• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 
25 /*
26  * This is only the first step towards a full-features scrub. It reads all
27  * extent and super block and verifies the checksums. In case a bad checksum
28  * is found or the extent cannot be read, good data will be written back if
29  * any can be found.
30  *
31  * Future enhancements:
32  *  - In case an unrepairable extent is encountered, track which files are
33  *    affected and report them
34  *  - track and record media errors, throw out bad devices
35  *  - add a mode to also read unallocated space
36  */
37 
38 struct scrub_block;
39 struct scrub_ctx;
40 
41 /*
42  * The following three values only influence the performance.
43  *
44  * The last one configures the number of parallel and outstanding I/O
45  * operations. The first one configures an upper limit for the number
46  * of (dynamically allocated) pages that are added to a bio.
47  */
48 #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
49 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
50 
51 /*
52  * The following value times PAGE_SIZE needs to be large enough to match the
53  * largest node/leaf/sector size that shall be supported.
54  */
55 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
56 
57 #define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
58 
59 struct scrub_recover {
60 	refcount_t		refs;
61 	struct btrfs_io_context	*bioc;
62 	u64			map_length;
63 };
64 
65 struct scrub_sector {
66 	struct scrub_block	*sblock;
67 	struct list_head	list;
68 	u64			flags;  /* extent flags */
69 	u64			generation;
70 	/* Offset in bytes to @sblock. */
71 	u32			offset;
72 	atomic_t		refs;
73 	unsigned int		have_csum:1;
74 	unsigned int		io_error:1;
75 	u8			csum[BTRFS_CSUM_SIZE];
76 
77 	struct scrub_recover	*recover;
78 };
79 
80 struct scrub_bio {
81 	int			index;
82 	struct scrub_ctx	*sctx;
83 	struct btrfs_device	*dev;
84 	struct bio		*bio;
85 	blk_status_t		status;
86 	u64			logical;
87 	u64			physical;
88 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
89 	int			sector_count;
90 	int			next_free;
91 	struct work_struct	work;
92 };
93 
94 struct scrub_block {
95 	/*
96 	 * Each page will have its page::private used to record the logical
97 	 * bytenr.
98 	 */
99 	struct page		*pages[SCRUB_MAX_PAGES];
100 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
101 	struct btrfs_device	*dev;
102 	/* Logical bytenr of the sblock */
103 	u64			logical;
104 	u64			physical;
105 	u64			physical_for_dev_replace;
106 	/* Length of sblock in bytes */
107 	u32			len;
108 	int			sector_count;
109 	int			mirror_num;
110 
111 	atomic_t		outstanding_sectors;
112 	refcount_t		refs; /* free mem on transition to zero */
113 	struct scrub_ctx	*sctx;
114 	struct scrub_parity	*sparity;
115 	struct {
116 		unsigned int	header_error:1;
117 		unsigned int	checksum_error:1;
118 		unsigned int	no_io_error_seen:1;
119 		unsigned int	generation_error:1; /* also sets header_error */
120 
121 		/* The following is for the data used to check parity */
122 		/* It is for the data with checksum */
123 		unsigned int	data_corrected:1;
124 	};
125 	struct work_struct	work;
126 };
127 
128 /* Used for the chunks with parity stripe such RAID5/6 */
129 struct scrub_parity {
130 	struct scrub_ctx	*sctx;
131 
132 	struct btrfs_device	*scrub_dev;
133 
134 	u64			logic_start;
135 
136 	u64			logic_end;
137 
138 	int			nsectors;
139 
140 	u32			stripe_len;
141 
142 	refcount_t		refs;
143 
144 	struct list_head	sectors_list;
145 
146 	/* Work of parity check and repair */
147 	struct work_struct	work;
148 
149 	/* Mark the parity blocks which have data */
150 	unsigned long		dbitmap;
151 
152 	/*
153 	 * Mark the parity blocks which have data, but errors happen when
154 	 * read data or check data
155 	 */
156 	unsigned long		ebitmap;
157 };
158 
159 struct scrub_ctx {
160 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
161 	struct btrfs_fs_info	*fs_info;
162 	int			first_free;
163 	int			curr;
164 	atomic_t		bios_in_flight;
165 	atomic_t		workers_pending;
166 	spinlock_t		list_lock;
167 	wait_queue_head_t	list_wait;
168 	struct list_head	csum_list;
169 	atomic_t		cancel_req;
170 	int			readonly;
171 	int			sectors_per_bio;
172 
173 	/* State of IO submission throttling affecting the associated device */
174 	ktime_t			throttle_deadline;
175 	u64			throttle_sent;
176 
177 	int			is_dev_replace;
178 	u64			write_pointer;
179 
180 	struct scrub_bio        *wr_curr_bio;
181 	struct mutex            wr_lock;
182 	struct btrfs_device     *wr_tgtdev;
183 	bool                    flush_all_writes;
184 
185 	/*
186 	 * statistics
187 	 */
188 	struct btrfs_scrub_progress stat;
189 	spinlock_t		stat_lock;
190 
191 	/*
192 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
193 	 * decrement bios_in_flight and workers_pending and then do a wakeup
194 	 * on the list_wait wait queue. We must ensure the main scrub task
195 	 * doesn't free the scrub context before or while the workers are
196 	 * doing the wakeup() call.
197 	 */
198 	refcount_t              refs;
199 };
200 
201 struct scrub_warning {
202 	struct btrfs_path	*path;
203 	u64			extent_item_size;
204 	const char		*errstr;
205 	u64			physical;
206 	u64			logical;
207 	struct btrfs_device	*dev;
208 };
209 
210 struct full_stripe_lock {
211 	struct rb_node node;
212 	u64 logical;
213 	u64 refs;
214 	struct mutex mutex;
215 };
216 
217 #ifndef CONFIG_64BIT
218 /* This structure is for archtectures whose (void *) is smaller than u64 */
219 struct scrub_page_private {
220 	u64 logical;
221 };
222 #endif
223 
attach_scrub_page_private(struct page * page,u64 logical)224 static int attach_scrub_page_private(struct page *page, u64 logical)
225 {
226 #ifdef CONFIG_64BIT
227 	attach_page_private(page, (void *)logical);
228 	return 0;
229 #else
230 	struct scrub_page_private *spp;
231 
232 	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
233 	if (!spp)
234 		return -ENOMEM;
235 	spp->logical = logical;
236 	attach_page_private(page, (void *)spp);
237 	return 0;
238 #endif
239 }
240 
detach_scrub_page_private(struct page * page)241 static void detach_scrub_page_private(struct page *page)
242 {
243 #ifdef CONFIG_64BIT
244 	detach_page_private(page);
245 	return;
246 #else
247 	struct scrub_page_private *spp;
248 
249 	spp = detach_page_private(page);
250 	kfree(spp);
251 	return;
252 #endif
253 }
254 
alloc_scrub_block(struct scrub_ctx * sctx,struct btrfs_device * dev,u64 logical,u64 physical,u64 physical_for_dev_replace,int mirror_num)255 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
256 					     struct btrfs_device *dev,
257 					     u64 logical, u64 physical,
258 					     u64 physical_for_dev_replace,
259 					     int mirror_num)
260 {
261 	struct scrub_block *sblock;
262 
263 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
264 	if (!sblock)
265 		return NULL;
266 	refcount_set(&sblock->refs, 1);
267 	sblock->sctx = sctx;
268 	sblock->logical = logical;
269 	sblock->physical = physical;
270 	sblock->physical_for_dev_replace = physical_for_dev_replace;
271 	sblock->dev = dev;
272 	sblock->mirror_num = mirror_num;
273 	sblock->no_io_error_seen = 1;
274 	/*
275 	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
276 	 * the corresponding page is not allocated.
277 	 */
278 	return sblock;
279 }
280 
281 /*
282  * Allocate a new scrub sector and attach it to @sblock.
283  *
284  * Will also allocate new pages for @sblock if needed.
285  */
alloc_scrub_sector(struct scrub_block * sblock,u64 logical,gfp_t gfp)286 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
287 					       u64 logical, gfp_t gfp)
288 {
289 	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
290 	struct scrub_sector *ssector;
291 
292 	/* We must never have scrub_block exceed U32_MAX in size. */
293 	ASSERT(logical - sblock->logical < U32_MAX);
294 
295 	ssector = kzalloc(sizeof(*ssector), gfp);
296 	if (!ssector)
297 		return NULL;
298 
299 	/* Allocate a new page if the slot is not allocated */
300 	if (!sblock->pages[page_index]) {
301 		int ret;
302 
303 		sblock->pages[page_index] = alloc_page(gfp);
304 		if (!sblock->pages[page_index]) {
305 			kfree(ssector);
306 			return NULL;
307 		}
308 		ret = attach_scrub_page_private(sblock->pages[page_index],
309 				sblock->logical + (page_index << PAGE_SHIFT));
310 		if (ret < 0) {
311 			kfree(ssector);
312 			__free_page(sblock->pages[page_index]);
313 			sblock->pages[page_index] = NULL;
314 			return NULL;
315 		}
316 	}
317 
318 	atomic_set(&ssector->refs, 1);
319 	ssector->sblock = sblock;
320 	/* The sector to be added should not be used */
321 	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
322 	ssector->offset = logical - sblock->logical;
323 
324 	/* The sector count must be smaller than the limit */
325 	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
326 
327 	sblock->sectors[sblock->sector_count] = ssector;
328 	sblock->sector_count++;
329 	sblock->len += sblock->sctx->fs_info->sectorsize;
330 
331 	return ssector;
332 }
333 
scrub_sector_get_page(struct scrub_sector * ssector)334 static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
335 {
336 	struct scrub_block *sblock = ssector->sblock;
337 	pgoff_t index;
338 	/*
339 	 * When calling this function, ssector must be alreaday attached to the
340 	 * parent sblock.
341 	 */
342 	ASSERT(sblock);
343 
344 	/* The range should be inside the sblock range */
345 	ASSERT(ssector->offset < sblock->len);
346 
347 	index = ssector->offset >> PAGE_SHIFT;
348 	ASSERT(index < SCRUB_MAX_PAGES);
349 	ASSERT(sblock->pages[index]);
350 	ASSERT(PagePrivate(sblock->pages[index]));
351 	return sblock->pages[index];
352 }
353 
scrub_sector_get_page_offset(struct scrub_sector * ssector)354 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
355 {
356 	struct scrub_block *sblock = ssector->sblock;
357 
358 	/*
359 	 * When calling this function, ssector must be already attached to the
360 	 * parent sblock.
361 	 */
362 	ASSERT(sblock);
363 
364 	/* The range should be inside the sblock range */
365 	ASSERT(ssector->offset < sblock->len);
366 
367 	return offset_in_page(ssector->offset);
368 }
369 
scrub_sector_get_kaddr(struct scrub_sector * ssector)370 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
371 {
372 	return page_address(scrub_sector_get_page(ssector)) +
373 	       scrub_sector_get_page_offset(ssector);
374 }
375 
bio_add_scrub_sector(struct bio * bio,struct scrub_sector * ssector,unsigned int len)376 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
377 				unsigned int len)
378 {
379 	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
380 			    scrub_sector_get_page_offset(ssector));
381 }
382 
383 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
384 				     struct scrub_block *sblocks_for_recheck[]);
385 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
386 				struct scrub_block *sblock,
387 				int retry_failed_mirror);
388 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
389 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
390 					     struct scrub_block *sblock_good);
391 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
392 					    struct scrub_block *sblock_good,
393 					    int sector_num, int force_write);
394 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
395 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
396 					     int sector_num);
397 static int scrub_checksum_data(struct scrub_block *sblock);
398 static int scrub_checksum_tree_block(struct scrub_block *sblock);
399 static int scrub_checksum_super(struct scrub_block *sblock);
400 static void scrub_block_put(struct scrub_block *sblock);
401 static void scrub_sector_get(struct scrub_sector *sector);
402 static void scrub_sector_put(struct scrub_sector *sector);
403 static void scrub_parity_get(struct scrub_parity *sparity);
404 static void scrub_parity_put(struct scrub_parity *sparity);
405 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
406 			 u64 physical, struct btrfs_device *dev, u64 flags,
407 			 u64 gen, int mirror_num, u8 *csum,
408 			 u64 physical_for_dev_replace);
409 static void scrub_bio_end_io(struct bio *bio);
410 static void scrub_bio_end_io_worker(struct work_struct *work);
411 static void scrub_block_complete(struct scrub_block *sblock);
412 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
413 				 u64 extent_logical, u32 extent_len,
414 				 u64 *extent_physical,
415 				 struct btrfs_device **extent_dev,
416 				 int *extent_mirror_num);
417 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
418 				      struct scrub_sector *sector);
419 static void scrub_wr_submit(struct scrub_ctx *sctx);
420 static void scrub_wr_bio_end_io(struct bio *bio);
421 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
422 static void scrub_put_ctx(struct scrub_ctx *sctx);
423 
scrub_is_page_on_raid56(struct scrub_sector * sector)424 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
425 {
426 	return sector->recover &&
427 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
428 }
429 
scrub_pending_bio_inc(struct scrub_ctx * sctx)430 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
431 {
432 	refcount_inc(&sctx->refs);
433 	atomic_inc(&sctx->bios_in_flight);
434 }
435 
scrub_pending_bio_dec(struct scrub_ctx * sctx)436 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
437 {
438 	atomic_dec(&sctx->bios_in_flight);
439 	wake_up(&sctx->list_wait);
440 	scrub_put_ctx(sctx);
441 }
442 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)443 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
444 {
445 	while (atomic_read(&fs_info->scrub_pause_req)) {
446 		mutex_unlock(&fs_info->scrub_lock);
447 		wait_event(fs_info->scrub_pause_wait,
448 		   atomic_read(&fs_info->scrub_pause_req) == 0);
449 		mutex_lock(&fs_info->scrub_lock);
450 	}
451 }
452 
scrub_pause_on(struct btrfs_fs_info * fs_info)453 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
454 {
455 	atomic_inc(&fs_info->scrubs_paused);
456 	wake_up(&fs_info->scrub_pause_wait);
457 }
458 
scrub_pause_off(struct btrfs_fs_info * fs_info)459 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
460 {
461 	mutex_lock(&fs_info->scrub_lock);
462 	__scrub_blocked_if_needed(fs_info);
463 	atomic_dec(&fs_info->scrubs_paused);
464 	mutex_unlock(&fs_info->scrub_lock);
465 
466 	wake_up(&fs_info->scrub_pause_wait);
467 }
468 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)469 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
470 {
471 	scrub_pause_on(fs_info);
472 	scrub_pause_off(fs_info);
473 }
474 
475 /*
476  * Insert new full stripe lock into full stripe locks tree
477  *
478  * Return pointer to existing or newly inserted full_stripe_lock structure if
479  * everything works well.
480  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
481  *
482  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
483  * function
484  */
insert_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)485 static struct full_stripe_lock *insert_full_stripe_lock(
486 		struct btrfs_full_stripe_locks_tree *locks_root,
487 		u64 fstripe_logical)
488 {
489 	struct rb_node **p;
490 	struct rb_node *parent = NULL;
491 	struct full_stripe_lock *entry;
492 	struct full_stripe_lock *ret;
493 
494 	lockdep_assert_held(&locks_root->lock);
495 
496 	p = &locks_root->root.rb_node;
497 	while (*p) {
498 		parent = *p;
499 		entry = rb_entry(parent, struct full_stripe_lock, node);
500 		if (fstripe_logical < entry->logical) {
501 			p = &(*p)->rb_left;
502 		} else if (fstripe_logical > entry->logical) {
503 			p = &(*p)->rb_right;
504 		} else {
505 			entry->refs++;
506 			return entry;
507 		}
508 	}
509 
510 	/*
511 	 * Insert new lock.
512 	 */
513 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
514 	if (!ret)
515 		return ERR_PTR(-ENOMEM);
516 	ret->logical = fstripe_logical;
517 	ret->refs = 1;
518 	mutex_init(&ret->mutex);
519 
520 	rb_link_node(&ret->node, parent, p);
521 	rb_insert_color(&ret->node, &locks_root->root);
522 	return ret;
523 }
524 
525 /*
526  * Search for a full stripe lock of a block group
527  *
528  * Return pointer to existing full stripe lock if found
529  * Return NULL if not found
530  */
search_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)531 static struct full_stripe_lock *search_full_stripe_lock(
532 		struct btrfs_full_stripe_locks_tree *locks_root,
533 		u64 fstripe_logical)
534 {
535 	struct rb_node *node;
536 	struct full_stripe_lock *entry;
537 
538 	lockdep_assert_held(&locks_root->lock);
539 
540 	node = locks_root->root.rb_node;
541 	while (node) {
542 		entry = rb_entry(node, struct full_stripe_lock, node);
543 		if (fstripe_logical < entry->logical)
544 			node = node->rb_left;
545 		else if (fstripe_logical > entry->logical)
546 			node = node->rb_right;
547 		else
548 			return entry;
549 	}
550 	return NULL;
551 }
552 
553 /*
554  * Helper to get full stripe logical from a normal bytenr.
555  *
556  * Caller must ensure @cache is a RAID56 block group.
557  */
get_full_stripe_logical(struct btrfs_block_group * cache,u64 bytenr)558 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
559 {
560 	u64 ret;
561 
562 	/*
563 	 * Due to chunk item size limit, full stripe length should not be
564 	 * larger than U32_MAX. Just a sanity check here.
565 	 */
566 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
567 
568 	/*
569 	 * round_down() can only handle power of 2, while RAID56 full
570 	 * stripe length can be 64KiB * n, so we need to manually round down.
571 	 */
572 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
573 			cache->full_stripe_len + cache->start;
574 	return ret;
575 }
576 
577 /*
578  * Lock a full stripe to avoid concurrency of recovery and read
579  *
580  * It's only used for profiles with parities (RAID5/6), for other profiles it
581  * does nothing.
582  *
583  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
584  * So caller must call unlock_full_stripe() at the same context.
585  *
586  * Return <0 if encounters error.
587  */
lock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool * locked_ret)588 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
589 			    bool *locked_ret)
590 {
591 	struct btrfs_block_group *bg_cache;
592 	struct btrfs_full_stripe_locks_tree *locks_root;
593 	struct full_stripe_lock *existing;
594 	u64 fstripe_start;
595 	int ret = 0;
596 
597 	*locked_ret = false;
598 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
599 	if (!bg_cache) {
600 		ASSERT(0);
601 		return -ENOENT;
602 	}
603 
604 	/* Profiles not based on parity don't need full stripe lock */
605 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
606 		goto out;
607 	locks_root = &bg_cache->full_stripe_locks_root;
608 
609 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
610 
611 	/* Now insert the full stripe lock */
612 	mutex_lock(&locks_root->lock);
613 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
614 	mutex_unlock(&locks_root->lock);
615 	if (IS_ERR(existing)) {
616 		ret = PTR_ERR(existing);
617 		goto out;
618 	}
619 	mutex_lock(&existing->mutex);
620 	*locked_ret = true;
621 out:
622 	btrfs_put_block_group(bg_cache);
623 	return ret;
624 }
625 
626 /*
627  * Unlock a full stripe.
628  *
629  * NOTE: Caller must ensure it's the same context calling corresponding
630  * lock_full_stripe().
631  *
632  * Return 0 if we unlock full stripe without problem.
