1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/sched/mm.h>
26 #include <linux/fsnotify.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/ima.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
128 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 struct filename *result;
132 char *kname;
133 int len;
134
135 result = audit_reusename(filename);
136 if (result)
137 return result;
138
139 result = __getname();
140 if (unlikely(!result))
141 return ERR_PTR(-ENOMEM);
142
143 /*
144 * First, try to embed the struct filename inside the names_cache
145 * allocation
146 */
147 kname = (char *)result->iname;
148 result->name = kname;
149
150 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
151 if (unlikely(len < 0)) {
152 __putname(result);
153 return ERR_PTR(len);
154 }
155
156 /*
157 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
158 * separate struct filename so we can dedicate the entire
159 * names_cache allocation for the pathname, and re-do the copy from
160 * userland.
161 */
162 if (unlikely(len == EMBEDDED_NAME_MAX)) {
163 const size_t size = offsetof(struct filename, iname[1]);
164 kname = (char *)result;
165
166 /*
167 * size is chosen that way we to guarantee that
168 * result->iname[0] is within the same object and that
169 * kname can't be equal to result->iname, no matter what.
170 */
171 result = kzalloc(size, GFP_KERNEL);
172 if (unlikely(!result)) {
173 __putname(kname);
174 return ERR_PTR(-ENOMEM);
175 }
176 result->name = kname;
177 len = strncpy_from_user(kname, filename, PATH_MAX);
178 if (unlikely(len < 0)) {
179 __putname(kname);
180 kfree(result);
181 return ERR_PTR(len);
182 }
183 if (unlikely(len == PATH_MAX)) {
184 __putname(kname);
185 kfree(result);
186 return ERR_PTR(-ENAMETOOLONG);
187 }
188 }
189
190 result->refcnt = 1;
191 /* The empty path is special. */
192 if (unlikely(!len)) {
193 if (empty)
194 *empty = 1;
195 if (!(flags & LOOKUP_EMPTY)) {
196 putname(result);
197 return ERR_PTR(-ENOENT);
198 }
199 }
200
201 result->uptr = filename;
202 result->aname = NULL;
203 audit_getname(result);
204 return result;
205 }
206
207 struct filename *
getname_uflags(const char __user * filename,int uflags)208 getname_uflags(const char __user *filename, int uflags)
209 {
210 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
211
212 return getname_flags(filename, flags, NULL);
213 }
214
215 struct filename *
getname(const char __user * filename)216 getname(const char __user * filename)
217 {
218 return getname_flags(filename, 0, NULL);
219 }
220
221 struct filename *
getname_kernel(const char * filename)222 getname_kernel(const char * filename)
223 {
224 struct filename *result;
225 int len = strlen(filename) + 1;
226
227 result = __getname();
228 if (unlikely(!result))
229 return ERR_PTR(-ENOMEM);
230
231 if (len <= EMBEDDED_NAME_MAX) {
232 result->name = (char *)result->iname;
233 } else if (len <= PATH_MAX) {
234 const size_t size = offsetof(struct filename, iname[1]);
235 struct filename *tmp;
236
237 tmp = kmalloc(size, GFP_KERNEL);
238 if (unlikely(!tmp)) {
239 __putname(result);
240 return ERR_PTR(-ENOMEM);
241 }
242 tmp->name = (char *)result;
243 result = tmp;
244 } else {
245 __putname(result);
246 return ERR_PTR(-ENAMETOOLONG);
247 }
248 memcpy((char *)result->name, filename, len);
249 result->uptr = NULL;
250 result->aname = NULL;
251 result->refcnt = 1;
252 audit_getname(result);
253
254 return result;
255 }
256 EXPORT_SYMBOL(getname_kernel);
257
putname(struct filename * name)258 void putname(struct filename *name)
259 {
260 if (IS_ERR(name))
261 return;
262
263 BUG_ON(name->refcnt <= 0);
264
265 if (--name->refcnt > 0)
266 return;
267
268 if (name->name != name->iname) {
269 __putname(name->name);
270 kfree(name);
271 } else
272 __putname(name);
273 }
274 EXPORT_SYMBOL(putname);
275
276 /**
277 * check_acl - perform ACL permission checking
278 * @mnt_userns: user namespace of the mount the inode was found from
279 * @inode: inode to check permissions on
280 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
281 *
282 * This function performs the ACL permission checking. Since this function
283 * retrieve POSIX acls it needs to know whether it is called from a blocking or
284 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
285 *
286 * If the inode has been found through an idmapped mount the user namespace of
287 * the vfsmount must be passed through @mnt_userns. This function will then take
288 * care to map the inode according to @mnt_userns before checking permissions.
289 * On non-idmapped mounts or if permission checking is to be performed on the
290 * raw inode simply passs init_user_ns.
291 */
check_acl(struct user_namespace * mnt_userns,struct inode * inode,int mask)292 static int check_acl(struct user_namespace *mnt_userns,
293 struct inode *inode, int mask)
294 {
295 #ifdef CONFIG_FS_POSIX_ACL
296 struct posix_acl *acl;
297
298 if (mask & MAY_NOT_BLOCK) {
299 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
300 if (!acl)
301 return -EAGAIN;
302 /* no ->get_acl() calls in RCU mode... */
303 if (is_uncached_acl(acl))
304 return -ECHILD;
305 return posix_acl_permission(mnt_userns, inode, acl, mask);
306 }
307
308 acl = get_acl(inode, ACL_TYPE_ACCESS);
309 if (IS_ERR(acl))
310 return PTR_ERR(acl);
311 if (acl) {
312 int error = posix_acl_permission(mnt_userns, inode, acl, mask);
313 posix_acl_release(acl);
314 return error;
315 }
316 #endif
317
318 return -EAGAIN;
319 }
320
321 /**
322 * acl_permission_check - perform basic UNIX permission checking
323 * @mnt_userns: user namespace of the mount the inode was found from
324 * @inode: inode to check permissions on
325 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
326 *
327 * This function performs the basic UNIX permission checking. Since this
328 * function may retrieve POSIX acls it needs to know whether it is called from a
329 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
330 *
331 * If the inode has been found through an idmapped mount the user namespace of
332 * the vfsmount must be passed through @mnt_userns. This function will then take
333 * care to map the inode according to @mnt_userns before checking permissions.
334 * On non-idmapped mounts or if permission checking is to be performed on the
335 * raw inode simply passs init_user_ns.
336 */
acl_permission_check(struct user_namespace * mnt_userns,struct inode * inode,int mask)337 static int acl_permission_check(struct user_namespace *mnt_userns,
338 struct inode *inode, int mask)
339 {
340 unsigned int mode = inode->i_mode;
341 kuid_t i_uid;
342
343 /* Are we the owner? If so, ACL's don't matter */
344 i_uid = i_uid_into_mnt(mnt_userns, inode);
345 if (likely(uid_eq(current_fsuid(), i_uid))) {
346 mask &= 7;
347 mode >>= 6;
348 return (mask & ~mode) ? -EACCES : 0;
349 }
350
351 /* Do we have ACL's? */
352 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
353 int error = check_acl(mnt_userns, inode, mask);
354 if (error != -EAGAIN)
355 return error;
356 }
357
358 /* Only RWX matters for group/other mode bits */
359 mask &= 7;
360
361 /*
362 * Are the group permissions different from
363 * the other permissions in the bits we care
364 * about? Need to check group ownership if so.
