• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71 
72 #include <trace/events/task.h>
73 #include "internal.h"
74 
75 #include <trace/events/sched.h>
76 
77 static int bprm_creds_from_file(struct linux_binprm *bprm);
78 
79 int suid_dumpable = 0;
80 
81 static LIST_HEAD(formats);
82 static DEFINE_RWLOCK(binfmt_lock);
83 
__register_binfmt(struct linux_binfmt * fmt,int insert)84 void __register_binfmt(struct linux_binfmt * fmt, int insert)
85 {
86 	write_lock(&binfmt_lock);
87 	insert ? list_add(&fmt->lh, &formats) :
88 		 list_add_tail(&fmt->lh, &formats);
89 	write_unlock(&binfmt_lock);
90 }
91 
92 EXPORT_SYMBOL(__register_binfmt);
93 
unregister_binfmt(struct linux_binfmt * fmt)94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 	write_lock(&binfmt_lock);
97 	list_del(&fmt->lh);
98 	write_unlock(&binfmt_lock);
99 }
100 
101 EXPORT_SYMBOL(unregister_binfmt);
102 
put_binfmt(struct linux_binfmt * fmt)103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 	module_put(fmt->module);
106 }
107 
path_noexec(const struct path * path)108 bool path_noexec(const struct path *path)
109 {
110 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113 
114 #ifdef CONFIG_USELIB
115 /*
116  * Note that a shared library must be both readable and executable due to
117  * security reasons.
118  *
119  * Also note that we take the address to load from the file itself.
120  */
SYSCALL_DEFINE1(uselib,const char __user *,library)121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123 	struct linux_binfmt *fmt;
124 	struct file *file;
125 	struct filename *tmp = getname(library);
126 	int error = PTR_ERR(tmp);
127 	static const struct open_flags uselib_flags = {
128 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 		.acc_mode = MAY_READ | MAY_EXEC,
130 		.intent = LOOKUP_OPEN,
131 		.lookup_flags = LOOKUP_FOLLOW,
132 	};
133 
134 	if (IS_ERR(tmp))
135 		goto out;
136 
137 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 	putname(tmp);
139 	error = PTR_ERR(file);
140 	if (IS_ERR(file))
141 		goto out;
142 
143 	/*
144 	 * may_open() has already checked for this, so it should be
145 	 * impossible to trip now. But we need to be extra cautious
146 	 * and check again at the very end too.
147 	 */
148 	error = -EACCES;
149 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
150 			 path_noexec(&file->f_path)))
151 		goto exit;
152 
153 	fsnotify_open(file);
154 
155 	error = -ENOEXEC;
156 
157 	read_lock(&binfmt_lock);
158 	list_for_each_entry(fmt, &formats, lh) {
159 		if (!fmt->load_shlib)
160 			continue;
161 		if (!try_module_get(fmt->module))
162 			continue;
163 		read_unlock(&binfmt_lock);
164 		error = fmt->load_shlib(file);
165 		read_lock(&binfmt_lock);
166 		put_binfmt(fmt);
167 		if (error != -ENOEXEC)
168 			break;
169 	}
170 	read_unlock(&binfmt_lock);
171 exit:
172 	fput(file);
173 out:
174   	return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177 
178 #ifdef CONFIG_MMU
179 /*
180  * The nascent bprm->mm is not visible until exec_mmap() but it can
181  * use a lot of memory, account these pages in current->mm temporary
182  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183  * change the counter back via acct_arg_size(0).
184  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 	struct mm_struct *mm = current->mm;
188 	long diff = (long)(pages - bprm->vma_pages);
189 
190 	if (!mm || !diff)
191 		return;
192 
193 	bprm->vma_pages = pages;
194 	add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 		int write)
199 {
200 	struct page *page;
201 	struct vm_area_struct *vma = bprm->vma;
202 	struct mm_struct *mm = bprm->mm;
203 	int ret;
204 
205 	/*
206 	 * Avoid relying on expanding the stack down in GUP (which
207 	 * does not work for STACK_GROWSUP anyway), and just do it
208 	 * by hand ahead of time.
209 	 */
210 	if (write && pos < vma->vm_start) {
211 		mmap_write_lock(mm);
212 		ret = expand_downwards(vma, pos);
213 		if (unlikely(ret < 0)) {
214 			mmap_write_unlock(mm);
215 			return NULL;
216 		}
217 		mmap_write_downgrade(mm);
218 	} else
219 		mmap_read_lock(mm);
220 
221 	/*
222 	 * We are doing an exec().  'current' is the process
223 	 * doing the exec and 'mm' is the new process's mm.
224 	 */
225 	ret = get_user_pages_remote(mm, pos, 1,
226 			write ? FOLL_WRITE : 0,
227 			&page, NULL, NULL);
228 	mmap_read_unlock(mm);
229 	if (ret <= 0)
230 		return NULL;
231 
232 	if (write)
233 		acct_arg_size(bprm, vma_pages(vma));
234 
235 	return page;
236 }
237 
put_arg_page(struct page * page)238 static void put_arg_page(struct page *page)
239 {
240 	put_page(page);
241 }
242 
free_arg_pages(struct linux_binprm * bprm)243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 		struct page *page)
249 {
250 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252 
__bprm_mm_init(struct linux_binprm * bprm)253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 	int err;
256 	struct vm_area_struct *vma = NULL;
257 	struct mm_struct *mm = bprm->mm;
258 
259 	bprm->vma = vma = vm_area_alloc(mm);
260 	if (!vma)
261 		return -ENOMEM;
262 	vma_set_anonymous(vma);
263 
264 	if (mmap_write_lock_killable(mm)) {
265 		err = -EINTR;
266 		goto err_free;
267 	}
268 
269 	/*
270 	 * Place the stack at the largest stack address the architecture
271 	 * supports. Later, we'll move this to an appropriate place. We don't
272 	 * use STACK_TOP because that can depend on attributes which aren't
273 	 * configured yet.
274 	 */
275 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 	vma->vm_end = STACK_TOP_MAX;
277 	vma->vm_start = vma->vm_end - PAGE_SIZE;
278 	vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280 
281 	err = insert_vm_struct(mm, vma);
282 	if (err)
283 		goto err;
284 
285 	mm->stack_vm = mm->total_vm = 1;
286 	mmap_write_unlock(mm);
287 	bprm->p = vma->vm_end - sizeof(void *);
288 	return 0;
289 err:
290 	mmap_write_unlock(mm);
291 err_free:
292 	bprm->vma = NULL;
293 	vm_area_free(vma);
294 	return err;
295 }
296 
valid_arg_len(struct linux_binprm * bprm,long len)297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 	return len <= MAX_ARG_STRLEN;
300 }
301 
302 #else
303 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 		int write)
310 {
311 	struct page *page;
312 
313 	page = bprm->page[pos / PAGE_SIZE];
314 	if (!page && write) {
315 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 		if (!page)
317 			return NULL;
318 		bprm->page[pos / PAGE_SIZE] = page;
319 	}
320 
321 	return page;
322 }
323 
put_arg_page(struct page * page)324 static void put_arg_page(struct page *page)
325 {
326 }
327 
free_arg_page(struct linux_binprm * bprm,int i)328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330 	if (bprm->page[i]) {
331 		__free_page(bprm->page[i]);
332 		bprm->page[i] = NULL;
333 	}
334 }
335 
free_arg_pages(struct linux_binprm * bprm)336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338 	int i;
339 
340 	for (i = 0; i < MAX_ARG_PAGES; i++)
341 		free_arg_page(bprm, i);
342 }
343 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 		struct page *page)
346 {
347 }
348 
__bprm_mm_init(struct linux_binprm * bprm)349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 	return 0;
353 }
354 
valid_arg_len(struct linux_binprm * bprm,long len)355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357 	return len <= bprm->p;
358 }
359 
360 #endif /* CONFIG_MMU */
361 
362 /*
363  * Create a new mm_struct and populate it with a temporary stack
364  * vm_area_struct.  We don't have enough context at this point to set the stack
365  * flags, permissions, and offset, so we use temporary values.  We'll update
366  * them later in setup_arg_pages().