633  * Return <0 for error
634  */
unlock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool locked)635 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
636 			      bool locked)
637 {
638 	struct btrfs_block_group *bg_cache;
639 	struct btrfs_full_stripe_locks_tree *locks_root;
640 	struct full_stripe_lock *fstripe_lock;
641 	u64 fstripe_start;
642 	bool freeit = false;
643 	int ret = 0;
644 
645 	/* If we didn't acquire full stripe lock, no need to continue */
646 	if (!locked)
647 		return 0;
648 
649 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
650 	if (!bg_cache) {
651 		ASSERT(0);
652 		return -ENOENT;
653 	}
654 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
655 		goto out;
656 
657 	locks_root = &bg_cache->full_stripe_locks_root;
658 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
659 
660 	mutex_lock(&locks_root->lock);
661 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
662 	/* Unpaired unlock_full_stripe() detected */
663 	if (!fstripe_lock) {
664 		WARN_ON(1);
665 		ret = -ENOENT;
666 		mutex_unlock(&locks_root->lock);
667 		goto out;
668 	}
669 
670 	if (fstripe_lock->refs == 0) {
671 		WARN_ON(1);
672 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
673 			fstripe_lock->logical);
674 	} else {
675 		fstripe_lock->refs--;
676 	}
677 
678 	if (fstripe_lock->refs == 0) {
679 		rb_erase(&fstripe_lock->node, &locks_root->root);
680 		freeit = true;
681 	}
682 	mutex_unlock(&locks_root->lock);
683 
684 	mutex_unlock(&fstripe_lock->mutex);
685 	if (freeit)
686 		kfree(fstripe_lock);
687 out:
688 	btrfs_put_block_group(bg_cache);
689 	return ret;
690 }
691 
scrub_free_csums(struct scrub_ctx * sctx)692 static void scrub_free_csums(struct scrub_ctx *sctx)
693 {
694 	while (!list_empty(&sctx->csum_list)) {
695 		struct btrfs_ordered_sum *sum;
696 		sum = list_first_entry(&sctx->csum_list,
697 				       struct btrfs_ordered_sum, list);
698 		list_del(&sum->list);
699 		kfree(sum);
700 	}
701 }
702 
scrub_free_ctx(struct scrub_ctx * sctx)703 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
704 {
705 	int i;
706 
707 	if (!sctx)
708 		return;
709 
710 	/* this can happen when scrub is cancelled */
711 	if (sctx->curr != -1) {
712 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
713 
714 		for (i = 0; i < sbio->sector_count; i++)
715 			scrub_block_put(sbio->sectors[i]->sblock);
716 		bio_put(sbio->bio);
717 	}
718 
719 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
720 		struct scrub_bio *sbio = sctx->bios[i];
721 
722 		if (!sbio)
723 			break;
724 		kfree(sbio);
725 	}
726 
727 	kfree(sctx->wr_curr_bio);
728 	scrub_free_csums(sctx);
729 	kfree(sctx);
730 }
731 
scrub_put_ctx(struct scrub_ctx * sctx)732 static void scrub_put_ctx(struct scrub_ctx *sctx)
733 {
734 	if (refcount_dec_and_test(&sctx->refs))
735 		scrub_free_ctx(sctx);
736 }
737 
scrub_setup_ctx(struct btrfs_fs_info * fs_info,int is_dev_replace)738 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
739 		struct btrfs_fs_info *fs_info, int is_dev_replace)
740 {
741 	struct scrub_ctx *sctx;
742 	int		i;
743 
744 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
745 	if (!sctx)
746 		goto nomem;
747 	refcount_set(&sctx->refs, 1);
748 	sctx->is_dev_replace = is_dev_replace;
749 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
750 	sctx->curr = -1;
751 	sctx->fs_info = fs_info;
752 	INIT_LIST_HEAD(&sctx->csum_list);
753 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
754 		struct scrub_bio *sbio;
755 
756 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
757 		if (!sbio)
758 			goto nomem;
759 		sctx->bios[i] = sbio;
760 
761 		sbio->index = i;
762 		sbio->sctx = sctx;
763 		sbio->sector_count = 0;
764 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
765 
766 		if (i != SCRUB_BIOS_PER_SCTX - 1)
767 			sctx->bios[i]->next_free = i + 1;
768 		else
769 			sctx->bios[i]->next_free = -1;
770 	}
771 	sctx->first_free = 0;
772 	atomic_set(&sctx->bios_in_flight, 0);
773 	atomic_set(&sctx->workers_pending, 0);
774 	atomic_set(&sctx->cancel_req, 0);
775 
776 	spin_lock_init(&sctx->list_lock);
777 	spin_lock_init(&sctx->stat_lock);
778 	init_waitqueue_head(&sctx->list_wait);
779 	sctx->throttle_deadline = 0;
780 
781 	WARN_ON(sctx->wr_curr_bio != NULL);
782 	mutex_init(&sctx->wr_lock);
783 	sctx->wr_curr_bio = NULL;
784 	if (is_dev_replace) {
785 		WARN_ON(!fs_info->dev_replace.tgtdev);
786 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
787 		sctx->flush_all_writes = false;
788 	}
789 
790 	return sctx;
791 
792 nomem:
793 	scrub_free_ctx(sctx);
794 	return ERR_PTR(-ENOMEM);
795 }
796 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)797 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
798 				     void *warn_ctx)
799 {
800 	u32 nlink;
801 	int ret;
802 	int i;
803 	unsigned nofs_flag;
804 	struct extent_buffer *eb;
805 	struct btrfs_inode_item *inode_item;
806 	struct scrub_warning *swarn = warn_ctx;
807 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
808 	struct inode_fs_paths *ipath = NULL;
809 	struct btrfs_root *local_root;
810 	struct btrfs_key key;
811 
812 	local_root = btrfs_get_fs_root(fs_info, root, true);
813 	if (IS_ERR(local_root)) {
814 		ret = PTR_ERR(local_root);
815 		goto err;
816 	}
817 
818 	/*
819 	 * this makes the path point to (inum INODE_ITEM ioff)
820 	 */
821 	key.objectid = inum;
822 	key.type = BTRFS_INODE_ITEM_KEY;
823 	key.offset = 0;
824 
825 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
826 	if (ret) {
827 		btrfs_put_root(local_root);
828 		btrfs_release_path(swarn->path);
829 		goto err;
830 	}
831 
832 	eb = swarn->path->nodes[0];
833 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
834 					struct btrfs_inode_item);
835 	nlink = btrfs_inode_nlink(eb, inode_item);
836 	btrfs_release_path(swarn->path);
837 
838 	/*
839 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
840 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
841 	 * not seem to be strictly necessary.
842 	 */
843 	nofs_flag = memalloc_nofs_save();
844 	ipath = init_ipath(4096, local_root, swarn->path);
845 	memalloc_nofs_restore(nofs_flag);
846 	if (IS_ERR(ipath)) {
847 		btrfs_put_root(local_root);
848 		ret = PTR_ERR(ipath);
849 		ipath = NULL;
850 		goto err;
851 	}
852 	ret = paths_from_inode(inum, ipath);
853 
854 	if (ret < 0)
855 		goto err;
856 
857 	/*
858 	 * we deliberately ignore the bit ipath might have been too small to
859 	 * hold all of the paths here
860 	 */
861 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
862 		btrfs_warn_in_rcu(fs_info,
863 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
864 				  swarn->errstr, swarn->logical,
865 				  rcu_str_deref(swarn->dev->name),
866 				  swarn->physical,
867 				  root, inum, offset,
868 				  fs_info->sectorsize, nlink,
869 				  (char *)(unsigned long)ipath->fspath->val[i]);
870 
871 	btrfs_put_root(local_root);
872 	free_ipath(ipath);
873 	return 0;
874 
875 err:
876 	btrfs_warn_in_rcu(fs_info,
877 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
878 			  swarn->errstr, swarn->logical,
879 			  rcu_str_deref(swarn->dev->name),
880 			  swarn->physical,
881 			  root, inum, offset, ret);
882 
883 	free_ipath(ipath);
884 	return 0;
885 }
886 
scrub_print_warning(const char * errstr,struct scrub_block * sblock)887 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
888 {
889 	struct btrfs_device *dev;
890 	struct btrfs_fs_info *fs_info;
891 	struct btrfs_path *path;
892 	struct btrfs_key found_key;
893 	struct extent_buffer *eb;
894 	struct btrfs_extent_item *ei;
895 	struct scrub_warning swarn;
896 	unsigned long ptr = 0;
897 	u64 extent_item_pos;
898 	u64 flags = 0;
899 	u64 ref_root;
900 	u32 item_size;
901 	u8 ref_level = 0;
902 	int ret;
903 
904 	WARN_ON(sblock->sector_count < 1);
905 	dev = sblock->dev;
906 	fs_info = sblock->sctx->fs_info;
907 
908 	/* Super block error, no need to search extent tree. */
909 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
910 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
911 			errstr, rcu_str_deref(dev->name),
912 			sblock->physical);
913 		return;
914 	}
915 	path = btrfs_alloc_path();
916 	if (!path)
917 		return;
918 
919 	swarn.physical = sblock->physical;
920 	swarn.logical = sblock->logical;
921 	swarn.errstr = errstr;
922 	swarn.dev = NULL;
923 
924 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
925 				  &flags);
926 	if (ret < 0)
927 		goto out;
928 
929 	extent_item_pos = swarn.logical - found_key.objectid;
930 	swarn.extent_item_size = found_key.offset;
931 
932 	eb = path->nodes[0];
933 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
934 	item_size = btrfs_item_size(eb, path->slots[0]);
935 
936 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
937 		do {
938 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
939 						      item_size, &ref_root,
940 						      &ref_level);
941 			btrfs_warn_in_rcu(fs_info,
942 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
943 				errstr, swarn.logical,
944 				rcu_str_deref(dev->name),
945 				swarn.physical,
946 				ref_level ? "node" : "leaf",
947 				ret < 0 ? -1 : ref_level,
948 				ret < 0 ? -1 : ref_root);
949 		} while (ret != 1);
950 		btrfs_release_path(path);
951 	} else {
952 		btrfs_release_path(path);
953 		swarn.path = path;
954 		swarn.dev = dev;
955 		iterate_extent_inodes(fs_info, found_key.objectid,
956 					extent_item_pos, 1,
957 					scrub_print_warning_inode, &swarn, false);
958 	}
959 
960 out:
961 	btrfs_free_path(path);
962 }
963 
scrub_get_recover(struct scrub_recover * recover)964 static inline void scrub_get_recover(struct scrub_recover *recover)
965 {
966 	refcount_inc(&recover->refs);
967 }
968 
scrub_put_recover(struct btrfs_fs_info * fs_info,struct scrub_recover * recover)969 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
970 				     struct scrub_recover *recover)
971 {
972 	if (refcount_dec_and_test(&recover->refs)) {
973 		btrfs_bio_counter_dec(fs_info);
974 		btrfs_put_bioc(recover->bioc);
975 		kfree(recover);
976 	}
977 }
978 
979 /*
980  * scrub_handle_errored_block gets called when either verification of the
981  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
982  * case, this function handles all sectors in the bio, even though only one
983  * may be bad.
984  * The goal of this function is to repair the errored block by using the
985  * contents of one of the mirrors.
986  */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)987 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
988 {
989 	struct scrub_ctx *sctx = sblock_to_check->sctx;
990 	struct btrfs_device *dev = sblock_to_check->dev;
991 	struct btrfs_fs_info *fs_info;
992 	u64 logical;
993 	unsigned int failed_mirror_index;
994 	unsigned int is_metadata;
995 	unsigned int have_csum;
996 	/* One scrub_block for each mirror */
997 	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
998 	struct scrub_block *sblock_bad;
999 	int ret;
1000 	int mirror_index;
1001 	int sector_num;
1002 	int success;
1003 	bool full_stripe_locked;
1004 	unsigned int nofs_flag;
1005 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1006 				      DEFAULT_RATELIMIT_BURST);
1007 
1008 	BUG_ON(sblock_to_check->sector_count < 1);
1009 	fs_info = sctx->fs_info;
1010 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1011 		/*
1012 		 * If we find an error in a super block, we just report it.
1013 		 * They will get written with the next transaction commit
1014 		 * anyway
1015 		 */
1016 		scrub_print_warning("super block error", sblock_to_check);
1017 		spin_lock(&sctx->stat_lock);
1018 		++sctx->stat.super_errors;
1019 		spin_unlock(&sctx->stat_lock);
1020 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1021 		return 0;
1022 	}
1023 	logical = sblock_to_check->logical;
1024 	ASSERT(sblock_to_check->mirror_num);
1025 	failed_mirror_index = sblock_to_check->mirror_num - 1;
1026 	is_metadata = !(sblock_to_check->sectors[0]->flags &
1027 			BTRFS_EXTENT_FLAG_DATA);
1028 	have_csum = sblock_to_check->sectors[0]->have_csum;
1029 
1030 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1031 		return 0;
1032 
1033 	/*
1034 	 * We must use GFP_NOFS because the scrub task might be waiting for a
1035 	 * worker task executing this function and in turn a transaction commit
1036 	 * might be waiting the scrub task to pause (which needs to wait for all
1037 	 * the worker tasks to complete before pausing).
1038 	 * We do allocations in the workers through insert_full_stripe_lock()
1039 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1040 	 * this function.
1041 	 */
1042 	nofs_flag = memalloc_nofs_save();
1043 	/*
1044 	 * For RAID5/6, race can happen for a different device scrub thread.
1045 	 * For data corruption, Parity and Data threads will both try
1046 	 * to recovery the data.
1047 	 * Race can lead to doubly added csum error, or even unrecoverable
1048 	 * error.
1049 	 */
1050 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1051 	if (ret < 0) {
1052 		memalloc_nofs_restore(nofs_flag);
1053 		spin_lock(&sctx->stat_lock);
1054 		if (ret == -ENOMEM)
1055 			sctx->stat.malloc_errors++;
1056 		sctx->stat.read_errors++;
1057 		sctx->stat.uncorrectable_errors++;
1058 		spin_unlock(&sctx->stat_lock);
1059 		return ret;
1060 	}
1061 
1062 	/*
1063 	 * read all mirrors one after the other. This includes to
1064 	 * re-read the extent or metadata block that failed (that was
1065 	 * the cause that this fixup code is called) another time,
1066 	 * sector by sector this time in order to know which sectors
1067 	 * caused I/O errors and which ones are good (for all mirrors).
1068 	 * It is the goal to handle the situation when more than one
1069 	 * mirror contains I/O errors, but the errors do not
1070 	 * overlap, i.e. the data can be repaired by selecting the
1071 	 * sectors from those mirrors without I/O error on the
1072 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
1073 	 * would be that mirror #1 has an I/O error on the first sector,
1074 	 * the second sector is good, and mirror #2 has an I/O error on
1075 	 * the second sector, but the first sector is good.
1076 	 * Then the first sector of the first mirror can be repaired by
1077 	 * taking the first sector of the second mirror, and the
1078 	 * second sector of the second mirror can be repaired by
1079 	 * copying the contents of the 2nd sector of the 1st mirror.
1080 	 * One more note: if the sectors of one mirror contain I/O
1081 	 * errors, the checksum cannot be verified. In order to get
1082 	 * the best data for repairing, the first attempt is to find
1083 	 * a mirror without I/O errors and with a validated checksum.
1084 	 * Only if this is not possible, the sectors are picked from
1085 	 * mirrors with I/O errors without considering the checksum.
1086 	 * If the latter is the case, at the end, the checksum of the
1087 	 * repaired area is verified in order to correctly maintain
1088 	 * the statistics.
1089 	 */
1090 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1091 		/*
1092 		 * Note: the two members refs and outstanding_sectors are not
1093 		 * used in the blocks that are used for the recheck procedure.
1094 		 *
1095 		 * But alloc_scrub_block() will initialize sblock::ref anyway,
1096 		 * so we can use scrub_block_put() to clean them up.
1097 		 *
1098 		 * And here we don't setup the physical/dev for the sblock yet,
1099 		 * they will be correctly initialized in scrub_setup_recheck_block().
1100 		 */
1101 		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1102 							logical, 0, 0, mirror_index);
1103 		if (!sblocks_for_recheck[mirror_index]) {
1104 			spin_lock(&sctx->stat_lock);
1105 			sctx->stat.malloc_errors++;
1106 			sctx->stat.read_errors++;
1107 			sctx->stat.uncorrectable_errors++;
1108 			spin_unlock(&sctx->stat_lock);
1109 			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1110 			goto out;
1111 		}
1112 	}
1113 
1114 	/* Setup the context, map the logical blocks and alloc the sectors */
1115 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1116 	if (ret) {
1117 		spin_lock(&sctx->stat_lock);
1118 		sctx->stat.read_errors++;
1119 		sctx->stat.uncorrectable_errors++;
1120 		spin_unlock(&sctx->stat_lock);
1121 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1122 		goto out;
1123 	}
1124 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1125 	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1126 
1127 	/* build and submit the bios for the failed mirror, check checksums */
1128 	scrub_recheck_block(fs_info, sblock_bad, 1);
1129 
1130 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1131 	    sblock_bad->no_io_error_seen) {
1132 		/*
1133 		 * The error disappeared after reading sector by sector, or
1134 		 * the area was part of a huge bio and other parts of the
1135 		 * bio caused I/O errors, or the block layer merged several
1136 		 * read requests into one and the error is caused by a
1137 		 * different bio (usually one of the two latter cases is
1138 		 * the cause)
1139 		 */
1140 		spin_lock(&sctx->stat_lock);
1141 		sctx->stat.unverified_errors++;
1142 		sblock_to_check->data_corrected = 1;
1143 		spin_unlock(&sctx->stat_lock);
1144 
1145 		if (sctx->is_dev_replace)
1146 			scrub_write_block_to_dev_replace(sblock_bad);
1147 		goto out;
1148 	}
1149 
1150 	if (!sblock_bad->no_io_error_seen) {
1151 		spin_lock(&sctx->stat_lock);
1152 		sctx->stat.read_errors++;
1153 		spin_unlock(&sctx->stat_lock);
1154 		if (__ratelimit(&rs))
1155 			scrub_print_warning("i/o error", sblock_to_check);
1156 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1157 	} else if (sblock_bad->checksum_error) {
1158 		spin_lock(&sctx->stat_lock);
1159 		sctx->stat.csum_errors++;
1160 		spin_unlock(&sctx->stat_lock);
1161 		if (__ratelimit(&rs))
1162 			scrub_print_warning("checksum error", sblock_to_check);
1163 		btrfs_dev_stat_inc_and_print(dev,
1164 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1165 	} else if (sblock_bad->header_error) {
1166 		spin_lock(&sctx->stat_lock);
1167 		sctx->stat.verify_errors++;
1168 		spin_unlock(&sctx->stat_lock);
1169 		if (__ratelimit(&rs))
1170 			scrub_print_warning("checksum/header error",
1171 					    sblock_to_check);
1172 		if (sblock_bad->generation_error)
1173 			btrfs_dev_stat_inc_and_print(dev,
1174 				BTRFS_DEV_STAT_GENERATION_ERRS);
1175 		else
1176 			btrfs_dev_stat_inc_and_print(dev,
1177 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1178 	}
1179 
1180 	if (sctx->readonly) {
1181 		ASSERT(!sctx->is_dev_replace);
1182 		goto out;
1183 	}
1184 
1185 	/*
1186 	 * now build and submit the bios for the other mirrors, check
1187 	 * checksums.
