• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_H
3 #define _LINUX_SCHED_H
4 
5 /*
6  * Define 'struct task_struct' and provide the main scheduler
7  * APIs (schedule(), wakeup variants, etc.)
8  */
9 
10 #include <uapi/linux/sched.h>
11 
12 #include <asm/current.h>
13 
14 #include <linux/pid.h>
15 #include <linux/sem.h>
16 #include <linux/shm.h>
17 #include <linux/kmsan_types.h>
18 #include <linux/mutex.h>
19 #include <linux/plist.h>
20 #include <linux/hrtimer.h>
21 #include <linux/irqflags.h>
22 #include <linux/seccomp.h>
23 #include <linux/nodemask.h>
24 #include <linux/rcupdate.h>
25 #include <linux/refcount.h>
26 #include <linux/resource.h>
27 #include <linux/latencytop.h>
28 #include <linux/sched/prio.h>
29 #include <linux/sched/types.h>
30 #include <linux/signal_types.h>
31 #include <linux/syscall_user_dispatch.h>
32 #include <linux/mm_types_task.h>
33 #include <linux/task_io_accounting.h>
34 #include <linux/posix-timers.h>
35 #include <linux/rseq.h>
36 #include <linux/seqlock.h>
37 #include <linux/kcsan.h>
38 #include <linux/rv.h>
39 #include <linux/android_vendor.h>
40 #include <asm/kmap_size.h>
41 #include <linux/android_kabi.h>
42 
43 /* task_struct member predeclarations (sorted alphabetically): */
44 struct audit_context;
45 struct backing_dev_info;
46 struct bio_list;
47 struct blk_plug;
48 struct bpf_local_storage;
49 struct bpf_run_ctx;
50 struct capture_control;
51 struct cfs_rq;
52 struct fs_struct;
53 struct futex_pi_state;
54 struct io_context;
55 struct io_uring_task;
56 struct mempolicy;
57 struct nameidata;
58 struct nsproxy;
59 struct perf_event_context;
60 struct pid_namespace;
61 struct pipe_inode_info;
62 struct rcu_node;
63 struct reclaim_state;
64 struct robust_list_head;
65 struct root_domain;
66 struct rq;
67 struct sched_attr;
68 struct sched_param;
69 struct seq_file;
70 struct sighand_struct;
71 struct signal_struct;
72 struct task_delay_info;
73 struct task_group;
74 
75 /*
76  * Task state bitmask. NOTE! These bits are also
77  * encoded in fs/proc/array.c: get_task_state().
78  *
79  * We have two separate sets of flags: task->state
80  * is about runnability, while task->exit_state are
81  * about the task exiting. Confusing, but this way
82  * modifying one set can't modify the other one by
83  * mistake.
84  */
85 
86 /* Used in tsk->state: */
87 #define TASK_RUNNING			0x00000000
88 #define TASK_INTERRUPTIBLE		0x00000001
89 #define TASK_UNINTERRUPTIBLE		0x00000002
90 #define __TASK_STOPPED			0x00000004
91 #define __TASK_TRACED			0x00000008
92 /* Used in tsk->exit_state: */
93 #define EXIT_DEAD			0x00000010
94 #define EXIT_ZOMBIE			0x00000020
95 #define EXIT_TRACE			(EXIT_ZOMBIE | EXIT_DEAD)
96 /* Used in tsk->state again: */
97 #define TASK_PARKED			0x00000040
98 #define TASK_DEAD			0x00000080
99 #define TASK_WAKEKILL			0x00000100
100 #define TASK_WAKING			0x00000200
101 #define TASK_NOLOAD			0x00000400
102 #define TASK_NEW			0x00000800
103 #define TASK_RTLOCK_WAIT		0x00001000
104 #define TASK_FREEZABLE			0x00002000
105 #define __TASK_FREEZABLE_UNSAFE	       (0x00004000 * IS_ENABLED(CONFIG_LOCKDEP))
106 #define TASK_FROZEN			0x00008000
107 #define TASK_STATE_MAX			0x00010000
108 
109 #define TASK_ANY			(TASK_STATE_MAX-1)
110 
111 /*
112  * DO NOT ADD ANY NEW USERS !
113  */
114 #define TASK_FREEZABLE_UNSAFE		(TASK_FREEZABLE | __TASK_FREEZABLE_UNSAFE)
115 
116 /* Convenience macros for the sake of set_current_state: */
117 #define TASK_KILLABLE			(TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
118 #define TASK_STOPPED			(TASK_WAKEKILL | __TASK_STOPPED)
119 #define TASK_TRACED			__TASK_TRACED
120 
121 #define TASK_IDLE			(TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
122 
123 /* Convenience macros for the sake of wake_up(): */
124 #define TASK_NORMAL			(TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
125 
126 /* get_task_state(): */
127 #define TASK_REPORT			(TASK_RUNNING | TASK_INTERRUPTIBLE | \
128 					 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
129 					 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
130 					 TASK_PARKED)
131 
132 #define task_is_running(task)		(READ_ONCE((task)->__state) == TASK_RUNNING)
133 
134 #define task_is_traced(task)		((READ_ONCE(task->jobctl) & JOBCTL_TRACED) != 0)
135 #define task_is_stopped(task)		((READ_ONCE(task->jobctl) & JOBCTL_STOPPED) != 0)
136 #define task_is_stopped_or_traced(task)	((READ_ONCE(task->jobctl) & (JOBCTL_STOPPED | JOBCTL_TRACED)) != 0)
137 
138 /*
139  * Special states are those that do not use the normal wait-loop pattern. See
140  * the comment with set_special_state().
141  */
142 #define is_special_task_state(state)				\
143 	((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
144 
145 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
146 # define debug_normal_state_change(state_value)				\
147 	do {								\
148 		WARN_ON_ONCE(is_special_task_state(state_value));	\
149 		current->task_state_change = _THIS_IP_;			\
150 	} while (0)
151 
152 # define debug_special_state_change(state_value)			\
153 	do {								\
154 		WARN_ON_ONCE(!is_special_task_state(state_value));	\
155 		current->task_state_change = _THIS_IP_;			\
156 	} while (0)
157 
158 # define debug_rtlock_wait_set_state()					\
159 	do {								 \
160 		current->saved_state_change = current->task_state_change;\
161 		current->task_state_change = _THIS_IP_;			 \
162 	} while (0)
163 
164 # define debug_rtlock_wait_restore_state()				\
165 	do {								 \
166 		current->task_state_change = current->saved_state_change;\
167 	} while (0)
168 
169 #else
170 # define debug_normal_state_change(cond)	do { } while (0)
171 # define debug_special_state_change(cond)	do { } while (0)
172 # define debug_rtlock_wait_set_state()		do { } while (0)
173 # define debug_rtlock_wait_restore_state()	do { } while (0)
174 #endif
175 
176 /*
177  * set_current_state() includes a barrier so that the write of current->state
178  * is correctly serialised wrt the caller's subsequent test of whether to
179  * actually sleep:
180  *
181  *   for (;;) {
182  *	set_current_state(TASK_UNINTERRUPTIBLE);
183  *	if (CONDITION)
184  *	   break;
185  *
186  *	schedule();
187  *   }
188  *   __set_current_state(TASK_RUNNING);
189  *
190  * If the caller does not need such serialisation (because, for instance, the
191  * CONDITION test and condition change and wakeup are under the same lock) then
192  * use __set_current_state().
193  *
194  * The above is typically ordered against the wakeup, which does:
195  *
196  *   CONDITION = 1;
197  *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
198  *
199  * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
200  * accessing p->state.
201  *
202  * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
203  * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
204  * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
205  *
206  * However, with slightly different timing the wakeup TASK_RUNNING store can
207  * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
208  * a problem either because that will result in one extra go around the loop
209  * and our @cond test will save the day.
210  *
211  * Also see the comments of try_to_wake_up().
212  */
213 #define __set_current_state(state_value)				\
214 	do {								\
215 		debug_normal_state_change((state_value));		\
216 		WRITE_ONCE(current->__state, (state_value));		\
217 	} while (0)
218 
219 #define set_current_state(state_value)					\
220 	do {								\
221 		debug_normal_state_change((state_value));		\
222 		smp_store_mb(current->__state, (state_value));		\
223 	} while (0)
224 
225 /*
226  * set_special_state() should be used for those states when the blocking task
227  * can not use the regular condition based wait-loop. In that case we must
228  * serialize against wakeups such that any possible in-flight TASK_RUNNING
229  * stores will not collide with our state change.
230  */
231 #define set_special_state(state_value)					\
232 	do {								\
233 		unsigned long flags; /* may shadow */			\
234 									\
235 		raw_spin_lock_irqsave(&current->pi_lock, flags);	\
236 		debug_special_state_change((state_value));		\
237 		WRITE_ONCE(current->__state, (state_value));		\
238 		raw_spin_unlock_irqrestore(&current->pi_lock, flags);	\
239 	} while (0)
240 
241 /*
242  * PREEMPT_RT specific variants for "sleeping" spin/rwlocks
243  *
244  * RT's spin/rwlock substitutions are state preserving. The state of the
245  * task when blocking on the lock is saved in task_struct::saved_state and
246  * restored after the lock has been acquired.  These operations are
247  * serialized by task_struct::pi_lock against try_to_wake_up(). Any non RT
248  * lock related wakeups while the task is blocked on the lock are
249  * redirected to operate on task_struct::saved_state to ensure that these
250  * are not dropped. On restore task_struct::saved_state is set to
251  * TASK_RUNNING so any wakeup attempt redirected to saved_state will fail.
252  *
253  * The lock operation looks like this:
254  *
255  *	current_save_and_set_rtlock_wait_state();
256  *	for (;;) {
257  *		if (try_lock())
258  *			break;
259  *		raw_spin_unlock_irq(&lock->wait_lock);
260  *		schedule_rtlock();
261  *		raw_spin_lock_irq(&lock->wait_lock);
262  *		set_current_state(TASK_RTLOCK_WAIT);
263  *	}
264  *	current_restore_rtlock_saved_state();
265  */
266 #define current_save_and_set_rtlock_wait_state()			\
267 	do {								\
268 		lockdep_assert_irqs_disabled();				\
269 		raw_spin_lock(&current->pi_lock);			\
270 		current->saved_state = current->__state;		\
271 		debug_rtlock_wait_set_state();				\
272 		WRITE_ONCE(current->__state, TASK_RTLOCK_WAIT);		\
273 		raw_spin_unlock(&current->pi_lock);			\
274 	} while (0);
275 
276 #define current_restore_rtlock_saved_state()				\
277 	do {								\
278 		lockdep_assert_irqs_disabled();				\
279 		raw_spin_lock(&current->pi_lock);			\
280 		debug_rtlock_wait_restore_state();			\
281 		WRITE_ONCE(current->__state, current->saved_state);	\
282 		current->saved_state = TASK_RUNNING;			\
283 		raw_spin_unlock(&current->pi_lock);			\
284 	} while (0);
285 
286 #define get_current_state()	READ_ONCE(current->__state)
287 
288 /*
289  * Define the task command name length as enum, then it can be visible to
290  * BPF programs.