367  */
bprm_mm_init(struct linux_binprm * bprm)368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370 	int err;
371 	struct mm_struct *mm = NULL;
372 
373 	bprm->mm = mm = mm_alloc();
374 	err = -ENOMEM;
375 	if (!mm)
376 		goto err;
377 
378 	/* Save current stack limit for all calculations made during exec. */
379 	task_lock(current->group_leader);
380 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 	task_unlock(current->group_leader);
382 
383 	err = __bprm_mm_init(bprm);
384 	if (err)
385 		goto err;
386 
387 	return 0;
388 
389 err:
390 	if (mm) {
391 		bprm->mm = NULL;
392 		mmdrop(mm);
393 	}
394 
395 	return err;
396 }
397 
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 	bool is_compat;
401 #endif
402 	union {
403 		const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 		const compat_uptr_t __user *compat;
406 #endif
407 	} ptr;
408 };
409 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 	const char __user *native;
413 
414 #ifdef CONFIG_COMPAT
415 	if (unlikely(argv.is_compat)) {
416 		compat_uptr_t compat;
417 
418 		if (get_user(compat, argv.ptr.compat + nr))
419 			return ERR_PTR(-EFAULT);
420 
421 		return compat_ptr(compat);
422 	}
423 #endif
424 
425 	if (get_user(native, argv.ptr.native + nr))
426 		return ERR_PTR(-EFAULT);
427 
428 	return native;
429 }
430 
431 /*
432  * count() counts the number of strings in array ARGV.
433  */
count(struct user_arg_ptr argv,int max)434 static int count(struct user_arg_ptr argv, int max)
435 {
436 	int i = 0;
437 
438 	if (argv.ptr.native != NULL) {
439 		for (;;) {
440 			const char __user *p = get_user_arg_ptr(argv, i);
441 
442 			if (!p)
443 				break;
444 
445 			if (IS_ERR(p))
446 				return -EFAULT;
447 
448 			if (i >= max)
449 				return -E2BIG;
450 			++i;
451 
452 			if (fatal_signal_pending(current))
453 				return -ERESTARTNOHAND;
454 			cond_resched();
455 		}
456 	}
457 	return i;
458 }
459 
count_strings_kernel(const char * const * argv)460 static int count_strings_kernel(const char *const *argv)
461 {
462 	int i;
463 
464 	if (!argv)
465 		return 0;
466 
467 	for (i = 0; argv[i]; ++i) {
468 		if (i >= MAX_ARG_STRINGS)
469 			return -E2BIG;
470 		if (fatal_signal_pending(current))
471 			return -ERESTARTNOHAND;
472 		cond_resched();
473 	}
474 	return i;
475 }
476 
bprm_stack_limits(struct linux_binprm * bprm)477 static int bprm_stack_limits(struct linux_binprm *bprm)
478 {
479 	unsigned long limit, ptr_size;
480 
481 	/*
482 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 	 * (whichever is smaller) for the argv+env strings.
484 	 * This ensures that:
485 	 *  - the remaining binfmt code will not run out of stack space,
486 	 *  - the program will have a reasonable amount of stack left
487 	 *    to work from.
488 	 */
489 	limit = _STK_LIM / 4 * 3;
490 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491 	/*
492 	 * We've historically supported up to 32 pages (ARG_MAX)
493 	 * of argument strings even with small stacks
494 	 */
495 	limit = max_t(unsigned long, limit, ARG_MAX);
496 	/*
497 	 * We must account for the size of all the argv and envp pointers to
498 	 * the argv and envp strings, since they will also take up space in
499 	 * the stack. They aren't stored until much later when we can't
500 	 * signal to the parent that the child has run out of stack space.
501 	 * Instead, calculate it here so it's possible to fail gracefully.
502 	 *
503 	 * In the case of argc = 0, make sure there is space for adding a
504 	 * empty string (which will bump argc to 1), to ensure confused
505 	 * userspace programs don't start processing from argv[1], thinking
506 	 * argc can never be 0, to keep them from walking envp by accident.
507 	 * See do_execveat_common().
508 	 */
509 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 	if (limit <= ptr_size)
511 		return -E2BIG;
512 	limit -= ptr_size;
513 
514 	bprm->argmin = bprm->p - limit;
515 	return 0;
516 }
517 
518 /*
519  * 'copy_strings()' copies argument/environment strings from the old
520  * processes's memory to the new process's stack.  The call to get_user_pages()
521  * ensures the destination page is created and not swapped out.
522  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)523 static int copy_strings(int argc, struct user_arg_ptr argv,
524 			struct linux_binprm *bprm)
525 {
526 	struct page *kmapped_page = NULL;
527 	char *kaddr = NULL;
528 	unsigned long kpos = 0;
529 	int ret;
530 
531 	while (argc-- > 0) {
532 		const char __user *str;
533 		int len;
534 		unsigned long pos;
535 
536 		ret = -EFAULT;
537 		str = get_user_arg_ptr(argv, argc);
538 		if (IS_ERR(str))
539 			goto out;
540 
541 		len = strnlen_user(str, MAX_ARG_STRLEN);
542 		if (!len)
543 			goto out;
544 
545 		ret = -E2BIG;
546 		if (!valid_arg_len(bprm, len))
547 			goto out;
548 
549 		/* We're going to work our way backwards. */
550 		pos = bprm->p;
551 		str += len;
552 		bprm->p -= len;
553 #ifdef CONFIG_MMU
554 		if (bprm->p < bprm->argmin)
555 			goto out;
556 #endif
557 
558 		while (len > 0) {
559 			int offset, bytes_to_copy;
560 
561 			if (fatal_signal_pending(current)) {
562 				ret = -ERESTARTNOHAND;
563 				goto out;
564 			}
565 			cond_resched();
566 
567 			offset = pos % PAGE_SIZE;
568 			if (offset == 0)
569 				offset = PAGE_SIZE;
570 
571 			bytes_to_copy = offset;
572 			if (bytes_to_copy > len)
573 				bytes_to_copy = len;
574 
575 			offset -= bytes_to_copy;
576 			pos -= bytes_to_copy;
577 			str -= bytes_to_copy;
578 			len -= bytes_to_copy;
579 
580 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581 				struct page *page;
582 
583 				page = get_arg_page(bprm, pos, 1);
584 				if (!page) {
585 					ret = -E2BIG;
586 					goto out;
587 				}
588 
589 				if (kmapped_page) {
590 					flush_dcache_page(kmapped_page);
591 					kunmap_local(kaddr);
592 					put_arg_page(kmapped_page);
593 				}
594 				kmapped_page = page;
595 				kaddr = kmap_local_page(kmapped_page);
596 				kpos = pos & PAGE_MASK;
597 				flush_arg_page(bprm, kpos, kmapped_page);
598 			}
599 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
600 				ret = -EFAULT;
601 				goto out;
602 			}
603 		}
604 	}
605 	ret = 0;
606 out:
607 	if (kmapped_page) {
608 		flush_dcache_page(kmapped_page);
609 		kunmap_local(kaddr);
610 		put_arg_page(kmapped_page);
611 	}
612 	return ret;
613 }
614 
615 /*
616  * Copy and argument/environment string from the kernel to the processes stack.
617  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619 {
620 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 	unsigned long pos = bprm->p;
622 
623 	if (len == 0)
624 		return -EFAULT;
625 	if (!valid_arg_len(bprm, len))
626 		return -E2BIG;
627 
628 	/* We're going to work our way backwards. */
629 	arg += len;
630 	bprm->p -= len;
631 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632 		return -E2BIG;
633 
634 	while (len > 0) {
635 		unsigned int bytes_to_copy = min_t(unsigned int, len,
636 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
637 		struct page *page;
638 
639 		pos -= bytes_to_copy;
640 		arg -= bytes_to_copy;
641 		len -= bytes_to_copy;
642 
643 		page = get_arg_page(bprm, pos, 1);
644 		if (!page)
645 			return -E2BIG;
646 		flush_arg_page(bprm, pos & PAGE_MASK, page);
647 		memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
648 		put_arg_page(page);
649 	}
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)655 static int copy_strings_kernel(int argc, const char *const *argv,
656 			       struct linux_binprm *bprm)
657 {
658 	while (argc-- > 0) {
659 		int ret = copy_string_kernel(argv[argc], bprm);
660 		if (ret < 0)
661 			return ret;
662 		if (fatal_signal_pending(current))
663 			return -ERESTARTNOHAND;
664 		cond_resched();
665 	}
666 	return 0;
667 }
668 
669 #ifdef CONFIG_MMU
670 
671 /*
672  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
673  * the binfmt code determines where the new stack should reside, we shift it to
674  * its final location.  The process proceeds as follows:
675  *
676  * 1) Use shift to calculate the new vma endpoints.