1188 	 * First try to pick the mirror which is completely without I/O
1189 	 * errors and also does not have a checksum error.
1190 	 * If one is found, and if a checksum is present, the full block
1191 	 * that is known to contain an error is rewritten. Afterwards
1192 	 * the block is known to be corrected.
1193 	 * If a mirror is found which is completely correct, and no
1194 	 * checksum is present, only those sectors are rewritten that had
1195 	 * an I/O error in the block to be repaired, since it cannot be
1196 	 * determined, which copy of the other sectors is better (and it
1197 	 * could happen otherwise that a correct sector would be
1198 	 * overwritten by a bad one).
1199 	 */
1200 	for (mirror_index = 0; ;mirror_index++) {
1201 		struct scrub_block *sblock_other;
1202 
1203 		if (mirror_index == failed_mirror_index)
1204 			continue;
1205 
1206 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1207 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1208 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1209 				break;
1210 			if (!sblocks_for_recheck[mirror_index]->sector_count)
1211 				break;
1212 
1213 			sblock_other = sblocks_for_recheck[mirror_index];
1214 		} else {
1215 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1216 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1217 
1218 			if (mirror_index >= max_allowed)
1219 				break;
1220 			if (!sblocks_for_recheck[1]->sector_count)
1221 				break;
1222 
1223 			ASSERT(failed_mirror_index == 0);
1224 			sblock_other = sblocks_for_recheck[1];
1225 			sblock_other->mirror_num = 1 + mirror_index;
1226 		}
1227 
1228 		/* build and submit the bios, check checksums */
1229 		scrub_recheck_block(fs_info, sblock_other, 0);
1230 
1231 		if (!sblock_other->header_error &&
1232 		    !sblock_other->checksum_error &&
1233 		    sblock_other->no_io_error_seen) {
1234 			if (sctx->is_dev_replace) {
1235 				scrub_write_block_to_dev_replace(sblock_other);
1236 				goto corrected_error;
1237 			} else {
1238 				ret = scrub_repair_block_from_good_copy(
1239 						sblock_bad, sblock_other);
1240 				if (!ret)
1241 					goto corrected_error;
1242 			}
1243 		}
1244 	}
1245 
1246 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1247 		goto did_not_correct_error;
1248 
1249 	/*
1250 	 * In case of I/O errors in the area that is supposed to be
1251 	 * repaired, continue by picking good copies of those sectors.
1252 	 * Select the good sectors from mirrors to rewrite bad sectors from
1253 	 * the area to fix. Afterwards verify the checksum of the block
1254 	 * that is supposed to be repaired. This verification step is
1255 	 * only done for the purpose of statistic counting and for the
1256 	 * final scrub report, whether errors remain.
1257 	 * A perfect algorithm could make use of the checksum and try
1258 	 * all possible combinations of sectors from the different mirrors
1259 	 * until the checksum verification succeeds. For example, when
1260 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1261 	 * of mirror #2 is readable but the final checksum test fails,
1262 	 * then the 2nd sector of mirror #3 could be tried, whether now
1263 	 * the final checksum succeeds. But this would be a rare
1264 	 * exception and is therefore not implemented. At least it is
1265 	 * avoided that the good copy is overwritten.
1266 	 * A more useful improvement would be to pick the sectors
1267 	 * without I/O error based on sector sizes (512 bytes on legacy
1268 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1269 	 * mirror could be repaired by taking 512 byte of a different
1270 	 * mirror, even if other 512 byte sectors in the same sectorsize
1271 	 * area are unreadable.
1272 	 */
1273 	success = 1;
1274 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1275 	     sector_num++) {
1276 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1277 		struct scrub_block *sblock_other = NULL;
1278 
1279 		/* Skip no-io-error sectors in scrub */
1280 		if (!sector_bad->io_error && !sctx->is_dev_replace)
1281 			continue;
1282 
1283 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1284 			/*
1285 			 * In case of dev replace, if raid56 rebuild process
1286 			 * didn't work out correct data, then copy the content
1287 			 * in sblock_bad to make sure target device is identical
1288 			 * to source device, instead of writing garbage data in
1289 			 * sblock_for_recheck array to target device.
1290 			 */
1291 			sblock_other = NULL;
1292 		} else if (sector_bad->io_error) {
1293 			/* Try to find no-io-error sector in mirrors */
1294 			for (mirror_index = 0;
1295 			     mirror_index < BTRFS_MAX_MIRRORS &&
1296 			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1297 			     mirror_index++) {
1298 				if (!sblocks_for_recheck[mirror_index]->
1299 				    sectors[sector_num]->io_error) {
1300 					sblock_other = sblocks_for_recheck[mirror_index];
1301 					break;
1302 				}
1303 			}
1304 			if (!sblock_other)
1305 				success = 0;
1306 		}
1307 
1308 		if (sctx->is_dev_replace) {
1309 			/*
1310 			 * Did not find a mirror to fetch the sector from.
1311 			 * scrub_write_sector_to_dev_replace() handles this
1312 			 * case (sector->io_error), by filling the block with
1313 			 * zeros before submitting the write request
1314 			 */
1315 			if (!sblock_other)
1316 				sblock_other = sblock_bad;
1317 
1318 			if (scrub_write_sector_to_dev_replace(sblock_other,
1319 							      sector_num) != 0) {
1320 				atomic64_inc(
1321 					&fs_info->dev_replace.num_write_errors);
1322 				success = 0;
1323 			}
1324 		} else if (sblock_other) {
1325 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1326 								 sblock_other,
1327 								 sector_num, 0);
1328 			if (0 == ret)
1329 				sector_bad->io_error = 0;
1330 			else
1331 				success = 0;
1332 		}
1333 	}
1334 
1335 	if (success && !sctx->is_dev_replace) {
1336 		if (is_metadata || have_csum) {
1337 			/*
1338 			 * need to verify the checksum now that all
1339 			 * sectors on disk are repaired (the write
1340 			 * request for data to be repaired is on its way).
1341 			 * Just be lazy and use scrub_recheck_block()
1342 			 * which re-reads the data before the checksum
1343 			 * is verified, but most likely the data comes out
1344 			 * of the page cache.
1345 			 */
1346 			scrub_recheck_block(fs_info, sblock_bad, 1);
1347 			if (!sblock_bad->header_error &&
1348 			    !sblock_bad->checksum_error &&
1349 			    sblock_bad->no_io_error_seen)
1350 				goto corrected_error;
1351 			else
1352 				goto did_not_correct_error;
1353 		} else {
1354 corrected_error:
1355 			spin_lock(&sctx->stat_lock);
1356 			sctx->stat.corrected_errors++;
1357 			sblock_to_check->data_corrected = 1;
1358 			spin_unlock(&sctx->stat_lock);
1359 			btrfs_err_rl_in_rcu(fs_info,
1360 				"fixed up error at logical %llu on dev %s",
1361 				logical, rcu_str_deref(dev->name));
1362 		}
1363 	} else {
1364 did_not_correct_error:
1365 		spin_lock(&sctx->stat_lock);
1366 		sctx->stat.uncorrectable_errors++;
1367 		spin_unlock(&sctx->stat_lock);
1368 		btrfs_err_rl_in_rcu(fs_info,
1369 			"unable to fixup (regular) error at logical %llu on dev %s",
1370 			logical, rcu_str_deref(dev->name));
1371 	}
1372 
1373 out:
1374 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1375 		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1376 		struct scrub_recover *recover;
1377 		int sector_index;
1378 
1379 		/* Not allocated, continue checking the next mirror */
1380 		if (!sblock)
1381 			continue;
1382 
1383 		for (sector_index = 0; sector_index < sblock->sector_count;
1384 		     sector_index++) {
1385 			/*
1386 			 * Here we just cleanup the recover, each sector will be
1387 			 * properly cleaned up by later scrub_block_put()
1388 			 */
1389 			recover = sblock->sectors[sector_index]->recover;
1390 			if (recover) {
1391 				scrub_put_recover(fs_info, recover);
1392 				sblock->sectors[sector_index]->recover = NULL;
1393 			}
1394 		}
1395 		scrub_block_put(sblock);
1396 	}
1397 
1398 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1399 	memalloc_nofs_restore(nofs_flag);
1400 	if (ret < 0)
1401 		return ret;
1402 	return 0;
1403 }
1404 
scrub_nr_raid_mirrors(struct btrfs_io_context * bioc)1405 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1406 {
1407 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1408 		return 2;
1409 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1410 		return 3;
1411 	else
1412 		return (int)bioc->num_stripes;
1413 }
1414 
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1415 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1416 						 u64 *raid_map,
1417 						 int nstripes, int mirror,
1418 						 int *stripe_index,
1419 						 u64 *stripe_offset)
1420 {
1421 	int i;
1422 
1423 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1424 		/* RAID5/6 */
1425 		for (i = 0; i < nstripes; i++) {
1426 			if (raid_map[i] == RAID6_Q_STRIPE ||
1427 			    raid_map[i] == RAID5_P_STRIPE)
1428 				continue;
1429 
1430 			if (logical >= raid_map[i] &&
1431 			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1432 				break;
1433 		}
1434 
1435 		*stripe_index = i;
1436 		*stripe_offset = logical - raid_map[i];
1437 	} else {
1438 		/* The other RAID type */
1439 		*stripe_index = mirror;
1440 		*stripe_offset = 0;
1441 	}
1442 }
1443 
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck[])1444 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1445 				     struct scrub_block *sblocks_for_recheck[])
1446 {
1447 	struct scrub_ctx *sctx = original_sblock->sctx;
1448 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1449 	u64 logical = original_sblock->logical;
1450 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1451 	u64 generation = original_sblock->sectors[0]->generation;
1452 	u64 flags = original_sblock->sectors[0]->flags;
1453 	u64 have_csum = original_sblock->sectors[0]->have_csum;
1454 	struct scrub_recover *recover;
1455 	struct btrfs_io_context *bioc;
1456 	u64 sublen;
1457 	u64 mapped_length;
1458 	u64 stripe_offset;
1459 	int stripe_index;
1460 	int sector_index = 0;
1461 	int mirror_index;
1462 	int nmirrors;
1463 	int ret;
1464 
1465 	while (length > 0) {
1466 		sublen = min_t(u64, length, fs_info->sectorsize);
1467 		mapped_length = sublen;
1468 		bioc = NULL;
1469 
1470 		/*
1471 		 * With a length of sectorsize, each returned stripe represents
1472 		 * one mirror
1473 		 */
1474 		btrfs_bio_counter_inc_blocked(fs_info);
1475 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1476 				       logical, &mapped_length, &bioc);
1477 		if (ret || !bioc || mapped_length < sublen) {
1478 			btrfs_put_bioc(bioc);
1479 			btrfs_bio_counter_dec(fs_info);
1480 			return -EIO;
1481 		}
1482 
1483 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1484 		if (!recover) {
1485 			btrfs_put_bioc(bioc);
1486 			btrfs_bio_counter_dec(fs_info);
1487 			return -ENOMEM;
1488 		}
1489 
1490 		refcount_set(&recover->refs, 1);
1491 		recover->bioc = bioc;
1492 		recover->map_length = mapped_length;
1493 
1494 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1495 
1496 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1497 
1498 		for (mirror_index = 0; mirror_index < nmirrors;
1499 		     mirror_index++) {
1500 			struct scrub_block *sblock;
1501 			struct scrub_sector *sector;
1502 
1503 			sblock = sblocks_for_recheck[mirror_index];
1504 			sblock->sctx = sctx;
1505 
1506 			sector = alloc_scrub_sector(sblock, logical, GFP_NOFS);
1507 			if (!sector) {
1508 				spin_lock(&sctx->stat_lock);
1509 				sctx->stat.malloc_errors++;
1510 				spin_unlock(&sctx->stat_lock);
1511 				scrub_put_recover(fs_info, recover);
1512 				return -ENOMEM;
1513 			}
1514 			sector->flags = flags;
1515 			sector->generation = generation;
1516 			sector->have_csum = have_csum;
1517 			if (have_csum)
1518 				memcpy(sector->csum,
1519 				       original_sblock->sectors[0]->csum,
1520 				       sctx->fs_info->csum_size);
1521 
1522 			scrub_stripe_index_and_offset(logical,
1523 						      bioc->map_type,
1524 						      bioc->raid_map,
1525 						      bioc->num_stripes -
1526 						      bioc->num_tgtdevs,
1527 						      mirror_index,
1528 						      &stripe_index,
1529 						      &stripe_offset);
1530 			/*
1531 			 * We're at the first sector, also populate @sblock
1532 			 * physical and dev.
1533 			 */
1534 			if (sector_index == 0) {
1535 				sblock->physical =
1536 					bioc->stripes[stripe_index].physical +
1537 					stripe_offset;
1538 				sblock->dev = bioc->stripes[stripe_index].dev;
1539 				sblock->physical_for_dev_replace =
1540 					original_sblock->physical_for_dev_replace;
1541 			}
1542 
1543 			BUG_ON(sector_index >= original_sblock->sector_count);
1544 			scrub_get_recover(recover);
1545 			sector->recover = recover;
1546 		}
1547 		scrub_put_recover(fs_info, recover);
1548 		length -= sublen;
1549 		logical += sublen;
1550 		sector_index++;
1551 	}
1552 
1553 	return 0;
1554 }
1555 
scrub_bio_wait_endio(struct bio * bio)1556 static void scrub_bio_wait_endio(struct bio *bio)
1557 {
1558 	complete(bio->bi_private);
1559 }
1560 
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_sector * sector)1561 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1562 					struct bio *bio,
1563 					struct scrub_sector *sector)
1564 {
1565 	DECLARE_COMPLETION_ONSTACK(done);
1566 
1567 	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1568 				 SECTOR_SHIFT;
1569 	bio->bi_private = &done;
1570 	bio->bi_end_io = scrub_bio_wait_endio;
1571 	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1572 
1573 	wait_for_completion_io(&done);
1574 	return blk_status_to_errno(bio->bi_status);
1575 }
1576 
scrub_recheck_block_on_raid56(struct btrfs_fs_info * fs_info,struct scrub_block * sblock)1577 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1578 					  struct scrub_block *sblock)
1579 {
1580 	struct scrub_sector *first_sector = sblock->sectors[0];
1581 	struct bio *bio;
1582 	int i;
1583 
1584 	/* All sectors in sblock belong to the same stripe on the same device. */
1585 	ASSERT(sblock->dev);
1586 	if (!sblock->dev->bdev)
1587 		goto out;
1588 
1589 	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1590 
1591 	for (i = 0; i < sblock->sector_count; i++) {
1592 		struct scrub_sector *sector = sblock->sectors[i];
1593 
1594 		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1595 	}
1596 
1597 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1598 		bio_put(bio);
1599 		goto out;
1600 	}
1601 
1602 	bio_put(bio);
1603 
1604 	scrub_recheck_block_checksum(sblock);
1605 
1606 	return;
1607 out:
1608 	for (i = 0; i < sblock->sector_count; i++)
1609 		sblock->sectors[i]->io_error = 1;
1610 
1611 	sblock->no_io_error_seen = 0;
1612 }
1613 
1614 /*
1615  * This function will check the on disk data for checksum errors, header errors
1616  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1617  * errored are marked as being bad. The goal is to enable scrub to take those
1618  * sectors that are not errored from all the mirrors so that the sectors that
1619  * are errored in the just handled mirror can be repaired.
1620  */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1621 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1622 				struct scrub_block *sblock,
1623 				int retry_failed_mirror)
1624 {
1625 	int i;
1626 
1627 	sblock->no_io_error_seen = 1;
1628 
1629 	/* short cut for raid56 */
1630 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1631 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1632 
1633 	for (i = 0; i < sblock->sector_count; i++) {
1634 		struct scrub_sector *sector = sblock->sectors[i];
1635 		struct bio bio;
1636 		struct bio_vec bvec;
1637 
1638 		if (sblock->dev->bdev == NULL) {
1639 			sector->io_error = 1;
1640 			sblock->no_io_error_seen = 0;
1641 			continue;
1642 		}
1643 
1644 		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1645 		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1646 		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1647 					SECTOR_SHIFT;
1648 
1649 		btrfsic_check_bio(&bio);
1650 		if (submit_bio_wait(&bio)) {
1651 			sector->io_error = 1;
1652 			sblock->no_io_error_seen = 0;
1653 		}
1654 
1655 		bio_uninit(&bio);
1656 	}
1657 
1658 	if (sblock->no_io_error_seen)
1659 		scrub_recheck_block_checksum(sblock);
1660 }
1661 
scrub_check_fsid(u8 fsid[],struct scrub_sector * sector)1662 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1663 {
1664 	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1665 	int ret;
1666 
1667 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1668 	return !ret;
1669 }
1670 
scrub_recheck_block_checksum(struct scrub_block * sblock)1671 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1672 {
1673 	sblock->header_error = 0;
1674 	sblock->checksum_error = 0;
1675 	sblock->generation_error = 0;
1676 
1677 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1678 		scrub_checksum_data(sblock);
1679 	else
1680 		scrub_checksum_tree_block(sblock);
1681 }
1682 
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1683 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1684 					     struct scrub_block *sblock_good)
1685 {
1686 	int i;
1687 	int ret = 0;
1688 
1689 	for (i = 0; i < sblock_bad->sector_count; i++) {
1690 		int ret_sub;
1691 
1692 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1693 							     sblock_good, i, 1);
1694 		if (ret_sub)
1695 			ret = ret_sub;
1696 	}
1697 
1698 	return ret;
1699 }
1700 
scrub_repair_sector_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int sector_num,int force_write)1701 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1702 					      struct scrub_block *sblock_good,
1703 					      int sector_num, int force_write)
1704 {
1705 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1706 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1707 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1708 	const u32 sectorsize = fs_info->sectorsize;
1709 
1710 	if (force_write || sblock_bad->header_error ||
1711 	    sblock_bad->checksum_error || sector_bad->io_error) {
1712 		struct bio bio;
1713 		struct bio_vec bvec;
1714 		int ret;
1715 
1716 		if (!sblock_bad->dev->bdev) {
1717 			btrfs_warn_rl(fs_info,
1718 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1719 			return -EIO;
1720 		}
1721 
1722 		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1723 		bio.bi_iter.bi_sector = (sblock_bad->physical +
1724 					 sector_bad->offset) >> SECTOR_SHIFT;
1725 		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1726 
1727 		btrfsic_check_bio(&bio);
1728 		ret = submit_bio_wait(&bio);
1729 		bio_uninit(&bio);
1730 
1731 		if (ret) {
1732 			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1733 				BTRFS_DEV_STAT_WRITE_ERRS);
1734 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1735 			return -EIO;
1736 		}
1737 	}
1738 
1739 	return 0;
1740 }
1741 
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1742 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1743 {
1744 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1745 	int i;
1746 
1747 	/*
1748 	 * This block is used for the check of the parity on the source device,
1749 	 * so the data needn't be written into the destination device.