365 */
366 if (mask & (mode ^ (mode >> 3))) {
367 kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
368 if (in_group_p(kgid))
369 mode >>= 3;
370 }
371
372 /* Bits in 'mode' clear that we require? */
373 return (mask & ~mode) ? -EACCES : 0;
374 }
375
376 /**
377 * generic_permission - check for access rights on a Posix-like filesystem
378 * @mnt_userns: user namespace of the mount the inode was found from
379 * @inode: inode to check access rights for
380 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
381 * %MAY_NOT_BLOCK ...)
382 *
383 * Used to check for read/write/execute permissions on a file.
384 * We use "fsuid" for this, letting us set arbitrary permissions
385 * for filesystem access without changing the "normal" uids which
386 * are used for other things.
387 *
388 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
389 * request cannot be satisfied (eg. requires blocking or too much complexity).
390 * It would then be called again in ref-walk mode.
391 *
392 * If the inode has been found through an idmapped mount the user namespace of
393 * the vfsmount must be passed through @mnt_userns. This function will then take
394 * care to map the inode according to @mnt_userns before checking permissions.
395 * On non-idmapped mounts or if permission checking is to be performed on the
396 * raw inode simply passs init_user_ns.
397 */
generic_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)398 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
399 int mask)
400 {
401 int ret;
402
403 /*
404 * Do the basic permission checks.
405 */
406 ret = acl_permission_check(mnt_userns, inode, mask);
407 if (ret != -EACCES)
408 return ret;
409
410 if (S_ISDIR(inode->i_mode)) {
411 /* DACs are overridable for directories */
412 if (!(mask & MAY_WRITE))
413 if (capable_wrt_inode_uidgid(mnt_userns, inode,
414 CAP_DAC_READ_SEARCH))
415 return 0;
416 if (capable_wrt_inode_uidgid(mnt_userns, inode,
417 CAP_DAC_OVERRIDE))
418 return 0;
419 return -EACCES;
420 }
421
422 /*
423 * Searching includes executable on directories, else just read.
424 */
425 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
426 if (mask == MAY_READ)
427 if (capable_wrt_inode_uidgid(mnt_userns, inode,
428 CAP_DAC_READ_SEARCH))
429 return 0;
430 /*
431 * Read/write DACs are always overridable.
432 * Executable DACs are overridable when there is
433 * at least one exec bit set.
434 */
435 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
436 if (capable_wrt_inode_uidgid(mnt_userns, inode,
437 CAP_DAC_OVERRIDE))
438 return 0;
439
440 return -EACCES;
441 }
442 EXPORT_SYMBOL(generic_permission);
443
444 /**
445 * do_inode_permission - UNIX permission checking
446 * @mnt_userns: user namespace of the mount the inode was found from
447 * @inode: inode to check permissions on
448 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
449 *
450 * We _really_ want to just do "generic_permission()" without
451 * even looking at the inode->i_op values. So we keep a cache
452 * flag in inode->i_opflags, that says "this has not special
453 * permission function, use the fast case".
454 */
do_inode_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)455 static inline int do_inode_permission(struct user_namespace *mnt_userns,
456 struct inode *inode, int mask)
457 {
458 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
459 if (likely(inode->i_op->permission))
460 return inode->i_op->permission(mnt_userns, inode, mask);
461
462 /* This gets set once for the inode lifetime */
463 spin_lock(&inode->i_lock);
464 inode->i_opflags |= IOP_FASTPERM;
465 spin_unlock(&inode->i_lock);
466 }
467 return generic_permission(mnt_userns, inode, mask);
468 }
469
470 /**
471 * sb_permission - Check superblock-level permissions
472 * @sb: Superblock of inode to check permission on
473 * @inode: Inode to check permission on
474 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
475 *
476 * Separate out file-system wide checks from inode-specific permission checks.
477 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)478 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
479 {
480 if (unlikely(mask & MAY_WRITE)) {
481 umode_t mode = inode->i_mode;
482
483 /* Nobody gets write access to a read-only fs. */
484 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
485 return -EROFS;
486 }
487 return 0;
488 }
489
490 /**
491 * inode_permission - Check for access rights to a given inode
492 * @mnt_userns: User namespace of the mount the inode was found from
493 * @inode: Inode to check permission on
494 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
495 *
496 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
497 * this, letting us set arbitrary permissions for filesystem access without
498 * changing the "normal" UIDs which are used for other things.
499 *
500 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
501 */
inode_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)502 int inode_permission(struct user_namespace *mnt_userns,
503 struct inode *inode, int mask)
504 {
505 int retval;
506
507 retval = sb_permission(inode->i_sb, inode, mask);
508 if (retval)
509 return retval;
510
511 if (unlikely(mask & MAY_WRITE)) {
512 /*
513 * Nobody gets write access to an immutable file.
514 */
515 if (IS_IMMUTABLE(inode))
516 return -EPERM;
517
518 /*
519 * Updating mtime will likely cause i_uid and i_gid to be
520 * written back improperly if their true value is unknown
521 * to the vfs.
522 */
523 if (HAS_UNMAPPED_ID(mnt_userns, inode))
524 return -EACCES;
525 }
526
527 retval = do_inode_permission(mnt_userns, inode, mask);
528 if (retval)
529 return retval;
530
531 retval = devcgroup_inode_permission(inode, mask);
532 if (retval)
533 return retval;
534
535 return security_inode_permission(inode, mask);
536 }
537 EXPORT_SYMBOL(inode_permission);
538
539 /**
540 * path_get - get a reference to a path
541 * @path: path to get the reference to
542 *
543 * Given a path increment the reference count to the dentry and the vfsmount.
544 */
path_get(const struct path * path)545 void path_get(const struct path *path)
546 {
547 mntget(path->mnt);
548 dget(path->dentry);
549 }
550 EXPORT_SYMBOL(path_get);
551
552 /**
553 * path_put - put a reference to a path
554 * @path: path to put the reference to
555 *
556 * Given a path decrement the reference count to the dentry and the vfsmount.