677  * 2) Extend vma to cover both the old and new ranges.  This ensures the
678  *    arguments passed to subsequent functions are consistent.
679  * 3) Move vma's page tables to the new range.
680  * 4) Free up any cleared pgd range.
681  * 5) Shrink the vma to cover only the new range.
682  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 	struct mm_struct *mm = vma->vm_mm;
686 	unsigned long old_start = vma->vm_start;
687 	unsigned long old_end = vma->vm_end;
688 	unsigned long length = old_end - old_start;
689 	unsigned long new_start = old_start - shift;
690 	unsigned long new_end = old_end - shift;
691 	VMA_ITERATOR(vmi, mm, new_start);
692 	struct vm_area_struct *next;
693 	struct mmu_gather tlb;
694 
695 	BUG_ON(new_start > new_end);
696 
697 	/*
698 	 * ensure there are no vmas between where we want to go
699 	 * and where we are
700 	 */
701 	if (vma != vma_next(&vmi))
702 		return -EFAULT;
703 
704 	/*
705 	 * cover the whole range: [new_start, old_end)
706 	 */
707 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
708 		return -ENOMEM;
709 
710 	/*
711 	 * move the page tables downwards, on failure we rely on
712 	 * process cleanup to remove whatever mess we made.
713 	 */
714 	if (length != move_page_tables(vma, old_start,
715 				       vma, new_start, length, false))
716 		return -ENOMEM;
717 
718 	lru_add_drain();
719 	tlb_gather_mmu(&tlb, mm);
720 	next = vma_next(&vmi);
721 	if (new_end > old_start) {
722 		/*
723 		 * when the old and new regions overlap clear from new_end.
724 		 */
725 		free_pgd_range(&tlb, new_end, old_end, new_end,
726 			next ? next->vm_start : USER_PGTABLES_CEILING);
727 	} else {
728 		/*
729 		 * otherwise, clean from old_start; this is done to not touch
730 		 * the address space in [new_end, old_start) some architectures
731 		 * have constraints on va-space that make this illegal (IA64) -
732 		 * for the others its just a little faster.
733 		 */
734 		free_pgd_range(&tlb, old_start, old_end, new_end,
735 			next ? next->vm_start : USER_PGTABLES_CEILING);
736 	}
737 	tlb_finish_mmu(&tlb);
738 
739 	/*
740 	 * Shrink the vma to just the new range.  Always succeeds.
741 	 */
742 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
743 
744 	return 0;
745 }
746 
747 /*
748  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
749  * the stack is optionally relocated, and some extra space is added.
750  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)751 int setup_arg_pages(struct linux_binprm *bprm,
752 		    unsigned long stack_top,
753 		    int executable_stack)
754 {
755 	unsigned long ret;
756 	unsigned long stack_shift;
757 	struct mm_struct *mm = current->mm;
758 	struct vm_area_struct *vma = bprm->vma;
759 	struct vm_area_struct *prev = NULL;
760 	unsigned long vm_flags;
761 	unsigned long stack_base;
762 	unsigned long stack_size;
763 	unsigned long stack_expand;
764 	unsigned long rlim_stack;
765 	struct mmu_gather tlb;
766 
767 #ifdef CONFIG_STACK_GROWSUP
768 	/* Limit stack size */
769 	stack_base = bprm->rlim_stack.rlim_max;
770 
771 	stack_base = calc_max_stack_size(stack_base);
772 
773 	/* Add space for stack randomization. */
774 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
775 
776 	/* Make sure we didn't let the argument array grow too large. */
777 	if (vma->vm_end - vma->vm_start > stack_base)
778 		return -ENOMEM;
779 
780 	stack_base = PAGE_ALIGN(stack_top - stack_base);
781 
782 	stack_shift = vma->vm_start - stack_base;
783 	mm->arg_start = bprm->p - stack_shift;
784 	bprm->p = vma->vm_end - stack_shift;
785 #else
786 	stack_top = arch_align_stack(stack_top);
787 	stack_top = PAGE_ALIGN(stack_top);
788 
789 	if (unlikely(stack_top < mmap_min_addr) ||
790 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
791 		return -ENOMEM;
792 
793 	stack_shift = vma->vm_end - stack_top;
794 
795 	bprm->p -= stack_shift;
796 	mm->arg_start = bprm->p;
797 #endif
798 
799 	if (bprm->loader)
800 		bprm->loader -= stack_shift;
801 	bprm->exec -= stack_shift;
802 
803 	if (mmap_write_lock_killable(mm))
804 		return -EINTR;
805 
806 	vm_flags = VM_STACK_FLAGS;
807 
808 	/*
809 	 * Adjust stack execute permissions; explicitly enable for
810 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811 	 * (arch default) otherwise.
812 	 */
813 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
814 		vm_flags |= VM_EXEC;
815 	else if (executable_stack == EXSTACK_DISABLE_X)
816 		vm_flags &= ~VM_EXEC;
817 	vm_flags |= mm->def_flags;
818 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
819 
820 	tlb_gather_mmu(&tlb, mm);
821 	ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
822 			vm_flags);
823 	tlb_finish_mmu(&tlb);
824 
825 	if (ret)
826 		goto out_unlock;
827 	BUG_ON(prev != vma);
828 
829 	if (unlikely(vm_flags & VM_EXEC)) {
830 		pr_warn_once("process '%pD4' started with executable stack\n",
831 			     bprm->file);
832 	}
833 
834 	/* Move stack pages down in memory. */
835 	if (stack_shift) {
836 		ret = shift_arg_pages(vma, stack_shift);
837 		if (ret)
838 			goto out_unlock;
839 	}
840 
841 	/* mprotect_fixup is overkill to remove the temporary stack flags */
842 	vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
843 
844 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845 	stack_size = vma->vm_end - vma->vm_start;
846 	/*
847 	 * Align this down to a page boundary as expand_stack
848 	 * will align it up.
849 	 */
850 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851 #ifdef CONFIG_STACK_GROWSUP
852 	if (stack_size + stack_expand > rlim_stack)
853 		stack_base = vma->vm_start + rlim_stack;
854 	else
855 		stack_base = vma->vm_end + stack_expand;
856 #else
857 	if (stack_size + stack_expand > rlim_stack)
858 		stack_base = vma->vm_end - rlim_stack;
859 	else
860 		stack_base = vma->vm_start - stack_expand;
861 #endif
862 	current->mm->start_stack = bprm->p;
863 	ret = expand_stack_locked(vma, stack_base);
864 	if (ret)
865 		ret = -EFAULT;
866 
867 out_unlock:
868 	mmap_write_unlock(mm);
869 	return ret;
870 }
871 EXPORT_SYMBOL(setup_arg_pages);
872 
873 #else
874 
875 /*
876  * Transfer the program arguments and environment from the holding pages
877  * onto the stack. The provided stack pointer is adjusted accordingly.
878  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)879 int transfer_args_to_stack(struct linux_binprm *bprm,
880 			   unsigned long *sp_location)
881 {
882 	unsigned long index, stop, sp;
883 	int ret = 0;
884 
885 	stop = bprm->p >> PAGE_SHIFT;
886 	sp = *sp_location;
887 
888 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
889 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
890 		char *src = kmap_local_page(bprm->page[index]) + offset;
891 		sp -= PAGE_SIZE - offset;
892 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
893 			ret = -EFAULT;
894 		kunmap_local(src);
895 		if (ret)
896 			goto out;
897 	}
898 
899 	*sp_location = sp;
900 
901 out:
902 	return ret;
903 }
904 EXPORT_SYMBOL(transfer_args_to_stack);
905 
906 #endif /* CONFIG_MMU */
907 
do_open_execat(int fd,struct filename * name,int flags)908 static struct file *do_open_execat(int fd, struct filename *name, int flags)
909 {
910 	struct file *file;
911 	int err;
912 	struct open_flags open_exec_flags = {
913 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
914 		.acc_mode = MAY_EXEC,
915 		.intent = LOOKUP_OPEN,
916 		.lookup_flags = LOOKUP_FOLLOW,
917 	};
918 
919 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
920 		return ERR_PTR(-EINVAL);
921 	if (flags & AT_SYMLINK_NOFOLLOW)
922 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
923 	if (flags & AT_EMPTY_PATH)
924 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
925 
926 	file = do_filp_open(fd, name, &open_exec_flags);
927 	if (IS_ERR(file))
928 		goto out;
929 
930 	/*
931 	 * may_open() has already checked for this, so it should be
932 	 * impossible to trip now. But we need to be extra cautious
933 	 * and check again at the very end too.
