• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <net/ipv6.h>
35 
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_tcb.h"
39 #include "t4_values.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "smt.h"
43 #include "t4fw_api.h"
44 #include "cxgb4_filter.h"
45 
is_field_set(u32 val,u32 mask)46 static inline bool is_field_set(u32 val, u32 mask)
47 {
48 	return val || mask;
49 }
50 
unsupported(u32 conf,u32 conf_mask,u32 val,u32 mask)51 static inline bool unsupported(u32 conf, u32 conf_mask, u32 val, u32 mask)
52 {
53 	return !(conf & conf_mask) && is_field_set(val, mask);
54 }
55 
set_tcb_field(struct adapter * adap,struct filter_entry * f,unsigned int ftid,u16 word,u64 mask,u64 val,int no_reply)56 static int set_tcb_field(struct adapter *adap, struct filter_entry *f,
57 			 unsigned int ftid,  u16 word, u64 mask, u64 val,
58 			 int no_reply)
59 {
60 	struct cpl_set_tcb_field *req;
61 	struct sk_buff *skb;
62 
63 	skb = alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_ATOMIC);
64 	if (!skb)
65 		return -ENOMEM;
66 
67 	req = (struct cpl_set_tcb_field *)__skb_put_zero(skb, sizeof(*req));
68 	INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, ftid);
69 	req->reply_ctrl = htons(REPLY_CHAN_V(0) |
70 				QUEUENO_V(adap->sge.fw_evtq.abs_id) |
71 				NO_REPLY_V(no_reply));
72 	req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(ftid));
73 	req->mask = cpu_to_be64(mask);
74 	req->val = cpu_to_be64(val);
75 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
76 	t4_ofld_send(adap, skb);
77 	return 0;
78 }
79 
80 /* Set one of the t_flags bits in the TCB.
81  */
set_tcb_tflag(struct adapter * adap,struct filter_entry * f,unsigned int ftid,unsigned int bit_pos,unsigned int val,int no_reply)82 static int set_tcb_tflag(struct adapter *adap, struct filter_entry *f,
83 			 unsigned int ftid, unsigned int bit_pos,
84 			 unsigned int val, int no_reply)
85 {
86 	return set_tcb_field(adap, f, ftid,  TCB_T_FLAGS_W, 1ULL << bit_pos,
87 			     (unsigned long long)val << bit_pos, no_reply);
88 }
89 
mk_abort_req_ulp(struct cpl_abort_req * abort_req,unsigned int tid)90 static void mk_abort_req_ulp(struct cpl_abort_req *abort_req, unsigned int tid)
91 {
92 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)abort_req;
93 	struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
94 
95 	txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
96 	txpkt->len = htonl(DIV_ROUND_UP(sizeof(*abort_req), 16));
97 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
98 	sc->len = htonl(sizeof(*abort_req) - sizeof(struct work_request_hdr));
99 	OPCODE_TID(abort_req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, tid));
100 	abort_req->rsvd0 = htonl(0);
101 	abort_req->rsvd1 = 0;
102 	abort_req->cmd = CPL_ABORT_NO_RST;
103 }
104 
mk_abort_rpl_ulp(struct cpl_abort_rpl * abort_rpl,unsigned int tid)105 static void mk_abort_rpl_ulp(struct cpl_abort_rpl *abort_rpl, unsigned int tid)
106 {
107 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)abort_rpl;
108 	struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
109 
110 	txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
111 	txpkt->len = htonl(DIV_ROUND_UP(sizeof(*abort_rpl), 16));
112 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
113 	sc->len = htonl(sizeof(*abort_rpl) - sizeof(struct work_request_hdr));
114 	OPCODE_TID(abort_rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
115 	abort_rpl->rsvd0 = htonl(0);
116 	abort_rpl->rsvd1 = 0;
117 	abort_rpl->cmd = CPL_ABORT_NO_RST;
118 }
119 
mk_set_tcb_ulp(struct filter_entry * f,struct cpl_set_tcb_field * req,unsigned int word,u64 mask,u64 val,u8 cookie,int no_reply)120 static void mk_set_tcb_ulp(struct filter_entry *f,
121 			   struct cpl_set_tcb_field *req,
122 			   unsigned int word, u64 mask, u64 val,
123 			   u8 cookie, int no_reply)
124 {
125 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)req;
126 	struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
127 
128 	txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
129 	txpkt->len = htonl(DIV_ROUND_UP(sizeof(*req), 16));
130 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
131 	sc->len = htonl(sizeof(*req) - sizeof(struct work_request_hdr));
132 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, f->tid));
133 	req->reply_ctrl = htons(NO_REPLY_V(no_reply) | REPLY_CHAN_V(0) |
134 				QUEUENO_V(0));
135 	req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
136 	req->mask = cpu_to_be64(mask);
137 	req->val = cpu_to_be64(val);
138 	sc = (struct ulptx_idata *)(req + 1);
139 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
140 	sc->len = htonl(0);
141 }
142 
configure_filter_smac(struct adapter * adap,struct filter_entry * f)143 static int configure_filter_smac(struct adapter *adap, struct filter_entry *f)
144 {
145 	int err;
146 
147 	/* do a set-tcb for smac-sel and CWR bit.. */
148 	err = set_tcb_field(adap, f, f->tid, TCB_SMAC_SEL_W,
149 			    TCB_SMAC_SEL_V(TCB_SMAC_SEL_M),
150 			    TCB_SMAC_SEL_V(f->smt->idx), 1);
151 	if (err)
152 		goto smac_err;
153 
154 	err = set_tcb_tflag(adap, f, f->tid, TF_CCTRL_CWR_S, 1, 1);
155 	if (!err)
156 		return 0;
157 
158 smac_err:
159 	dev_err(adap->pdev_dev, "filter %u smac config failed with error %u\n",
160 		f->tid, err);
161 	return err;
162 }
163 
set_nat_params(struct adapter * adap,struct filter_entry * f,unsigned int tid,bool dip,bool sip,bool dp,bool sp)164 static void set_nat_params(struct adapter *adap, struct filter_entry *f,
165 			   unsigned int tid, bool dip, bool sip, bool dp,
166 			   bool sp)
167 {
168 	u8 *nat_lp = (u8 *)&f->fs.nat_lport;
169 	u8 *nat_fp = (u8 *)&f->fs.nat_fport;
170 
171 	if (dip) {
172 		if (f->fs.type) {
173 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W,
174 				      WORD_MASK, f->fs.nat_lip[15] |
175 				      f->fs.nat_lip[14] << 8 |
176 				      f->fs.nat_lip[13] << 16 |
177 				      (u64)f->fs.nat_lip[12] << 24, 1);
178 
179 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 1,
180 				      WORD_MASK, f->fs.nat_lip[11] |
181 				      f->fs.nat_lip[10] << 8 |
182 				      f->fs.nat_lip[9] << 16 |
183 				      (u64)f->fs.nat_lip[8] << 24, 1);
184 
185 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 2,
186 				      WORD_MASK, f->fs.nat_lip[7] |
187 				      f->fs.nat_lip[6] << 8 |
188 				      f->fs.nat_lip[5] << 16 |
189 				      (u64)f->fs.nat_lip[4] << 24, 1);
190 
191 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 3,
192 				      WORD_MASK, f->fs.nat_lip[3] |
193 				      f->fs.nat_lip[2] << 8 |
194 				      f->fs.nat_lip[1] << 16 |
195 				      (u64)f->fs.nat_lip[0] << 24, 1);
196 		} else {
197 			set_tcb_field(adap, f, tid, TCB_RX_FRAG3_LEN_RAW_W,
198 				      WORD_MASK, f->fs.nat_lip[3] |
199 				      f->fs.nat_lip[2] << 8 |
200 				      f->fs.nat_lip[1] << 16 |
201 				      (u64)f->fs.nat_lip[0] << 24, 1);
202 		}
203 	}
204 
205 	if (sip) {
206 		if (f->fs.type) {
207 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W,
208 				      WORD_MASK, f->fs.nat_fip[15] |
209 				      f->fs.nat_fip[14] << 8 |
210 				      f->fs.nat_fip[13] << 16 |
211 				      (u64)f->fs.nat_fip[12] << 24, 1);
212 
213 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 1,
214 				      WORD_MASK, f->fs.nat_fip[11] |
215 				      f->fs.nat_fip[10] << 8 |
216 				      f->fs.nat_fip[9] << 16 |
217 				      (u64)f->fs.nat_fip[8] << 24, 1);
218 
219 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 2,
220 				      WORD_MASK, f->fs.nat_fip[7] |
221 				      f->fs.nat_fip[6] << 8 |
222 				      f->fs.nat_fip[5] << 16 |
223 				      (u64)f->fs.nat_fip[4] << 24, 1);
224 
225 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 3,
226 				      WORD_MASK, f->fs.nat_fip[3] |
227 				      f->fs.nat_fip[2] << 8 |
228 				      f->fs.nat_fip[1] << 16 |
229 				      (u64)f->fs.nat_fip[0] << 24, 1);
230 
231 		} else {
232 			set_tcb_field(adap, f, tid,
233 				      TCB_RX_FRAG3_START_IDX_OFFSET_RAW_W,
234 				      WORD_MASK, f->fs.nat_fip[3] |
235 				      f->fs.nat_fip[2] << 8 |
236 				      f->fs.nat_fip[1] << 16 |
237 				      (u64)f->fs.nat_fip[0] << 24, 1);
238 		}
239 	}
240 
241 	set_tcb_field(adap, f, tid, TCB_PDU_HDR_LEN_W, WORD_MASK,
242 		      (dp ? (nat_lp[1] | nat_lp[0] << 8) : 0) |
243 		      (sp ? (nat_fp[1] << 16 | (u64)nat_fp[0] << 24) : 0),
244 		      1);
245 }
246 
247 /* Validate filter spec against configuration done on the card. */
validate_filter(struct net_device * dev,struct ch_filter_specification * fs)248 static int validate_filter(struct net_device *dev,
249 			   struct ch_filter_specification *fs)
250 {
251 	struct adapter *adapter = netdev2adap(dev);
252 	u32 fconf, iconf;
253 
254 	/* Check for unconfigured fields being used. */
255 	iconf = adapter->params.tp.ingress_config;
256 	fconf = fs->hash ? adapter->params.tp.filter_mask :
257 			   adapter->params.tp.vlan_pri_map;
258 
259 	if (unsupported(fconf, FCOE_F, fs->val.fcoe, fs->mask.fcoe) ||
260 	    unsupported(fconf, PORT_F, fs->val.iport, fs->mask.iport) ||
261 	    unsupported(fconf, TOS_F, fs->val.tos, fs->mask.tos) ||
262 	    unsupported(fconf, ETHERTYPE_F, fs->val.ethtype,
263 			fs->mask.ethtype) ||
264 	    unsupported(fconf, MACMATCH_F, fs->val.macidx, fs->mask.macidx) ||
265 	    unsupported(fconf, MPSHITTYPE_F, fs->val.matchtype,
266 			fs->mask.matchtype) ||
267 	    unsupported(fconf, FRAGMENTATION_F, fs->val.frag, fs->mask.frag) ||
268 	    unsupported(fconf, PROTOCOL_F, fs->val.proto, fs->mask.proto) ||
269 	    unsupported(fconf, VNIC_ID_F, fs->val.pfvf_vld,
270 			fs->mask.pfvf_vld) ||
271 	    unsupported(fconf, VNIC_ID_F, fs->val.ovlan_vld,
272 			fs->mask.ovlan_vld) ||
273 	    unsupported(fconf, VNIC_ID_F, fs->val.encap_vld,
274 			fs->mask.encap_vld) ||
275 	    unsupported(fconf, VLAN_F, fs->val.ivlan_vld, fs->mask.ivlan_vld))
276 		return -EOPNOTSUPP;
277 
278 	/* T4 inconveniently uses the same FT_VNIC_ID_W bits for both the Outer
279 	 * VLAN Tag and PF/VF/VFvld fields based on VNIC_F being set
280 	 * in TP_INGRESS_CONFIG.  Hense the somewhat crazy checks
281 	 * below.  Additionally, since the T4 firmware interface also
282 	 * carries that overlap, we need to translate any PF/VF
283 	 * specification into that internal format below.