557 */
path_put(const struct path * path)558 void path_put(const struct path *path)
559 {
560 dput(path->dentry);
561 mntput(path->mnt);
562 }
563 EXPORT_SYMBOL(path_put);
564
565 #define EMBEDDED_LEVELS 2
566 struct nameidata {
567 struct path path;
568 struct qstr last;
569 struct path root;
570 struct inode *inode; /* path.dentry.d_inode */
571 unsigned int flags, state;
572 unsigned seq, next_seq, m_seq, r_seq;
573 int last_type;
574 unsigned depth;
575 int total_link_count;
576 struct saved {
577 struct path link;
578 struct delayed_call done;
579 const char *name;
580 unsigned seq;
581 } *stack, internal[EMBEDDED_LEVELS];
582 struct filename *name;
583 struct nameidata *saved;
584 unsigned root_seq;
585 int dfd;
586 kuid_t dir_uid;
587 umode_t dir_mode;
588 } __randomize_layout;
589
590 #define ND_ROOT_PRESET 1
591 #define ND_ROOT_GRABBED 2
592 #define ND_JUMPED 4
593
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)594 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
595 {
596 struct nameidata *old = current->nameidata;
597 p->stack = p->internal;
598 p->depth = 0;
599 p->dfd = dfd;
600 p->name = name;
601 p->path.mnt = NULL;
602 p->path.dentry = NULL;
603 p->total_link_count = old ? old->total_link_count : 0;
604 p->saved = old;
605 current->nameidata = p;
606 }
607
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)608 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
609 const struct path *root)
610 {
611 __set_nameidata(p, dfd, name);
612 p->state = 0;
613 if (unlikely(root)) {
614 p->state = ND_ROOT_PRESET;
615 p->root = *root;
616 }
617 }
618
restore_nameidata(void)619 static void restore_nameidata(void)
620 {
621 struct nameidata *now = current->nameidata, *old = now->saved;
622
623 current->nameidata = old;
624 if (old)
625 old->total_link_count = now->total_link_count;
626 if (now->stack != now->internal)
627 kfree(now->stack);
628 }
629
nd_alloc_stack(struct nameidata * nd)630 static bool nd_alloc_stack(struct nameidata *nd)
631 {
632 struct saved *p;
633
634 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
635 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
636 if (unlikely(!p))
637 return false;
638 memcpy(p, nd->internal, sizeof(nd->internal));
639 nd->stack = p;
640 return true;
641 }
642
643 /**
644 * path_connected - Verify that a dentry is below mnt.mnt_root
645 *
646 * Rename can sometimes move a file or directory outside of a bind
647 * mount, path_connected allows those cases to be detected.
648 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)649 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
650 {
651 struct super_block *sb = mnt->mnt_sb;
652
653 /* Bind mounts can have disconnected paths */
654 if (mnt->mnt_root == sb->s_root)
655 return true;
656
657 return is_subdir(dentry, mnt->mnt_root);
658 }
659
drop_links(struct nameidata * nd)660 static void drop_links(struct nameidata *nd)
661 {
662 int i = nd->depth;
663 while (i--) {
664 struct saved *last = nd->stack + i;
665 do_delayed_call(&last->done);
666 clear_delayed_call(&last->done);
667 }
668 }
669
leave_rcu(struct nameidata * nd)670 static void leave_rcu(struct nameidata *nd)
671 {
672 nd->flags &= ~LOOKUP_RCU;
673 nd->seq = nd->next_seq = 0;
674 rcu_read_unlock();
675 }
676
terminate_walk(struct nameidata * nd)677 static void terminate_walk(struct nameidata *nd)
678 {
679 drop_links(nd);
680 if (!(nd->flags & LOOKUP_RCU)) {
681 int i;
682 path_put(&nd->path);
683 for (i = 0; i < nd->depth; i++)
684 path_put(&nd->stack[i].link);
685 if (nd->state & ND_ROOT_GRABBED) {
686 path_put(&nd->root);
687 nd->state &= ~ND_ROOT_GRABBED;
688 }
689 } else {
690 leave_rcu(nd);
691 }
692 nd->depth = 0;
693 nd->path.mnt = NULL;
694 nd->path.dentry = NULL;
695 }
696
697 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)698 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
699 {
700 int res = __legitimize_mnt(path->mnt, mseq);
701 if (unlikely(res)) {
702 if (res > 0)
703 path->mnt = NULL;
704 path->dentry = NULL;
705 return false;
706 }
707 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
708 path->dentry = NULL;
709 return false;
710 }
711 return !read_seqcount_retry(&path->dentry->d_seq, seq);
712 }
713
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)714 static inline bool legitimize_path(struct nameidata *nd,
715 struct path *path, unsigned seq)
716 {
717 return __legitimize_path(path, seq, nd->m_seq);
718 }
719
legitimize_links(struct nameidata * nd)720 static bool legitimize_links(struct nameidata *nd)
721 {
722 int i;
723 if (unlikely(nd->flags & LOOKUP_CACHED)) {
724 drop_links(nd);
725 nd->depth = 0;
726 return false;
727 }
728 for (i = 0; i < nd->depth; i++) {
729 struct saved *last = nd->stack + i;
730 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
731 drop_links(nd);
732 nd->depth = i + 1;
733 return false;
734 }
735 }
736 return true;
737 }
738
legitimize_root(struct nameidata * nd)739 static bool legitimize_root(struct nameidata *nd)
740 {
741 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
742 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
743 return true;
744 nd->state |= ND_ROOT_GRABBED;
745 return legitimize_path(nd, &nd->root, nd->root_seq);
746 }
747
748 /*
749 * Path walking has 2 modes, rcu-walk and ref-walk (see
750 * Documentation/filesystems/path-lookup.txt). In situations when we can't
751 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
752 * normal reference counts on dentries and vfsmounts to transition to ref-walk
753 * mode. Refcounts are grabbed at the last known good point before rcu-walk
754 * got stuck, so ref-walk may continue from there. If this is not successful
755 * (eg. a seqcount has changed), then failure is returned and it's up to caller
756 * to restart the path walk from the beginning in ref-walk mode.
757 */
758
759 /**
760 * try_to_unlazy - try to switch to ref-walk mode.
761 * @nd: nameidata pathwalk data
762 * Returns: true on success, false on failure
763 *
764 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
765 * for ref-walk mode.
766 * Must be called from rcu-walk context.
767 * Nothing should touch nameidata between try_to_unlazy() failure and
768 * terminate_walk().
769 */
try_to_unlazy(struct nameidata * nd)770 static bool try_to_unlazy(struct nameidata *nd)
771 {
772 struct dentry *parent = nd->path.dentry;
773
774 BUG_ON(!(nd->flags & LOOKUP_RCU));
775
776 if (unlikely(!legitimize_links(nd)))
777 goto out1;
778 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
779 goto out;
780 if (unlikely(!legitimize_root(nd)))
781 goto out;
782 leave_rcu(nd);
783 BUG_ON(nd->inode != parent->d_inode);
784 return true;
785
786 out1:
787 nd->path.mnt = NULL;
788 nd->path.dentry = NULL;
789 out:
790 leave_rcu(nd);
791 return false;
792 }
793
794 /**
795 * try_to_unlazy_next - try to switch to ref-walk mode.
