• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __read_mostly;
100 
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
102 
d_hash(unsigned int hash)103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
in_lookup_hash(const struct dentry * parent,unsigned int hash)111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 struct dentry_stat_t {
119 	long nr_dentry;
120 	long nr_unused;
121 	long age_limit;		/* age in seconds */
122 	long want_pages;	/* pages requested by system */
123 	long nr_negative;	/* # of unused negative dentries */
124 	long dummy;		/* Reserved for future use */
125 };
126 
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 	.age_limit = 45,
135 };
136 
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
get_nr_dentry(void)149 static long get_nr_dentry(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
get_nr_dentry_unused(void)158 static long get_nr_dentry_unused(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_unused, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
get_nr_dentry_negative(void)167 static long get_nr_dentry_negative(void)
168 {
169 	int i;
170 	long sum = 0;
171 
172 	for_each_possible_cpu(i)
173 		sum += per_cpu(nr_dentry_negative, i);
174 	return sum < 0 ? 0 : sum;
175 }
176 
proc_nr_dentry(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 			  size_t *lenp, loff_t *ppos)
179 {
180 	dentry_stat.nr_dentry = get_nr_dentry();
181 	dentry_stat.nr_unused = get_nr_dentry_unused();
182 	dentry_stat.nr_negative = get_nr_dentry_negative();
183 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185 
186 static struct ctl_table fs_dcache_sysctls[] = {
187 	{
188 		.procname	= "dentry-state",
189 		.data		= &dentry_stat,
190 		.maxlen		= 6*sizeof(long),
191 		.mode		= 0444,
192 		.proc_handler	= proc_nr_dentry,
193 	},
194 	{ }
195 };
196 
init_fs_dcache_sysctls(void)197 static int __init init_fs_dcache_sysctls(void)
198 {
199 	register_sysctl_init("fs", fs_dcache_sysctls);
200 	return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204 
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210 
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223 	unsigned long a,b,mask;
224 
225 	for (;;) {
226 		a = read_word_at_a_time(cs);
227 		b = load_unaligned_zeropad(ct);
228 		if (tcount < sizeof(unsigned long))
229 			break;
230 		if (unlikely(a != b))
231 			return 1;
232 		cs += sizeof(unsigned long);
233 		ct += sizeof(unsigned long);
234 		tcount -= sizeof(unsigned long);
235 		if (!tcount)
236 			return 0;
237 	}
238 	mask = bytemask_from_count(tcount);
239 	return unlikely(!!((a ^ b) & mask));
240 }
241 
242 #else
243 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246 	do {
247 		if (*cs != *ct)
248 			return 1;
249 		cs++;
250 		ct++;
251 		tcount--;
252 	} while (tcount);
253 	return 0;
254 }
255 
256 #endif
257 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260 	/*
261 	 * Be careful about RCU walk racing with rename:
262 	 * use 'READ_ONCE' to fetch the name pointer.
263 	 *
264 	 * NOTE! Even if a rename will mean that the length
265 	 * was not loaded atomically, we don't care. The
266 	 * RCU walk will check the sequence count eventually,
267 	 * and catch it. And we won't overrun the buffer,
268 	 * because we're reading the name pointer atomically,
269 	 * and a dentry name is guaranteed to be properly
270 	 * terminated with a NUL byte.
271 	 *
272 	 * End result: even if 'len' is wrong, we'll exit
273 	 * early because the data cannot match (there can
274 	 * be no NUL in the ct/tcount data)
275 	 */
276 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277 
278 	return dentry_string_cmp(cs, ct, tcount);
279 }
280 
281 struct external_name {
282 	union {
283 		atomic_t count;
284 		struct rcu_head head;
285 	} u;
286 	unsigned char name[];
287 };
288 
external_name(struct dentry * dentry)289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291 	return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293 
__d_free(struct rcu_head * head)294 static void __d_free(struct rcu_head *head)
295 {
296 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297 
298 	kmem_cache_free(dentry_cache, dentry);
299 }
300 
__d_free_external(struct rcu_head * head)301 static void __d_free_external(struct rcu_head *head)
302 {
303 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304 	kfree(external_name(dentry));
305 	kmem_cache_free(dentry_cache, dentry);
306 }
307 
dname_external(const struct dentry * dentry)308 static inline int dname_external(const struct dentry *dentry)
309 {
310 	return dentry->d_name.name != dentry->d_iname;
311 }
312 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315 	spin_lock(&dentry->d_lock);
316 	name->name = dentry->d_name;
317 	if (unlikely(dname_external(dentry))) {
318 		atomic_inc(&external_name(dentry)->u.count);
319 	} else {
320 		memcpy(name->inline_name, dentry->d_iname,
321 		       dentry->d_name.len + 1);
322 		name->name.name = name->inline_name;
323 	}
324 	spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327 
release_dentry_name_snapshot(struct name_snapshot * name)328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330 	if (unlikely(name->name.name != name->inline_name)) {
331 		struct external_name *p;
332 		p = container_of(name->name.name, struct external_name, name[0]);
333 		if (unlikely(atomic_dec_and_test(&p->u.count)))
334 			kfree_rcu(p, u.head);
335 	}
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340 					  struct inode *inode,
341 					  unsigned type_flags)
342 {
343 	unsigned flags;
344 
345 	dentry->d_inode = inode;
346 	flags = READ_ONCE(dentry->d_flags);
347 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348 	flags |= type_flags;
349 	smp_store_release(&dentry->d_flags, flags);
350 }
351 
__d_clear_type_and_inode(struct dentry * dentry)352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354 	unsigned flags = READ_ONCE(dentry->d_flags);
355 
356 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357 	WRITE_ONCE(dentry->d_flags, flags);
358 	dentry->d_inode = NULL;
359 	if (dentry->d_flags & DCACHE_LRU_LIST)
360 		this_cpu_inc(nr_dentry_negative);
361 }
362 
dentry_free(struct dentry * dentry)363 static void dentry_free(struct dentry *dentry)
364 {
365 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366 	if (unlikely(dname_external(dentry))) {
367 		struct external_name *p = external_name(dentry);
368 		if (likely(atomic_dec_and_test(&p->u.count))) {
369 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370 			return;
371 		}
372 	}
373 	/* if dentry was never visible to RCU, immediate free is OK */
374 	if (dentry->d_flags & DCACHE_NORCU)
375 		__d_free(&dentry->d_u.d_rcu);
376 	else
377 		call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379 
380 /*
381  * Release the dentry's inode, using the filesystem
382  * d_iput() operation if defined.
383  */
dentry_unlink_inode(struct dentry * dentry)384 static void dentry_unlink_inode(struct dentry * dentry)
385 	__releases(dentry->d_lock)
386 	__releases(dentry->d_inode->i_lock)
387 {
388 	struct inode *inode = dentry->d_inode;
389 
390 	raw_write_seqcount_begin(&dentry->d_seq);
391 	__d_clear_type_and_inode(dentry);
392 	hlist_del_init(&dentry->d_u.d_alias);
393 	raw_write_seqcount_end(&dentry->d_seq);
394 	spin_unlock(&dentry->d_lock);
395 	spin_unlock(&inode->i_lock);
396 	if (!inode->i_nlink)
397 		fsnotify_inoderemove(inode);
398 	if (dentry->d_op && dentry->d_op->d_iput)
399 		dentry->d_op->d_iput(dentry, inode);
400 	else
401 		iput(inode);
402 }
403 
404 /*
405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406  * is in use - which includes both the "real" per-superblock
407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
408  *
409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410  * on the shrink list (ie not on the superblock LRU list).
411  *
412  * The per-cpu "nr_dentry_unused" counters are updated with
413  * the DCACHE_LRU_LIST bit.
414  *
415  * The per-cpu "nr_dentry_negative" counters are only updated
416  * when deleted from or added to the per-superblock LRU list, not
417  * from/to the shrink list. That is to avoid an unneeded dec/inc
418  * pair when moving from LRU to shrink list in select_collect().
419  *
420  * These helper functions make sure we always follow the
421  * rules. d_lock must be held by the caller.
422  */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)424 static void d_lru_add(struct dentry *dentry)
425 {
426 	D_FLAG_VERIFY(dentry, 0);
427 	dentry->d_flags |= DCACHE_LRU_LIST;
428 	this_cpu_inc(nr_dentry_unused);
429 	if (d_is_negative(dentry))
430 		this_cpu_inc(nr_dentry_negative);
431 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433 
d_lru_del(struct dentry * dentry)434 static void d_lru_del(struct dentry *dentry)
435 {
436 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 	dentry->d_flags &= ~DCACHE_LRU_LIST;
438 	this_cpu_dec(nr_dentry_unused);
439 	if (d_is_negative(dentry))
440 		this_cpu_dec(nr_dentry_negative);
441 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442 }
443 
d_shrink_del(struct dentry * dentry)444 static void d_shrink_del(struct dentry *dentry)
445 {
446 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447 	list_del_init(&dentry->d_lru);
448 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449 	this_cpu_dec(nr_dentry_unused);
450 }
451 
d_shrink_add(struct dentry * dentry,struct list_head * list)452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453 {
454 	D_FLAG_VERIFY(dentry, 0);
455 	list_add(&dentry->d_lru, list);
456 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457 	this_cpu_inc(nr_dentry_unused);
458 }
459 
460 /*
461  * These can only be called under the global LRU lock, ie during the
462  * callback for freeing the LRU list. "isolate" removes it from the
463  * LRU lists entirely, while shrink_move moves it to the indicated
464  * private list.
465  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467 {
468 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469 	dentry->d_flags &= ~DCACHE_LRU_LIST;
470 	this_cpu_dec(nr_dentry_unused);
471 	if (d_is_negative(dentry))
472 		this_cpu_dec(nr_dentry_negative);
473 	list_lru_isolate(lru, &dentry->d_lru);
474 }
475 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477 			      struct list_head *list)
478 {
479 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480 	dentry->d_flags |= DCACHE_SHRINK_LIST;
481 	if (d_is_negative(dentry))
482 		this_cpu_dec(nr_dentry_negative);
483 	list_lru_isolate_move(lru, &dentry->d_lru, list);
484 }
485 
___d_drop(struct dentry * dentry)486 static void ___d_drop(struct dentry *dentry)
487 {
488 	struct hlist_bl_head *b;
489 	/*
490 	 * Hashed dentries are normally on the dentry hashtable,
491 	 * with the exception of those newly allocated by
492 	 * d_obtain_root, which are always IS_ROOT:
493 	 */
494 	if (unlikely(IS_ROOT(dentry)))
495 		b = &dentry->d_sb->s_roots;
496 	else
497 		b = d_hash(dentry->d_name.hash);
498 
499 	hlist_bl_lock(b);
500 	__hlist_bl_del(&dentry->d_hash);
501 	hlist_bl_unlock(b);
502 }
503 
__d_drop(struct dentry * dentry)504 void __d_drop(struct dentry *dentry)
505 {
506 	if (!d_unhashed(dentry)) {
507 		___d_drop(dentry);
508 		dentry->d_hash.pprev = NULL;
509 		write_seqcount_invalidate(&dentry->d_seq);
510 	}
511 }
512 EXPORT_SYMBOL(__d_drop);
513 
514 /**
515  * d_drop - drop a dentry
516  * @dentry: dentry to drop
517  *
518  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519  * be found through a VFS lookup any more. Note that this is different from
520  * deleting the dentry - d_delete will try to mark the dentry negative if
521  * possible, giving a successful _negative_ lookup, while d_drop will
522  * just make the cache lookup fail.
523  *
524  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525  * reason (NFS timeouts or autofs deletes).
526  *
527  * __d_drop requires dentry->d_lock
528  *
529  * ___d_drop doesn't mark dentry as "unhashed"
530  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531  */
d_drop(struct dentry * dentry)532 void d_drop(struct dentry *dentry)
533 {
534 	spin_lock(&dentry->d_lock);
535 	__d_drop(dentry);
536 	spin_unlock(&dentry->d_lock);
537 }
538 EXPORT_SYMBOL(d_drop);
539 
dentry_unlist(struct dentry * dentry,struct dentry * parent)540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541 {
542 	struct dentry *next;
543 	/*
544 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
545 	 * attached to the dentry tree
546 	 */
547 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
548 	if (unlikely(list_empty(&dentry->d_child)))
549 		return;
550 	__list_del_entry(&dentry->d_child);
551 	/*
552 	 * Cursors can move around the list of children.  While we'd been
553 	 * a normal list member, it didn't matter - ->d_child.next would've
554 	 * been updated.  However, from now on it won't be and for the
555 	 * things like d_walk() it might end up with a nasty surprise.
556 	 * Normally d_walk() doesn't care about cursors moving around -
557 	 * ->d_lock on parent prevents that and since a cursor has no children
558 	 * of its own, we get through it without ever unlocking the parent.
559 	 * There is one exception, though - if we ascend from a child that
560 	 * gets killed as soon as we unlock it, the next sibling is found
561 	 * using the value left in its ->d_child.next.  And if _that_
562 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
563 	 * before d_walk() regains parent->d_lock, we'll end up skipping
564 	 * everything the cursor had been moved past.
565 	 *
566 	 * Solution: make sure that the pointer left behind in ->d_child.next
567 	 * points to something that won't be moving around.  I.e. skip the
568 	 * cursors.
569 	 */
570 	while (dentry->d_child.next != &parent->d_subdirs) {
571 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
572 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573 			break;
574 		dentry->d_child.next = next->d_child.next;
575 	}
576 }
577 
__dentry_kill(struct dentry * dentry)578 static void __dentry_kill(struct dentry *dentry)
579 {
580 	struct dentry *parent = NULL;
581 	bool can_free = true;
582 	if (!IS_ROOT(dentry))
583 		parent = dentry->d_parent;
584 
585 	/*
586 	 * The dentry is now unrecoverably dead to the world.