284 	 */
285 	if ((is_field_set(fs->val.pfvf_vld, fs->mask.pfvf_vld) &&
286 	     is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld)) ||
287 	    (is_field_set(fs->val.pfvf_vld, fs->mask.pfvf_vld) &&
288 	     is_field_set(fs->val.encap_vld, fs->mask.encap_vld)) ||
289 	    (is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld) &&
290 	     is_field_set(fs->val.encap_vld, fs->mask.encap_vld)))
291 		return -EOPNOTSUPP;
292 	if (unsupported(iconf, VNIC_F, fs->val.pfvf_vld, fs->mask.pfvf_vld) ||
293 	    (is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld) &&
294 	     (iconf & VNIC_F)))
295 		return -EOPNOTSUPP;
296 	if (fs->val.pf > 0x7 || fs->val.vf > 0x7f)
297 		return -ERANGE;
298 	fs->mask.pf &= 0x7;
299 	fs->mask.vf &= 0x7f;
300 
301 	/* If the user is requesting that the filter action loop
302 	 * matching packets back out one of our ports, make sure that
303 	 * the egress port is in range.
304 	 */
305 	if (fs->action == FILTER_SWITCH &&
306 	    fs->eport >= adapter->params.nports)
307 		return -ERANGE;
308 
309 	/* Don't allow various trivially obvious bogus out-of-range values... */
310 	if (fs->val.iport >= adapter->params.nports)
311 		return -ERANGE;
312 
313 	/* T4 doesn't support removing VLAN Tags for loop back filters. */
314 	if (is_t4(adapter->params.chip) &&
315 	    fs->action == FILTER_SWITCH &&
316 	    (fs->newvlan == VLAN_REMOVE ||
317 	     fs->newvlan == VLAN_REWRITE))
318 		return -EOPNOTSUPP;
319 
320 	if (fs->val.encap_vld &&
321 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
322 		return -EOPNOTSUPP;
323 	return 0;
324 }
325 
get_filter_steerq(struct net_device * dev,struct ch_filter_specification * fs)326 static int get_filter_steerq(struct net_device *dev,
327 			     struct ch_filter_specification *fs)
328 {
329 	struct adapter *adapter = netdev2adap(dev);
330 	int iq;
331 
332 	/* If the user has requested steering matching Ingress Packets
333 	 * to a specific Queue Set, we need to make sure it's in range
334 	 * for the port and map that into the Absolute Queue ID of the
335 	 * Queue Set's Response Queue.
336 	 */
337 	if (!fs->dirsteer) {
338 		if (fs->iq)
339 			return -EINVAL;
340 		iq = 0;
341 	} else {
342 		struct port_info *pi = netdev_priv(dev);
343 
344 		/* If the iq id is greater than the number of qsets,
345 		 * then assume it is an absolute qid.
346 		 */
347 		if (fs->iq < pi->nqsets)
348 			iq = adapter->sge.ethrxq[pi->first_qset +
349 						 fs->iq].rspq.abs_id;
350 		else
351 			iq = fs->iq;
352 	}
353 
354 	return iq;
355 }
356 
get_filter_count(struct adapter * adapter,unsigned int fidx,u64 * pkts,u64 * bytes,bool hash)357 static int get_filter_count(struct adapter *adapter, unsigned int fidx,
358 			    u64 *pkts, u64 *bytes, bool hash)
359 {
360 	unsigned int tcb_base, tcbaddr;
361 	unsigned int word_offset;
362 	struct filter_entry *f;
363 	__be64 be64_byte_count;
364 	int ret;
365 
366 	tcb_base = t4_read_reg(adapter, TP_CMM_TCB_BASE_A);
367 	if (is_hashfilter(adapter) && hash) {
368 		if (tid_out_of_range(&adapter->tids, fidx))
369 			return -E2BIG;
370 		f = adapter->tids.tid_tab[fidx - adapter->tids.tid_base];
371 		if (!f)
372 			return -EINVAL;
373 	} else {
374 		if ((fidx != (adapter->tids.nftids + adapter->tids.nsftids +
375 			      adapter->tids.nhpftids - 1)) &&
376 		    fidx >= (adapter->tids.nftids + adapter->tids.nhpftids))
377 			return -E2BIG;
378 
379 		if (fidx < adapter->tids.nhpftids)
380 			f = &adapter->tids.hpftid_tab[fidx];
381 		else
382 			f = &adapter->tids.ftid_tab[fidx -
383 						    adapter->tids.nhpftids];
384 		if (!f->valid)
385 			return -EINVAL;
386 	}
387 	tcbaddr = tcb_base + f->tid * TCB_SIZE;
388 
389 	spin_lock(&adapter->win0_lock);
390 	if (is_t4(adapter->params.chip)) {
391 		__be64 be64_count;
392 
393 		/* T4 doesn't maintain byte counts in hw */
394 		*bytes = 0;
395 
396 		/* Get pkts */
397 		word_offset = 4;
398 		ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
399 				   tcbaddr + (word_offset * sizeof(__be32)),
400 				   sizeof(be64_count),
401 				   (__be32 *)&be64_count,
402 				   T4_MEMORY_READ);
403 		if (ret < 0)
404 			goto out;
405 		*pkts = be64_to_cpu(be64_count);
406 	} else {
407 		__be32 be32_count;
408 
409 		/* Get bytes */
410 		word_offset = 4;
411 		ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
412 				   tcbaddr + (word_offset * sizeof(__be32)),
413 				   sizeof(be64_byte_count),
414 				   &be64_byte_count,
415 				   T4_MEMORY_READ);
416 		if (ret < 0)
417 			goto out;
418 		*bytes = be64_to_cpu(be64_byte_count);
419 
420 		/* Get pkts */
421 		word_offset = 6;
422 		ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
423 				   tcbaddr + (word_offset * sizeof(__be32)),
424 				   sizeof(be32_count),
425 				   &be32_count,
426 				   T4_MEMORY_READ);
427 		if (ret < 0)
428 			goto out;
429 		*pkts = (u64)be32_to_cpu(be32_count);
430 	}
431 
432 out:
433 	spin_unlock(&adapter->win0_lock);
434 	return ret;
435 }
436 
cxgb4_get_filter_counters(struct net_device * dev,unsigned int fidx,u64 * hitcnt,u64 * bytecnt,bool hash)437 int cxgb4_get_filter_counters(struct net_device *dev, unsigned int fidx,
438 			      u64 *hitcnt, u64 *bytecnt, bool hash)
439 {
440 	struct adapter *adapter = netdev2adap(dev);
441 
442 	return get_filter_count(adapter, fidx, hitcnt, bytecnt, hash);
443 }
444 
cxgb4_filter_prio_in_range(struct tid_info * t,u32 idx,u8 nslots,u32 prio)445 static bool cxgb4_filter_prio_in_range(struct tid_info *t, u32 idx, u8 nslots,
446 				       u32 prio)
447 {
448 	struct filter_entry *prev_tab, *next_tab, *prev_fe, *next_fe;
449 	u32 prev_ftid, next_ftid;
450 
451 	/* Only insert the rule if both of the following conditions
452 	 * are met:
453 	 * 1. The immediate previous rule has priority <= @prio.
454 	 * 2. The immediate next rule has priority >= @prio.
455 	 */
456 
457 	/* High Priority (HPFILTER) region always has higher priority
458 	 * than normal FILTER region. So, all rules in HPFILTER region
459 	 * must have prio value <= rules in normal FILTER region.
460 	 */
461 	if (idx < t->nhpftids) {
462 		/* Don't insert if there's a rule already present at @idx
463 		 * in HPFILTER region.
464 		 */
465 		if (test_bit(idx, t->hpftid_bmap))
466 			return false;
467 
468 		next_tab = t->hpftid_tab;
469 		next_ftid = find_next_bit(t->hpftid_bmap, t->nhpftids, idx);
470 		if (next_ftid >= t->nhpftids) {
471 			/* No next entry found in HPFILTER region.
472 			 * See if there's any next entry in normal
473 			 * FILTER region.
474 			 */
475 			next_ftid = find_first_bit(t->ftid_bmap, t->nftids);
476 			if (next_ftid >= t->nftids)
477 				next_ftid = idx;
478 			else
479 				next_tab = t->ftid_tab;
480 		}
481 
482 		/* Search for the closest previous filter entry in HPFILTER
483 		 * region. No need to search in normal FILTER region because
484 		 * there can never be any entry in normal FILTER region whose
485 		 * prio value is < last entry in HPFILTER region.
486 		 */
487 		prev_ftid = find_last_bit(t->hpftid_bmap, idx);
488 		if (prev_ftid >= idx)
489 			prev_ftid = idx;
490 
491 		prev_tab = t->hpftid_tab;
492 	} else {
493 		idx -= t->nhpftids;
494 
495 		/* Don't insert if there's a rule already present at @idx
496 		 * in normal FILTER region.
497 		 */
498 		if (test_bit(idx, t->ftid_bmap))
499 			return false;
500 
501 		prev_tab = t->ftid_tab;
502 		prev_ftid = find_last_bit(t->ftid_bmap, idx);
503 		if (prev_ftid >= idx) {
504 			/* No previous entry found in normal FILTER
505 			 * region. See if there's any previous entry
506 			 * in HPFILTER region.
507 			 */
508 			prev_ftid = find_last_bit(t->hpftid_bmap, t->nhpftids);
509 			if (prev_ftid >= t->nhpftids)
510 				prev_ftid = idx;
511 			else
512 				prev_tab = t->hpftid_tab;
513 		}
514 
515 		/* Search for the closest next filter entry in normal
516 		 * FILTER region. No need to search in HPFILTER region
517 		 * because there can never be any entry in HPFILTER
518 		 * region whose prio value is > first entry in normal
519 		 * FILTER region.
520 		 */
521 		next_ftid = find_next_bit(t->ftid_bmap, t->nftids, idx);
522 		if (next_ftid >= t->nftids)
523 			next_ftid = idx;
524 
525 		next_tab = t->ftid_tab;
526 	}
527 
528 	next_fe = &next_tab[next_ftid];
529 
530 	/* See if the filter entry belongs to an IPv6 rule, which
531 	 * occupy 4 slots on T5 and 2 slots on T6. Adjust the
532 	 * reference to the previously inserted filter entry
533 	 * accordingly.
