1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/exec.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * #!-checking implemented by tytso.
10 */
11 /*
12 * Demand-loading implemented 01.12.91 - no need to read anything but
13 * the header into memory. The inode of the executable is put into
14 * "current->executable", and page faults do the actual loading. Clean.
15 *
16 * Once more I can proudly say that linux stood up to being changed: it
17 * was less than 2 hours work to get demand-loading completely implemented.
18 *
19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
20 * current->executable is only used by the procfs. This allows a dispatch
21 * table to check for several different types of binary formats. We keep
22 * trying until we recognize the file or we run out of supported binary
23 * formats.
24 */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71
72 #include <trace/events/task.h>
73 #include "internal.h"
74
75 #include <trace/events/sched.h>
76
77 static int bprm_creds_from_file(struct linux_binprm *bprm);
78
79 int suid_dumpable = 0;
80
81 static LIST_HEAD(formats);
82 static DEFINE_RWLOCK(binfmt_lock);
83
__register_binfmt(struct linux_binfmt * fmt,int insert)84 void __register_binfmt(struct linux_binfmt * fmt, int insert)
85 {
86 write_lock(&binfmt_lock);
87 insert ? list_add(&fmt->lh, &formats) :
88 list_add_tail(&fmt->lh, &formats);
89 write_unlock(&binfmt_lock);
90 }
91
92 EXPORT_SYMBOL(__register_binfmt);
93
unregister_binfmt(struct linux_binfmt * fmt)94 void unregister_binfmt(struct linux_binfmt * fmt)
95 {
96 write_lock(&binfmt_lock);
97 list_del(&fmt->lh);
98 write_unlock(&binfmt_lock);
99 }
100
101 EXPORT_SYMBOL(unregister_binfmt);
102
put_binfmt(struct linux_binfmt * fmt)103 static inline void put_binfmt(struct linux_binfmt * fmt)
104 {
105 module_put(fmt->module);
106 }
107
path_noexec(const struct path * path)108 bool path_noexec(const struct path *path)
109 {
110 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
111 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
112 }
113
114 #ifdef CONFIG_USELIB
115 /*
116 * Note that a shared library must be both readable and executable due to
117 * security reasons.
118 *
119 * Also note that we take the address to load from the file itself.
120 */
SYSCALL_DEFINE1(uselib,const char __user *,library)121 SYSCALL_DEFINE1(uselib, const char __user *, library)
122 {
123 struct linux_binfmt *fmt;
124 struct file *file;
125 struct filename *tmp = getname(library);
126 int error = PTR_ERR(tmp);
127 static const struct open_flags uselib_flags = {
128 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
129 .acc_mode = MAY_READ | MAY_EXEC,
130 .intent = LOOKUP_OPEN,
131 .lookup_flags = LOOKUP_FOLLOW,
132 };
133
134 if (IS_ERR(tmp))
135 goto out;
136
137 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
138 putname(tmp);
139 error = PTR_ERR(file);
140 if (IS_ERR(file))
141 goto out;
142
143 /*
144 * may_open() has already checked for this, so it should be
145 * impossible to trip now. But we need to be extra cautious
146 * and check again at the very end too.
147 */
148 error = -EACCES;
149 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
150 path_noexec(&file->f_path)))
151 goto exit;
152
153 fsnotify_open(file);
154
155 error = -ENOEXEC;
156
157 read_lock(&binfmt_lock);
158 list_for_each_entry(fmt, &formats, lh) {
159 if (!fmt->load_shlib)
160 continue;
161 if (!try_module_get(fmt->module))
162 continue;
163 read_unlock(&binfmt_lock);
164 error = fmt->load_shlib(file);
165 read_lock(&binfmt_lock);
166 put_binfmt(fmt);
167 if (error != -ENOEXEC)
168 break;
169 }
170 read_unlock(&binfmt_lock);
171 exit:
172 fput(file);
173 out:
174 return error;
175 }
176 #endif /* #ifdef CONFIG_USELIB */
177
178 #ifdef CONFIG_MMU
179 /*
180 * The nascent bprm->mm is not visible until exec_mmap() but it can
181 * use a lot of memory, account these pages in current->mm temporary
182 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
183 * change the counter back via acct_arg_size(0).
184 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)185 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
186 {
187 struct mm_struct *mm = current->mm;
188 long diff = (long)(pages - bprm->vma_pages);
189
190 if (!mm || !diff)
191 return;
192
193 bprm->vma_pages = pages;
194 add_mm_counter(mm, MM_ANONPAGES, diff);
195 }
196
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)197 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
198 int write)
199 {
200 struct page *page;
201 struct vm_area_struct *vma = bprm->vma;
202 struct mm_struct *mm = bprm->mm;
203 int ret;
204
205 /*
206 * Avoid relying on expanding the stack down in GUP (which
207 * does not work for STACK_GROWSUP anyway), and just do it
208 * by hand ahead of time.
209 */
210 if (write && pos < vma->vm_start) {
211 mmap_write_lock(mm);
212 ret = expand_downwards(vma, pos);
213 if (unlikely(ret < 0)) {
214 mmap_write_unlock(mm);
215 return NULL;
216 }
217 mmap_write_downgrade(mm);
218 } else
219 mmap_read_lock(mm);
220
221 /*
222 * We are doing an exec(). 'current' is the process
223 * doing the exec and 'mm' is the new process's mm.
224 */
225 ret = get_user_pages_remote(mm, pos, 1,
226 write ? FOLL_WRITE : 0,
227 &page, NULL, NULL);
228 mmap_read_unlock(mm);
229 if (ret <= 0)
230 return NULL;
231
232 if (write)
233 acct_arg_size(bprm, vma_pages(vma));
234
235 return page;
236 }
237
put_arg_page(struct page * page)238 static void put_arg_page(struct page *page)
239 {
240 put_page(page);
241 }
242
free_arg_pages(struct linux_binprm * bprm)243 static void free_arg_pages(struct linux_binprm *bprm)
244 {
245 }
246
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)247 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
248 struct page *page)
249 {
250 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
251 }
252
__bprm_mm_init(struct linux_binprm * bprm)253 static int __bprm_mm_init(struct linux_binprm *bprm)
254 {
255 int err;
256 struct vm_area_struct *vma = NULL;
257 struct mm_struct *mm = bprm->mm;
258
259 bprm->vma = vma = vm_area_alloc(mm);
260 if (!vma)
261 return -ENOMEM;
262 vma_set_anonymous(vma);
263
264 if (mmap_write_lock_killable(mm)) {
265 err = -EINTR;
266 goto err_free;
267 }
268
269 /*
270 * Place the stack at the largest stack address the architecture
271 * supports. Later, we'll move this to an appropriate place. We don't
272 * use STACK_TOP because that can depend on attributes which aren't
273 * configured yet.
274 */
275 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
276 vma->vm_end = STACK_TOP_MAX;
277 vma->vm_start = vma->vm_end - PAGE_SIZE;
278 vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
279 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
280
281 err = insert_vm_struct(mm, vma);
282 if (err)
283 goto err;
284
285 mm->stack_vm = mm->total_vm = 1;
286 mmap_write_unlock(mm);
287 bprm->p = vma->vm_end - sizeof(void *);
288 return 0;
289 err:
290 mmap_write_unlock(mm);
291 err_free:
292 bprm->vma = NULL;
293 vm_area_free(vma);
294 return err;
295 }
296
valid_arg_len(struct linux_binprm * bprm,long len)297 static bool valid_arg_len(struct linux_binprm *bprm, long len)
298 {
299 return len <= MAX_ARG_STRLEN;
300 }
301
302 #else
303
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)304 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
305 {
306 }
307
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)308 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 int write)
310 {
311 struct page *page;
312
313 page = bprm->page[pos / PAGE_SIZE];
314 if (!page && write) {
315 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
316 if (!page)
317 return NULL;
318 bprm->page[pos / PAGE_SIZE] = page;
319 }
320
321 return page;
322 }
323
put_arg_page(struct page * page)324 static void put_arg_page(struct page *page)
325 {
326 }
327
free_arg_page(struct linux_binprm * bprm,int i)328 static void free_arg_page(struct linux_binprm *bprm, int i)
329 {
330 if (bprm->page[i]) {
331 __free_page(bprm->page[i]);
332 bprm->page[i] = NULL;
333 }
334 }
335
free_arg_pages(struct linux_binprm * bprm)336 static void free_arg_pages(struct linux_binprm *bprm)
337 {
338 int i;
339
340 for (i = 0; i < MAX_ARG_PAGES; i++)
341 free_arg_page(bprm, i);
342 }
343
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)344 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
345 struct page *page)
346 {
347 }
348
__bprm_mm_init(struct linux_binprm * bprm)349 static int __bprm_mm_init(struct linux_binprm *bprm)
350 {
351 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
352 return 0;
353 }
354
valid_arg_len(struct linux_binprm * bprm,long len)355 static bool valid_arg_len(struct linux_binprm *bprm, long len)
356 {
357 return len <= bprm->p;
358 }
359
360 #endif /* CONFIG_MMU */
361
362 /*
363 * Create a new mm_struct and populate it with a temporary stack
364 * vm_area_struct. We don't have enough context at this point to set the stack
365 * flags, permissions, and offset, so we use temporary values. We'll update
366 * them later in setup_arg_pages().