587 	 */
588 	lockref_mark_dead(&dentry->d_lockref);
589 
590 	/*
591 	 * inform the fs via d_prune that this dentry is about to be
592 	 * unhashed and destroyed.
593 	 */
594 	if (dentry->d_flags & DCACHE_OP_PRUNE)
595 		dentry->d_op->d_prune(dentry);
596 
597 	if (dentry->d_flags & DCACHE_LRU_LIST) {
598 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599 			d_lru_del(dentry);
600 	}
601 	/* if it was on the hash then remove it */
602 	__d_drop(dentry);
603 	dentry_unlist(dentry, parent);
604 	if (parent)
605 		spin_unlock(&parent->d_lock);
606 	if (dentry->d_inode)
607 		dentry_unlink_inode(dentry);
608 	else
609 		spin_unlock(&dentry->d_lock);
610 	this_cpu_dec(nr_dentry);
611 	if (dentry->d_op && dentry->d_op->d_release)
612 		dentry->d_op->d_release(dentry);
613 
614 	spin_lock(&dentry->d_lock);
615 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616 		dentry->d_flags |= DCACHE_MAY_FREE;
617 		can_free = false;
618 	}
619 	spin_unlock(&dentry->d_lock);
620 	if (likely(can_free))
621 		dentry_free(dentry);
622 	cond_resched();
623 }
624 
__lock_parent(struct dentry * dentry)625 static struct dentry *__lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent;
628 	rcu_read_lock();
629 	spin_unlock(&dentry->d_lock);
630 again:
631 	parent = READ_ONCE(dentry->d_parent);
632 	spin_lock(&parent->d_lock);
633 	/*
634 	 * We can't blindly lock dentry until we are sure
635 	 * that we won't violate the locking order.
636 	 * Any changes of dentry->d_parent must have
637 	 * been done with parent->d_lock held, so
638 	 * spin_lock() above is enough of a barrier
639 	 * for checking if it's still our child.
640 	 */
641 	if (unlikely(parent != dentry->d_parent)) {
642 		spin_unlock(&parent->d_lock);
643 		goto again;
644 	}
645 	rcu_read_unlock();
646 	if (parent != dentry)
647 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
648 	else
649 		parent = NULL;
650 	return parent;
651 }
652 
lock_parent(struct dentry * dentry)653 static inline struct dentry *lock_parent(struct dentry *dentry)
654 {
655 	struct dentry *parent = dentry->d_parent;
656 	if (IS_ROOT(dentry))
657 		return NULL;
658 	if (likely(spin_trylock(&parent->d_lock)))
659 		return parent;
660 	return __lock_parent(dentry);
661 }
662 
retain_dentry(struct dentry * dentry)663 static inline bool retain_dentry(struct dentry *dentry)
664 {
665 	WARN_ON(d_in_lookup(dentry));
666 
667 	/* Unreachable? Get rid of it */
668 	if (unlikely(d_unhashed(dentry)))
669 		return false;
670 
671 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672 		return false;
673 
674 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675 		if (dentry->d_op->d_delete(dentry))
676 			return false;
677 	}
678 
679 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680 		return false;
681 
682 	/* retain; LRU fodder */
683 	dentry->d_lockref.count--;
684 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685 		d_lru_add(dentry);
686 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687 		dentry->d_flags |= DCACHE_REFERENCED;
688 	return true;
689 }
690 
d_mark_dontcache(struct inode * inode)691 void d_mark_dontcache(struct inode *inode)
692 {
693 	struct dentry *de;
694 
695 	spin_lock(&inode->i_lock);
696 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697 		spin_lock(&de->d_lock);
698 		de->d_flags |= DCACHE_DONTCACHE;
699 		spin_unlock(&de->d_lock);
700 	}
701 	inode->i_state |= I_DONTCACHE;
702 	spin_unlock(&inode->i_lock);
703 }
704 EXPORT_SYMBOL(d_mark_dontcache);
705 
706 /*
707  * Finish off a dentry we've decided to kill.
708  * dentry->d_lock must be held, returns with it unlocked.
709  * Returns dentry requiring refcount drop, or NULL if we're done.
710  */
dentry_kill(struct dentry * dentry)711 static struct dentry *dentry_kill(struct dentry *dentry)
712 	__releases(dentry->d_lock)
713 {
714 	struct inode *inode = dentry->d_inode;
715 	struct dentry *parent = NULL;
716 
717 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
718 		goto slow_positive;
719 
720 	if (!IS_ROOT(dentry)) {
721 		parent = dentry->d_parent;
722 		if (unlikely(!spin_trylock(&parent->d_lock))) {
723 			parent = __lock_parent(dentry);
724 			if (likely(inode || !dentry->d_inode))
725 				goto got_locks;
726 			/* negative that became positive */
727 			if (parent)
728 				spin_unlock(&parent->d_lock);
729 			inode = dentry->d_inode;
730 			goto slow_positive;
731 		}
732 	}
733 	__dentry_kill(dentry);
734 	return parent;
735 
736 slow_positive:
737 	spin_unlock(&dentry->d_lock);
738 	spin_lock(&inode->i_lock);
739 	spin_lock(&dentry->d_lock);
740 	parent = lock_parent(dentry);
741 got_locks:
742 	if (unlikely(dentry->d_lockref.count != 1)) {
743 		dentry->d_lockref.count--;
744 	} else if (likely(!retain_dentry(dentry))) {
745 		__dentry_kill(dentry);
746 		return parent;
747 	}
748 	/* we are keeping it, after all */
749 	if (inode)
750 		spin_unlock(&inode->i_lock);
751 	if (parent)
752 		spin_unlock(&parent->d_lock);
753 	spin_unlock(&dentry->d_lock);
754 	return NULL;
755 }
756 
757 /*
758  * Try to do a lockless dput(), and return whether that was successful.
759  *
760  * If unsuccessful, we return false, having already taken the dentry lock.
761  *
762  * The caller needs to hold the RCU read lock, so that the dentry is
763  * guaranteed to stay around even if the refcount goes down to zero!
764  */
fast_dput(struct dentry * dentry)765 static inline bool fast_dput(struct dentry *dentry)
766 {
767 	int ret;
768 	unsigned int d_flags;
769 
770 	/*
771 	 * If we have a d_op->d_delete() operation, we sould not
772 	 * let the dentry count go to zero, so use "put_or_lock".
773 	 */
774 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775 		return lockref_put_or_lock(&dentry->d_lockref);
776 
777 	/*
778 	 * .. otherwise, we can try to just decrement the
779 	 * lockref optimistically.
780 	 */
781 	ret = lockref_put_return(&dentry->d_lockref);
782 
783 	/*
784 	 * If the lockref_put_return() failed due to the lock being held
785 	 * by somebody else, the fast path has failed. We will need to
786 	 * get the lock, and then check the count again.
787 	 */
788 	if (unlikely(ret < 0)) {
789 		spin_lock(&dentry->d_lock);
790 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
791 			spin_unlock(&dentry->d_lock);
792 			return true;
793 		}
794 		dentry->d_lockref.count--;
795 		goto locked;
796 	}
797 
798 	/*
799 	 * If we weren't the last ref, we're done.
800 	 */
801 	if (ret)
802 		return true;
803 
804 	/*
805 	 * Careful, careful. The reference count went down
806 	 * to zero, but we don't hold the dentry lock, so
807 	 * somebody else could get it again, and do another
808 	 * dput(), and we need to not race with that.
809 	 *
810 	 * However, there is a very special and common case
811 	 * where we don't care, because there is nothing to
812 	 * do: the dentry is still hashed, it does not have
813 	 * a 'delete' op, and it's referenced and already on
814 	 * the LRU list.
815 	 *
816 	 * NOTE! Since we aren't locked, these values are
817 	 * not "stable". However, it is sufficient that at
818 	 * some point after we dropped the reference the
819 	 * dentry was hashed and the flags had the proper
820 	 * value. Other dentry users may have re-gotten
821 	 * a reference to the dentry and change that, but
822 	 * our work is done - we can leave the dentry
823 	 * around with a zero refcount.
824 	 *
825 	 * Nevertheless, there are two cases that we should kill
826 	 * the dentry anyway.
827 	 * 1. free disconnected dentries as soon as their refcount
828 	 *    reached zero.
829 	 * 2. free dentries if they should not be cached.
830 	 */
831 	smp_rmb();
832 	d_flags = READ_ONCE(dentry->d_flags);
833 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
835 
836 	/* Nothing to do? Dropping the reference was all we needed? */
837 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
838 		return true;
839 
840 	/*
841 	 * Not the fast normal case? Get the lock. We've already decremented
842 	 * the refcount, but we'll need to re-check the situation after
843 	 * getting the lock.
844 	 */
845 	spin_lock(&dentry->d_lock);
846 
847 	/*
848 	 * Did somebody else grab a reference to it in the meantime, and
849 	 * we're no longer the last user after all? Alternatively, somebody
850 	 * else could have killed it and marked it dead. Either way, we
851 	 * don't need to do anything else.
852 	 */
853 locked:
854 	if (dentry->d_lockref.count) {
855 		spin_unlock(&dentry->d_lock);
856 		return true;
857 	}
858 
859 	/*
860 	 * Re-get the reference we optimistically dropped. We hold the
861 	 * lock, and we just tested that it was zero, so we can just
862 	 * set it to 1.
863 	 */
864 	dentry->d_lockref.count = 1;
865 	return false;
866 }
867 
868 
869 /*
870  * This is dput
871  *
872  * This is complicated by the fact that we do not want to put
873  * dentries that are no longer on any hash chain on the unused
874  * list: we'd much rather just get rid of them immediately.
875  *
876  * However, that implies that we have to traverse the dentry
877  * tree upwards to the parents which might _also_ now be
878  * scheduled for deletion (it may have been only waiting for
879  * its last child to go away).
880  *
881  * This tail recursion is done by hand as we don't want to depend
882  * on the compiler to always get this right (gcc generally doesn't).
883  * Real recursion would eat up our stack space.
884  */
885 
886 /*
887  * dput - release a dentry
888  * @dentry: dentry to release
889  *
890  * Release a dentry. This will drop the usage count and if appropriate
891  * call the dentry unlink method as well as removing it from the queues and
892  * releasing its resources. If the parent dentries were scheduled for release
893  * they too may now get deleted.
894  */
dput(struct dentry * dentry)895 void dput(struct dentry *dentry)
896 {
897 	while (dentry) {
898 		might_sleep();
899 
900 		rcu_read_lock();
901 		if (likely(fast_dput(dentry))) {
902 			rcu_read_unlock();
903 			return;
904 		}
905 
906 		/* Slow case: now with the dentry lock held */
907 		rcu_read_unlock();
908 
909 		if (likely(retain_dentry(dentry))) {
910 			spin_unlock(&dentry->d_lock);
911 			return;
912 		}
913 
914 		dentry = dentry_kill(dentry);
915 	}
916 }
917 EXPORT_SYMBOL(dput);
918 
__dput_to_list(struct dentry * dentry,struct list_head * list)919 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
920 __must_hold(&dentry->d_lock)
921 {
922 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
923 		/* let the owner of the list it's on deal with it */
924 		--dentry->d_lockref.count;
925 	} else {
926 		if (dentry->d_flags & DCACHE_LRU_LIST)
927 			d_lru_del(dentry);
928 		if (!--dentry->d_lockref.count)
929 			d_shrink_add(dentry, list);
930 	}
931 }
932 
dput_to_list(struct dentry * dentry,struct list_head * list)933 void dput_to_list(struct dentry *dentry, struct list_head *list)
934 {
935 	rcu_read_lock();
936 	if (likely(fast_dput(dentry))) {
937 		rcu_read_unlock();
938 		return;
939 	}
940 	rcu_read_unlock();
941 	if (!retain_dentry(dentry))
942 		__dput_to_list(dentry, list);
943 	spin_unlock(&dentry->d_lock);
944 }
945 
946 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)947 static inline void __dget_dlock(struct dentry *dentry)
948 {
949 	dentry->d_lockref.count++;
950 }
951 
__dget(struct dentry * dentry)952 static inline void __dget(struct dentry *dentry)
953 {
954 	lockref_get(&dentry->d_lockref);
955 }
956 
dget_parent(struct dentry * dentry)957 struct dentry *dget_parent(struct dentry *dentry)
958 {
959 	int gotref;
960 	struct dentry *ret;
961 	unsigned seq;
962 
963 	/*
964 	 * Do optimistic parent lookup without any
965 	 * locking.
966 	 */
967 	rcu_read_lock();
968 	seq = raw_seqcount_begin(&dentry->d_seq);
969 	ret = READ_ONCE(dentry->d_parent);
970 	gotref = lockref_get_not_zero(&ret->d_lockref);
971 	rcu_read_unlock();
972 	if (likely(gotref)) {
973 		if (!read_seqcount_retry(&dentry->d_seq, seq))
974 			return ret;
975 		dput(ret);
976 	}
977 
978 repeat:
979 	/*
980 	 * Don't need rcu_dereference because we re-check it was correct under
981 	 * the lock.