291  */
292 enum {
293 	TASK_COMM_LEN = 16,
294 };
295 
296 extern void scheduler_tick(void);
297 
298 #define	MAX_SCHEDULE_TIMEOUT		LONG_MAX
299 
300 extern long schedule_timeout(long timeout);
301 extern long schedule_timeout_interruptible(long timeout);
302 extern long schedule_timeout_killable(long timeout);
303 extern long schedule_timeout_uninterruptible(long timeout);
304 extern long schedule_timeout_idle(long timeout);
305 asmlinkage void schedule(void);
306 extern void schedule_preempt_disabled(void);
307 asmlinkage void preempt_schedule_irq(void);
308 #ifdef CONFIG_PREEMPT_RT
309  extern void schedule_rtlock(void);
310 #endif
311 
312 extern int __must_check io_schedule_prepare(void);
313 extern void io_schedule_finish(int token);
314 extern long io_schedule_timeout(long timeout);
315 extern void io_schedule(void);
316 extern struct task_struct *pick_migrate_task(struct rq *rq);
317 extern int select_fallback_rq(int cpu, struct task_struct *p);
318 
319 /**
320  * struct prev_cputime - snapshot of system and user cputime
321  * @utime: time spent in user mode
322  * @stime: time spent in system mode
323  * @lock: protects the above two fields
324  *
325  * Stores previous user/system time values such that we can guarantee
326  * monotonicity.
327  */
328 struct prev_cputime {
329 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
330 	u64				utime;
331 	u64				stime;
332 	raw_spinlock_t			lock;
333 #endif
334 };
335 
336 enum vtime_state {
337 	/* Task is sleeping or running in a CPU with VTIME inactive: */
338 	VTIME_INACTIVE = 0,
339 	/* Task is idle */
340 	VTIME_IDLE,
341 	/* Task runs in kernelspace in a CPU with VTIME active: */
342 	VTIME_SYS,
343 	/* Task runs in userspace in a CPU with VTIME active: */
344 	VTIME_USER,
345 	/* Task runs as guests in a CPU with VTIME active: */
346 	VTIME_GUEST,
347 };
348 
349 struct vtime {
350 	seqcount_t		seqcount;
351 	unsigned long long	starttime;
352 	enum vtime_state	state;
353 	unsigned int		cpu;
354 	u64			utime;
355 	u64			stime;
356 	u64			gtime;
357 };
358 
359 /*
360  * Utilization clamp constraints.
361  * @UCLAMP_MIN:	Minimum utilization
362  * @UCLAMP_MAX:	Maximum utilization
363  * @UCLAMP_CNT:	Utilization clamp constraints count
364  */
365 enum uclamp_id {
366 	UCLAMP_MIN = 0,
367 	UCLAMP_MAX,
368 	UCLAMP_CNT
369 };
370 
371 #ifdef CONFIG_SMP
372 extern struct root_domain def_root_domain;
373 extern struct mutex sched_domains_mutex;
374 #endif
375 
376 struct sched_info {
377 #ifdef CONFIG_SCHED_INFO
378 	/* Cumulative counters: */
379 
380 	/* # of times we have run on this CPU: */
381 	unsigned long			pcount;
382 
383 	/* Time spent waiting on a runqueue: */
384 	unsigned long long		run_delay;
385 
386 	/* Timestamps: */
387 
388 	/* When did we last run on a CPU? */
389 	unsigned long long		last_arrival;
390 
391 	/* When were we last queued to run? */
392 	unsigned long long		last_queued;
393 
394 #endif /* CONFIG_SCHED_INFO */
395 };
396 
397 /*
398  * Integer metrics need fixed point arithmetic, e.g., sched/fair
399  * has a few: load, load_avg, util_avg, freq, and capacity.
400  *
401  * We define a basic fixed point arithmetic range, and then formalize
402  * all these metrics based on that basic range.
403  */
404 # define SCHED_FIXEDPOINT_SHIFT		10
405 # define SCHED_FIXEDPOINT_SCALE		(1L << SCHED_FIXEDPOINT_SHIFT)
406 
407 /* Increase resolution of cpu_capacity calculations */
408 # define SCHED_CAPACITY_SHIFT		SCHED_FIXEDPOINT_SHIFT
409 # define SCHED_CAPACITY_SCALE		(1L << SCHED_CAPACITY_SHIFT)
410 
411 struct load_weight {
412 	unsigned long			weight;
413 	u32				inv_weight;
414 };
415 
416 /**
417  * struct util_est - Estimation utilization of FAIR tasks
418  * @enqueued: instantaneous estimated utilization of a task/cpu
419  * @ewma:     the Exponential Weighted Moving Average (EWMA)
420  *            utilization of a task
421  *
422  * Support data structure to track an Exponential Weighted Moving Average
423  * (EWMA) of a FAIR task's utilization. New samples are added to the moving
424  * average each time a task completes an activation. Sample's weight is chosen
425  * so that the EWMA will be relatively insensitive to transient changes to the
426  * task's workload.
427  *
428  * The enqueued attribute has a slightly different meaning for tasks and cpus:
429  * - task:   the task's util_avg at last task dequeue time
430  * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
431  * Thus, the util_est.enqueued of a task represents the contribution on the
432  * estimated utilization of the CPU where that task is currently enqueued.
433  *
434  * Only for tasks we track a moving average of the past instantaneous
435  * estimated utilization. This allows to absorb sporadic drops in utilization
436  * of an otherwise almost periodic task.
437  *
438  * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
439  * updates. When a task is dequeued, its util_est should not be updated if its
440  * util_avg has not been updated in the meantime.
441  * This information is mapped into the MSB bit of util_est.enqueued at dequeue
442  * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
443  * for a task) it is safe to use MSB.
444  */
445 struct util_est {
446 	unsigned int			enqueued;
447 	unsigned int			ewma;
448 #define UTIL_EST_WEIGHT_SHIFT		2
449 #define UTIL_AVG_UNCHANGED		0x80000000
450 } __attribute__((__aligned__(sizeof(u64))));
451 
452 /*
453  * The load/runnable/util_avg accumulates an infinite geometric series
454  * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
455  *
456  * [load_avg definition]
457  *
458  *   load_avg = runnable% * scale_load_down(load)
459  *
460  * [runnable_avg definition]
461  *
462  *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
463  *
464  * [util_avg definition]
465  *
466  *   util_avg = running% * SCHED_CAPACITY_SCALE
467  *
468  * where runnable% is the time ratio that a sched_entity is runnable and
469  * running% the time ratio that a sched_entity is running.
470  *
471  * For cfs_rq, they are the aggregated values of all runnable and blocked
472  * sched_entities.
473  *
474  * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
475  * capacity scaling. The scaling is done through the rq_clock_pelt that is used
476  * for computing those signals (see update_rq_clock_pelt())
477  *
478  * N.B., the above ratios (runnable% and running%) themselves are in the
479  * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
480  * to as large a range as necessary. This is for example reflected by
481  * util_avg's SCHED_CAPACITY_SCALE.
482  *
483  * [Overflow issue]
484  *
485  * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
486  * with the highest load (=88761), always runnable on a single cfs_rq,
487  * and should not overflow as the number already hits PID_MAX_LIMIT.
488  *
489  * For all other cases (including 32-bit kernels), struct load_weight's
490  * weight will overflow first before we do, because:
491  *
492  *    Max(load_avg) <= Max(load.weight)
493  *
494  * Then it is the load_weight's responsibility to consider overflow
495  * issues.
496  */
497 struct sched_avg {
498 	u64				last_update_time;
499 	u64				load_sum;
500 	u64				runnable_sum;
501 	u32				util_sum;
502 	u32				period_contrib;
503 	unsigned long			load_avg;
504 	unsigned long			runnable_avg;
505 	unsigned long			util_avg;
506 	struct util_est			util_est;
507 } ____cacheline_aligned;
508 
509 struct sched_statistics {
510 #ifdef CONFIG_SCHEDSTATS
511 	u64				wait_start;
512 	u64				wait_max;
513 	u64				wait_count;
514 	u64				wait_sum;
515 	u64				iowait_count;
516 	u64				iowait_sum;
517 
518 	u64				sleep_start;
519 	u64				sleep_max;
520 	s64				sum_sleep_runtime;
521 
522 	u64				block_start;
523 	u64				block_max;
524 	s64				sum_block_runtime;
525 
526 	u64				exec_max;
527 	u64				slice_max;
528 
529 	u64				nr_migrations_cold;
530 	u64				nr_failed_migrations_affine;
531 	u64				nr_failed_migrations_running;
532 	u64				nr_failed_migrations_hot;
533 	u64				nr_forced_migrations;
534 
535 	u64				nr_wakeups;
536 	u64				nr_wakeups_sync;
537 	u64				nr_wakeups_migrate;
538 	u64				nr_wakeups_local;
539 	u64				nr_wakeups_remote;
540 	u64				nr_wakeups_affine;
541 	u64				nr_wakeups_affine_attempts;
542 	u64				nr_wakeups_passive;
543 	u64				nr_wakeups_idle;
544 
545 #ifdef CONFIG_SCHED_CORE
546 	u64				core_forceidle_sum;
547 #endif
548 #endif /* CONFIG_SCHEDSTATS */
549 } ____cacheline_aligned;
550 
551 struct sched_entity {
552 	/* For load-balancing: */
553 	struct load_weight		load;
554 	struct rb_node			run_node;
555 	struct list_head		group_node;
556 	unsigned int			on_rq;
557 
558 	u64				exec_start;
559 	u64				sum_exec_runtime;
560 	u64				vruntime;
561 	u64				prev_sum_exec_runtime;
562 
563 	u64				nr_migrations;
564 
565 #ifdef CONFIG_FAIR_GROUP_SCHED
566 	int				depth;
567 	struct sched_entity		*parent;
568 	/* rq on which this entity is (to be) queued: */
569 	struct cfs_rq			*cfs_rq;
570 	/* rq "owned" by this entity/group: */
571 	struct cfs_rq			*my_q;
572 	/* cached value of my_q->h_nr_running */
573 	unsigned long			runnable_weight;
574 #endif
575 
576 #ifdef CONFIG_SMP
577 	/*
578 	 * Per entity load average tracking.
579 	 *
580 	 * Put into separate cache line so it does not
581 	 * collide with read-mostly values above.
582 	 */
583 	struct sched_avg		avg;
584 #endif
585 
586 	ANDROID_KABI_RESERVE(1);
587 	ANDROID_KABI_RESERVE(2);
588 	ANDROID_KABI_RESERVE(3);
589 	ANDROID_KABI_RESERVE(4);
590 };
591 
592 struct sched_rt_entity {
593 	struct list_head		run_list;
594 	unsigned long			timeout;
595 	unsigned long			watchdog_stamp;
596 	unsigned int			time_slice;
597 	unsigned short			on_rq;
598 	unsigned short			on_list;
599 
600 	struct sched_rt_entity		*back;
601 #ifdef CONFIG_RT_GROUP_SCHED
602 	struct sched_rt_entity		*parent;
603 	/* rq on which this entity is (to be) queued: */
604 	struct rt_rq			*rt_rq;
605 	/* rq "owned" by this entity/group: */
606 	struct rt_rq			*my_q;
607 #endif
608 
609 	ANDROID_KABI_RESERVE(1);
610 	ANDROID_KABI_RESERVE(2);
611 	ANDROID_KABI_RESERVE(3);
612 	ANDROID_KABI_RESERVE(4);
613 } __randomize_layout;
614 
615 struct sched_dl_entity {
616 	struct rb_node			rb_node;
617 
618 	/*
619 	 * Original scheduling parameters. Copied here from sched_attr
620 	 * during sched_setattr(), they will remain the same until
621 	 * the next sched_setattr().