796 * @nd: nameidata pathwalk data
797 * @dentry: next dentry to step into
798 * Returns: true on success, false on failure
799 *
800 * Similar to try_to_unlazy(), but here we have the next dentry already
801 * picked by rcu-walk and want to legitimize that in addition to the current
802 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
803 * Nothing should touch nameidata between try_to_unlazy_next() failure and
804 * terminate_walk().
805 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)806 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
807 {
808 int res;
809 BUG_ON(!(nd->flags & LOOKUP_RCU));
810
811 if (unlikely(!legitimize_links(nd)))
812 goto out2;
813 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
814 if (unlikely(res)) {
815 if (res > 0)
816 goto out2;
817 goto out1;
818 }
819 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
820 goto out1;
821
822 /*
823 * We need to move both the parent and the dentry from the RCU domain
824 * to be properly refcounted. And the sequence number in the dentry
825 * validates *both* dentry counters, since we checked the sequence
826 * number of the parent after we got the child sequence number. So we
827 * know the parent must still be valid if the child sequence number is
828 */
829 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
830 goto out;
831 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
832 goto out_dput;
833 /*
834 * Sequence counts matched. Now make sure that the root is
835 * still valid and get it if required.
836 */
837 if (unlikely(!legitimize_root(nd)))
838 goto out_dput;
839 leave_rcu(nd);
840 return true;
841
842 out2:
843 nd->path.mnt = NULL;
844 out1:
845 nd->path.dentry = NULL;
846 out:
847 leave_rcu(nd);
848 return false;
849 out_dput:
850 leave_rcu(nd);
851 dput(dentry);
852 return false;
853 }
854
d_revalidate(struct dentry * dentry,unsigned int flags)855 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
856 {
857 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
858 return dentry->d_op->d_revalidate(dentry, flags);
859 else
860 return 1;
861 }
862
863 /**
864 * complete_walk - successful completion of path walk
865 * @nd: pointer nameidata
866 *
867 * If we had been in RCU mode, drop out of it and legitimize nd->path.
868 * Revalidate the final result, unless we'd already done that during
869 * the path walk or the filesystem doesn't ask for it. Return 0 on
870 * success, -error on failure. In case of failure caller does not
871 * need to drop nd->path.
872 */
complete_walk(struct nameidata * nd)873 static int complete_walk(struct nameidata *nd)
874 {
875 struct dentry *dentry = nd->path.dentry;
876 int status;
877
878 if (nd->flags & LOOKUP_RCU) {
879 /*
880 * We don't want to zero nd->root for scoped-lookups or
881 * externally-managed nd->root.
882 */
883 if (!(nd->state & ND_ROOT_PRESET))
884 if (!(nd->flags & LOOKUP_IS_SCOPED))
885 nd->root.mnt = NULL;
886 nd->flags &= ~LOOKUP_CACHED;
887 if (!try_to_unlazy(nd))
888 return -ECHILD;
889 }
890
891 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
892 /*
893 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
894 * ever step outside the root during lookup" and should already
895 * be guaranteed by the rest of namei, we want to avoid a namei
896 * BUG resulting in userspace being given a path that was not
897 * scoped within the root at some point during the lookup.
898 *
899 * So, do a final sanity-check to make sure that in the
900 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
901 * we won't silently return an fd completely outside of the
902 * requested root to userspace.
903 *
904 * Userspace could move the path outside the root after this
905 * check, but as discussed elsewhere this is not a concern (the
906 * resolved file was inside the root at some point).
907 */
908 if (!path_is_under(&nd->path, &nd->root))
909 return -EXDEV;
910 }
911
912 if (likely(!(nd->state & ND_JUMPED)))
913 return 0;
914
915 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
916 return 0;
917
918 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
919 if (status > 0)
920 return 0;
921
922 if (!status)
923 status = -ESTALE;
924
925 return status;
926 }
927
set_root(struct nameidata * nd)928 static int set_root(struct nameidata *nd)
929 {
930 struct fs_struct *fs = current->fs;
931
932 /*
933 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
934 * still have to ensure it doesn't happen because it will cause a breakout
935 * from the dirfd.
936 */
937 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
938 return -ENOTRECOVERABLE;
939
940 if (nd->flags & LOOKUP_RCU) {
941 unsigned seq;
942
943 do {
944 seq = read_seqcount_begin(&fs->seq);
945 nd->root = fs->root;
946 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
947 } while (read_seqcount_retry(&fs->seq, seq));
948 } else {
949 get_fs_root(fs, &nd->root);
950 nd->state |= ND_ROOT_GRABBED;
951 }
952 return 0;
953 }
954
nd_jump_root(struct nameidata * nd)955 static int nd_jump_root(struct nameidata *nd)
956 {
957 if (unlikely(nd->flags & LOOKUP_BENEATH))
958 return -EXDEV;
959 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
960 /* Absolute path arguments to path_init() are allowed. */
961 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
962 return -EXDEV;
963 }
964 if (!nd->root.mnt) {
965 int error = set_root(nd);
966 if (error)
967 return error;
968 }
969 if (nd->flags & LOOKUP_RCU) {
970 struct dentry *d;
971 nd->path = nd->root;
972 d = nd->path.dentry;
973 nd->inode = d->d_inode;
974 nd->seq = nd->root_seq;
975 if (read_seqcount_retry(&d->d_seq, nd->seq))
976 return -ECHILD;
977 } else {
978 path_put(&nd->path);
979 nd->path = nd->root;
980 path_get(&nd->path);
981 nd->inode = nd->path.dentry->d_inode;
982 }
983 nd->state |= ND_JUMPED;
984 return 0;
985 }
986
987 /*
988 * Helper to directly jump to a known parsed path from ->get_link,
989 * caller must have taken a reference to path beforehand.