534 	 */
535 	prev_fe = &prev_tab[prev_ftid & ~(nslots - 1)];
536 	if (!prev_fe->fs.type)
537 		prev_fe = &prev_tab[prev_ftid];
538 
539 	if ((prev_fe->valid && prev_fe->fs.tc_prio > prio) ||
540 	    (next_fe->valid && next_fe->fs.tc_prio < prio))
541 		return false;
542 
543 	return true;
544 }
545 
cxgb4_get_free_ftid(struct net_device * dev,u8 family,bool hash_en,u32 tc_prio)546 int cxgb4_get_free_ftid(struct net_device *dev, u8 family, bool hash_en,
547 			u32 tc_prio)
548 {
549 	struct adapter *adap = netdev2adap(dev);
550 	struct tid_info *t = &adap->tids;
551 	u32 bmap_ftid, max_ftid;
552 	struct filter_entry *f;
553 	unsigned long *bmap;
554 	bool found = false;
555 	u8 i, cnt, n;
556 	int ftid = 0;
557 
558 	/* IPv4 occupy 1 slot. IPv6 occupy 2 slots on T6 and 4 slots
559 	 * on T5.
560 	 */
561 	n = 1;
562 	if (family == PF_INET6) {
563 		n++;
564 		if (CHELSIO_CHIP_VERSION(adap->params.chip) < CHELSIO_T6)
565 			n += 2;
566 	}
567 
568 	/* There are 3 filter regions available in hardware in
569 	 * following order of priority:
570 	 *
571 	 * 1. High Priority (HPFILTER) region (Highest Priority).
572 	 * 2. HASH region.
573 	 * 3. Normal FILTER region (Lowest Priority).
574 	 *
575 	 * Entries in HPFILTER and normal FILTER region have index
576 	 * 0 as the highest priority and the rules will be scanned
577 	 * in ascending order until either a rule hits or end of
578 	 * the region is reached.
579 	 *
580 	 * All HASH region entries have same priority. The set of
581 	 * fields to match in headers are pre-determined. The same
582 	 * set of header match fields must be compulsorily specified
583 	 * in all the rules wanting to get inserted in HASH region.
584 	 * Hence, HASH region is an exact-match region. A HASH is
585 	 * generated for a rule based on the values in the
586 	 * pre-determined set of header match fields. The generated
587 	 * HASH serves as an index into the HASH region. There can
588 	 * never be 2 rules having the same HASH. Hardware will
589 	 * compute a HASH for every incoming packet based on the
590 	 * values in the pre-determined set of header match fields
591 	 * and uses it as an index to check if there's a rule
592 	 * inserted in the HASH region at the specified index. If
593 	 * there's a rule inserted, then it's considered as a filter
594 	 * hit. Otherwise, it's a filter miss and normal FILTER region
595 	 * is scanned afterwards.
596 	 */
597 
598 	spin_lock_bh(&t->ftid_lock);
599 
600 	ftid = (tc_prio <= t->nhpftids) ? 0 : t->nhpftids;
601 	max_ftid = t->nftids + t->nhpftids;
602 	while (ftid < max_ftid) {
603 		if (ftid < t->nhpftids) {
604 			/* If the new rule wants to get inserted into
605 			 * HPFILTER region, but its prio is greater
606 			 * than the rule with the highest prio in HASH
607 			 * region, or if there's not enough slots
608 			 * available in HPFILTER region, then skip
609 			 * trying to insert this rule into HPFILTER
610 			 * region and directly go to the next region.
611 			 */
612 			if ((t->tc_hash_tids_max_prio &&
613 			     tc_prio > t->tc_hash_tids_max_prio) ||
614 			     (ftid + n) > t->nhpftids) {
615 				ftid = t->nhpftids;
616 				continue;
617 			}
618 
619 			bmap = t->hpftid_bmap;
620 			bmap_ftid = ftid;
621 		} else if (hash_en) {
622 			/* Ensure priority is >= last rule in HPFILTER
623 			 * region.
624 			 */
625 			ftid = find_last_bit(t->hpftid_bmap, t->nhpftids);
626 			if (ftid < t->nhpftids) {
627 				f = &t->hpftid_tab[ftid];
628 				if (f->valid && tc_prio < f->fs.tc_prio)
629 					break;
630 			}
631 
632 			/* Ensure priority is <= first rule in normal
633 			 * FILTER region.
634 			 */
635 			ftid = find_first_bit(t->ftid_bmap, t->nftids);
636 			if (ftid < t->nftids) {
637 				f = &t->ftid_tab[ftid];
638 				if (f->valid && tc_prio > f->fs.tc_prio)
639 					break;
640 			}
641 
642 			found = true;
643 			ftid = t->nhpftids;
644 			goto out_unlock;
645 		} else {
646 			/* If the new rule wants to get inserted into
647 			 * normal FILTER region, but its prio is less
648 			 * than the rule with the highest prio in HASH
649 			 * region, then reject the rule.
650 			 */
651 			if (t->tc_hash_tids_max_prio &&
652 			    tc_prio < t->tc_hash_tids_max_prio)
653 				break;
654 
655 			if (ftid + n > max_ftid)
656 				break;
657 
658 			bmap = t->ftid_bmap;
659 			bmap_ftid = ftid - t->nhpftids;
660 		}
661 
662 		cnt = 0;
663 		for (i = 0; i < n; i++) {
664 			if (test_bit(bmap_ftid + i, bmap))
665 				break;
666 			cnt++;
667 		}
668 
669 		if (cnt == n) {
670 			/* Ensure the new rule's prio doesn't conflict
671 			 * with existing rules.
672 			 */
673 			if (cxgb4_filter_prio_in_range(t, ftid, n,
674 						       tc_prio)) {
675 				ftid &= ~(n - 1);
676 				found = true;
677 				break;
678 			}
679 		}
680 
681 		ftid += n;
682 	}
683 
684 out_unlock:
685 	spin_unlock_bh(&t->ftid_lock);
686 	return found ? ftid : -ENOMEM;
687 }
688 
cxgb4_set_ftid(struct tid_info * t,int fidx,int family,unsigned int chip_ver)689 static int cxgb4_set_ftid(struct tid_info *t, int fidx, int family,
690 			  unsigned int chip_ver)
691 {
692 	spin_lock_bh(&t->ftid_lock);
693 
694 	if (test_bit(fidx, t->ftid_bmap)) {
695 		spin_unlock_bh(&t->ftid_lock);
696 		return -EBUSY;
697 	}
698 
699 	if (family == PF_INET) {
700 		__set_bit(fidx, t->ftid_bmap);
701 	} else {
702 		if (chip_ver < CHELSIO_T6)
703 			bitmap_allocate_region(t->ftid_bmap, fidx, 2);
704 		else
705 			bitmap_allocate_region(t->ftid_bmap, fidx, 1);
706 	}
707 
708 	spin_unlock_bh(&t->ftid_lock);
709 	return 0;
710 }
711 
cxgb4_set_hpftid(struct tid_info * t,int fidx,int family)712 static int cxgb4_set_hpftid(struct tid_info *t, int fidx, int family)
713 {
714 	spin_lock_bh(&t->ftid_lock);
715 
716 	if (test_bit(fidx, t->hpftid_bmap)) {
717 		spin_unlock_bh(&t->ftid_lock);
718 		return -EBUSY;
719 	}
720 
721 	if (family == PF_INET)
722 		__set_bit(fidx, t->hpftid_bmap);
723 	else
724 		bitmap_allocate_region(t->hpftid_bmap, fidx, 1);
725 
726 	spin_unlock_bh(&t->ftid_lock);
727 	return 0;
728 }
729 
cxgb4_clear_ftid(struct tid_info * t,int fidx,int family,unsigned int chip_ver)730 static void cxgb4_clear_ftid(struct tid_info *t, int fidx, int family,
731 			     unsigned int chip_ver)
732 {
733 	spin_lock_bh(&t->ftid_lock);
734 	if (family == PF_INET) {
735 		__clear_bit(fidx, t->ftid_bmap);
736 	} else {
737 		if (chip_ver < CHELSIO_T6)
738 			bitmap_release_region(t->ftid_bmap, fidx, 2);
739 		else
740 			bitmap_release_region(t->ftid_bmap, fidx, 1);
741 	}
742 	spin_unlock_bh(&t->ftid_lock);
743 }
744 
cxgb4_clear_hpftid(struct tid_info * t,int fidx,int family)745 static void cxgb4_clear_hpftid(struct tid_info *t, int fidx, int family)
746 {
747 	spin_lock_bh(&t->ftid_lock);
748 
749 	if (family == PF_INET)
750 		__clear_bit(fidx, t->hpftid_bmap);
751 	else
752 		bitmap_release_region(t->hpftid_bmap, fidx, 1);
753 
754 	spin_unlock_bh(&t->ftid_lock);
755 }
756 
757 /* Delete the filter at a specified index. */
del_filter_wr(struct adapter * adapter,int fidx)758 static int del_filter_wr(struct adapter *adapter, int fidx)
759 {
760 	struct fw_filter_wr *fwr;
761 	struct filter_entry *f;
762 	struct sk_buff *skb;
763 	unsigned int len;
764 
765 	if (fidx < adapter->tids.nhpftids)
766 		f = &adapter->tids.hpftid_tab[fidx];
767 	else
768 		f = &adapter->tids.ftid_tab[fidx - adapter->tids.nhpftids];
769 
770 	len = sizeof(*fwr);
771 
772 	skb = alloc_skb(len, GFP_KERNEL);
773 	if (!skb)
774 		return -ENOMEM;
775 
776 	fwr = __skb_put(skb, len);
777 	t4_mk_filtdelwr(f->tid, fwr, adapter->sge.fw_evtq.abs_id);
778 
779 	/* Mark the filter as "pending" and ship off the Filter Work Request.
780 	 * When we get the Work Request Reply we'll clear the pending status.
781 	 */
782 	f->pending = 1;
783 	t4_mgmt_tx(adapter, skb);
784 	return 0;
785 }
786 
787 /* Send a Work Request to write the filter at a specified index.  We construct
788  * a Firmware Filter Work Request to have the work done and put the indicated
789  * filter into "pending" mode which will prevent any further actions against
790  * it till we get a reply from the firmware on the completion status of the
791  * request.
792  */
set_filter_wr(struct adapter * adapter,int fidx)793 int set_filter_wr(struct adapter *adapter, int fidx)
794 {
795 	struct fw_filter2_wr *fwr;
796 	struct filter_entry *f;
797 	struct sk_buff *skb;
798 
799 	if (fidx < adapter->tids.nhpftids)
800 		f = &adapter->tids.hpftid_tab[fidx];
801 	else
802 		f = &adapter->tids.ftid_tab[fidx - adapter->tids.nhpftids];
803 
804 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
805 	if (!skb)
806 		return -ENOMEM;
807 
808 	/* If the new filter requires loopback Destination MAC and/or VLAN
809 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
810 	 * the filter.
811 	 */
812 	if (f->fs.newdmac || f->fs.newvlan) {
813 		/* allocate L2T entry for new filter */
814 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
815 						f->fs.eport, f->fs.dmac);
816 		if (!f->l2t) {
817 			kfree_skb(skb);
818 			return -ENOMEM;
819 		}
820 	}
821 
822 	/* If the new filter requires loopback Source MAC rewriting then
823 	 * we need to allocate a SMT entry for the filter.
824 	 */
825 	if (f->fs.newsmac) {
826 		f->smt = cxgb4_smt_alloc_switching(f->dev, f->fs.smac);
827 		if (!f->smt) {
828 			if (f->l2t) {
829 				cxgb4_l2t_release(f->l2t);
830 				f->l2t = NULL;
831 			}
832 			kfree_skb(skb);
833 			return -ENOMEM;
834 		}
835 	}
836 
837 	fwr = __skb_put_zero(skb, sizeof(*fwr));
838 
839 	/* It would be nice to put most of the following in t4_hw.c but most
840 	 * of the work is translating the cxgbtool ch_filter_specification
841 	 * into the Work Request and the definition of that structure is
842 	 * currently in cxgbtool.h which isn't appropriate to pull into the
843 	 * common code.  We may eventually try to come up with a more neutral
844 	 * filter specification structure but for now it's easiest to simply
845 	 * put this fairly direct code in line ...