622 	 */
623 	u64				dl_runtime;	/* Maximum runtime for each instance	*/
624 	u64				dl_deadline;	/* Relative deadline of each instance	*/
625 	u64				dl_period;	/* Separation of two instances (period) */
626 	u64				dl_bw;		/* dl_runtime / dl_period		*/
627 	u64				dl_density;	/* dl_runtime / dl_deadline		*/
628 
629 	/*
630 	 * Actual scheduling parameters. Initialized with the values above,
631 	 * they are continuously updated during task execution. Note that
632 	 * the remaining runtime could be < 0 in case we are in overrun.
633 	 */
634 	s64				runtime;	/* Remaining runtime for this instance	*/
635 	u64				deadline;	/* Absolute deadline for this instance	*/
636 	unsigned int			flags;		/* Specifying the scheduler behaviour	*/
637 
638 	/*
639 	 * Some bool flags:
640 	 *
641 	 * @dl_throttled tells if we exhausted the runtime. If so, the
642 	 * task has to wait for a replenishment to be performed at the
643 	 * next firing of dl_timer.
644 	 *
645 	 * @dl_yielded tells if task gave up the CPU before consuming
646 	 * all its available runtime during the last job.
647 	 *
648 	 * @dl_non_contending tells if the task is inactive while still
649 	 * contributing to the active utilization. In other words, it
650 	 * indicates if the inactive timer has been armed and its handler
651 	 * has not been executed yet. This flag is useful to avoid race
652 	 * conditions between the inactive timer handler and the wakeup
653 	 * code.
654 	 *
655 	 * @dl_overrun tells if the task asked to be informed about runtime
656 	 * overruns.
657 	 */
658 	unsigned int			dl_throttled      : 1;
659 	unsigned int			dl_yielded        : 1;
660 	unsigned int			dl_non_contending : 1;
661 	unsigned int			dl_overrun	  : 1;
662 
663 	/*
664 	 * Bandwidth enforcement timer. Each -deadline task has its
665 	 * own bandwidth to be enforced, thus we need one timer per task.
666 	 */
667 	struct hrtimer			dl_timer;
668 
669 	/*
670 	 * Inactive timer, responsible for decreasing the active utilization
671 	 * at the "0-lag time". When a -deadline task blocks, it contributes
672 	 * to GRUB's active utilization until the "0-lag time", hence a
673 	 * timer is needed to decrease the active utilization at the correct
674 	 * time.
675 	 */
676 	struct hrtimer inactive_timer;
677 
678 #ifdef CONFIG_RT_MUTEXES
679 	/*
680 	 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
681 	 * pi_se points to the donor, otherwise points to the dl_se it belongs
682 	 * to (the original one/itself).
683 	 */
684 	struct sched_dl_entity *pi_se;
685 #endif
686 };
687 
688 #ifdef CONFIG_UCLAMP_TASK
689 /* Number of utilization clamp buckets (shorter alias) */
690 #define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
691 
692 /*
693  * Utilization clamp for a scheduling entity
694  * @value:		clamp value "assigned" to a se
695  * @bucket_id:		bucket index corresponding to the "assigned" value
696  * @active:		the se is currently refcounted in a rq's bucket
697  * @user_defined:	the requested clamp value comes from user-space
698  *
699  * The bucket_id is the index of the clamp bucket matching the clamp value
700  * which is pre-computed and stored to avoid expensive integer divisions from
701  * the fast path.
702  *
703  * The active bit is set whenever a task has got an "effective" value assigned,
704  * which can be different from the clamp value "requested" from user-space.
705  * This allows to know a task is refcounted in the rq's bucket corresponding
706  * to the "effective" bucket_id.
707  *
708  * The user_defined bit is set whenever a task has got a task-specific clamp
709  * value requested from userspace, i.e. the system defaults apply to this task
710  * just as a restriction. This allows to relax default clamps when a less
711  * restrictive task-specific value has been requested, thus allowing to
712  * implement a "nice" semantic. For example, a task running with a 20%
713  * default boost can still drop its own boosting to 0%.
714  */
715 struct uclamp_se {
716 	unsigned int value		: bits_per(SCHED_CAPACITY_SCALE);
717 	unsigned int bucket_id		: bits_per(UCLAMP_BUCKETS);
718 	unsigned int active		: 1;
719 	unsigned int user_defined	: 1;
720 };
721 #endif /* CONFIG_UCLAMP_TASK */
722 
723 union rcu_special {
724 	struct {
725 		u8			blocked;
726 		u8			need_qs;
727 		u8			exp_hint; /* Hint for performance. */
728 		u8			need_mb; /* Readers need smp_mb(). */
729 	} b; /* Bits. */
730 	u32 s; /* Set of bits. */
731 };
732 
733 enum perf_event_task_context {
734 	perf_invalid_context = -1,
735 	perf_hw_context = 0,
736 	perf_sw_context,
737 	perf_nr_task_contexts,
738 };
739 
740 struct wake_q_node {
741 	struct wake_q_node *next;
742 };
743 
744 struct kmap_ctrl {
745 #ifdef CONFIG_KMAP_LOCAL
746 	int				idx;
747 	pte_t				pteval[KM_MAX_IDX];
748 #endif
749 };
750 
751 struct task_struct {
752 #ifdef CONFIG_THREAD_INFO_IN_TASK
753 	/*
754 	 * For reasons of header soup (see current_thread_info()), this
755 	 * must be the first element of task_struct.
756 	 */
757 	struct thread_info		thread_info;
758 #endif
759 	unsigned int			__state;
760 
761 	/* saved state for "spinlock sleepers" */
762 	/* moved to ANDROID_KABI_USE(1, unsigned int saved_state) */
763 
764 	/*
765 	 * This begins the randomizable portion of task_struct. Only
766 	 * scheduling-critical items should be added above here.
767 	 */
768 	randomized_struct_fields_start
769 
770 	void				*stack;
771 	refcount_t			usage;
772 	/* Per task flags (PF_*), defined further below: */
773 	unsigned int			flags;
774 	unsigned int			ptrace;
775 
776 #ifdef CONFIG_SMP
777 	int				on_cpu;
778 	struct __call_single_node	wake_entry;
779 	unsigned int			wakee_flips;
780 	unsigned long			wakee_flip_decay_ts;
781 	struct task_struct		*last_wakee;
782 
783 	/*
784 	 * recent_used_cpu is initially set as the last CPU used by a task
785 	 * that wakes affine another task. Waker/wakee relationships can
786 	 * push tasks around a CPU where each wakeup moves to the next one.
787 	 * Tracking a recently used CPU allows a quick search for a recently
788 	 * used CPU that may be idle.
789 	 */
790 	int				recent_used_cpu;
791 	int				wake_cpu;
792 #endif
793 	int				on_rq;
794 
795 	int				prio;
796 	int				static_prio;
797 	int				normal_prio;
798 	unsigned int			rt_priority;
799 
800 	struct sched_entity		se;
801 	struct sched_rt_entity		rt;
802 	struct sched_dl_entity		dl;
803 	const struct sched_class	*sched_class;
804 
805 #ifdef CONFIG_SCHED_CORE
806 	struct rb_node			core_node;
807 	unsigned long			core_cookie;
808 	unsigned int			core_occupation;
809 #endif
810 
811 #ifdef CONFIG_CGROUP_SCHED
812 	struct task_group		*sched_task_group;
813 #endif
814 
815 #ifdef CONFIG_UCLAMP_TASK
816 	/*
817 	 * Clamp values requested for a scheduling entity.
818 	 * Must be updated with task_rq_lock() held.
819 	 */
820 	struct uclamp_se		uclamp_req[UCLAMP_CNT];
821 	/*
822 	 * Effective clamp values used for a scheduling entity.
823 	 * Must be updated with task_rq_lock() held.
824 	 */
825 	struct uclamp_se		uclamp[UCLAMP_CNT];
826 #endif
827 
828 	struct sched_statistics         stats;
829 
830 #ifdef CONFIG_PREEMPT_NOTIFIERS
831 	/* List of struct preempt_notifier: */
832 	struct hlist_head		preempt_notifiers;
833 #endif
834 
835 #ifdef CONFIG_BLK_DEV_IO_TRACE
836 	unsigned int			btrace_seq;
837 #endif
838 
839 	unsigned int			policy;
840 	int				nr_cpus_allowed;
841 	const cpumask_t			*cpus_ptr;
842 	cpumask_t			*user_cpus_ptr;
843 	cpumask_t			cpus_mask;
844 	void				*migration_pending;
845 #ifdef CONFIG_SMP
846 	unsigned short			migration_disabled;
847 #endif
848 	unsigned short			migration_flags;
849 
850 #ifdef CONFIG_PREEMPT_RCU
851 	int				rcu_read_lock_nesting;
852 	union rcu_special		rcu_read_unlock_special;
853 	struct list_head		rcu_node_entry;
854 	struct rcu_node			*rcu_blocked_node;
855 #endif /* #ifdef CONFIG_PREEMPT_RCU */
856 
857 #ifdef CONFIG_TASKS_RCU
858 	unsigned long			rcu_tasks_nvcsw;
859 	u8				rcu_tasks_holdout;
860 	u8				rcu_tasks_idx;
861 	int				rcu_tasks_idle_cpu;
862 	struct list_head		rcu_tasks_holdout_list;
863 #endif /* #ifdef CONFIG_TASKS_RCU */
864 
865 #ifdef CONFIG_TASKS_TRACE_RCU
866 	int				trc_reader_nesting;
867 	int				trc_ipi_to_cpu;
868 	union rcu_special		trc_reader_special;
869 	struct list_head		trc_holdout_list;
870 	struct list_head		trc_blkd_node;
871 	int				trc_blkd_cpu;
872 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
873 
874 	struct sched_info		sched_info;
875 
876 	struct list_head		tasks;
877 #ifdef CONFIG_SMP
878 	struct plist_node		pushable_tasks;
879 	struct rb_node			pushable_dl_tasks;
880 #endif
881 
882 	struct mm_struct		*mm;
883 	struct mm_struct		*active_mm;
884 
885 #ifdef SPLIT_RSS_COUNTING
886 	struct task_rss_stat		rss_stat;
887 #endif
888 	int				exit_state;
889 	int				exit_code;
890 	int				exit_signal;
891 	/* The signal sent when the parent dies: */
892 	int				pdeath_signal;
893 	/* JOBCTL_*, siglock protected: */
894 	unsigned long			jobctl;
895 
896 	/* Used for emulating ABI behavior of previous Linux versions: */
897 	unsigned int			personality;
898 
899 	/* Scheduler bits, serialized by scheduler locks: */
900 	unsigned			sched_reset_on_fork:1;
901 	unsigned			sched_contributes_to_load:1;
902 	unsigned			sched_migrated:1;
903 #ifdef CONFIG_PSI
904 	unsigned			sched_psi_wake_requeue:1;
905 #endif
906 
907 	/* Force alignment to the next boundary: */
908 	unsigned			:0;
909 
910 	/* Unserialized, strictly 'current' */
911 
912 	/*
913 	 * This field must not be in the scheduler word above due to wakelist
914 	 * queueing no longer being serialized by p->on_cpu. However:
915 	 *
916 	 * p->XXX = X;			ttwu()
917 	 * schedule()			  if (p->on_rq && ..) // false
918 	 *   smp_mb__after_spinlock();	  if (smp_load_acquire(&p->on_cpu) && //true
919 	 *   deactivate_task()		      ttwu_queue_wakelist())
920 	 *     p->on_rq = 0;			p->sched_remote_wakeup = Y;
921 	 *
922 	 * guarantees all stores of 'current' are visible before
923 	 * ->sched_remote_wakeup gets used, so it can be in this word.
