current_restore_rtlock_saved_state() \
277 do { \
278 lockdep_assert_irqs_disabled(); \
279 raw_spin_lock(¤t->pi_lock); \
280 debug_rtlock_wait_restore_state(); \
281 WRITE_ONCE(current->__state, current->saved_state); \
282 current->saved_state = TASK_RUNNING; \
283 raw_spin_unlock(¤t->pi_lock); \
284 } while (0);
285
286 #define get_current_state() READ_ONCE(current->__state)
287
288 /*
289 * Define the task command name length as enum, then it can be visible to
290 * BPF programs.
291 */
292 enum {
293 TASK_COMM_LEN = 16,
294 };
295
296 extern void scheduler_tick(void);
297
298 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
299
300 extern long schedule_timeout(long timeout);
301 extern long schedule_timeout_interruptible(long timeout);
302 extern long schedule_timeout_killable(long timeout);
303 extern long schedule_timeout_uninterruptible(long timeout);
304 extern long schedule_timeout_idle(long timeout);
305 asmlinkage void schedule(void);
306 extern void schedule_preempt_disabled(void);
307 asmlinkage void preempt_schedule_irq(void);
308 #ifdef CONFIG_PREEMPT_RT
309 extern void schedule_rtlock(void);
310 #endif
311
312 extern int __must_check io_schedule_prepare(void);
313 extern void io_schedule_finish(int token);
314 extern long io_schedule_timeout(long timeout);
315 extern void io_schedule(void);
316 extern struct task_struct *pick_migrate_task(struct rq *rq);
317 extern int select_fallback_rq(int cpu, struct task_struct *p);
318
319 /**
320 * struct prev_cputime - snapshot of system and user cputime
321 * @utime: time spent in user mode
322 * @stime: time spent in system mode
323 * @lock: protects the above two fields
324 *
325 * Stores previous user/system time values such that we can guarantee
326 * monotonicity.
327 */
328 struct prev_cputime {
329 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
330 u64 utime;
331 u64 stime;
332 raw_spinlock_t lock;
333 #endif
334 };
335
336 enum vtime_state {
337 /* Task is sleeping or running in a CPU with VTIME inactive: */
338 VTIME_INACTIVE = 0,
339 /* Task is idle */
340 VTIME_IDLE,
341 /* Task runs in kernelspace in a CPU with VTIME active: */
342 VTIME_SYS,
343 /* Task runs in userspace in a CPU with VTIME active: */
344 VTIME_USER,
345 /* Task runs as guests in a CPU with VTIME active: */
346 VTIME_GUEST,
347 };
348
349 struct vtime {
350 seqcount_t seqcount;
351 unsigned long long starttime;
352 enum vtime_state state;
353 unsigned int cpu;
354 u64 utime;
355 u64 stime;
356 u64 gtime;
357 };
358
359 /*
360 * Utilization clamp constraints.
361 * @UCLAMP_MIN: Minimum utilization
362 * @UCLAMP_MAX: Maximum utilization
363 * @UCLAMP_CNT: Utilization clamp constraints count
364 */
365 enum uclamp_id {
366 UCLAMP_MIN = 0,
367 UCLAMP_MAX,
368 UCLAMP_CNT
369 };
370
371 #ifdef CONFIG_SMP
372 extern struct root_domain def_root_domain;
373 extern struct mutex sched_domains_mutex;
374 #endif
375
376 struct sched_info {
377 #ifdef CONFIG_SCHED_INFO
378 /* Cumulative counters: */
379
380 /* # of times we have run on this CPU: */
381 unsigned long pcount;
382
383 /* Time spent waiting on a runqueue: */
384 unsigned long long run_delay;
385
386 /* Timestamps: */
387
388 /* When did we last run on a CPU? */
389 unsigned long long last_arrival;
390
391 /* When were we last queued to run? */
392 unsigned long long last_queued;
393
394 #endif /* CONFIG_SCHED_INFO */
395 };
396
397 /*
398 * Integer metrics need fixed point arithmetic, e.g., sched/fair
399 * has a few: load, load_avg, util_avg, freq, and capacity.
400 *
401 * We define a basic fixed point arithmetic range, and then formalize
402 * all these metrics based on that basic range.
403 */
404 # define SCHED_FIXEDPOINT_SHIFT 10
405 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
406
407 /* Increase resolution of cpu_capacity calculations */
408 # define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
409 # define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
410
411 struct load_weight {
412 unsigned long weight;
413 u32 inv_weight;
414 };
415
416 /**
417 * struct util_est - Estimation utilization of FAIR tasks
418 * @enqueued: instantaneous estimated utilization of a task/cpu
419 * @ewma: the Exponential Weighted Moving Average (EWMA)
420 * utilization of a task
421 *
422 * Support data structure to track an Exponential Weighted Moving Average
423 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
424 * average each time a task completes an activation. Sample's weight is chosen
425 * so that the EWMA will be relatively insensitive to transient changes to the
426 * task's workload.
427 *
428 * The enqueued attribute has a slightly different meaning for tasks and cpus:
429 * - task: the task's util_avg at last task dequeue time
430 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
431 * Thus, the util_est.enqueued of a task represents the contribution on the
432 * estimated utilization of the CPU where that task is currently enqueued.
433 *
434 * Only for tasks we track a moving average of the past instantaneous
435 * estimated utilization. This allows to absorb sporadic drops in utilization
436 * of an otherwise almost periodic task.
437 *
438 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
439 * updates. When a task is dequeued, its util_est should not be updated if its
440 * util_avg has not been updated in the meantime.
441 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
442 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
443 * for a task) it is safe to use MSB.
444 */
445 struct util_est {
446 unsigned int enqueued;
447 unsigned int ewma;
448 #define UTIL_EST_WEIGHT_SHIFT 2
449 #define UTIL_AVG_UNCHANGED 0x80000000
450 } __attribute__((__aligned__(sizeof(u64))));
451
452 /*
453 * The load/runnable/util_avg accumulates an infinite geometric series
454 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
455 *
456 * [load_avg definition]
457 *
458 * load_avg = runnable% * scale_load_down(load)
459 *
460 * [runnable_avg definition]
461 *
462 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
463 *
464 * [util_avg definition]
465 *
466 * util_avg = running% * SCHED_CAPACITY_SCALE
467 *
468 * where runnable% is the time ratio that a sched_entity is runnable and
469 * running% the time ratio that a sched_entity is running.
470 *
471 * For cfs_rq, they are the aggregated values of all runnable and blocked
472 * sched_entities.
473 *
474 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
475 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
476 * for computing those signals (see update_rq_clock_pelt())
477 *
478 * N.B., the above ratios (runnable% and running%) themselves are in the
479 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
480 * to as large a range as necessary. This is for example reflected by
481 * util_avg's SCHED_CAPACITY_SCALE.
482 *
483 * [Overflow issue]
484 *
485 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
486 * with the highest load (=88761), always runnable on a single cfs_rq,
487 * and should not overflow as the number already hits PID_MAX_LIMIT.
488 *
489 * For all other cases (including 32-bit kernels), struct load_weight's
490 * weight will overflow first before we do, because:
491 *
492 * Max(load_avg) <= Max(load.weight)
493 *
494 * Then it is the load_weight's responsibility to consider overflow
495 * issues.
496 */
497 struct sched_avg {
498 u64 last_update_time;
499 u64 load_sum;
500 u64 runnable_sum;
501 u32 util_sum;
502 u32 period_contrib;
503 unsigned long load_avg;
504 unsigned long runnable_avg;
505 unsigned long util_avg;
506 struct util_est util_est;
507 } ____cacheline_aligned;
508
509 struct sched_statistics {
510 #ifdef CONFIG_SCHEDSTATS
511 u64 wait_start;
512 u64 wait_max;
513 u64 wait_count;
514 u64 wait_sum;
515 u64 iowait_count;
516 u64 iowait_sum;
517
518 u64 sleep_start;
519 u64 sleep_max;
520 s64 sum_sleep_runtime;
521
522 u64 block_start;
523 u64 block_max;
524 s64 sum_block_runtime;
525
526 u64 exec_max;
527 u64 slice_max;
528
529 u64 nr_migrations_cold;
530 u64 nr_failed_migrations_affine;
531 u64 nr_failed_migrations_running;
532 u64 nr_failed_migrations_hot;
533 u64 nr_forced_migrations;
534
535 u64 nr_wakeups;
536 u64 nr_wakeups_sync;
537 u64 nr_wakeups_migrate;
538 u64 nr_wakeups_local;
539 u64 nr_wakeups_remote;
540 u64 nr_wakeups_affine;
541 u64 nr_wakeups_affine_attempts;
542 u64 nr_wakeups_passive;
543 u64 nr_wakeups_idle;
544
545 #ifdef CONFIG_SCHED_CORE
546 u64 core_forceidle_sum;
547 #endif
548 #endif /* CONFIG_SCHEDSTATS */
549 } ____cacheline_aligned;
550
551 struct sched_entity {
552 /* For load-balancing: */
553 struct load_weight load;
554 struct rb_node run_node;
555 struct list_head group_node;
556 unsigned int on_rq;
557
558 u64 exec_start;
559 u64 sum_exec_runtime;
560 u64 vruntime;
561 u64 prev_sum_exec_runtime;
562
563 u64 nr_migrations;
564
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 int depth;
567 struct sched_entity *parent;
568 /* rq on which this entity is (to be) queued: */
569 struct cfs_rq *cfs_rq;
570 /* rq "owned" by this entity/group: */
571 struct cfs_rq *my_q;
572 /* cached value of my_q->h_nr_running */
573 unsigned long runnable_weight;
574 #endif
575
576 #ifdef CONFIG_SMP
577 /*
578 * Per entity load average tracking.