990 */
nd_jump_link(const struct path * path)991 int nd_jump_link(const struct path *path)
992 {
993 int error = -ELOOP;
994 struct nameidata *nd = current->nameidata;
995
996 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
997 goto err;
998
999 error = -EXDEV;
1000 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1001 if (nd->path.mnt != path->mnt)
1002 goto err;
1003 }
1004 /* Not currently safe for scoped-lookups. */
1005 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1006 goto err;
1007
1008 path_put(&nd->path);
1009 nd->path = *path;
1010 nd->inode = nd->path.dentry->d_inode;
1011 nd->state |= ND_JUMPED;
1012 return 0;
1013
1014 err:
1015 path_put(path);
1016 return error;
1017 }
1018
put_link(struct nameidata * nd)1019 static inline void put_link(struct nameidata *nd)
1020 {
1021 struct saved *last = nd->stack + --nd->depth;
1022 do_delayed_call(&last->done);
1023 if (!(nd->flags & LOOKUP_RCU))
1024 path_put(&last->link);
1025 }
1026
1027 static int sysctl_protected_symlinks __read_mostly;
1028 static int sysctl_protected_hardlinks __read_mostly;
1029 static int sysctl_protected_fifos __read_mostly;
1030 static int sysctl_protected_regular __read_mostly;
1031
1032 #ifdef CONFIG_SYSCTL
1033 static struct ctl_table namei_sysctls[] = {
1034 {
1035 .procname = "protected_symlinks",
1036 .data = &sysctl_protected_symlinks,
1037 .maxlen = sizeof(int),
1038 .mode = 0644,
1039 .proc_handler = proc_dointvec_minmax,
1040 .extra1 = SYSCTL_ZERO,
1041 .extra2 = SYSCTL_ONE,
1042 },
1043 {
1044 .procname = "protected_hardlinks",
1045 .data = &sysctl_protected_hardlinks,
1046 .maxlen = sizeof(int),
1047 .mode = 0644,
1048 .proc_handler = proc_dointvec_minmax,
1049 .extra1 = SYSCTL_ZERO,
1050 .extra2 = SYSCTL_ONE,
1051 },
1052 {
1053 .procname = "protected_fifos",
1054 .data = &sysctl_protected_fifos,
1055 .maxlen = sizeof(int),
1056 .mode = 0644,
1057 .proc_handler = proc_dointvec_minmax,
1058 .extra1 = SYSCTL_ZERO,
1059 .extra2 = SYSCTL_TWO,
1060 },
1061 {
1062 .procname = "protected_regular",
1063 .data = &sysctl_protected_regular,
1064 .maxlen = sizeof(int),
1065 .mode = 0644,
1066 .proc_handler = proc_dointvec_minmax,
1067 .extra1 = SYSCTL_ZERO,
1068 .extra2 = SYSCTL_TWO,
1069 },
1070 { }
1071 };
1072
init_fs_namei_sysctls(void)1073 static int __init init_fs_namei_sysctls(void)
1074 {
1075 register_sysctl_init("fs", namei_sysctls);
1076 return 0;
1077 }
1078 fs_initcall(init_fs_namei_sysctls);
1079
1080 #endif /* CONFIG_SYSCTL */
1081
1082 /**
1083 * may_follow_link - Check symlink following for unsafe situations
1084 * @nd: nameidata pathwalk data
1085 *
1086 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1087 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1088 * in a sticky world-writable directory. This is to protect privileged
1089 * processes from failing races against path names that may change out
1090 * from under them by way of other users creating malicious symlinks.
1091 * It will permit symlinks to be followed only when outside a sticky
1092 * world-writable directory, or when the uid of the symlink and follower
1093 * match, or when the directory owner matches the symlink's owner.
1094 *
1095 * Returns 0 if following the symlink is allowed, -ve on error.
1096 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1097 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1098 {
1099 struct user_namespace *mnt_userns;
1100 kuid_t i_uid;
1101
1102 if (!sysctl_protected_symlinks)
1103 return 0;
1104
1105 mnt_userns = mnt_user_ns(nd->path.mnt);
1106 i_uid = i_uid_into_mnt(mnt_userns, inode);
1107 /* Allowed if owner and follower match. */
1108 if (uid_eq(current_cred()->fsuid, i_uid))
1109 return 0;
1110
1111 /* Allowed if parent directory not sticky and world-writable. */
1112 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1113 return 0;
1114
1115 /* Allowed if parent directory and link owner match. */
1116 if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1117 return 0;
1118
1119 if (nd->flags & LOOKUP_RCU)
1120 return -ECHILD;
1121
1122 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1123 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1124 return -EACCES;
1125 }
1126
1127 /**
1128 * safe_hardlink_source - Check for safe hardlink conditions
1129 * @mnt_userns: user namespace of the mount the inode was found from
1130 * @inode: the source inode to hardlink from
1131 *
1132 * Return false if at least one of the following conditions:
1133 * - inode is not a regular file
1134 * - inode is setuid
1135 * - inode is setgid and group-exec
1136 * - access failure for read and write
1137 *
1138 * Otherwise returns true.
1139 */
safe_hardlink_source(struct user_namespace * mnt_userns,struct inode * inode)1140 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1141 struct inode *inode)
1142 {
1143 umode_t mode = inode->i_mode;
1144
1145 /* Special files should not get pinned to the filesystem. */
1146 if (!S_ISREG(mode))
1147 return false;
1148
1149 /* Setuid files should not get pinned to the filesystem. */
1150 if (mode & S_ISUID)
1151 return false;
1152
1153 /* Executable setgid files should not get pinned to the filesystem. */
1154 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1155 return false;
1156
1157 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1158 if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1159 return false;
1160
1161 return true;
1162 }
1163
1164 /**
1165 * may_linkat - Check permissions for creating a hardlink
1166 * @mnt_userns: user namespace of the mount the inode was found from
1167 * @link: the source to hardlink from
1168 *
1169 * Block hardlink when all of:
1170 * - sysctl_protected_hardlinks enabled
1171 * - fsuid does not match inode
1172 * - hardlink source is unsafe (see safe_hardlink_source() above)
1173 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1174 *
1175 * If the inode has been found through an idmapped mount the user namespace of
1176 * the vfsmount must be passed through @mnt_userns. This function will then take
1177 * care to map the inode according to @mnt_userns before checking permissions.
1178 * On non-idmapped mounts or if permission checking is to be performed on the
1179 * raw inode simply passs init_user_ns.
1180 *
1181 * Returns 0 if successful, -ve on error.
1182 */
may_linkat(struct user_namespace * mnt_userns,const struct path * link)1183 int may_linkat(struct user_namespace *mnt_userns, const struct path *link)
1184 {
1185 struct inode *inode = link->dentry->d_inode;
1186
1187 /* Inode writeback is not safe when the uid or gid are invalid. */
1188 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1189 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1190 return -EOVERFLOW;
1191
1192 if (!sysctl_protected_hardlinks)
1193 return 0;
1194
1195 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1196 * otherwise, it must be a safe source.
1197 */
1198 if (safe_hardlink_source(mnt_userns, inode) ||
1199 inode_owner_or_capable(mnt_userns, inode))
1200 return 0;
1201
1202 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1203 return -EPERM;
1204 }
1205
1206 /**
1207 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1208 * should be allowed, or not, on files that already
1209 * exist.
1210 * @mnt_userns: user namespace of the mount the inode was found from
1211 * @nd: nameidata pathwalk data
1212 * @inode: the inode of the file to open
1213 *
1214 * Block an O_CREAT open of a FIFO (or a regular file) when:
1215 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1216 * - the file already exists
1217 * - we are in a sticky directory
1218 * - we don't own the file
1219 * - the owner of the directory doesn't own the file
1220 * - the directory is world writable
1221 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1222 * the directory doesn't have to be world writable: being group writable will
1223 * be enough.
1224 *
1225 * If the inode has been found through an idmapped mount the user namespace of
1226 * the vfsmount must be passed through @mnt_userns. This function will then take
1227 * care to map the inode according to @mnt_userns before checking permissions.