924 	 */
925 	unsigned			sched_remote_wakeup:1;
926 
927 	/* Bit to tell LSMs we're in execve(): */
928 	unsigned			in_execve:1;
929 	unsigned			in_iowait:1;
930 #ifndef TIF_RESTORE_SIGMASK
931 	unsigned			restore_sigmask:1;
932 #endif
933 #ifdef CONFIG_MEMCG
934 	unsigned			in_user_fault:1;
935 #endif
936 #ifdef CONFIG_LRU_GEN
937 	/* whether the LRU algorithm may apply to this access */
938 	unsigned			in_lru_fault:1;
939 #endif
940 #ifdef CONFIG_COMPAT_BRK
941 	unsigned			brk_randomized:1;
942 #endif
943 #ifdef CONFIG_CGROUPS
944 	/* disallow userland-initiated cgroup migration */
945 	unsigned			no_cgroup_migration:1;
946 	/* task is frozen/stopped (used by the cgroup freezer) */
947 	unsigned			frozen:1;
948 #endif
949 #ifdef CONFIG_BLK_CGROUP
950 	unsigned			use_memdelay:1;
951 #endif
952 #ifdef CONFIG_PSI
953 	/* Stalled due to lack of memory */
954 	unsigned			in_memstall:1;
955 #endif
956 #ifdef CONFIG_PAGE_OWNER
957 	/* Used by page_owner=on to detect recursion in page tracking. */
958 	unsigned			in_page_owner:1;
959 #endif
960 #ifdef CONFIG_EVENTFD
961 	/* Recursion prevention for eventfd_signal() */
962 	unsigned			in_eventfd:1;
963 #endif
964 #ifdef CONFIG_IOMMU_SVA
965 	unsigned			pasid_activated:1;
966 #endif
967 #ifdef	CONFIG_CPU_SUP_INTEL
968 	unsigned			reported_split_lock:1;
969 #endif
970 #ifdef CONFIG_TASK_DELAY_ACCT
971 	/* delay due to memory thrashing */
972 	unsigned                        in_thrashing:1;
973 #endif
974 
975 	unsigned long			atomic_flags; /* Flags requiring atomic access. */
976 
977 	struct restart_block		restart_block;
978 
979 	pid_t				pid;
980 	pid_t				tgid;
981 
982 #ifdef CONFIG_STACKPROTECTOR
983 	/* Canary value for the -fstack-protector GCC feature: */
984 	unsigned long			stack_canary;
985 #endif
986 	/*
987 	 * Pointers to the (original) parent process, youngest child, younger sibling,
988 	 * older sibling, respectively.  (p->father can be replaced with
989 	 * p->real_parent->pid)
990 	 */
991 
992 	/* Real parent process: */
993 	struct task_struct __rcu	*real_parent;
994 
995 	/* Recipient of SIGCHLD, wait4() reports: */
996 	struct task_struct __rcu	*parent;
997 
998 	/*
999 	 * Children/sibling form the list of natural children:
1000 	 */
1001 	struct list_head		children;
1002 	struct list_head		sibling;
1003 	struct task_struct		*group_leader;
1004 
1005 	/*
1006 	 * 'ptraced' is the list of tasks this task is using ptrace() on.
1007 	 *
1008 	 * This includes both natural children and PTRACE_ATTACH targets.
1009 	 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
1010 	 */
1011 	struct list_head		ptraced;
1012 	struct list_head		ptrace_entry;
1013 
1014 	/* PID/PID hash table linkage. */
1015 	struct pid			*thread_pid;
1016 	struct hlist_node		pid_links[PIDTYPE_MAX];
1017 	struct list_head		thread_group;
1018 	struct list_head		thread_node;
1019 
1020 	struct completion		*vfork_done;
1021 
1022 	/* CLONE_CHILD_SETTID: */
1023 	int __user			*set_child_tid;
1024 
1025 	/* CLONE_CHILD_CLEARTID: */
1026 	int __user			*clear_child_tid;
1027 
1028 	/* PF_KTHREAD | PF_IO_WORKER */
1029 	void				*worker_private;
1030 
1031 	u64				utime;
1032 	u64				stime;
1033 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1034 	u64				utimescaled;
1035 	u64				stimescaled;
1036 #endif
1037 	u64				gtime;
1038 #ifdef CONFIG_CPU_FREQ_TIMES
1039 	u64				*time_in_state;
1040 	unsigned int			max_state;
1041 #endif
1042 	struct prev_cputime		prev_cputime;
1043 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1044 	struct vtime			vtime;
1045 #endif
1046 
1047 #ifdef CONFIG_NO_HZ_FULL
1048 	atomic_t			tick_dep_mask;
1049 #endif
1050 	/* Context switch counts: */
1051 	unsigned long			nvcsw;
1052 	unsigned long			nivcsw;
1053 
1054 	/* Monotonic time in nsecs: */
1055 	u64				start_time;
1056 
1057 	/* Boot based time in nsecs: */
1058 	u64				start_boottime;
1059 
1060 	/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
1061 	unsigned long			min_flt;
1062 	unsigned long			maj_flt;
1063 
1064 	/* Empty if CONFIG_POSIX_CPUTIMERS=n */
1065 	struct posix_cputimers		posix_cputimers;
1066 
1067 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1068 	struct posix_cputimers_work	posix_cputimers_work;
1069 #endif
1070 
1071 	/* Process credentials: */
1072 
1073 	/* Tracer's credentials at attach: */
1074 	const struct cred __rcu		*ptracer_cred;
1075 
1076 	/* Objective and real subjective task credentials (COW): */
1077 	const struct cred __rcu		*real_cred;
1078 
1079 	/* Effective (overridable) subjective task credentials (COW): */
1080 	const struct cred __rcu		*cred;
1081 
1082 #ifdef CONFIG_KEYS
1083 	/* Cached requested key. */
1084 	struct key			*cached_requested_key;
1085 #endif
1086 
1087 	/*
1088 	 * executable name, excluding path.
1089 	 *
1090 	 * - normally initialized setup_new_exec()
1091 	 * - access it with [gs]et_task_comm()
1092 	 * - lock it with task_lock()
1093 	 */
1094 	char				comm[TASK_COMM_LEN];
1095 
1096 	struct nameidata		*nameidata;
1097 
1098 #ifdef CONFIG_SYSVIPC
1099 	struct sysv_sem			sysvsem;
1100 	struct sysv_shm			sysvshm;
1101 #endif
1102 #ifdef CONFIG_DETECT_HUNG_TASK
1103 	unsigned long			last_switch_count;
1104 	unsigned long			last_switch_time;
1105 #endif
1106 	/* Filesystem information: */
1107 	struct fs_struct		*fs;
1108 
1109 	/* Open file information: */
1110 	struct files_struct		*files;
1111 
1112 #ifdef CONFIG_IO_URING
1113 	struct io_uring_task		*io_uring;
1114 #endif
1115 
1116 	/* Namespaces: */
1117 	struct nsproxy			*nsproxy;
1118 
1119 	/* Signal handlers: */
1120 	struct signal_struct		*signal;
1121 	struct sighand_struct __rcu		*sighand;
1122 	sigset_t			blocked;
1123 	sigset_t			real_blocked;
1124 	/* Restored if set_restore_sigmask() was used: */
1125 	sigset_t			saved_sigmask;
1126 	struct sigpending		pending;
1127 	unsigned long			sas_ss_sp;
1128 	size_t				sas_ss_size;
1129 	unsigned int			sas_ss_flags;
1130 
1131 	struct callback_head		*task_works;
1132 
1133 #ifdef CONFIG_AUDIT
1134 #ifdef CONFIG_AUDITSYSCALL
1135 	struct audit_context		*audit_context;
1136 #endif
1137 	kuid_t				loginuid;
1138 	unsigned int			sessionid;
1139 #endif
1140 	struct seccomp			seccomp;
1141 	struct syscall_user_dispatch	syscall_dispatch;
1142 
1143 	/* Thread group tracking: */
1144 	u64				parent_exec_id;
1145 	u64				self_exec_id;
1146 
1147 	/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1148 	spinlock_t			alloc_lock;
1149 
1150 	/* Protection of the PI data structures: */
1151 	raw_spinlock_t			pi_lock;
1152 
1153 	struct wake_q_node		wake_q;
1154 	int				wake_q_count;
1155 
1156 #ifdef CONFIG_RT_MUTEXES
1157 	/* PI waiters blocked on a rt_mutex held by this task: */
1158 	struct rb_root_cached		pi_waiters;
1159 	/* Updated under owner's pi_lock and rq lock */
1160 	struct task_struct		*pi_top_task;
1161 	/* Deadlock detection and priority inheritance handling: */
1162 	struct rt_mutex_waiter		*pi_blocked_on;
1163 #endif
1164 
1165 #ifdef CONFIG_DEBUG_MUTEXES
1166 	/* Mutex deadlock detection: */
1167 	struct mutex_waiter		*blocked_on;
1168 #endif
1169 
1170 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1171 	int				non_block_count;
1172 #endif
1173 
1174 #ifdef CONFIG_TRACE_IRQFLAGS
1175 	struct irqtrace_events		irqtrace;
1176 	unsigned int			hardirq_threaded;
1177 	u64				hardirq_chain_key;
1178 	int				softirqs_enabled;
1179 	int				softirq_context;
1180 	int				irq_config;
1181 #endif
1182 #ifdef CONFIG_PREEMPT_RT
1183 	int				softirq_disable_cnt;
1184 #endif
1185 
1186 #ifdef CONFIG_LOCKDEP
1187 # define MAX_LOCK_DEPTH			48UL
1188 	u64				curr_chain_key;
1189 	int				lockdep_depth;
1190 	unsigned int			lockdep_recursion;
1191 	struct held_lock		held_locks[MAX_LOCK_DEPTH];
1192 #endif
1193 
1194 #if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1195 	unsigned int			in_ubsan;
1196 #endif
1197 
1198 	/* Journalling filesystem info: */
1199 	void				*journal_info;
1200 
1201 	/* Stacked block device info: */
1202 	struct bio_list			*bio_list;
1203 
1204 	/* Stack plugging: */
1205 	struct blk_plug			*plug;
1206 
1207 	/* VM state: */
1208 	struct reclaim_state		*reclaim_state;
1209 
1210 	struct backing_dev_info		*backing_dev_info;
1211 
1212 	struct io_context		*io_context;
1213 
1214 #ifdef CONFIG_COMPACTION
1215 	struct capture_control		*capture_control;
1216 #endif
1217 	/* Ptrace state: */
1218 	unsigned long			ptrace_message;
1219 	kernel_siginfo_t		*last_siginfo;
1220 
1221 	struct task_io_accounting	ioac;
1222 #ifdef CONFIG_PSI
1223 	/* Pressure stall state */
1224 	unsigned int			psi_flags;
1225 #endif
1226 #ifdef CONFIG_TASK_XACCT
1227 	/* Accumulated RSS usage: */
1228 	u64				acct_rss_mem1;
1229 	/* Accumulated virtual memory usage: */
1230 	u64				acct_vm_mem1;
1231 	/* stime + utime since last update: */
1232 	u64				acct_timexpd;
1233 #endif
1234 #ifdef CONFIG_CPUSETS
1235 	/* Protected by ->alloc_lock: */
1236 	nodemask_t			mems_allowed;
1237 	/* Sequence number to catch updates: */
1238 	seqcount_spinlock_t		mems_allowed_seq;
1239 	int				cpuset_mem_spread_rotor;
1240 	int				cpuset_slab_spread_rotor;
1241 #endif
1242 #ifdef CONFIG_CGROUPS
1243 	/* Control Group info protected by css_set_lock: */
1244 	struct css_set __rcu		*cgroups;
1245 	/* cg_list protected by css_set_lock and tsk->alloc_lock: */
1246 	struct list_head		cg_list;
1247 #endif
1248 #ifdef CONFIG_X86_CPU_RESCTRL
1249 	u32				closid;
1250 	u32				rmid;
1251 #endif
1252 #ifdef CONFIG_FUTEX
1253 	struct robust_list_head __user	*robust_list;
1254 #ifdef CONFIG_COMPAT
1255 	struct compat_robust_list_head __user *compat_robust_list;
1256 #endif
1257 	struct list_head		pi_state_list;
1258 	struct futex_pi_state		*pi_state_cache;
1259 	struct mutex			futex_exit_mutex;
1260 	unsigned int			futex_state;
1261 #endif
1262 #ifdef CONFIG_PERF_EVENTS
1263 	struct perf_event_context	*perf_event_ctxp[perf_nr_task_contexts];
1264 	struct mutex			perf_event_mutex;
1265 	struct list_head		perf_event_list;
1266 #endif
1267 #ifdef CONFIG_DEBUG_PREEMPT
1268 	unsigned long			preempt_disable_ip;
1269 #endif
1270 #ifdef CONFIG_NUMA
1271 	/* Protected by alloc_lock: */
1272 	struct mempolicy		*mempolicy;
1273 	short				il_prev;
1274 	short				pref_node_fork;
1275 #endif
1276 #ifdef CONFIG_NUMA_BALANCING
1277 	int				numa_scan_seq;
1278 	unsigned int			numa_scan_period;
1279 	unsigned int			numa_scan_period_max;
1280 	int				numa_preferred_nid;
1281 	unsigned long			numa_migrate_retry;
1282 	/* Migration stamp: */
1283 	u64				node_stamp;
1284 	u64				last_task_numa_placement;
1285 	u64				last_sum_exec_runtime;
1286 	struct callback_head		numa_work;
1287 
1288 	/*
1289 	 * This pointer is only modified for current in syscall and
1290 	 * pagefault context (and for tasks being destroyed), so it can be read
1291 	 * from any of the following contexts:
1292 	 *  - RCU read-side critical section
1293 	 *  - current->numa_group from everywhere
1294 	 *  - task's runqueue locked, task not running
1295 	 */
1296 	struct numa_group __rcu		*numa_group;
1297 
1298 	/*
1299 	 * numa_faults is an array split into four regions:
1300 	 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1301 	 * in this precise order.