579 *
580 * Put into separate cache line so it does not
581 * collide with read-mostly values above.
582 */
583 struct sched_avg avg;
584 #endif
585
586 ANDROID_KABI_RESERVE(1);
587 ANDROID_KABI_RESERVE(2);
588 ANDROID_KABI_RESERVE(3);
589 ANDROID_KABI_RESERVE(4);
590 };
591
592 struct sched_rt_entity {
593 struct list_head run_list;
594 unsigned long timeout;
595 unsigned long watchdog_stamp;
596 unsigned int time_slice;
597 unsigned short on_rq;
598 unsigned short on_list;
599
600 struct sched_rt_entity *back;
601 #ifdef CONFIG_RT_GROUP_SCHED
602 struct sched_rt_entity *parent;
603 /* rq on which this entity is (to be) queued: */
604 struct rt_rq *rt_rq;
605 /* rq "owned" by this entity/group: */
606 struct rt_rq *my_q;
607 #endif
608
609 ANDROID_KABI_RESERVE(1);
610 ANDROID_KABI_RESERVE(2);
611 ANDROID_KABI_RESERVE(3);
612 ANDROID_KABI_RESERVE(4);
613 } __randomize_layout;
614
615 struct sched_dl_entity {
616 struct rb_node rb_node;
617
618 /*
619 * Original scheduling parameters. Copied here from sched_attr
620 * during sched_setattr(), they will remain the same until
621 * the next sched_setattr().
622 */
623 u64 dl_runtime; /* Maximum runtime for each instance */
624 u64 dl_deadline; /* Relative deadline of each instance */
625 u64 dl_period; /* Separation of two instances (period) */
626 u64 dl_bw; /* dl_runtime / dl_period */
627 u64 dl_density; /* dl_runtime / dl_deadline */
628
629 /*
630 * Actual scheduling parameters. Initialized with the values above,
631 * they are continuously updated during task execution. Note that
632 * the remaining runtime could be < 0 in case we are in overrun.
633 */
634 s64 runtime; /* Remaining runtime for this instance */
635 u64 deadline; /* Absolute deadline for this instance */
636 unsigned int flags; /* Specifying the scheduler behaviour */
637
638 /*
639 * Some bool flags:
640 *
641 * @dl_throttled tells if we exhausted the runtime. If so, the
642 * task has to wait for a replenishment to be performed at the
643 * next firing of dl_timer.
644 *
645 * @dl_yielded tells if task gave up the CPU before consuming
646 * all its available runtime during the last job.
647 *
648 * @dl_non_contending tells if the task is inactive while still
649 * contributing to the active utilization. In other words, it
650 * indicates if the inactive timer has been armed and its handler
651 * has not been executed yet. This flag is useful to avoid race
652 * conditions between the inactive timer handler and the wakeup
653 * code.
654 *
655 * @dl_overrun tells if the task asked to be informed about runtime
656 * overruns.
657 */
658 unsigned int dl_throttled : 1;
659 unsigned int dl_yielded : 1;
660 unsigned int dl_non_contending : 1;
661 unsigned int dl_overrun : 1;
662
663 /*
664 * Bandwidth enforcement timer. Each -deadline task has its
665 * own bandwidth to be enforced, thus we need one timer per task.
666 */
667 struct hrtimer dl_timer;
668
669 /*
670 * Inactive timer, responsible for decreasing the active utilization
671 * at the "0-lag time". When a -deadline task blocks, it contributes
672 * to GRUB's active utilization until the "0-lag time", hence a
673 * timer is needed to decrease the active utilization at the correct
674 * time.
675 */
676 struct hrtimer inactive_timer;
677
678 #ifdef CONFIG_RT_MUTEXES
679 /*
680 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
681 * pi_se points to the donor, otherwise points to the dl_se it belongs
682 * to (the original one/itself).
683 */
684 struct sched_dl_entity *pi_se;
685 #endif
686 };
687
688 #ifdef CONFIG_UCLAMP_TASK
689 /* Number of utilization clamp buckets (shorter alias) */
690 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
691
692 /*
693 * Utilization clamp for a scheduling entity
694 * @value: clamp value "assigned" to a se
695 * @bucket_id: bucket index corresponding to the "assigned" value
696 * @active: the se is currently refcounted in a rq's bucket
697 * @user_defined: the requested clamp value comes from user-space
698 *
699 * The bucket_id is the index of the clamp bucket matching the clamp value
700 * which is pre-computed and stored to avoid expensive integer divisions from
701 * the fast path.
702 *
703 * The active bit is set whenever a task has got an "effective" value assigned,
704 * which can be different from the clamp value "requested" from user-space.
705 * This allows to know a task is refcounted in the rq's bucket corresponding
706 * to the "effective" bucket_id.
707 *
708 * The user_defined bit is set whenever a task has got a task-specific clamp
709 * value requested from userspace, i.e. the system defaults apply to this task
710 * just as a restriction. This allows to relax default clamps when a less
711 * restrictive task-specific value has been requested, thus allowing to
712 * implement a "nice" semantic. For example, a task running with a 20%
713 * default boost can still drop its own boosting to 0%.
714 */
715 struct uclamp_se {
716 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
717 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
718 unsigned int active : 1;
719 unsigned int user_defined : 1;
720 };
721 #endif /* CONFIG_UCLAMP_TASK */
722
723 union rcu_special {
724 struct {
725 u8 blocked;
726 u8 need_qs;
727 u8 exp_hint; /* Hint for performance. */
728 u8 need_mb; /* Readers need smp_mb(). */
729 } b; /* Bits. */
730 u32 s; /* Set of bits. */
731 };
732
733 enum perf_event_task_context {
734 perf_invalid_context = -1,
735 perf_hw_context = 0,
736 perf_sw_context,
737 perf_nr_task_contexts,
738 };
739
740 struct wake_q_node {
741 struct wake_q_node *next;
742 };
743
744 struct kmap_ctrl {
745 #ifdef CONFIG_KMAP_LOCAL
746 int idx;
747 pte_t pteval[KM_MAX_IDX];
748 #endif
749 };
750
751 struct task_struct {
752 #ifdef CONFIG_THREAD_INFO_IN_TASK
753 /*
754 * For reasons of header soup (see current_thread_info()), this
755 * must be the first element of task_struct.
756 */
757 struct thread_info thread_info;
758 #endif
759 unsigned int __state;
760
761 /* saved state for "spinlock sleepers" */
762 /* moved to ANDROID_KABI_USE(1, unsigned int saved_state) */
763
764 /*
765 * This begins the randomizable portion of task_struct. Only
766 * scheduling-critical items should be added above here.
767 */
768 randomized_struct_fields_start
769
770 void *stack;
771 refcount_t usage;
772 /* Per task flags (PF_*), defined further below: */
773 unsigned int flags;
774 unsigned int ptrace;
775
776 #ifdef CONFIG_SMP
777 int on_cpu;
778 struct __call_single_node wake_entry;
779 unsigned int wakee_flips;
780 unsigned long wakee_flip_decay_ts;
781 struct task_struct *last_wakee;
782
783 /*
784 * recent_used_cpu is initially set as the last CPU used by a task
785 * that wakes affine another task. Waker/wakee relationships can
786 * push tasks around a CPU where each wakeup moves to the next one.
787 * Tracking a recently used CPU allows a quick search for a recently
788 * used CPU that may be idle.