1750 	 */
1751 	if (sblock->sparity)
1752 		return;
1753 
1754 	for (i = 0; i < sblock->sector_count; i++) {
1755 		int ret;
1756 
1757 		ret = scrub_write_sector_to_dev_replace(sblock, i);
1758 		if (ret)
1759 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1760 	}
1761 }
1762 
scrub_write_sector_to_dev_replace(struct scrub_block * sblock,int sector_num)1763 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1764 {
1765 	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1766 	struct scrub_sector *sector = sblock->sectors[sector_num];
1767 
1768 	if (sector->io_error)
1769 		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1770 
1771 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1772 }
1773 
fill_writer_pointer_gap(struct scrub_ctx * sctx,u64 physical)1774 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1775 {
1776 	int ret = 0;
1777 	u64 length;
1778 
1779 	if (!btrfs_is_zoned(sctx->fs_info))
1780 		return 0;
1781 
1782 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1783 		return 0;
1784 
1785 	if (sctx->write_pointer < physical) {
1786 		length = physical - sctx->write_pointer;
1787 
1788 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1789 						sctx->write_pointer, length);
1790 		if (!ret)
1791 			sctx->write_pointer = physical;
1792 	}
1793 	return ret;
1794 }
1795 
scrub_block_get(struct scrub_block * sblock)1796 static void scrub_block_get(struct scrub_block *sblock)
1797 {
1798 	refcount_inc(&sblock->refs);
1799 }
1800 
scrub_add_sector_to_wr_bio(struct scrub_ctx * sctx,struct scrub_sector * sector)1801 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1802 				      struct scrub_sector *sector)
1803 {
1804 	struct scrub_block *sblock = sector->sblock;
1805 	struct scrub_bio *sbio;
1806 	int ret;
1807 	const u32 sectorsize = sctx->fs_info->sectorsize;
1808 
1809 	mutex_lock(&sctx->wr_lock);
1810 again:
1811 	if (!sctx->wr_curr_bio) {
1812 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1813 					      GFP_KERNEL);
1814 		if (!sctx->wr_curr_bio) {
1815 			mutex_unlock(&sctx->wr_lock);
1816 			return -ENOMEM;
1817 		}
1818 		sctx->wr_curr_bio->sctx = sctx;
1819 		sctx->wr_curr_bio->sector_count = 0;
1820 	}
1821 	sbio = sctx->wr_curr_bio;
1822 	if (sbio->sector_count == 0) {
1823 		ret = fill_writer_pointer_gap(sctx, sector->offset +
1824 					      sblock->physical_for_dev_replace);
1825 		if (ret) {
1826 			mutex_unlock(&sctx->wr_lock);
1827 			return ret;
1828 		}
1829 
1830 		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1831 		sbio->logical = sblock->logical + sector->offset;
1832 		sbio->dev = sctx->wr_tgtdev;
1833 		if (!sbio->bio) {
1834 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1835 					      REQ_OP_WRITE, GFP_NOFS);
1836 		}
1837 		sbio->bio->bi_private = sbio;
1838 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1839 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1840 		sbio->status = 0;
1841 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1842 		   sblock->physical_for_dev_replace + sector->offset ||
1843 		   sbio->logical + sbio->sector_count * sectorsize !=
1844 		   sblock->logical + sector->offset) {
1845 		scrub_wr_submit(sctx);
1846 		goto again;
1847 	}
1848 
1849 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1850 	if (ret != sectorsize) {
1851 		if (sbio->sector_count < 1) {
1852 			bio_put(sbio->bio);
1853 			sbio->bio = NULL;
1854 			mutex_unlock(&sctx->wr_lock);
1855 			return -EIO;
1856 		}
1857 		scrub_wr_submit(sctx);
1858 		goto again;
1859 	}
1860 
1861 	sbio->sectors[sbio->sector_count] = sector;
1862 	scrub_sector_get(sector);
1863 	/*
1864 	 * Since ssector no longer holds a page, but uses sblock::pages, we
1865 	 * have to ensure the sblock had not been freed before our write bio
1866 	 * finished.
1867 	 */
1868 	scrub_block_get(sector->sblock);
1869 
1870 	sbio->sector_count++;
1871 	if (sbio->sector_count == sctx->sectors_per_bio)
1872 		scrub_wr_submit(sctx);
1873 	mutex_unlock(&sctx->wr_lock);
1874 
1875 	return 0;
1876 }
1877 
scrub_wr_submit(struct scrub_ctx * sctx)1878 static void scrub_wr_submit(struct scrub_ctx *sctx)
1879 {
1880 	struct scrub_bio *sbio;
1881 
1882 	if (!sctx->wr_curr_bio)
1883 		return;
1884 
1885 	sbio = sctx->wr_curr_bio;
1886 	sctx->wr_curr_bio = NULL;
1887 	scrub_pending_bio_inc(sctx);
1888 	/* process all writes in a single worker thread. Then the block layer
1889 	 * orders the requests before sending them to the driver which
1890 	 * doubled the write performance on spinning disks when measured
1891 	 * with Linux 3.5 */
1892 	btrfsic_check_bio(sbio->bio);
1893 	submit_bio(sbio->bio);
1894 
1895 	if (btrfs_is_zoned(sctx->fs_info))
1896 		sctx->write_pointer = sbio->physical + sbio->sector_count *
1897 			sctx->fs_info->sectorsize;
1898 }
1899 
scrub_wr_bio_end_io(struct bio * bio)1900 static void scrub_wr_bio_end_io(struct bio *bio)
1901 {
1902 	struct scrub_bio *sbio = bio->bi_private;
1903 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1904 
1905 	sbio->status = bio->bi_status;
1906 	sbio->bio = bio;
1907 
1908 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1909 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1910 }
1911 
scrub_wr_bio_end_io_worker(struct work_struct * work)1912 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1913 {
1914 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1915 	struct scrub_ctx *sctx = sbio->sctx;
1916 	int i;
1917 
1918 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1919 	if (sbio->status) {
1920 		struct btrfs_dev_replace *dev_replace =
1921 			&sbio->sctx->fs_info->dev_replace;
1922 
1923 		for (i = 0; i < sbio->sector_count; i++) {
1924 			struct scrub_sector *sector = sbio->sectors[i];
1925 
1926 			sector->io_error = 1;
1927 			atomic64_inc(&dev_replace->num_write_errors);
1928 		}
1929 	}
1930 
1931 	/*
1932 	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1933 	 * endio we should put the sblock.
1934 	 */
1935 	for (i = 0; i < sbio->sector_count; i++) {
1936 		scrub_block_put(sbio->sectors[i]->sblock);
1937 		scrub_sector_put(sbio->sectors[i]);
1938 	}
1939 
1940 	bio_put(sbio->bio);
1941 	kfree(sbio);
1942 	scrub_pending_bio_dec(sctx);
1943 }
1944 
scrub_checksum(struct scrub_block * sblock)1945 static int scrub_checksum(struct scrub_block *sblock)
1946 {
1947 	u64 flags;
1948 	int ret;
1949 
1950 	/*
1951 	 * No need to initialize these stats currently,
1952 	 * because this function only use return value
1953 	 * instead of these stats value.
1954 	 *
1955 	 * Todo:
1956 	 * always use stats
1957 	 */
1958 	sblock->header_error = 0;
1959 	sblock->generation_error = 0;
1960 	sblock->checksum_error = 0;
1961 
1962 	WARN_ON(sblock->sector_count < 1);
1963 	flags = sblock->sectors[0]->flags;
1964 	ret = 0;
1965 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1966 		ret = scrub_checksum_data(sblock);
1967 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1968 		ret = scrub_checksum_tree_block(sblock);
1969 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1970 		ret = scrub_checksum_super(sblock);
1971 	else
1972 		WARN_ON(1);
1973 	if (ret)
1974 		scrub_handle_errored_block(sblock);
1975 
1976 	return ret;
1977 }
1978 
scrub_checksum_data(struct scrub_block * sblock)1979 static int scrub_checksum_data(struct scrub_block *sblock)
1980 {
1981 	struct scrub_ctx *sctx = sblock->sctx;
1982 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1983 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1984 	u8 csum[BTRFS_CSUM_SIZE];
1985 	struct scrub_sector *sector;
1986 	char *kaddr;
1987 
1988 	BUG_ON(sblock->sector_count < 1);
1989 	sector = sblock->sectors[0];
1990 	if (!sector->have_csum)
1991 		return 0;
1992 
1993 	kaddr = scrub_sector_get_kaddr(sector);
1994 
1995 	shash->tfm = fs_info->csum_shash;
1996 	crypto_shash_init(shash);
1997 
1998 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
1999 
2000 	if (memcmp(csum, sector->csum, fs_info->csum_size))
2001 		sblock->checksum_error = 1;
2002 	return sblock->checksum_error;
2003 }
2004 
scrub_checksum_tree_block(struct scrub_block * sblock)2005 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2006 {
2007 	struct scrub_ctx *sctx = sblock->sctx;
2008 	struct btrfs_header *h;
2009 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2010 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2011 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2012 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2013 	/*
2014 	 * This is done in sectorsize steps even for metadata as there's a
2015 	 * constraint for nodesize to be aligned to sectorsize. This will need
2016 	 * to change so we don't misuse data and metadata units like that.
2017 	 */
2018 	const u32 sectorsize = sctx->fs_info->sectorsize;
2019 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2020 	int i;
2021 	struct scrub_sector *sector;
2022 	char *kaddr;
2023 
2024 	BUG_ON(sblock->sector_count < 1);
2025 
2026 	/* Each member in sectors is just one sector */
2027 	ASSERT(sblock->sector_count == num_sectors);
2028 
2029 	sector = sblock->sectors[0];
2030 	kaddr = scrub_sector_get_kaddr(sector);
2031 	h = (struct btrfs_header *)kaddr;
2032 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
2033 
2034 	/*
2035 	 * we don't use the getter functions here, as we
2036 	 * a) don't have an extent buffer and
2037 	 * b) the page is already kmapped
2038 	 */
2039 	if (sblock->logical != btrfs_stack_header_bytenr(h)) {
2040 		sblock->header_error = 1;
2041 		btrfs_warn_rl(fs_info,
2042 		"tree block %llu mirror %u has bad bytenr, has %llu want %llu",
2043 			      sblock->logical, sblock->mirror_num,
2044 			      btrfs_stack_header_bytenr(h),
2045 			      sblock->logical);
2046 		goto out;
2047 	}
2048 
2049 	if (!scrub_check_fsid(h->fsid, sector)) {
2050 		sblock->header_error = 1;
2051 		btrfs_warn_rl(fs_info,
2052 		"tree block %llu mirror %u has bad fsid, has %pU want %pU",
2053 			      sblock->logical, sblock->mirror_num,
2054 			      h->fsid, sblock->dev->fs_devices->fsid);
2055 		goto out;
2056 	}
2057 
2058 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, BTRFS_UUID_SIZE)) {
2059 		sblock->header_error = 1;
2060 		btrfs_warn_rl(fs_info,
2061 		"tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
2062 			      sblock->logical, sblock->mirror_num,
2063 			      h->chunk_tree_uuid, fs_info->chunk_tree_uuid);
2064 		goto out;
2065 	}
2066 
2067 	shash->tfm = fs_info->csum_shash;
2068 	crypto_shash_init(shash);
2069 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2070 			    sectorsize - BTRFS_CSUM_SIZE);
2071 
2072 	for (i = 1; i < num_sectors; i++) {
2073 		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2074 		crypto_shash_update(shash, kaddr, sectorsize);
2075 	}
2076 
2077 	crypto_shash_final(shash, calculated_csum);
2078 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) {
2079 		sblock->checksum_error = 1;
2080 		btrfs_warn_rl(fs_info,
2081 		"tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
2082 			      sblock->logical, sblock->mirror_num,
2083 			      CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
2084 			      CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
2085 		goto out;
2086 	}
2087 
2088 	if (sector->generation != btrfs_stack_header_generation(h)) {
2089 		sblock->header_error = 1;
2090 		sblock->generation_error = 1;
2091 		btrfs_warn_rl(fs_info,
2092 		"tree block %llu mirror %u has bad generation, has %llu want %llu",
2093 			      sblock->logical, sblock->mirror_num,
2094 			      btrfs_stack_header_generation(h),
2095 			      sector->generation);
2096 	}
2097 
2098 out:
2099 	return sblock->header_error || sblock->checksum_error;
2100 }
2101 
scrub_checksum_super(struct scrub_block * sblock)2102 static int scrub_checksum_super(struct scrub_block *sblock)
2103 {
2104 	struct btrfs_super_block *s;
2105 	struct scrub_ctx *sctx = sblock->sctx;
2106 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2107 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2108 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2109 	struct scrub_sector *sector;
2110 	char *kaddr;
2111 	int fail_gen = 0;
2112 	int fail_cor = 0;
2113 
2114 	BUG_ON(sblock->sector_count < 1);
2115 	sector = sblock->sectors[0];
2116 	kaddr = scrub_sector_get_kaddr(sector);
2117 	s = (struct btrfs_super_block *)kaddr;
2118 
2119 	if (sblock->logical != btrfs_super_bytenr(s))
2120 		++fail_cor;
2121 
2122 	if (sector->generation != btrfs_super_generation(s))
2123 		++fail_gen;
2124 
2125 	if (!scrub_check_fsid(s->fsid, sector))
2126 		++fail_cor;
2127 
2128 	shash->tfm = fs_info->csum_shash;
2129 	crypto_shash_init(shash);
2130 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2131 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2132 
2133 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2134 		++fail_cor;
2135 
2136 	return fail_cor + fail_gen;
2137 }
2138 
scrub_block_put(struct scrub_block * sblock)2139 static void scrub_block_put(struct scrub_block *sblock)
2140 {
2141 	if (refcount_dec_and_test(&sblock->refs)) {
2142 		int i;
2143 
2144 		if (sblock->sparity)
2145 			scrub_parity_put(sblock->sparity);
2146 
2147 		for (i = 0; i < sblock->sector_count; i++)
2148 			scrub_sector_put(sblock->sectors[i]);
2149 		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2150 			if (sblock->pages[i]) {
2151 				detach_scrub_page_private(sblock->pages[i]);
2152 				__free_page(sblock->pages[i]);
2153 			}
2154 		}
2155 		kfree(sblock);
2156 	}
2157 }
2158 
scrub_sector_get(struct scrub_sector * sector)2159 static void scrub_sector_get(struct scrub_sector *sector)
2160 {
2161 	atomic_inc(&sector->refs);
2162 }
2163 
scrub_sector_put(struct scrub_sector * sector)2164 static void scrub_sector_put(struct scrub_sector *sector)
2165 {
2166 	if (atomic_dec_and_test(&sector->refs))
2167 		kfree(sector);
2168 }
2169 
2170 /*
2171  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2172  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2173  */
scrub_throttle(struct scrub_ctx * sctx)2174 static void scrub_throttle(struct scrub_ctx *sctx)
2175 {
2176 	const int time_slice = 1000;
2177 	struct scrub_bio *sbio;
2178 	struct btrfs_device *device;
2179 	s64 delta;
2180 	ktime_t now;
2181 	u32 div;
2182 	u64 bwlimit;
2183 
2184 	sbio = sctx->bios[sctx->curr];
2185 	device = sbio->dev;
2186 	bwlimit = READ_ONCE(device->scrub_speed_max);
2187 	if (bwlimit == 0)
2188 		return;
2189 
2190 	/*
2191 	 * Slice is divided into intervals when the IO is submitted, adjust by
2192 	 * bwlimit and maximum of 64 intervals.