367 */
bprm_mm_init(struct linux_binprm * bprm)368 static int bprm_mm_init(struct linux_binprm *bprm)
369 {
370 int err;
371 struct mm_struct *mm = NULL;
372
373 bprm->mm = mm = mm_alloc();
374 err = -ENOMEM;
375 if (!mm)
376 goto err;
377
378 /* Save current stack limit for all calculations made during exec. */
379 task_lock(current->group_leader);
380 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
381 task_unlock(current->group_leader);
382
383 err = __bprm_mm_init(bprm);
384 if (err)
385 goto err;
386
387 return 0;
388
389 err:
390 if (mm) {
391 bprm->mm = NULL;
392 mmdrop(mm);
393 }
394
395 return err;
396 }
397
398 struct user_arg_ptr {
399 #ifdef CONFIG_COMPAT
400 bool is_compat;
401 #endif
402 union {
403 const char __user *const __user *native;
404 #ifdef CONFIG_COMPAT
405 const compat_uptr_t __user *compat;
406 #endif
407 } ptr;
408 };
409
get_user_arg_ptr(struct user_arg_ptr argv,int nr)410 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
411 {
412 const char __user *native;
413
414 #ifdef CONFIG_COMPAT
415 if (unlikely(argv.is_compat)) {
416 compat_uptr_t compat;
417
418 if (get_user(compat, argv.ptr.compat + nr))
419 return ERR_PTR(-EFAULT);
420
421 return compat_ptr(compat);
422 }
423 #endif
424
425 if (get_user(native, argv.ptr.native + nr))
426 return ERR_PTR(-EFAULT);
427
428 return native;
429 }
430
431 /*
432 * count() counts the number of strings in array ARGV.
433 */
count(struct user_arg_ptr argv,int max)434 static int count(struct user_arg_ptr argv, int max)
435 {
436 int i = 0;
437
438 if (argv.ptr.native != NULL) {
439 for (;;) {
440 const char __user *p = get_user_arg_ptr(argv, i);
441
442 if (!p)
443 break;
444
445 if (IS_ERR(p))
446 return -EFAULT;
447
448 if (i >= max)
449 return -E2BIG;
450 ++i;
451
452 if (fatal_signal_pending(current))
453 return -ERESTARTNOHAND;
454 cond_resched();
455 }
456 }
457 return i;
458 }
459
count_strings_kernel(const char * const * argv)460 static int count_strings_kernel(const char *const *argv)
461 {
462 int i;
463
464 if (!argv)
465 return 0;
466
467 for (i = 0; argv[i]; ++i) {
468 if (i >= MAX_ARG_STRINGS)
469 return -E2BIG;
470 if (fatal_signal_pending(current))
471 return -ERESTARTNOHAND;
472 cond_resched();
473 }
474 return i;
475 }
476
bprm_stack_limits(struct linux_binprm * bprm)477 static int bprm_stack_limits(struct linux_binprm *bprm)
478 {
479 unsigned long limit, ptr_size;
480
481 /*
482 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
483 * (whichever is smaller) for the argv+env strings.
484 * This ensures that:
485 * - the remaining binfmt code will not run out of stack space,
486 * - the program will have a reasonable amount of stack left
487 * to work from.
488 */
489 limit = _STK_LIM / 4 * 3;
490 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
491 /*
492 * We've historically supported up to 32 pages (ARG_MAX)
493 * of argument strings even with small stacks
494 */
495 limit = max_t(unsigned long, limit, ARG_MAX);
496 /*
497 * We must account for the size of all the argv and envp pointers to
498 * the argv and envp strings, since they will also take up space in
499 * the stack. They aren't stored until much later when we can't
500 * signal to the parent that the child has run out of stack space.
501 * Instead, calculate it here so it's possible to fail gracefully.
502 *
503 * In the case of argc = 0, make sure there is space for adding a
504 * empty string (which will bump argc to 1), to ensure confused
505 * userspace programs don't start processing from argv[1], thinking
506 * argc can never be 0, to keep them from walking envp by accident.
507 * See do_execveat_common().
508 */
509 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
510 if (limit <= ptr_size)
511 return -E2BIG;
512 limit -= ptr_size;
513
514 bprm->argmin = bprm->p - limit;
515 return 0;
516 }
517
518 /*
519 * 'copy_strings()' copies argument/environment strings from the old
520 * processes's memory to the new process's stack. The call to get_user_pages()
521 * ensures the destination page is created and not swapped out.
522 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)523 static int copy_strings(int argc, struct user_arg_ptr argv,
524 struct linux_binprm *bprm)
525 {
526 struct page *kmapped_page = NULL;
527 char *kaddr = NULL;
528 unsigned long kpos = 0;
529 int ret;
530
531 while (argc-- > 0) {
532 const char __user *str;
533 int len;
534 unsigned long pos;
535
536 ret = -EFAULT;
537 str = get_user_arg_ptr(argv, argc);
538 if (IS_ERR(str))
539 goto out;
540
541 len = strnlen_user(str, MAX_ARG_STRLEN);
542 if (!len)
543 goto out;
544
545 ret = -E2BIG;
546 if (!valid_arg_len(bprm, len))
547 goto out;
548
549 /* We're going to work our way backwards. */
550 pos = bprm->p;
551 str += len;
552 bprm->p -= len;
553 #ifdef CONFIG_MMU
554 if (bprm->p < bprm->argmin)
555 goto out;
556 #endif
557
558 while (len > 0) {
559 int offset, bytes_to_copy;
560
561 if (fatal_signal_pending(current)) {
562 ret = -ERESTARTNOHAND;
563 goto out;
564 }
565 cond_resched();
566
567 offset = pos % PAGE_SIZE;
568 if (offset == 0)
569 offset = PAGE_SIZE;
570
571 bytes_to_copy = offset;
572 if (bytes_to_copy > len)
573 bytes_to_copy = len;
574
575 offset -= bytes_to_copy;
576 pos -= bytes_to_copy;
577 str -= bytes_to_copy;
578 len -= bytes_to_copy;
579
580 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
581 struct page *page;
582
583 page = get_arg_page(bprm, pos, 1);
584 if (!page) {
585 ret = -E2BIG;
586 goto out;
587 }
588
589 if (kmapped_page) {
590 flush_dcache_page(kmapped_page);
591 kunmap_local(kaddr);
592 put_arg_page(kmapped_page);
593 }
594 kmapped_page = page;
595 kaddr = kmap_local_page(kmapped_page);
596 kpos = pos & PAGE_MASK;
597 flush_arg_page(bprm, kpos, kmapped_page);
598 }
599 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
600 ret = -EFAULT;
601 goto out;
602 }
603 }
604 }
605 ret = 0;
606 out:
607 if (kmapped_page) {
608 flush_dcache_page(kmapped_page);
609 kunmap_local(kaddr);
610 put_arg_page(kmapped_page);
611 }
612 return ret;
613 }
614
615 /*
616 * Copy and argument/environment string from the kernel to the processes stack.