789 */
790 int recent_used_cpu;
791 int wake_cpu;
792 #endif
793 int on_rq;
794
795 int prio;
796 int static_prio;
797 int normal_prio;
798 unsigned int rt_priority;
799
800 struct sched_entity se;
801 struct sched_rt_entity rt;
802 struct sched_dl_entity dl;
803 const struct sched_class *sched_class;
804
805 #ifdef CONFIG_SCHED_CORE
806 struct rb_node core_node;
807 unsigned long core_cookie;
808 unsigned int core_occupation;
809 #endif
810
811 #ifdef CONFIG_CGROUP_SCHED
812 struct task_group *sched_task_group;
813 #endif
814
815 #ifdef CONFIG_UCLAMP_TASK
816 /*
817 * Clamp values requested for a scheduling entity.
818 * Must be updated with task_rq_lock() held.
819 */
820 struct uclamp_se uclamp_req[UCLAMP_CNT];
821 /*
822 * Effective clamp values used for a scheduling entity.
823 * Must be updated with task_rq_lock() held.
824 */
825 struct uclamp_se uclamp[UCLAMP_CNT];
826 #endif
827
828 struct sched_statistics stats;
829
830 #ifdef CONFIG_PREEMPT_NOTIFIERS
831 /* List of struct preempt_notifier: */
832 struct hlist_head preempt_notifiers;
833 #endif
834
835 #ifdef CONFIG_BLK_DEV_IO_TRACE
836 unsigned int btrace_seq;
837 #endif
838
839 unsigned int policy;
840 int nr_cpus_allowed;
841 const cpumask_t *cpus_ptr;
842 cpumask_t *user_cpus_ptr;
843 cpumask_t cpus_mask;
844 void *migration_pending;
845 #ifdef CONFIG_SMP
846 unsigned short migration_disabled;
847 #endif
848 unsigned short migration_flags;
849
850 #ifdef CONFIG_PREEMPT_RCU
851 int rcu_read_lock_nesting;
852 union rcu_special rcu_read_unlock_special;
853 struct list_head rcu_node_entry;
854 struct rcu_node *rcu_blocked_node;
855 #endif /* #ifdef CONFIG_PREEMPT_RCU */
856
857 #ifdef CONFIG_TASKS_RCU
858 unsigned long rcu_tasks_nvcsw;
859 u8 rcu_tasks_holdout;
860 u8 rcu_tasks_idx;
861 int rcu_tasks_idle_cpu;
862 struct list_head rcu_tasks_holdout_list;
863 #endif /* #ifdef CONFIG_TASKS_RCU */
864
865 #ifdef CONFIG_TASKS_TRACE_RCU
866 int trc_reader_nesting;
867 int trc_ipi_to_cpu;
868 union rcu_special trc_reader_special;
869 struct list_head trc_holdout_list;
870 struct list_head trc_blkd_node;
871 int trc_blkd_cpu;
872 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
873
874 struct sched_info sched_info;
875
876 struct list_head tasks;
877 #ifdef CONFIG_SMP
878 struct plist_node pushable_tasks;
879 struct rb_node pushable_dl_tasks;
880 #endif
881
882 struct mm_struct *mm;
883 struct mm_struct *active_mm;
884
885 #ifdef SPLIT_RSS_COUNTING
886 struct task_rss_stat rss_stat;
887 #endif
888 int exit_state;
889 int exit_code;
890 int exit_signal;
891 /* The signal sent when the parent dies: */
892 int pdeath_signal;
893 /* JOBCTL_*, siglock protected: */
894 unsigned long jobctl;
895
896 /* Used for emulating ABI behavior of previous Linux versions: */
897 unsigned int personality;
898
899 /* Scheduler bits, serialized by scheduler locks: */
900 unsigned sched_reset_on_fork:1;
901 unsigned sched_contributes_to_load:1;
902 unsigned sched_migrated:1;
903 #ifdef CONFIG_PSI
904 unsigned sched_psi_wake_requeue:1;
905 #endif
906
907 /* Force alignment to the next boundary: */
908 unsigned :0;
909
910 /* Unserialized, strictly 'current' */
911
912 /*
913 * This field must not be in the scheduler word above due to wakelist
914 * queueing no longer being serialized by p->on_cpu. However:
915 *
916 * p->XXX = X; ttwu()
917 * schedule() if (p->on_rq && ..) // false
918 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
919 * deactivate_task() ttwu_queue_wakelist())
920 * p->on_rq = 0; p->sched_remote_wakeup = Y;
921 *
922 * guarantees all stores of 'current' are visible before
923 * ->sched_remote_wakeup gets used, so it can be in this word.
924 */
925 unsigned sched_remote_wakeup:1;
926
927 /* Bit to tell LSMs we're in execve(): */
928 unsigned in_execve:1;
929 unsigned in_iowait:1;
930 #ifndef TIF_RESTORE_SIGMASK
931 unsigned restore_sigmask:1;
932 #endif
933 #ifdef CONFIG_MEMCG
934 unsigned in_user_fault:1;
935 #endif
936 #ifdef CONFIG_LRU_GEN
937 /* whether the LRU algorithm may apply to this access */
938 unsigned in_lru_fault:1;
939 #endif
940 #ifdef CONFIG_COMPAT_BRK
941 unsigned brk_randomized:1;
942 #endif
943 #ifdef CONFIG_CGROUPS
944 /* disallow userland-initiated cgroup migration */
945 unsigned no_cgroup_migration:1;
946 /* task is frozen/stopped (used by the cgroup freezer) */
947 unsigned frozen:1;
948 #endif
949 #ifdef CONFIG_BLK_CGROUP
950 unsigned use_memdelay:1;
951 #endif
952 #ifdef CONFIG_PSI
953 /* Stalled due to lack of memory */
954 unsigned in_memstall:1;
955 #endif
956 #ifdef CONFIG_PAGE_OWNER
957 /* Used by page_owner=on to detect recursion in page tracking. */
958 unsigned in_page_owner:1;
959 #endif
960 #ifdef CONFIG_EVENTFD
961 /* Recursion prevention for eventfd_signal() */
962 unsigned in_eventfd:1;
963 #endif
964 #ifdef CONFIG_IOMMU_SVA
965 unsigned pasid_activated:1;
966 #endif
967 #ifdef CONFIG_CPU_SUP_INTEL
968 unsigned reported_split_lock:1;
969 #endif
970 #ifdef CONFIG_TASK_DELAY_ACCT
971 /* delay due to memory thrashing */
972 unsigned in_thrashing:1;
973 #endif
974
975 unsigned long atomic_flags; /* Flags requiring atomic access. */
976
977 struct restart_block restart_block;
978
979 pid_t pid;
980 pid_t tgid;
981
982 #ifdef CONFIG_STACKPROTECTOR
983 /* Canary value for the -fstack-protector GCC feature: */
984 unsigned long stack_canary;
985 #endif
986 /*
987 * Pointers to the (original) parent process, youngest child, younger sibling,
988 * older sibling, respectively. (p->father can be replaced with
989 * p->real_parent->pid)
990 */
991
992 /* Real parent process: */
993 struct task_struct __rcu *real_parent;
994
995 /* Recipient of SIGCHLD, wait4() reports: */
996 struct task_struct __rcu *parent;
997
998 /*
999 * Children/sibling form the list of natural children:
1000 */
1001 struct list_head children;
1002 struct list_head sibling;
1003 struct task_struct *group_leader;
1004
1005 /*
1006 * 'ptraced' is the list of tasks this task is using ptrace() on.
1007 *
1008 * This includes both natural children and PTRACE_ATTACH targets.
1009 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1010 */
1011 struct list_head ptraced;
1012 struct list_head ptrace_entry;
1013
1014 /* PID/PID hash table linkage. */
1015 struct pid *thread_pid;
1016 struct hlist_node pid_links[PIDTYPE_MAX];
1017 struct list_head thread_group;
1018 struct list_head thread_node;
1019
1020 struct completion *vfork_done;
1021
1022 /* CLONE_CHILD_SETTID: */
1023 int __user *set_child_tid;
1024
1025 /* CLONE_CHILD_CLEARTID: */
1026 int __user *clear_child_tid;
1027
1028 /* PF_KTHREAD | PF_IO_WORKER */
1029 void *worker_private;
1030
1031 u64 utime;
1032 u64 stime;
1033 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1034 u64 utimescaled;
1035 u64 stimescaled;
1036 #endif
1037 u64 gtime;
1038 #ifdef CONFIG_CPU_FREQ_TIMES
1039 u64 *time_in_state;
1040 unsigned int max_state;
1041 #endif
1042 struct prev_cputime prev_cputime;
1043 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1044 struct vtime vtime;
1045 #endif
1046
1047 #ifdef CONFIG_NO_HZ_FULL
1048 atomic_t tick_dep_mask;
1049 #endif
1050 /* Context switch counts: */
1051 unsigned long nvcsw;
1052 unsigned long nivcsw;
1053
1054 /* Monotonic time in nsecs: */
1055 u64 start_time;
1056
1057 /* Boot based time in nsecs: */
1058 u64 start_boottime;
1059
1060 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1061 unsigned long min_flt;
1062 unsigned long maj_flt;
1063
1064 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
1065 struct posix_cputimers posix_cputimers;
1066
1067 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1068 struct posix_cputimers_work posix_cputimers_work;
1069 #endif
1070
1071 /* Process credentials: */
1072
1073 /* Tracer's credentials at attach: */
1074 const struct cred __rcu *ptracer_cred;
1075
1076 /* Objective and real subjective task credentials (COW): */
1077 const struct cred __rcu *real_cred;
1078
1079 /* Effective (overridable) subjective task credentials (COW): */
1080 const struct cred __rcu *cred;
1081
1082 #ifdef CONFIG_KEYS
1083 /* Cached requested key. */
1084 struct key *cached_requested_key;
1085 #endif
1086
1087 /*
1088 * executable name, excluding path.