1228 * On non-idmapped mounts or if permission checking is to be performed on the
1229 * raw inode simply passs init_user_ns.
1230 *
1231 * Returns 0 if the open is allowed, -ve on error.
1232 */
may_create_in_sticky(struct user_namespace * mnt_userns,struct nameidata * nd,struct inode * const inode)1233 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1234 struct nameidata *nd, struct inode *const inode)
1235 {
1236 umode_t dir_mode = nd->dir_mode;
1237 kuid_t dir_uid = nd->dir_uid;
1238
1239 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1240 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1241 likely(!(dir_mode & S_ISVTX)) ||
1242 uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1243 uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1244 return 0;
1245
1246 if (likely(dir_mode & 0002) ||
1247 (dir_mode & 0020 &&
1248 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1249 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1250 const char *operation = S_ISFIFO(inode->i_mode) ?
1251 "sticky_create_fifo" :
1252 "sticky_create_regular";
1253 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1254 return -EACCES;
1255 }
1256 return 0;
1257 }
1258
1259 /*
1260 * follow_up - Find the mountpoint of path's vfsmount
1261 *
1262 * Given a path, find the mountpoint of its source file system.
1263 * Replace @path with the path of the mountpoint in the parent mount.
1264 * Up is towards /.
1265 *
1266 * Return 1 if we went up a level and 0 if we were already at the
1267 * root.
1268 */
follow_up(struct path * path)1269 int follow_up(struct path *path)
1270 {
1271 struct mount *mnt = real_mount(path->mnt);
1272 struct mount *parent;
1273 struct dentry *mountpoint;
1274
1275 read_seqlock_excl(&mount_lock);
1276 parent = mnt->mnt_parent;
1277 if (parent == mnt) {
1278 read_sequnlock_excl(&mount_lock);
1279 return 0;
1280 }
1281 mntget(&parent->mnt);
1282 mountpoint = dget(mnt->mnt_mountpoint);
1283 read_sequnlock_excl(&mount_lock);
1284 dput(path->dentry);
1285 path->dentry = mountpoint;
1286 mntput(path->mnt);
1287 path->mnt = &parent->mnt;
1288 return 1;
1289 }
1290 EXPORT_SYMBOL(follow_up);
1291
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1292 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1293 struct path *path, unsigned *seqp)
1294 {
1295 while (mnt_has_parent(m)) {
1296 struct dentry *mountpoint = m->mnt_mountpoint;
1297
1298 m = m->mnt_parent;
1299 if (unlikely(root->dentry == mountpoint &&
1300 root->mnt == &m->mnt))
1301 break;
1302 if (mountpoint != m->mnt.mnt_root) {
1303 path->mnt = &m->mnt;
1304 path->dentry = mountpoint;
1305 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1306 return true;
1307 }
1308 }
1309 return false;
1310 }
1311
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1312 static bool choose_mountpoint(struct mount *m, const struct path *root,
1313 struct path *path)
1314 {
1315 bool found;
1316
1317 rcu_read_lock();
1318 while (1) {
1319 unsigned seq, mseq = read_seqbegin(&mount_lock);
1320
1321 found = choose_mountpoint_rcu(m, root, path, &seq);
1322 if (unlikely(!found)) {
1323 if (!read_seqretry(&mount_lock, mseq))
1324 break;
1325 } else {
1326 if (likely(__legitimize_path(path, seq, mseq)))
1327 break;
1328 rcu_read_unlock();
1329 path_put(path);
1330 rcu_read_lock();
1331 }
1332 }
1333 rcu_read_unlock();
1334 return found;
1335 }
1336
1337 /*
1338 * Perform an automount
1339 * - return -EISDIR to tell follow_managed() to stop and return the path we
1340 * were called with.
1341 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1342 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1343 {
1344 struct dentry *dentry = path->dentry;
1345
1346 /* We don't want to mount if someone's just doing a stat -
1347 * unless they're stat'ing a directory and appended a '/' to
1348 * the name.
1349 *
1350 * We do, however, want to mount if someone wants to open or
1351 * create a file of any type under the mountpoint, wants to
1352 * traverse through the mountpoint or wants to open the
1353 * mounted directory. Also, autofs may mark negative dentries
1354 * as being automount points. These will need the attentions
1355 * of the daemon to instantiate them before they can be used.
1356 */
1357 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1358 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1359 dentry->d_inode)
1360 return -EISDIR;
1361
1362 if (count && (*count)++ >= MAXSYMLINKS)
1363 return -ELOOP;
1364
1365 return finish_automount(dentry->d_op->d_automount(path), path);
1366 }
1367
1368 /*
1369 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1370 * dentries are pinned but not locked here, so negative dentry can go
1371 * positive right under us. Use of smp_load_acquire() provides a barrier
1372 * sufficient for ->d_inode and ->d_flags consistency.
1373 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1374 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1375 int *count, unsigned lookup_flags)
1376 {
1377 struct vfsmount *mnt = path->mnt;
1378 bool need_mntput = false;
1379 int ret = 0;
1380
1381 while (flags & DCACHE_MANAGED_DENTRY) {
1382 /* Allow the filesystem to manage the transit without i_mutex
1383 * being held. */
1384 if (flags & DCACHE_MANAGE_TRANSIT) {
1385 ret = path->dentry->d_op->d_manage(path, false);
1386 flags = smp_load_acquire(&path->dentry->d_flags);
1387 if (ret < 0)
1388 break;
1389 }
1390
1391 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1392 struct vfsmount *mounted = lookup_mnt(path);
1393 if (mounted) { // ... in our namespace
1394 dput(path->dentry);
1395 if (need_mntput)
1396 mntput(path->mnt);
1397 path->mnt = mounted;
1398 path->dentry = dget(mounted->mnt_root);
1399 // here we know it's positive
1400 flags = path->dentry->d_flags;
1401 need_mntput = true;
1402 continue;
1403 }
1404 }
1405
1406 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1407 break;
1408
1409 // uncovered automount point
1410 ret = follow_automount(path, count, lookup_flags);
1411 flags = smp_load_acquire(&path->dentry->d_flags);
1412 if (ret < 0)
1413 break;
1414 }
1415
1416 if (ret == -EISDIR)
1417 ret = 0;
1418 // possible if you race with several mount --move
1419 if (need_mntput && path->mnt == mnt)
1420 mntput(path->mnt);
1421 if (!ret && unlikely(d_flags_negative(flags)))
1422 ret = -ENOENT;
1423 *jumped = need_mntput;
1424 return ret;
1425 }
1426
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1427 static inline int traverse_mounts(struct path *path, bool *jumped,
1428 int *count, unsigned lookup_flags)
1429 {
1430 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1431
1432 /* fastpath */
1433 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1434 *jumped = false;
1435 if (unlikely(d_flags_negative(flags)))
1436 return -ENOENT;
1437 return 0;
1438 }
1439 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1440 }
1441
follow_down_one(struct path * path)1442 int follow_down_one(struct path *path)
1443 {
1444 struct vfsmount *mounted;
1445
1446 mounted = lookup_mnt(path);
1447 if (mounted) {
1448 dput(path->dentry);
1449 mntput(path->mnt);
1450 path->mnt = mounted;
1451 path->dentry = dget(mounted->mnt_root);
1452 return 1;
1453 }
1454 return 0;
1455 }
1456 EXPORT_SYMBOL(follow_down_one);
1457
1458 /*
1459 * Follow down to the covering mount currently visible to userspace. At each
1460 * point, the filesystem owning that dentry may be queried as to whether the
1461 * caller is permitted to proceed or not.