617 */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)618 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
619 {
620 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
621 unsigned long pos = bprm->p;
622
623 if (len == 0)
624 return -EFAULT;
625 if (!valid_arg_len(bprm, len))
626 return -E2BIG;
627
628 /* We're going to work our way backwards. */
629 arg += len;
630 bprm->p -= len;
631 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
632 return -E2BIG;
633
634 while (len > 0) {
635 unsigned int bytes_to_copy = min_t(unsigned int, len,
636 min_not_zero(offset_in_page(pos), PAGE_SIZE));
637 struct page *page;
638
639 pos -= bytes_to_copy;
640 arg -= bytes_to_copy;
641 len -= bytes_to_copy;
642
643 page = get_arg_page(bprm, pos, 1);
644 if (!page)
645 return -E2BIG;
646 flush_arg_page(bprm, pos & PAGE_MASK, page);
647 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
648 put_arg_page(page);
649 }
650
651 return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)655 static int copy_strings_kernel(int argc, const char *const *argv,
656 struct linux_binprm *bprm)
657 {
658 while (argc-- > 0) {
659 int ret = copy_string_kernel(argv[argc], bprm);
660 if (ret < 0)
661 return ret;
662 if (fatal_signal_pending(current))
663 return -ERESTARTNOHAND;
664 cond_resched();
665 }
666 return 0;
667 }
668
669 #ifdef CONFIG_MMU
670
671 /*
672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
673 * the binfmt code determines where the new stack should reside, we shift it to
674 * its final location. The process proceeds as follows:
675 *
676 * 1) Use shift to calculate the new vma endpoints.
677 * 2) Extend vma to cover both the old and new ranges. This ensures the
678 * arguments passed to subsequent functions are consistent.
679 * 3) Move vma's page tables to the new range.
680 * 4) Free up any cleared pgd range.
681 * 5) Shrink the vma to cover only the new range.
682 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 struct mm_struct *mm = vma->vm_mm;
686 unsigned long old_start = vma->vm_start;
687 unsigned long old_end = vma->vm_end;
688 unsigned long length = old_end - old_start;
689 unsigned long new_start = old_start - shift;
690 unsigned long new_end = old_end - shift;
691 VMA_ITERATOR(vmi, mm, new_start);
692 struct vm_area_struct *next;
693 struct mmu_gather tlb;
694
695 BUG_ON(new_start > new_end);
696
697 /*
698 * ensure there are no vmas between where we want to go
699 * and where we are
700 */
701 if (vma != vma_next(&vmi))
702 return -EFAULT;
703
704 /*
705 * cover the whole range: [new_start, old_end)
706 */
707 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
708 return -ENOMEM;
709
710 /*
711 * move the page tables downwards, on failure we rely on
712 * process cleanup to remove whatever mess we made.
713 */
714 if (length != move_page_tables(vma, old_start,
715 vma, new_start, length, false))
716 return -ENOMEM;
717
718 lru_add_drain();
719 tlb_gather_mmu(&tlb, mm);
720 next = vma_next(&vmi);
721 if (new_end > old_start) {
722 /*
723 * when the old and new regions overlap clear from new_end.
724 */
725 free_pgd_range(&tlb, new_end, old_end, new_end,
726 next ? next->vm_start : USER_PGTABLES_CEILING);
727 } else {
728 /*
729 * otherwise, clean from old_start; this is done to not touch
730 * the address space in [new_end, old_start) some architectures
731 * have constraints on va-space that make this illegal (IA64) -
732 * for the others its just a little faster.
733 */
734 free_pgd_range(&tlb, old_start, old_end, new_end,
735 next ? next->vm_start : USER_PGTABLES_CEILING);
736 }
737 tlb_finish_mmu(&tlb);
738
739 /*
740 * Shrink the vma to just the new range. Always succeeds.
741 */
742 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
743
744 return 0;
745 }
746
747 /*
748 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
749 * the stack is optionally relocated, and some extra space is added.
750 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)751 int setup_arg_pages(struct linux_binprm *bprm,
752 unsigned long stack_top,
753 int executable_stack)
754 {
755 unsigned long ret;
756 unsigned long stack_shift;
757 struct mm_struct *mm = current->mm;
758 struct vm_area_struct *vma = bprm->vma;
759 struct vm_area_struct *prev = NULL;
760 unsigned long vm_flags;
761 unsigned long stack_base;
762 unsigned long stack_size;
763 unsigned long stack_expand;
764 unsigned long rlim_stack;
765 struct mmu_gather tlb;
766
767 #ifdef CONFIG_STACK_GROWSUP
768 /* Limit stack size */
769 stack_base = bprm->rlim_stack.rlim_max;
770
771 stack_base = calc_max_stack_size(stack_base);
772
773 /* Add space for stack randomization. */
774 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
775
776 /* Make sure we didn't let the argument array grow too large. */
777 if (vma->vm_end - vma->vm_start > stack_base)
778 return -ENOMEM;
779
780 stack_base = PAGE_ALIGN(stack_top - stack_base);
781
782 stack_shift = vma->vm_start - stack_base;
783 mm->arg_start = bprm->p - stack_shift;
784 bprm->p = vma->vm_end - stack_shift;
785 #else
786 stack_top = arch_align_stack(stack_top);
787 stack_top = PAGE_ALIGN(stack_top);
788
789 if (unlikely(stack_top < mmap_min_addr) ||
790 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
791 return -ENOMEM;
792
793 stack_shift = vma->vm_end - stack_top;
794
795 bprm->p -= stack_shift;
796 mm->arg_start = bprm->p;
797 #endif
798
799 if (bprm->loader)
800 bprm->loader -= stack_shift;
801 bprm->exec -= stack_shift;
802
803 if (mmap_write_lock_killable(mm))
804 return -EINTR;
805
806 vm_flags = VM_STACK_FLAGS;
807
808 /*
809 * Adjust stack execute permissions; explicitly enable for
810 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
811 * (arch default) otherwise.
812 */
813 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
814 vm_flags |= VM_EXEC;
815 else if (executable_stack == EXSTACK_DISABLE_X)
816 vm_flags &= ~VM_EXEC;
817 vm_flags |= mm->def_flags;
818 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
819
820 tlb_gather_mmu(&tlb, mm);
821 ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
822 vm_flags);
823 tlb_finish_mmu(&tlb);
824
825 if (ret)
826 goto out_unlock;
827 BUG_ON(prev != vma);
828
829 if (unlikely(vm_flags & VM_EXEC)) {
830 pr_warn_once("process '%pD4' started with executable stack\n",
831 bprm->file);
832 }
833
834 /* Move stack pages down in memory. */
835 if (stack_shift) {
836 ret = shift_arg_pages(vma, stack_shift);
837 if (ret)
838 goto out_unlock;
839 }
840
841 /* mprotect_fixup is overkill to remove the temporary stack flags */
842 vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
843
844 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
845 stack_size = vma->vm_end - vma->vm_start;
846 /*
847 * Align this down to a page boundary as expand_stack
848 * will align it up.
849 */
850 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
851 #ifdef CONFIG_STACK_GROWSUP
852 if (stack_size + stack_expand > rlim_stack)
853 stack_base = vma->vm_start + rlim_stack;
854 else
855 stack_base = vma->vm_end + stack_expand;
856 #else
857 if (stack_size + stack_expand > rlim_stack)
858 stack_base = vma->vm_end - rlim_stack;
859 else
860 stack_base = vma->vm_start - stack_expand;
861 #endif
862 current->mm->start_stack = bprm->p;
863 ret = expand_stack_locked(vma, stack_base);
864 if (ret)
865 ret = -EFAULT;
866
867 out_unlock:
868 mmap_write_unlock(mm);
869 return ret;
870 }
871 EXPORT_SYMBOL(setup_arg_pages);
872
873 #else
874
875 /*
876 * Transfer the program arguments and environment from the holding pages
877 * onto the stack. The provided stack pointer is adjusted accordingly.