1089 *
1090 * - normally initialized setup_new_exec()
1091 * - access it with [gs]et_task_comm()
1092 * - lock it with task_lock()
1093 */
1094 char comm[TASK_COMM_LEN];
1095
1096 struct nameidata *nameidata;
1097
1098 #ifdef CONFIG_SYSVIPC
1099 struct sysv_sem sysvsem;
1100 struct sysv_shm sysvshm;
1101 #endif
1102 #ifdef CONFIG_DETECT_HUNG_TASK
1103 unsigned long last_switch_count;
1104 unsigned long last_switch_time;
1105 #endif
1106 /* Filesystem information: */
1107 struct fs_struct *fs;
1108
1109 /* Open file information: */
1110 struct files_struct *files;
1111
1112 #ifdef CONFIG_IO_URING
1113 struct io_uring_task *io_uring;
1114 #endif
1115
1116 /* Namespaces: */
1117 struct nsproxy *nsproxy;
1118
1119 /* Signal handlers: */
1120 struct signal_struct *signal;
1121 struct sighand_struct __rcu *sighand;
1122 sigset_t blocked;
1123 sigset_t real_blocked;
1124 /* Restored if set_restore_sigmask() was used: */
1125 sigset_t saved_sigmask;
1126 struct sigpending pending;
1127 unsigned long sas_ss_sp;
1128 size_t sas_ss_size;
1129 unsigned int sas_ss_flags;
1130
1131 struct callback_head *task_works;
1132
1133 #ifdef CONFIG_AUDIT
1134 #ifdef CONFIG_AUDITSYSCALL
1135 struct audit_context *audit_context;
1136 #endif
1137 kuid_t loginuid;
1138 unsigned int sessionid;
1139 #endif
1140 struct seccomp seccomp;
1141 struct syscall_user_dispatch syscall_dispatch;
1142
1143 /* Thread group tracking: */
1144 u64 parent_exec_id;
1145 u64 self_exec_id;
1146
1147 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1148 spinlock_t alloc_lock;
1149
1150 /* Protection of the PI data structures: */
1151 raw_spinlock_t pi_lock;
1152
1153 struct wake_q_node wake_q;
1154 int wake_q_count;
1155
1156 #ifdef CONFIG_RT_MUTEXES
1157 /* PI waiters blocked on a rt_mutex held by this task: */
1158 struct rb_root_cached pi_waiters;
1159 /* Updated under owner's pi_lock and rq lock */
1160 struct task_struct *pi_top_task;
1161 /* Deadlock detection and priority inheritance handling: */
1162 struct rt_mutex_waiter *pi_blocked_on;
1163 #endif
1164
1165 #ifdef CONFIG_DEBUG_MUTEXES
1166 /* Mutex deadlock detection: */
1167 struct mutex_waiter *blocked_on;
1168 #endif
1169
1170 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1171 int non_block_count;
1172 #endif
1173
1174 #ifdef CONFIG_TRACE_IRQFLAGS
1175 struct irqtrace_events irqtrace;
1176 unsigned int hardirq_threaded;
1177 u64 hardirq_chain_key;
1178 int softirqs_enabled;
1179 int softirq_context;
1180 int irq_config;
1181 #endif
1182 #ifdef CONFIG_PREEMPT_RT
1183 int softirq_disable_cnt;
1184 #endif
1185
1186 #ifdef CONFIG_LOCKDEP
1187 # define MAX_LOCK_DEPTH 48UL
1188 u64 curr_chain_key;
1189 int lockdep_depth;
1190 unsigned int lockdep_recursion;
1191 struct held_lock held_locks[MAX_LOCK_DEPTH];
1192 #endif
1193
1194 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1195 unsigned int in_ubsan;
1196 #endif
1197
1198 /* Journalling filesystem info: */
1199 void *journal_info;
1200
1201 /* Stacked block device info: */
1202 struct bio_list *bio_list;
1203
1204 /* Stack plugging: */
1205 struct blk_plug *plug;
1206
1207 /* VM state: */
1208 struct reclaim_state *reclaim_state;
1209
1210 struct backing_dev_info *backing_dev_info;
1211
1212 struct io_context *io_context;
1213
1214 #ifdef CONFIG_COMPACTION
1215 struct capture_control *capture_control;
1216 #endif
1217 /* Ptrace state: */
1218 unsigned long ptrace_message;
1219 kernel_siginfo_t *last_siginfo;
1220
1221 struct task_io_accounting ioac;
1222 #ifdef CONFIG_PSI
1223 /* Pressure stall state */
1224 unsigned int psi_flags;
1225 #endif
1226 #ifdef CONFIG_TASK_XACCT
1227 /* Accumulated RSS usage: */
1228 u64 acct_rss_mem1;
1229 /* Accumulated virtual memory usage: */
1230 u64 acct_vm_mem1;
1231 /* stime + utime since last update: */
1232 u64 acct_timexpd;
1233 #endif
1234 #ifdef CONFIG_CPUSETS
1235 /* Protected by ->alloc_lock: */
1236 nodemask_t mems_allowed;
1237 /* Sequence number to catch updates: */
1238 seqcount_spinlock_t mems_allowed_seq;
1239 int cpuset_mem_spread_rotor;
1240 int cpuset_slab_spread_rotor;
1241 #endif
1242 #ifdef CONFIG_CGROUPS
1243 /* Control Group info protected by css_set_lock: */
1244 struct css_set __rcu *cgroups;
1245 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1246 struct list_head cg_list;
1247 #endif
1248 #ifdef CONFIG_X86_CPU_RESCTRL
1249 u32 closid;
1250 u32 rmid;
1251 #endif
1252 #ifdef CONFIG_FUTEX
1253 struct robust_list_head __user *robust_list;
1254 #ifdef CONFIG_COMPAT
1255 struct compat_robust_list_head __user *compat_robust_list;
1256 #endif
1257 struct list_head pi_state_list;
1258 struct futex_pi_state *pi_state_cache;
1259 struct mutex futex_exit_mutex;
1260 unsigned int futex_state;
1261 #endif
1262 #ifdef CONFIG_PERF_EVENTS
1263 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1264 struct mutex perf_event_mutex;
1265 struct list_head perf_event_list;
1266 #endif
1267 #ifdef CONFIG_DEBUG_PREEMPT
1268 unsigned long preempt_disable_ip;
1269 #endif
1270 #ifdef CONFIG_NUMA
1271 /* Protected by alloc_lock: */
1272 struct mempolicy *mempolicy;
1273 short il_prev;
1274 short pref_node_fork;
1275 #endif
1276 #ifdef CONFIG_NUMA_BALANCING
1277 int numa_scan_seq;
1278 unsigned int numa_scan_period;
1279 unsigned int numa_scan_period_max;
1280 int numa_preferred_nid;
1281 unsigned long numa_migrate_retry;
1282 /* Migration stamp: */
1283 u64 node_stamp;
1284 u64 last_task_numa_placement;
1285 u64 last_sum_exec_runtime;
1286 struct callback_head numa_work;
1287
1288 /*
1289 * This pointer is only modified for current in syscall and
1290 * pagefault context (and for tasks being destroyed), so it can be read
1291 * from any of the following contexts:
1292 * - RCU read-side critical section
1293 * - current->numa_group from everywhere
1294 * - task's runqueue locked, task not running
1295 */
1296 struct numa_group __rcu *numa_group;
1297
1298 /*
1299 * numa_faults is an array split into four regions:
1300 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1301 * in this precise order.
1302 *
1303 * faults_memory: Exponential decaying average of faults on a per-node
1304 * basis. Scheduling placement decisions are made based on these
1305 * counts. The values remain static for the duration of a PTE scan.