934 	 */
935 	err = -EACCES;
936 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
937 			 path_noexec(&file->f_path)))
938 		goto exit;
939 
940 	err = deny_write_access(file);
941 	if (err)
942 		goto exit;
943 
944 	if (name->name[0] != '\0')
945 		fsnotify_open(file);
946 
947 out:
948 	return file;
949 
950 exit:
951 	fput(file);
952 	return ERR_PTR(err);
953 }
954 
open_exec(const char * name)955 struct file *open_exec(const char *name)
956 {
957 	struct filename *filename = getname_kernel(name);
958 	struct file *f = ERR_CAST(filename);
959 
960 	if (!IS_ERR(filename)) {
961 		f = do_open_execat(AT_FDCWD, filename, 0);
962 		putname(filename);
963 	}
964 	return f;
965 }
966 EXPORT_SYMBOL(open_exec);
967 
968 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)969 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
970 {
971 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
972 	if (res > 0)
973 		flush_icache_user_range(addr, addr + len);
974 	return res;
975 }
976 EXPORT_SYMBOL(read_code);
977 #endif
978 
979 /*
980  * Maps the mm_struct mm into the current task struct.
981  * On success, this function returns with exec_update_lock
982  * held for writing.
983  */
exec_mmap(struct mm_struct * mm)984 static int exec_mmap(struct mm_struct *mm)
985 {
986 	struct task_struct *tsk;
987 	struct mm_struct *old_mm, *active_mm;
988 	int ret;
989 
990 	/* Notify parent that we're no longer interested in the old VM */
991 	tsk = current;
992 	old_mm = current->mm;
993 	exec_mm_release(tsk, old_mm);
994 	if (old_mm)
995 		sync_mm_rss(old_mm);
996 
997 	ret = down_write_killable(&tsk->signal->exec_update_lock);
998 	if (ret)
999 		return ret;
1000 
1001 	if (old_mm) {
1002 		/*
1003 		 * If there is a pending fatal signal perhaps a signal
1004 		 * whose default action is to create a coredump get
1005 		 * out and die instead of going through with the exec.
1006 		 */
1007 		ret = mmap_read_lock_killable(old_mm);
1008 		if (ret) {
1009 			up_write(&tsk->signal->exec_update_lock);
1010 			return ret;
1011 		}
1012 	}
1013 
1014 	task_lock(tsk);
1015 	membarrier_exec_mmap(mm);
1016 
1017 	local_irq_disable();
1018 	active_mm = tsk->active_mm;
1019 	tsk->active_mm = mm;
1020 	tsk->mm = mm;
1021 	/*
1022 	 * This prevents preemption while active_mm is being loaded and
1023 	 * it and mm are being updated, which could cause problems for
1024 	 * lazy tlb mm refcounting when these are updated by context
1025 	 * switches. Not all architectures can handle irqs off over
1026 	 * activate_mm yet.
1027 	 */
1028 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029 		local_irq_enable();
1030 	activate_mm(active_mm, mm);
1031 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1032 		local_irq_enable();
1033 	lru_gen_add_mm(mm);
1034 	task_unlock(tsk);
1035 	lru_gen_use_mm(mm);
1036 	if (old_mm) {
1037 		mmap_read_unlock(old_mm);
1038 		BUG_ON(active_mm != old_mm);
1039 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 		mm_update_next_owner(old_mm);
1041 		mmput(old_mm);
1042 		return 0;
1043 	}
1044 	mmdrop(active_mm);
1045 	return 0;
1046 }
1047 
de_thread(struct task_struct * tsk)1048 static int de_thread(struct task_struct *tsk)
1049 {
1050 	struct signal_struct *sig = tsk->signal;
1051 	struct sighand_struct *oldsighand = tsk->sighand;
1052 	spinlock_t *lock = &oldsighand->siglock;
1053 
1054 	if (thread_group_empty(tsk))
1055 		goto no_thread_group;
1056 
1057 	/*
1058 	 * Kill all other threads in the thread group.
1059 	 */
1060 	spin_lock_irq(lock);
1061 	if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1062 		/*
1063 		 * Another group action in progress, just
1064 		 * return so that the signal is processed.
1065 		 */
1066 		spin_unlock_irq(lock);
1067 		return -EAGAIN;
1068 	}
1069 
1070 	sig->group_exec_task = tsk;
1071 	sig->notify_count = zap_other_threads(tsk);
1072 	if (!thread_group_leader(tsk))
1073 		sig->notify_count--;
1074 
1075 	while (sig->notify_count) {
1076 		__set_current_state(TASK_KILLABLE);
1077 		spin_unlock_irq(lock);
1078 		schedule();
1079 		if (__fatal_signal_pending(tsk))
1080 			goto killed;
1081 		spin_lock_irq(lock);
1082 	}
1083 	spin_unlock_irq(lock);
1084 
1085 	/*
1086 	 * At this point all other threads have exited, all we have to
1087 	 * do is to wait for the thread group leader to become inactive,
1088 	 * and to assume its PID:
1089 	 */
1090 	if (!thread_group_leader(tsk)) {
1091 		struct task_struct *leader = tsk->group_leader;
1092 
1093 		for (;;) {
1094 			cgroup_threadgroup_change_begin(tsk);
1095 			write_lock_irq(&tasklist_lock);
1096 			/*
1097 			 * Do this under tasklist_lock to ensure that
1098 			 * exit_notify() can't miss ->group_exec_task
1099 			 */
1100 			sig->notify_count = -1;
1101 			if (likely(leader->exit_state))
1102 				break;
1103 			__set_current_state(TASK_KILLABLE);
1104 			write_unlock_irq(&tasklist_lock);
1105 			cgroup_threadgroup_change_end(tsk);
1106 			schedule();
1107 			if (__fatal_signal_pending(tsk))
1108 				goto killed;
1109 		}
1110 
1111 		/*
1112 		 * The only record we have of the real-time age of a
1113 		 * process, regardless of execs it's done, is start_time.
1114 		 * All the past CPU time is accumulated in signal_struct
1115 		 * from sister threads now dead.  But in this non-leader
1116 		 * exec, nothing survives from the original leader thread,
1117 		 * whose birth marks the true age of this process now.
1118 		 * When we take on its identity by switching to its PID, we
1119 		 * also take its birthdate (always earlier than our own).
1120 		 */
1121 		tsk->start_time = leader->start_time;
1122 		tsk->start_boottime = leader->start_boottime;
1123 
1124 		BUG_ON(!same_thread_group(leader, tsk));
1125 		/*
1126 		 * An exec() starts a new thread group with the
1127 		 * TGID of the previous thread group. Rehash the
1128 		 * two threads with a switched PID, and release
1129 		 * the former thread group leader:
1130 		 */
1131 
1132 		/* Become a process group leader with the old leader's pid.
1133 		 * The old leader becomes a thread of the this thread group.
1134 		 */
1135 		exchange_tids(tsk, leader);
1136 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 		transfer_pid(leader, tsk, PIDTYPE_SID);
1139 
1140 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 		list_replace_init(&leader->sibling, &tsk->sibling);
1142 
1143 		tsk->group_leader = tsk;
1144 		leader->group_leader = tsk;
1145 
1146 		tsk->exit_signal = SIGCHLD;
1147 		leader->exit_signal = -1;
1148 
1149 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 		leader->exit_state = EXIT_DEAD;
1151 
1152 		/*
1153 		 * We are going to release_task()->ptrace_unlink() silently,
1154 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 		 * the tracer won't block again waiting for this thread.