878 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)879 int transfer_args_to_stack(struct linux_binprm *bprm,
880 unsigned long *sp_location)
881 {
882 unsigned long index, stop, sp;
883 int ret = 0;
884
885 stop = bprm->p >> PAGE_SHIFT;
886 sp = *sp_location;
887
888 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
889 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
890 char *src = kmap_local_page(bprm->page[index]) + offset;
891 sp -= PAGE_SIZE - offset;
892 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
893 ret = -EFAULT;
894 kunmap_local(src);
895 if (ret)
896 goto out;
897 }
898
899 *sp_location = sp;
900
901 out:
902 return ret;
903 }
904 EXPORT_SYMBOL(transfer_args_to_stack);
905
906 #endif /* CONFIG_MMU */
907
do_open_execat(int fd,struct filename * name,int flags)908 static struct file *do_open_execat(int fd, struct filename *name, int flags)
909 {
910 struct file *file;
911 int err;
912 struct open_flags open_exec_flags = {
913 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
914 .acc_mode = MAY_EXEC,
915 .intent = LOOKUP_OPEN,
916 .lookup_flags = LOOKUP_FOLLOW,
917 };
918
919 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
920 return ERR_PTR(-EINVAL);
921 if (flags & AT_SYMLINK_NOFOLLOW)
922 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
923 if (flags & AT_EMPTY_PATH)
924 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
925
926 file = do_filp_open(fd, name, &open_exec_flags);
927 if (IS_ERR(file))
928 goto out;
929
930 /*
931 * may_open() has already checked for this, so it should be
932 * impossible to trip now. But we need to be extra cautious
933 * and check again at the very end too.
934 */
935 err = -EACCES;
936 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
937 path_noexec(&file->f_path)))
938 goto exit;
939
940 err = deny_write_access(file);
941 if (err)
942 goto exit;
943
944 if (name->name[0] != '\0')
945 fsnotify_open(file);
946
947 out:
948 return file;
949
950 exit:
951 fput(file);
952 return ERR_PTR(err);
953 }
954
open_exec(const char * name)955 struct file *open_exec(const char *name)
956 {
957 struct filename *filename = getname_kernel(name);
958 struct file *f = ERR_CAST(filename);
959
960 if (!IS_ERR(filename)) {
961 f = do_open_execat(AT_FDCWD, filename, 0);
962 putname(filename);
963 }
964 return f;
965 }
966 EXPORT_SYMBOL(open_exec);
967
968 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)969 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
970 {
971 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
972 if (res > 0)
973 flush_icache_user_range(addr, addr + len);
974 return res;
975 }
976 EXPORT_SYMBOL(read_code);
977 #endif
978
979 /*
980 * Maps the mm_struct mm into the current task struct.
981 * On success, this function returns with exec_update_lock
982 * held for writing.
983 */
exec_mmap(struct mm_struct * mm)984 static int exec_mmap(struct mm_struct *mm)
985 {
986 struct task_struct *tsk;
987 struct mm_struct *old_mm, *active_mm;
988 int ret;
989
990 /* Notify parent that we're no longer interested in the old VM */
991 tsk = current;
992 old_mm = current->mm;
993 exec_mm_release(tsk, old_mm);
994 if (old_mm)
995 sync_mm_rss(old_mm);
996
997 ret = down_write_killable(&tsk->signal->exec_update_lock);
998 if (ret)
999 return ret;
1000
1001 if (old_mm) {
1002 /*
1003 * If there is a pending fatal signal perhaps a signal
1004 * whose default action is to create a coredump get
1005 * out and die instead of going through with the exec.
1006 */
1007 ret = mmap_read_lock_killable(old_mm);
1008 if (ret) {
1009 up_write(&tsk->signal->exec_update_lock);
1010 return ret;
1011 }
1012 }
1013
1014 task_lock(tsk);
1015 membarrier_exec_mmap(mm);
1016
1017 local_irq_disable();
1018 active_mm = tsk->active_mm;
1019 tsk->active_mm = mm;
1020 tsk->mm = mm;
1021 /*
1022 * This prevents preemption while active_mm is being loaded and
1023 * it and mm are being updated, which could cause problems for
1024 * lazy tlb mm refcounting when these are updated by context
1025 * switches. Not all architectures can handle irqs off over
1026 * activate_mm yet.
1027 */
1028 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1029 local_irq_enable();
1030 activate_mm(active_mm, mm);
1031 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1032 local_irq_enable();
1033 lru_gen_add_mm(mm);
1034 task_unlock(tsk);
1035 lru_gen_use_mm(mm);
1036 if (old_mm) {
1037 mmap_read_unlock(old_mm);
1038 BUG_ON(active_mm != old_mm);
1039 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1040 mm_update_next_owner(old_mm);
1041 mmput(old_mm);
1042 return 0;
1043 }
1044 mmdrop(active_mm);
1045 return 0;
1046 }
1047
de_thread(struct task_struct * tsk)1048 static int de_thread(struct task_struct *tsk)
1049 {
1050 struct signal_struct *sig = tsk->signal;
1051 struct sighand_struct *oldsighand = tsk->sighand;
1052 spinlock_t *lock = &oldsighand->siglock;
1053
1054 if (thread_group_empty(tsk))
1055 goto no_thread_group;
1056
1057 /*
1058 * Kill all other threads in the thread group.
1059 */
1060 spin_lock_irq(lock);
1061 if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1062 /*
1063 * Another group action in progress, just
1064 * return so that the signal is processed.
1065 */
1066 spin_unlock_irq(lock);
1067 return -EAGAIN;
1068 }
1069
1070 sig->group_exec_task = tsk;
1071 sig->notify_count = zap_other_threads(tsk);
1072 if (!thread_group_leader(tsk))
1073 sig->notify_count--;
1074
1075 while (sig->notify_count) {
1076 __set_current_state(TASK_KILLABLE);
1077 spin_unlock_irq(lock);
1078 schedule();
1079 if (__fatal_signal_pending(tsk))
1080 goto killed;
1081 spin_lock_irq(lock);
1082 }
1083 spin_unlock_irq(lock);
1084
1085 /*
1086 * At this point all other threads have exited, all we have to
1087 * do is to wait for the thread group leader to become inactive,
1088 * and to assume its PID:
1089 */
1090 if (!thread_group_leader(tsk)) {
1091 struct task_struct *leader = tsk->group_leader;
1092
1093 for (;;) {
1094 cgroup_threadgroup_change_begin(tsk);
1095 write_lock_irq(&tasklist_lock);
1096 /*
1097 * Do this under tasklist_lock to ensure that
1098 * exit_notify() can't miss ->group_exec_task
1099 */
1100 sig->notify_count = -1;
1101 if (likely(leader->exit_state))
1102 break;
1103 __set_current_state(TASK_KILLABLE);
1104 write_unlock_irq(&tasklist_lock);
1105 cgroup_threadgroup_change_end(tsk);
1106 schedule();
1107 if (__fatal_signal_pending(tsk))
1108 goto killed;
1109 }
1110
1111 /*
1112 * The only record we have of the real-time age of a
1113 * process, regardless of execs it's done, is start_time.
1114 * All the past CPU time is accumulated in signal_struct
1115 * from sister threads now dead. But in this non-leader
1116 * exec, nothing survives from the original leader thread,
1117 * whose birth marks the true age of this process now.
1118 * When we take on its identity by switching to its PID, we
1119 * also take its birthdate (always earlier than our own).
1120 */
1121 tsk->start_time = leader->start_time;
1122 tsk->start_boottime = leader->start_boottime;
1123
1124 BUG_ON(!same_thread_group(leader, tsk));
1125 /*
1126 * An exec() starts a new thread group with the
1127 * TGID of the previous thread group. Rehash the
1128 * two threads with a switched PID, and release
1129 * the former thread group leader:
1130 */
1131
1132 /* Become a process group leader with the old leader's pid.
1133 * The old leader becomes a thread of the this thread group.