1306 * faults_cpu: Track the nodes the process was running on when a NUMA
1307 * hinting fault was incurred.
1308 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1309 * during the current scan window. When the scan completes, the counts
1310 * in faults_memory and faults_cpu decay and these values are copied.
1311 */
1312 unsigned long *numa_faults;
1313 unsigned long total_numa_faults;
1314
1315 /*
1316 * numa_faults_locality tracks if faults recorded during the last
1317 * scan window were remote/local or failed to migrate. The task scan
1318 * period is adapted based on the locality of the faults with different
1319 * weights depending on whether they were shared or private faults
1320 */
1321 unsigned long numa_faults_locality[3];
1322
1323 unsigned long numa_pages_migrated;
1324 #endif /* CONFIG_NUMA_BALANCING */
1325
1326 #ifdef CONFIG_RSEQ
1327 struct rseq __user *rseq;
1328 u32 rseq_sig;
1329 /*
1330 * RmW on rseq_event_mask must be performed atomically
1331 * with respect to preemption.
1332 */
1333 unsigned long rseq_event_mask;
1334 #endif
1335
1336 struct tlbflush_unmap_batch tlb_ubc;
1337
1338 union {
1339 refcount_t rcu_users;
1340 struct rcu_head rcu;
1341 };
1342
1343 /* Cache last used pipe for splice(): */
1344 struct pipe_inode_info *splice_pipe;
1345
1346 struct page_frag task_frag;
1347
1348 #ifdef CONFIG_TASK_DELAY_ACCT
1349 struct task_delay_info *delays;
1350 #endif
1351
1352 #ifdef CONFIG_FAULT_INJECTION
1353 int make_it_fail;
1354 unsigned int fail_nth;
1355 #endif
1356 /*
1357 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1358 * balance_dirty_pages() for a dirty throttling pause:
1359 */
1360 int nr_dirtied;
1361 int nr_dirtied_pause;
1362 /* Start of a write-and-pause period: */
1363 unsigned long dirty_paused_when;
1364
1365 #ifdef CONFIG_LATENCYTOP
1366 int latency_record_count;
1367 struct latency_record latency_record[LT_SAVECOUNT];
1368 #endif
1369 /*
1370 * Time slack values; these are used to round up poll() and
1371 * select() etc timeout values. These are in nanoseconds.
1372 */
1373 u64 timer_slack_ns;
1374 u64 default_timer_slack_ns;
1375
1376 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1377 unsigned int kasan_depth;
1378 #endif
1379
1380 #ifdef CONFIG_KCSAN
1381 struct kcsan_ctx kcsan_ctx;
1382 #ifdef CONFIG_TRACE_IRQFLAGS
1383 struct irqtrace_events kcsan_save_irqtrace;
1384 #endif
1385 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1386 int kcsan_stack_depth;
1387 #endif
1388 #endif
1389
1390 #ifdef CONFIG_KMSAN
1391 struct kmsan_ctx kmsan_ctx;
1392 #endif
1393
1394 #if IS_ENABLED(CONFIG_KUNIT)
1395 struct kunit *kunit_test;
1396 #endif
1397
1398 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1399 /* Index of current stored address in ret_stack: */
1400 int curr_ret_stack;
1401 int curr_ret_depth;
1402
1403 /* Stack of return addresses for return function tracing: */
1404 struct ftrace_ret_stack *ret_stack;
1405
1406 /* Timestamp for last schedule: */
1407 unsigned long long ftrace_timestamp;
1408
1409 /*
1410 * Number of functions that haven't been traced
1411 * because of depth overrun:
1412 */
1413 atomic_t trace_overrun;
1414
1415 /* Pause tracing: */
1416 atomic_t tracing_graph_pause;
1417 #endif
1418
1419 #ifdef CONFIG_TRACING
1420 /* Bitmask and counter of trace recursion: */
1421 unsigned long trace_recursion;
1422 #endif /* CONFIG_TRACING */
1423
1424 #ifdef CONFIG_KCOV
1425 /* See kernel/kcov.c for more details. */
1426
1427 /* Coverage collection mode enabled for this task (0 if disabled): */
1428 unsigned int kcov_mode;
1429
1430 /* Size of the kcov_area: */
1431 unsigned int kcov_size;
1432
1433 /* Buffer for coverage collection: */
1434 void *kcov_area;
1435
1436 /* KCOV descriptor wired with this task or NULL: */
1437 struct kcov *kcov;
1438
1439 /* KCOV common handle for remote coverage collection: */
1440 u64 kcov_handle;
1441
1442 /* KCOV sequence number: */
1443 int kcov_sequence;
1444
1445 /* Collect coverage from softirq context: */
1446 unsigned int kcov_softirq;
1447 #endif
1448
1449 #ifdef CONFIG_MEMCG
1450 struct mem_cgroup *memcg_in_oom;
1451 gfp_t memcg_oom_gfp_mask;
1452 int memcg_oom_order;
1453
1454 /* Number of pages to reclaim on returning to userland: */
1455 unsigned int memcg_nr_pages_over_high;
1456
1457 /* Used by memcontrol for targeted memcg charge: */
1458 struct mem_cgroup *active_memcg;
1459 #endif
1460
1461 #ifdef CONFIG_BLK_CGROUP
1462 struct request_queue *throttle_queue;
1463 #endif
1464
1465 #ifdef CONFIG_UPROBES
1466 struct uprobe_task *utask;
1467 #endif
1468 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1469 unsigned int sequential_io;
1470 unsigned int sequential_io_avg;
1471 #endif
1472 struct kmap_ctrl kmap_ctrl;
1473 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1474 unsigned long task_state_change;
1475 # ifdef CONFIG_PREEMPT_RT
1476 unsigned long saved_state_change;
1477 # endif
1478 #endif
1479 int pagefault_disabled;
1480 #ifdef CONFIG_MMU
1481 struct task_struct *oom_reaper_list;
1482 struct timer_list oom_reaper_timer;
1483 #endif
1484 #ifdef CONFIG_VMAP_STACK
1485 struct vm_struct *stack_vm_area;
1486 #endif
1487 #ifdef CONFIG_THREAD_INFO_IN_TASK
1488 /* A live task holds one reference: */
1489 refcount_t stack_refcount;
1490 #endif
1491 #ifdef CONFIG_LIVEPATCH
1492 int patch_state;
1493 #endif
1494 #ifdef CONFIG_SECURITY
1495 /* Used by LSM modules for access restriction: */
1496 void *security;
1497 #endif
1498 #ifdef CONFIG_BPF_SYSCALL
1499 /* Used by BPF task local storage */
1500 struct bpf_local_storage __rcu *bpf_storage;
1501 /* Used for BPF run context */
1502 struct bpf_run_ctx *bpf_ctx;
1503 #endif
1504
1505 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1506 unsigned long lowest_stack;
1507 unsigned long prev_lowest_stack;
1508 #endif
1509
1510 #ifdef CONFIG_X86_MCE
1511 void __user *mce_vaddr;
1512 __u64 mce_kflags;
1513 u64 mce_addr;
1514 __u64 mce_ripv : 1,
1515 mce_whole_page : 1,
1516 __mce_reserved : 62;
1517 struct callback_head mce_kill_me;
1518 int mce_count;
1519 #endif
1520 ANDROID_VENDOR_DATA_ARRAY(1, 64);
1521 ANDROID_OEM_DATA_ARRAY(1, 6);
1522
1523 #ifdef CONFIG_KRETPROBES
1524 struct llist_head kretprobe_instances;
1525 #endif
1526 #ifdef CONFIG_RETHOOK
1527 struct llist_head rethooks;
1528 #endif
1529
1530 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1531 /*
1532 * If L1D flush is supported on mm context switch
1533 * then we use this callback head to queue kill work
1534 * to kill tasks that are not running on SMT disabled
1535 * cores
1536 */
1537 struct callback_head l1d_flush_kill;
1538 #endif
1539
1540 #ifdef CONFIG_RV
1541 /*
1542 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1543 * If we find justification for more monitors, we can think
1544 * about adding more or developing a dynamic method. So far,
1545 * none of these are justified.
1546 */
1547 union rv_task_monitor rv[RV_PER_TASK_MONITORS];
1548 #endif
1549 ANDROID_KABI_USE(1, unsigned int saved_state);
1550 ANDROID_KABI_RESERVE(2);
1551 ANDROID_KABI_RESERVE(3);
1552 ANDROID_KABI_RESERVE(4);
1553 ANDROID_KABI_RESERVE(5);
1554 ANDROID_KABI_RESERVE(6);
1555 ANDROID_KABI_RESERVE(7);
1556 ANDROID_KABI_RESERVE(8);
1557
1558 /*
1559 * New fields for task_struct should be added above here, so that
1560 * they are included in the randomized portion of task_struct.