846 	 */
847 	if (adapter->params.filter2_wr_support)
848 		fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER2_WR));
849 	else
850 		fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
851 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr) / 16));
852 	fwr->tid_to_iq =
853 		htonl(FW_FILTER_WR_TID_V(f->tid) |
854 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
855 		      FW_FILTER_WR_NOREPLY_V(0) |
856 		      FW_FILTER_WR_IQ_V(f->fs.iq));
857 	fwr->del_filter_to_l2tix =
858 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
859 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
860 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
861 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
862 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
863 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
864 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
865 		      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
866 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
867 					     f->fs.newvlan == VLAN_REWRITE) |
868 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
869 					    f->fs.newvlan == VLAN_REWRITE) |
870 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
871 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
872 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
873 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
874 	fwr->ethtype = htons(f->fs.val.ethtype);
875 	fwr->ethtypem = htons(f->fs.mask.ethtype);
876 	fwr->frag_to_ovlan_vldm =
877 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
878 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
879 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
880 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
881 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
882 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
883 	if (f->fs.newsmac)
884 		fwr->smac_sel = f->smt->idx;
885 	fwr->rx_chan_rx_rpl_iq =
886 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
887 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
888 	fwr->maci_to_matchtypem =
889 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
890 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
891 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
892 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
893 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
894 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
895 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
896 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
897 	fwr->ptcl = f->fs.val.proto;
898 	fwr->ptclm = f->fs.mask.proto;
899 	fwr->ttyp = f->fs.val.tos;
900 	fwr->ttypm = f->fs.mask.tos;
901 	fwr->ivlan = htons(f->fs.val.ivlan);
902 	fwr->ivlanm = htons(f->fs.mask.ivlan);
903 	fwr->ovlan = htons(f->fs.val.ovlan);
904 	fwr->ovlanm = htons(f->fs.mask.ovlan);
905 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
906 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
907 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
908 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
909 	fwr->lp = htons(f->fs.val.lport);
910 	fwr->lpm = htons(f->fs.mask.lport);
911 	fwr->fp = htons(f->fs.val.fport);
912 	fwr->fpm = htons(f->fs.mask.fport);
913 
914 	if (adapter->params.filter2_wr_support) {
915 		u8 *nat_lp = (u8 *)&f->fs.nat_lport;
916 		u8 *nat_fp = (u8 *)&f->fs.nat_fport;
917 
918 		fwr->natmode_to_ulp_type =
919 			FW_FILTER2_WR_ULP_TYPE_V(f->fs.nat_mode ?
920 						 ULP_MODE_TCPDDP :
921 						 ULP_MODE_NONE) |
922 			FW_FILTER2_WR_NATMODE_V(f->fs.nat_mode);
923 		memcpy(fwr->newlip, f->fs.nat_lip, sizeof(fwr->newlip));
924 		memcpy(fwr->newfip, f->fs.nat_fip, sizeof(fwr->newfip));
925 		fwr->newlport = htons(nat_lp[1] | nat_lp[0] << 8);
926 		fwr->newfport = htons(nat_fp[1] | nat_fp[0] << 8);
927 	}
928 
929 	/* Mark the filter as "pending" and ship off the Filter Work Request.
930 	 * When we get the Work Request Reply we'll clear the pending status.
931 	 */
932 	f->pending = 1;
933 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
934 	t4_ofld_send(adapter, skb);
935 	return 0;
936 }
937 
938 /* Return an error number if the indicated filter isn't writable ... */
writable_filter(struct filter_entry * f)939 int writable_filter(struct filter_entry *f)
940 {
941 	if (f->locked)
942 		return -EPERM;
943 	if (f->pending)
944 		return -EBUSY;
945 
946 	return 0;
947 }
948 
949 /* Delete the filter at the specified index (if valid).  The checks for all
950  * the common problems with doing this like the filter being locked, currently
951  * pending in another operation, etc.
952  */
delete_filter(struct adapter * adapter,unsigned int fidx)953 int delete_filter(struct adapter *adapter, unsigned int fidx)
954 {
955 	struct filter_entry *f;
956 	int ret;
957 
958 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids +
959 		    adapter->tids.nhpftids)
960 		return -EINVAL;
961 
962 	if (fidx < adapter->tids.nhpftids)
963 		f = &adapter->tids.hpftid_tab[fidx];
964 	else
965 		f = &adapter->tids.ftid_tab[fidx - adapter->tids.nhpftids];
966 	ret = writable_filter(f);
967 	if (ret)
968 		return ret;
969 	if (f->valid)
970 		return del_filter_wr(adapter, fidx);
971 
972 	return 0;
973 }
974 
975 /* Clear a filter and release any of its resources that we own.  This also
976  * clears the filter's "pending" status.
977  */
clear_filter(struct adapter * adap,struct filter_entry * f)978 void clear_filter(struct adapter *adap, struct filter_entry *f)
979 {
980 	struct port_info *pi = netdev_priv(f->dev);
981 
982 	/* If the new or old filter have loopback rewriting rules then we'll
983 	 * need to free any existing L2T, SMT, CLIP entries of filter
984 	 * rule.
985 	 */
986 	if (f->l2t)
987 		cxgb4_l2t_release(f->l2t);
988 
989 	if (f->smt)
990 		cxgb4_smt_release(f->smt);
991 
992 	if (f->fs.val.encap_vld && f->fs.val.ovlan_vld)
993 		t4_free_encap_mac_filt(adap, pi->viid,
994 				       f->fs.val.ovlan & 0x1ff, 0);
995 
996 	if ((f->fs.hash || is_t6(adap->params.chip)) && f->fs.type)
997 		cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
998 
999 	/* The zeroing of the filter rule below clears the filter valid,
1000 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
1001 	 * this operation.
1002 	 */
1003 	memset(f, 0, sizeof(*f));
1004 }
1005 
clear_all_filters(struct adapter * adapter)1006 void clear_all_filters(struct adapter *adapter)
1007 {
1008 	struct net_device *dev = adapter->port[0];
1009 	unsigned int i;
1010 
1011 	if (adapter->tids.hpftid_tab) {
1012 		struct filter_entry *f = &adapter->tids.hpftid_tab[0];
1013 
1014 		for (i = 0; i < adapter->tids.nhpftids; i++, f++)
1015 			if (f->valid || f->pending)
1016 				cxgb4_del_filter(dev, i, &f->fs);
1017 	}
1018 
1019 	if (adapter->tids.ftid_tab) {
1020 		struct filter_entry *f = &adapter->tids.ftid_tab[0];
1021 		unsigned int max_ftid = adapter->tids.nftids +
1022 					adapter->tids.nsftids +
1023 					adapter->tids.nhpftids;
1024 
1025 		/* Clear all TCAM filters */
1026 		for (i = adapter->tids.nhpftids; i < max_ftid; i++, f++)
1027 			if (f->valid || f->pending)
1028 				cxgb4_del_filter(dev, i, &f->fs);
1029 	}
1030 
1031 	/* Clear all hash filters */
1032 	if (is_hashfilter(adapter) && adapter->tids.tid_tab) {
1033 		struct filter_entry *f;
1034 		unsigned int sb;
1035 
1036 		for (i = adapter->tids.hash_base;
1037 		     i <= adapter->tids.ntids; i++) {
1038 			f = (struct filter_entry *)
1039 				adapter->tids.tid_tab[i];
1040 
1041 			if (f && (f->valid || f->pending))
1042 				cxgb4_del_filter(dev, f->tid, &f->fs);
1043 		}
1044 
1045 		sb = adapter->tids.stid_base;
1046 		for (i = 0; i < sb; i++) {
1047 			f = (struct filter_entry *)adapter->tids.tid_tab[i];
1048 
1049 			if (f && (f->valid || f->pending))
1050 				cxgb4_del_filter(dev, f->tid, &f->fs);
1051 		}
1052 	}
1053 }
1054 
1055 /* Fill up default masks for set match fields. */
fill_default_mask(struct ch_filter_specification * fs)1056 static void fill_default_mask(struct ch_filter_specification *fs)
1057 {
1058 	unsigned int lip = 0, lip_mask = 0;
1059 	unsigned int fip = 0, fip_mask = 0;
1060 	unsigned int i;
1061 
1062 	if (fs->val.iport && !fs->mask.iport)
1063 		fs->mask.iport |= ~0;
1064 	if (fs->val.fcoe && !fs->mask.fcoe)
1065 		fs->mask.fcoe |= ~0;
1066 	if (fs->val.matchtype && !fs->mask.matchtype)
1067 		fs->mask.matchtype |= ~0;
1068 	if (fs->val.macidx && !fs->mask.macidx)
1069 		fs->mask.macidx |= ~0;
1070 	if (fs->val.ethtype && !fs->mask.ethtype)
1071 		fs->mask.ethtype |= ~0;
1072 	if (fs->val.ivlan && !fs->mask.ivlan)
1073 		fs->mask.ivlan |= ~0;
1074 	if (fs->val.ovlan && !fs->mask.ovlan)
1075 		fs->mask.ovlan |= ~0;
1076 	if (fs->val.frag && !fs->mask.frag)
1077 		fs->mask.frag |= ~0;
1078 	if (fs->val.tos && !fs->mask.tos)
1079 		fs->mask.tos |= ~0;
1080 	if (fs->val.proto && !fs->mask.proto)
1081 		fs->mask.proto |= ~0;
1082 	if (fs->val.pfvf_vld && !fs->mask.pfvf_vld)
1083 		fs->mask.pfvf_vld |= ~0;
1084 	if (fs->val.pf && !fs->mask.pf)
1085 		fs->mask.pf |= ~0;
1086 	if (fs->val.vf && !fs->mask.vf)
1087 		fs->mask.vf |= ~0;
1088 
1089 	for (i = 0; i < ARRAY_SIZE(fs->val.lip); i++) {
1090 		lip |= fs->val.lip[i];