1134 */
1135 exchange_tids(tsk, leader);
1136 transfer_pid(leader, tsk, PIDTYPE_TGID);
1137 transfer_pid(leader, tsk, PIDTYPE_PGID);
1138 transfer_pid(leader, tsk, PIDTYPE_SID);
1139
1140 list_replace_rcu(&leader->tasks, &tsk->tasks);
1141 list_replace_init(&leader->sibling, &tsk->sibling);
1142
1143 tsk->group_leader = tsk;
1144 leader->group_leader = tsk;
1145
1146 tsk->exit_signal = SIGCHLD;
1147 leader->exit_signal = -1;
1148
1149 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1150 leader->exit_state = EXIT_DEAD;
1151
1152 /*
1153 * We are going to release_task()->ptrace_unlink() silently,
1154 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1155 * the tracer won't block again waiting for this thread.
1156 */
1157 if (unlikely(leader->ptrace))
1158 __wake_up_parent(leader, leader->parent);
1159 write_unlock_irq(&tasklist_lock);
1160 cgroup_threadgroup_change_end(tsk);
1161
1162 release_task(leader);
1163 }
1164
1165 sig->group_exec_task = NULL;
1166 sig->notify_count = 0;
1167
1168 no_thread_group:
1169 /* we have changed execution domain */
1170 tsk->exit_signal = SIGCHLD;
1171
1172 BUG_ON(!thread_group_leader(tsk));
1173 return 0;
1174
1175 killed:
1176 /* protects against exit_notify() and __exit_signal() */
1177 read_lock(&tasklist_lock);
1178 sig->group_exec_task = NULL;
1179 sig->notify_count = 0;
1180 read_unlock(&tasklist_lock);
1181 return -EAGAIN;
1182 }
1183
1184
1185 /*
1186 * This function makes sure the current process has its own signal table,
1187 * so that flush_signal_handlers can later reset the handlers without
1188 * disturbing other processes. (Other processes might share the signal
1189 * table via the CLONE_SIGHAND option to clone().)
1190 */
unshare_sighand(struct task_struct * me)1191 static int unshare_sighand(struct task_struct *me)
1192 {
1193 struct sighand_struct *oldsighand = me->sighand;
1194
1195 if (refcount_read(&oldsighand->count) != 1) {
1196 struct sighand_struct *newsighand;
1197 /*
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1200 */
1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 if (!newsighand)
1203 return -ENOMEM;
1204
1205 refcount_set(&newsighand->count, 1);
1206
1207 write_lock_irq(&tasklist_lock);
1208 spin_lock(&oldsighand->siglock);
1209 memcpy(newsighand->action, oldsighand->action,
1210 sizeof(newsighand->action));
1211 rcu_assign_pointer(me->sighand, newsighand);
1212 spin_unlock(&oldsighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1214
1215 __cleanup_sighand(oldsighand);
1216 }
1217 return 0;
1218 }
1219
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1220 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1221 {
1222 task_lock(tsk);
1223 /* Always NUL terminated and zero-padded */
1224 strscpy_pad(buf, tsk->comm, buf_size);
1225 task_unlock(tsk);
1226 return buf;
1227 }
1228 EXPORT_SYMBOL_GPL(__get_task_comm);
1229
1230 /*
1231 * These functions flushes out all traces of the currently running executable
1232 * so that a new one can be started
1233 */
1234
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1235 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1236 {
1237 task_lock(tsk);
1238 trace_task_rename(tsk, buf);
1239 strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1240 task_unlock(tsk);
1241 perf_event_comm(tsk, exec);
1242 }
1243
1244 /*
1245 * Calling this is the point of no return. None of the failures will be
1246 * seen by userspace since either the process is already taking a fatal
1247 * signal (via de_thread() or coredump), or will have SEGV raised
1248 * (after exec_mmap()) by search_binary_handler (see below).
1249 */
begin_new_exec(struct linux_binprm * bprm)1250 int begin_new_exec(struct linux_binprm * bprm)
1251 {
1252 struct task_struct *me = current;
1253 int retval;
1254
1255 /* Once we are committed compute the creds */
1256 retval = bprm_creds_from_file(bprm);
1257 if (retval)
1258 return retval;
1259
1260 /*
1261 * Ensure all future errors are fatal.
1262 */
1263 bprm->point_of_no_return = true;
1264
1265 /*
1266 * Make this the only thread in the thread group.
1267 */
1268 retval = de_thread(me);
1269 if (retval)
1270 goto out;
1271
1272 /*
1273 * Cancel any io_uring activity across execve
1274 */
1275 io_uring_task_cancel();
1276
1277 /* Ensure the files table is not shared. */
1278 retval = unshare_files();
1279 if (retval)
1280 goto out;
1281
1282 /*
1283 * Must be called _before_ exec_mmap() as bprm->mm is
1284 * not visible until then. This also enables the update
1285 * to be lockless.
1286 */
1287 retval = set_mm_exe_file(bprm->mm, bprm->file);
1288 if (retval)
1289 goto out;
1290
1291 /* If the binary is not readable then enforce mm->dumpable=0 */
1292 would_dump(bprm, bprm->file);
1293 if (bprm->have_execfd)
1294 would_dump(bprm, bprm->executable);
1295
1296 /*
1297 * Release all of the old mmap stuff
1298 */
1299 acct_arg_size(bprm, 0);
1300 retval = exec_mmap(bprm->mm);
1301 if (retval)
1302 goto out;
1303
1304 bprm->mm = NULL;
1305
1306 #ifdef CONFIG_POSIX_TIMERS
1307 spin_lock_irq(&me->sighand->siglock);
1308 posix_cpu_timers_exit(me);
1309 spin_unlock_irq(&me->sighand->siglock);
1310 exit_itimers(me);
1311 flush_itimer_signals();
1312 #endif
1313
1314 /*
1315 * Make the signal table private.
1316 */
1317 retval = unshare_sighand(me);
1318 if (retval)
1319 goto out_unlock;
1320
1321 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1322 PF_NOFREEZE | PF_NO_SETAFFINITY);
1323 flush_thread();
1324 me->personality &= ~bprm->per_clear;
1325
1326 clear_syscall_work_syscall_user_dispatch(me);
1327
1328 /*
1329 * We have to apply CLOEXEC before we change whether the process is
1330 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1331 * trying to access the should-be-closed file descriptors of a process
1332 * undergoing exec(2).
1333 */
1334 do_close_on_exec(me->files);
1335
1336 if (bprm->secureexec) {
1337 /* Make sure parent cannot signal privileged process. */
1338 me->pdeath_signal = 0;
1339
1340 /*
1341 * For secureexec, reset the stack limit to sane default to
1342 * avoid bad behavior from the prior rlimits. This has to
1343 * happen before arch_pick_mmap_layout(), which examines
1344 * RLIMIT_STACK, but after the point of no return to avoid
1345 * needing to clean up the change on failure.
1346 */
1347 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1348 bprm->rlim_stack.rlim_cur = _STK_LIM;
1349 }
1350
1351 me->sas_ss_sp = me->sas_ss_size = 0;
1352
1353 /*
1354 * Figure out dumpability. Note that this checking only of current
1355 * is wrong, but userspace depends on it. This should be testing
1356 * bprm->secureexec instead.
1357 */
1358 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1359 !(uid_eq(current_euid(), current_uid()) &&
1360 gid_eq(current_egid(), current_gid())))
1361 set_dumpable(current->mm, suid_dumpable);
1362 else
1363 set_dumpable(current->mm, SUID_DUMP_USER);
1364
1365 perf_event_exec();
1366 __set_task_comm(me, kbasename(bprm->filename), true);
1367
1368 /* An exec changes our domain. We are no longer part of the thread
1369 group */
1370 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1371 flush_signal_handlers(me, 0);
1372
1373 retval = set_cred_ucounts(bprm->cred);
1374 if (retval < 0)
1375 goto out_unlock;
1376
1377 /*
1378 * install the new credentials for this executable
1379 */
1380 security_bprm_committing_creds(bprm);
1381
1382 commit_creds(bprm->cred);
1383 bprm->cred = NULL;
1384
1385 /*
1386 * Disable monitoring for regular users
1387 * when executing setuid binaries. Must
1388 * wait until new credentials are committed
1389 * by commit_creds() above
1390 */
1391 if (get_dumpable(me->mm) != SUID_DUMP_USER)
1392 perf_event_exit_task(me);
1393 /*
1394 * cred_guard_mutex must be held at least to this point to prevent
1395 * ptrace_attach() from altering our determination of the task's
1396 * credentials; any time after this it may be unlocked.