1561 */
1562 randomized_struct_fields_end
1563
1564 /* CPU-specific state of this task: */
1565 struct thread_struct thread;
1566
1567 /*
1568 * WARNING: on x86, 'thread_struct' contains a variable-sized
1569 * structure. It *MUST* be at the end of 'task_struct'.
1570 *
1571 * Do not put anything below here!
1572 */
1573 };
1574
task_pid(struct task_struct * task)1575 static inline struct pid *task_pid(struct task_struct *task)
1576 {
1577 return task->thread_pid;
1578 }
1579
1580 /*
1581 * the helpers to get the task's different pids as they are seen
1582 * from various namespaces
1583 *
1584 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1585 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1586 * current.
1587 * task_xid_nr_ns() : id seen from the ns specified;
1588 *
1589 * see also pid_nr() etc in include/linux/pid.h
1590 */
1591 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1592
task_pid_nr(struct task_struct * tsk)1593 static inline pid_t task_pid_nr(struct task_struct *tsk)
1594 {
1595 return tsk->pid;
1596 }
1597
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1598 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1599 {
1600 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1601 }
1602
task_pid_vnr(struct task_struct * tsk)1603 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1604 {
1605 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1606 }
1607
1608
task_tgid_nr(struct task_struct * tsk)1609 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1610 {
1611 return tsk->tgid;
1612 }
1613
1614 /**
1615 * pid_alive - check that a task structure is not stale
1616 * @p: Task structure to be checked.
1617 *
1618 * Test if a process is not yet dead (at most zombie state)
1619 * If pid_alive fails, then pointers within the task structure
1620 * can be stale and must not be dereferenced.
1621 *
1622 * Return: 1 if the process is alive. 0 otherwise.
1623 */
pid_alive(const struct task_struct * p)1624 static inline int pid_alive(const struct task_struct *p)
1625 {
1626 return p->thread_pid != NULL;
1627 }
1628
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1629 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1630 {
1631 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1632 }
1633
task_pgrp_vnr(struct task_struct * tsk)1634 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1635 {
1636 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1637 }
1638
1639
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1640 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1641 {
1642 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1643 }
1644
task_session_vnr(struct task_struct * tsk)1645 static inline pid_t task_session_vnr(struct task_struct *tsk)
1646 {
1647 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1648 }
1649
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1650 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1651 {
1652 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1653 }
1654
task_tgid_vnr(struct task_struct * tsk)1655 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1656 {
1657 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1658 }
1659
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1660 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1661 {
1662 pid_t pid = 0;
1663
1664 rcu_read_lock();
1665 if (pid_alive(tsk))
1666 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1667 rcu_read_unlock();
1668
1669 return pid;
1670 }
1671
task_ppid_nr(const struct task_struct * tsk)1672 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1673 {
1674 return task_ppid_nr_ns(tsk, &init_pid_ns);
1675 }
1676
1677 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1678 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1679 {
1680 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1681 }
1682
1683 #define TASK_REPORT_IDLE (TASK_REPORT + 1)
1684 #define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1685
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1686 static inline unsigned int __task_state_index(unsigned int tsk_state,
1687 unsigned int tsk_exit_state)
1688 {
1689 unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1690
1691 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1692
1693 if (tsk_state == TASK_IDLE)
1694 state = TASK_REPORT_IDLE;
1695
1696 /*
1697 * We're lying here, but rather than expose a completely new task state
1698 * to userspace, we can make this appear as if the task has gone through
1699 * a regular rt_mutex_lock() call.
1700 */
1701 if (tsk_state == TASK_RTLOCK_WAIT)
1702 state = TASK_UNINTERRUPTIBLE;
1703
1704 return fls(state);
1705 }
1706
task_state_index(struct task_struct * tsk)1707 static inline unsigned int task_state_index(struct task_struct *tsk)
1708 {
1709 return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1710 }
1711
task_index_to_char(unsigned int state)1712 static inline char task_index_to_char(unsigned int state)
1713 {
1714 static const char state_char[] = "RSDTtXZPI";
1715
1716 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1717
1718 return state_char[state];
1719 }
1720
task_state_to_char(struct task_struct * tsk)1721 static inline char task_state_to_char(struct task_struct *tsk)
1722 {
1723 return task_index_to_char(task_state_index(tsk));
1724 }
1725
1726 /**
1727 * is_global_init - check if a task structure is init. Since init
1728 * is free to have sub-threads we need to check tgid.
1729 * @tsk: Task structure to be checked.
1730 *
1731 * Check if a task structure is the first user space task the kernel created.
1732 *
1733 * Return: 1 if the task structure is init. 0 otherwise.
1734 */
is_global_init(struct task_struct * tsk)1735 static inline int is_global_init(struct task_struct *tsk)
1736 {
1737 return task_tgid_nr(tsk) == 1;
1738 }
1739
1740 extern struct pid *cad_pid;
1741
1742 /*
1743 * Per process flags
1744 */
1745 #define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1746 #define PF_IDLE 0x00000002 /* I am an IDLE thread */
1747 #define PF_EXITING 0x00000004 /* Getting shut down */
1748 #define PF_POSTCOREDUMP 0x00000008 /* Coredumps should ignore this task */
1749 #define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1750 #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1751 #define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1752 #define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1753 #define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1754 #define PF_DUMPCORE 0x00000200 /* Dumped core */
1755 #define PF_SIGNALED 0x00000400 /* Killed by a signal */
1756 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1757 #define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1758 #define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1759 #define PF__HOLE__00004000 0x00004000
1760 #define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1761 #define PF__HOLE__00010000 0x00010000
1762 #define PF_KSWAPD 0x00020000 /* I am kswapd */
1763 #define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1764 #define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1765 #define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1766 * I am cleaning dirty pages from some other bdi. */
1767 #define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1768 #define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1769 #define PF__HOLE__00800000 0x00800000
1770 #define PF__HOLE__01000000 0x01000000
1771 #define PF__HOLE__02000000 0x02000000
1772 #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1773 #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1774 #define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1775 #define PF__HOLE__20000000 0x20000000
1776 #define PF__HOLE__40000000 0x40000000
1777 #define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1778
1779 /*
1780 * Only the _current_ task can read/write to tsk->flags, but other
1781 * tasks can access tsk->flags in readonly mode for example
1782 * with tsk_used_math (like during threaded core dumping).
1783 * There is however an exception to this rule during ptrace
1784 * or during fork: the ptracer task is allowed to write to the
1785 * child->flags of its traced child (same goes for fork, the parent
1786 * can write to the child->flags), because we're guaranteed the
1787 * child is not running and in turn not changing child->flags
1788 * at the same time the parent does it.
1789 */
1790 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1791 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1792 #define clear_used_math() clear_stopped_child_used_math(current)
1793 #define set_used_math() set_stopped_child_used_math(current)
1794
1795 #define conditional_stopped_child_used_math(condition, child) \
1796 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1797
1798 #define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1799
1800 #define copy_to_stopped_child_used_math(child) \
1801 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1802
1803 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1804 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1805 #define used_math() tsk_used_math(current)
1806
is_percpu_thread(void)1807 static __always_inline bool is_percpu_thread(void)
1808 {
1809 #ifdef CONFIG_SMP
1810 return (current->flags & PF_NO_SETAFFINITY) &&
1811 (current->nr_cpus_allowed == 1);
1812 #else
1813 return true;
1814 #endif
1815 }
1816
1817 /* Per-process atomic flags. */
1818 #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1819 #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1820 #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1821 #define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1822 #define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1823 #define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1824 #define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1825 #define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1826
1827 #define TASK_PFA_TEST(name, func) \
1828 static inline bool task_##func(struct task_struct *p) \
1829 { return test_bit(PFA_##name, &p->atomic_flags); }
1830
1831 #define TASK_PFA_SET(name, func) \
1832 static inline void task_set_##func(struct task_struct *p) \
1833 { set_bit(PFA_##name, &p->atomic_flags); }
1834
1835 #define TASK_PFA_CLEAR(name, func) \
1836 static inline void task_clear_##func(struct task_struct *p) \
1837 { clear_bit(PFA_##name, &p->atomic_flags); }
1838
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1839 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1840 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1841
1842 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1843 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1844 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1845
1846 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1847 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1848 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1849
1850 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1851 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1852 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1853
1854 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1855 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1856 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1857
1858 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1859 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1860
1861 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1862 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1863 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1864
1865 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1866 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1867
1868 static inline void
1869 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1870 {
1871 current->flags &= ~flags;
1872 current->flags |= orig_flags & flags;
1873 }
1874
1875 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1876 extern int task_can_attach(struct task_struct *p);
1877 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1878 extern void dl_bw_free(int cpu, u64 dl_bw);
1879 #ifdef CONFIG_SMP
1880 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1881 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1882 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1883 extern void release_user_cpus_ptr(struct task_struct *p);
1884 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1885 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1886 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1887 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1888 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1889 {
1890 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1891 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1892 {
1893 if (!cpumask_test_cpu(0, new_mask))
1894 return -EINVAL;
1895 return 0;
1896 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1897 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1898 {
1899 if (src->user_cpus_ptr)
1900 return -EINVAL;
1901 return 0;
1902 }
release_user_cpus_ptr(struct task_struct * p)1903 static inline void release_user_cpus_ptr(struct task_struct *p)
1904 {
1905 WARN_ON(p->user_cpus_ptr);
1906 }
1907
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1908 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1909 {
1910 return 0;
1911 }
1912 #endif
1913
1914 extern int yield_to(struct task_struct *p, bool preempt);
1915 extern void set_user_nice(struct task_struct *p, long nice);
1916 extern int task_prio(const struct task_struct *p);
1917
1918 /**
1919 * task_nice - return the nice value of a given task.