982 	 */
983 	rcu_read_lock();
984 	ret = dentry->d_parent;
985 	spin_lock(&ret->d_lock);
986 	if (unlikely(ret != dentry->d_parent)) {
987 		spin_unlock(&ret->d_lock);
988 		rcu_read_unlock();
989 		goto repeat;
990 	}
991 	rcu_read_unlock();
992 	BUG_ON(!ret->d_lockref.count);
993 	ret->d_lockref.count++;
994 	spin_unlock(&ret->d_lock);
995 	return ret;
996 }
997 EXPORT_SYMBOL(dget_parent);
998 
__d_find_any_alias(struct inode * inode)999 static struct dentry * __d_find_any_alias(struct inode *inode)
1000 {
1001 	struct dentry *alias;
1002 
1003 	if (hlist_empty(&inode->i_dentry))
1004 		return NULL;
1005 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1006 	__dget(alias);
1007 	return alias;
1008 }
1009 
1010 /**
1011  * d_find_any_alias - find any alias for a given inode
1012  * @inode: inode to find an alias for
1013  *
1014  * If any aliases exist for the given inode, take and return a
1015  * reference for one of them.  If no aliases exist, return %NULL.
1016  */
d_find_any_alias(struct inode * inode)1017 struct dentry *d_find_any_alias(struct inode *inode)
1018 {
1019 	struct dentry *de;
1020 
1021 	spin_lock(&inode->i_lock);
1022 	de = __d_find_any_alias(inode);
1023 	spin_unlock(&inode->i_lock);
1024 	return de;
1025 }
1026 EXPORT_SYMBOL(d_find_any_alias);
1027 
__d_find_alias(struct inode * inode)1028 static struct dentry *__d_find_alias(struct inode *inode)
1029 {
1030 	struct dentry *alias;
1031 
1032 	if (S_ISDIR(inode->i_mode))
1033 		return __d_find_any_alias(inode);
1034 
1035 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1036 		spin_lock(&alias->d_lock);
1037  		if (!d_unhashed(alias)) {
1038 			__dget_dlock(alias);
1039 			spin_unlock(&alias->d_lock);
1040 			return alias;
1041 		}
1042 		spin_unlock(&alias->d_lock);
1043 	}
1044 	return NULL;
1045 }
1046 
1047 /**
1048  * d_find_alias - grab a hashed alias of inode
1049  * @inode: inode in question
1050  *
1051  * If inode has a hashed alias, or is a directory and has any alias,
1052  * acquire the reference to alias and return it. Otherwise return NULL.
1053  * Notice that if inode is a directory there can be only one alias and
1054  * it can be unhashed only if it has no children, or if it is the root
1055  * of a filesystem, or if the directory was renamed and d_revalidate
1056  * was the first vfs operation to notice.
1057  *
1058  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1059  * any other hashed alias over that one.
1060  */
d_find_alias(struct inode * inode)1061 struct dentry *d_find_alias(struct inode *inode)
1062 {
1063 	struct dentry *de = NULL;
1064 
1065 	if (!hlist_empty(&inode->i_dentry)) {
1066 		spin_lock(&inode->i_lock);
1067 		de = __d_find_alias(inode);
1068 		spin_unlock(&inode->i_lock);
1069 	}
1070 	return de;
1071 }
1072 EXPORT_SYMBOL(d_find_alias);
1073 
1074 /*
1075  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1076  *  that inode won't get freed until rcu_read_unlock().
1077  */
d_find_alias_rcu(struct inode * inode)1078 struct dentry *d_find_alias_rcu(struct inode *inode)
1079 {
1080 	struct hlist_head *l = &inode->i_dentry;
1081 	struct dentry *de = NULL;
1082 
1083 	spin_lock(&inode->i_lock);
1084 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1085 	// used without having I_FREEING set, which means no aliases left
1086 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1087 		if (S_ISDIR(inode->i_mode)) {
1088 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1089 		} else {
1090 			hlist_for_each_entry(de, l, d_u.d_alias)
1091 				if (!d_unhashed(de))
1092 					break;
1093 		}
1094 	}
1095 	spin_unlock(&inode->i_lock);
1096 	return de;
1097 }
1098 
1099 /*
1100  *	Try to kill dentries associated with this inode.
1101  * WARNING: you must own a reference to inode.
1102  */
d_prune_aliases(struct inode * inode)1103 void d_prune_aliases(struct inode *inode)
1104 {
1105 	struct dentry *dentry;
1106 restart:
1107 	spin_lock(&inode->i_lock);
1108 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1109 		spin_lock(&dentry->d_lock);
1110 		if (!dentry->d_lockref.count) {
1111 			struct dentry *parent = lock_parent(dentry);
1112 			if (likely(!dentry->d_lockref.count)) {
1113 				__dentry_kill(dentry);
1114 				dput(parent);
1115 				goto restart;
1116 			}
1117 			if (parent)
1118 				spin_unlock(&parent->d_lock);
1119 		}
1120 		spin_unlock(&dentry->d_lock);
1121 	}
1122 	spin_unlock(&inode->i_lock);
1123 }
1124 EXPORT_SYMBOL(d_prune_aliases);
1125 
1126 /*
1127  * Lock a dentry from shrink list.
1128  * Called under rcu_read_lock() and dentry->d_lock; the former
1129  * guarantees that nothing we access will be freed under us.
1130  * Note that dentry is *not* protected from concurrent dentry_kill(),
1131  * d_delete(), etc.
1132  *
1133  * Return false if dentry has been disrupted or grabbed, leaving
1134  * the caller to kick it off-list.  Otherwise, return true and have
1135  * that dentry's inode and parent both locked.
1136  */
shrink_lock_dentry(struct dentry * dentry)1137 static bool shrink_lock_dentry(struct dentry *dentry)
1138 {
1139 	struct inode *inode;
1140 	struct dentry *parent;
1141 
1142 	if (dentry->d_lockref.count)
1143 		return false;
1144 
1145 	inode = dentry->d_inode;
1146 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1147 		spin_unlock(&dentry->d_lock);
1148 		spin_lock(&inode->i_lock);
1149 		spin_lock(&dentry->d_lock);
1150 		if (unlikely(dentry->d_lockref.count))
1151 			goto out;
1152 		/* changed inode means that somebody had grabbed it */
1153 		if (unlikely(inode != dentry->d_inode))
1154 			goto out;
1155 	}
1156 
1157 	parent = dentry->d_parent;
1158 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1159 		return true;
1160 
1161 	spin_unlock(&dentry->d_lock);
1162 	spin_lock(&parent->d_lock);
1163 	if (unlikely(parent != dentry->d_parent)) {
1164 		spin_unlock(&parent->d_lock);
1165 		spin_lock(&dentry->d_lock);
1166 		goto out;
1167 	}
1168 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1169 	if (likely(!dentry->d_lockref.count))
1170 		return true;
1171 	spin_unlock(&parent->d_lock);
1172 out:
1173 	if (inode)
1174 		spin_unlock(&inode->i_lock);
1175 	return false;
1176 }
1177 
shrink_dentry_list(struct list_head * list)1178 void shrink_dentry_list(struct list_head *list)
1179 {
1180 	while (!list_empty(list)) {
1181 		struct dentry *dentry, *parent;
1182 
1183 		dentry = list_entry(list->prev, struct dentry, d_lru);
1184 		spin_lock(&dentry->d_lock);
1185 		rcu_read_lock();
1186 		if (!shrink_lock_dentry(dentry)) {
1187 			bool can_free = false;
1188 			rcu_read_unlock();
1189 			d_shrink_del(dentry);
1190 			if (dentry->d_lockref.count < 0)
1191 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1192 			spin_unlock(&dentry->d_lock);
1193 			if (can_free)
1194 				dentry_free(dentry);
1195 			continue;
1196 		}
1197 		rcu_read_unlock();
1198 		d_shrink_del(dentry);
1199 		parent = dentry->d_parent;
1200 		if (parent != dentry)
1201 			__dput_to_list(parent, list);
1202 		__dentry_kill(dentry);
1203 	}
1204 }
1205 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1206 static enum lru_status dentry_lru_isolate(struct list_head *item,
1207 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1208 {
1209 	struct list_head *freeable = arg;
1210 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1211 
1212 
1213 	/*
1214 	 * we are inverting the lru lock/dentry->d_lock here,
1215 	 * so use a trylock. If we fail to get the lock, just skip
1216 	 * it
1217 	 */
1218 	if (!spin_trylock(&dentry->d_lock))
1219 		return LRU_SKIP;
1220 
1221 	/*
1222 	 * Referenced dentries are still in use. If they have active
1223 	 * counts, just remove them from the LRU. Otherwise give them
1224 	 * another pass through the LRU.
1225 	 */
1226 	if (dentry->d_lockref.count) {
1227 		d_lru_isolate(lru, dentry);
1228 		spin_unlock(&dentry->d_lock);
1229 		return LRU_REMOVED;
1230 	}
1231 
1232 	if (dentry->d_flags & DCACHE_REFERENCED) {
1233 		dentry->d_flags &= ~DCACHE_REFERENCED;
1234 		spin_unlock(&dentry->d_lock);
1235 
1236 		/*
1237 		 * The list move itself will be made by the common LRU code. At
1238 		 * this point, we've dropped the dentry->d_lock but keep the
1239 		 * lru lock. This is safe to do, since every list movement is
1240 		 * protected by the lru lock even if both locks are held.
1241 		 *
1242 		 * This is guaranteed by the fact that all LRU management
1243 		 * functions are intermediated by the LRU API calls like
1244 		 * list_lru_add and list_lru_del. List movement in this file
1245 		 * only ever occur through this functions or through callbacks
1246 		 * like this one, that are called from the LRU API.
1247 		 *
1248 		 * The only exceptions to this are functions like
1249 		 * shrink_dentry_list, and code that first checks for the
1250 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1251 		 * operating only with stack provided lists after they are
1252 		 * properly isolated from the main list.  It is thus, always a
1253 		 * local access.
1254 		 */
1255 		return LRU_ROTATE;
1256 	}
1257 
1258 	d_lru_shrink_move(lru, dentry, freeable);
1259 	spin_unlock(&dentry->d_lock);
1260 
1261 	return LRU_REMOVED;
1262 }
1263 
1264 /**
1265  * prune_dcache_sb - shrink the dcache
1266  * @sb: superblock
1267  * @sc: shrink control, passed to list_lru_shrink_walk()
1268  *
1269  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1270  * is done when we need more memory and called from the superblock shrinker
1271  * function.
1272  *
1273  * This function may fail to free any resources if all the dentries are in
1274  * use.
1275  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1276 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1277 {
1278 	LIST_HEAD(dispose);
1279 	long freed;
1280 
1281 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1282 				     dentry_lru_isolate, &dispose);
1283 	shrink_dentry_list(&dispose);
1284 	return freed;
1285 }
1286 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1287 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1288 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1289 {
1290 	struct list_head *freeable = arg;
1291 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1292 
1293 	/*
1294 	 * we are inverting the lru lock/dentry->d_lock here,
1295 	 * so use a trylock. If we fail to get the lock, just skip
1296 	 * it
1297 	 */
1298 	if (!spin_trylock(&dentry->d_lock))
1299 		return LRU_SKIP;
1300 
1301 	d_lru_shrink_move(lru, dentry, freeable);
1302 	spin_unlock(&dentry->d_lock);
1303 
1304 	return LRU_REMOVED;
1305 }
1306 
1307 
1308 /**
1309  * shrink_dcache_sb - shrink dcache for a superblock
1310  * @sb: superblock
1311  *
1312  * Shrink the dcache for the specified super block. This is used to free
1313  * the dcache before unmounting a file system.
1314  */
shrink_dcache_sb(struct super_block * sb)1315 void shrink_dcache_sb(struct super_block *sb)
1316 {
1317 	do {
1318 		LIST_HEAD(dispose);
1319 
1320 		list_lru_walk(&sb->s_dentry_lru,
1321 			dentry_lru_isolate_shrink, &dispose, 1024);
1322 		shrink_dentry_list(&dispose);
1323 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1324 }
1325 EXPORT_SYMBOL(shrink_dcache_sb);
1326 
1327 /**
1328  * enum d_walk_ret - action to talke during tree walk
1329  * @D_WALK_CONTINUE:	contrinue walk
1330  * @D_WALK_QUIT:	quit walk
1331  * @D_WALK_NORETRY:	quit when retry is needed
1332  * @D_WALK_SKIP:	skip this dentry and its children
1333  */
1334 enum d_walk_ret {
1335 	D_WALK_CONTINUE,
1336 	D_WALK_QUIT,
1337 	D_WALK_NORETRY,
1338 	D_WALK_SKIP,
1339 };
1340 
1341 /**
1342  * d_walk - walk the dentry tree
1343  * @parent:	start of walk
1344  * @data:	data passed to @enter() and @finish()
1345  * @enter:	callback when first entering the dentry
1346  *
1347  * The @enter() callbacks are called with d_lock held.
1348  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1349 static void d_walk(struct dentry *parent, void *data,
1350 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1351 {
1352 	struct dentry *this_parent;
1353 	struct list_head *next;
1354 	unsigned seq = 0;
1355 	enum d_walk_ret ret;
1356 	bool retry = true;
1357 
1358 again:
1359 	read_seqbegin_or_lock(&rename_lock, &seq);
1360 	this_parent = parent;
1361 	spin_lock(&this_parent->d_lock);
1362 
1363 	ret = enter(data, this_parent);
1364 	switch (ret) {
1365 	case D_WALK_CONTINUE:
1366 		break;
1367 	case D_WALK_QUIT:
1368 	case D_WALK_SKIP:
1369 		goto out_unlock;
1370 	case D_WALK_NORETRY:
1371 		retry = false;
1372 		break;
1373 	}
1374 repeat:
1375 	next = this_parent->d_subdirs.next;
1376 resume:
1377 	while (next != &this_parent->d_subdirs) {
1378 		struct list_head *tmp = next;
1379 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1380 		next = tmp->next;
1381 
1382 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1383 			continue;
1384 
1385 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1386 
1387 		ret = enter(data, dentry);
1388 		switch (ret) {
1389 		case D_WALK_CONTINUE:
1390 			break;
1391 		case D_WALK_QUIT:
1392 			spin_unlock(&dentry->d_lock);
1393 			goto out_unlock;
1394 		case D_WALK_NORETRY:
1395 			retry = false;
1396 			break;
1397 		case D_WALK_SKIP:
1398 			spin_unlock(&dentry->d_lock);
1399 			continue;
1400 		}
1401 
1402 		if (!list_empty(&dentry->d_subdirs)) {
1403 			spin_unlock(&this_parent->d_lock);
1404 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1405 			this_parent = dentry;
1406 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1407 			goto repeat;
1408 		}
1409 		spin_unlock(&dentry->d_lock);
1410 	}
1411 	/*
1412 	 * All done at this level ... ascend and resume the search.