1462 */
follow_down(struct path * path)1463 int follow_down(struct path *path)
1464 {
1465 struct vfsmount *mnt = path->mnt;
1466 bool jumped;
1467 int ret = traverse_mounts(path, &jumped, NULL, 0);
1468
1469 if (path->mnt != mnt)
1470 mntput(mnt);
1471 return ret;
1472 }
1473 EXPORT_SYMBOL(follow_down);
1474
1475 /*
1476 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1477 * we meet a managed dentry that would need blocking.
1478 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1479 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1480 {
1481 struct dentry *dentry = path->dentry;
1482 unsigned int flags = dentry->d_flags;
1483
1484 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1485 return true;
1486
1487 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1488 return false;
1489
1490 for (;;) {
1491 /*
1492 * Don't forget we might have a non-mountpoint managed dentry
1493 * that wants to block transit.
1494 */
1495 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1496 int res = dentry->d_op->d_manage(path, true);
1497 if (res)
1498 return res == -EISDIR;
1499 flags = dentry->d_flags;
1500 }
1501
1502 if (flags & DCACHE_MOUNTED) {
1503 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1504 if (mounted) {
1505 path->mnt = &mounted->mnt;
1506 dentry = path->dentry = mounted->mnt.mnt_root;
1507 nd->state |= ND_JUMPED;
1508 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1509 flags = dentry->d_flags;
1510 // makes sure that non-RCU pathwalk could reach
1511 // this state.
1512 if (read_seqretry(&mount_lock, nd->m_seq))
1513 return false;
1514 continue;
1515 }
1516 if (read_seqretry(&mount_lock, nd->m_seq))
1517 return false;
1518 }
1519 return !(flags & DCACHE_NEED_AUTOMOUNT);
1520 }
1521 }
1522
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1523 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1524 struct path *path)
1525 {
1526 bool jumped;
1527 int ret;
1528
1529 path->mnt = nd->path.mnt;
1530 path->dentry = dentry;
1531 if (nd->flags & LOOKUP_RCU) {
1532 unsigned int seq = nd->next_seq;
1533 if (likely(__follow_mount_rcu(nd, path)))
1534 return 0;
1535 // *path and nd->next_seq might've been clobbered
1536 path->mnt = nd->path.mnt;
1537 path->dentry = dentry;
1538 nd->next_seq = seq;
1539 if (!try_to_unlazy_next(nd, dentry))
1540 return -ECHILD;
1541 }
1542 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1543 if (jumped) {
1544 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1545 ret = -EXDEV;
1546 else
1547 nd->state |= ND_JUMPED;
1548 }
1549 if (unlikely(ret)) {
1550 dput(path->dentry);
1551 if (path->mnt != nd->path.mnt)
1552 mntput(path->mnt);
1553 }
1554 return ret;
1555 }
1556
1557 /*
1558 * This looks up the name in dcache and possibly revalidates the found dentry.
1559 * NULL is returned if the dentry does not exist in the cache.
1560 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1561 static struct dentry *lookup_dcache(const struct qstr *name,
1562 struct dentry *dir,
1563 unsigned int flags)
1564 {
1565 struct dentry *dentry = d_lookup(dir, name);
1566 if (dentry) {
1567 int error = d_revalidate(dentry, flags);
1568 if (unlikely(error <= 0)) {
1569 if (!error)
1570 d_invalidate(dentry);
1571 dput(dentry);
1572 return ERR_PTR(error);
1573 }
1574 }
1575 return dentry;
1576 }
1577
1578 /*
1579 * Parent directory has inode locked exclusive. This is one
1580 * and only case when ->lookup() gets called on non in-lookup
1581 * dentries - as the matter of fact, this only gets called
1582 * when directory is guaranteed to have no in-lookup children
1583 * at all.
1584 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1585 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1586 struct dentry *base,
1587 unsigned int flags)
1588 {
1589 struct dentry *dentry = lookup_dcache(name, base, flags);
1590 struct dentry *old;
1591 struct inode *dir = base->d_inode;
1592
1593 if (dentry)
1594 return dentry;
1595
1596 /* Don't create child dentry for a dead directory. */
1597 if (unlikely(IS_DEADDIR(dir)))
1598 return ERR_PTR(-ENOENT);
1599
1600 dentry = d_alloc(base, name);
1601 if (unlikely(!dentry))
1602 return ERR_PTR(-ENOMEM);
1603
1604 old = dir->i_op->lookup(dir, dentry, flags);
1605 if (unlikely(old)) {
1606 dput(dentry);
1607 dentry = old;
1608 }
1609 return dentry;
1610 }
1611 EXPORT_SYMBOL(lookup_one_qstr_excl);
1612
lookup_fast(struct nameidata * nd)1613 static struct dentry *lookup_fast(struct nameidata *nd)
1614 {
1615 struct dentry *dentry, *parent = nd->path.dentry;
1616 int status = 1;
1617
1618 /*
1619 * Rename seqlock is not required here because in the off chance
1620 * of a false negative due to a concurrent rename, the caller is
1621 * going to fall back to non-racy lookup.
1622 */
1623 if (nd->flags & LOOKUP_RCU) {
1624 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1625 if (unlikely(!dentry)) {
1626 if (!try_to_unlazy(nd))
1627 return ERR_PTR(-ECHILD);
1628 return NULL;
1629 }
1630
1631 /*
1632 * This sequence count validates that the parent had no
1633 * changes while we did the lookup of the dentry above.