1156 		 */
1157 		if (unlikely(leader->ptrace))
1158 			__wake_up_parent(leader, leader->parent);
1159 		write_unlock_irq(&tasklist_lock);
1160 		cgroup_threadgroup_change_end(tsk);
1161 
1162 		release_task(leader);
1163 	}
1164 
1165 	sig->group_exec_task = NULL;
1166 	sig->notify_count = 0;
1167 
1168 no_thread_group:
1169 	/* we have changed execution domain */
1170 	tsk->exit_signal = SIGCHLD;
1171 
1172 	BUG_ON(!thread_group_leader(tsk));
1173 	return 0;
1174 
1175 killed:
1176 	/* protects against exit_notify() and __exit_signal() */
1177 	read_lock(&tasklist_lock);
1178 	sig->group_exec_task = NULL;
1179 	sig->notify_count = 0;
1180 	read_unlock(&tasklist_lock);
1181 	return -EAGAIN;
1182 }
1183 
1184 
1185 /*
1186  * This function makes sure the current process has its own signal table,
1187  * so that flush_signal_handlers can later reset the handlers without
1188  * disturbing other processes.  (Other processes might share the signal
1189  * table via the CLONE_SIGHAND option to clone().)
1190  */
unshare_sighand(struct task_struct * me)1191 static int unshare_sighand(struct task_struct *me)
1192 {
1193 	struct sighand_struct *oldsighand = me->sighand;
1194 
1195 	if (refcount_read(&oldsighand->count) != 1) {
1196 		struct sighand_struct *newsighand;
1197 		/*
1198 		 * This ->sighand is shared with the CLONE_SIGHAND
1199 		 * but not CLONE_THREAD task, switch to the new one.
1200 		 */
1201 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 		if (!newsighand)
1203 			return -ENOMEM;
1204 
1205 		refcount_set(&newsighand->count, 1);
1206 
1207 		write_lock_irq(&tasklist_lock);
1208 		spin_lock(&oldsighand->siglock);
1209 		memcpy(newsighand->action, oldsighand->action,
1210 		       sizeof(newsighand->action));
1211 		rcu_assign_pointer(me->sighand, newsighand);
1212 		spin_unlock(&oldsighand->siglock);
1213 		write_unlock_irq(&tasklist_lock);
1214 
1215 		__cleanup_sighand(oldsighand);
1216 	}
1217 	return 0;
1218 }
1219 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1221 {
1222 	task_lock(tsk);
1223 	/* Always NUL terminated and zero-padded */
1224 	strscpy_pad(buf, tsk->comm, buf_size);
1225 	task_unlock(tsk);
1226 	return buf;
1227 }
1228 EXPORT_SYMBOL_GPL(__get_task_comm);
1229 
1230 /*
1231  * These functions flushes out all traces of the currently running executable
1232  * so that a new one can be started
1233  */
1234 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1236 {
1237 	task_lock(tsk);
1238 	trace_task_rename(tsk, buf);
1239 	strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1240 	task_unlock(tsk);
1241 	perf_event_comm(tsk, exec);
1242 }
1243 
1244 /*
1245  * Calling this is the point of no return. None of the failures will be
1246  * seen by userspace since either the process is already taking a fatal
1247  * signal (via de_thread() or coredump), or will have SEGV raised
1248  * (after exec_mmap()) by search_binary_handler (see below).
1249  */
begin_new_exec(struct linux_binprm * bprm)1250 int begin_new_exec(struct linux_binprm * bprm)
1251 {
1252 	struct task_struct *me = current;
1253 	int retval;
1254 
1255 	/* Once we are committed compute the creds */
1256 	retval = bprm_creds_from_file(bprm);
1257 	if (retval)
1258 		return retval;
1259 
1260 	/*
1261 	 * Ensure all future errors are fatal.
1262 	 */
1263 	bprm->point_of_no_return = true;
1264 
1265 	/*
1266 	 * Make this the only thread in the thread group.
1267 	 */
1268 	retval = de_thread(me);
1269 	if (retval)
1270 		goto out;
1271 
1272 	/*
1273 	 * Cancel any io_uring activity across execve
1274 	 */
1275 	io_uring_task_cancel();
1276 
1277 	/* Ensure the files table is not shared. */
1278 	retval = unshare_files();
1279 	if (retval)
1280 		goto out;
1281 
1282 	/*
1283 	 * Must be called _before_ exec_mmap() as bprm->mm is
1284 	 * not visible until then. This also enables the update
1285 	 * to be lockless.
1286 	 */
1287 	retval = set_mm_exe_file(bprm->mm, bprm->file);
1288 	if (retval)
1289 		goto out;
1290 
1291 	/* If the binary is not readable then enforce mm->dumpable=0 */
1292 	would_dump(bprm, bprm->file);
1293 	if (bprm->have_execfd)
1294 		would_dump(bprm, bprm->executable);
1295 
1296 	/*
1297 	 * Release all of the old mmap stuff
1298 	 */
1299 	acct_arg_size(bprm, 0);
1300 	retval = exec_mmap(bprm->mm);
1301 	if (retval)
1302 		goto out;
1303 
1304 	bprm->mm = NULL;
1305 
1306 #ifdef CONFIG_POSIX_TIMERS
1307 	spin_lock_irq(&me->sighand->siglock);
1308 	posix_cpu_timers_exit(me);
1309 	spin_unlock_irq(&me->sighand->siglock);
1310 	exit_itimers(me);
1311 	flush_itimer_signals();
1312 #endif
1313 
1314 	/*
1315 	 * Make the signal table private.
1316 	 */
1317 	retval = unshare_sighand(me);
1318 	if (retval)
1319 		goto out_unlock;
1320 
1321 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1323 	flush_thread();
1324 	me->personality &= ~bprm->per_clear;
1325 
1326 	clear_syscall_work_syscall_user_dispatch(me);
1327 
1328 	/*
1329 	 * We have to apply CLOEXEC before we change whether the process is
1330 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 	 * trying to access the should-be-closed file descriptors of a process
1332 	 * undergoing exec(2).
1333 	 */
1334 	do_close_on_exec(me->files);
1335 
1336 	if (bprm->secureexec) {
1337 		/* Make sure parent cannot signal privileged process. */
1338 		me->pdeath_signal = 0;
1339 
1340 		/*
1341 		 * For secureexec, reset the stack limit to sane default to
1342 		 * avoid bad behavior from the prior rlimits. This has to
1343 		 * happen before arch_pick_mmap_layout(), which examines
1344 		 * RLIMIT_STACK, but after the point of no return to avoid
1345 		 * needing to clean up the change on failure.
1346 		 */
1347 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1349 	}
1350 
1351 	me->sas_ss_sp = me->sas_ss_size = 0;
1352 
1353 	/*
1354 	 * Figure out dumpability. Note that this checking only of current
1355 	 * is wrong, but userspace depends on it. This should be testing
1356 	 * bprm->secureexec instead.
1357 	 */
1358 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359 	    !(uid_eq(current_euid(), current_uid()) &&
1360 	      gid_eq(current_egid(), current_gid())))
1361 		set_dumpable(current->mm, suid_dumpable);
1362 	else
1363 		set_dumpable(current->mm, SUID_DUMP_USER);
1364 
1365 	perf_event_exec();
1366 	__set_task_comm(me, kbasename(bprm->filename), true);
1367 
1368 	/* An exec changes our domain. We are no longer part of the thread
1369 	   group */
1370 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1371 	flush_signal_handlers(me, 0);
1372 
1373 	retval = set_cred_ucounts(bprm->cred);
1374 	if (retval < 0)
1375 		goto out_unlock;
1376 
1377 	/*
1378 	 * install the new credentials for this executable
1379 	 */
1380 	security_bprm_committing_creds(bprm);
1381 
1382 	commit_creds(bprm->cred);
1383 	bprm->cred = NULL;
1384 
1385 	/*
1386 	 * Disable monitoring for regular users
1387 	 * when executing setuid binaries. Must
1388 	 * wait until new credentials are committed
1389 	 * by commit_creds() above
1390 	 */
1391 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1392 		perf_event_exit_task(me);
1393 	/*
1394 	 * cred_guard_mutex must be held at least to this point to prevent
1395 	 * ptrace_attach() from altering our determination of the task's
1396 	 * credentials; any time after this it may be unlocked.