1413 	 */
1414 	rcu_read_lock();
1415 ascend:
1416 	if (this_parent != parent) {
1417 		struct dentry *child = this_parent;
1418 		this_parent = child->d_parent;
1419 
1420 		spin_unlock(&child->d_lock);
1421 		spin_lock(&this_parent->d_lock);
1422 
1423 		/* might go back up the wrong parent if we have had a rename. */
1424 		if (need_seqretry(&rename_lock, seq))
1425 			goto rename_retry;
1426 		/* go into the first sibling still alive */
1427 		do {
1428 			next = child->d_child.next;
1429 			if (next == &this_parent->d_subdirs)
1430 				goto ascend;
1431 			child = list_entry(next, struct dentry, d_child);
1432 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1433 		rcu_read_unlock();
1434 		goto resume;
1435 	}
1436 	if (need_seqretry(&rename_lock, seq))
1437 		goto rename_retry;
1438 	rcu_read_unlock();
1439 
1440 out_unlock:
1441 	spin_unlock(&this_parent->d_lock);
1442 	done_seqretry(&rename_lock, seq);
1443 	return;
1444 
1445 rename_retry:
1446 	spin_unlock(&this_parent->d_lock);
1447 	rcu_read_unlock();
1448 	BUG_ON(seq & 1);
1449 	if (!retry)
1450 		return;
1451 	seq = 1;
1452 	goto again;
1453 }
1454 
1455 struct check_mount {
1456 	struct vfsmount *mnt;
1457 	unsigned int mounted;
1458 };
1459 
path_check_mount(void * data,struct dentry * dentry)1460 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1461 {
1462 	struct check_mount *info = data;
1463 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1464 
1465 	if (likely(!d_mountpoint(dentry)))
1466 		return D_WALK_CONTINUE;
1467 	if (__path_is_mountpoint(&path)) {
1468 		info->mounted = 1;
1469 		return D_WALK_QUIT;
1470 	}
1471 	return D_WALK_CONTINUE;
1472 }
1473 
1474 /**
1475  * path_has_submounts - check for mounts over a dentry in the
1476  *                      current namespace.
1477  * @parent: path to check.
1478  *
1479  * Return true if the parent or its subdirectories contain
1480  * a mount point in the current namespace.
1481  */
path_has_submounts(const struct path * parent)1482 int path_has_submounts(const struct path *parent)
1483 {
1484 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1485 
1486 	read_seqlock_excl(&mount_lock);
1487 	d_walk(parent->dentry, &data, path_check_mount);
1488 	read_sequnlock_excl(&mount_lock);
1489 
1490 	return data.mounted;
1491 }
1492 EXPORT_SYMBOL(path_has_submounts);
1493 
1494 /*
1495  * Called by mount code to set a mountpoint and check if the mountpoint is
1496  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1497  * subtree can become unreachable).
1498  *
1499  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1500  * this reason take rename_lock and d_lock on dentry and ancestors.
1501  */
d_set_mounted(struct dentry * dentry)1502 int d_set_mounted(struct dentry *dentry)
1503 {
1504 	struct dentry *p;
1505 	int ret = -ENOENT;
1506 	write_seqlock(&rename_lock);
1507 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1508 		/* Need exclusion wrt. d_invalidate() */
1509 		spin_lock(&p->d_lock);
1510 		if (unlikely(d_unhashed(p))) {
1511 			spin_unlock(&p->d_lock);
1512 			goto out;
1513 		}
1514 		spin_unlock(&p->d_lock);
1515 	}
1516 	spin_lock(&dentry->d_lock);
1517 	if (!d_unlinked(dentry)) {
1518 		ret = -EBUSY;
1519 		if (!d_mountpoint(dentry)) {
1520 			dentry->d_flags |= DCACHE_MOUNTED;
1521 			ret = 0;
1522 		}
1523 	}
1524  	spin_unlock(&dentry->d_lock);
1525 out:
1526 	write_sequnlock(&rename_lock);
1527 	return ret;
1528 }
1529 
1530 /*
1531  * Search the dentry child list of the specified parent,
1532  * and move any unused dentries to the end of the unused
1533  * list for prune_dcache(). We descend to the next level
1534  * whenever the d_subdirs list is non-empty and continue
1535  * searching.
1536  *
1537  * It returns zero iff there are no unused children,
1538  * otherwise  it returns the number of children moved to
1539  * the end of the unused list. This may not be the total
1540  * number of unused children, because select_parent can
1541  * drop the lock and return early due to latency
1542  * constraints.
1543  */
1544 
1545 struct select_data {
1546 	struct dentry *start;
1547 	union {
1548 		long found;
1549 		struct dentry *victim;
1550 	};
1551 	struct list_head dispose;
1552 };
1553 
select_collect(void * _data,struct dentry * dentry)1554 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1555 {
1556 	struct select_data *data = _data;
1557 	enum d_walk_ret ret = D_WALK_CONTINUE;
1558 
1559 	if (data->start == dentry)
1560 		goto out;
1561 
1562 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1563 		data->found++;
1564 	} else {
1565 		if (dentry->d_flags & DCACHE_LRU_LIST)
1566 			d_lru_del(dentry);
1567 		if (!dentry->d_lockref.count) {
1568 			d_shrink_add(dentry, &data->dispose);
1569 			data->found++;
1570 		}
1571 	}
1572 	/*
1573 	 * We can return to the caller if we have found some (this
1574 	 * ensures forward progress). We'll be coming back to find
1575 	 * the rest.
1576 	 */
1577 	if (!list_empty(&data->dispose))
1578 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1579 out:
1580 	return ret;
1581 }
1582 
select_collect2(void * _data,struct dentry * dentry)1583 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1584 {
1585 	struct select_data *data = _data;
1586 	enum d_walk_ret ret = D_WALK_CONTINUE;
1587 
1588 	if (data->start == dentry)
1589 		goto out;
1590 
1591 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1592 		if (!dentry->d_lockref.count) {
1593 			rcu_read_lock();
1594 			data->victim = dentry;
1595 			return D_WALK_QUIT;
1596 		}
1597 	} else {
1598 		if (dentry->d_flags & DCACHE_LRU_LIST)
1599 			d_lru_del(dentry);
1600 		if (!dentry->d_lockref.count)
1601 			d_shrink_add(dentry, &data->dispose);
1602 	}
1603 	/*
1604 	 * We can return to the caller if we have found some (this
1605 	 * ensures forward progress). We'll be coming back to find
1606 	 * the rest.
1607 	 */
1608 	if (!list_empty(&data->dispose))
1609 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1610 out:
1611 	return ret;
1612 }
1613 
1614 /**
1615  * shrink_dcache_parent - prune dcache
1616  * @parent: parent of entries to prune
1617  *
1618  * Prune the dcache to remove unused children of the parent dentry.
1619  */
shrink_dcache_parent(struct dentry * parent)1620 void shrink_dcache_parent(struct dentry *parent)
1621 {
1622 	for (;;) {
1623 		struct select_data data = {.start = parent};
1624 
1625 		INIT_LIST_HEAD(&data.dispose);
1626 		d_walk(parent, &data, select_collect);
1627 
1628 		if (!list_empty(&data.dispose)) {
1629 			shrink_dentry_list(&data.dispose);
1630 			continue;
1631 		}
1632 
1633 		cond_resched();
1634 		if (!data.found)
1635 			break;
1636 		data.victim = NULL;
1637 		d_walk(parent, &data, select_collect2);
1638 		if (data.victim) {
1639 			struct dentry *parent;
1640 			spin_lock(&data.victim->d_lock);
1641 			if (!shrink_lock_dentry(data.victim)) {
1642 				spin_unlock(&data.victim->d_lock);
1643 				rcu_read_unlock();
1644 			} else {
1645 				rcu_read_unlock();
1646 				parent = data.victim->d_parent;
1647 				if (parent != data.victim)
1648 					__dput_to_list(parent, &data.dispose);
1649 				__dentry_kill(data.victim);
1650 			}
1651 		}
1652 		if (!list_empty(&data.dispose))
1653 			shrink_dentry_list(&data.dispose);
1654 	}
1655 }
1656 EXPORT_SYMBOL(shrink_dcache_parent);
1657 
umount_check(void * _data,struct dentry * dentry)1658 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1659 {
1660 	/* it has busy descendents; complain about those instead */
1661 	if (!list_empty(&dentry->d_subdirs))
1662 		return D_WALK_CONTINUE;
1663 
1664 	/* root with refcount 1 is fine */
1665 	if (dentry == _data && dentry->d_lockref.count == 1)
1666 		return D_WALK_CONTINUE;
1667 
1668 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1669 			" still in use (%d) [unmount of %s %s]\n",
1670 		       dentry,
1671 		       dentry->d_inode ?
1672 		       dentry->d_inode->i_ino : 0UL,
1673 		       dentry,
1674 		       dentry->d_lockref.count,
1675 		       dentry->d_sb->s_type->name,
1676 		       dentry->d_sb->s_id);
1677 	WARN_ON(1);
1678 	return D_WALK_CONTINUE;
1679 }
1680 
do_one_tree(struct dentry * dentry)1681 static void do_one_tree(struct dentry *dentry)
1682 {
1683 	shrink_dcache_parent(dentry);
1684 	d_walk(dentry, dentry, umount_check);
1685 	d_drop(dentry);
1686 	dput(dentry);
1687 }
1688 
1689 /*
1690  * destroy the dentries attached to a superblock on unmounting
1691  */
shrink_dcache_for_umount(struct super_block * sb)1692 void shrink_dcache_for_umount(struct super_block *sb)
1693 {
1694 	struct dentry *dentry;
1695 
1696 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1697 
1698 	dentry = sb->s_root;
1699 	sb->s_root = NULL;
1700 	do_one_tree(dentry);
1701 
1702 	while (!hlist_bl_empty(&sb->s_roots)) {
1703 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1704 		do_one_tree(dentry);
1705 	}
1706 }
1707 
find_submount(void * _data,struct dentry * dentry)1708 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1709 {
1710 	struct dentry **victim = _data;
1711 	if (d_mountpoint(dentry)) {
1712 		__dget_dlock(dentry);
1713 		*victim = dentry;
1714 		return D_WALK_QUIT;
1715 	}
1716 	return D_WALK_CONTINUE;
1717 }
1718 
1719 /**
1720  * d_invalidate - detach submounts, prune dcache, and drop
1721  * @dentry: dentry to invalidate (aka detach, prune and drop)
1722  */
d_invalidate(struct dentry * dentry)1723 void d_invalidate(struct dentry *dentry)
1724 {
1725 	bool had_submounts = false;
1726 	spin_lock(&dentry->d_lock);
1727 	if (d_unhashed(dentry)) {
1728 		spin_unlock(&dentry->d_lock);
1729 		return;
1730 	}
1731 	__d_drop(dentry);
1732 	spin_unlock(&dentry->d_lock);
1733 
1734 	/* Negative dentries can be dropped without further checks */
1735 	if (!dentry->d_inode)
1736 		return;
1737 
1738 	shrink_dcache_parent(dentry);
1739 	for (;;) {
1740 		struct dentry *victim = NULL;
1741 		d_walk(dentry, &victim, find_submount);
1742 		if (!victim) {
1743 			if (had_submounts)
1744 				shrink_dcache_parent(dentry);
1745 			return;
1746 		}
1747 		had_submounts = true;
1748 		detach_mounts(victim);
1749 		dput(victim);
1750 	}
1751 }
1752 EXPORT_SYMBOL(d_invalidate);
1753 
1754 /**
1755  * __d_alloc	-	allocate a dcache entry
1756  * @sb: filesystem it will belong to
1757  * @name: qstr of the name
1758  *
1759  * Allocates a dentry. It returns %NULL if there is insufficient memory
1760  * available. On a success the dentry is returned. The name passed in is
1761  * copied and the copy passed in may be reused after this call.
1762  */
1763 
__d_alloc(struct super_block * sb,const struct qstr * name)1764 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1765 {
1766 	struct dentry *dentry;
1767 	char *dname;
1768 	int err;
1769 
1770 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1771 				      GFP_KERNEL);
1772 	if (!dentry)
1773 		return NULL;
1774 
1775 	/*
1776 	 * We guarantee that the inline name is always NUL-terminated.