1091 		lip_mask |= fs->mask.lip[i];
1092 		fip |= fs->val.fip[i];
1093 		fip_mask |= fs->mask.fip[i];
1094 	}
1095 
1096 	if (lip && !lip_mask)
1097 		memset(fs->mask.lip, ~0, sizeof(fs->mask.lip));
1098 
1099 	if (fip && !fip_mask)
1100 		memset(fs->mask.fip, ~0, sizeof(fs->mask.lip));
1101 
1102 	if (fs->val.lport && !fs->mask.lport)
1103 		fs->mask.lport = ~0;
1104 	if (fs->val.fport && !fs->mask.fport)
1105 		fs->mask.fport = ~0;
1106 }
1107 
is_addr_all_mask(u8 * ipmask,int family)1108 static bool is_addr_all_mask(u8 *ipmask, int family)
1109 {
1110 	if (family == AF_INET) {
1111 		struct in_addr *addr;
1112 
1113 		addr = (struct in_addr *)ipmask;
1114 		if (addr->s_addr == htonl(0xffffffff))
1115 			return true;
1116 	} else if (family == AF_INET6) {
1117 		struct in6_addr *addr6;
1118 
1119 		addr6 = (struct in6_addr *)ipmask;
1120 		if (addr6->s6_addr32[0] == htonl(0xffffffff) &&
1121 		    addr6->s6_addr32[1] == htonl(0xffffffff) &&
1122 		    addr6->s6_addr32[2] == htonl(0xffffffff) &&
1123 		    addr6->s6_addr32[3] == htonl(0xffffffff))
1124 			return true;
1125 	}
1126 	return false;
1127 }
1128 
is_inaddr_any(u8 * ip,int family)1129 static bool is_inaddr_any(u8 *ip, int family)
1130 {
1131 	int addr_type;
1132 
1133 	if (family == AF_INET) {
1134 		struct in_addr *addr;
1135 
1136 		addr = (struct in_addr *)ip;
1137 		if (addr->s_addr == htonl(INADDR_ANY))
1138 			return true;
1139 	} else if (family == AF_INET6) {
1140 		struct in6_addr *addr6;
1141 
1142 		addr6 = (struct in6_addr *)ip;
1143 		addr_type = ipv6_addr_type((const struct in6_addr *)
1144 					   &addr6);
1145 		if (addr_type == IPV6_ADDR_ANY)
1146 			return true;
1147 	}
1148 	return false;
1149 }
1150 
is_filter_exact_match(struct adapter * adap,struct ch_filter_specification * fs)1151 bool is_filter_exact_match(struct adapter *adap,
1152 			   struct ch_filter_specification *fs)
1153 {
1154 	struct tp_params *tp = &adap->params.tp;
1155 	u64 hash_filter_mask = tp->hash_filter_mask;
1156 	u64 ntuple_mask = 0;
1157 
1158 	if (!is_hashfilter(adap))
1159 		return false;
1160 
1161 	if ((atomic_read(&adap->tids.hash_tids_in_use) +
1162 	     atomic_read(&adap->tids.tids_in_use)) >=
1163 	    (adap->tids.nhash + (adap->tids.stid_base - adap->tids.tid_base)))
1164 		return false;
1165 
1166 	 /* Keep tunnel VNI match disabled for hash-filters for now */
1167 	if (fs->mask.encap_vld)
1168 		return false;
1169 
1170 	if (fs->type) {
1171 		if (is_inaddr_any(fs->val.fip, AF_INET6) ||
1172 		    !is_addr_all_mask(fs->mask.fip, AF_INET6))
1173 			return false;
1174 
1175 		if (is_inaddr_any(fs->val.lip, AF_INET6) ||
1176 		    !is_addr_all_mask(fs->mask.lip, AF_INET6))
1177 			return false;
1178 	} else {
1179 		if (is_inaddr_any(fs->val.fip, AF_INET) ||
1180 		    !is_addr_all_mask(fs->mask.fip, AF_INET))
1181 			return false;
1182 
1183 		if (is_inaddr_any(fs->val.lip, AF_INET) ||
1184 		    !is_addr_all_mask(fs->mask.lip, AF_INET))
1185 			return false;
1186 	}
1187 
1188 	if (!fs->val.lport || fs->mask.lport != 0xffff)
1189 		return false;
1190 
1191 	if (!fs->val.fport || fs->mask.fport != 0xffff)
1192 		return false;
1193 
1194 	/* calculate tuple mask and compare with mask configured in hw */
1195 	if (tp->fcoe_shift >= 0)
1196 		ntuple_mask |= (u64)fs->mask.fcoe << tp->fcoe_shift;
1197 
1198 	if (tp->port_shift >= 0)
1199 		ntuple_mask |= (u64)fs->mask.iport << tp->port_shift;
1200 
1201 	if (tp->vnic_shift >= 0) {
1202 		if ((adap->params.tp.ingress_config & VNIC_F))
1203 			ntuple_mask |= (u64)fs->mask.pfvf_vld << tp->vnic_shift;
1204 		else
1205 			ntuple_mask |= (u64)fs->mask.ovlan_vld <<
1206 				tp->vnic_shift;
1207 	}
1208 
1209 	if (tp->vlan_shift >= 0)
1210 		ntuple_mask |= (u64)fs->mask.ivlan << tp->vlan_shift;
1211 
1212 	if (tp->tos_shift >= 0)
1213 		ntuple_mask |= (u64)fs->mask.tos << tp->tos_shift;
1214 
1215 	if (tp->protocol_shift >= 0)
1216 		ntuple_mask |= (u64)fs->mask.proto << tp->protocol_shift;
1217 
1218 	if (tp->ethertype_shift >= 0)
1219 		ntuple_mask |= (u64)fs->mask.ethtype << tp->ethertype_shift;
1220 
1221 	if (tp->macmatch_shift >= 0)
1222 		ntuple_mask |= (u64)fs->mask.macidx << tp->macmatch_shift;
1223 
1224 	if (tp->matchtype_shift >= 0)
1225 		ntuple_mask |= (u64)fs->mask.matchtype << tp->matchtype_shift;
1226 
1227 	if (tp->frag_shift >= 0)
1228 		ntuple_mask |= (u64)fs->mask.frag << tp->frag_shift;
1229 
1230 	if (ntuple_mask != hash_filter_mask)
1231 		return false;
1232 
1233 	return true;
1234 }
1235 
hash_filter_ntuple(struct ch_filter_specification * fs,struct net_device * dev)1236 static u64 hash_filter_ntuple(struct ch_filter_specification *fs,
1237 			      struct net_device *dev)
1238 {
1239 	struct adapter *adap = netdev2adap(dev);
1240 	struct tp_params *tp = &adap->params.tp;
1241 	u64 ntuple = 0;
1242 
1243 	/* Initialize each of the fields which we care about which are present
1244 	 * in the Compressed Filter Tuple.
1245 	 */
1246 	if (tp->vlan_shift >= 0 && fs->mask.ivlan)
1247 		ntuple |= (FT_VLAN_VLD_F | fs->val.ivlan) << tp->vlan_shift;
1248 
1249 	if (tp->port_shift >= 0 && fs->mask.iport)
1250 		ntuple |= (u64)fs->val.iport << tp->port_shift;
1251 
1252 	if (tp->protocol_shift >= 0) {
1253 		if (!fs->val.proto)
1254 			ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
1255 		else
1256 			ntuple |= (u64)fs->val.proto << tp->protocol_shift;
1257 	}
1258 
1259 	if (tp->tos_shift >= 0 && fs->mask.tos)
1260 		ntuple |= (u64)(fs->val.tos) << tp->tos_shift;
1261 
1262 	if (tp->vnic_shift >= 0) {
1263 		if ((adap->params.tp.ingress_config & USE_ENC_IDX_F) &&
1264 		    fs->mask.encap_vld)
1265 			ntuple |= (u64)((fs->val.encap_vld << 16) |
1266 					(fs->val.ovlan)) << tp->vnic_shift;
1267 		else if ((adap->params.tp.ingress_config & VNIC_F) &&
1268 			 fs->mask.pfvf_vld)
1269 			ntuple |= (u64)((fs->val.pfvf_vld << 16) |
1270 					(fs->val.pf << 13) |
1271 					(fs->val.vf)) << tp->vnic_shift;
1272 		else
1273 			ntuple |= (u64)((fs->val.ovlan_vld << 16) |
1274 					(fs->val.ovlan)) << tp->vnic_shift;
1275 	}
1276 
1277 	if (tp->macmatch_shift >= 0 && fs->mask.macidx)
1278 		ntuple |= (u64)(fs->val.macidx) << tp->macmatch_shift;
1279 
1280 	if (tp->ethertype_shift >= 0 && fs->mask.ethtype)
1281 		ntuple |= (u64)(fs->val.ethtype) << tp->ethertype_shift;
1282 
1283 	if (tp->matchtype_shift >= 0 && fs->mask.matchtype)
1284 		ntuple |= (u64)(fs->val.matchtype) << tp->matchtype_shift;
1285 
1286 	if (tp->frag_shift >= 0 && fs->mask.frag)
1287 		ntuple |= (u64)(fs->val.frag) << tp->frag_shift;
1288 
1289 	if (tp->fcoe_shift >= 0 && fs->mask.fcoe)
1290 		ntuple |= (u64)(fs->val.fcoe) << tp->fcoe_shift;
1291 	return ntuple;
1292 }
1293 
mk_act_open_req6(struct filter_entry * f,struct sk_buff * skb,unsigned int qid_filterid,struct adapter * adap)1294 static void mk_act_open_req6(struct filter_entry *f, struct sk_buff *skb,
1295 			     unsigned int qid_filterid, struct adapter *adap)
1296 {
1297 	struct cpl_t6_act_open_req6 *t6req = NULL;
1298 	struct cpl_act_open_req6 *req = NULL;
1299 
1300 	t6req = (struct cpl_t6_act_open_req6 *)__skb_put(skb, sizeof(*t6req));
1301 	INIT_TP_WR(t6req, 0);
1302 	req = (struct cpl_act_open_req6 *)t6req;
1303 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, qid_filterid));
1304 	req->local_port = cpu_to_be16(f->fs.val.lport);
1305 	req->peer_port = cpu_to_be16(f->fs.val.fport);
1306 	req->local_ip_hi = *(__be64 *)(&f->fs.val.lip);
1307 	req->local_ip_lo = *(((__be64 *)&f->fs.val.lip) + 1);
1308 	req->peer_ip_hi = *(__be64 *)(&f->fs.val.fip);
1309 	req->peer_ip_lo = *(((__be64 *)&f->fs.val.fip) + 1);
1310 	req->opt0 = cpu_to_be64(NAGLE_V(f->fs.newvlan == VLAN_REMOVE ||
1311 					f->fs.newvlan == VLAN_REWRITE) |
1312 				DELACK_V(f->fs.hitcnts) |
1313 				L2T_IDX_V(f->l2t ? f->l2t->idx : 0) |
1314 				SMAC_SEL_V((cxgb4_port_viid(f->dev) &
1315 					    0x7F) << 1) |
1316 				TX_CHAN_V(f->fs.eport) |
1317 				NO_CONG_V(f->fs.rpttid) |
1318 				ULP_MODE_V(f->fs.nat_mode ?
1319 					   ULP_MODE_TCPDDP : ULP_MODE_NONE) |
1320 				TCAM_BYPASS_F | NON_OFFLOAD_F);
1321 	t6req->params = cpu_to_be64(FILTER_TUPLE_V(hash_filter_ntuple(&f->fs,
1322 								      f->dev)));
1323 	t6req->opt2 = htonl(RSS_QUEUE_VALID_F |
1324 			    RSS_QUEUE_V(f->fs.iq) |
1325 			    TX_QUEUE_V(f->fs.nat_mode) |
1326 			    T5_OPT_2_VALID_F |
1327 			    RX_CHANNEL_V(cxgb4_port_e2cchan(f->dev)) |
1328 			    PACE_V((f->fs.maskhash) |
1329 				   ((f->fs.dirsteerhash) << 1)));
1330 }
1331 
mk_act_open_req(struct filter_entry * f,struct sk_buff * skb,unsigned int qid_filterid,struct adapter * adap)1332 static void mk_act_open_req(struct filter_entry *f, struct sk_buff *skb,
1333 			    unsigned int qid_filterid, struct adapter *adap)
1334 {
1335 	struct cpl_t6_act_open_req *t6req = NULL;
1336 	struct cpl_act_open_req *req = NULL;
1337 
1338 	t6req = (struct cpl_t6_act_open_req *)__skb_put(skb, sizeof(*t6req));
1339 	INIT_TP_WR(t6req, 0);
1340 	req = (struct cpl_act_open_req *)t6req;
1341 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, qid_filterid));
1342 	req->local_port = cpu_to_be16(f->fs.val.lport);
1343 	req->peer_port = cpu_to_be16(f->fs.val.fport);
1344 	memcpy(&req->local_ip, f->fs.val.lip, 4);
1345 	memcpy(&req->peer_ip, f->fs.val.fip, 4);