1397 	 */
1398 	security_bprm_committed_creds(bprm);
1399 
1400 	/* Pass the opened binary to the interpreter. */
1401 	if (bprm->have_execfd) {
1402 		retval = get_unused_fd_flags(0);
1403 		if (retval < 0)
1404 			goto out_unlock;
1405 		fd_install(retval, bprm->executable);
1406 		bprm->executable = NULL;
1407 		bprm->execfd = retval;
1408 	}
1409 	return 0;
1410 
1411 out_unlock:
1412 	up_write(&me->signal->exec_update_lock);
1413 	if (!bprm->cred)
1414 		mutex_unlock(&me->signal->cred_guard_mutex);
1415 
1416 out:
1417 	return retval;
1418 }
1419 EXPORT_SYMBOL(begin_new_exec);
1420 
would_dump(struct linux_binprm * bprm,struct file * file)1421 void would_dump(struct linux_binprm *bprm, struct file *file)
1422 {
1423 	struct inode *inode = file_inode(file);
1424 	struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1425 	if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1426 		struct user_namespace *old, *user_ns;
1427 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1428 
1429 		/* Ensure mm->user_ns contains the executable */
1430 		user_ns = old = bprm->mm->user_ns;
1431 		while ((user_ns != &init_user_ns) &&
1432 		       !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1433 			user_ns = user_ns->parent;
1434 
1435 		if (old != user_ns) {
1436 			bprm->mm->user_ns = get_user_ns(user_ns);
1437 			put_user_ns(old);
1438 		}
1439 	}
1440 }
1441 EXPORT_SYMBOL(would_dump);
1442 
setup_new_exec(struct linux_binprm * bprm)1443 void setup_new_exec(struct linux_binprm * bprm)
1444 {
1445 	/* Setup things that can depend upon the personality */
1446 	struct task_struct *me = current;
1447 
1448 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1449 
1450 	arch_setup_new_exec();
1451 
1452 	/* Set the new mm task size. We have to do that late because it may
1453 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1454 	 * some architectures like powerpc
1455 	 */
1456 	me->mm->task_size = TASK_SIZE;
1457 	up_write(&me->signal->exec_update_lock);
1458 	mutex_unlock(&me->signal->cred_guard_mutex);
1459 }
1460 EXPORT_SYMBOL(setup_new_exec);
1461 
1462 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1463 void finalize_exec(struct linux_binprm *bprm)
1464 {
1465 	/* Store any stack rlimit changes before starting thread. */
1466 	task_lock(current->group_leader);
1467 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1468 	task_unlock(current->group_leader);
1469 }
1470 EXPORT_SYMBOL(finalize_exec);
1471 
1472 /*
1473  * Prepare credentials and lock ->cred_guard_mutex.
1474  * setup_new_exec() commits the new creds and drops the lock.
1475  * Or, if exec fails before, free_bprm() should release ->cred
1476  * and unlock.
1477  */
prepare_bprm_creds(struct linux_binprm * bprm)1478 static int prepare_bprm_creds(struct linux_binprm *bprm)
1479 {
1480 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1481 		return -ERESTARTNOINTR;
1482 
1483 	bprm->cred = prepare_exec_creds();
1484 	if (likely(bprm->cred))
1485 		return 0;
1486 
1487 	mutex_unlock(&current->signal->cred_guard_mutex);
1488 	return -ENOMEM;
1489 }
1490 
free_bprm(struct linux_binprm * bprm)1491 static void free_bprm(struct linux_binprm *bprm)
1492 {
1493 	if (bprm->mm) {
1494 		acct_arg_size(bprm, 0);
1495 		mmput(bprm->mm);
1496 	}
1497 	free_arg_pages(bprm);
1498 	if (bprm->cred) {
1499 		mutex_unlock(&current->signal->cred_guard_mutex);
1500 		abort_creds(bprm->cred);
1501 	}
1502 	if (bprm->file) {
1503 		allow_write_access(bprm->file);
1504 		fput(bprm->file);
1505 	}
1506 	if (bprm->executable)
1507 		fput(bprm->executable);
1508 	/* If a binfmt changed the interp, free it. */
1509 	if (bprm->interp != bprm->filename)
1510 		kfree(bprm->interp);
1511 	kfree(bprm->fdpath);
1512 	kfree(bprm);
1513 }
1514 
alloc_bprm(int fd,struct filename * filename)1515 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1516 {
1517 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1518 	int retval = -ENOMEM;
1519 	if (!bprm)
1520 		goto out;
1521 
1522 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1523 		bprm->filename = filename->name;
1524 	} else {
1525 		if (filename->name[0] == '\0')
1526 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1527 		else
1528 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1529 						  fd, filename->name);
1530 		if (!bprm->fdpath)
1531 			goto out_free;
1532 
1533 		bprm->filename = bprm->fdpath;
1534 	}
1535 	bprm->interp = bprm->filename;
1536 
1537 	retval = bprm_mm_init(bprm);
1538 	if (retval)
1539 		goto out_free;
1540 	return bprm;
1541 
1542 out_free:
1543 	free_bprm(bprm);
1544 out:
1545 	return ERR_PTR(retval);
1546 }
1547 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1548 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1549 {
1550 	/* If a binfmt changed the interp, free it first. */
1551 	if (bprm->interp != bprm->filename)
1552 		kfree(bprm->interp);
1553 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1554 	if (!bprm->interp)
1555 		return -ENOMEM;
1556 	return 0;
1557 }
1558 EXPORT_SYMBOL(bprm_change_interp);
1559 
1560 /*
1561  * determine how safe it is to execute the proposed program
1562  * - the caller must hold ->cred_guard_mutex to protect against
1563  *   PTRACE_ATTACH or seccomp thread-sync
1564  */
check_unsafe_exec(struct linux_binprm * bprm)1565 static void check_unsafe_exec(struct linux_binprm *bprm)
1566 {
1567 	struct task_struct *p = current, *t;
1568 	unsigned n_fs;
1569 
1570 	if (p->ptrace)
1571 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1572 
1573 	/*
1574 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1575 	 * mess up.
1576 	 */
1577 	if (task_no_new_privs(current))
1578 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1579 
1580 	t = p;
1581 	n_fs = 1;
1582 	spin_lock(&p->fs->lock);
1583 	rcu_read_lock();
1584 	while_each_thread(p, t) {
1585 		if (t->fs == p->fs)
1586 			n_fs++;
1587 	}
1588 	rcu_read_unlock();
1589 
1590 	if (p->fs->users > n_fs)
1591 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1592 	else
1593 		p->fs->in_exec = 1;
1594 	spin_unlock(&p->fs->lock);
1595 }
1596 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1597 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1598 {
1599 	/* Handle suid and sgid on files */
1600 	struct user_namespace *mnt_userns;
1601 	struct inode *inode = file_inode(file);
1602 	unsigned int mode;
1603 	kuid_t uid;
1604 	kgid_t gid;
1605 
1606 	if (!mnt_may_suid(file->f_path.mnt))
1607 		return;
1608 
1609 	if (task_no_new_privs(current))
1610 		return;
1611 
1612 	mode = READ_ONCE(inode->i_mode);
1613 	if (!(mode & (S_ISUID|S_ISGID)))
1614 		return;
1615 
1616 	mnt_userns = file_mnt_user_ns(file);
1617 
1618 	/* Be careful if suid/sgid is set */
1619 	inode_lock(inode);
1620 
1621 	/* reload atomically mode/uid/gid now that lock held */
1622 	mode = inode->i_mode;
1623 	uid = i_uid_into_mnt(mnt_userns, inode);
1624 	gid = i_gid_into_mnt(mnt_userns, inode);
1625 	inode_unlock(inode);
1626 
1627 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1628 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1629 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1630 		return;
1631 
1632 	if (mode & S_ISUID) {
1633 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1634 		bprm->cred->euid = uid;
1635 	}
1636 
1637 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1638 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1639 		bprm->cred->egid = gid;
1640 	}
1641 }
1642 
1643 /*
1644  * Compute brpm->cred based upon the final binary.
1645  */
bprm_creds_from_file(struct linux_binprm * bprm)1646 static int bprm_creds_from_file(struct linux_binprm *bprm)
1647 {
1648 	/* Compute creds based on which file? */
1649 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1650 
1651 	bprm_fill_uid(bprm, file);
1652 	return security_bprm_creds_from_file(bprm, file);
1653 }
1654 
1655 /*
1656  * Fill the binprm structure from the inode.