1397 */
1398 security_bprm_committed_creds(bprm);
1399
1400 /* Pass the opened binary to the interpreter. */
1401 if (bprm->have_execfd) {
1402 retval = get_unused_fd_flags(0);
1403 if (retval < 0)
1404 goto out_unlock;
1405 fd_install(retval, bprm->executable);
1406 bprm->executable = NULL;
1407 bprm->execfd = retval;
1408 }
1409 return 0;
1410
1411 out_unlock:
1412 up_write(&me->signal->exec_update_lock);
1413 if (!bprm->cred)
1414 mutex_unlock(&me->signal->cred_guard_mutex);
1415
1416 out:
1417 return retval;
1418 }
1419 EXPORT_SYMBOL(begin_new_exec);
1420
would_dump(struct linux_binprm * bprm,struct file * file)1421 void would_dump(struct linux_binprm *bprm, struct file *file)
1422 {
1423 struct inode *inode = file_inode(file);
1424 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1425 if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1426 struct user_namespace *old, *user_ns;
1427 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1428
1429 /* Ensure mm->user_ns contains the executable */
1430 user_ns = old = bprm->mm->user_ns;
1431 while ((user_ns != &init_user_ns) &&
1432 !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1433 user_ns = user_ns->parent;
1434
1435 if (old != user_ns) {
1436 bprm->mm->user_ns = get_user_ns(user_ns);
1437 put_user_ns(old);
1438 }
1439 }
1440 }
1441 EXPORT_SYMBOL(would_dump);
1442
setup_new_exec(struct linux_binprm * bprm)1443 void setup_new_exec(struct linux_binprm * bprm)
1444 {
1445 /* Setup things that can depend upon the personality */
1446 struct task_struct *me = current;
1447
1448 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1449
1450 arch_setup_new_exec();
1451
1452 /* Set the new mm task size. We have to do that late because it may
1453 * depend on TIF_32BIT which is only updated in flush_thread() on
1454 * some architectures like powerpc
1455 */
1456 me->mm->task_size = TASK_SIZE;
1457 up_write(&me->signal->exec_update_lock);
1458 mutex_unlock(&me->signal->cred_guard_mutex);
1459 }
1460 EXPORT_SYMBOL(setup_new_exec);
1461
1462 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1463 void finalize_exec(struct linux_binprm *bprm)
1464 {
1465 /* Store any stack rlimit changes before starting thread. */
1466 task_lock(current->group_leader);
1467 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1468 task_unlock(current->group_leader);
1469 }
1470 EXPORT_SYMBOL(finalize_exec);
1471
1472 /*
1473 * Prepare credentials and lock ->cred_guard_mutex.
1474 * setup_new_exec() commits the new creds and drops the lock.
1475 * Or, if exec fails before, free_bprm() should release ->cred
1476 * and unlock.
1477 */
prepare_bprm_creds(struct linux_binprm * bprm)1478 static int prepare_bprm_creds(struct linux_binprm *bprm)
1479 {
1480 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1481 return -ERESTARTNOINTR;
1482
1483 bprm->cred = prepare_exec_creds();
1484 if (likely(bprm->cred))
1485 return 0;
1486
1487 mutex_unlock(¤t->signal->cred_guard_mutex);
1488 return -ENOMEM;
1489 }
1490
free_bprm(struct linux_binprm * bprm)1491 static void free_bprm(struct linux_binprm *bprm)
1492 {
1493 if (bprm->mm) {
1494 acct_arg_size(bprm, 0);
1495 mmput(bprm->mm);
1496 }
1497 free_arg_pages(bprm);
1498 if (bprm->cred) {
1499 mutex_unlock(¤t->signal->cred_guard_mutex);
1500 abort_creds(bprm->cred);
1501 }
1502 if (bprm->file) {
1503 allow_write_access(bprm->file);
1504 fput(bprm->file);
1505 }
1506 if (bprm->executable)
1507 fput(bprm->executable);
1508 /* If a binfmt changed the interp, free it. */
1509 if (bprm->interp != bprm->filename)
1510 kfree(bprm->interp);
1511 kfree(bprm->fdpath);
1512 kfree(bprm);
1513 }
1514
alloc_bprm(int fd,struct filename * filename)1515 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1516 {
1517 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1518 int retval = -ENOMEM;
1519 if (!bprm)
1520 goto out;
1521
1522 if (fd == AT_FDCWD || filename->name[0] == '/') {
1523 bprm->filename = filename->name;
1524 } else {
1525 if (filename->name[0] == '\0')
1526 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1527 else
1528 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1529 fd, filename->name);
1530 if (!bprm->fdpath)
1531 goto out_free;
1532
1533 bprm->filename = bprm->fdpath;
1534 }
1535 bprm->interp = bprm->filename;
1536
1537 retval = bprm_mm_init(bprm);
1538 if (retval)
1539 goto out_free;
1540 return bprm;
1541
1542 out_free:
1543 free_bprm(bprm);
1544 out:
1545 return ERR_PTR(retval);
1546 }
1547
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1548 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1549 {
1550 /* If a binfmt changed the interp, free it first. */
1551 if (bprm->interp != bprm->filename)
1552 kfree(bprm->interp);
1553 bprm->interp = kstrdup(interp, GFP_KERNEL);
1554 if (!bprm->interp)
1555 return -ENOMEM;
1556 return 0;
1557 }
1558 EXPORT_SYMBOL(bprm_change_interp);
1559
1560 /*
1561 * determine how safe it is to execute the proposed program
1562 * - the caller must hold ->cred_guard_mutex to protect against
1563 * PTRACE_ATTACH or seccomp thread-sync
1564 */
check_unsafe_exec(struct linux_binprm * bprm)1565 static void check_unsafe_exec(struct linux_binprm *bprm)
1566 {
1567 struct task_struct *p = current, *t;
1568 unsigned n_fs;
1569
1570 if (p->ptrace)
1571 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1572
1573 /*
1574 * This isn't strictly necessary, but it makes it harder for LSMs to
1575 * mess up.
1576 */
1577 if (task_no_new_privs(current))
1578 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1579
1580 t = p;
1581 n_fs = 1;
1582 spin_lock(&p->fs->lock);
1583 rcu_read_lock();
1584 while_each_thread(p, t) {
1585 if (t->fs == p->fs)
1586 n_fs++;
1587 }
1588 rcu_read_unlock();
1589
1590 if (p->fs->users > n_fs)
1591 bprm->unsafe |= LSM_UNSAFE_SHARE;
1592 else
1593 p->fs->in_exec = 1;
1594 spin_unlock(&p->fs->lock);
1595 }
1596
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1597 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1598 {
1599 /* Handle suid and sgid on files */
1600 struct user_namespace *mnt_userns;
1601 struct inode *inode = file_inode(file);
1602 unsigned int mode;
1603 kuid_t uid;
1604 kgid_t gid;
1605
1606 if (!mnt_may_suid(file->f_path.mnt))
1607 return;
1608
1609 if (task_no_new_privs(current))
1610 return;
1611
1612 mode = READ_ONCE(inode->i_mode);
1613 if (!(mode & (S_ISUID|S_ISGID)))
1614 return;
1615
1616 mnt_userns = file_mnt_user_ns(file);
1617
1618 /* Be careful if suid/sgid is set */
1619 inode_lock(inode);
1620
1621 /* reload atomically mode/uid/gid now that lock held */
1622 mode = inode->i_mode;
1623 uid = i_uid_into_mnt(mnt_userns, inode);
1624 gid = i_gid_into_mnt(mnt_userns, inode);
1625 inode_unlock(inode);
1626
1627 /* We ignore suid/sgid if there are no mappings for them in the ns */
1628 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1629 !kgid_has_mapping(bprm->cred->user_ns, gid))
1630 return;
1631
1632 if (mode & S_ISUID) {
1633 bprm->per_clear |= PER_CLEAR_ON_SETID;
1634 bprm->cred->euid = uid;
1635 }
1636
1637 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1638 bprm->per_clear |= PER_CLEAR_ON_SETID;
1639 bprm->cred->egid = gid;
1640 }
1641 }
1642
1643 /*
1644 * Compute brpm->cred based upon the final binary.