1346 	req->opt0 = cpu_to_be64(NAGLE_V(f->fs.newvlan == VLAN_REMOVE ||
1347 					f->fs.newvlan == VLAN_REWRITE) |
1348 				DELACK_V(f->fs.hitcnts) |
1349 				L2T_IDX_V(f->l2t ? f->l2t->idx : 0) |
1350 				SMAC_SEL_V((cxgb4_port_viid(f->dev) &
1351 					    0x7F) << 1) |
1352 				TX_CHAN_V(f->fs.eport) |
1353 				NO_CONG_V(f->fs.rpttid) |
1354 				ULP_MODE_V(f->fs.nat_mode ?
1355 					   ULP_MODE_TCPDDP : ULP_MODE_NONE) |
1356 				TCAM_BYPASS_F | NON_OFFLOAD_F);
1357 
1358 	t6req->params = cpu_to_be64(FILTER_TUPLE_V(hash_filter_ntuple(&f->fs,
1359 								      f->dev)));
1360 	t6req->opt2 = htonl(RSS_QUEUE_VALID_F |
1361 			    RSS_QUEUE_V(f->fs.iq) |
1362 			    TX_QUEUE_V(f->fs.nat_mode) |
1363 			    T5_OPT_2_VALID_F |
1364 			    RX_CHANNEL_V(cxgb4_port_e2cchan(f->dev)) |
1365 			    PACE_V((f->fs.maskhash) |
1366 				   ((f->fs.dirsteerhash) << 1)));
1367 }
1368 
cxgb4_set_hash_filter(struct net_device * dev,struct ch_filter_specification * fs,struct filter_ctx * ctx)1369 static int cxgb4_set_hash_filter(struct net_device *dev,
1370 				 struct ch_filter_specification *fs,
1371 				 struct filter_ctx *ctx)
1372 {
1373 	struct adapter *adapter = netdev2adap(dev);
1374 	struct port_info *pi = netdev_priv(dev);
1375 	struct tid_info *t = &adapter->tids;
1376 	struct filter_entry *f;
1377 	struct sk_buff *skb;
1378 	int iq, atid, size;
1379 	int ret = 0;
1380 	u32 iconf;
1381 
1382 	fill_default_mask(fs);
1383 	ret = validate_filter(dev, fs);
1384 	if (ret)
1385 		return ret;
1386 
1387 	iq = get_filter_steerq(dev, fs);
1388 	if (iq < 0)
1389 		return iq;
1390 
1391 	f = kzalloc(sizeof(*f), GFP_KERNEL);
1392 	if (!f)
1393 		return -ENOMEM;
1394 
1395 	f->fs = *fs;
1396 	f->ctx = ctx;
1397 	f->dev = dev;
1398 	f->fs.iq = iq;
1399 
1400 	/* If the new filter requires loopback Destination MAC and/or VLAN
1401 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1402 	 * the filter.
1403 	 */
1404 	if (f->fs.newdmac || f->fs.newvlan) {
1405 		/* allocate L2T entry for new filter */
1406 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1407 						f->fs.eport, f->fs.dmac);
1408 		if (!f->l2t) {
1409 			ret = -ENOMEM;
1410 			goto out_err;
1411 		}
1412 	}
1413 
1414 	/* If the new filter requires loopback Source MAC rewriting then
1415 	 * we need to allocate a SMT entry for the filter.
1416 	 */
1417 	if (f->fs.newsmac) {
1418 		f->smt = cxgb4_smt_alloc_switching(f->dev, f->fs.smac);
1419 		if (!f->smt) {
1420 			if (f->l2t) {
1421 				cxgb4_l2t_release(f->l2t);
1422 				f->l2t = NULL;
1423 			}
1424 			ret = -ENOMEM;
1425 			goto free_l2t;
1426 		}
1427 	}
1428 
1429 	atid = cxgb4_alloc_atid(t, f);
1430 	if (atid < 0) {
1431 		ret = atid;
1432 		goto free_smt;
1433 	}
1434 
1435 	iconf = adapter->params.tp.ingress_config;
1436 	if (iconf & VNIC_F) {
1437 		f->fs.val.ovlan = (fs->val.pf << 13) | fs->val.vf;
1438 		f->fs.mask.ovlan = (fs->mask.pf << 13) | fs->mask.vf;
1439 		f->fs.val.ovlan_vld = fs->val.pfvf_vld;
1440 		f->fs.mask.ovlan_vld = fs->mask.pfvf_vld;
1441 	} else if (iconf & USE_ENC_IDX_F) {
1442 		if (f->fs.val.encap_vld) {
1443 			struct port_info *pi = netdev_priv(f->dev);
1444 			static const u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
1445 
1446 			/* allocate MPS TCAM entry */
1447 			ret = t4_alloc_encap_mac_filt(adapter, pi->viid,
1448 						      match_all_mac,
1449 						      match_all_mac,
1450 						      f->fs.val.vni,
1451 						      f->fs.mask.vni,
1452 						      0, 1, 1);
1453 			if (ret < 0)
1454 				goto free_atid;
1455 
1456 			f->fs.val.ovlan = ret;
1457 			f->fs.mask.ovlan = 0xffff;
1458 			f->fs.val.ovlan_vld = 1;
1459 			f->fs.mask.ovlan_vld = 1;
1460 		}
1461 	}
1462 
1463 	size = sizeof(struct cpl_t6_act_open_req);
1464 	if (f->fs.type) {
1465 		ret = cxgb4_clip_get(f->dev, (const u32 *)&f->fs.val.lip, 1);
1466 		if (ret)
1467 			goto free_mps;
1468 
1469 		skb = alloc_skb(size, GFP_KERNEL);
1470 		if (!skb) {
1471 			ret = -ENOMEM;
1472 			goto free_clip;
1473 		}
1474 
1475 		mk_act_open_req6(f, skb,
1476 				 ((adapter->sge.fw_evtq.abs_id << 14) | atid),
1477 				 adapter);
1478 	} else {
1479 		skb = alloc_skb(size, GFP_KERNEL);
1480 		if (!skb) {
1481 			ret = -ENOMEM;
1482 			goto free_mps;
1483 		}
1484 
1485 		mk_act_open_req(f, skb,
1486 				((adapter->sge.fw_evtq.abs_id << 14) | atid),
1487 				adapter);
1488 	}
1489 
1490 	f->pending = 1;
1491 	set_wr_txq(skb, CPL_PRIORITY_SETUP, f->fs.val.iport & 0x3);
1492 	t4_ofld_send(adapter, skb);
1493 	return 0;
1494 
1495 free_clip:
1496 	cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
1497 
1498 free_mps:
1499 	if (f->fs.val.encap_vld && f->fs.val.ovlan_vld)
1500 		t4_free_encap_mac_filt(adapter, pi->viid, f->fs.val.ovlan, 1);
1501 
1502 free_atid:
1503 	cxgb4_free_atid(t, atid);
1504 
1505 free_smt:
1506 	if (f->smt) {
1507 		cxgb4_smt_release(f->smt);
1508 		f->smt = NULL;
1509 	}
1510 
1511 free_l2t:
1512 	if (f->l2t) {
1513 		cxgb4_l2t_release(f->l2t);
1514 		f->l2t = NULL;
1515 	}
1516 
1517 out_err:
1518 	kfree(f);
1519 	return ret;
1520 }
1521 
1522 /* Check a Chelsio Filter Request for validity, convert it into our internal
1523  * format and send it to the hardware.  Return 0 on success, an error number
1524  * otherwise.  We attach any provided filter operation context to the internal
1525  * filter specification in order to facilitate signaling completion of the
1526  * operation.
1527  */
__cxgb4_set_filter(struct net_device * dev,int ftid,struct ch_filter_specification * fs,struct filter_ctx * ctx)1528 int __cxgb4_set_filter(struct net_device *dev, int ftid,
1529 		       struct ch_filter_specification *fs,
1530 		       struct filter_ctx *ctx)
1531 {
1532 	struct adapter *adapter = netdev2adap(dev);
1533 	unsigned int max_fidx, fidx, chip_ver;
1534 	int iq, ret, filter_id = ftid;
1535 	struct filter_entry *f, *tab;
1536 	u32 iconf;
1537 
1538 	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1539 	if (fs->hash) {
1540 		if (is_hashfilter(adapter))
1541 			return cxgb4_set_hash_filter(dev, fs, ctx);
1542 		netdev_err(dev, "%s: Exact-match filters only supported with Hash Filter configuration\n",
1543 			   __func__);
1544 		return -EINVAL;
1545 	}
1546 
1547 	max_fidx = adapter->tids.nftids + adapter->tids.nhpftids;
1548 	if (filter_id != (max_fidx + adapter->tids.nsftids - 1) &&
1549 	    filter_id >= max_fidx)
1550 		return -E2BIG;
1551 
1552 	fill_default_mask(fs);
1553 
1554 	ret = validate_filter(dev, fs);
1555 	if (ret)
1556 		return ret;
1557 
1558 	iq = get_filter_steerq(dev, fs);
1559 	if (iq < 0)
1560 		return iq;
1561 
1562 	if (fs->prio) {
1563 		tab = &adapter->tids.hpftid_tab[0];
1564 	} else {
1565 		tab = &adapter->tids.ftid_tab[0];
1566 		filter_id = ftid - adapter->tids.nhpftids;
1567 	}
1568 
1569 	/* IPv6 filters occupy four slots and must be aligned on
1570 	 * four-slot boundaries.  IPv4 filters only occupy a single
1571 	 * slot and have no alignment requirements but writing a new
1572 	 * IPv4 filter into the middle of an existing IPv6 filter
1573 	 * requires clearing the old IPv6 filter and hence we prevent
1574 	 * insertion.
1575 	 */
1576 	if (fs->type == 0) { /* IPv4 */
1577 		/* For T6, If our IPv4 filter isn't being written to a
1578 		 * multiple of two filter index and there's an IPv6
1579 		 * filter at the multiple of 2 base slot, then we need
1580 		 * to delete that IPv6 filter ...
1581 		 * For adapters below T6, IPv6 filter occupies 4 entries.
1582 		 * Hence we need to delete the filter in multiple of 4 slot.
1583 		 */
1584 		if (chip_ver < CHELSIO_T6)
1585 			fidx = filter_id & ~0x3;
1586 		else
1587 			fidx = filter_id & ~0x1;
1588 
1589 		if (fidx != filter_id && tab[fidx].fs.type) {
1590 			f = &tab[fidx];
1591 			if (f->valid) {
1592 				dev_err(adapter->pdev_dev,
1593 					"Invalid location. IPv6 requires 4 slots and is occupying slots %u to %u\n",
1594 					fidx, fidx + 3);
1595 				return -EINVAL;
1596 			}
1597 		}
1598 	} else { /* IPv6 */
1599 		if (chip_ver < CHELSIO_T6) {
1600 			/* Ensure that the IPv6 filter is aligned on a
1601 			 * multiple of 4 boundary.
1602 			 */
1603 			if (filter_id & 0x3) {
1604 				dev_err(adapter->pdev_dev,
1605 					"Invalid location. IPv6 must be aligned on a 4-slot boundary\n");
1606 				return -EINVAL;
1607 			}
1608 
1609 			/* Check all except the base overlapping IPv4 filter
1610 			 * slots.