1777 	 * This way the memcpy() done by the name switching in rename
1778 	 * will still always have a NUL at the end, even if we might
1779 	 * be overwriting an internal NUL character
1780 	 */
1781 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1782 	if (unlikely(!name)) {
1783 		name = &slash_name;
1784 		dname = dentry->d_iname;
1785 	} else if (name->len > DNAME_INLINE_LEN-1) {
1786 		size_t size = offsetof(struct external_name, name[1]);
1787 		struct external_name *p = kmalloc(size + name->len,
1788 						  GFP_KERNEL_ACCOUNT |
1789 						  __GFP_RECLAIMABLE);
1790 		if (!p) {
1791 			kmem_cache_free(dentry_cache, dentry);
1792 			return NULL;
1793 		}
1794 		atomic_set(&p->u.count, 1);
1795 		dname = p->name;
1796 	} else  {
1797 		dname = dentry->d_iname;
1798 	}
1799 
1800 	dentry->d_name.len = name->len;
1801 	dentry->d_name.hash = name->hash;
1802 	memcpy(dname, name->name, name->len);
1803 	dname[name->len] = 0;
1804 
1805 	/* Make sure we always see the terminating NUL character */
1806 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1807 
1808 	dentry->d_lockref.count = 1;
1809 	dentry->d_flags = 0;
1810 	spin_lock_init(&dentry->d_lock);
1811 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1812 	dentry->d_inode = NULL;
1813 	dentry->d_parent = dentry;
1814 	dentry->d_sb = sb;
1815 	dentry->d_op = NULL;
1816 	dentry->d_fsdata = NULL;
1817 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1818 	INIT_LIST_HEAD(&dentry->d_lru);
1819 	INIT_LIST_HEAD(&dentry->d_subdirs);
1820 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1821 	INIT_LIST_HEAD(&dentry->d_child);
1822 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1823 
1824 	if (dentry->d_op && dentry->d_op->d_init) {
1825 		err = dentry->d_op->d_init(dentry);
1826 		if (err) {
1827 			if (dname_external(dentry))
1828 				kfree(external_name(dentry));
1829 			kmem_cache_free(dentry_cache, dentry);
1830 			return NULL;
1831 		}
1832 	}
1833 
1834 	this_cpu_inc(nr_dentry);
1835 
1836 	return dentry;
1837 }
1838 
1839 /**
1840  * d_alloc	-	allocate a dcache entry
1841  * @parent: parent of entry to allocate
1842  * @name: qstr of the name
1843  *
1844  * Allocates a dentry. It returns %NULL if there is insufficient memory
1845  * available. On a success the dentry is returned. The name passed in is
1846  * copied and the copy passed in may be reused after this call.
1847  */
d_alloc(struct dentry * parent,const struct qstr * name)1848 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1849 {
1850 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1851 	if (!dentry)
1852 		return NULL;
1853 	spin_lock(&parent->d_lock);
1854 	/*
1855 	 * don't need child lock because it is not subject
1856 	 * to concurrency here
1857 	 */
1858 	__dget_dlock(parent);
1859 	dentry->d_parent = parent;
1860 	list_add(&dentry->d_child, &parent->d_subdirs);
1861 	spin_unlock(&parent->d_lock);
1862 
1863 	return dentry;
1864 }
1865 EXPORT_SYMBOL(d_alloc);
1866 
d_alloc_anon(struct super_block * sb)1867 struct dentry *d_alloc_anon(struct super_block *sb)
1868 {
1869 	return __d_alloc(sb, NULL);
1870 }
1871 EXPORT_SYMBOL(d_alloc_anon);
1872 
d_alloc_cursor(struct dentry * parent)1873 struct dentry *d_alloc_cursor(struct dentry * parent)
1874 {
1875 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1876 	if (dentry) {
1877 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1878 		dentry->d_parent = dget(parent);
1879 	}
1880 	return dentry;
1881 }
1882 
1883 /**
1884  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1885  * @sb: the superblock
1886  * @name: qstr of the name
1887  *
1888  * For a filesystem that just pins its dentries in memory and never
1889  * performs lookups at all, return an unhashed IS_ROOT dentry.
1890  * This is used for pipes, sockets et.al. - the stuff that should
1891  * never be anyone's children or parents.  Unlike all other
1892  * dentries, these will not have RCU delay between dropping the
1893  * last reference and freeing them.
1894  *
1895  * The only user is alloc_file_pseudo() and that's what should
1896  * be considered a public interface.  Don't use directly.
1897  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1898 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1899 {
1900 	struct dentry *dentry = __d_alloc(sb, name);
1901 	if (likely(dentry))
1902 		dentry->d_flags |= DCACHE_NORCU;
1903 	return dentry;
1904 }
1905 
d_alloc_name(struct dentry * parent,const char * name)1906 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1907 {
1908 	struct qstr q;
1909 
1910 	q.name = name;
1911 	q.hash_len = hashlen_string(parent, name);
1912 	return d_alloc(parent, &q);
1913 }
1914 EXPORT_SYMBOL(d_alloc_name);
1915 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1916 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1917 {
1918 	WARN_ON_ONCE(dentry->d_op);
1919 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1920 				DCACHE_OP_COMPARE	|
1921 				DCACHE_OP_REVALIDATE	|
1922 				DCACHE_OP_WEAK_REVALIDATE	|
1923 				DCACHE_OP_DELETE	|
1924 				DCACHE_OP_REAL));
1925 	dentry->d_op = op;
1926 	if (!op)
1927 		return;
1928 	if (op->d_hash)
1929 		dentry->d_flags |= DCACHE_OP_HASH;
1930 	if (op->d_compare)
1931 		dentry->d_flags |= DCACHE_OP_COMPARE;
1932 	if (op->d_revalidate)
1933 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1934 	if (op->d_weak_revalidate)
1935 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1936 	if (op->d_delete)
1937 		dentry->d_flags |= DCACHE_OP_DELETE;
1938 	if (op->d_prune)
1939 		dentry->d_flags |= DCACHE_OP_PRUNE;
1940 	if (op->d_real)
1941 		dentry->d_flags |= DCACHE_OP_REAL;
1942 
1943 }
1944 EXPORT_SYMBOL(d_set_d_op);
1945 
1946 
1947 /*
1948  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1949  * @dentry - The dentry to mark
1950  *
1951  * Mark a dentry as falling through to the lower layer (as set with
1952  * d_pin_lower()).  This flag may be recorded on the medium.
1953  */
d_set_fallthru(struct dentry * dentry)1954 void d_set_fallthru(struct dentry *dentry)
1955 {
1956 	spin_lock(&dentry->d_lock);
1957 	dentry->d_flags |= DCACHE_FALLTHRU;
1958 	spin_unlock(&dentry->d_lock);
1959 }
1960 EXPORT_SYMBOL(d_set_fallthru);
1961 
d_flags_for_inode(struct inode * inode)1962 static unsigned d_flags_for_inode(struct inode *inode)
1963 {
1964 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1965 
1966 	if (!inode)
1967 		return DCACHE_MISS_TYPE;
1968 
1969 	if (S_ISDIR(inode->i_mode)) {
1970 		add_flags = DCACHE_DIRECTORY_TYPE;
1971 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1972 			if (unlikely(!inode->i_op->lookup))
1973 				add_flags = DCACHE_AUTODIR_TYPE;
1974 			else
1975 				inode->i_opflags |= IOP_LOOKUP;
1976 		}
1977 		goto type_determined;
1978 	}
1979 
1980 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1981 		if (unlikely(inode->i_op->get_link)) {
1982 			add_flags = DCACHE_SYMLINK_TYPE;
1983 			goto type_determined;
1984 		}
1985 		inode->i_opflags |= IOP_NOFOLLOW;
1986 	}
1987 
1988 	if (unlikely(!S_ISREG(inode->i_mode)))
1989 		add_flags = DCACHE_SPECIAL_TYPE;
1990 
1991 type_determined:
1992 	if (unlikely(IS_AUTOMOUNT(inode)))
1993 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1994 	return add_flags;
1995 }
1996 
__d_instantiate(struct dentry * dentry,struct inode * inode)1997 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1998 {
1999 	unsigned add_flags = d_flags_for_inode(inode);
2000 	WARN_ON(d_in_lookup(dentry));
2001 
2002 	spin_lock(&dentry->d_lock);
2003 	/*
2004 	 * Decrement negative dentry count if it was in the LRU list.
2005 	 */
2006 	if (dentry->d_flags & DCACHE_LRU_LIST)
2007 		this_cpu_dec(nr_dentry_negative);
2008 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2009 	raw_write_seqcount_begin(&dentry->d_seq);
2010 	__d_set_inode_and_type(dentry, inode, add_flags);
2011 	raw_write_seqcount_end(&dentry->d_seq);
2012 	fsnotify_update_flags(dentry);
2013 	spin_unlock(&dentry->d_lock);
2014 }
2015 
2016 /**
2017  * d_instantiate - fill in inode information for a dentry
2018  * @entry: dentry to complete
2019  * @inode: inode to attach to this dentry
2020  *
2021  * Fill in inode information in the entry.
2022  *
2023  * This turns negative dentries into productive full members
2024  * of society.
2025  *
2026  * NOTE! This assumes that the inode count has been incremented
2027  * (or otherwise set) by the caller to indicate that it is now
2028  * in use by the dcache.
2029  */
2030 
d_instantiate(struct dentry * entry,struct inode * inode)2031 void d_instantiate(struct dentry *entry, struct inode * inode)
2032 {
2033 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2034 	if (inode) {
2035 		security_d_instantiate(entry, inode);
2036 		spin_lock(&inode->i_lock);
2037 		__d_instantiate(entry, inode);
2038 		spin_unlock(&inode->i_lock);
2039 	}
2040 }
2041 EXPORT_SYMBOL(d_instantiate);
2042 
2043 /*
2044  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2045  * with lockdep-related part of unlock_new_inode() done before
2046  * anything else.  Use that instead of open-coding d_instantiate()/
2047  * unlock_new_inode() combinations.
2048  */
d_instantiate_new(struct dentry * entry,struct inode * inode)2049 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2050 {
2051 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2052 	BUG_ON(!inode);
2053 	lockdep_annotate_inode_mutex_key(inode);
2054 	security_d_instantiate(entry, inode);
2055 	spin_lock(&inode->i_lock);
2056 	__d_instantiate(entry, inode);
2057 	WARN_ON(!(inode->i_state & I_NEW));
2058 	inode->i_state &= ~I_NEW & ~I_CREATING;
2059 	smp_mb();
2060 	wake_up_bit(&inode->i_state, __I_NEW);
2061 	spin_unlock(&inode->i_lock);
2062 }
2063 EXPORT_SYMBOL(d_instantiate_new);
2064 
d_make_root(struct inode * root_inode)2065 struct dentry *d_make_root(struct inode *root_inode)
2066 {
2067 	struct dentry *res = NULL;
2068 
2069 	if (root_inode) {
2070 		res = d_alloc_anon(root_inode->i_sb);
2071 		if (res)
2072 			d_instantiate(res, root_inode);
2073 		else
2074 			iput(root_inode);
2075 	}
2076 	return res;
2077 }
2078 EXPORT_SYMBOL(d_make_root);
2079 
__d_instantiate_anon(struct dentry * dentry,struct inode * inode,bool disconnected)2080 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2081 					   struct inode *inode,
2082 					   bool disconnected)
2083 {
2084 	struct dentry *res;
2085 	unsigned add_flags;
2086 
2087 	security_d_instantiate(dentry, inode);
2088 	spin_lock(&inode->i_lock);
2089 	res = __d_find_any_alias(inode);
2090 	if (res) {
2091 		spin_unlock(&inode->i_lock);
2092 		dput(dentry);
2093 		goto out_iput;
2094 	}
2095 
2096 	/* attach a disconnected dentry */
2097 	add_flags = d_flags_for_inode(inode);
2098 
2099 	if (disconnected)
2100 		add_flags |= DCACHE_DISCONNECTED;
2101 
2102 	spin_lock(&dentry->d_lock);
2103 	__d_set_inode_and_type(dentry, inode, add_flags);
2104 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2105 	if (!disconnected) {
2106 		hlist_bl_lock(&dentry->d_sb->s_roots);
2107 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2108 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2109 	}
2110 	spin_unlock(&dentry->d_lock);
2111 	spin_unlock(&inode->i_lock);
2112 
2113 	return dentry;
2114 
2115  out_iput:
2116 	iput(inode);
2117 	return res;
2118 }
2119 
d_instantiate_anon(struct dentry * dentry,struct inode * inode)2120 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2121 {
2122 	return __d_instantiate_anon(dentry, inode, true);
2123 }
2124 EXPORT_SYMBOL(d_instantiate_anon);
2125 
__d_obtain_alias(struct inode * inode,bool disconnected)2126 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2127 {
2128 	struct dentry *tmp;
2129 	struct dentry *res;
2130 
2131 	if (!inode)
2132 		return ERR_PTR(-ESTALE);
2133 	if (IS_ERR(inode))
2134 		return ERR_CAST(inode);
2135 
2136 	res = d_find_any_alias(inode);
2137 	if (res)
2138 		goto out_iput;
2139 
2140 	tmp = d_alloc_anon(inode->i_sb);
2141 	if (!tmp) {
2142 		res = ERR_PTR(-ENOMEM);
2143 		goto out_iput;
2144 	}
2145 
2146 	return __d_instantiate_anon(tmp, inode, disconnected);
2147 
2148 out_iput:
2149 	iput(inode);
2150 	return res;
2151 }
2152 
2153 /**
2154  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2155  * @inode: inode to allocate the dentry for
2156  *
2157  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2158  * similar open by handle operations.  The returned dentry may be anonymous,
2159  * or may have a full name (if the inode was already in the cache).
2160  *
2161  * When called on a directory inode, we must ensure that the inode only ever
2162  * has one dentry.  If a dentry is found, that is returned instead of
2163  * allocating a new one.
2164  *
2165  * On successful return, the reference to the inode has been transferred
2166  * to the dentry.  In case of an error the reference on the inode is released.