1645 */
bprm_creds_from_file(struct linux_binprm * bprm)1646 static int bprm_creds_from_file(struct linux_binprm *bprm)
1647 {
1648 /* Compute creds based on which file? */
1649 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1650
1651 bprm_fill_uid(bprm, file);
1652 return security_bprm_creds_from_file(bprm, file);
1653 }
1654
1655 /*
1656 * Fill the binprm structure from the inode.
1657 * Read the first BINPRM_BUF_SIZE bytes
1658 *
1659 * This may be called multiple times for binary chains (scripts for example).
1660 */
prepare_binprm(struct linux_binprm * bprm)1661 static int prepare_binprm(struct linux_binprm *bprm)
1662 {
1663 loff_t pos = 0;
1664
1665 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1666 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1667 }
1668
1669 /*
1670 * Arguments are '\0' separated strings found at the location bprm->p
1671 * points to; chop off the first by relocating brpm->p to right after
1672 * the first '\0' encountered.
1673 */
remove_arg_zero(struct linux_binprm * bprm)1674 int remove_arg_zero(struct linux_binprm *bprm)
1675 {
1676 int ret = 0;
1677 unsigned long offset;
1678 char *kaddr;
1679 struct page *page;
1680
1681 if (!bprm->argc)
1682 return 0;
1683
1684 do {
1685 offset = bprm->p & ~PAGE_MASK;
1686 page = get_arg_page(bprm, bprm->p, 0);
1687 if (!page) {
1688 ret = -EFAULT;
1689 goto out;
1690 }
1691 kaddr = kmap_local_page(page);
1692
1693 for (; offset < PAGE_SIZE && kaddr[offset];
1694 offset++, bprm->p++)
1695 ;
1696
1697 kunmap_local(kaddr);
1698 put_arg_page(page);
1699 } while (offset == PAGE_SIZE);
1700
1701 bprm->p++;
1702 bprm->argc--;
1703 ret = 0;
1704
1705 out:
1706 return ret;
1707 }
1708 EXPORT_SYMBOL(remove_arg_zero);
1709
1710 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1711 /*
1712 * cycle the list of binary formats handler, until one recognizes the image
1713 */
search_binary_handler(struct linux_binprm * bprm)1714 static int search_binary_handler(struct linux_binprm *bprm)
1715 {
1716 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1717 struct linux_binfmt *fmt;
1718 int retval;
1719
1720 retval = prepare_binprm(bprm);
1721 if (retval < 0)
1722 return retval;
1723
1724 retval = security_bprm_check(bprm);
1725 if (retval)
1726 return retval;
1727
1728 retval = -ENOENT;
1729 retry:
1730 read_lock(&binfmt_lock);
1731 list_for_each_entry(fmt, &formats, lh) {
1732 if (!try_module_get(fmt->module))
1733 continue;
1734 read_unlock(&binfmt_lock);
1735
1736 retval = fmt->load_binary(bprm);
1737
1738 read_lock(&binfmt_lock);
1739 put_binfmt(fmt);
1740 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1741 read_unlock(&binfmt_lock);
1742 return retval;
1743 }
1744 }
1745 read_unlock(&binfmt_lock);
1746
1747 if (need_retry) {
1748 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1749 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1750 return retval;
1751 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1752 return retval;
1753 need_retry = false;
1754 goto retry;
1755 }
1756
1757 return retval;
1758 }
1759
exec_binprm(struct linux_binprm * bprm)1760 static int exec_binprm(struct linux_binprm *bprm)
1761 {
1762 pid_t old_pid, old_vpid;
1763 int ret, depth;
1764
1765 /* Need to fetch pid before load_binary changes it */
1766 old_pid = current->pid;
1767 rcu_read_lock();
1768 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1769 rcu_read_unlock();
1770
1771 /* This allows 4 levels of binfmt rewrites before failing hard. */
1772 for (depth = 0;; depth++) {
1773 struct file *exec;
1774 if (depth > 5)
1775 return -ELOOP;
1776
1777 ret = search_binary_handler(bprm);
1778 if (ret < 0)
1779 return ret;
1780 if (!bprm->interpreter)
1781 break;
1782
1783 exec = bprm->file;
1784 bprm->file = bprm->interpreter;
1785 bprm->interpreter = NULL;
1786
1787 allow_write_access(exec);
1788 if (unlikely(bprm->have_execfd)) {
1789 if (bprm->executable) {
1790 fput(exec);
1791 return -ENOEXEC;
1792 }
1793 bprm->executable = exec;
1794 } else
1795 fput(exec);
1796 }
1797
1798 audit_bprm(bprm);
1799 trace_sched_process_exec(current, old_pid, bprm);
1800 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1801 proc_exec_connector(current);
1802 return 0;
1803 }
1804
1805 /*
1806 * sys_execve() executes a new program.
1807 */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1808 static int bprm_execve(struct linux_binprm *bprm,
1809 int fd, struct filename *filename, int flags)
1810 {
1811 struct file *file;
1812 int retval;
1813
1814 retval = prepare_bprm_creds(bprm);
1815 if (retval)
1816 return retval;
1817
1818 check_unsafe_exec(bprm);
1819 current->in_execve = 1;
1820
1821 file = do_open_execat(fd, filename, flags);
1822 retval = PTR_ERR(file);
1823 if (IS_ERR(file))
1824 goto out_unmark;
1825
1826 sched_exec();
1827
1828 bprm->file = file;
1829 /*
1830 * Record that a name derived from an O_CLOEXEC fd will be
1831 * inaccessible after exec. This allows the code in exec to
1832 * choose to fail when the executable is not mmaped into the
1833 * interpreter and an open file descriptor is not passed to
1834 * the interpreter. This makes for a better user experience
1835 * than having the interpreter start and then immediately fail
1836 * when it finds the executable is inaccessible.
1837 */
1838 if (bprm->fdpath && get_close_on_exec(fd))
1839 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1840
1841 /* Set the unchanging part of bprm->cred */
1842 retval = security_bprm_creds_for_exec(bprm);
1843 if (retval)
1844 goto out;
1845
1846 retval = exec_binprm(bprm);
1847 if (retval < 0)
1848 goto out;
1849
1850 /* execve succeeded */
1851 current->fs->in_exec = 0;
1852 current->in_execve = 0;
1853 rseq_execve(current);
1854 acct_update_integrals(current);
1855 task_numa_free(current, false);
1856 return retval;
1857
1858 out:
1859 /*
1860 * If past the point of no return ensure the code never
1861 * returns to the userspace process. Use an existing fatal
1862 * signal if present otherwise terminate the process with
1863 * SIGSEGV.
1864 */
1865 if (bprm->point_of_no_return && !fatal_signal_pending(current))
1866 force_fatal_sig(SIGSEGV);
1867
1868 out_unmark:
1869 current->fs->in_exec = 0;
1870 current->in_execve = 0;
1871
1872 return retval;
1873 }
1874
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1875 static int do_execveat_common(int fd, struct filename *filename,
1876 struct user_arg_ptr argv,
1877 struct user_arg_ptr envp,
1878 int flags)
1879 {
1880 struct linux_binprm *bprm;
1881 int retval;
1882
1883 if (IS_ERR(filename))
1884 return PTR_ERR(filename);
1885
1886 /*
1887 * We move the actual failure in case of RLIMIT_NPROC excess from
1888 * set*uid() to execve() because too many poorly written programs
1889 * don't check setuid() return code. Here we additionally recheck
1890 * whether NPROC limit is still exceeded.