1920 * @p: the task in question.
1921 *
1922 * Return: The nice value [ -20 ... 0 ... 19 ].
1923 */
task_nice(const struct task_struct * p)1924 static inline int task_nice(const struct task_struct *p)
1925 {
1926 return PRIO_TO_NICE((p)->static_prio);
1927 }
1928
1929 extern int can_nice(const struct task_struct *p, const int nice);
1930 extern int task_curr(const struct task_struct *p);
1931 extern int idle_cpu(int cpu);
1932 extern int available_idle_cpu(int cpu);
1933 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1934 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1935 extern void sched_set_fifo(struct task_struct *p);
1936 extern void sched_set_fifo_low(struct task_struct *p);
1937 extern void sched_set_normal(struct task_struct *p, int nice);
1938 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1939 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1940 extern struct task_struct *idle_task(int cpu);
1941
1942 /**
1943 * is_idle_task - is the specified task an idle task?
1944 * @p: the task in question.
1945 *
1946 * Return: 1 if @p is an idle task. 0 otherwise.
1947 */
is_idle_task(const struct task_struct * p)1948 static __always_inline bool is_idle_task(const struct task_struct *p)
1949 {
1950 return !!(p->flags & PF_IDLE);
1951 }
1952
1953 extern struct task_struct *curr_task(int cpu);
1954 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1955
1956 void yield(void);
1957
1958 union thread_union {
1959 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1960 struct task_struct task;
1961 #endif
1962 #ifndef CONFIG_THREAD_INFO_IN_TASK
1963 struct thread_info thread_info;
1964 #endif
1965 unsigned long stack[THREAD_SIZE/sizeof(long)];
1966 };
1967
1968 #ifndef CONFIG_THREAD_INFO_IN_TASK
1969 extern struct thread_info init_thread_info;
1970 #endif
1971
1972 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1973
1974 #ifdef CONFIG_THREAD_INFO_IN_TASK
1975 # define task_thread_info(task) (&(task)->thread_info)
1976 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1977 # define task_thread_info(task) ((struct thread_info *)(task)->stack)
1978 #endif
1979
1980 /*
1981 * find a task by one of its numerical ids
1982 *
1983 * find_task_by_pid_ns():
1984 * finds a task by its pid in the specified namespace
1985 * find_task_by_vpid():
1986 * finds a task by its virtual pid
1987 *
1988 * see also find_vpid() etc in include/linux/pid.h
1989 */
1990
1991 extern struct task_struct *find_task_by_vpid(pid_t nr);
1992 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1993
1994 /*
1995 * find a task by its virtual pid and get the task struct
1996 */
1997 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1998
1999 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2000 extern int wake_up_process(struct task_struct *tsk);
2001 extern void wake_up_new_task(struct task_struct *tsk);
2002
2003 #ifdef CONFIG_SMP
2004 extern void kick_process(struct task_struct *tsk);
2005 #else
kick_process(struct task_struct * tsk)2006 static inline void kick_process(struct task_struct *tsk) { }
2007 #endif
2008
2009 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2010
set_task_comm(struct task_struct * tsk,const char * from)2011 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2012 {
2013 __set_task_comm(tsk, from, false);
2014 }
2015
2016 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2017 #define get_task_comm(buf, tsk) ({ \
2018 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
2019 __get_task_comm(buf, sizeof(buf), tsk); \
2020 })
2021
2022 #ifdef CONFIG_SMP
scheduler_ipi(void)2023 static __always_inline void scheduler_ipi(void)
2024 {
2025 /*
2026 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2027 * TIF_NEED_RESCHED remotely (for the first time) will also send
2028 * this IPI.
2029 */
2030 preempt_fold_need_resched();
2031 }
2032 #else
scheduler_ipi(void)2033 static inline void scheduler_ipi(void) { }
2034 #endif
2035
2036 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2037
2038 /*
2039 * Set thread flags in other task's structures.
2040 * See asm/thread_info.h for TIF_xxxx flags available:
2041 */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2042 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2043 {
2044 set_ti_thread_flag(task_thread_info(tsk), flag);
2045 }
2046
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2047 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2048 {
2049 clear_ti_thread_flag(task_thread_info(tsk), flag);
2050 }
2051
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2052 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2053 bool value)
2054 {
2055 update_ti_thread_flag(task_thread_info(tsk), flag, value);
2056 }
2057
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2058 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2059 {
2060 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2061 }
2062
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2063 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2064 {
2065 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2066 }
2067
test_tsk_thread_flag(struct task_struct * tsk,int flag)2068 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2069 {
2070 return test_ti_thread_flag(task_thread_info(tsk), flag);
2071 }
2072
set_tsk_need_resched(struct task_struct * tsk)2073 static inline void set_tsk_need_resched(struct task_struct *tsk)
2074 {
2075 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2076 }
2077
clear_tsk_need_resched(struct task_struct * tsk)2078 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2079 {
2080 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2081 }
2082
test_tsk_need_resched(struct task_struct * tsk)2083 static inline int test_tsk_need_resched(struct task_struct *tsk)
2084 {
2085 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2086 }
2087
2088 /*
2089 * cond_resched() and cond_resched_lock(): latency reduction via
2090 * explicit rescheduling in places that are safe. The return
2091 * value indicates whether a reschedule was done in fact.
2092 * cond_resched_lock() will drop the spinlock before scheduling,
2093 */
2094 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2095 extern int __cond_resched(void);
2096
2097 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2098
2099 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2100
_cond_resched(void)2101 static __always_inline int _cond_resched(void)
2102 {
2103 return static_call_mod(cond_resched)();
2104 }
2105
2106 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2107 extern int dynamic_cond_resched(void);
2108
_cond_resched(void)2109 static __always_inline int _cond_resched(void)
2110 {
2111 return dynamic_cond_resched();
2112 }
2113
2114 #else
2115
_cond_resched(void)2116 static inline int _cond_resched(void)
2117 {
2118 return __cond_resched();
2119 }
2120
2121 #endif /* CONFIG_PREEMPT_DYNAMIC */
2122
2123 #else
2124
_cond_resched(void)2125 static inline int _cond_resched(void) { return 0; }
2126
2127 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2128
2129 #define cond_resched() ({ \
2130 __might_resched(__FILE__, __LINE__, 0); \
2131 _cond_resched(); \
2132 })
2133
2134 extern int __cond_resched_lock(spinlock_t *lock);
2135 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2136 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2137
2138 #define MIGHT_RESCHED_RCU_SHIFT 8
2139 #define MIGHT_RESCHED_PREEMPT_MASK ((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2140
2141 #ifndef CONFIG_PREEMPT_RT
2142 /*
2143 * Non RT kernels have an elevated preempt count due to the held lock,
2144 * but are not allowed to be inside a RCU read side critical section
2145 */
2146 # define PREEMPT_LOCK_RESCHED_OFFSETS PREEMPT_LOCK_OFFSET
2147 #else
2148 /*
2149 * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2150 * cond_resched*lock() has to take that into account because it checks for
2151 * preempt_count() and rcu_preempt_depth().