2193 	 */
2194 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2195 	div = min_t(u32, 64, div);
2196 
2197 	/* Start new epoch, set deadline */
2198 	now = ktime_get();
2199 	if (sctx->throttle_deadline == 0) {
2200 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2201 		sctx->throttle_sent = 0;
2202 	}
2203 
2204 	/* Still in the time to send? */
2205 	if (ktime_before(now, sctx->throttle_deadline)) {
2206 		/* If current bio is within the limit, send it */
2207 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2208 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2209 			return;
2210 
2211 		/* We're over the limit, sleep until the rest of the slice */
2212 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2213 	} else {
2214 		/* New request after deadline, start new epoch */
2215 		delta = 0;
2216 	}
2217 
2218 	if (delta) {
2219 		long timeout;
2220 
2221 		timeout = div_u64(delta * HZ, 1000);
2222 		schedule_timeout_interruptible(timeout);
2223 	}
2224 
2225 	/* Next call will start the deadline period */
2226 	sctx->throttle_deadline = 0;
2227 }
2228 
scrub_submit(struct scrub_ctx * sctx)2229 static void scrub_submit(struct scrub_ctx *sctx)
2230 {
2231 	struct scrub_bio *sbio;
2232 
2233 	if (sctx->curr == -1)
2234 		return;
2235 
2236 	scrub_throttle(sctx);
2237 
2238 	sbio = sctx->bios[sctx->curr];
2239 	sctx->curr = -1;
2240 	scrub_pending_bio_inc(sctx);
2241 	btrfsic_check_bio(sbio->bio);
2242 	submit_bio(sbio->bio);
2243 }
2244 
scrub_add_sector_to_rd_bio(struct scrub_ctx * sctx,struct scrub_sector * sector)2245 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2246 				      struct scrub_sector *sector)
2247 {
2248 	struct scrub_block *sblock = sector->sblock;
2249 	struct scrub_bio *sbio;
2250 	const u32 sectorsize = sctx->fs_info->sectorsize;
2251 	int ret;
2252 
2253 again:
2254 	/*
2255 	 * grab a fresh bio or wait for one to become available
2256 	 */
2257 	while (sctx->curr == -1) {
2258 		spin_lock(&sctx->list_lock);
2259 		sctx->curr = sctx->first_free;
2260 		if (sctx->curr != -1) {
2261 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2262 			sctx->bios[sctx->curr]->next_free = -1;
2263 			sctx->bios[sctx->curr]->sector_count = 0;
2264 			spin_unlock(&sctx->list_lock);
2265 		} else {
2266 			spin_unlock(&sctx->list_lock);
2267 			wait_event(sctx->list_wait, sctx->first_free != -1);
2268 		}
2269 	}
2270 	sbio = sctx->bios[sctx->curr];
2271 	if (sbio->sector_count == 0) {
2272 		sbio->physical = sblock->physical + sector->offset;
2273 		sbio->logical = sblock->logical + sector->offset;
2274 		sbio->dev = sblock->dev;
2275 		if (!sbio->bio) {
2276 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2277 					      REQ_OP_READ, GFP_NOFS);
2278 		}
2279 		sbio->bio->bi_private = sbio;
2280 		sbio->bio->bi_end_io = scrub_bio_end_io;
2281 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2282 		sbio->status = 0;
2283 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2284 		   sblock->physical + sector->offset ||
2285 		   sbio->logical + sbio->sector_count * sectorsize !=
2286 		   sblock->logical + sector->offset ||
2287 		   sbio->dev != sblock->dev) {
2288 		scrub_submit(sctx);
2289 		goto again;
2290 	}
2291 
2292 	sbio->sectors[sbio->sector_count] = sector;
2293 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2294 	if (ret != sectorsize) {
2295 		if (sbio->sector_count < 1) {
2296 			bio_put(sbio->bio);
2297 			sbio->bio = NULL;
2298 			return -EIO;
2299 		}
2300 		scrub_submit(sctx);
2301 		goto again;
2302 	}
2303 
2304 	scrub_block_get(sblock); /* one for the page added to the bio */
2305 	atomic_inc(&sblock->outstanding_sectors);
2306 	sbio->sector_count++;
2307 	if (sbio->sector_count == sctx->sectors_per_bio)
2308 		scrub_submit(sctx);
2309 
2310 	return 0;
2311 }
2312 
scrub_missing_raid56_end_io(struct bio * bio)2313 static void scrub_missing_raid56_end_io(struct bio *bio)
2314 {
2315 	struct scrub_block *sblock = bio->bi_private;
2316 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2317 
2318 	btrfs_bio_counter_dec(fs_info);
2319 	if (bio->bi_status)
2320 		sblock->no_io_error_seen = 0;
2321 
2322 	bio_put(bio);
2323 
2324 	queue_work(fs_info->scrub_workers, &sblock->work);
2325 }
2326 
scrub_missing_raid56_worker(struct work_struct * work)2327 static void scrub_missing_raid56_worker(struct work_struct *work)
2328 {
2329 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2330 	struct scrub_ctx *sctx = sblock->sctx;
2331 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2332 	u64 logical;
2333 	struct btrfs_device *dev;
2334 
2335 	logical = sblock->logical;
2336 	dev = sblock->dev;
2337 
2338 	if (sblock->no_io_error_seen)
2339 		scrub_recheck_block_checksum(sblock);
2340 
2341 	if (!sblock->no_io_error_seen) {
2342 		spin_lock(&sctx->stat_lock);
2343 		sctx->stat.read_errors++;
2344 		spin_unlock(&sctx->stat_lock);
2345 		btrfs_err_rl_in_rcu(fs_info,
2346 			"IO error rebuilding logical %llu for dev %s",
2347 			logical, rcu_str_deref(dev->name));
2348 	} else if (sblock->header_error || sblock->checksum_error) {
2349 		spin_lock(&sctx->stat_lock);
2350 		sctx->stat.uncorrectable_errors++;
2351 		spin_unlock(&sctx->stat_lock);
2352 		btrfs_err_rl_in_rcu(fs_info,
2353 			"failed to rebuild valid logical %llu for dev %s",
2354 			logical, rcu_str_deref(dev->name));
2355 	} else {
2356 		scrub_write_block_to_dev_replace(sblock);
2357 	}
2358 
2359 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2360 		mutex_lock(&sctx->wr_lock);
2361 		scrub_wr_submit(sctx);
2362 		mutex_unlock(&sctx->wr_lock);
2363 	}
2364 
2365 	scrub_block_put(sblock);
2366 	scrub_pending_bio_dec(sctx);
2367 }
2368 
scrub_missing_raid56_pages(struct scrub_block * sblock)2369 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2370 {
2371 	struct scrub_ctx *sctx = sblock->sctx;
2372 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2373 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2374 	u64 logical = sblock->logical;
2375 	struct btrfs_io_context *bioc = NULL;
2376 	struct bio *bio;
2377 	struct btrfs_raid_bio *rbio;
2378 	int ret;
2379 	int i;
2380 
2381 	btrfs_bio_counter_inc_blocked(fs_info);
2382 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2383 			       &length, &bioc);
2384 	if (ret || !bioc || !bioc->raid_map)
2385 		goto bioc_out;
2386 
2387 	if (WARN_ON(!sctx->is_dev_replace ||
2388 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2389 		/*
2390 		 * We shouldn't be scrubbing a missing device. Even for dev
2391 		 * replace, we should only get here for RAID 5/6. We either
2392 		 * managed to mount something with no mirrors remaining or
2393 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2394 		 */
2395 		goto bioc_out;
2396 	}
2397 
2398 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2399 	bio->bi_iter.bi_sector = logical >> 9;
2400 	bio->bi_private = sblock;
2401 	bio->bi_end_io = scrub_missing_raid56_end_io;
2402 
2403 	rbio = raid56_alloc_missing_rbio(bio, bioc);
2404 	if (!rbio)
2405 		goto rbio_out;
2406 
2407 	for (i = 0; i < sblock->sector_count; i++) {
2408 		struct scrub_sector *sector = sblock->sectors[i];
2409 
2410 		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2411 				       scrub_sector_get_page_offset(sector),
2412 				       sector->offset + sector->sblock->logical);
2413 	}
2414 
2415 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2416 	scrub_block_get(sblock);
2417 	scrub_pending_bio_inc(sctx);
2418 	raid56_submit_missing_rbio(rbio);
2419 	btrfs_put_bioc(bioc);
2420 	return;
2421 
2422 rbio_out:
2423 	bio_put(bio);
2424 bioc_out:
2425 	btrfs_bio_counter_dec(fs_info);
2426 	btrfs_put_bioc(bioc);
2427 	spin_lock(&sctx->stat_lock);
2428 	sctx->stat.malloc_errors++;
2429 	spin_unlock(&sctx->stat_lock);
2430 }
2431 
scrub_sectors(struct scrub_ctx * sctx,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,u64 physical_for_dev_replace)2432 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2433 		       u64 physical, struct btrfs_device *dev, u64 flags,
2434 		       u64 gen, int mirror_num, u8 *csum,
2435 		       u64 physical_for_dev_replace)
2436 {
2437 	struct scrub_block *sblock;
2438 	const u32 sectorsize = sctx->fs_info->sectorsize;
2439 	int index;
2440 
2441 	sblock = alloc_scrub_block(sctx, dev, logical, physical,
2442 				   physical_for_dev_replace, mirror_num);
2443 	if (!sblock) {
2444 		spin_lock(&sctx->stat_lock);
2445 		sctx->stat.malloc_errors++;
2446 		spin_unlock(&sctx->stat_lock);
2447 		return -ENOMEM;
2448 	}
2449 
2450 	for (index = 0; len > 0; index++) {
2451 		struct scrub_sector *sector;
2452 		/*
2453 		 * Here we will allocate one page for one sector to scrub.
2454 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2455 		 * more memory for PAGE_SIZE > sectorsize case.
2456 		 */
2457 		u32 l = min(sectorsize, len);
2458 
2459 		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2460 		if (!sector) {
2461 			spin_lock(&sctx->stat_lock);
2462 			sctx->stat.malloc_errors++;
2463 			spin_unlock(&sctx->stat_lock);
2464 			scrub_block_put(sblock);
2465 			return -ENOMEM;
2466 		}
2467 		sector->flags = flags;
2468 		sector->generation = gen;
2469 		if (csum) {
2470 			sector->have_csum = 1;
2471 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2472 		} else {
2473 			sector->have_csum = 0;
2474 		}
2475 		len -= l;
2476 		logical += l;
2477 		physical += l;
2478 		physical_for_dev_replace += l;
2479 	}
2480 
2481 	WARN_ON(sblock->sector_count == 0);
2482 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2483 		/*
2484 		 * This case should only be hit for RAID 5/6 device replace. See
2485 		 * the comment in scrub_missing_raid56_pages() for details.
2486 		 */
2487 		scrub_missing_raid56_pages(sblock);
2488 	} else {
2489 		for (index = 0; index < sblock->sector_count; index++) {
2490 			struct scrub_sector *sector = sblock->sectors[index];
2491 			int ret;
2492 
2493 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2494 			if (ret) {
2495 				scrub_block_put(sblock);
2496 				return ret;
2497 			}
2498 		}
2499 
2500 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2501 			scrub_submit(sctx);
2502 	}
2503 
2504 	/* last one frees, either here or in bio completion for last page */
2505 	scrub_block_put(sblock);
2506 	return 0;
2507 }
2508 
scrub_bio_end_io(struct bio * bio)2509 static void scrub_bio_end_io(struct bio *bio)
2510 {
2511 	struct scrub_bio *sbio = bio->bi_private;
2512 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2513 
2514 	sbio->status = bio->bi_status;
2515 	sbio->bio = bio;
2516 
2517 	queue_work(fs_info->scrub_workers, &sbio->work);
2518 }
2519 
scrub_bio_end_io_worker(struct work_struct * work)2520 static void scrub_bio_end_io_worker(struct work_struct *work)
2521 {
2522 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2523 	struct scrub_ctx *sctx = sbio->sctx;
2524 	int i;
2525 
2526 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2527 	if (sbio->status) {
2528 		for (i = 0; i < sbio->sector_count; i++) {
2529 			struct scrub_sector *sector = sbio->sectors[i];
2530 
2531 			sector->io_error = 1;
2532 			sector->sblock->no_io_error_seen = 0;
2533 		}
2534 	}
2535 
2536 	/* Now complete the scrub_block items that have all pages completed */
2537 	for (i = 0; i < sbio->sector_count; i++) {
2538 		struct scrub_sector *sector = sbio->sectors[i];
2539 		struct scrub_block *sblock = sector->sblock;
2540 
2541 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2542 			scrub_block_complete(sblock);
2543 		scrub_block_put(sblock);
2544 	}
2545 
2546 	bio_put(sbio->bio);
2547 	sbio->bio = NULL;
2548 	spin_lock(&sctx->list_lock);
2549 	sbio->next_free = sctx->first_free;
2550 	sctx->first_free = sbio->index;
2551 	spin_unlock(&sctx->list_lock);
2552 
2553 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2554 		mutex_lock(&sctx->wr_lock);
2555 		scrub_wr_submit(sctx);
2556 		mutex_unlock(&sctx->wr_lock);
2557 	}
2558 
2559 	scrub_pending_bio_dec(sctx);
2560 }
2561 
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u32 len)2562 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2563 				       unsigned long *bitmap,
2564 				       u64 start, u32 len)
2565 {
2566 	u64 offset;
2567 	u32 nsectors;
2568 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2569 
2570 	if (len >= sparity->stripe_len) {
2571 		bitmap_set(bitmap, 0, sparity->nsectors);
2572 		return;
2573 	}
2574 
2575 	start -= sparity->logic_start;
2576 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2577 	offset = offset >> sectorsize_bits;
2578 	nsectors = len >> sectorsize_bits;
2579 
2580 	if (offset + nsectors <= sparity->nsectors) {
2581 		bitmap_set(bitmap, offset, nsectors);
2582 		return;
2583 	}
2584 
2585 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2586 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2587 }
2588 
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u32 len)2589 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2590 						   u64 start, u32 len)
2591 {
2592 	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2593 }
2594 
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u32 len)2595 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2596 						  u64 start, u32 len)
2597 {
2598 	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2599 }
2600 
scrub_block_complete(struct scrub_block * sblock)2601 static void scrub_block_complete(struct scrub_block *sblock)
2602 {
2603 	int corrupted = 0;
2604 
2605 	if (!sblock->no_io_error_seen) {
2606 		corrupted = 1;
2607 		scrub_handle_errored_block(sblock);
2608 	} else {
2609 		/*
2610 		 * if has checksum error, write via repair mechanism in
2611 		 * dev replace case, otherwise write here in dev replace
2612 		 * case.
2613 		 */
2614 		corrupted = scrub_checksum(sblock);
2615 		if (!corrupted && sblock->sctx->is_dev_replace)
2616 			scrub_write_block_to_dev_replace(sblock);
2617 	}
2618 
2619 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2620 		u64 start = sblock->logical;
2621 		u64 end = sblock->logical +
2622 			  sblock->sectors[sblock->sector_count - 1]->offset +
2623 			  sblock->sctx->fs_info->sectorsize;
2624 
2625 		ASSERT(end - start <= U32_MAX);
2626 		scrub_parity_mark_sectors_error(sblock->sparity,
2627 						start, end - start);
2628 	}
2629 }
2630 
drop_csum_range(struct scrub_ctx * sctx,struct btrfs_ordered_sum * sum)2631 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2632 {
2633 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2634 	list_del(&sum->list);
2635 	kfree(sum);
2636 }
2637 
2638 /*
2639  * Find the desired csum for range [logical, logical + sectorsize), and store
2640  * the csum into @csum.
2641  *
2642  * The search source is sctx->csum_list, which is a pre-populated list
2643  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2644  * that is before @logical.
2645  *
2646  * Return 0 if there is no csum for the range.
2647  * Return 1 if there is csum for the range and copied to @csum.
2648  */
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2649 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2650 {
2651 	bool found = false;
2652 
2653 	while (!list_empty(&sctx->csum_list)) {
2654 		struct btrfs_ordered_sum *sum = NULL;
2655 		unsigned long index;
2656 		unsigned long num_sectors;
2657 
2658 		sum = list_first_entry(&sctx->csum_list,
2659 				       struct btrfs_ordered_sum, list);
2660 		/* The current csum range is beyond our range, no csum found */
2661 		if (sum->bytenr > logical)
2662 			break;
2663 
2664 		/*
2665 		 * The current sum is before our bytenr, since scrub is always
2666 		 * done in bytenr order, the csum will never be used anymore,
2667 		 * clean it up so that later calls won't bother with the range,
2668 		 * and continue search the next range.
2669 		 */
2670 		if (sum->bytenr + sum->len <= logical) {
2671 			drop_csum_range(sctx, sum);
2672 			continue;
2673 		}
2674 
2675 		/* Now the csum range covers our bytenr, copy the csum */
2676 		found = true;
2677 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2678 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2679 
2680 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2681 		       sctx->fs_info->csum_size);
2682 
2683 		/* Cleanup the range if we're at the end of the csum range */
2684 		if (index == num_sectors - 1)
2685 			drop_csum_range(sctx, sum);
2686 		break;
2687 	}
2688 	if (!found)
2689 		return 0;
2690 	return 1;
2691 }
2692 
2693 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,struct map_lookup * map,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2694 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2695 			u64 logical, u32 len,
2696 			u64 physical, struct btrfs_device *dev, u64 flags,
2697 			u64 gen, int mirror_num)
2698 {
2699 	struct btrfs_device *src_dev = dev;
2700 	u64 src_physical = physical;
2701 	int src_mirror = mirror_num;
2702 	int ret;
2703 	u8 csum[BTRFS_CSUM_SIZE];
2704 	u32 blocksize;
2705 
2706 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2707 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2708 			blocksize = map->stripe_len;
2709 		else
2710 			blocksize = sctx->fs_info->sectorsize;
2711 		spin_lock(&sctx->stat_lock);
2712 		sctx->stat.data_extents_scrubbed++;
2713 		sctx->stat.data_bytes_scrubbed += len;
2714 		spin_unlock(&sctx->stat_lock);
2715 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2716 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2717 			blocksize = map->stripe_len;
2718 		else
2719 			blocksize = sctx->fs_info->nodesize;
2720 		spin_lock(&sctx->stat_lock);
2721 		sctx->stat.tree_extents_scrubbed++;
2722 		sctx->stat.tree_bytes_scrubbed += len;
2723 		spin_unlock(&sctx->stat_lock);
2724 	} else {
2725 		blocksize = sctx->fs_info->sectorsize;
2726 		WARN_ON(1);
2727 	}
2728 
2729 	/*
2730 	 * For dev-replace case, we can have @dev being a missing device.
2731 	 * Regular scrub will avoid its execution on missing device at all,
2732 	 * as that would trigger tons of read error.
2733 	 *
2734 	 * Reading from missing device will cause read error counts to
2735 	 * increase unnecessarily.
2736 	 * So here we change the read source to a good mirror.
2737 	 */
2738 	if (sctx->is_dev_replace && !dev->bdev)
2739 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2740 				     &src_dev, &src_mirror);
2741 	while (len) {
2742 		u32 l = min(len, blocksize);
2743 		int have_csum = 0;
2744 
2745 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2746 			/* push csums to sbio */
2747 			have_csum = scrub_find_csum(sctx, logical, csum);
2748 			if (have_csum == 0)
2749 				++sctx->stat.no_csum;
2750 		}
2751 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2752 				    flags, gen, src_mirror,
2753 				    have_csum ? csum : NULL, physical);
2754 		if (ret)
2755 			return ret;
2756 		len -= l;
2757 		logical += l;
2758 		physical += l;
2759 		src_physical += l;
2760 	}
2761 	return 0;
2762 }
2763 
scrub_sectors_for_parity(struct scrub_parity * sparity,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2764 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2765 				  u64 logical, u32 len,
2766 				  u64 physical, struct btrfs_device *dev,
2767 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2768 {
2769 	struct scrub_ctx *sctx = sparity->sctx;
2770 	struct scrub_block *sblock;
2771 	const u32 sectorsize = sctx->fs_info->sectorsize;
2772 	int index;
2773 
2774 	ASSERT(IS_ALIGNED(len, sectorsize));
2775 
2776 	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2777 	if (!sblock) {
2778 		spin_lock(&sctx->stat_lock);
2779 		sctx->stat.malloc_errors++;
2780 		spin_unlock(&sctx->stat_lock);
2781 		return -ENOMEM;
2782 	}
2783 
2784 	sblock->sparity = sparity;
2785 	scrub_parity_get(sparity);
2786 
2787 	for (index = 0; len > 0; index++) {
2788 		struct scrub_sector *sector;
2789 
2790 		sector = alloc_scrub_sector(sblock, logical, GFP_KERNEL);
2791 		if (!sector) {
2792 			spin_lock(&sctx->stat_lock);
2793 			sctx->stat.malloc_errors++;
2794 			spin_unlock(&sctx->stat_lock);
2795 			scrub_block_put(sblock);
2796 			return -ENOMEM;
2797 		}
2798 		sblock->sectors[index] = sector;
2799 		/* For scrub parity */
2800 		scrub_sector_get(sector);
2801 		list_add_tail(&sector->list, &sparity->sectors_list);
2802 		sector->flags = flags;
2803 		sector->generation = gen;
2804 		if (csum) {
2805 			sector->have_csum = 1;
2806 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2807 		} else {
2808 			sector->have_csum = 0;
2809 		}
2810 
2811 		/* Iterate over the stripe range in sectorsize steps */
2812 		len -= sectorsize;
2813 		logical += sectorsize;
2814 		physical += sectorsize;
2815 	}
2816 
2817 	WARN_ON(sblock->sector_count == 0);
2818 	for (index = 0; index < sblock->sector_count; index++) {
2819 		struct scrub_sector *sector = sblock->sectors[index];
2820 		int ret;
2821 
2822 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2823 		if (ret) {
2824 			scrub_block_put(sblock);
2825 			return ret;
2826 		}
2827 	}
2828 
2829 	/* Last one frees, either here or in bio completion for last sector */
2830 	scrub_block_put(sblock);
2831 	return 0;
2832 }
2833 
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u32 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2834 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2835 				   u64 logical, u32 len,
2836 				   u64 physical, struct btrfs_device *dev,
2837 				   u64 flags, u64 gen, int mirror_num)
2838 {
2839 	struct scrub_ctx *sctx = sparity->sctx;
2840 	int ret;
2841 	u8 csum[BTRFS_CSUM_SIZE];
2842 	u32 blocksize;
2843 
2844 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2845 		scrub_parity_mark_sectors_error(sparity, logical, len);
2846 		return 0;
2847 	}
2848 
2849 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2850 		blocksize = sparity->stripe_len;
2851 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2852 		blocksize = sparity->stripe_len;
2853 	} else {
2854 		blocksize = sctx->fs_info->sectorsize;
2855 		WARN_ON(1);
2856 	}
2857 
2858 	while (len) {
2859 		u32 l = min(len, blocksize);
2860 		int have_csum = 0;
2861 
2862 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2863 			/* push csums to sbio */
2864 			have_csum = scrub_find_csum(sctx, logical, csum);
2865 			if (have_csum == 0)
2866 				goto skip;
2867 		}
2868 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2869 					     flags, gen, mirror_num,
2870 					     have_csum ? csum : NULL);
2871 		if (ret)
2872 			return ret;
2873 skip:
2874 		len -= l;
2875 		logical += l;
2876 		physical += l;
2877 	}
2878 	return 0;
2879 }
2880 
2881 /*
2882  * Given a physical address, this will calculate it's
2883  * logical offset. if this is a parity stripe, it will return
2884  * the most left data stripe's logical offset.
2885  *
2886  * return 0 if it is a data stripe, 1 means parity stripe.