1302 	 *
1303 	 * faults_memory: Exponential decaying average of faults on a per-node
1304 	 * basis. Scheduling placement decisions are made based on these
1305 	 * counts. The values remain static for the duration of a PTE scan.
1306 	 * faults_cpu: Track the nodes the process was running on when a NUMA
1307 	 * hinting fault was incurred.
1308 	 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1309 	 * during the current scan window. When the scan completes, the counts
1310 	 * in faults_memory and faults_cpu decay and these values are copied.
1311 	 */
1312 	unsigned long			*numa_faults;
1313 	unsigned long			total_numa_faults;
1314 
1315 	/*
1316 	 * numa_faults_locality tracks if faults recorded during the last
1317 	 * scan window were remote/local or failed to migrate. The task scan
1318 	 * period is adapted based on the locality of the faults with different
1319 	 * weights depending on whether they were shared or private faults
1320 	 */
1321 	unsigned long			numa_faults_locality[3];
1322 
1323 	unsigned long			numa_pages_migrated;
1324 #endif /* CONFIG_NUMA_BALANCING */
1325 
1326 #ifdef CONFIG_RSEQ
1327 	struct rseq __user *rseq;
1328 	u32 rseq_sig;
1329 	/*
1330 	 * RmW on rseq_event_mask must be performed atomically
1331 	 * with respect to preemption.
1332 	 */
1333 	unsigned long rseq_event_mask;
1334 #endif
1335 
1336 	struct tlbflush_unmap_batch	tlb_ubc;
1337 
1338 	union {
1339 		refcount_t		rcu_users;
1340 		struct rcu_head		rcu;
1341 	};
1342 
1343 	/* Cache last used pipe for splice(): */
1344 	struct pipe_inode_info		*splice_pipe;
1345 
1346 	struct page_frag		task_frag;
1347 
1348 #ifdef CONFIG_TASK_DELAY_ACCT
1349 	struct task_delay_info		*delays;
1350 #endif
1351 
1352 #ifdef CONFIG_FAULT_INJECTION
1353 	int				make_it_fail;
1354 	unsigned int			fail_nth;
1355 #endif
1356 	/*
1357 	 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1358 	 * balance_dirty_pages() for a dirty throttling pause:
1359 	 */
1360 	int				nr_dirtied;
1361 	int				nr_dirtied_pause;
1362 	/* Start of a write-and-pause period: */
1363 	unsigned long			dirty_paused_when;
1364 
1365 #ifdef CONFIG_LATENCYTOP
1366 	int				latency_record_count;
1367 	struct latency_record		latency_record[LT_SAVECOUNT];
1368 #endif
1369 	/*
1370 	 * Time slack values; these are used to round up poll() and
1371 	 * select() etc timeout values. These are in nanoseconds.
1372 	 */
1373 	u64				timer_slack_ns;
1374 	u64				default_timer_slack_ns;
1375 
1376 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1377 	unsigned int			kasan_depth;
1378 #endif
1379 
1380 #ifdef CONFIG_KCSAN
1381 	struct kcsan_ctx		kcsan_ctx;
1382 #ifdef CONFIG_TRACE_IRQFLAGS
1383 	struct irqtrace_events		kcsan_save_irqtrace;
1384 #endif
1385 #ifdef CONFIG_KCSAN_WEAK_MEMORY
1386 	int				kcsan_stack_depth;
1387 #endif
1388 #endif
1389 
1390 #ifdef CONFIG_KMSAN
1391 	struct kmsan_ctx		kmsan_ctx;
1392 #endif
1393 
1394 #if IS_ENABLED(CONFIG_KUNIT)
1395 	struct kunit			*kunit_test;
1396 #endif
1397 
1398 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1399 	/* Index of current stored address in ret_stack: */
1400 	int				curr_ret_stack;
1401 	int				curr_ret_depth;
1402 
1403 	/* Stack of return addresses for return function tracing: */
1404 	struct ftrace_ret_stack		*ret_stack;
1405 
1406 	/* Timestamp for last schedule: */
1407 	unsigned long long		ftrace_timestamp;
1408 
1409 	/*
1410 	 * Number of functions that haven't been traced
1411 	 * because of depth overrun:
1412 	 */
1413 	atomic_t			trace_overrun;
1414 
1415 	/* Pause tracing: */
1416 	atomic_t			tracing_graph_pause;
1417 #endif
1418 
1419 #ifdef CONFIG_TRACING
1420 	/* Bitmask and counter of trace recursion: */
1421 	unsigned long			trace_recursion;
1422 #endif /* CONFIG_TRACING */
1423 
1424 #ifdef CONFIG_KCOV
1425 	/* See kernel/kcov.c for more details. */
1426 
1427 	/* Coverage collection mode enabled for this task (0 if disabled): */
1428 	unsigned int			kcov_mode;
1429 
1430 	/* Size of the kcov_area: */
1431 	unsigned int			kcov_size;
1432 
1433 	/* Buffer for coverage collection: */
1434 	void				*kcov_area;
1435 
1436 	/* KCOV descriptor wired with this task or NULL: */
1437 	struct kcov			*kcov;
1438 
1439 	/* KCOV common handle for remote coverage collection: */
1440 	u64				kcov_handle;
1441 
1442 	/* KCOV sequence number: */
1443 	int				kcov_sequence;
1444 
1445 	/* Collect coverage from softirq context: */
1446 	unsigned int			kcov_softirq;
1447 #endif
1448 
1449 #ifdef CONFIG_MEMCG
1450 	struct mem_cgroup		*memcg_in_oom;
1451 	gfp_t				memcg_oom_gfp_mask;
1452 	int				memcg_oom_order;
1453 
1454 	/* Number of pages to reclaim on returning to userland: */
1455 	unsigned int			memcg_nr_pages_over_high;
1456 
1457 	/* Used by memcontrol for targeted memcg charge: */
1458 	struct mem_cgroup		*active_memcg;
1459 #endif
1460 
1461 #ifdef CONFIG_BLK_CGROUP
1462 	struct request_queue		*throttle_queue;
1463 #endif
1464 
1465 #ifdef CONFIG_UPROBES
1466 	struct uprobe_task		*utask;
1467 #endif
1468 #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1469 	unsigned int			sequential_io;
1470 	unsigned int			sequential_io_avg;
1471 #endif
1472 	struct kmap_ctrl		kmap_ctrl;
1473 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1474 	unsigned long			task_state_change;
1475 # ifdef CONFIG_PREEMPT_RT
1476 	unsigned long			saved_state_change;
1477 # endif
1478 #endif
1479 	int				pagefault_disabled;
1480 #ifdef CONFIG_MMU
1481 	struct task_struct		*oom_reaper_list;
1482 	struct timer_list		oom_reaper_timer;
1483 #endif
1484 #ifdef CONFIG_VMAP_STACK
1485 	struct vm_struct		*stack_vm_area;
1486 #endif
1487 #ifdef CONFIG_THREAD_INFO_IN_TASK
1488 	/* A live task holds one reference: */
1489 	refcount_t			stack_refcount;
1490 #endif
1491 #ifdef CONFIG_LIVEPATCH
1492 	int patch_state;
1493 #endif
1494 #ifdef CONFIG_SECURITY
1495 	/* Used by LSM modules for access restriction: */
1496 	void				*security;
1497 #endif
1498 #ifdef CONFIG_BPF_SYSCALL
1499 	/* Used by BPF task local storage */
1500 	struct bpf_local_storage __rcu	*bpf_storage;
1501 	/* Used for BPF run context */
1502 	struct bpf_run_ctx		*bpf_ctx;
1503 #endif
1504 
1505 #ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1506 	unsigned long			lowest_stack;
1507 	unsigned long			prev_lowest_stack;
1508 #endif
1509 
1510 #ifdef CONFIG_X86_MCE
1511 	void __user			*mce_vaddr;
1512 	__u64				mce_kflags;
1513 	u64				mce_addr;
1514 	__u64				mce_ripv : 1,
1515 					mce_whole_page : 1,
1516 					__mce_reserved : 62;
1517 	struct callback_head		mce_kill_me;
1518 	int				mce_count;
1519 #endif
1520 	ANDROID_VENDOR_DATA_ARRAY(1, 64);
1521 	ANDROID_OEM_DATA_ARRAY(1, 6);
1522 
1523 #ifdef CONFIG_KRETPROBES
1524 	struct llist_head               kretprobe_instances;
1525 #endif
1526 #ifdef CONFIG_RETHOOK
1527 	struct llist_head               rethooks;
1528 #endif
1529 
1530 #ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
1531 	/*
1532 	 * If L1D flush is supported on mm context switch
1533 	 * then we use this callback head to queue kill work
1534 	 * to kill tasks that are not running on SMT disabled
1535 	 * cores
1536 	 */
1537 	struct callback_head		l1d_flush_kill;
1538 #endif
1539 
1540 #ifdef CONFIG_RV
1541 	/*
1542 	 * Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
1543 	 * If we find justification for more monitors, we can think
1544 	 * about adding more or developing a dynamic method. So far,
1545 	 * none of these are justified.