1657  * Read the first BINPRM_BUF_SIZE bytes
1658  *
1659  * This may be called multiple times for binary chains (scripts for example).
1660  */
prepare_binprm(struct linux_binprm * bprm)1661 static int prepare_binprm(struct linux_binprm *bprm)
1662 {
1663 	loff_t pos = 0;
1664 
1665 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1666 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1667 }
1668 
1669 /*
1670  * Arguments are '\0' separated strings found at the location bprm->p
1671  * points to; chop off the first by relocating brpm->p to right after
1672  * the first '\0' encountered.
1673  */
remove_arg_zero(struct linux_binprm * bprm)1674 int remove_arg_zero(struct linux_binprm *bprm)
1675 {
1676 	int ret = 0;
1677 	unsigned long offset;
1678 	char *kaddr;
1679 	struct page *page;
1680 
1681 	if (!bprm->argc)
1682 		return 0;
1683 
1684 	do {
1685 		offset = bprm->p & ~PAGE_MASK;
1686 		page = get_arg_page(bprm, bprm->p, 0);
1687 		if (!page) {
1688 			ret = -EFAULT;
1689 			goto out;
1690 		}
1691 		kaddr = kmap_local_page(page);
1692 
1693 		for (; offset < PAGE_SIZE && kaddr[offset];
1694 				offset++, bprm->p++)
1695 			;
1696 
1697 		kunmap_local(kaddr);
1698 		put_arg_page(page);
1699 	} while (offset == PAGE_SIZE);
1700 
1701 	bprm->p++;
1702 	bprm->argc--;
1703 	ret = 0;
1704 
1705 out:
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(remove_arg_zero);
1709 
1710 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1711 /*
1712  * cycle the list of binary formats handler, until one recognizes the image
1713  */
search_binary_handler(struct linux_binprm * bprm)1714 static int search_binary_handler(struct linux_binprm *bprm)
1715 {
1716 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1717 	struct linux_binfmt *fmt;
1718 	int retval;
1719 
1720 	retval = prepare_binprm(bprm);
1721 	if (retval < 0)
1722 		return retval;
1723 
1724 	retval = security_bprm_check(bprm);
1725 	if (retval)
1726 		return retval;
1727 
1728 	retval = -ENOENT;
1729  retry:
1730 	read_lock(&binfmt_lock);
1731 	list_for_each_entry(fmt, &formats, lh) {
1732 		if (!try_module_get(fmt->module))
1733 			continue;
1734 		read_unlock(&binfmt_lock);
1735 
1736 		retval = fmt->load_binary(bprm);
1737 
1738 		read_lock(&binfmt_lock);
1739 		put_binfmt(fmt);
1740 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1741 			read_unlock(&binfmt_lock);
1742 			return retval;
1743 		}
1744 	}
1745 	read_unlock(&binfmt_lock);
1746 
1747 	if (need_retry) {
1748 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1749 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1750 			return retval;
1751 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1752 			return retval;
1753 		need_retry = false;
1754 		goto retry;
1755 	}
1756 
1757 	return retval;
1758 }
1759 
exec_binprm(struct linux_binprm * bprm)1760 static int exec_binprm(struct linux_binprm *bprm)
1761 {
1762 	pid_t old_pid, old_vpid;
1763 	int ret, depth;
1764 
1765 	/* Need to fetch pid before load_binary changes it */
1766 	old_pid = current->pid;
1767 	rcu_read_lock();
1768 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1769 	rcu_read_unlock();
1770 
1771 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1772 	for (depth = 0;; depth++) {
1773 		struct file *exec;
1774 		if (depth > 5)
1775 			return -ELOOP;
1776 
1777 		ret = search_binary_handler(bprm);
1778 		if (ret < 0)
1779 			return ret;
1780 		if (!bprm->interpreter)
1781 			break;
1782 
1783 		exec = bprm->file;
1784 		bprm->file = bprm->interpreter;
1785 		bprm->interpreter = NULL;
1786 
1787 		allow_write_access(exec);
1788 		if (unlikely(bprm->have_execfd)) {
1789 			if (bprm->executable) {
1790 				fput(exec);
1791 				return -ENOEXEC;
1792 			}
1793 			bprm->executable = exec;
1794 		} else
1795 			fput(exec);
1796 	}
1797 
1798 	audit_bprm(bprm);
1799 	trace_sched_process_exec(current, old_pid, bprm);
1800 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1801 	proc_exec_connector(current);
1802 	return 0;
1803 }
1804 
1805 /*
1806  * sys_execve() executes a new program.
1807  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1808 static int bprm_execve(struct linux_binprm *bprm,
1809 		       int fd, struct filename *filename, int flags)
1810 {
1811 	struct file *file;
1812 	int retval;
1813 
1814 	retval = prepare_bprm_creds(bprm);
1815 	if (retval)
1816 		return retval;
1817 
1818 	check_unsafe_exec(bprm);
1819 	current->in_execve = 1;
1820 
1821 	file = do_open_execat(fd, filename, flags);
1822 	retval = PTR_ERR(file);
1823 	if (IS_ERR(file))
1824 		goto out_unmark;
1825 
1826 	sched_exec();
1827 
1828 	bprm->file = file;
1829 	/*
1830 	 * Record that a name derived from an O_CLOEXEC fd will be
1831 	 * inaccessible after exec.  This allows the code in exec to
1832 	 * choose to fail when the executable is not mmaped into the
1833 	 * interpreter and an open file descriptor is not passed to
1834 	 * the interpreter.  This makes for a better user experience
1835 	 * than having the interpreter start and then immediately fail
1836 	 * when it finds the executable is inaccessible.
1837 	 */
1838 	if (bprm->fdpath && get_close_on_exec(fd))
1839 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1840 
1841 	/* Set the unchanging part of bprm->cred */
1842 	retval = security_bprm_creds_for_exec(bprm);
1843 	if (retval)
1844 		goto out;
1845 
1846 	retval = exec_binprm(bprm);
1847 	if (retval < 0)
1848 		goto out;
1849 
1850 	/* execve succeeded */
1851 	current->fs->in_exec = 0;
1852 	current->in_execve = 0;
1853 	rseq_execve(current);
1854 	acct_update_integrals(current);
1855 	task_numa_free(current, false);
1856 	return retval;
1857 
1858 out:
1859 	/*
1860 	 * If past the point of no return ensure the code never
1861 	 * returns to the userspace process.  Use an existing fatal
1862 	 * signal if present otherwise terminate the process with
1863 	 * SIGSEGV.
1864 	 */
1865 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1866 		force_fatal_sig(SIGSEGV);
1867 
1868 out_unmark:
1869 	current->fs->in_exec = 0;
1870 	current->in_execve = 0;
1871 
1872 	return retval;
1873 }
1874 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1875 static int do_execveat_common(int fd, struct filename *filename,
1876 			      struct user_arg_ptr argv,
1877 			      struct user_arg_ptr envp,
1878 			      int flags)
1879 {
1880 	struct linux_binprm *bprm;
1881 	int retval;
1882 
1883 	if (IS_ERR(filename))
1884 		return PTR_ERR(filename);
1885 
1886 	/*
1887 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1888 	 * set*uid() to execve() because too many poorly written programs
1889 	 * don't check setuid() return code.  Here we additionally recheck
1890 	 * whether NPROC limit is still exceeded.