1611 			 */
1612 			for (fidx = filter_id + 1; fidx < filter_id + 4;
1613 			     fidx++) {
1614 				f = &tab[fidx];
1615 				if (f->valid) {
1616 					dev_err(adapter->pdev_dev,
1617 						"Invalid location.  IPv6 requires 4 slots and an IPv4 filter exists at %u\n",
1618 						fidx);
1619 					return -EBUSY;
1620 				}
1621 			}
1622 		} else {
1623 			/* For T6, CLIP being enabled, IPv6 filter would occupy
1624 			 * 2 entries.
1625 			 */
1626 			if (filter_id & 0x1)
1627 				return -EINVAL;
1628 			/* Check overlapping IPv4 filter slot */
1629 			fidx = filter_id + 1;
1630 			f = &tab[fidx];
1631 			if (f->valid) {
1632 				pr_err("%s: IPv6 filter requires 2 indices. IPv4 filter already present at %d. Please remove IPv4 filter first.\n",
1633 				       __func__, fidx);
1634 				return -EBUSY;
1635 			}
1636 		}
1637 	}
1638 
1639 	/* Check to make sure that provided filter index is not
1640 	 * already in use by someone else
1641 	 */
1642 	f = &tab[filter_id];
1643 	if (f->valid)
1644 		return -EBUSY;
1645 
1646 	if (fs->prio) {
1647 		fidx = filter_id + adapter->tids.hpftid_base;
1648 		ret = cxgb4_set_hpftid(&adapter->tids, filter_id,
1649 				       fs->type ? PF_INET6 : PF_INET);
1650 	} else {
1651 		fidx = filter_id + adapter->tids.ftid_base;
1652 		ret = cxgb4_set_ftid(&adapter->tids, filter_id,
1653 				     fs->type ? PF_INET6 : PF_INET,
1654 				     chip_ver);
1655 	}
1656 
1657 	if (ret)
1658 		return ret;
1659 
1660 	/* Check t  make sure the filter requested is writable ... */
1661 	ret = writable_filter(f);
1662 	if (ret)
1663 		goto free_tid;
1664 
1665 	if (is_t6(adapter->params.chip) && fs->type &&
1666 	    ipv6_addr_type((const struct in6_addr *)fs->val.lip) !=
1667 	    IPV6_ADDR_ANY) {
1668 		ret = cxgb4_clip_get(dev, (const u32 *)&fs->val.lip, 1);
1669 		if (ret)
1670 			goto free_tid;
1671 	}
1672 
1673 	/* Convert the filter specification into our internal format.
1674 	 * We copy the PF/VF specification into the Outer VLAN field
1675 	 * here so the rest of the code -- including the interface to
1676 	 * the firmware -- doesn't have to constantly do these checks.
1677 	 */
1678 	f->fs = *fs;
1679 	f->fs.iq = iq;
1680 	f->dev = dev;
1681 
1682 	iconf = adapter->params.tp.ingress_config;
1683 	if (iconf & VNIC_F) {
1684 		f->fs.val.ovlan = (fs->val.pf << 13) | fs->val.vf;
1685 		f->fs.mask.ovlan = (fs->mask.pf << 13) | fs->mask.vf;
1686 		f->fs.val.ovlan_vld = fs->val.pfvf_vld;
1687 		f->fs.mask.ovlan_vld = fs->mask.pfvf_vld;
1688 	} else if (iconf & USE_ENC_IDX_F) {
1689 		if (f->fs.val.encap_vld) {
1690 			struct port_info *pi = netdev_priv(f->dev);
1691 			static const u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
1692 
1693 			/* allocate MPS TCAM entry */
1694 			ret = t4_alloc_encap_mac_filt(adapter, pi->viid,
1695 						      match_all_mac,
1696 						      match_all_mac,
1697 						      f->fs.val.vni,
1698 						      f->fs.mask.vni,
1699 						      0, 1, 1);
1700 			if (ret < 0)
1701 				goto free_tid;
1702 
1703 			f->fs.val.ovlan = ret;
1704 			f->fs.mask.ovlan = 0x1ff;
1705 			f->fs.val.ovlan_vld = 1;
1706 			f->fs.mask.ovlan_vld = 1;
1707 		}
1708 	}
1709 
1710 	/* Attempt to set the filter.  If we don't succeed, we clear
1711 	 * it and return the failure.
1712 	 */
1713 	f->ctx = ctx;
1714 	f->tid = fidx; /* Save the actual tid */
1715 	ret = set_filter_wr(adapter, ftid);
1716 	if (ret)
1717 		goto free_tid;
1718 
1719 	return ret;
1720 
1721 free_tid:
1722 	if (f->fs.prio)
1723 		cxgb4_clear_hpftid(&adapter->tids, filter_id,
1724 				   fs->type ? PF_INET6 : PF_INET);
1725 	else
1726 		cxgb4_clear_ftid(&adapter->tids, filter_id,
1727 				 fs->type ? PF_INET6 : PF_INET,
1728 				 chip_ver);
1729 
1730 	clear_filter(adapter, f);
1731 	return ret;
1732 }
1733 
cxgb4_del_hash_filter(struct net_device * dev,int filter_id,struct filter_ctx * ctx)1734 static int cxgb4_del_hash_filter(struct net_device *dev, int filter_id,
1735 				 struct filter_ctx *ctx)
1736 {
1737 	struct adapter *adapter = netdev2adap(dev);
1738 	struct tid_info *t = &adapter->tids;
1739 	struct cpl_abort_req *abort_req;
1740 	struct cpl_abort_rpl *abort_rpl;
1741 	struct cpl_set_tcb_field *req;
1742 	struct ulptx_idata *aligner;
1743 	struct work_request_hdr *wr;
1744 	struct filter_entry *f;
1745 	struct sk_buff *skb;
1746 	unsigned int wrlen;
1747 	int ret;
1748 
1749 	netdev_dbg(dev, "%s: filter_id = %d ; nftids = %d\n",
1750 		   __func__, filter_id, adapter->tids.nftids);
1751 
1752 	if (tid_out_of_range(t, filter_id))
1753 		return -E2BIG;
1754 
1755 	f = lookup_tid(t, filter_id);
1756 	if (!f) {
1757 		netdev_err(dev, "%s: no filter entry for filter_id = %d",
1758 			   __func__, filter_id);
1759 		return -EINVAL;
1760 	}
1761 
1762 	ret = writable_filter(f);
1763 	if (ret)
1764 		return ret;
1765 
1766 	if (!f->valid)
1767 		return -EINVAL;
1768 
1769 	f->ctx = ctx;
1770 	f->pending = 1;
1771 	wrlen = roundup(sizeof(*wr) + (sizeof(*req) + sizeof(*aligner))
1772 			+ sizeof(*abort_req) + sizeof(*abort_rpl), 16);
1773 	skb = alloc_skb(wrlen, GFP_KERNEL);
1774 	if (!skb) {
1775 		netdev_err(dev, "%s: could not allocate skb ..\n", __func__);
1776 		return -ENOMEM;
1777 	}
1778 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1779 	req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
1780 	INIT_ULPTX_WR(req, wrlen, 0, 0);
1781 	wr = (struct work_request_hdr *)req;
1782 	wr++;
1783 	req = (struct cpl_set_tcb_field *)wr;
1784 	mk_set_tcb_ulp(f, req, TCB_RSS_INFO_W, TCB_RSS_INFO_V(TCB_RSS_INFO_M),
1785 		       TCB_RSS_INFO_V(adapter->sge.fw_evtq.abs_id), 0, 1);
1786 	aligner = (struct ulptx_idata *)(req + 1);
1787 	abort_req = (struct cpl_abort_req *)(aligner + 1);
1788 	mk_abort_req_ulp(abort_req, f->tid);
1789 	abort_rpl = (struct cpl_abort_rpl *)(abort_req + 1);
1790 	mk_abort_rpl_ulp(abort_rpl, f->tid);
1791 	t4_ofld_send(adapter, skb);
1792 	return 0;
1793 }
1794 
1795 /* Check a delete filter request for validity and send it to the hardware.
1796  * Return 0 on success, an error number otherwise.  We attach any provided
1797  * filter operation context to the internal filter specification in order to
1798  * facilitate signaling completion of the operation.
1799  */
__cxgb4_del_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs,struct filter_ctx * ctx)1800 int __cxgb4_del_filter(struct net_device *dev, int filter_id,
1801 		       struct ch_filter_specification *fs,
1802 		       struct filter_ctx *ctx)
1803 {
1804 	struct adapter *adapter = netdev2adap(dev);
1805 	unsigned int max_fidx, chip_ver;
1806 	struct filter_entry *f;
1807 	int ret;
1808 
1809 	chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1810 	if (fs && fs->hash) {
1811 		if (is_hashfilter(adapter))
1812 			return cxgb4_del_hash_filter(dev, filter_id, ctx);
1813 		netdev_err(dev, "%s: Exact-match filters only supported with Hash Filter configuration\n",
1814 			   __func__);
1815 		return -EINVAL;
1816 	}
1817 
1818 	max_fidx = adapter->tids.nftids + adapter->tids.nhpftids;
1819 	if (filter_id != (max_fidx + adapter->tids.nsftids - 1) &&
1820 	    filter_id >= max_fidx)
1821 		return -E2BIG;
1822 
1823 	if (filter_id < adapter->tids.nhpftids)
1824 		f = &adapter->tids.hpftid_tab[filter_id];
1825 	else
1826 		f = &adapter->tids.ftid_tab[filter_id - adapter->tids.nhpftids];
1827 
1828 	ret = writable_filter(f);
1829 	if (ret)
1830 		return ret;
1831 
1832 	if (f->valid) {
1833 		f->ctx = ctx;
1834 		if (f->fs.prio)
1835 			cxgb4_clear_hpftid(&adapter->tids,
1836 					   f->tid - adapter->tids.hpftid_base,
1837 					   f->fs.type ? PF_INET6 : PF_INET);
1838 		else
1839 			cxgb4_clear_ftid(&adapter->tids,
1840 					 f->tid - adapter->tids.ftid_base,
1841 					 f->fs.type ? PF_INET6 : PF_INET,
1842 					 chip_ver);
1843 		return del_filter_wr(adapter, filter_id);
1844 	}
1845 
1846 	/* If the caller has passed in a Completion Context then we need to
1847 	 * mark it as a successful completion so they don't stall waiting
1848 	 * for it.