2887  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2888 static int get_raid56_logic_offset(u64 physical, int num,
2889 				   struct map_lookup *map, u64 *offset,
2890 				   u64 *stripe_start)
2891 {
2892 	int i;
2893 	int j = 0;
2894 	u64 stripe_nr;
2895 	u64 last_offset;
2896 	u32 stripe_index;
2897 	u32 rot;
2898 	const int data_stripes = nr_data_stripes(map);
2899 
2900 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2901 	if (stripe_start)
2902 		*stripe_start = last_offset;
2903 
2904 	*offset = last_offset;
2905 	for (i = 0; i < data_stripes; i++) {
2906 		*offset = last_offset + i * map->stripe_len;
2907 
2908 		stripe_nr = div64_u64(*offset, map->stripe_len);
2909 		stripe_nr = div_u64(stripe_nr, data_stripes);
2910 
2911 		/* Work out the disk rotation on this stripe-set */
2912 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2913 		/* calculate which stripe this data locates */
2914 		rot += i;
2915 		stripe_index = rot % map->num_stripes;
2916 		if (stripe_index == num)
2917 			return 0;
2918 		if (stripe_index < num)
2919 			j++;
2920 	}
2921 	*offset = last_offset + j * map->stripe_len;
2922 	return 1;
2923 }
2924 
scrub_free_parity(struct scrub_parity * sparity)2925 static void scrub_free_parity(struct scrub_parity *sparity)
2926 {
2927 	struct scrub_ctx *sctx = sparity->sctx;
2928 	struct scrub_sector *curr, *next;
2929 	int nbits;
2930 
2931 	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2932 	if (nbits) {
2933 		spin_lock(&sctx->stat_lock);
2934 		sctx->stat.read_errors += nbits;
2935 		sctx->stat.uncorrectable_errors += nbits;
2936 		spin_unlock(&sctx->stat_lock);
2937 	}
2938 
2939 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2940 		list_del_init(&curr->list);
2941 		scrub_sector_put(curr);
2942 	}
2943 
2944 	kfree(sparity);
2945 }
2946 
scrub_parity_bio_endio_worker(struct work_struct * work)2947 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2948 {
2949 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2950 						    work);
2951 	struct scrub_ctx *sctx = sparity->sctx;
2952 
2953 	btrfs_bio_counter_dec(sctx->fs_info);
2954 	scrub_free_parity(sparity);
2955 	scrub_pending_bio_dec(sctx);
2956 }
2957 
scrub_parity_bio_endio(struct bio * bio)2958 static void scrub_parity_bio_endio(struct bio *bio)
2959 {
2960 	struct scrub_parity *sparity = bio->bi_private;
2961 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2962 
2963 	if (bio->bi_status)
2964 		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2965 			  &sparity->dbitmap, sparity->nsectors);
2966 
2967 	bio_put(bio);
2968 
2969 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2970 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2971 }
2972 
scrub_parity_check_and_repair(struct scrub_parity * sparity)2973 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2974 {
2975 	struct scrub_ctx *sctx = sparity->sctx;
2976 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2977 	struct bio *bio;
2978 	struct btrfs_raid_bio *rbio;
2979 	struct btrfs_io_context *bioc = NULL;
2980 	u64 length;
2981 	int ret;
2982 
2983 	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2984 			   &sparity->ebitmap, sparity->nsectors))
2985 		goto out;
2986 
2987 	length = sparity->logic_end - sparity->logic_start;
2988 
2989 	btrfs_bio_counter_inc_blocked(fs_info);
2990 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2991 			       &length, &bioc);
2992 	if (ret || !bioc || !bioc->raid_map)
2993 		goto bioc_out;
2994 
2995 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2996 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2997 	bio->bi_private = sparity;
2998 	bio->bi_end_io = scrub_parity_bio_endio;
2999 
3000 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
3001 					      sparity->scrub_dev,
3002 					      &sparity->dbitmap,
3003 					      sparity->nsectors);
3004 	btrfs_put_bioc(bioc);
3005 	if (!rbio)
3006 		goto rbio_out;
3007 
3008 	scrub_pending_bio_inc(sctx);
3009 	raid56_parity_submit_scrub_rbio(rbio);
3010 	return;
3011 
3012 rbio_out:
3013 	bio_put(bio);
3014 bioc_out:
3015 	btrfs_bio_counter_dec(fs_info);
3016 	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3017 		  sparity->nsectors);
3018 	spin_lock(&sctx->stat_lock);
3019 	sctx->stat.malloc_errors++;
3020 	spin_unlock(&sctx->stat_lock);
3021 out:
3022 	scrub_free_parity(sparity);
3023 }
3024 
scrub_parity_get(struct scrub_parity * sparity)3025 static void scrub_parity_get(struct scrub_parity *sparity)
3026 {
3027 	refcount_inc(&sparity->refs);
3028 }
3029 
scrub_parity_put(struct scrub_parity * sparity)3030 static void scrub_parity_put(struct scrub_parity *sparity)
3031 {
3032 	if (!refcount_dec_and_test(&sparity->refs))
3033 		return;
3034 
3035 	scrub_parity_check_and_repair(sparity);
3036 }
3037 
3038 /*
3039  * Return 0 if the extent item range covers any byte of the range.
3040  * Return <0 if the extent item is before @search_start.
3041  * Return >0 if the extent item is after @start_start + @search_len.
3042  */
compare_extent_item_range(struct btrfs_path * path,u64 search_start,u64 search_len)3043 static int compare_extent_item_range(struct btrfs_path *path,
3044 				     u64 search_start, u64 search_len)
3045 {
3046 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3047 	u64 len;
3048 	struct btrfs_key key;
3049 
3050 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3051 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3052 	       key.type == BTRFS_METADATA_ITEM_KEY);
3053 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3054 		len = fs_info->nodesize;
3055 	else
3056 		len = key.offset;
3057 
3058 	if (key.objectid + len <= search_start)
3059 		return -1;
3060 	if (key.objectid >= search_start + search_len)
3061 		return 1;
3062 	return 0;
3063 }
3064 
3065 /*
3066  * Locate one extent item which covers any byte in range
3067  * [@search_start, @search_start + @search_length)
3068  *
3069  * If the path is not initialized, we will initialize the search by doing
3070  * a btrfs_search_slot().
3071  * If the path is already initialized, we will use the path as the initial
3072  * slot, to avoid duplicated btrfs_search_slot() calls.
3073  *
3074  * NOTE: If an extent item starts before @search_start, we will still
3075  * return the extent item. This is for data extent crossing stripe boundary.
3076  *
3077  * Return 0 if we found such extent item, and @path will point to the extent item.
3078  * Return >0 if no such extent item can be found, and @path will be released.
3079  * Return <0 if hit fatal error, and @path will be released.
3080  */
find_first_extent_item(struct btrfs_root * extent_root,struct btrfs_path * path,u64 search_start,u64 search_len)3081 static int find_first_extent_item(struct btrfs_root *extent_root,
3082 				  struct btrfs_path *path,
3083 				  u64 search_start, u64 search_len)
3084 {
3085 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3086 	struct btrfs_key key;
3087 	int ret;
3088 
3089 	/* Continue using the existing path */
3090 	if (path->nodes[0])
3091 		goto search_forward;
3092 
3093 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3094 		key.type = BTRFS_METADATA_ITEM_KEY;
3095 	else
3096 		key.type = BTRFS_EXTENT_ITEM_KEY;
3097 	key.objectid = search_start;
3098 	key.offset = (u64)-1;
3099 
3100 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3101 	if (ret < 0)
3102 		return ret;
3103 
3104 	ASSERT(ret > 0);
3105 	/*
3106 	 * Here we intentionally pass 0 as @min_objectid, as there could be
3107 	 * an extent item starting before @search_start.
3108 	 */
3109 	ret = btrfs_previous_extent_item(extent_root, path, 0);
3110 	if (ret < 0)
3111 		return ret;
3112 	/*
3113 	 * No matter whether we have found an extent item, the next loop will
3114 	 * properly do every check on the key.
3115 	 */
3116 search_forward:
3117 	while (true) {
3118 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3119 		if (key.objectid >= search_start + search_len)
3120 			break;
3121 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
3122 		    key.type != BTRFS_EXTENT_ITEM_KEY)
3123 			goto next;
3124 
3125 		ret = compare_extent_item_range(path, search_start, search_len);
3126 		if (ret == 0)
3127 			return ret;
3128 		if (ret > 0)
3129 			break;
3130 next:
3131 		path->slots[0]++;
3132 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3133 			ret = btrfs_next_leaf(extent_root, path);
3134 			if (ret) {
3135 				/* Either no more item or fatal error */
3136 				btrfs_release_path(path);
3137 				return ret;
3138 			}
3139 		}
3140 	}
3141 	btrfs_release_path(path);
3142 	return 1;
3143 }
3144 
get_extent_info(struct btrfs_path * path,u64 * extent_start_ret,u64 * size_ret,u64 * flags_ret,u64 * generation_ret)3145 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3146 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3147 {
3148 	struct btrfs_key key;
3149 	struct btrfs_extent_item *ei;
3150 
3151 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3152 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3153 	       key.type == BTRFS_EXTENT_ITEM_KEY);
3154 	*extent_start_ret = key.objectid;
3155 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3156 		*size_ret = path->nodes[0]->fs_info->nodesize;
3157 	else
3158 		*size_ret = key.offset;
3159 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3160 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3161 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3162 }
3163 
does_range_cross_boundary(u64 extent_start,u64 extent_len,u64 boundary_start,u64 boudary_len)3164 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3165 				      u64 boundary_start, u64 boudary_len)
3166 {
3167 	return (extent_start < boundary_start &&
3168 		extent_start + extent_len > boundary_start) ||
3169 	       (extent_start < boundary_start + boudary_len &&
3170 		extent_start + extent_len > boundary_start + boudary_len);
3171 }
3172 
scrub_raid56_data_stripe_for_parity(struct scrub_ctx * sctx,struct scrub_parity * sparity,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logical)3173 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3174 					       struct scrub_parity *sparity,
3175 					       struct map_lookup *map,
3176 					       struct btrfs_device *sdev,
3177 					       struct btrfs_path *path,
3178 					       u64 logical)
3179 {
3180 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3181 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3182 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3183 	u64 cur_logical = logical;
3184 	int ret;
3185 
3186 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3187 
3188 	/* Path must not be populated */
3189 	ASSERT(!path->nodes[0]);
3190 
3191 	while (cur_logical < logical + map->stripe_len) {
3192 		struct btrfs_io_context *bioc = NULL;
3193 		struct btrfs_device *extent_dev;
3194 		u64 extent_start;
3195 		u64 extent_size;
3196 		u64 mapped_length;
3197 		u64 extent_flags;
3198 		u64 extent_gen;
3199 		u64 extent_physical;
3200 		u64 extent_mirror_num;
3201 
3202 		ret = find_first_extent_item(extent_root, path, cur_logical,
3203 					     logical + map->stripe_len - cur_logical);
3204 		/* No more extent item in this data stripe */
3205 		if (ret > 0) {
3206 			ret = 0;
3207 			break;
3208 		}
3209 		if (ret < 0)
3210 			break;
3211 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3212 				&extent_gen);
3213 
3214 		/* Metadata should not cross stripe boundaries */
3215 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3216 		    does_range_cross_boundary(extent_start, extent_size,
3217 					      logical, map->stripe_len)) {
3218 			btrfs_err(fs_info,
3219 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3220 				  extent_start, logical);
3221 			spin_lock(&sctx->stat_lock);
3222 			sctx->stat.uncorrectable_errors++;
3223 			spin_unlock(&sctx->stat_lock);
3224 			cur_logical += extent_size;
3225 			continue;
3226 		}
3227 
3228 		/* Skip hole range which doesn't have any extent */
3229 		cur_logical = max(extent_start, cur_logical);
3230 
3231 		/* Truncate the range inside this data stripe */
3232 		extent_size = min(extent_start + extent_size,
3233 				  logical + map->stripe_len) - cur_logical;
3234 		extent_start = cur_logical;
3235 		ASSERT(extent_size <= U32_MAX);
3236 
3237 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3238 
3239 		mapped_length = extent_size;
3240 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3241 				      &mapped_length, &bioc, 0);
3242 		if (!ret && (!bioc || mapped_length < extent_size))
3243 			ret = -EIO;
3244 		if (ret) {
3245 			btrfs_put_bioc(bioc);
3246 			scrub_parity_mark_sectors_error(sparity, extent_start,
3247 							extent_size);
3248 			break;
3249 		}
3250 		extent_physical = bioc->stripes[0].physical;
3251 		extent_mirror_num = bioc->mirror_num;
3252 		extent_dev = bioc->stripes[0].dev;
3253 		btrfs_put_bioc(bioc);
3254 
3255 		ret = btrfs_lookup_csums_range(csum_root, extent_start,
3256 					       extent_start + extent_size - 1,
3257 					       &sctx->csum_list, 1, false);
3258 		if (ret) {
3259 			scrub_parity_mark_sectors_error(sparity, extent_start,
3260 							extent_size);
3261 			break;
3262 		}
3263 
3264 		ret = scrub_extent_for_parity(sparity, extent_start,
3265 					      extent_size, extent_physical,
3266 					      extent_dev, extent_flags,
3267 					      extent_gen, extent_mirror_num);
3268 		scrub_free_csums(sctx);
3269 
3270 		if (ret) {
3271 			scrub_parity_mark_sectors_error(sparity, extent_start,
3272 							extent_size);
3273 			break;
3274 		}
3275 
3276 		cond_resched();
3277 		cur_logical += extent_size;
3278 	}
3279 	btrfs_release_path(path);
3280 	return ret;
3281 }
3282 
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,u64 logic_start,u64 logic_end)3283 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3284 						  struct map_lookup *map,
3285 						  struct btrfs_device *sdev,
3286 						  u64 logic_start,
3287 						  u64 logic_end)
3288 {
3289 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3290 	struct btrfs_path *path;
3291 	u64 cur_logical;
3292 	int ret;
3293 	struct scrub_parity *sparity;
3294 	int nsectors;
3295 
3296 	path = btrfs_alloc_path();
3297 	if (!path) {
3298 		spin_lock(&sctx->stat_lock);
3299 		sctx->stat.malloc_errors++;
3300 		spin_unlock(&sctx->stat_lock);
3301 		return -ENOMEM;
3302 	}
3303 	path->search_commit_root = 1;
3304 	path->skip_locking = 1;
3305 
3306 	ASSERT(map->stripe_len <= U32_MAX);
3307 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3308 	ASSERT(nsectors <= BITS_PER_LONG);
3309 	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3310 	if (!sparity) {
3311 		spin_lock(&sctx->stat_lock);
3312 		sctx->stat.malloc_errors++;
3313 		spin_unlock(&sctx->stat_lock);
3314 		btrfs_free_path(path);
3315 		return -ENOMEM;
3316 	}
3317 
3318 	ASSERT(map->stripe_len <= U32_MAX);
3319 	sparity->stripe_len = map->stripe_len;
3320 	sparity->nsectors = nsectors;
3321 	sparity->sctx = sctx;
3322 	sparity->scrub_dev = sdev;
3323 	sparity->logic_start = logic_start;
3324 	sparity->logic_end = logic_end;
3325 	refcount_set(&sparity->refs, 1);
3326 	INIT_LIST_HEAD(&sparity->sectors_list);
3327 
3328 	ret = 0;
3329 	for (cur_logical = logic_start; cur_logical < logic_end;
3330 	     cur_logical += map->stripe_len) {
3331 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3332 							  sdev, path, cur_logical);
3333 		if (ret < 0)
3334 			break;
3335 	}
3336 
3337 	scrub_parity_put(sparity);
3338 	scrub_submit(sctx);
3339 	mutex_lock(&sctx->wr_lock);
3340 	scrub_wr_submit(sctx);
3341 	mutex_unlock(&sctx->wr_lock);
3342 
3343 	btrfs_free_path(path);
3344 	return ret < 0 ? ret : 0;
3345 }
3346 
sync_replace_for_zoned(struct scrub_ctx * sctx)3347 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3348 {
3349 	if (!btrfs_is_zoned(sctx->fs_info))
3350 		return;
3351 
3352 	sctx->flush_all_writes = true;
3353 	scrub_submit(sctx);
3354 	mutex_lock(&sctx->wr_lock);
3355 	scrub_wr_submit(sctx);
3356 	mutex_unlock(&sctx->wr_lock);
3357 
3358 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3359 }
3360 
sync_write_pointer_for_zoned(struct scrub_ctx * sctx,u64 logical,u64 physical,u64 physical_end)3361 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3362 					u64 physical, u64 physical_end)
3363 {
3364 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3365 	int ret = 0;
3366 
3367 	if (!btrfs_is_zoned(fs_info))
3368 		return 0;
3369 
3370 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3371 
3372 	mutex_lock(&sctx->wr_lock);
3373 	if (sctx->write_pointer < physical_end) {
3374 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3375 						    physical,
3376 						    sctx->write_pointer);
3377 		if (ret)
3378 			btrfs_err(fs_info,
3379 				  "zoned: failed to recover write pointer");
3380 	}
3381 	mutex_unlock(&sctx->wr_lock);
3382 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3383 
3384 	return ret;
3385 }
3386 
3387 /*
3388  * Scrub one range which can only has simple mirror based profile.
3389  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3390  *  RAID0/RAID10).
3391  *
3392  * Since we may need to handle a subset of block group, we need @logical_start
3393  * and @logical_length parameter.