1891 */
1892 if ((current->flags & PF_NPROC_EXCEEDED) &&
1893 is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1894 retval = -EAGAIN;
1895 goto out_ret;
1896 }
1897
1898 /* We're below the limit (still or again), so we don't want to make
1899 * further execve() calls fail. */
1900 current->flags &= ~PF_NPROC_EXCEEDED;
1901
1902 bprm = alloc_bprm(fd, filename);
1903 if (IS_ERR(bprm)) {
1904 retval = PTR_ERR(bprm);
1905 goto out_ret;
1906 }
1907
1908 retval = count(argv, MAX_ARG_STRINGS);
1909 if (retval == 0)
1910 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1911 current->comm, bprm->filename);
1912 if (retval < 0)
1913 goto out_free;
1914 bprm->argc = retval;
1915
1916 retval = count(envp, MAX_ARG_STRINGS);
1917 if (retval < 0)
1918 goto out_free;
1919 bprm->envc = retval;
1920
1921 retval = bprm_stack_limits(bprm);
1922 if (retval < 0)
1923 goto out_free;
1924
1925 retval = copy_string_kernel(bprm->filename, bprm);
1926 if (retval < 0)
1927 goto out_free;
1928 bprm->exec = bprm->p;
1929
1930 retval = copy_strings(bprm->envc, envp, bprm);
1931 if (retval < 0)
1932 goto out_free;
1933
1934 retval = copy_strings(bprm->argc, argv, bprm);
1935 if (retval < 0)
1936 goto out_free;
1937
1938 /*
1939 * When argv is empty, add an empty string ("") as argv[0] to
1940 * ensure confused userspace programs that start processing
1941 * from argv[1] won't end up walking envp. See also
1942 * bprm_stack_limits().
1943 */
1944 if (bprm->argc == 0) {
1945 retval = copy_string_kernel("", bprm);
1946 if (retval < 0)
1947 goto out_free;
1948 bprm->argc = 1;
1949 }
1950
1951 retval = bprm_execve(bprm, fd, filename, flags);
1952 out_free:
1953 free_bprm(bprm);
1954
1955 out_ret:
1956 putname(filename);
1957 return retval;
1958 }
1959
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1960 int kernel_execve(const char *kernel_filename,
1961 const char *const *argv, const char *const *envp)
1962 {
1963 struct filename *filename;
1964 struct linux_binprm *bprm;
1965 int fd = AT_FDCWD;
1966 int retval;
1967
1968 /* It is non-sense for kernel threads to call execve */
1969 if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1970 return -EINVAL;
1971
1972 filename = getname_kernel(kernel_filename);
1973 if (IS_ERR(filename))
1974 return PTR_ERR(filename);
1975
1976 bprm = alloc_bprm(fd, filename);
1977 if (IS_ERR(bprm)) {
1978 retval = PTR_ERR(bprm);
1979 goto out_ret;
1980 }
1981
1982 retval = count_strings_kernel(argv);
1983 if (WARN_ON_ONCE(retval == 0))
1984 retval = -EINVAL;
1985 if (retval < 0)
1986 goto out_free;
1987 bprm->argc = retval;
1988
1989 retval = count_strings_kernel(envp);
1990 if (retval < 0)
1991 goto out_free;
1992 bprm->envc = retval;
1993
1994 retval = bprm_stack_limits(bprm);
1995 if (retval < 0)
1996 goto out_free;
1997
1998 retval = copy_string_kernel(bprm->filename, bprm);
1999 if (retval < 0)
2000 goto out_free;
2001 bprm->exec = bprm->p;
2002
2003 retval = copy_strings_kernel(bprm->envc, envp, bprm);
2004 if (retval < 0)
2005 goto out_free;
2006
2007 retval = copy_strings_kernel(bprm->argc, argv, bprm);
2008 if (retval < 0)
2009 goto out_free;
2010
2011 retval = bprm_execve(bprm, fd, filename, 0);
2012 out_free:
2013 free_bprm(bprm);
2014 out_ret:
2015 putname(filename);
2016 return retval;
2017 }
2018
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2019 static int do_execve(struct filename *filename,
2020 const char __user *const __user *__argv,
2021 const char __user *const __user *__envp)
2022 {
2023 struct user_arg_ptr argv = { .ptr.native = __argv };
2024 struct user_arg_ptr envp = { .ptr.native = __envp };
2025 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2026 }
2027
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2028 static int do_execveat(int fd, struct filename *filename,
2029 const char __user *const __user *__argv,
2030 const char __user *const __user *__envp,
2031 int flags)
2032 {
2033 struct user_arg_ptr argv = { .ptr.native = __argv };
2034 struct user_arg_ptr envp = { .ptr.native = __envp };
2035
2036 return do_execveat_common(fd, filename, argv, envp, flags);
2037 }
2038
2039 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2040 static int compat_do_execve(struct filename *filename,
2041 const compat_uptr_t __user *__argv,
2042 const compat_uptr_t __user *__envp)
2043 {
2044 struct user_arg_ptr argv = {
2045 .is_compat = true,
2046 .ptr.compat = __argv,
2047 };
2048 struct user_arg_ptr envp = {
2049 .is_compat = true,
2050 .ptr.compat = __envp,
2051 };
2052 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2053 }
2054
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2055 static int compat_do_execveat(int fd, struct filename *filename,
2056 const compat_uptr_t __user *__argv,
2057 const compat_uptr_t __user *__envp,
2058 int flags)
2059 {
2060 struct user_arg_ptr argv = {
2061 .is_compat = true,
2062 .ptr.compat = __argv,
2063 };
2064 struct user_arg_ptr envp = {
2065 .is_compat = true,
2066 .ptr.compat = __envp,
2067 };
2068 return do_execveat_common(fd, filename, argv, envp, flags);
2069 }
2070 #endif
2071
set_binfmt(struct linux_binfmt * new)2072 void set_binfmt(struct linux_binfmt *new)
2073 {
2074 struct mm_struct *mm = current->mm;
2075
2076 if (mm->binfmt)
2077 module_put(mm->binfmt->module);
2078
2079 mm->binfmt = new;
2080 if (new)
2081 __module_get(new->module);
2082 }
2083 EXPORT_SYMBOL(set_binfmt);
2084
2085 /*
2086 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2087 */
set_dumpable(struct mm_struct * mm,int value)2088 void set_dumpable(struct mm_struct *mm, int value)
2089 {
2090 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2091 return;
2092
2093 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2094 }
2095
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2096 SYSCALL_DEFINE3(execve,
2097 const char __user *, filename,
2098 const char __user *const __user *, argv,
2099 const char __user *const __user *, envp)
2100 {
2101 return do_execve(getname(filename), argv, envp);
2102 }
2103
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2104 SYSCALL_DEFINE5(execveat,
2105 int, fd, const char __user *, filename,
2106 const char __user *const __user *, argv,
2107 const char __user *const __user *, envp,
2108 int, flags)
2109 {
2110 return do_execveat(fd,
2111 getname_uflags(filename, flags),
2112 argv, envp, flags);
2113 }
2114
2115 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2116 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2117 const compat_uptr_t __user *, argv,
2118 const compat_uptr_t __user *, envp)
2119 {
2120 return compat_do_execve(getname(filename), argv, envp);
2121 }
2122
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2123 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2124 const char __user *, filename,
2125 const compat_uptr_t __user *, argv,
2126 const compat_uptr_t __user *, envp,
2127 int, flags)
2128 {
2129 return compat_do_execveat(fd,
2130 getname_uflags(filename, flags),
2131 argv, envp, flags);
2132 }
2133 #endif
2134
2135 #ifdef CONFIG_SYSCTL
2136
proc_dointvec_minmax_coredump(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2137 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2138 void *buffer, size_t *lenp, loff_t *ppos)
2139 {
2140 int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2141
2142 if (!error)
2143 validate_coredump_safety();
2144 return error;
2145 }
2146
2147 static struct ctl_table fs_exec_sysctls[] = {
2148 {
2149 .procname = "suid_dumpable",
2150 .data = &suid_dumpable,
2151 .maxlen = sizeof(int),
2152 .mode = 0644,
2153 .proc_handler = proc_dointvec_minmax_coredump,
2154 .extra1 = SYSCTL_ZERO,
2155 .extra2 = SYSCTL_TWO,
2156 },
2157 { }
2158 };
2159
init_fs_exec_sysctls(void)2160 static int __init init_fs_exec_sysctls(void)
2161 {
2162 register_sysctl_init("fs", fs_exec_sysctls);
2163 return 0;
2164 }
2165
2166 fs_initcall(init_fs_exec_sysctls);
2167 #endif /* CONFIG_SYSCTL */
2168