2152 */
2153 # define PREEMPT_LOCK_RESCHED_OFFSETS \
2154 (PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2155 #endif
2156
2157 #define cond_resched_lock(lock) ({ \
2158 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2159 __cond_resched_lock(lock); \
2160 })
2161
2162 #define cond_resched_rwlock_read(lock) ({ \
2163 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2164 __cond_resched_rwlock_read(lock); \
2165 })
2166
2167 #define cond_resched_rwlock_write(lock) ({ \
2168 __might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS); \
2169 __cond_resched_rwlock_write(lock); \
2170 })
2171
cond_resched_rcu(void)2172 static inline void cond_resched_rcu(void)
2173 {
2174 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2175 rcu_read_unlock();
2176 cond_resched();
2177 rcu_read_lock();
2178 #endif
2179 }
2180
2181 #ifdef CONFIG_PREEMPT_DYNAMIC
2182
2183 extern bool preempt_model_none(void);
2184 extern bool preempt_model_voluntary(void);
2185 extern bool preempt_model_full(void);
2186
2187 #else
2188
preempt_model_none(void)2189 static inline bool preempt_model_none(void)
2190 {
2191 return IS_ENABLED(CONFIG_PREEMPT_NONE);
2192 }
preempt_model_voluntary(void)2193 static inline bool preempt_model_voluntary(void)
2194 {
2195 return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2196 }
preempt_model_full(void)2197 static inline bool preempt_model_full(void)
2198 {
2199 return IS_ENABLED(CONFIG_PREEMPT);
2200 }
2201
2202 #endif
2203
preempt_model_rt(void)2204 static inline bool preempt_model_rt(void)
2205 {
2206 return IS_ENABLED(CONFIG_PREEMPT_RT);
2207 }
2208
2209 /*
2210 * Does the preemption model allow non-cooperative preemption?
2211 *
2212 * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2213 * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2214 * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2215 * PREEMPT_NONE model.
2216 */
preempt_model_preemptible(void)2217 static inline bool preempt_model_preemptible(void)
2218 {
2219 return preempt_model_full() || preempt_model_rt();
2220 }
2221
2222 /*
2223 * Does a critical section need to be broken due to another
2224 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2225 * but a general need for low latency)
2226 */
spin_needbreak(spinlock_t * lock)2227 static inline int spin_needbreak(spinlock_t *lock)
2228 {
2229 #ifdef CONFIG_PREEMPTION
2230 return spin_is_contended(lock);
2231 #else
2232 return 0;
2233 #endif
2234 }
2235
2236 /*
2237 * Check if a rwlock is contended.
2238 * Returns non-zero if there is another task waiting on the rwlock.
2239 * Returns zero if the lock is not contended or the system / underlying
2240 * rwlock implementation does not support contention detection.
2241 * Technically does not depend on CONFIG_PREEMPTION, but a general need
2242 * for low latency.
2243 */
rwlock_needbreak(rwlock_t * lock)2244 static inline int rwlock_needbreak(rwlock_t *lock)
2245 {
2246 #ifdef CONFIG_PREEMPTION
2247 return rwlock_is_contended(lock);
2248 #else
2249 return 0;
2250 #endif
2251 }
2252
need_resched(void)2253 static __always_inline bool need_resched(void)
2254 {
2255 return unlikely(tif_need_resched());
2256 }
2257
2258 /*
2259 * Wrappers for p->thread_info->cpu access. No-op on UP.
2260 */
2261 #ifdef CONFIG_SMP
2262
task_cpu(const struct task_struct * p)2263 static inline unsigned int task_cpu(const struct task_struct *p)
2264 {
2265 return READ_ONCE(task_thread_info(p)->cpu);
2266 }
2267
2268 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2269
2270 #else
2271
task_cpu(const struct task_struct * p)2272 static inline unsigned int task_cpu(const struct task_struct *p)
2273 {
2274 return 0;
2275 }
2276
set_task_cpu(struct task_struct * p,unsigned int cpu)2277 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2278 {
2279 }
2280
2281 #endif /* CONFIG_SMP */
2282
2283 extern bool sched_task_on_rq(struct task_struct *p);
2284 extern unsigned long get_wchan(struct task_struct *p);
2285 extern struct task_struct *cpu_curr_snapshot(int cpu);
2286
2287 /*
2288 * In order to reduce various lock holder preemption latencies provide an
2289 * interface to see if a vCPU is currently running or not.
2290 *
2291 * This allows us to terminate optimistic spin loops and block, analogous to
2292 * the native optimistic spin heuristic of testing if the lock owner task is
2293 * running or not.
2294 */
2295 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2296 static inline bool vcpu_is_preempted(int cpu)
2297 {
2298 return false;
2299 }
2300 #endif
2301
2302 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2303 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2304
2305 #ifndef TASK_SIZE_OF
2306 #define TASK_SIZE_OF(tsk) TASK_SIZE
2307 #endif
2308
2309 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2310 static inline bool owner_on_cpu(struct task_struct *owner)
2311 {
2312 /*
2313 * As lock holder preemption issue, we both skip spinning if
2314 * task is not on cpu or its cpu is preempted
2315 */
2316 return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2317 }
2318
2319 /* Returns effective CPU energy utilization, as seen by the scheduler */
2320 unsigned long sched_cpu_util(int cpu);
2321 #endif /* CONFIG_SMP */
2322
2323 #ifdef CONFIG_RSEQ
2324
2325 /*
2326 * Map the event mask on the user-space ABI enum rseq_cs_flags
2327 * for direct mask checks.
2328 */
2329 enum rseq_event_mask_bits {
2330 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2331 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2332 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2333 };
2334
2335 enum rseq_event_mask {
2336 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2337 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2338 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2339 };
2340
rseq_set_notify_resume(struct task_struct * t)2341 static inline void rseq_set_notify_resume(struct task_struct *t)
2342 {
2343 if (t->rseq)
2344 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2345 }
2346
2347 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2348
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2349 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2350 struct pt_regs *regs)
2351 {
2352 if (current->rseq)
2353 __rseq_handle_notify_resume(ksig, regs);
2354 }
2355
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2356 static inline void rseq_signal_deliver(struct ksignal *ksig,
2357 struct pt_regs *regs)
2358 {
2359 preempt_disable();
2360 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2361 preempt_enable();
2362 rseq_handle_notify_resume(ksig, regs);
2363 }
2364
2365 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2366 static inline void rseq_preempt(struct task_struct *t)
2367 {
2368 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2369 rseq_set_notify_resume(t);
2370 }
2371
2372 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2373 static inline void rseq_migrate(struct task_struct *t)
2374 {
2375 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2376 rseq_set_notify_resume(t);
2377 }
2378
2379 /*
2380 * If parent process has a registered restartable sequences area, the
2381 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2382 */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2383 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2384 {
2385 if (clone_flags & CLONE_VM) {
2386 t->rseq = NULL;
2387 t->rseq_sig = 0;
2388 t->rseq_event_mask = 0;
2389 } else {
2390 t->rseq = current->rseq;
2391 t->rseq_sig = current->rseq_sig;
2392 t->rseq_event_mask = current->rseq_event_mask;
2393 }
2394 }
2395
rseq_execve(struct task_struct * t)2396 static inline void rseq_execve(struct task_struct *t)
2397 {
2398 t->rseq = NULL;
2399 t->rseq_sig = 0;
2400 t->rseq_event_mask = 0;
2401 }
2402
2403 #else
2404
rseq_set_notify_resume(struct task_struct * t)2405 static inline void rseq_set_notify_resume(struct task_struct *t)
2406 {
2407 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2408 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2409 struct pt_regs *regs)
2410 {
2411 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2412 static inline void rseq_signal_deliver(struct ksignal *ksig,
2413 struct pt_regs *regs)
2414 {
2415 }
rseq_preempt(struct task_struct * t)2416 static inline void rseq_preempt(struct task_struct *t)
2417 {
2418 }
rseq_migrate(struct task_struct * t)2419 static inline void rseq_migrate(struct task_struct *t)
2420 {
2421 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2422 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2423 {
2424 }
rseq_execve(struct task_struct * t)2425 static inline void rseq_execve(struct task_struct *t)
2426 {
2427 }
2428
2429 #endif
2430
2431 #ifdef CONFIG_DEBUG_RSEQ
2432
2433 void rseq_syscall(struct pt_regs *regs);
2434
2435 #else
2436
rseq_syscall(struct pt_regs * regs)2437 static inline void rseq_syscall(struct pt_regs *regs)
2438 {
2439 }
2440
2441 #endif
2442
2443 #ifdef CONFIG_SCHED_CORE
2444 extern void sched_core_free(struct task_struct *tsk);
2445 extern void sched_core_fork(struct task_struct *p);
2446 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2447 unsigned long uaddr);
2448 #else
sched_core_free(struct task_struct * tsk)2449 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2450 static inline void sched_core_fork(struct task_struct *p) { }
2451 #endif
2452
2453 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2454
2455 #endif
2456