1849 	 */
1850 	if (ctx) {
1851 		ctx->result = 0;
1852 		complete(&ctx->completion);
1853 	}
1854 	return ret;
1855 }
1856 
cxgb4_set_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs)1857 int cxgb4_set_filter(struct net_device *dev, int filter_id,
1858 		     struct ch_filter_specification *fs)
1859 {
1860 	struct filter_ctx ctx;
1861 	int ret;
1862 
1863 	init_completion(&ctx.completion);
1864 
1865 	ret = __cxgb4_set_filter(dev, filter_id, fs, &ctx);
1866 	if (ret)
1867 		goto out;
1868 
1869 	/* Wait for reply */
1870 	ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
1871 	if (!ret)
1872 		return -ETIMEDOUT;
1873 
1874 	ret = ctx.result;
1875 out:
1876 	return ret;
1877 }
1878 
cxgb4_del_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs)1879 int cxgb4_del_filter(struct net_device *dev, int filter_id,
1880 		     struct ch_filter_specification *fs)
1881 {
1882 	struct filter_ctx ctx;
1883 	int ret;
1884 
1885 	if (netdev2adap(dev)->flags & CXGB4_SHUTTING_DOWN)
1886 		return 0;
1887 
1888 	init_completion(&ctx.completion);
1889 
1890 	ret = __cxgb4_del_filter(dev, filter_id, fs, &ctx);
1891 	if (ret)
1892 		goto out;
1893 
1894 	/* Wait for reply */
1895 	ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
1896 	if (!ret)
1897 		return -ETIMEDOUT;
1898 
1899 	ret = ctx.result;
1900 out:
1901 	return ret;
1902 }
1903 
configure_filter_tcb(struct adapter * adap,unsigned int tid,struct filter_entry * f)1904 static int configure_filter_tcb(struct adapter *adap, unsigned int tid,
1905 				struct filter_entry *f)
1906 {
1907 	if (f->fs.hitcnts) {
1908 		set_tcb_field(adap, f, tid, TCB_TIMESTAMP_W,
1909 			      TCB_TIMESTAMP_V(TCB_TIMESTAMP_M),
1910 			      TCB_TIMESTAMP_V(0ULL),
1911 			      1);
1912 		set_tcb_field(adap, f, tid, TCB_RTT_TS_RECENT_AGE_W,
1913 			      TCB_RTT_TS_RECENT_AGE_V(TCB_RTT_TS_RECENT_AGE_M),
1914 			      TCB_RTT_TS_RECENT_AGE_V(0ULL),
1915 			      1);
1916 	}
1917 
1918 	if (f->fs.newdmac)
1919 		set_tcb_tflag(adap, f, tid, TF_CCTRL_ECE_S, 1,
1920 			      1);
1921 
1922 	if (f->fs.newvlan == VLAN_INSERT ||
1923 	    f->fs.newvlan == VLAN_REWRITE)
1924 		set_tcb_tflag(adap, f, tid, TF_CCTRL_RFR_S, 1,
1925 			      1);
1926 	if (f->fs.newsmac)
1927 		configure_filter_smac(adap, f);
1928 
1929 	if (f->fs.nat_mode) {
1930 		switch (f->fs.nat_mode) {
1931 		case NAT_MODE_DIP:
1932 			set_nat_params(adap, f, tid, true, false, false, false);
1933 			break;
1934 
1935 		case NAT_MODE_DIP_DP:
1936 			set_nat_params(adap, f, tid, true, false, true, false);
1937 			break;
1938 
1939 		case NAT_MODE_DIP_DP_SIP:
1940 			set_nat_params(adap, f, tid, true, true, true, false);
1941 			break;
1942 		case NAT_MODE_DIP_DP_SP:
1943 			set_nat_params(adap, f, tid, true, false, true, true);
1944 			break;
1945 
1946 		case NAT_MODE_SIP_SP:
1947 			set_nat_params(adap, f, tid, false, true, false, true);
1948 			break;
1949 
1950 		case NAT_MODE_DIP_SIP_SP:
1951 			set_nat_params(adap, f, tid, true, true, false, true);
1952 			break;
1953 
1954 		case NAT_MODE_ALL:
1955 			set_nat_params(adap, f, tid, true, true, true, true);
1956 			break;
1957 
1958 		default:
1959 			pr_err("%s: Invalid NAT mode: %d\n",
1960 			       __func__, f->fs.nat_mode);
1961 			return -EINVAL;
1962 		}
1963 	}
1964 	return 0;
1965 }
1966 
hash_del_filter_rpl(struct adapter * adap,const struct cpl_abort_rpl_rss * rpl)1967 void hash_del_filter_rpl(struct adapter *adap,
1968 			 const struct cpl_abort_rpl_rss *rpl)
1969 {
1970 	unsigned int status = rpl->status;
1971 	struct tid_info *t = &adap->tids;
1972 	unsigned int tid = GET_TID(rpl);
1973 	struct filter_ctx *ctx = NULL;
1974 	struct filter_entry *f;
1975 
1976 	dev_dbg(adap->pdev_dev, "%s: status = %u; tid = %u\n",
1977 		__func__, status, tid);
1978 
1979 	f = lookup_tid(t, tid);
1980 	if (!f) {
1981 		dev_err(adap->pdev_dev, "%s:could not find filter entry",
1982 			__func__);
1983 		return;
1984 	}
1985 	ctx = f->ctx;
1986 	f->ctx = NULL;
1987 	clear_filter(adap, f);
1988 	cxgb4_remove_tid(t, 0, tid, 0);
1989 	kfree(f);
1990 	if (ctx) {
1991 		ctx->result = 0;
1992 		complete(&ctx->completion);
1993 	}
1994 }
1995 
hash_filter_rpl(struct adapter * adap,const struct cpl_act_open_rpl * rpl)1996 void hash_filter_rpl(struct adapter *adap, const struct cpl_act_open_rpl *rpl)
1997 {
1998 	unsigned int ftid = TID_TID_G(AOPEN_ATID_G(ntohl(rpl->atid_status)));
1999 	unsigned int status  = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2000 	struct tid_info *t = &adap->tids;
2001 	unsigned int tid = GET_TID(rpl);
2002 	struct filter_ctx *ctx = NULL;
2003 	struct filter_entry *f;
2004 
2005 	dev_dbg(adap->pdev_dev, "%s: tid = %u; atid = %u; status = %u\n",
2006 		__func__, tid, ftid, status);
2007 
2008 	f = lookup_atid(t, ftid);
2009 	if (!f) {
2010 		dev_err(adap->pdev_dev, "%s:could not find filter entry",
2011 			__func__);
2012 		return;
2013 	}
2014 	ctx = f->ctx;
2015 	f->ctx = NULL;
2016 
2017 	switch (status) {
2018 	case CPL_ERR_NONE:
2019 		f->tid = tid;
2020 		f->pending = 0;
2021 		f->valid = 1;
2022 		cxgb4_insert_tid(t, f, f->tid, 0);
2023 		cxgb4_free_atid(t, ftid);
2024 		if (ctx) {
2025 			ctx->tid = f->tid;
2026 			ctx->result = 0;
2027 		}
2028 		if (configure_filter_tcb(adap, tid, f)) {
2029 			clear_filter(adap, f);
2030 			cxgb4_remove_tid(t, 0, tid, 0);
2031 			kfree(f);
2032 			if (ctx) {
2033 				ctx->result = -EINVAL;
2034 				complete(&ctx->completion);
2035 			}
2036 			return;
2037 		}
2038 		switch (f->fs.action) {
2039 		case FILTER_PASS:
2040 			if (f->fs.dirsteer)
2041 				set_tcb_tflag(adap, f, tid,
2042 					      TF_DIRECT_STEER_S, 1, 1);
2043 			break;
2044 		case FILTER_DROP:
2045 			set_tcb_tflag(adap, f, tid, TF_DROP_S, 1, 1);
2046 			break;
2047 		case FILTER_SWITCH:
2048 			set_tcb_tflag(adap, f, tid, TF_LPBK_S, 1, 1);
2049 			break;
2050 		}
2051 
2052 		break;
2053 
2054 	default:
2055 		if (status != CPL_ERR_TCAM_FULL)
2056 			dev_err(adap->pdev_dev, "%s: filter creation PROBLEM; status = %u\n",
2057 				__func__, status);
2058 
2059 		if (ctx) {
2060 			if (status == CPL_ERR_TCAM_FULL)
2061 				ctx->result = -ENOSPC;
2062 			else
2063 				ctx->result = -EINVAL;
2064 		}
2065 		clear_filter(adap, f);
2066 		cxgb4_free_atid(t, ftid);
2067 		kfree(f);
2068 	}
2069 	if (ctx)
2070 		complete(&ctx->completion);
2071 }
2072 
2073 /* Handle a filter write/deletion reply. */
filter_rpl(struct adapter * adap,const struct cpl_set_tcb_rpl * rpl)2074 void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
2075 {
2076 	unsigned int tid = GET_TID(rpl);
2077 	struct filter_entry *f = NULL;
2078 	unsigned int max_fidx;
2079 	int idx;
2080 
2081 	max_fidx = adap->tids.nftids + adap->tids.nsftids;
2082 	/* Get the corresponding filter entry for this tid */
2083 	if (adap->tids.ftid_tab) {
2084 		idx = tid - adap->tids.hpftid_base;
2085 		if (idx < adap->tids.nhpftids) {
2086 			f = &adap->tids.hpftid_tab[idx];
2087 		} else {
2088 			/* Check this in normal filter region */
2089 			idx = tid - adap->tids.ftid_base;
2090 			if (idx >= max_fidx)
2091 				return;
2092 			f = &adap->tids.ftid_tab[idx];
2093 			idx += adap->tids.nhpftids;
2094 		}
2095 
2096 		if (f->tid != tid)
2097 			return;
2098 	}
2099 
2100 	/* We found the filter entry for this tid */
2101 	if (f) {
2102 		unsigned int ret = TCB_COOKIE_G(rpl->cookie);
2103 		struct filter_ctx *ctx;
2104 
2105 		/* Pull off any filter operation context attached to the
2106 		 * filter.
2107 		 */
2108 		ctx = f->ctx;
2109 		f->ctx = NULL;
2110 
2111 		if (ret == FW_FILTER_WR_FLT_DELETED) {
2112 			/* Clear the filter when we get confirmation from the
2113 			 * hardware that the filter has been deleted.
2114 			 */
2115 			clear_filter(adap, f);
2116 			if (ctx)
2117 				ctx->result = 0;
2118 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
2119 			f->pending = 0;  /* async setup completed */
2120 			f->valid = 1;
2121 			if (ctx) {
2122 				ctx->result = 0;
2123 				ctx->tid = idx;
2124 			}
2125 		} else {
2126 			/* Something went wrong.  Issue a warning about the
2127 			 * problem and clear everything out.
2128 			 */
2129 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
2130 				idx, ret);
2131 			clear_filter(adap, f);
2132 			if (ctx)
2133 				ctx->result = -EINVAL;
2134 		}
2135 		if (ctx)
2136 			complete(&ctx->completion);
2137 	}
2138 }
2139 
init_hash_filter(struct adapter * adap)2140 void init_hash_filter(struct adapter *adap)
2141 {
2142 	u32 reg;
2143 
2144 	/* On T6, verify the necessary register configs and warn the user in
2145 	 * case of improper config
2146 	 */
2147 	if (is_t6(adap->params.chip)) {
2148 		if (is_offload(adap)) {
2149 			if (!(t4_read_reg(adap, TP_GLOBAL_CONFIG_A)
2150 			   & ACTIVEFILTERCOUNTS_F)) {
2151 				dev_err(adap->pdev_dev, "Invalid hash filter + ofld config\n");
2152 				return;
2153 			}
2154 		} else {
2155 			reg = t4_read_reg(adap, LE_DB_RSP_CODE_0_A);
2156 			if (TCAM_ACTV_HIT_G(reg) != 4) {
2157 				dev_err(adap->pdev_dev, "Invalid hash filter config\n");
2158 				return;
2159 			}
2160 
2161 			reg = t4_read_reg(adap, LE_DB_RSP_CODE_1_A);
2162 			if (HASH_ACTV_HIT_G(reg) != 4) {
2163 				dev_err(adap->pdev_dev, "Invalid hash filter config\n");
2164 				return;
2165 			}
2166 		}
2167 
2168 	} else {
2169 		dev_err(adap->pdev_dev, "Hash filter supported only on T6\n");
2170 		return;
2171 	}
2172 
2173 	adap->params.hash_filter = 1;
2174 }
2175