2167  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2168  * be passed in and the error will be propagated to the return value,
2169  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2170  */
d_obtain_alias(struct inode * inode)2171 struct dentry *d_obtain_alias(struct inode *inode)
2172 {
2173 	return __d_obtain_alias(inode, true);
2174 }
2175 EXPORT_SYMBOL(d_obtain_alias);
2176 
2177 /**
2178  * d_obtain_root - find or allocate a dentry for a given inode
2179  * @inode: inode to allocate the dentry for
2180  *
2181  * Obtain an IS_ROOT dentry for the root of a filesystem.
2182  *
2183  * We must ensure that directory inodes only ever have one dentry.  If a
2184  * dentry is found, that is returned instead of allocating a new one.
2185  *
2186  * On successful return, the reference to the inode has been transferred
2187  * to the dentry.  In case of an error the reference on the inode is
2188  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2189  * error will be propagate to the return value, with a %NULL @inode
2190  * replaced by ERR_PTR(-ESTALE).
2191  */
d_obtain_root(struct inode * inode)2192 struct dentry *d_obtain_root(struct inode *inode)
2193 {
2194 	return __d_obtain_alias(inode, false);
2195 }
2196 EXPORT_SYMBOL(d_obtain_root);
2197 
2198 /**
2199  * d_add_ci - lookup or allocate new dentry with case-exact name
2200  * @inode:  the inode case-insensitive lookup has found
2201  * @dentry: the negative dentry that was passed to the parent's lookup func
2202  * @name:   the case-exact name to be associated with the returned dentry
2203  *
2204  * This is to avoid filling the dcache with case-insensitive names to the
2205  * same inode, only the actual correct case is stored in the dcache for
2206  * case-insensitive filesystems.
2207  *
2208  * For a case-insensitive lookup match and if the case-exact dentry
2209  * already exists in the dcache, use it and return it.
2210  *
2211  * If no entry exists with the exact case name, allocate new dentry with
2212  * the exact case, and return the spliced entry.
2213  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2214 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2215 			struct qstr *name)
2216 {
2217 	struct dentry *found, *res;
2218 
2219 	/*
2220 	 * First check if a dentry matching the name already exists,
2221 	 * if not go ahead and create it now.
2222 	 */
2223 	found = d_hash_and_lookup(dentry->d_parent, name);
2224 	if (found) {
2225 		iput(inode);
2226 		return found;
2227 	}
2228 	if (d_in_lookup(dentry)) {
2229 		found = d_alloc_parallel(dentry->d_parent, name,
2230 					dentry->d_wait);
2231 		if (IS_ERR(found) || !d_in_lookup(found)) {
2232 			iput(inode);
2233 			return found;
2234 		}
2235 	} else {
2236 		found = d_alloc(dentry->d_parent, name);
2237 		if (!found) {
2238 			iput(inode);
2239 			return ERR_PTR(-ENOMEM);
2240 		}
2241 	}
2242 	res = d_splice_alias(inode, found);
2243 	if (res) {
2244 		d_lookup_done(found);
2245 		dput(found);
2246 		return res;
2247 	}
2248 	return found;
2249 }
2250 EXPORT_SYMBOL(d_add_ci);
2251 
2252 /**
2253  * d_same_name - compare dentry name with case-exact name
2254  * @parent: parent dentry
2255  * @dentry: the negative dentry that was passed to the parent's lookup func
2256  * @name:   the case-exact name to be associated with the returned dentry
2257  *
2258  * Return: true if names are same, or false
2259  */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2260 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2261 		 const struct qstr *name)
2262 {
2263 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2264 		if (dentry->d_name.len != name->len)
2265 			return false;
2266 		return dentry_cmp(dentry, name->name, name->len) == 0;
2267 	}
2268 	return parent->d_op->d_compare(dentry,
2269 				       dentry->d_name.len, dentry->d_name.name,
2270 				       name) == 0;
2271 }
2272 EXPORT_SYMBOL_GPL(d_same_name);
2273 
2274 /*
2275  * This is __d_lookup_rcu() when the parent dentry has
2276  * DCACHE_OP_COMPARE, which makes things much nastier.
2277  */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2278 static noinline struct dentry *__d_lookup_rcu_op_compare(
2279 	const struct dentry *parent,
2280 	const struct qstr *name,
2281 	unsigned *seqp)
2282 {
2283 	u64 hashlen = name->hash_len;
2284 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2285 	struct hlist_bl_node *node;
2286 	struct dentry *dentry;
2287 
2288 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2289 		int tlen;
2290 		const char *tname;
2291 		unsigned seq;
2292 
2293 seqretry:
2294 		seq = raw_seqcount_begin(&dentry->d_seq);
2295 		if (dentry->d_parent != parent)
2296 			continue;
2297 		if (d_unhashed(dentry))
2298 			continue;
2299 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2300 			continue;
2301 		tlen = dentry->d_name.len;
2302 		tname = dentry->d_name.name;
2303 		/* we want a consistent (name,len) pair */
2304 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2305 			cpu_relax();
2306 			goto seqretry;
2307 		}
2308 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2309 			continue;
2310 		*seqp = seq;
2311 		return dentry;
2312 	}
2313 	return NULL;
2314 }
2315 
2316 /**
2317  * __d_lookup_rcu - search for a dentry (racy, store-free)
2318  * @parent: parent dentry
2319  * @name: qstr of name we wish to find
2320  * @seqp: returns d_seq value at the point where the dentry was found
2321  * Returns: dentry, or NULL
2322  *
2323  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2324  * resolution (store-free path walking) design described in
2325  * Documentation/filesystems/path-lookup.txt.
2326  *
2327  * This is not to be used outside core vfs.
2328  *
2329  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2330  * held, and rcu_read_lock held. The returned dentry must not be stored into
2331  * without taking d_lock and checking d_seq sequence count against @seq
2332  * returned here.
2333  *
2334  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2335  * function.
2336  *
2337  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2338  * the returned dentry, so long as its parent's seqlock is checked after the
2339  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2340  * is formed, giving integrity down the path walk.
2341  *
2342  * NOTE! The caller *has* to check the resulting dentry against the sequence
2343  * number we've returned before using any of the resulting dentry state!
2344  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2345 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2346 				const struct qstr *name,
2347 				unsigned *seqp)
2348 {
2349 	u64 hashlen = name->hash_len;
2350 	const unsigned char *str = name->name;
2351 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2352 	struct hlist_bl_node *node;
2353 	struct dentry *dentry;
2354 
2355 	/*
2356 	 * Note: There is significant duplication with __d_lookup_rcu which is
2357 	 * required to prevent single threaded performance regressions
2358 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2359 	 * Keep the two functions in sync.
2360 	 */
2361 
2362 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2363 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2364 
2365 	/*
2366 	 * The hash list is protected using RCU.
2367 	 *
2368 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2369 	 * races with d_move().
2370 	 *
2371 	 * It is possible that concurrent renames can mess up our list
2372 	 * walk here and result in missing our dentry, resulting in the
2373 	 * false-negative result. d_lookup() protects against concurrent
2374 	 * renames using rename_lock seqlock.
2375 	 *
2376 	 * See Documentation/filesystems/path-lookup.txt for more details.
2377 	 */
2378 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2379 		unsigned seq;
2380 
2381 		/*
2382 		 * The dentry sequence count protects us from concurrent
2383 		 * renames, and thus protects parent and name fields.
2384 		 *
2385 		 * The caller must perform a seqcount check in order
2386 		 * to do anything useful with the returned dentry.
2387 		 *
2388 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2389 		 * we don't wait for the sequence count to stabilize if it
2390 		 * is in the middle of a sequence change. If we do the slow
2391 		 * dentry compare, we will do seqretries until it is stable,
2392 		 * and if we end up with a successful lookup, we actually
2393 		 * want to exit RCU lookup anyway.
2394 		 *
2395 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2396 		 * we are still guaranteed NUL-termination of ->d_name.name.
2397 		 */
2398 		seq = raw_seqcount_begin(&dentry->d_seq);
2399 		if (dentry->d_parent != parent)
2400 			continue;
2401 		if (d_unhashed(dentry))
2402 			continue;
2403 		if (dentry->d_name.hash_len != hashlen)
2404 			continue;
2405 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2406 			continue;
2407 		*seqp = seq;
2408 		return dentry;
2409 	}
2410 	return NULL;
2411 }
2412 
2413 /**
2414  * d_lookup - search for a dentry
2415  * @parent: parent dentry
2416  * @name: qstr of name we wish to find
2417  * Returns: dentry, or NULL
2418  *
2419  * d_lookup searches the children of the parent dentry for the name in
2420  * question. If the dentry is found its reference count is incremented and the
2421  * dentry is returned. The caller must use dput to free the entry when it has
2422  * finished using it. %NULL is returned if the dentry does not exist.
2423  */
d_lookup(const struct dentry * parent,const struct qstr * name)2424 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2425 {
2426 	struct dentry *dentry;
2427 	unsigned seq;
2428 
2429 	do {
2430 		seq = read_seqbegin(&rename_lock);
2431 		dentry = __d_lookup(parent, name);
2432 		if (dentry)
2433 			break;
2434 	} while (read_seqretry(&rename_lock, seq));
2435 	return dentry;
2436 }
2437 EXPORT_SYMBOL(d_lookup);
2438 
2439 /**
2440  * __d_lookup - search for a dentry (racy)
2441  * @parent: parent dentry
2442  * @name: qstr of name we wish to find
2443  * Returns: dentry, or NULL
2444  *
2445  * __d_lookup is like d_lookup, however it may (rarely) return a
2446  * false-negative result due to unrelated rename activity.
2447  *
2448  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2449  * however it must be used carefully, eg. with a following d_lookup in
2450  * the case of failure.
2451  *
2452  * __d_lookup callers must be commented.
2453  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2454 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2455 {
2456 	unsigned int hash = name->hash;
2457 	struct hlist_bl_head *b = d_hash(hash);
2458 	struct hlist_bl_node *node;
2459 	struct dentry *found = NULL;
2460 	struct dentry *dentry;
2461 
2462 	/*
2463 	 * Note: There is significant duplication with __d_lookup_rcu which is
2464 	 * required to prevent single threaded performance regressions
2465 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2466 	 * Keep the two functions in sync.
2467 	 */
2468 
2469 	/*
2470 	 * The hash list is protected using RCU.
2471 	 *
2472 	 * Take d_lock when comparing a candidate dentry, to avoid races
2473 	 * with d_move().
2474 	 *
2475 	 * It is possible that concurrent renames can mess up our list
2476 	 * walk here and result in missing our dentry, resulting in the
2477 	 * false-negative result. d_lookup() protects against concurrent
2478 	 * renames using rename_lock seqlock.
2479 	 *
2480 	 * See Documentation/filesystems/path-lookup.txt for more details.
2481 	 */
2482 	rcu_read_lock();
2483 
2484 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2485 
2486 		if (dentry->d_name.hash != hash)
2487 			continue;
2488 
2489 		spin_lock(&dentry->d_lock);
2490 		if (dentry->d_parent != parent)
2491 			goto next;
2492 		if (d_unhashed(dentry))
2493 			goto next;
2494 
2495 		if (!d_same_name(dentry, parent, name))
2496 			goto next;
2497 
2498 		dentry->d_lockref.count++;
2499 		found = dentry;
2500 		spin_unlock(&dentry->d_lock);
2501 		break;
2502 next:
2503 		spin_unlock(&dentry->d_lock);
2504  	}
2505  	rcu_read_unlock();
2506 
2507  	return found;
2508 }
2509 
2510 /**
2511  * d_hash_and_lookup - hash the qstr then search for a dentry
2512  * @dir: Directory to search in
2513  * @name: qstr of name we wish to find
2514  *
2515  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2516  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2517 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2518 {
2519 	/*
2520 	 * Check for a fs-specific hash function. Note that we must
2521 	 * calculate the standard hash first, as the d_op->d_hash()
2522 	 * routine may choose to leave the hash value unchanged.
2523 	 */
2524 	name->hash = full_name_hash(dir, name->name, name->len);
2525 	if (dir->d_flags & DCACHE_OP_HASH) {
2526 		int err = dir->d_op->d_hash(dir, name);
2527 		if (unlikely(err < 0))
2528 			return ERR_PTR(err);
2529 	}
2530 	return d_lookup(dir, name);
2531 }
2532 EXPORT_SYMBOL(d_hash_and_lookup);
2533 
2534 /*
2535  * When a file is deleted, we have two options:
2536  * - turn this dentry into a negative dentry
2537  * - unhash this dentry and free it.
2538  *
2539  * Usually, we want to just turn this into
2540  * a negative dentry, but if anybody else is
2541  * currently using the dentry or the inode
2542  * we can't do that and we fall back on removing
2543  * it from the hash queues and waiting for
2544  * it to be deleted later when it has no users
2545  */
2546 
2547 /**
2548  * d_delete - delete a dentry
2549  * @dentry: The dentry to delete
2550  *
2551  * Turn the dentry into a negative dentry if possible, otherwise
2552  * remove it from the hash queues so it can be deleted later
2553  */
2554 
d_delete(struct dentry * dentry)2555 void d_delete(struct dentry * dentry)
2556 {
2557 	struct inode *inode = dentry->d_inode;
2558 
2559 	spin_lock(&inode->i_lock);
2560 	spin_lock(&dentry->d_lock);
2561 	/*
2562 	 * Are we the only user?