3394  */
scrub_simple_mirror(struct scrub_ctx * sctx,struct btrfs_root * extent_root,struct btrfs_root * csum_root,struct btrfs_block_group * bg,struct map_lookup * map,u64 logical_start,u64 logical_length,struct btrfs_device * device,u64 physical,int mirror_num)3395 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3396 			       struct btrfs_root *extent_root,
3397 			       struct btrfs_root *csum_root,
3398 			       struct btrfs_block_group *bg,
3399 			       struct map_lookup *map,
3400 			       u64 logical_start, u64 logical_length,
3401 			       struct btrfs_device *device,
3402 			       u64 physical, int mirror_num)
3403 {
3404 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3405 	const u64 logical_end = logical_start + logical_length;
3406 	/* An artificial limit, inherit from old scrub behavior */
3407 	const u32 max_length = SZ_64K;
3408 	struct btrfs_path path = { 0 };
3409 	u64 cur_logical = logical_start;
3410 	int ret;
3411 
3412 	/* The range must be inside the bg */
3413 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3414 
3415 	path.search_commit_root = 1;
3416 	path.skip_locking = 1;
3417 	/* Go through each extent items inside the logical range */
3418 	while (cur_logical < logical_end) {
3419 		u64 extent_start;
3420 		u64 extent_len;
3421 		u64 extent_flags;
3422 		u64 extent_gen;
3423 		u64 scrub_len;
3424 
3425 		/* Canceled? */
3426 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3427 		    atomic_read(&sctx->cancel_req)) {
3428 			ret = -ECANCELED;
3429 			break;
3430 		}
3431 		/* Paused? */
3432 		if (atomic_read(&fs_info->scrub_pause_req)) {
3433 			/* Push queued extents */
3434 			sctx->flush_all_writes = true;
3435 			scrub_submit(sctx);
3436 			mutex_lock(&sctx->wr_lock);
3437 			scrub_wr_submit(sctx);
3438 			mutex_unlock(&sctx->wr_lock);
3439 			wait_event(sctx->list_wait,
3440 				   atomic_read(&sctx->bios_in_flight) == 0);
3441 			sctx->flush_all_writes = false;
3442 			scrub_blocked_if_needed(fs_info);
3443 		}
3444 		/* Block group removed? */
3445 		spin_lock(&bg->lock);
3446 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3447 			spin_unlock(&bg->lock);
3448 			ret = 0;
3449 			break;
3450 		}
3451 		spin_unlock(&bg->lock);
3452 
3453 		ret = find_first_extent_item(extent_root, &path, cur_logical,
3454 					     logical_end - cur_logical);
3455 		if (ret > 0) {
3456 			/* No more extent, just update the accounting */
3457 			sctx->stat.last_physical = physical + logical_length;
3458 			ret = 0;
3459 			break;
3460 		}
3461 		if (ret < 0)
3462 			break;
3463 		get_extent_info(&path, &extent_start, &extent_len,
3464 				&extent_flags, &extent_gen);
3465 		/* Skip hole range which doesn't have any extent */
3466 		cur_logical = max(extent_start, cur_logical);
3467 
3468 		/*
3469 		 * Scrub len has three limits:
3470 		 * - Extent size limit
3471 		 * - Scrub range limit
3472 		 *   This is especially imporatant for RAID0/RAID10 to reuse
3473 		 *   this function
3474 		 * - Max scrub size limit
3475 		 */
3476 		scrub_len = min(min(extent_start + extent_len,
3477 				    logical_end), cur_logical + max_length) -
3478 			    cur_logical;
3479 
3480 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3481 			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
3482 					cur_logical + scrub_len - 1,
3483 					&sctx->csum_list, 1, false);
3484 			if (ret)
3485 				break;
3486 		}
3487 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3488 		    does_range_cross_boundary(extent_start, extent_len,
3489 					      logical_start, logical_length)) {
3490 			btrfs_err(fs_info,
3491 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3492 				  extent_start, logical_start, logical_end);
3493 			spin_lock(&sctx->stat_lock);
3494 			sctx->stat.uncorrectable_errors++;
3495 			spin_unlock(&sctx->stat_lock);
3496 			cur_logical += scrub_len;
3497 			continue;
3498 		}
3499 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3500 				   cur_logical - logical_start + physical,
3501 				   device, extent_flags, extent_gen,
3502 				   mirror_num);
3503 		scrub_free_csums(sctx);
3504 		if (ret)
3505 			break;
3506 		if (sctx->is_dev_replace)
3507 			sync_replace_for_zoned(sctx);
3508 		cur_logical += scrub_len;
3509 		/* Don't hold CPU for too long time */
3510 		cond_resched();
3511 	}
3512 	btrfs_release_path(&path);
3513 	return ret;
3514 }
3515 
3516 /* Calculate the full stripe length for simple stripe based profiles */
simple_stripe_full_stripe_len(const struct map_lookup * map)3517 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3518 {
3519 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3520 			    BTRFS_BLOCK_GROUP_RAID10));
3521 
3522 	return map->num_stripes / map->sub_stripes * map->stripe_len;
3523 }
3524 
3525 /* Get the logical bytenr for the stripe */
simple_stripe_get_logical(struct map_lookup * map,struct btrfs_block_group * bg,int stripe_index)3526 static u64 simple_stripe_get_logical(struct map_lookup *map,
3527 				     struct btrfs_block_group *bg,
3528 				     int stripe_index)
3529 {
3530 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3531 			    BTRFS_BLOCK_GROUP_RAID10));
3532 	ASSERT(stripe_index < map->num_stripes);
3533 
3534 	/*
3535 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3536 	 * skip.
3537 	 */
3538 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3539 }
3540 
3541 /* Get the mirror number for the stripe */
simple_stripe_mirror_num(struct map_lookup * map,int stripe_index)3542 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3543 {
3544 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3545 			    BTRFS_BLOCK_GROUP_RAID10));
3546 	ASSERT(stripe_index < map->num_stripes);
3547 
3548 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3549 	return stripe_index % map->sub_stripes + 1;
3550 }
3551 
scrub_simple_stripe(struct scrub_ctx * sctx,struct btrfs_root * extent_root,struct btrfs_root * csum_root,struct btrfs_block_group * bg,struct map_lookup * map,struct btrfs_device * device,int stripe_index)3552 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3553 			       struct btrfs_root *extent_root,
3554 			       struct btrfs_root *csum_root,
3555 			       struct btrfs_block_group *bg,
3556 			       struct map_lookup *map,
3557 			       struct btrfs_device *device,
3558 			       int stripe_index)
3559 {
3560 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3561 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3562 	const u64 orig_physical = map->stripes[stripe_index].physical;
3563 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3564 	u64 cur_logical = orig_logical;
3565 	u64 cur_physical = orig_physical;
3566 	int ret = 0;
3567 
3568 	while (cur_logical < bg->start + bg->length) {
3569 		/*
3570 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3571 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3572 		 * this stripe.
3573 		 */
3574 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3575 					  cur_logical, map->stripe_len, device,
3576 					  cur_physical, mirror_num);
3577 		if (ret)
3578 			return ret;
3579 		/* Skip to next stripe which belongs to the target device */
3580 		cur_logical += logical_increment;
3581 		/* For physical offset, we just go to next stripe */
3582 		cur_physical += map->stripe_len;
3583 	}
3584 	return ret;
3585 }
3586 
scrub_stripe(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct extent_map * em,struct btrfs_device * scrub_dev,int stripe_index)3587 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3588 					   struct btrfs_block_group *bg,
3589 					   struct extent_map *em,
3590 					   struct btrfs_device *scrub_dev,
3591 					   int stripe_index)
3592 {
3593 	struct btrfs_path *path;
3594 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3595 	struct btrfs_root *root;
3596 	struct btrfs_root *csum_root;
3597 	struct blk_plug plug;
3598 	struct map_lookup *map = em->map_lookup;
3599 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3600 	const u64 chunk_logical = bg->start;
3601 	int ret;
3602 	u64 physical = map->stripes[stripe_index].physical;
3603 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3604 	const u64 physical_end = physical + dev_stripe_len;
3605 	u64 logical;
3606 	u64 logic_end;
3607 	/* The logical increment after finishing one stripe */
3608 	u64 increment;
3609 	/* Offset inside the chunk */
3610 	u64 offset;
3611 	u64 stripe_logical;
3612 	u64 stripe_end;
3613 	int stop_loop = 0;
3614 
3615 	path = btrfs_alloc_path();
3616 	if (!path)
3617 		return -ENOMEM;
3618 
3619 	/*
3620 	 * work on commit root. The related disk blocks are static as
3621 	 * long as COW is applied. This means, it is save to rewrite
3622 	 * them to repair disk errors without any race conditions
3623 	 */
3624 	path->search_commit_root = 1;
3625 	path->skip_locking = 1;
3626 	path->reada = READA_FORWARD;
3627 
3628 	wait_event(sctx->list_wait,
3629 		   atomic_read(&sctx->bios_in_flight) == 0);
3630 	scrub_blocked_if_needed(fs_info);
3631 
3632 	root = btrfs_extent_root(fs_info, bg->start);
3633 	csum_root = btrfs_csum_root(fs_info, bg->start);
3634 
3635 	/*
3636 	 * collect all data csums for the stripe to avoid seeking during
3637 	 * the scrub. This might currently (crc32) end up to be about 1MB
3638 	 */
3639 	blk_start_plug(&plug);
3640 
3641 	if (sctx->is_dev_replace &&
3642 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3643 		mutex_lock(&sctx->wr_lock);
3644 		sctx->write_pointer = physical;
3645 		mutex_unlock(&sctx->wr_lock);
3646 		sctx->flush_all_writes = true;
3647 	}
3648 
3649 	/*
3650 	 * There used to be a big double loop to handle all profiles using the
3651 	 * same routine, which grows larger and more gross over time.
3652 	 *
3653 	 * So here we handle each profile differently, so simpler profiles
3654 	 * have simpler scrubbing function.
3655 	 */
3656 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3657 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3658 		/*
3659 		 * Above check rules out all complex profile, the remaining
3660 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3661 		 * mirrored duplication without stripe.
3662 		 *
3663 		 * Only @physical and @mirror_num needs to calculated using
3664 		 * @stripe_index.
3665 		 */
3666 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3667 				bg->start, bg->length, scrub_dev,
3668 				map->stripes[stripe_index].physical,
3669 				stripe_index + 1);
3670 		offset = 0;
3671 		goto out;
3672 	}
3673 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3674 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3675 					  scrub_dev, stripe_index);
3676 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3677 		goto out;
3678 	}
3679 
3680 	/* Only RAID56 goes through the old code */
3681 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3682 	ret = 0;
3683 
3684 	/* Calculate the logical end of the stripe */
3685 	get_raid56_logic_offset(physical_end, stripe_index,
3686 				map, &logic_end, NULL);
3687 	logic_end += chunk_logical;
3688 
3689 	/* Initialize @offset in case we need to go to out: label */
3690 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3691 	increment = map->stripe_len * nr_data_stripes(map);
3692 
3693 	/*
3694 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3695 	 * using their physical offset.
3696 	 */
3697 	while (physical < physical_end) {
3698 		ret = get_raid56_logic_offset(physical, stripe_index, map,
3699 					      &logical, &stripe_logical);
3700 		logical += chunk_logical;
3701 		if (ret) {
3702 			/* it is parity strip */
3703 			stripe_logical += chunk_logical;
3704 			stripe_end = stripe_logical + increment;
3705 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3706 						  stripe_logical,
3707 						  stripe_end);
3708 			if (ret)
3709 				goto out;
3710 			goto next;
3711 		}
3712 
3713 		/*
3714 		 * Now we're at a data stripe, scrub each extents in the range.
3715 		 *
3716 		 * At this stage, if we ignore the repair part, inside each data
3717 		 * stripe it is no different than SINGLE profile.
3718 		 * We can reuse scrub_simple_mirror() here, as the repair part
3719 		 * is still based on @mirror_num.
3720 		 */
3721 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3722 					  logical, map->stripe_len,
3723 					  scrub_dev, physical, 1);
3724 		if (ret < 0)
3725 			goto out;
3726 next:
3727 		logical += increment;
3728 		physical += map->stripe_len;
3729 		spin_lock(&sctx->stat_lock);
3730 		if (stop_loop)
3731 			sctx->stat.last_physical =
3732 				map->stripes[stripe_index].physical + dev_stripe_len;
3733 		else
3734 			sctx->stat.last_physical = physical;
3735 		spin_unlock(&sctx->stat_lock);
3736 		if (stop_loop)
3737 			break;
3738 	}
3739 out:
3740 	/* push queued extents */
3741 	scrub_submit(sctx);
3742 	mutex_lock(&sctx->wr_lock);
3743 	scrub_wr_submit(sctx);
3744 	mutex_unlock(&sctx->wr_lock);
3745 
3746 	blk_finish_plug(&plug);
3747 	btrfs_free_path(path);
3748 
3749 	if (sctx->is_dev_replace && ret >= 0) {
3750 		int ret2;
3751 
3752 		ret2 = sync_write_pointer_for_zoned(sctx,
3753 				chunk_logical + offset,
3754 				map->stripes[stripe_index].physical,
3755 				physical_end);
3756 		if (ret2)
3757 			ret = ret2;
3758 	}
3759 
3760 	return ret < 0 ? ret : 0;
3761 }
3762 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_block_group * bg,struct btrfs_device * scrub_dev,u64 dev_offset,u64 dev_extent_len)3763 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3764 					  struct btrfs_block_group *bg,
3765 					  struct btrfs_device *scrub_dev,
3766 					  u64 dev_offset,
3767 					  u64 dev_extent_len)
3768 {
3769 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3770 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3771 	struct map_lookup *map;
3772 	struct extent_map *em;
3773 	int i;
3774 	int ret = 0;
3775 
3776 	read_lock(&map_tree->lock);
3777 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3778 	read_unlock(&map_tree->lock);
3779 
3780 	if (!em) {
3781 		/*
3782 		 * Might have been an unused block group deleted by the cleaner
3783 		 * kthread or relocation.
3784 		 */
3785 		spin_lock(&bg->lock);
3786 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3787 			ret = -EINVAL;
3788 		spin_unlock(&bg->lock);
3789 
3790 		return ret;
3791 	}
3792 	if (em->start != bg->start)
3793 		goto out;
3794 	if (em->len < dev_extent_len)
3795 		goto out;
3796 
3797 	map = em->map_lookup;
3798 	for (i = 0; i < map->num_stripes; ++i) {
3799 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3800 		    map->stripes[i].physical == dev_offset) {
3801 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3802 			if (ret)
3803 				goto out;
3804 		}
3805 	}
3806 out:
3807 	free_extent_map(em);
3808 
3809 	return ret;
3810 }
3811 
finish_extent_writes_for_zoned(struct btrfs_root * root,struct btrfs_block_group * cache)3812 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3813 					  struct btrfs_block_group *cache)
3814 {
3815 	struct btrfs_fs_info *fs_info = cache->fs_info;
3816 	struct btrfs_trans_handle *trans;
3817 
3818 	if (!btrfs_is_zoned(fs_info))
3819 		return 0;
3820 
3821 	btrfs_wait_block_group_reservations(cache);
3822 	btrfs_wait_nocow_writers(cache);
3823 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3824 
3825 	trans = btrfs_join_transaction(root);
3826 	if (IS_ERR(trans))
3827 		return PTR_ERR(trans);
3828 	return btrfs_commit_transaction(trans);
3829 }
3830 
3831 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end)3832 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3833 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3834 {
3835 	struct btrfs_dev_extent *dev_extent = NULL;
3836 	struct btrfs_path *path;
3837 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3838 	struct btrfs_root *root = fs_info->dev_root;
3839 	u64 chunk_offset;
3840 	int ret = 0;
3841 	int ro_set;
3842 	int slot;
3843 	struct extent_buffer *l;
3844 	struct btrfs_key key;
3845 	struct btrfs_key found_key;
3846 	struct btrfs_block_group *cache;
3847 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3848 
3849 	path = btrfs_alloc_path();
3850 	if (!path)
3851 		return -ENOMEM;
3852 
3853 	path->reada = READA_FORWARD;
3854 	path->search_commit_root = 1;
3855 	path->skip_locking = 1;
3856 
3857 	key.objectid = scrub_dev->devid;
3858 	key.offset = 0ull;
3859 	key.type = BTRFS_DEV_EXTENT_KEY;
3860 
3861 	while (1) {
3862 		u64 dev_extent_len;
3863 
3864 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3865 		if (ret < 0)
3866 			break;
3867 		if (ret > 0) {
3868 			if (path->slots[0] >=
3869 			    btrfs_header_nritems(path->nodes[0])) {
3870 				ret = btrfs_next_leaf(root, path);
3871 				if (ret < 0)
3872 					break;
3873 				if (ret > 0) {
3874 					ret = 0;
3875 					break;
3876 				}
3877 			} else {
3878 				ret = 0;
3879 			}
3880 		}
3881 
3882 		l = path->nodes[0];
3883 		slot = path->slots[0];
3884 
3885 		btrfs_item_key_to_cpu(l, &found_key, slot);
3886 
3887 		if (found_key.objectid != scrub_dev->devid)
3888 			break;
3889 
3890 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3891 			break;
3892 
3893 		if (found_key.offset >= end)
3894 			break;
3895 
3896 		if (found_key.offset < key.offset)
3897 			break;
3898 
3899 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3900 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3901 
3902 		if (found_key.offset + dev_extent_len <= start)
3903 			goto skip;
3904 
3905 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3906 
3907 		/*
3908 		 * get a reference on the corresponding block group to prevent
3909 		 * the chunk from going away while we scrub it
3910 		 */
3911 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3912 
3913 		/* some chunks are removed but not committed to disk yet,
3914 		 * continue scrubbing */
3915 		if (!cache)
3916 			goto skip;
3917 
3918 		ASSERT(cache->start <= chunk_offset);
3919 		/*
3920 		 * We are using the commit root to search for device extents, so
3921 		 * that means we could have found a device extent item from a
3922 		 * block group that was deleted in the current transaction. The
3923 		 * logical start offset of the deleted block group, stored at
3924 		 * @chunk_offset, might be part of the logical address range of
3925 		 * a new block group (which uses different physical extents).
3926 		 * In this case btrfs_lookup_block_group() has returned the new
3927 		 * block group, and its start address is less than @chunk_offset.
3928 		 *
3929 		 * We skip such new block groups, because it's pointless to
3930 		 * process them, as we won't find their extents because we search
3931 		 * for them using the commit root of the extent tree. For a device
3932 		 * replace it's also fine to skip it, we won't miss copying them
3933 		 * to the target device because we have the write duplication
3934 		 * setup through the regular write path (by btrfs_map_block()),
3935 		 * and we have committed a transaction when we started the device
3936 		 * replace, right after setting up the device replace state.
3937 		 */
3938 		if (cache->start < chunk_offset) {
3939 			btrfs_put_block_group(cache);
3940 			goto skip;
3941 		}
3942 
3943 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3944 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3945 				btrfs_put_block_group(cache);
3946 				goto skip;
3947 			}
3948 		}
3949 
3950 		/*
3951 		 * Make sure that while we are scrubbing the corresponding block
3952 		 * group doesn't get its logical address and its device extents
3953 		 * reused for another block group, which can possibly be of a
3954 		 * different type and different profile. We do this to prevent
3955 		 * false error detections and crashes due to bogus attempts to
3956 		 * repair extents.
3957 		 */
3958 		spin_lock(&cache->lock);
3959 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3960 			spin_unlock(&cache->lock);
3961 			btrfs_put_block_group(cache);
3962 			goto skip;
3963 		}
3964 		btrfs_freeze_block_group(cache);
3965 		spin_unlock(&cache->lock);
3966 
3967 		/*
3968 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3969 		 * to avoid deadlock caused by:
3970 		 * btrfs_inc_block_group_ro()
3971 		 * -> btrfs_wait_for_commit()
3972 		 * -> btrfs_commit_transaction()
3973 		 * -> btrfs_scrub_pause()
3974 		 */
3975 		scrub_pause_on(fs_info);
3976 
3977 		/*
3978 		 * Don't do chunk preallocation for scrub.
3979 		 *
3980 		 * This is especially important for SYSTEM bgs, or we can hit
3981 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3982 		 * 1. The only SYSTEM bg is marked RO.
3983 		 *    Since SYSTEM bg is small, that's pretty common.
3984 		 * 2. New SYSTEM bg will be allocated
3985 		 *    Due to regular version will allocate new chunk.
3986 		 * 3. New SYSTEM bg is empty and will get cleaned up
3987 		 *    Before cleanup really happens, it's marked RO again.
3988 		 * 4. Empty SYSTEM bg get scrubbed
3989 		 *    We go back to 2.
3990 		 *
3991 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3992 		 * thread can't be triggered fast enough, and use up all space
3993 		 * of btrfs_super_block::sys_chunk_array
3994 		 *
3995 		 * While for dev replace, we need to try our best to mark block
3996 		 * group RO, to prevent race between:
3997 		 * - Write duplication
3998 		 *   Contains latest data
3999 		 * - Scrub copy
4000 		 *   Contains data from commit tree
4001 		 *
4002 		 * If target block group is not marked RO, nocow writes can
4003 		 * be overwritten by scrub copy, causing data corruption.