1546 	 */
1547 	union rv_task_monitor		rv[RV_PER_TASK_MONITORS];
1548 #endif
1549 	ANDROID_KABI_USE(1, unsigned int saved_state);
1550 	ANDROID_KABI_RESERVE(2);
1551 	ANDROID_KABI_RESERVE(3);
1552 	ANDROID_KABI_RESERVE(4);
1553 	ANDROID_KABI_RESERVE(5);
1554 	ANDROID_KABI_RESERVE(6);
1555 	ANDROID_KABI_RESERVE(7);
1556 	ANDROID_KABI_RESERVE(8);
1557 
1558 	/*
1559 	 * New fields for task_struct should be added above here, so that
1560 	 * they are included in the randomized portion of task_struct.
1561 	 */
1562 	randomized_struct_fields_end
1563 
1564 	/* CPU-specific state of this task: */
1565 	struct thread_struct		thread;
1566 
1567 	/*
1568 	 * WARNING: on x86, 'thread_struct' contains a variable-sized
1569 	 * structure.  It *MUST* be at the end of 'task_struct'.
1570 	 *
1571 	 * Do not put anything below here!
1572 	 */
1573 };
1574 
task_pid(struct task_struct * task)1575 static inline struct pid *task_pid(struct task_struct *task)
1576 {
1577 	return task->thread_pid;
1578 }
1579 
1580 /*
1581  * the helpers to get the task's different pids as they are seen
1582  * from various namespaces
1583  *
1584  * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1585  * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1586  *                     current.
1587  * task_xid_nr_ns()  : id seen from the ns specified;
1588  *
1589  * see also pid_nr() etc in include/linux/pid.h
1590  */
1591 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1592 
task_pid_nr(struct task_struct * tsk)1593 static inline pid_t task_pid_nr(struct task_struct *tsk)
1594 {
1595 	return tsk->pid;
1596 }
1597 
task_pid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1598 static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1599 {
1600 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1601 }
1602 
task_pid_vnr(struct task_struct * tsk)1603 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1604 {
1605 	return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1606 }
1607 
1608 
task_tgid_nr(struct task_struct * tsk)1609 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1610 {
1611 	return tsk->tgid;
1612 }
1613 
1614 /**
1615  * pid_alive - check that a task structure is not stale
1616  * @p: Task structure to be checked.
1617  *
1618  * Test if a process is not yet dead (at most zombie state)
1619  * If pid_alive fails, then pointers within the task structure
1620  * can be stale and must not be dereferenced.
1621  *
1622  * Return: 1 if the process is alive. 0 otherwise.
1623  */
pid_alive(const struct task_struct * p)1624 static inline int pid_alive(const struct task_struct *p)
1625 {
1626 	return p->thread_pid != NULL;
1627 }
1628 
task_pgrp_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1629 static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1630 {
1631 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1632 }
1633 
task_pgrp_vnr(struct task_struct * tsk)1634 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1635 {
1636 	return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1637 }
1638 
1639 
task_session_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1640 static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1641 {
1642 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1643 }
1644 
task_session_vnr(struct task_struct * tsk)1645 static inline pid_t task_session_vnr(struct task_struct *tsk)
1646 {
1647 	return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1648 }
1649 
task_tgid_nr_ns(struct task_struct * tsk,struct pid_namespace * ns)1650 static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1651 {
1652 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1653 }
1654 
task_tgid_vnr(struct task_struct * tsk)1655 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1656 {
1657 	return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1658 }
1659 
task_ppid_nr_ns(const struct task_struct * tsk,struct pid_namespace * ns)1660 static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1661 {
1662 	pid_t pid = 0;
1663 
1664 	rcu_read_lock();
1665 	if (pid_alive(tsk))
1666 		pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1667 	rcu_read_unlock();
1668 
1669 	return pid;
1670 }
1671 
task_ppid_nr(const struct task_struct * tsk)1672 static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1673 {
1674 	return task_ppid_nr_ns(tsk, &init_pid_ns);
1675 }
1676 
1677 /* Obsolete, do not use: */
task_pgrp_nr(struct task_struct * tsk)1678 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1679 {
1680 	return task_pgrp_nr_ns(tsk, &init_pid_ns);
1681 }
1682 
1683 #define TASK_REPORT_IDLE	(TASK_REPORT + 1)
1684 #define TASK_REPORT_MAX		(TASK_REPORT_IDLE << 1)
1685 
__task_state_index(unsigned int tsk_state,unsigned int tsk_exit_state)1686 static inline unsigned int __task_state_index(unsigned int tsk_state,
1687 					      unsigned int tsk_exit_state)
1688 {
1689 	unsigned int state = (tsk_state | tsk_exit_state) & TASK_REPORT;
1690 
1691 	BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1692 
1693 	if (tsk_state == TASK_IDLE)
1694 		state = TASK_REPORT_IDLE;
1695 
1696 	/*
1697 	 * We're lying here, but rather than expose a completely new task state
1698 	 * to userspace, we can make this appear as if the task has gone through
1699 	 * a regular rt_mutex_lock() call.
1700 	 */
1701 	if (tsk_state == TASK_RTLOCK_WAIT)
1702 		state = TASK_UNINTERRUPTIBLE;
1703 
1704 	return fls(state);
1705 }
1706 
task_state_index(struct task_struct * tsk)1707 static inline unsigned int task_state_index(struct task_struct *tsk)
1708 {
1709 	return __task_state_index(READ_ONCE(tsk->__state), tsk->exit_state);
1710 }
1711 
task_index_to_char(unsigned int state)1712 static inline char task_index_to_char(unsigned int state)
1713 {
1714 	static const char state_char[] = "RSDTtXZPI";
1715 
1716 	BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1717 
1718 	return state_char[state];
1719 }
1720 
task_state_to_char(struct task_struct * tsk)1721 static inline char task_state_to_char(struct task_struct *tsk)
1722 {
1723 	return task_index_to_char(task_state_index(tsk));
1724 }
1725 
1726 /**
1727  * is_global_init - check if a task structure is init. Since init
1728  * is free to have sub-threads we need to check tgid.
1729  * @tsk: Task structure to be checked.
1730  *
1731  * Check if a task structure is the first user space task the kernel created.
1732  *
1733  * Return: 1 if the task structure is init. 0 otherwise.
1734  */
is_global_init(struct task_struct * tsk)1735 static inline int is_global_init(struct task_struct *tsk)
1736 {
1737 	return task_tgid_nr(tsk) == 1;
1738 }
1739 
1740 extern struct pid *cad_pid;
1741 
1742 /*
1743  * Per process flags
1744  */
1745 #define PF_VCPU			0x00000001	/* I'm a virtual CPU */
1746 #define PF_IDLE			0x00000002	/* I am an IDLE thread */
1747 #define PF_EXITING		0x00000004	/* Getting shut down */
1748 #define PF_POSTCOREDUMP		0x00000008	/* Coredumps should ignore this task */
1749 #define PF_IO_WORKER		0x00000010	/* Task is an IO worker */
1750 #define PF_WQ_WORKER		0x00000020	/* I'm a workqueue worker */
1751 #define PF_FORKNOEXEC		0x00000040	/* Forked but didn't exec */
1752 #define PF_MCE_PROCESS		0x00000080      /* Process policy on mce errors */
1753 #define PF_SUPERPRIV		0x00000100	/* Used super-user privileges */
1754 #define PF_DUMPCORE		0x00000200	/* Dumped core */
1755 #define PF_SIGNALED		0x00000400	/* Killed by a signal */
1756 #define PF_MEMALLOC		0x00000800	/* Allocating memory */
1757 #define PF_NPROC_EXCEEDED	0x00001000	/* set_user() noticed that RLIMIT_NPROC was exceeded */
1758 #define PF_USED_MATH		0x00002000	/* If unset the fpu must be initialized before use */
1759 #define PF__HOLE__00004000	0x00004000
1760 #define PF_NOFREEZE		0x00008000	/* This thread should not be frozen */
1761 #define PF__HOLE__00010000	0x00010000
1762 #define PF_KSWAPD		0x00020000	/* I am kswapd */
1763 #define PF_MEMALLOC_NOFS	0x00040000	/* All allocation requests will inherit GFP_NOFS */
1764 #define PF_MEMALLOC_NOIO	0x00080000	/* All allocation requests will inherit GFP_NOIO */
1765 #define PF_LOCAL_THROTTLE	0x00100000	/* Throttle writes only against the bdi I write to,
1766 						 * I am cleaning dirty pages from some other bdi. */
1767 #define PF_KTHREAD		0x00200000	/* I am a kernel thread */
1768 #define PF_RANDOMIZE		0x00400000	/* Randomize virtual address space */
1769 #define PF__HOLE__00800000	0x00800000
1770 #define PF__HOLE__01000000	0x01000000
1771 #define PF__HOLE__02000000	0x02000000
1772 #define PF_NO_SETAFFINITY	0x04000000	/* Userland is not allowed to meddle with cpus_mask */
1773 #define PF_MCE_EARLY		0x08000000      /* Early kill for mce process policy */
1774 #define PF_MEMALLOC_PIN		0x10000000	/* Allocation context constrained to zones which allow long term pinning. */
1775 #define PF__HOLE__20000000	0x20000000
1776 #define PF__HOLE__40000000	0x40000000
1777 #define PF_SUSPEND_TASK		0x80000000      /* This thread called freeze_processes() and should not be frozen */
1778 
1779 /*
1780  * Only the _current_ task can read/write to tsk->flags, but other
1781  * tasks can access tsk->flags in readonly mode for example
1782  * with tsk_used_math (like during threaded core dumping).
1783  * There is however an exception to this rule during ptrace
1784  * or during fork: the ptracer task is allowed to write to the
1785  * child->flags of its traced child (same goes for fork, the parent
1786  * can write to the child->flags), because we're guaranteed the
1787  * child is not running and in turn not changing child->flags
1788  * at the same time the parent does it.