2563 	 */
2564 	if (dentry->d_lockref.count == 1) {
2565 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2566 		dentry_unlink_inode(dentry);
2567 	} else {
2568 		__d_drop(dentry);
2569 		spin_unlock(&dentry->d_lock);
2570 		spin_unlock(&inode->i_lock);
2571 	}
2572 }
2573 EXPORT_SYMBOL(d_delete);
2574 
__d_rehash(struct dentry * entry)2575 static void __d_rehash(struct dentry *entry)
2576 {
2577 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2578 
2579 	hlist_bl_lock(b);
2580 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2581 	hlist_bl_unlock(b);
2582 }
2583 
2584 /**
2585  * d_rehash	- add an entry back to the hash
2586  * @entry: dentry to add to the hash
2587  *
2588  * Adds a dentry to the hash according to its name.
2589  */
2590 
d_rehash(struct dentry * entry)2591 void d_rehash(struct dentry * entry)
2592 {
2593 	spin_lock(&entry->d_lock);
2594 	__d_rehash(entry);
2595 	spin_unlock(&entry->d_lock);
2596 }
2597 EXPORT_SYMBOL(d_rehash);
2598 
start_dir_add(struct inode * dir)2599 static inline unsigned start_dir_add(struct inode *dir)
2600 {
2601 	preempt_disable_nested();
2602 	for (;;) {
2603 		unsigned n = dir->i_dir_seq;
2604 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2605 			return n;
2606 		cpu_relax();
2607 	}
2608 }
2609 
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2610 static inline void end_dir_add(struct inode *dir, unsigned int n,
2611 			       wait_queue_head_t *d_wait)
2612 {
2613 	smp_store_release(&dir->i_dir_seq, n + 2);
2614 	preempt_enable_nested();
2615 	wake_up_all(d_wait);
2616 }
2617 
d_wait_lookup(struct dentry * dentry)2618 static void d_wait_lookup(struct dentry *dentry)
2619 {
2620 	if (d_in_lookup(dentry)) {
2621 		DECLARE_WAITQUEUE(wait, current);
2622 		add_wait_queue(dentry->d_wait, &wait);
2623 		do {
2624 			set_current_state(TASK_UNINTERRUPTIBLE);
2625 			spin_unlock(&dentry->d_lock);
2626 			schedule();
2627 			spin_lock(&dentry->d_lock);
2628 		} while (d_in_lookup(dentry));
2629 	}
2630 }
2631 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2632 struct dentry *d_alloc_parallel(struct dentry *parent,
2633 				const struct qstr *name,
2634 				wait_queue_head_t *wq)
2635 {
2636 	unsigned int hash = name->hash;
2637 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2638 	struct hlist_bl_node *node;
2639 	struct dentry *new = d_alloc(parent, name);
2640 	struct dentry *dentry;
2641 	unsigned seq, r_seq, d_seq;
2642 
2643 	if (unlikely(!new))
2644 		return ERR_PTR(-ENOMEM);
2645 
2646 retry:
2647 	rcu_read_lock();
2648 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2649 	r_seq = read_seqbegin(&rename_lock);
2650 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2651 	if (unlikely(dentry)) {
2652 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2653 			rcu_read_unlock();
2654 			goto retry;
2655 		}
2656 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2657 			rcu_read_unlock();
2658 			dput(dentry);
2659 			goto retry;
2660 		}
2661 		rcu_read_unlock();
2662 		dput(new);
2663 		return dentry;
2664 	}
2665 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2666 		rcu_read_unlock();
2667 		goto retry;
2668 	}
2669 
2670 	if (unlikely(seq & 1)) {
2671 		rcu_read_unlock();
2672 		goto retry;
2673 	}
2674 
2675 	hlist_bl_lock(b);
2676 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2677 		hlist_bl_unlock(b);
2678 		rcu_read_unlock();
2679 		goto retry;
2680 	}
2681 	/*
2682 	 * No changes for the parent since the beginning of d_lookup().
2683 	 * Since all removals from the chain happen with hlist_bl_lock(),
2684 	 * any potential in-lookup matches are going to stay here until
2685 	 * we unlock the chain.  All fields are stable in everything
2686 	 * we encounter.
2687 	 */
2688 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2689 		if (dentry->d_name.hash != hash)
2690 			continue;
2691 		if (dentry->d_parent != parent)
2692 			continue;
2693 		if (!d_same_name(dentry, parent, name))
2694 			continue;
2695 		hlist_bl_unlock(b);
2696 		/* now we can try to grab a reference */
2697 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2698 			rcu_read_unlock();
2699 			goto retry;
2700 		}
2701 
2702 		rcu_read_unlock();
2703 		/*
2704 		 * somebody is likely to be still doing lookup for it;
2705 		 * wait for them to finish
2706 		 */
2707 		spin_lock(&dentry->d_lock);
2708 		d_wait_lookup(dentry);
2709 		/*
2710 		 * it's not in-lookup anymore; in principle we should repeat
2711 		 * everything from dcache lookup, but it's likely to be what
2712 		 * d_lookup() would've found anyway.  If it is, just return it;
2713 		 * otherwise we really have to repeat the whole thing.
2714 		 */
2715 		if (unlikely(dentry->d_name.hash != hash))
2716 			goto mismatch;
2717 		if (unlikely(dentry->d_parent != parent))
2718 			goto mismatch;
2719 		if (unlikely(d_unhashed(dentry)))
2720 			goto mismatch;
2721 		if (unlikely(!d_same_name(dentry, parent, name)))
2722 			goto mismatch;
2723 		/* OK, it *is* a hashed match; return it */
2724 		spin_unlock(&dentry->d_lock);
2725 		dput(new);
2726 		return dentry;
2727 	}
2728 	rcu_read_unlock();
2729 	/* we can't take ->d_lock here; it's OK, though. */
2730 	new->d_flags |= DCACHE_PAR_LOOKUP;
2731 	new->d_wait = wq;
2732 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2733 	hlist_bl_unlock(b);
2734 	return new;
2735 mismatch:
2736 	spin_unlock(&dentry->d_lock);
2737 	dput(dentry);
2738 	goto retry;
2739 }
2740 EXPORT_SYMBOL(d_alloc_parallel);
2741 
2742 /*
2743  * - Unhash the dentry
2744  * - Retrieve and clear the waitqueue head in dentry
2745  * - Return the waitqueue head
2746  */
__d_lookup_unhash(struct dentry * dentry)2747 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2748 {
2749 	wait_queue_head_t *d_wait;
2750 	struct hlist_bl_head *b;
2751 
2752 	lockdep_assert_held(&dentry->d_lock);
2753 
2754 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2755 	hlist_bl_lock(b);
2756 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2757 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2758 	d_wait = dentry->d_wait;
2759 	dentry->d_wait = NULL;
2760 	hlist_bl_unlock(b);
2761 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2762 	INIT_LIST_HEAD(&dentry->d_lru);
2763 	return d_wait;
2764 }
2765 
__d_lookup_unhash_wake(struct dentry * dentry)2766 void __d_lookup_unhash_wake(struct dentry *dentry)
2767 {
2768 	spin_lock(&dentry->d_lock);
2769 	wake_up_all(__d_lookup_unhash(dentry));
2770 	spin_unlock(&dentry->d_lock);
2771 }
2772 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2773 
2774 /* inode->i_lock held if inode is non-NULL */
2775 
__d_add(struct dentry * dentry,struct inode * inode)2776 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2777 {
2778 	wait_queue_head_t *d_wait;
2779 	struct inode *dir = NULL;
2780 	unsigned n;
2781 	spin_lock(&dentry->d_lock);
2782 	if (unlikely(d_in_lookup(dentry))) {
2783 		dir = dentry->d_parent->d_inode;
2784 		n = start_dir_add(dir);
2785 		d_wait = __d_lookup_unhash(dentry);
2786 	}
2787 	if (inode) {
2788 		unsigned add_flags = d_flags_for_inode(inode);
2789 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2790 		raw_write_seqcount_begin(&dentry->d_seq);
2791 		__d_set_inode_and_type(dentry, inode, add_flags);
2792 		raw_write_seqcount_end(&dentry->d_seq);
2793 		fsnotify_update_flags(dentry);
2794 	}
2795 	__d_rehash(dentry);
2796 	if (dir)
2797 		end_dir_add(dir, n, d_wait);
2798 	spin_unlock(&dentry->d_lock);
2799 	if (inode)
2800 		spin_unlock(&inode->i_lock);
2801 }
2802 
2803 /**
2804  * d_add - add dentry to hash queues
2805  * @entry: dentry to add
2806  * @inode: The inode to attach to this dentry
2807  *
2808  * This adds the entry to the hash queues and initializes @inode.
2809  * The entry was actually filled in earlier during d_alloc().
2810  */
2811 
d_add(struct dentry * entry,struct inode * inode)2812 void d_add(struct dentry *entry, struct inode *inode)
2813 {
2814 	if (inode) {
2815 		security_d_instantiate(entry, inode);
2816 		spin_lock(&inode->i_lock);
2817 	}
2818 	__d_add(entry, inode);
2819 }
2820 EXPORT_SYMBOL(d_add);
2821 
2822 /**
2823  * d_exact_alias - find and hash an exact unhashed alias
2824  * @entry: dentry to add
2825  * @inode: The inode to go with this dentry
2826  *
2827  * If an unhashed dentry with the same name/parent and desired
2828  * inode already exists, hash and return it.  Otherwise, return
2829  * NULL.
2830  *
2831  * Parent directory should be locked.
2832  */
d_exact_alias(struct dentry * entry,struct inode * inode)2833 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2834 {
2835 	struct dentry *alias;
2836 	unsigned int hash = entry->d_name.hash;
2837 
2838 	spin_lock(&inode->i_lock);
2839 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2840 		/*
2841 		 * Don't need alias->d_lock here, because aliases with
2842 		 * d_parent == entry->d_parent are not subject to name or
2843 		 * parent changes, because the parent inode i_mutex is held.
2844 		 */
2845 		if (alias->d_name.hash != hash)
2846 			continue;
2847 		if (alias->d_parent != entry->d_parent)
2848 			continue;
2849 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2850 			continue;
2851 		spin_lock(&alias->d_lock);
2852 		if (!d_unhashed(alias)) {
2853 			spin_unlock(&alias->d_lock);
2854 			alias = NULL;
2855 		} else {
2856 			__dget_dlock(alias);
2857 			__d_rehash(alias);
2858 			spin_unlock(&alias->d_lock);
2859 		}
2860 		spin_unlock(&inode->i_lock);
2861 		return alias;
2862 	}
2863 	spin_unlock(&inode->i_lock);
2864 	return NULL;
2865 }
2866 EXPORT_SYMBOL(d_exact_alias);
2867 
swap_names(struct dentry * dentry,struct dentry * target)2868 static void swap_names(struct dentry *dentry, struct dentry *target)
2869 {
2870 	if (unlikely(dname_external(target))) {
2871 		if (unlikely(dname_external(dentry))) {
2872 			/*
2873 			 * Both external: swap the pointers
2874 			 */
2875 			swap(target->d_name.name, dentry->d_name.name);
2876 		} else {
2877 			/*
2878 			 * dentry:internal, target:external.  Steal target's
2879 			 * storage and make target internal.
2880 			 */
2881 			memcpy(target->d_iname, dentry->d_name.name,
2882 					dentry->d_name.len + 1);
2883 			dentry->d_name.name = target->d_name.name;
2884 			target->d_name.name = target->d_iname;
2885 		}
2886 	} else {
2887 		if (unlikely(dname_external(dentry))) {
2888 			/*
2889 			 * dentry:external, target:internal.  Give dentry's
2890 			 * storage to target and make dentry internal
2891 			 */
2892 			memcpy(dentry->d_iname, target->d_name.name,
2893 					target->d_name.len + 1);
2894 			target->d_name.name = dentry->d_name.name;
2895 			dentry->d_name.name = dentry->d_iname;
2896 		} else {
2897 			/*
2898 			 * Both are internal.