4004 		 * So for dev-replace, it's not allowed to continue if a block
4005 		 * group is not RO.
4006 		 */
4007 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
4008 		if (!ret && sctx->is_dev_replace) {
4009 			ret = finish_extent_writes_for_zoned(root, cache);
4010 			if (ret) {
4011 				btrfs_dec_block_group_ro(cache);
4012 				scrub_pause_off(fs_info);
4013 				btrfs_put_block_group(cache);
4014 				break;
4015 			}
4016 		}
4017 
4018 		if (ret == 0) {
4019 			ro_set = 1;
4020 		} else if (ret == -ENOSPC && !sctx->is_dev_replace &&
4021 			   !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
4022 			/*
4023 			 * btrfs_inc_block_group_ro return -ENOSPC when it
4024 			 * failed in creating new chunk for metadata.
4025 			 * It is not a problem for scrub, because
4026 			 * metadata are always cowed, and our scrub paused
4027 			 * commit_transactions.
4028 			 *
4029 			 * For RAID56 chunks, we have to mark them read-only
4030 			 * for scrub, as later we would use our own cache
4031 			 * out of RAID56 realm.
4032 			 * Thus we want the RAID56 bg to be marked RO to
4033 			 * prevent RMW from screwing up out cache.
4034 			 */
4035 			ro_set = 0;
4036 		} else if (ret == -ETXTBSY) {
4037 			btrfs_warn(fs_info,
4038 		   "skipping scrub of block group %llu due to active swapfile",
4039 				   cache->start);
4040 			scrub_pause_off(fs_info);
4041 			ret = 0;
4042 			goto skip_unfreeze;
4043 		} else {
4044 			btrfs_warn(fs_info,
4045 				   "failed setting block group ro: %d", ret);
4046 			btrfs_unfreeze_block_group(cache);
4047 			btrfs_put_block_group(cache);
4048 			scrub_pause_off(fs_info);
4049 			break;
4050 		}
4051 
4052 		/*
4053 		 * Now the target block is marked RO, wait for nocow writes to
4054 		 * finish before dev-replace.
4055 		 * COW is fine, as COW never overwrites extents in commit tree.
4056 		 */
4057 		if (sctx->is_dev_replace) {
4058 			btrfs_wait_nocow_writers(cache);
4059 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4060 					cache->length);
4061 		}
4062 
4063 		scrub_pause_off(fs_info);
4064 		down_write(&dev_replace->rwsem);
4065 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4066 		dev_replace->cursor_left = found_key.offset;
4067 		dev_replace->item_needs_writeback = 1;
4068 		up_write(&dev_replace->rwsem);
4069 
4070 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4071 				  dev_extent_len);
4072 
4073 		/*
4074 		 * flush, submit all pending read and write bios, afterwards
4075 		 * wait for them.
4076 		 * Note that in the dev replace case, a read request causes
4077 		 * write requests that are submitted in the read completion
4078 		 * worker. Therefore in the current situation, it is required
4079 		 * that all write requests are flushed, so that all read and
4080 		 * write requests are really completed when bios_in_flight
4081 		 * changes to 0.
4082 		 */
4083 		sctx->flush_all_writes = true;
4084 		scrub_submit(sctx);
4085 		mutex_lock(&sctx->wr_lock);
4086 		scrub_wr_submit(sctx);
4087 		mutex_unlock(&sctx->wr_lock);
4088 
4089 		wait_event(sctx->list_wait,
4090 			   atomic_read(&sctx->bios_in_flight) == 0);
4091 
4092 		scrub_pause_on(fs_info);
4093 
4094 		/*
4095 		 * must be called before we decrease @scrub_paused.
4096 		 * make sure we don't block transaction commit while
4097 		 * we are waiting pending workers finished.
4098 		 */
4099 		wait_event(sctx->list_wait,
4100 			   atomic_read(&sctx->workers_pending) == 0);
4101 		sctx->flush_all_writes = false;
4102 
4103 		scrub_pause_off(fs_info);
4104 
4105 		if (sctx->is_dev_replace &&
4106 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4107 						      cache, found_key.offset))
4108 			ro_set = 0;
4109 
4110 		down_write(&dev_replace->rwsem);
4111 		dev_replace->cursor_left = dev_replace->cursor_right;
4112 		dev_replace->item_needs_writeback = 1;
4113 		up_write(&dev_replace->rwsem);
4114 
4115 		if (ro_set)
4116 			btrfs_dec_block_group_ro(cache);
4117 
4118 		/*
4119 		 * We might have prevented the cleaner kthread from deleting
4120 		 * this block group if it was already unused because we raced
4121 		 * and set it to RO mode first. So add it back to the unused
4122 		 * list, otherwise it might not ever be deleted unless a manual
4123 		 * balance is triggered or it becomes used and unused again.
4124 		 */
4125 		spin_lock(&cache->lock);
4126 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4127 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4128 			spin_unlock(&cache->lock);
4129 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4130 				btrfs_discard_queue_work(&fs_info->discard_ctl,
4131 							 cache);
4132 			else
4133 				btrfs_mark_bg_unused(cache);
4134 		} else {
4135 			spin_unlock(&cache->lock);
4136 		}
4137 skip_unfreeze:
4138 		btrfs_unfreeze_block_group(cache);
4139 		btrfs_put_block_group(cache);
4140 		if (ret)
4141 			break;
4142 		if (sctx->is_dev_replace &&
4143 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4144 			ret = -EIO;
4145 			break;
4146 		}
4147 		if (sctx->stat.malloc_errors > 0) {
4148 			ret = -ENOMEM;
4149 			break;
4150 		}
4151 skip:
4152 		key.offset = found_key.offset + dev_extent_len;
4153 		btrfs_release_path(path);
4154 	}
4155 
4156 	btrfs_free_path(path);
4157 
4158 	return ret;
4159 }
4160 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)4161 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4162 					   struct btrfs_device *scrub_dev)
4163 {
4164 	int	i;
4165 	u64	bytenr;
4166 	u64	gen;
4167 	int	ret;
4168 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4169 
4170 	if (BTRFS_FS_ERROR(fs_info))
4171 		return -EROFS;
4172 
4173 	/* Seed devices of a new filesystem has their own generation. */
4174 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4175 		gen = scrub_dev->generation;
4176 	else
4177 		gen = fs_info->last_trans_committed;
4178 
4179 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4180 		bytenr = btrfs_sb_offset(i);
4181 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4182 		    scrub_dev->commit_total_bytes)
4183 			break;
4184 		if (!btrfs_check_super_location(scrub_dev, bytenr))
4185 			continue;
4186 
4187 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4188 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4189 				    NULL, bytenr);
4190 		if (ret)
4191 			return ret;
4192 	}
4193 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4194 
4195 	return 0;
4196 }
4197 
scrub_workers_put(struct btrfs_fs_info * fs_info)4198 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4199 {
4200 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4201 					&fs_info->scrub_lock)) {
4202 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4203 		struct workqueue_struct *scrub_wr_comp =
4204 						fs_info->scrub_wr_completion_workers;
4205 		struct workqueue_struct *scrub_parity =
4206 						fs_info->scrub_parity_workers;
4207 
4208 		fs_info->scrub_workers = NULL;
4209 		fs_info->scrub_wr_completion_workers = NULL;
4210 		fs_info->scrub_parity_workers = NULL;
4211 		mutex_unlock(&fs_info->scrub_lock);
4212 
4213 		if (scrub_workers)
4214 			destroy_workqueue(scrub_workers);
4215 		if (scrub_wr_comp)
4216 			destroy_workqueue(scrub_wr_comp);
4217 		if (scrub_parity)
4218 			destroy_workqueue(scrub_parity);
4219 	}
4220 }
4221 
4222 /*
4223  * get a reference count on fs_info->scrub_workers. start worker if necessary
4224  */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)4225 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4226 						int is_dev_replace)
4227 {
4228 	struct workqueue_struct *scrub_workers = NULL;
4229 	struct workqueue_struct *scrub_wr_comp = NULL;
4230 	struct workqueue_struct *scrub_parity = NULL;
4231 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4232 	int max_active = fs_info->thread_pool_size;
4233 	int ret = -ENOMEM;
4234 
4235 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4236 		return 0;
4237 
4238 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4239 					is_dev_replace ? 1 : max_active);
4240 	if (!scrub_workers)
4241 		goto fail_scrub_workers;
4242 
4243 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4244 	if (!scrub_wr_comp)
4245 		goto fail_scrub_wr_completion_workers;
4246 
4247 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4248 	if (!scrub_parity)
4249 		goto fail_scrub_parity_workers;
4250 
4251 	mutex_lock(&fs_info->scrub_lock);
4252 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4253 		ASSERT(fs_info->scrub_workers == NULL &&
4254 		       fs_info->scrub_wr_completion_workers == NULL &&
4255 		       fs_info->scrub_parity_workers == NULL);
4256 		fs_info->scrub_workers = scrub_workers;
4257 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4258 		fs_info->scrub_parity_workers = scrub_parity;
4259 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4260 		mutex_unlock(&fs_info->scrub_lock);
4261 		return 0;
4262 	}
4263 	/* Other thread raced in and created the workers for us */
4264 	refcount_inc(&fs_info->scrub_workers_refcnt);
4265 	mutex_unlock(&fs_info->scrub_lock);
4266 
4267 	ret = 0;
4268 	destroy_workqueue(scrub_parity);
4269 fail_scrub_parity_workers:
4270 	destroy_workqueue(scrub_wr_comp);
4271 fail_scrub_wr_completion_workers:
4272 	destroy_workqueue(scrub_workers);
4273 fail_scrub_workers:
4274 	return ret;
4275 }
4276 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)4277 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4278 		    u64 end, struct btrfs_scrub_progress *progress,
4279 		    int readonly, int is_dev_replace)
4280 {
4281 	struct btrfs_dev_lookup_args args = { .devid = devid };
4282 	struct scrub_ctx *sctx;
4283 	int ret;
4284 	struct btrfs_device *dev;
4285 	unsigned int nofs_flag;
4286 	bool need_commit = false;
4287 
4288 	if (btrfs_fs_closing(fs_info))
4289 		return -EAGAIN;
4290 
4291 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4292 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4293 
4294 	/*
4295 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4296 	 * value (max nodesize / min sectorsize), thus nodesize should always
4297 	 * be fine.
4298 	 */
4299 	ASSERT(fs_info->nodesize <=
4300 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4301 
4302 	/* Allocate outside of device_list_mutex */
4303 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4304 	if (IS_ERR(sctx))
4305 		return PTR_ERR(sctx);
4306 
4307 	ret = scrub_workers_get(fs_info, is_dev_replace);
4308 	if (ret)
4309 		goto out_free_ctx;
4310 
4311 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4312 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4313 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4314 		     !is_dev_replace)) {
4315 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4316 		ret = -ENODEV;
4317 		goto out;
4318 	}
4319 
4320 	if (!is_dev_replace && !readonly &&
4321 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4322 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4323 		btrfs_err_in_rcu(fs_info,
4324 			"scrub on devid %llu: filesystem on %s is not writable",
4325 				 devid, rcu_str_deref(dev->name));
4326 		ret = -EROFS;
4327 		goto out;
4328 	}
4329 
4330 	mutex_lock(&fs_info->scrub_lock);
4331 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4332 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4333 		mutex_unlock(&fs_info->scrub_lock);
4334 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4335 		ret = -EIO;
4336 		goto out;
4337 	}
4338 
4339 	down_read(&fs_info->dev_replace.rwsem);
4340 	if (dev->scrub_ctx ||
4341 	    (!is_dev_replace &&
4342 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4343 		up_read(&fs_info->dev_replace.rwsem);
4344 		mutex_unlock(&fs_info->scrub_lock);
4345 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4346 		ret = -EINPROGRESS;
4347 		goto out;
4348 	}
4349 	up_read(&fs_info->dev_replace.rwsem);
4350 
4351 	sctx->readonly = readonly;
4352 	dev->scrub_ctx = sctx;
4353 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4354 
4355 	/*
4356 	 * checking @scrub_pause_req here, we can avoid
4357 	 * race between committing transaction and scrubbing.
4358 	 */
4359 	__scrub_blocked_if_needed(fs_info);
4360 	atomic_inc(&fs_info->scrubs_running);
4361 	mutex_unlock(&fs_info->scrub_lock);
4362 
4363 	/*
4364 	 * In order to avoid deadlock with reclaim when there is a transaction
4365 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4366 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4367 	 * invoked by our callees. The pausing request is done when the
4368 	 * transaction commit starts, and it blocks the transaction until scrub
4369 	 * is paused (done at specific points at scrub_stripe() or right above
4370 	 * before incrementing fs_info->scrubs_running).
4371 	 */
4372 	nofs_flag = memalloc_nofs_save();
4373 	if (!is_dev_replace) {
4374 		u64 old_super_errors;
4375 
4376 		spin_lock(&sctx->stat_lock);
4377 		old_super_errors = sctx->stat.super_errors;
4378 		spin_unlock(&sctx->stat_lock);
4379 
4380 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4381 		/*
4382 		 * by holding device list mutex, we can
4383 		 * kick off writing super in log tree sync.
4384 		 */
4385 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4386 		ret = scrub_supers(sctx, dev);
4387 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4388 
4389 		spin_lock(&sctx->stat_lock);
4390 		/*
4391 		 * Super block errors found, but we can not commit transaction
4392 		 * at current context, since btrfs_commit_transaction() needs
4393 		 * to pause the current running scrub (hold by ourselves).
4394 		 */
4395 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4396 			need_commit = true;
4397 		spin_unlock(&sctx->stat_lock);
4398 	}
4399 
4400 	if (!ret)
4401 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4402 	memalloc_nofs_restore(nofs_flag);
4403 
4404 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4405 	atomic_dec(&fs_info->scrubs_running);
4406 	wake_up(&fs_info->scrub_pause_wait);
4407 
4408 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4409 
4410 	if (progress)
4411 		memcpy(progress, &sctx->stat, sizeof(*progress));
4412 
4413 	if (!is_dev_replace)
4414 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4415 			ret ? "not finished" : "finished", devid, ret);
4416 
4417 	mutex_lock(&fs_info->scrub_lock);
4418 	dev->scrub_ctx = NULL;
4419 	mutex_unlock(&fs_info->scrub_lock);
4420 
4421 	scrub_workers_put(fs_info);
4422 	scrub_put_ctx(sctx);
4423 
4424 	/*
4425 	 * We found some super block errors before, now try to force a
4426 	 * transaction commit, as scrub has finished.
4427 	 */
4428 	if (need_commit) {
4429 		struct btrfs_trans_handle *trans;
4430 
4431 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
4432 		if (IS_ERR(trans)) {
4433 			ret = PTR_ERR(trans);
4434 			btrfs_err(fs_info,
4435 	"scrub: failed to start transaction to fix super block errors: %d", ret);
4436 			return ret;
4437 		}
4438 		ret = btrfs_commit_transaction(trans);
4439 		if (ret < 0)
4440 			btrfs_err(fs_info,
4441 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
4442 	}
4443 	return ret;
4444 out:
4445 	scrub_workers_put(fs_info);
4446 out_free_ctx:
4447 	scrub_free_ctx(sctx);
4448 
4449 	return ret;
4450 }
4451 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)4452 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4453 {
4454 	mutex_lock(&fs_info->scrub_lock);
4455 	atomic_inc(&fs_info->scrub_pause_req);
4456 	while (atomic_read(&fs_info->scrubs_paused) !=
4457 	       atomic_read(&fs_info->scrubs_running)) {
4458 		mutex_unlock(&fs_info->scrub_lock);
4459 		wait_event(fs_info->scrub_pause_wait,
4460 			   atomic_read(&fs_info->scrubs_paused) ==
4461 			   atomic_read(&fs_info->scrubs_running));
4462 		mutex_lock(&fs_info->scrub_lock);
4463 	}
4464 	mutex_unlock(&fs_info->scrub_lock);
4465 }
4466 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)4467 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4468 {
4469 	atomic_dec(&fs_info->scrub_pause_req);
4470 	wake_up(&fs_info->scrub_pause_wait);
4471 }
4472 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)4473 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4474 {
4475 	mutex_lock(&fs_info->scrub_lock);
4476 	if (!atomic_read(&fs_info->scrubs_running)) {
4477 		mutex_unlock(&fs_info->scrub_lock);
4478 		return -ENOTCONN;
4479 	}
4480 
4481 	atomic_inc(&fs_info->scrub_cancel_req);
4482 	while (atomic_read(&fs_info->scrubs_running)) {
4483 		mutex_unlock(&fs_info->scrub_lock);
4484 		wait_event(fs_info->scrub_pause_wait,
4485 			   atomic_read(&fs_info->scrubs_running) == 0);
4486 		mutex_lock(&fs_info->scrub_lock);
4487 	}
4488 	atomic_dec(&fs_info->scrub_cancel_req);
4489 	mutex_unlock(&fs_info->scrub_lock);
4490 
4491 	return 0;
4492 }
4493 
btrfs_scrub_cancel_dev(struct btrfs_device * dev)4494 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4495 {
4496 	struct btrfs_fs_info *fs_info = dev->fs_info;
4497 	struct scrub_ctx *sctx;
4498 
4499 	mutex_lock(&fs_info->scrub_lock);
4500 	sctx = dev->scrub_ctx;
4501 	if (!sctx) {
4502 		mutex_unlock(&fs_info->scrub_lock);
4503 		return -ENOTCONN;
4504 	}
4505 	atomic_inc(&sctx->cancel_req);
4506 	while (dev->scrub_ctx) {
4507 		mutex_unlock(&fs_info->scrub_lock);
4508 		wait_event(fs_info->scrub_pause_wait,
4509 			   dev->scrub_ctx == NULL);
4510 		mutex_lock(&fs_info->scrub_lock);
4511 	}
4512 	mutex_unlock(&fs_info->scrub_lock);
4513 
4514 	return 0;
4515 }
4516 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)4517 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4518 			 struct btrfs_scrub_progress *progress)
4519 {
4520 	struct btrfs_dev_lookup_args args = { .devid = devid };
4521 	struct btrfs_device *dev;
4522 	struct scrub_ctx *sctx = NULL;
4523 
4524 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4525 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4526 	if (dev)
4527 		sctx = dev->scrub_ctx;
4528 	if (sctx)
4529 		memcpy(progress, &sctx->stat, sizeof(*progress));
4530 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4531 
4532 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4533 }
4534 
scrub_find_good_copy(struct btrfs_fs_info * fs_info,u64 extent_logical,u32 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4535 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4536 				 u64 extent_logical, u32 extent_len,
4537 				 u64 *extent_physical,
4538 				 struct btrfs_device **extent_dev,
4539 				 int *extent_mirror_num)
4540 {
4541 	u64 mapped_length;
4542 	struct btrfs_io_context *bioc = NULL;
4543 	int ret;
4544 
4545 	mapped_length = extent_len;
4546 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4547 			      &mapped_length, &bioc, 0);
4548 	if (ret || !bioc || mapped_length < extent_len ||
4549 	    !bioc->stripes[0].dev->bdev) {
4550 		btrfs_put_bioc(bioc);
4551 		return;
4552 	}
4553 
4554 	*extent_physical = bioc->stripes[0].physical;
4555 	*extent_mirror_num = bioc->mirror_num;
4556 	*extent_dev = bioc->stripes[0].dev;
4557 	btrfs_put_bioc(bioc);
4558 }
4559