1789  */
1790 #define clear_stopped_child_used_math(child)	do { (child)->flags &= ~PF_USED_MATH; } while (0)
1791 #define set_stopped_child_used_math(child)	do { (child)->flags |= PF_USED_MATH; } while (0)
1792 #define clear_used_math()			clear_stopped_child_used_math(current)
1793 #define set_used_math()				set_stopped_child_used_math(current)
1794 
1795 #define conditional_stopped_child_used_math(condition, child) \
1796 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1797 
1798 #define conditional_used_math(condition)	conditional_stopped_child_used_math(condition, current)
1799 
1800 #define copy_to_stopped_child_used_math(child) \
1801 	do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1802 
1803 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1804 #define tsk_used_math(p)			((p)->flags & PF_USED_MATH)
1805 #define used_math()				tsk_used_math(current)
1806 
is_percpu_thread(void)1807 static __always_inline bool is_percpu_thread(void)
1808 {
1809 #ifdef CONFIG_SMP
1810 	return (current->flags & PF_NO_SETAFFINITY) &&
1811 		(current->nr_cpus_allowed  == 1);
1812 #else
1813 	return true;
1814 #endif
1815 }
1816 
1817 /* Per-process atomic flags. */
1818 #define PFA_NO_NEW_PRIVS		0	/* May not gain new privileges. */
1819 #define PFA_SPREAD_PAGE			1	/* Spread page cache over cpuset */
1820 #define PFA_SPREAD_SLAB			2	/* Spread some slab caches over cpuset */
1821 #define PFA_SPEC_SSB_DISABLE		3	/* Speculative Store Bypass disabled */
1822 #define PFA_SPEC_SSB_FORCE_DISABLE	4	/* Speculative Store Bypass force disabled*/
1823 #define PFA_SPEC_IB_DISABLE		5	/* Indirect branch speculation restricted */
1824 #define PFA_SPEC_IB_FORCE_DISABLE	6	/* Indirect branch speculation permanently restricted */
1825 #define PFA_SPEC_SSB_NOEXEC		7	/* Speculative Store Bypass clear on execve() */
1826 
1827 #define TASK_PFA_TEST(name, func)					\
1828 	static inline bool task_##func(struct task_struct *p)		\
1829 	{ return test_bit(PFA_##name, &p->atomic_flags); }
1830 
1831 #define TASK_PFA_SET(name, func)					\
1832 	static inline void task_set_##func(struct task_struct *p)	\
1833 	{ set_bit(PFA_##name, &p->atomic_flags); }
1834 
1835 #define TASK_PFA_CLEAR(name, func)					\
1836 	static inline void task_clear_##func(struct task_struct *p)	\
1837 	{ clear_bit(PFA_##name, &p->atomic_flags); }
1838 
TASK_PFA_TEST(NO_NEW_PRIVS,no_new_privs)1839 TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1840 TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1841 
1842 TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1843 TASK_PFA_SET(SPREAD_PAGE, spread_page)
1844 TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1845 
1846 TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1847 TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1848 TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1849 
1850 TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1851 TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1852 TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1853 
1854 TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1855 TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1856 TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1857 
1858 TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1859 TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1860 
1861 TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1862 TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1863 TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1864 
1865 TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1866 TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1867 
1868 static inline void
1869 current_restore_flags(unsigned long orig_flags, unsigned long flags)
1870 {
1871 	current->flags &= ~flags;
1872 	current->flags |= orig_flags & flags;
1873 }
1874 
1875 extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1876 extern int task_can_attach(struct task_struct *p);
1877 extern int dl_bw_alloc(int cpu, u64 dl_bw);
1878 extern void dl_bw_free(int cpu, u64 dl_bw);
1879 #ifdef CONFIG_SMP
1880 extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1881 extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1882 extern int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node);
1883 extern void release_user_cpus_ptr(struct task_struct *p);
1884 extern int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask);
1885 extern void force_compatible_cpus_allowed_ptr(struct task_struct *p);
1886 extern void relax_compatible_cpus_allowed_ptr(struct task_struct *p);
1887 #else
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1888 static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1889 {
1890 }
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1891 static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1892 {
1893 	if (!cpumask_test_cpu(0, new_mask))
1894 		return -EINVAL;
1895 	return 0;
1896 }
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)1897 static inline int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, int node)
1898 {
1899 	if (src->user_cpus_ptr)
1900 		return -EINVAL;
1901 	return 0;
1902 }
release_user_cpus_ptr(struct task_struct * p)1903 static inline void release_user_cpus_ptr(struct task_struct *p)
1904 {
1905 	WARN_ON(p->user_cpus_ptr);
1906 }
1907 
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)1908 static inline int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
1909 {
1910 	return 0;
1911 }
1912 #endif
1913 
1914 extern int yield_to(struct task_struct *p, bool preempt);
1915 extern void set_user_nice(struct task_struct *p, long nice);
1916 extern int task_prio(const struct task_struct *p);
1917 
1918 /**
1919  * task_nice - return the nice value of a given task.
1920  * @p: the task in question.
1921  *
1922  * Return: The nice value [ -20 ... 0 ... 19 ].
1923  */
task_nice(const struct task_struct * p)1924 static inline int task_nice(const struct task_struct *p)
1925 {
1926 	return PRIO_TO_NICE((p)->static_prio);
1927 }
1928 
1929 extern int can_nice(const struct task_struct *p, const int nice);
1930 extern int task_curr(const struct task_struct *p);
1931 extern int idle_cpu(int cpu);
1932 extern int available_idle_cpu(int cpu);
1933 extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1934 extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1935 extern void sched_set_fifo(struct task_struct *p);
1936 extern void sched_set_fifo_low(struct task_struct *p);
1937 extern void sched_set_normal(struct task_struct *p, int nice);
1938 extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1939 extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1940 extern struct task_struct *idle_task(int cpu);
1941 
1942 /**
1943  * is_idle_task - is the specified task an idle task?
1944  * @p: the task in question.
1945  *
1946  * Return: 1 if @p is an idle task. 0 otherwise.
1947  */
is_idle_task(const struct task_struct * p)1948 static __always_inline bool is_idle_task(const struct task_struct *p)
1949 {
1950 	return !!(p->flags & PF_IDLE);
1951 }
1952 
1953 extern struct task_struct *curr_task(int cpu);
1954 extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1955 
1956 void yield(void);
1957 
1958 union thread_union {
1959 #ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1960 	struct task_struct task;
1961 #endif
1962 #ifndef CONFIG_THREAD_INFO_IN_TASK
1963 	struct thread_info thread_info;
1964 #endif
1965 	unsigned long stack[THREAD_SIZE/sizeof(long)];
1966 };
1967 
1968 #ifndef CONFIG_THREAD_INFO_IN_TASK
1969 extern struct thread_info init_thread_info;
1970 #endif
1971 
1972 extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1973 
1974 #ifdef CONFIG_THREAD_INFO_IN_TASK
1975 # define task_thread_info(task)	(&(task)->thread_info)
1976 #elif !defined(__HAVE_THREAD_FUNCTIONS)
1977 # define task_thread_info(task)	((struct thread_info *)(task)->stack)
1978 #endif
1979 
1980 /*
1981  * find a task by one of its numerical ids
1982  *
1983  * find_task_by_pid_ns():
1984  *      finds a task by its pid in the specified namespace
1985  * find_task_by_vpid():
1986  *      finds a task by its virtual pid
1987  *
1988  * see also find_vpid() etc in include/linux/pid.h
1989  */
1990 
1991 extern struct task_struct *find_task_by_vpid(pid_t nr);
1992 extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1993 
1994 /*
1995  * find a task by its virtual pid and get the task struct
1996  */
1997 extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1998 
1999 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
2000 extern int wake_up_process(struct task_struct *tsk);
2001 extern void wake_up_new_task(struct task_struct *tsk);
2002 
2003 #ifdef CONFIG_SMP
2004 extern void kick_process(struct task_struct *tsk);
2005 #else
kick_process(struct task_struct * tsk)2006 static inline void kick_process(struct task_struct *tsk) { }
2007 #endif
2008 
2009 extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
2010 
set_task_comm(struct task_struct * tsk,const char * from)2011 static inline void set_task_comm(struct task_struct *tsk, const char *from)
2012 {
2013 	__set_task_comm(tsk, from, false);
2014 }
2015 
2016 extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
2017 #define get_task_comm(buf, tsk) ({			\
2018 	BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);	\
2019 	__get_task_comm(buf, sizeof(buf), tsk);		\
2020 })
2021 
2022 #ifdef CONFIG_SMP
scheduler_ipi(void)2023 static __always_inline void scheduler_ipi(void)
2024 {
2025 	/*
2026 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
2027 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
2028 	 * this IPI.
2029 	 */
2030 	preempt_fold_need_resched();
2031 }
2032 #else
scheduler_ipi(void)2033 static inline void scheduler_ipi(void) { }
2034 #endif
2035 
2036 extern unsigned long wait_task_inactive(struct task_struct *, unsigned int match_state);
2037 
2038 /*
2039  * Set thread flags in other task's structures.
2040  * See asm/thread_info.h for TIF_xxxx flags available:
2041  */
set_tsk_thread_flag(struct task_struct * tsk,int flag)2042 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
2043 {
2044 	set_ti_thread_flag(task_thread_info(tsk), flag);
2045 }
2046 
clear_tsk_thread_flag(struct task_struct * tsk,int flag)2047 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2048 {
2049 	clear_ti_thread_flag(task_thread_info(tsk), flag);
2050 }
2051 
update_tsk_thread_flag(struct task_struct * tsk,int flag,bool value)2052 static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
2053 					  bool value)
2054 {
2055 	update_ti_thread_flag(task_thread_info(tsk), flag, value);
2056 }
2057 
test_and_set_tsk_thread_flag(struct task_struct * tsk,int flag)2058 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
2059 {
2060 	return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
2061 }
2062 
test_and_clear_tsk_thread_flag(struct task_struct * tsk,int flag)2063 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
2064 {
2065 	return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
2066 }
2067 
test_tsk_thread_flag(struct task_struct * tsk,int flag)2068 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2069 {
2070 	return test_ti_thread_flag(task_thread_info(tsk), flag);
2071 }
2072 
set_tsk_need_resched(struct task_struct * tsk)2073 static inline void set_tsk_need_resched(struct task_struct *tsk)
2074 {
2075 	set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2076 }
2077 
clear_tsk_need_resched(struct task_struct * tsk)2078 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2079 {
2080 	clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2081 }
2082 
test_tsk_need_resched(struct task_struct * tsk)2083 static inline int test_tsk_need_resched(struct task_struct *tsk)
2084 {
2085 	return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2086 }
2087 
2088 /*
2089  * cond_resched() and cond_resched_lock(): latency reduction via
2090  * explicit rescheduling in places that are safe. The return
2091  * value indicates whether a reschedule was done in fact.
2092  * cond_resched_lock() will drop the spinlock before scheduling,
2093  */
2094 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
2095 extern int __cond_resched(void);
2096 
2097 #if defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
2098 
2099 DECLARE_STATIC_CALL(cond_resched, __cond_resched);
2100 
_cond_resched(void)2101 static __always_inline int _cond_resched(void)
2102 {
2103 	return static_call_mod(cond_resched)();
2104 }
2105 
2106 #elif defined(CONFIG_PREEMPT_DYNAMIC) && defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
2107 extern int dynamic_cond_resched(void);
2108 
_cond_resched(void)2109 static __always_inline int _cond_resched(void)
2110 {
2111 	return dynamic_cond_resched();
2112 }
2113 
2114 #else
2115 
_cond_resched(void)2116 static inline int _cond_resched(void)
2117 {
2118 	return __cond_resched();
2119 }
2120 
2121 #endif /* CONFIG_PREEMPT_DYNAMIC */
2122 
2123 #else
2124 
_cond_resched(void)2125 static inline int _cond_resched(void) { return 0; }
2126 
2127 #endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
2128 
2129 #define cond_resched() ({			\
2130 	__might_resched(__FILE__, __LINE__, 0);	\
2131 	_cond_resched();			\
2132 })
2133 
2134 extern int __cond_resched_lock(spinlock_t *lock);
2135 extern int __cond_resched_rwlock_read(rwlock_t *lock);
2136 extern int __cond_resched_rwlock_write(rwlock_t *lock);
2137 
2138 #define MIGHT_RESCHED_RCU_SHIFT		8
2139 #define MIGHT_RESCHED_PREEMPT_MASK	((1U << MIGHT_RESCHED_RCU_SHIFT) - 1)
2140 
2141 #ifndef CONFIG_PREEMPT_RT
2142 /*
2143  * Non RT kernels have an elevated preempt count due to the held lock,
2144  * but are not allowed to be inside a RCU read side critical section
2145  */
2146 # define PREEMPT_LOCK_RESCHED_OFFSETS	PREEMPT_LOCK_OFFSET
2147 #else
2148 /*
2149  * spin/rw_lock() on RT implies rcu_read_lock(). The might_sleep() check in
2150  * cond_resched*lock() has to take that into account because it checks for
2151  * preempt_count() and rcu_preempt_depth().