2899 			 */
2900 			unsigned int i;
2901 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2902 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2903 				swap(((long *) &dentry->d_iname)[i],
2904 				     ((long *) &target->d_iname)[i]);
2905 			}
2906 		}
2907 	}
2908 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2909 }
2910 
copy_name(struct dentry * dentry,struct dentry * target)2911 static void copy_name(struct dentry *dentry, struct dentry *target)
2912 {
2913 	struct external_name *old_name = NULL;
2914 	if (unlikely(dname_external(dentry)))
2915 		old_name = external_name(dentry);
2916 	if (unlikely(dname_external(target))) {
2917 		atomic_inc(&external_name(target)->u.count);
2918 		dentry->d_name = target->d_name;
2919 	} else {
2920 		memcpy(dentry->d_iname, target->d_name.name,
2921 				target->d_name.len + 1);
2922 		dentry->d_name.name = dentry->d_iname;
2923 		dentry->d_name.hash_len = target->d_name.hash_len;
2924 	}
2925 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2926 		kfree_rcu(old_name, u.head);
2927 }
2928 
2929 /*
2930  * __d_move - move a dentry
2931  * @dentry: entry to move
2932  * @target: new dentry
2933  * @exchange: exchange the two dentries
2934  *
2935  * Update the dcache to reflect the move of a file name. Negative
2936  * dcache entries should not be moved in this way. Caller must hold
2937  * rename_lock, the i_mutex of the source and target directories,
2938  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2939  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2940 static void __d_move(struct dentry *dentry, struct dentry *target,
2941 		     bool exchange)
2942 {
2943 	struct dentry *old_parent, *p;
2944 	wait_queue_head_t *d_wait;
2945 	struct inode *dir = NULL;
2946 	unsigned n;
2947 
2948 	WARN_ON(!dentry->d_inode);
2949 	if (WARN_ON(dentry == target))
2950 		return;
2951 
2952 	BUG_ON(d_ancestor(target, dentry));
2953 	old_parent = dentry->d_parent;
2954 	p = d_ancestor(old_parent, target);
2955 	if (IS_ROOT(dentry)) {
2956 		BUG_ON(p);
2957 		spin_lock(&target->d_parent->d_lock);
2958 	} else if (!p) {
2959 		/* target is not a descendent of dentry->d_parent */
2960 		spin_lock(&target->d_parent->d_lock);
2961 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2962 	} else {
2963 		BUG_ON(p == dentry);
2964 		spin_lock(&old_parent->d_lock);
2965 		if (p != target)
2966 			spin_lock_nested(&target->d_parent->d_lock,
2967 					DENTRY_D_LOCK_NESTED);
2968 	}
2969 	spin_lock_nested(&dentry->d_lock, 2);
2970 	spin_lock_nested(&target->d_lock, 3);
2971 
2972 	if (unlikely(d_in_lookup(target))) {
2973 		dir = target->d_parent->d_inode;
2974 		n = start_dir_add(dir);
2975 		d_wait = __d_lookup_unhash(target);
2976 	}
2977 
2978 	write_seqcount_begin(&dentry->d_seq);
2979 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2980 
2981 	/* unhash both */
2982 	if (!d_unhashed(dentry))
2983 		___d_drop(dentry);
2984 	if (!d_unhashed(target))
2985 		___d_drop(target);
2986 
2987 	/* ... and switch them in the tree */
2988 	dentry->d_parent = target->d_parent;
2989 	if (!exchange) {
2990 		copy_name(dentry, target);
2991 		target->d_hash.pprev = NULL;
2992 		dentry->d_parent->d_lockref.count++;
2993 		if (dentry != old_parent) /* wasn't IS_ROOT */
2994 			WARN_ON(!--old_parent->d_lockref.count);
2995 	} else {
2996 		target->d_parent = old_parent;
2997 		swap_names(dentry, target);
2998 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2999 		__d_rehash(target);
3000 		fsnotify_update_flags(target);
3001 	}
3002 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3003 	__d_rehash(dentry);
3004 	fsnotify_update_flags(dentry);
3005 	fscrypt_handle_d_move(dentry);
3006 
3007 	write_seqcount_end(&target->d_seq);
3008 	write_seqcount_end(&dentry->d_seq);
3009 
3010 	if (dir)
3011 		end_dir_add(dir, n, d_wait);
3012 
3013 	if (dentry->d_parent != old_parent)
3014 		spin_unlock(&dentry->d_parent->d_lock);
3015 	if (dentry != old_parent)
3016 		spin_unlock(&old_parent->d_lock);
3017 	spin_unlock(&target->d_lock);
3018 	spin_unlock(&dentry->d_lock);
3019 }
3020 
3021 /*
3022  * d_move - move a dentry
3023  * @dentry: entry to move
3024  * @target: new dentry
3025  *
3026  * Update the dcache to reflect the move of a file name. Negative
3027  * dcache entries should not be moved in this way. See the locking
3028  * requirements for __d_move.
3029  */
d_move(struct dentry * dentry,struct dentry * target)3030 void d_move(struct dentry *dentry, struct dentry *target)
3031 {
3032 	write_seqlock(&rename_lock);
3033 	__d_move(dentry, target, false);
3034 	write_sequnlock(&rename_lock);
3035 }
3036 EXPORT_SYMBOL(d_move);
3037 
3038 /*
3039  * d_exchange - exchange two dentries
3040  * @dentry1: first dentry
3041  * @dentry2: second dentry
3042  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)3043 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3044 {
3045 	write_seqlock(&rename_lock);
3046 
3047 	WARN_ON(!dentry1->d_inode);
3048 	WARN_ON(!dentry2->d_inode);
3049 	WARN_ON(IS_ROOT(dentry1));
3050 	WARN_ON(IS_ROOT(dentry2));
3051 
3052 	__d_move(dentry1, dentry2, true);
3053 
3054 	write_sequnlock(&rename_lock);
3055 }
3056 
3057 /**
3058  * d_ancestor - search for an ancestor
3059  * @p1: ancestor dentry
3060  * @p2: child dentry
3061  *
3062  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3063  * an ancestor of p2, else NULL.
3064  */
d_ancestor(struct dentry * p1,struct dentry * p2)3065 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3066 {
3067 	struct dentry *p;
3068 
3069 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3070 		if (p->d_parent == p1)
3071 			return p;
3072 	}
3073 	return NULL;
3074 }
3075 
3076 /*
3077  * This helper attempts to cope with remotely renamed directories
3078  *
3079  * It assumes that the caller is already holding
3080  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3081  *
3082  * Note: If ever the locking in lock_rename() changes, then please
3083  * remember to update this too...
3084  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)3085 static int __d_unalias(struct inode *inode,
3086 		struct dentry *dentry, struct dentry *alias)
3087 {
3088 	struct mutex *m1 = NULL;
3089 	struct rw_semaphore *m2 = NULL;
3090 	int ret = -ESTALE;
3091 
3092 	/* If alias and dentry share a parent, then no extra locks required */
3093 	if (alias->d_parent == dentry->d_parent)
3094 		goto out_unalias;
3095 
3096 	/* See lock_rename() */
3097 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3098 		goto out_err;
3099 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3100 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3101 		goto out_err;
3102 	m2 = &alias->d_parent->d_inode->i_rwsem;
3103 out_unalias:
3104 	__d_move(alias, dentry, false);
3105 	ret = 0;
3106 out_err:
3107 	if (m2)
3108 		up_read(m2);
3109 	if (m1)
3110 		mutex_unlock(m1);
3111 	return ret;
3112 }
3113 
3114 /**
3115  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3116  * @inode:  the inode which may have a disconnected dentry
3117  * @dentry: a negative dentry which we want to point to the inode.
3118  *
3119  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3120  * place of the given dentry and return it, else simply d_add the inode
3121  * to the dentry and return NULL.
3122  *
3123  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124  * we should error out: directories can't have multiple aliases.
3125  *
3126  * This is needed in the lookup routine of any filesystem that is exportable
3127  * (via knfsd) so that we can build dcache paths to directories effectively.
3128  *
3129  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3130  * is returned.  This matches the expected return value of ->lookup.
3131  *
3132  * Cluster filesystems may call this function with a negative, hashed dentry.
3133  * In that case, we know that the inode will be a regular file, and also this
3134  * will only occur during atomic_open. So we need to check for the dentry
3135  * being already hashed only in the final case.
3136  */
d_splice_alias(struct inode * inode,struct dentry * dentry)3137 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138 {
3139 	if (IS_ERR(inode))
3140 		return ERR_CAST(inode);
3141 
3142 	BUG_ON(!d_unhashed(dentry));
3143 
3144 	if (!inode)
3145 		goto out;
3146 
3147 	security_d_instantiate(dentry, inode);
3148 	spin_lock(&inode->i_lock);
3149 	if (S_ISDIR(inode->i_mode)) {
3150 		struct dentry *new = __d_find_any_alias(inode);
3151 		if (unlikely(new)) {
3152 			/* The reference to new ensures it remains an alias */
3153 			spin_unlock(&inode->i_lock);
3154 			write_seqlock(&rename_lock);
3155 			if (unlikely(d_ancestor(new, dentry))) {
3156 				write_sequnlock(&rename_lock);
3157 				dput(new);
3158 				new = ERR_PTR(-ELOOP);
3159 				pr_warn_ratelimited(
3160 					"VFS: Lookup of '%s' in %s %s"
3161 					" would have caused loop\n",
3162 					dentry->d_name.name,
3163 					inode->i_sb->s_type->name,
3164 					inode->i_sb->s_id);
3165 			} else if (!IS_ROOT(new)) {
3166 				struct dentry *old_parent = dget(new->d_parent);
3167 				int err = __d_unalias(inode, dentry, new);
3168 				write_sequnlock(&rename_lock);
3169 				if (err) {
3170 					dput(new);
3171 					new = ERR_PTR(err);
3172 				}
3173 				dput(old_parent);
3174 			} else {
3175 				__d_move(new, dentry, false);
3176 				write_sequnlock(&rename_lock);
3177 			}
3178 			iput(inode);
3179 			return new;
3180 		}
3181 	}
3182 out:
3183 	__d_add(dentry, inode);
3184 	return NULL;
3185 }
3186 EXPORT_SYMBOL(d_splice_alias);
3187 
3188 /*
3189  * Test whether new_dentry is a subdirectory of old_dentry.
3190  *
3191  * Trivially implemented using the dcache structure
3192  */
3193 
3194 /**
3195  * is_subdir - is new dentry a subdirectory of old_dentry
3196  * @new_dentry: new dentry
3197  * @old_dentry: old dentry
3198  *
3199  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3200  * Returns false otherwise.
3201  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3202  */
3203 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3204 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3205 {
3206 	bool result;
3207 	unsigned seq;
3208 
3209 	if (new_dentry == old_dentry)
3210 		return true;
3211 
3212 	do {
3213 		/* for restarting inner loop in case of seq retry */
3214 		seq = read_seqbegin(&rename_lock);
3215 		/*
3216 		 * Need rcu_readlock to protect against the d_parent trashing
3217 		 * due to d_move
3218 		 */
3219 		rcu_read_lock();
3220 		if (d_ancestor(old_dentry, new_dentry))
3221 			result = true;
3222 		else
3223 			result = false;
3224 		rcu_read_unlock();
3225 	} while (read_seqretry(&rename_lock, seq));
3226 
3227 	return result;
3228 }
3229 EXPORT_SYMBOL(is_subdir);
3230 
d_genocide_kill(void * data,struct dentry * dentry)3231 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3232 {
3233 	struct dentry *root = data;
3234 	if (dentry != root) {
3235 		if (d_unhashed(dentry) || !dentry->d_inode)
3236 			return D_WALK_SKIP;
3237 
3238 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3239 			dentry->d_flags |= DCACHE_GENOCIDE;
3240 			dentry->d_lockref.count--;
3241 		}
3242 	}
3243 	return D_WALK_CONTINUE;
3244 }
3245 
d_genocide(struct dentry * parent)3246 void d_genocide(struct dentry *parent)
3247 {
3248 	d_walk(parent, parent, d_genocide_kill);
3249 }
3250 
3251 EXPORT_SYMBOL(d_genocide);
3252 
d_tmpfile(struct file * file,struct inode * inode)3253 void d_tmpfile(struct file *file, struct inode *inode)
3254 {
3255 	struct dentry *dentry = file->f_path.dentry;
3256 
3257 	inode_dec_link_count(inode);
3258 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3259 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3260 		!d_unlinked(dentry));
3261 	spin_lock(&dentry->d_parent->d_lock);
3262 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3263 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3264 				(unsigned long long)inode->i_ino);
3265 	spin_unlock(&dentry->d_lock);
3266 	spin_unlock(&dentry->d_parent->d_lock);
3267 	d_instantiate(dentry, inode);
3268 }
3269 EXPORT_SYMBOL(d_tmpfile);
3270 
3271 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3272 static int __init set_dhash_entries(char *str)
3273 {
3274 	if (!str)
3275 		return 0;
3276 	dhash_entries = simple_strtoul(str, &str, 0);
3277 	return 1;
3278 }
3279 __setup("dhash_entries=", set_dhash_entries);
3280 
dcache_init_early(void)3281 static void __init dcache_init_early(void)
3282 {
3283 	/* If hashes are distributed across NUMA nodes, defer
3284 	 * hash allocation until vmalloc space is available.
3285 	 */
3286 	if (hashdist)
3287 		return;
3288 
3289 	dentry_hashtable =
3290 		alloc_large_system_hash("Dentry cache",
3291 					sizeof(struct hlist_bl_head),
3292 					dhash_entries,
3293 					13,
3294 					HASH_EARLY | HASH_ZERO,
3295 					&d_hash_shift,
3296 					NULL,
3297 					0,
3298 					0);
3299 	d_hash_shift = 32 - d_hash_shift;
3300 }
3301 
dcache_init(void)3302 static void __init dcache_init(void)
3303 {
3304 	/*
3305 	 * A constructor could be added for stable state like the lists,
3306 	 * but it is probably not worth it because of the cache nature
3307 	 * of the dcache.
3308 	 */
3309 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3310 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3311 		d_iname);
3312 
3313 	/* Hash may have been set up in dcache_init_early */
3314 	if (!hashdist)
3315 		return;
3316 
3317 	dentry_hashtable =
3318 		alloc_large_system_hash("Dentry cache",
3319 					sizeof(struct hlist_bl_head),
3320 					dhash_entries,
3321 					13,
3322 					HASH_ZERO,
3323 					&d_hash_shift,
3324 					NULL,
3325 					0,
3326 					0);
3327 	d_hash_shift = 32 - d_hash_shift;
3328 }
3329 
3330 /* SLAB cache for __getname() consumers */
3331 struct kmem_cache *names_cachep __read_mostly;
3332 EXPORT_SYMBOL(names_cachep);
3333 
vfs_caches_init_early(void)3334 void __init vfs_caches_init_early(void)
3335 {
3336 	int i;
3337 
3338 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3339 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3340 
3341 	dcache_init_early();
3342 	inode_init_early();
3343 }
3344 
vfs_caches_init(void)3345 void __init vfs_caches_init(void)
3346 {
3347 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3348 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3349 
3350 	dcache_init();
3351 	inode_init();
3352 	files_init();
3353 	files_maxfiles_init();
3354 	mnt_init();
3355 	bdev_cache_init();
3356 	chrdev_init();
3357 }
3358