1891 	 */
1892 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1893 	    is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1894 		retval = -EAGAIN;
1895 		goto out_ret;
1896 	}
1897 
1898 	/* We're below the limit (still or again), so we don't want to make
1899 	 * further execve() calls fail. */
1900 	current->flags &= ~PF_NPROC_EXCEEDED;
1901 
1902 	bprm = alloc_bprm(fd, filename);
1903 	if (IS_ERR(bprm)) {
1904 		retval = PTR_ERR(bprm);
1905 		goto out_ret;
1906 	}
1907 
1908 	retval = count(argv, MAX_ARG_STRINGS);
1909 	if (retval == 0)
1910 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1911 			     current->comm, bprm->filename);
1912 	if (retval < 0)
1913 		goto out_free;
1914 	bprm->argc = retval;
1915 
1916 	retval = count(envp, MAX_ARG_STRINGS);
1917 	if (retval < 0)
1918 		goto out_free;
1919 	bprm->envc = retval;
1920 
1921 	retval = bprm_stack_limits(bprm);
1922 	if (retval < 0)
1923 		goto out_free;
1924 
1925 	retval = copy_string_kernel(bprm->filename, bprm);
1926 	if (retval < 0)
1927 		goto out_free;
1928 	bprm->exec = bprm->p;
1929 
1930 	retval = copy_strings(bprm->envc, envp, bprm);
1931 	if (retval < 0)
1932 		goto out_free;
1933 
1934 	retval = copy_strings(bprm->argc, argv, bprm);
1935 	if (retval < 0)
1936 		goto out_free;
1937 
1938 	/*
1939 	 * When argv is empty, add an empty string ("") as argv[0] to
1940 	 * ensure confused userspace programs that start processing
1941 	 * from argv[1] won't end up walking envp. See also
1942 	 * bprm_stack_limits().
1943 	 */
1944 	if (bprm->argc == 0) {
1945 		retval = copy_string_kernel("", bprm);
1946 		if (retval < 0)
1947 			goto out_free;
1948 		bprm->argc = 1;
1949 	}
1950 
1951 	retval = bprm_execve(bprm, fd, filename, flags);
1952 out_free:
1953 	free_bprm(bprm);
1954 
1955 out_ret:
1956 	putname(filename);
1957 	return retval;
1958 }
1959 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1960 int kernel_execve(const char *kernel_filename,
1961 		  const char *const *argv, const char *const *envp)
1962 {
1963 	struct filename *filename;
1964 	struct linux_binprm *bprm;
1965 	int fd = AT_FDCWD;
1966 	int retval;
1967 
1968 	/* It is non-sense for kernel threads to call execve */
1969 	if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1970 		return -EINVAL;
1971 
1972 	filename = getname_kernel(kernel_filename);
1973 	if (IS_ERR(filename))
1974 		return PTR_ERR(filename);
1975 
1976 	bprm = alloc_bprm(fd, filename);
1977 	if (IS_ERR(bprm)) {
1978 		retval = PTR_ERR(bprm);
1979 		goto out_ret;
1980 	}
1981 
1982 	retval = count_strings_kernel(argv);
1983 	if (WARN_ON_ONCE(retval == 0))
1984 		retval = -EINVAL;
1985 	if (retval < 0)
1986 		goto out_free;
1987 	bprm->argc = retval;
1988 
1989 	retval = count_strings_kernel(envp);
1990 	if (retval < 0)
1991 		goto out_free;
1992 	bprm->envc = retval;
1993 
1994 	retval = bprm_stack_limits(bprm);
1995 	if (retval < 0)
1996 		goto out_free;
1997 
1998 	retval = copy_string_kernel(bprm->filename, bprm);
1999 	if (retval < 0)
2000 		goto out_free;
2001 	bprm->exec = bprm->p;
2002 
2003 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
2004 	if (retval < 0)
2005 		goto out_free;
2006 
2007 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
2008 	if (retval < 0)
2009 		goto out_free;
2010 
2011 	retval = bprm_execve(bprm, fd, filename, 0);
2012 out_free:
2013 	free_bprm(bprm);
2014 out_ret:
2015 	putname(filename);
2016 	return retval;
2017 }
2018 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2019 static int do_execve(struct filename *filename,
2020 	const char __user *const __user *__argv,
2021 	const char __user *const __user *__envp)
2022 {
2023 	struct user_arg_ptr argv = { .ptr.native = __argv };
2024 	struct user_arg_ptr envp = { .ptr.native = __envp };
2025 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2026 }
2027 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2028 static int do_execveat(int fd, struct filename *filename,
2029 		const char __user *const __user *__argv,
2030 		const char __user *const __user *__envp,
2031 		int flags)
2032 {
2033 	struct user_arg_ptr argv = { .ptr.native = __argv };
2034 	struct user_arg_ptr envp = { .ptr.native = __envp };
2035 
2036 	return do_execveat_common(fd, filename, argv, envp, flags);
2037 }
2038 
2039 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2040 static int compat_do_execve(struct filename *filename,
2041 	const compat_uptr_t __user *__argv,
2042 	const compat_uptr_t __user *__envp)
2043 {
2044 	struct user_arg_ptr argv = {
2045 		.is_compat = true,
2046 		.ptr.compat = __argv,
2047 	};
2048 	struct user_arg_ptr envp = {
2049 		.is_compat = true,
2050 		.ptr.compat = __envp,
2051 	};
2052 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2053 }
2054 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2055 static int compat_do_execveat(int fd, struct filename *filename,
2056 			      const compat_uptr_t __user *__argv,
2057 			      const compat_uptr_t __user *__envp,
2058 			      int flags)
2059 {
2060 	struct user_arg_ptr argv = {
2061 		.is_compat = true,
2062 		.ptr.compat = __argv,
2063 	};
2064 	struct user_arg_ptr envp = {
2065 		.is_compat = true,
2066 		.ptr.compat = __envp,
2067 	};
2068 	return do_execveat_common(fd, filename, argv, envp, flags);
2069 }
2070 #endif
2071 
set_binfmt(struct linux_binfmt * new)2072 void set_binfmt(struct linux_binfmt *new)
2073 {
2074 	struct mm_struct *mm = current->mm;
2075 
2076 	if (mm->binfmt)
2077 		module_put(mm->binfmt->module);
2078 
2079 	mm->binfmt = new;
2080 	if (new)
2081 		__module_get(new->module);
2082 }
2083 EXPORT_SYMBOL(set_binfmt);
2084 
2085 /*
2086  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2087  */
set_dumpable(struct mm_struct * mm,int value)2088 void set_dumpable(struct mm_struct *mm, int value)
2089 {
2090 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2091 		return;
2092 
2093 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2094 }
2095 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2096 SYSCALL_DEFINE3(execve,
2097 		const char __user *, filename,
2098 		const char __user *const __user *, argv,
2099 		const char __user *const __user *, envp)
2100 {
2101 	return do_execve(getname(filename), argv, envp);
2102 }
2103 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2104 SYSCALL_DEFINE5(execveat,
2105 		int, fd, const char __user *, filename,
2106 		const char __user *const __user *, argv,
2107 		const char __user *const __user *, envp,
2108 		int, flags)
2109 {
2110 	return do_execveat(fd,
2111 			   getname_uflags(filename, flags),
2112 			   argv, envp, flags);
2113 }
2114 
2115 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2116 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2117 	const compat_uptr_t __user *, argv,
2118 	const compat_uptr_t __user *, envp)
2119 {
2120 	return compat_do_execve(getname(filename), argv, envp);
2121 }
2122 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2123 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2124 		       const char __user *, filename,
2125 		       const compat_uptr_t __user *, argv,
2126 		       const compat_uptr_t __user *, envp,
2127 		       int,  flags)
2128 {
2129 	return compat_do_execveat(fd,
2130 				  getname_uflags(filename, flags),
2131 				  argv, envp, flags);
2132 }
2133 #endif
2134 
2135 #ifdef CONFIG_SYSCTL
2136 
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2137 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2138 		void *buffer, size_t *lenp, loff_t *ppos)
2139 {
2140 	int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2141 
2142 	if (!error)
2143 		validate_coredump_safety();
2144 	return error;
2145 }
2146 
2147 static struct ctl_table fs_exec_sysctls[] = {
2148 	{
2149 		.procname	= "suid_dumpable",
2150 		.data		= &suid_dumpable,
2151 		.maxlen		= sizeof(int),
2152 		.mode		= 0644,
2153 		.proc_handler	= proc_dointvec_minmax_coredump,
2154 		.extra1		= SYSCTL_ZERO,
2155 		.extra2		= SYSCTL_TWO,
2156 	},
2157 	{ }
2158 };
2159 
init_fs_exec_sysctls(void)2160 static int __init init_fs_exec_sysctls(void)
2161 {
2162 	register_sysctl_init("fs", fs_exec_sysctls);
2163 	return 0;
2164 }
2165 
2166 fs_initcall(init_fs_exec_sysctls);
2167 #endif /* CONFIG_SYSCTL */
2168