2152  */
2153 # define PREEMPT_LOCK_RESCHED_OFFSETS	\
2154 	(PREEMPT_LOCK_OFFSET + (1U << MIGHT_RESCHED_RCU_SHIFT))
2155 #endif
2156 
2157 #define cond_resched_lock(lock) ({						\
2158 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2159 	__cond_resched_lock(lock);						\
2160 })
2161 
2162 #define cond_resched_rwlock_read(lock) ({					\
2163 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2164 	__cond_resched_rwlock_read(lock);					\
2165 })
2166 
2167 #define cond_resched_rwlock_write(lock) ({					\
2168 	__might_resched(__FILE__, __LINE__, PREEMPT_LOCK_RESCHED_OFFSETS);	\
2169 	__cond_resched_rwlock_write(lock);					\
2170 })
2171 
cond_resched_rcu(void)2172 static inline void cond_resched_rcu(void)
2173 {
2174 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
2175 	rcu_read_unlock();
2176 	cond_resched();
2177 	rcu_read_lock();
2178 #endif
2179 }
2180 
2181 #ifdef CONFIG_PREEMPT_DYNAMIC
2182 
2183 extern bool preempt_model_none(void);
2184 extern bool preempt_model_voluntary(void);
2185 extern bool preempt_model_full(void);
2186 
2187 #else
2188 
preempt_model_none(void)2189 static inline bool preempt_model_none(void)
2190 {
2191 	return IS_ENABLED(CONFIG_PREEMPT_NONE);
2192 }
preempt_model_voluntary(void)2193 static inline bool preempt_model_voluntary(void)
2194 {
2195 	return IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY);
2196 }
preempt_model_full(void)2197 static inline bool preempt_model_full(void)
2198 {
2199 	return IS_ENABLED(CONFIG_PREEMPT);
2200 }
2201 
2202 #endif
2203 
preempt_model_rt(void)2204 static inline bool preempt_model_rt(void)
2205 {
2206 	return IS_ENABLED(CONFIG_PREEMPT_RT);
2207 }
2208 
2209 /*
2210  * Does the preemption model allow non-cooperative preemption?
2211  *
2212  * For !CONFIG_PREEMPT_DYNAMIC kernels this is an exact match with
2213  * CONFIG_PREEMPTION; for CONFIG_PREEMPT_DYNAMIC this doesn't work as the
2214  * kernel is *built* with CONFIG_PREEMPTION=y but may run with e.g. the
2215  * PREEMPT_NONE model.
2216  */
preempt_model_preemptible(void)2217 static inline bool preempt_model_preemptible(void)
2218 {
2219 	return preempt_model_full() || preempt_model_rt();
2220 }
2221 
2222 /*
2223  * Does a critical section need to be broken due to another
2224  * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
2225  * but a general need for low latency)
2226  */
spin_needbreak(spinlock_t * lock)2227 static inline int spin_needbreak(spinlock_t *lock)
2228 {
2229 #ifdef CONFIG_PREEMPTION
2230 	return spin_is_contended(lock);
2231 #else
2232 	return 0;
2233 #endif
2234 }
2235 
2236 /*
2237  * Check if a rwlock is contended.
2238  * Returns non-zero if there is another task waiting on the rwlock.
2239  * Returns zero if the lock is not contended or the system / underlying
2240  * rwlock implementation does not support contention detection.
2241  * Technically does not depend on CONFIG_PREEMPTION, but a general need
2242  * for low latency.
2243  */
rwlock_needbreak(rwlock_t * lock)2244 static inline int rwlock_needbreak(rwlock_t *lock)
2245 {
2246 #ifdef CONFIG_PREEMPTION
2247 	return rwlock_is_contended(lock);
2248 #else
2249 	return 0;
2250 #endif
2251 }
2252 
need_resched(void)2253 static __always_inline bool need_resched(void)
2254 {
2255 	return unlikely(tif_need_resched());
2256 }
2257 
2258 /*
2259  * Wrappers for p->thread_info->cpu access. No-op on UP.
2260  */
2261 #ifdef CONFIG_SMP
2262 
task_cpu(const struct task_struct * p)2263 static inline unsigned int task_cpu(const struct task_struct *p)
2264 {
2265 	return READ_ONCE(task_thread_info(p)->cpu);
2266 }
2267 
2268 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2269 
2270 #else
2271 
task_cpu(const struct task_struct * p)2272 static inline unsigned int task_cpu(const struct task_struct *p)
2273 {
2274 	return 0;
2275 }
2276 
set_task_cpu(struct task_struct * p,unsigned int cpu)2277 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2278 {
2279 }
2280 
2281 #endif /* CONFIG_SMP */
2282 
2283 extern bool sched_task_on_rq(struct task_struct *p);
2284 extern unsigned long get_wchan(struct task_struct *p);
2285 extern struct task_struct *cpu_curr_snapshot(int cpu);
2286 
2287 /*
2288  * In order to reduce various lock holder preemption latencies provide an
2289  * interface to see if a vCPU is currently running or not.
2290  *
2291  * This allows us to terminate optimistic spin loops and block, analogous to
2292  * the native optimistic spin heuristic of testing if the lock owner task is
2293  * running or not.
2294  */
2295 #ifndef vcpu_is_preempted
vcpu_is_preempted(int cpu)2296 static inline bool vcpu_is_preempted(int cpu)
2297 {
2298 	return false;
2299 }
2300 #endif
2301 
2302 extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2303 extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2304 
2305 #ifndef TASK_SIZE_OF
2306 #define TASK_SIZE_OF(tsk)	TASK_SIZE
2307 #endif
2308 
2309 #ifdef CONFIG_SMP
owner_on_cpu(struct task_struct * owner)2310 static inline bool owner_on_cpu(struct task_struct *owner)
2311 {
2312 	/*
2313 	 * As lock holder preemption issue, we both skip spinning if
2314 	 * task is not on cpu or its cpu is preempted
2315 	 */
2316 	return READ_ONCE(owner->on_cpu) && !vcpu_is_preempted(task_cpu(owner));
2317 }
2318 
2319 /* Returns effective CPU energy utilization, as seen by the scheduler */
2320 unsigned long sched_cpu_util(int cpu);
2321 #endif /* CONFIG_SMP */
2322 
2323 #ifdef CONFIG_RSEQ
2324 
2325 /*
2326  * Map the event mask on the user-space ABI enum rseq_cs_flags
2327  * for direct mask checks.
2328  */
2329 enum rseq_event_mask_bits {
2330 	RSEQ_EVENT_PREEMPT_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2331 	RSEQ_EVENT_SIGNAL_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2332 	RSEQ_EVENT_MIGRATE_BIT	= RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2333 };
2334 
2335 enum rseq_event_mask {
2336 	RSEQ_EVENT_PREEMPT	= (1U << RSEQ_EVENT_PREEMPT_BIT),
2337 	RSEQ_EVENT_SIGNAL	= (1U << RSEQ_EVENT_SIGNAL_BIT),
2338 	RSEQ_EVENT_MIGRATE	= (1U << RSEQ_EVENT_MIGRATE_BIT),
2339 };
2340 
rseq_set_notify_resume(struct task_struct * t)2341 static inline void rseq_set_notify_resume(struct task_struct *t)
2342 {
2343 	if (t->rseq)
2344 		set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2345 }
2346 
2347 void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2348 
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2349 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2350 					     struct pt_regs *regs)
2351 {
2352 	if (current->rseq)
2353 		__rseq_handle_notify_resume(ksig, regs);
2354 }
2355 
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2356 static inline void rseq_signal_deliver(struct ksignal *ksig,
2357 				       struct pt_regs *regs)
2358 {
2359 	preempt_disable();
2360 	__set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
2361 	preempt_enable();
2362 	rseq_handle_notify_resume(ksig, regs);
2363 }
2364 
2365 /* rseq_preempt() requires preemption to be disabled. */
rseq_preempt(struct task_struct * t)2366 static inline void rseq_preempt(struct task_struct *t)
2367 {
2368 	__set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2369 	rseq_set_notify_resume(t);
2370 }
2371 
2372 /* rseq_migrate() requires preemption to be disabled. */
rseq_migrate(struct task_struct * t)2373 static inline void rseq_migrate(struct task_struct *t)
2374 {
2375 	__set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2376 	rseq_set_notify_resume(t);
2377 }
2378 
2379 /*
2380  * If parent process has a registered restartable sequences area, the
2381  * child inherits. Unregister rseq for a clone with CLONE_VM set.
2382  */
rseq_fork(struct task_struct * t,unsigned long clone_flags)2383 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2384 {
2385 	if (clone_flags & CLONE_VM) {
2386 		t->rseq = NULL;
2387 		t->rseq_sig = 0;
2388 		t->rseq_event_mask = 0;
2389 	} else {
2390 		t->rseq = current->rseq;
2391 		t->rseq_sig = current->rseq_sig;
2392 		t->rseq_event_mask = current->rseq_event_mask;
2393 	}
2394 }
2395 
rseq_execve(struct task_struct * t)2396 static inline void rseq_execve(struct task_struct *t)
2397 {
2398 	t->rseq = NULL;
2399 	t->rseq_sig = 0;
2400 	t->rseq_event_mask = 0;
2401 }
2402 
2403 #else
2404 
rseq_set_notify_resume(struct task_struct * t)2405 static inline void rseq_set_notify_resume(struct task_struct *t)
2406 {
2407 }
rseq_handle_notify_resume(struct ksignal * ksig,struct pt_regs * regs)2408 static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2409 					     struct pt_regs *regs)
2410 {
2411 }
rseq_signal_deliver(struct ksignal * ksig,struct pt_regs * regs)2412 static inline void rseq_signal_deliver(struct ksignal *ksig,
2413 				       struct pt_regs *regs)
2414 {
2415 }
rseq_preempt(struct task_struct * t)2416 static inline void rseq_preempt(struct task_struct *t)
2417 {
2418 }
rseq_migrate(struct task_struct * t)2419 static inline void rseq_migrate(struct task_struct *t)
2420 {
2421 }
rseq_fork(struct task_struct * t,unsigned long clone_flags)2422 static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2423 {
2424 }
rseq_execve(struct task_struct * t)2425 static inline void rseq_execve(struct task_struct *t)
2426 {
2427 }
2428 
2429 #endif
2430 
2431 #ifdef CONFIG_DEBUG_RSEQ
2432 
2433 void rseq_syscall(struct pt_regs *regs);
2434 
2435 #else
2436 
rseq_syscall(struct pt_regs * regs)2437 static inline void rseq_syscall(struct pt_regs *regs)
2438 {
2439 }
2440 
2441 #endif
2442 
2443 #ifdef CONFIG_SCHED_CORE
2444 extern void sched_core_free(struct task_struct *tsk);
2445 extern void sched_core_fork(struct task_struct *p);
2446 extern int sched_core_share_pid(unsigned int cmd, pid_t pid, enum pid_type type,
2447 				unsigned long uaddr);
2448 #else
sched_core_free(struct task_struct * tsk)2449 static inline void sched_core_free(struct task_struct *tsk) { }
sched_core_fork(struct task_struct * p)2450 static inline void sched_core_fork(struct task_struct *p) { }
2451 #endif
2452 
2453 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
2454 
2455 #endif
2456