1634 */
1635 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1636 return ERR_PTR(-ECHILD);
1637
1638 status = d_revalidate(dentry, nd->flags);
1639 if (likely(status > 0))
1640 return dentry;
1641 if (!try_to_unlazy_next(nd, dentry))
1642 return ERR_PTR(-ECHILD);
1643 if (status == -ECHILD)
1644 /* we'd been told to redo it in non-rcu mode */
1645 status = d_revalidate(dentry, nd->flags);
1646 } else {
1647 dentry = __d_lookup(parent, &nd->last);
1648 if (unlikely(!dentry))
1649 return NULL;
1650 status = d_revalidate(dentry, nd->flags);
1651 }
1652 if (unlikely(status <= 0)) {
1653 if (!status)
1654 d_invalidate(dentry);
1655 dput(dentry);
1656 return ERR_PTR(status);
1657 }
1658 return dentry;
1659 }
1660
1661 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1662 static struct dentry *__lookup_slow(const struct qstr *name,
1663 struct dentry *dir,
1664 unsigned int flags)
1665 {
1666 struct dentry *dentry, *old;
1667 struct inode *inode = dir->d_inode;
1668 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1669
1670 /* Don't go there if it's already dead */
1671 if (unlikely(IS_DEADDIR(inode)))
1672 return ERR_PTR(-ENOENT);
1673 again:
1674 dentry = d_alloc_parallel(dir, name, &wq);
1675 if (IS_ERR(dentry))
1676 return dentry;
1677 if (unlikely(!d_in_lookup(dentry))) {
1678 int error = d_revalidate(dentry, flags);
1679 if (unlikely(error <= 0)) {
1680 if (!error) {
1681 d_invalidate(dentry);
1682 dput(dentry);
1683 goto again;
1684 }
1685 dput(dentry);
1686 dentry = ERR_PTR(error);
1687 }
1688 } else {
1689 old = inode->i_op->lookup(inode, dentry, flags);
1690 d_lookup_done(dentry);
1691 if (unlikely(old)) {
1692 dput(dentry);
1693 dentry = old;
1694 }
1695 }
1696 return dentry;
1697 }
1698
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1699 static struct dentry *lookup_slow(const struct qstr *name,
1700 struct dentry *dir,
1701 unsigned int flags)
1702 {
1703 struct inode *inode = dir->d_inode;
1704 struct dentry *res;
1705 inode_lock_shared(inode);
1706 res = __lookup_slow(name, dir, flags);
1707 inode_unlock_shared(inode);
1708 return res;
1709 }
1710
may_lookup(struct user_namespace * mnt_userns,struct nameidata * nd)1711 static inline int may_lookup(struct user_namespace *mnt_userns,
1712 struct nameidata *nd)
1713 {
1714 if (nd->flags & LOOKUP_RCU) {
1715 int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1716 if (err != -ECHILD || !try_to_unlazy(nd))
1717 return err;
1718 }
1719 return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1720 }
1721
reserve_stack(struct nameidata * nd,struct path * link)1722 static int reserve_stack(struct nameidata *nd, struct path *link)
1723 {
1724 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1725 return -ELOOP;
1726
1727 if (likely(nd->depth != EMBEDDED_LEVELS))
1728 return 0;
1729 if (likely(nd->stack != nd->internal))
1730 return 0;
1731 if (likely(nd_alloc_stack(nd)))
1732 return 0;
1733
1734 if (nd->flags & LOOKUP_RCU) {
1735 // we need to grab link before we do unlazy. And we can't skip
1736 // unlazy even if we fail to grab the link - cleanup needs it
1737 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1738
1739 if (!try_to_unlazy(nd) || !grabbed_link)
1740 return -ECHILD;
1741
1742 if (nd_alloc_stack(nd))
1743 return 0;
1744 }
1745 return -ENOMEM;
1746 }
1747
1748 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1749
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1750 static const char *pick_link(struct nameidata *nd, struct path *link,
1751 struct inode *inode, int flags)
1752 {
1753 struct saved *last;
1754 const char *res;
1755 int error = reserve_stack(nd, link);
1756
1757 if (unlikely(error)) {
1758 if (!(nd->flags & LOOKUP_RCU))
1759 path_put(link);
1760 return ERR_PTR(error);
1761 }
1762 last = nd->stack + nd->depth++;
1763 last->link = *link;
1764 clear_delayed_call(&last->done);
1765 last->seq = nd->next_seq;
1766
1767 if (flags & WALK_TRAILING) {
1768 error = may_follow_link(nd, inode);
1769 if (unlikely(error))
1770 return ERR_PTR(error);
1771 }
1772
1773 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1774 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1775 return ERR_PTR(-ELOOP);
1776
1777 if (!(nd->flags & LOOKUP_RCU)) {
1778 touch_atime(&last->link);
1779 cond_resched();
1780 } else if (atime_needs_update(&last->link, inode)) {
1781 if (!try_to_unlazy(nd))
1782 return ERR_PTR(-ECHILD);
1783 touch_atime(&last->link);
1784 }
1785
1786 error = security_inode_follow_link(link->dentry, inode,
1787 nd->flags & LOOKUP_RCU);
1788 if (unlikely(error))
1789 return ERR_PTR(error);
1790
1791 res = READ_ONCE(inode->i_link);
1792 if (!res) {
1793 const char * (*get)(struct dentry *, struct inode *,
1794 struct delayed_call *);
1795 get = inode->i_op->get_link;
1796 if (nd->flags & LOOKUP_RCU) {
1797 res = get(NULL, inode, &last->done);
1798 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1799 res = get(link->dentry, inode, &last->done);
1800 } else {
1801 res = get(link->dentry, inode, &last->done);
1802 }
1803 if (!res)
1804 goto all_done;
1805 if (IS_ERR(res))
1806 return res;
1807 }
1808 if (*res == '/') {
1809 error = nd_jump_root(nd);
1810 if (unlikely(error))
1811 return ERR_PTR(error);
1812 while (unlikely(*++res == '/'))
1813 ;
1814 }
1815 if (*res)
1816 return res;
1817 all_done: // pure jump
1818 put_link(nd);
1819 return NULL;
1820 }
1821
1822 /*
1823 * Do we need to follow links? We _really_ want to be able
1824 * to do this check without having to look at inode->i_op,
1825 * so we keep a cache of "no, this doesn't need follow_link"
1826 * for the common case.
1827 *
1828 * NOTE: dentry must be what nd->next_seq had been sampled from.
1829 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1830 static const char *step_into(struct nameidata *nd, int flags,
1831 struct dentry *dentry)
1832 {
1833 struct path path;
1834 struct inode *inode;
1835 int err = handle_mounts(nd, dentry, &path);
1836
1837 if (err < 0)
1838 return ERR_PTR(err);
1839 inode = path.dentry->d_inode;
1840 if (likely(!d_is_symlink(path.dentry)) ||
1841 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1842 (flags & WALK_NOFOLLOW)) {
1843 /* not a symlink or should not follow */
1844 if (nd->flags & LOOKUP_RCU) {
1845 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1846 return ERR_PTR(-ECHILD);
1847 if (unlikely(!inode))
1848 return ERR_PTR(-ENOENT);
1849 } else {
1850 dput(nd->path.dentry);
1851 if (nd->path.mnt != path.mnt)
1852 mntput(nd->path.mnt);
1853 }
1854 nd->path = path;
1855 nd->inode = inode;
1856 nd->seq = nd->next_seq;
1857 return NULL;
1858 }
1859 if (nd->flags & LOOKUP_RCU) {
1860 /* make sure that d_is_symlink above matches inode */
1861 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1862 return ERR_PTR(-ECHILD);
1863 } else {
1864 if (path.mnt == nd->path.mnt)
1865 mntget(path.mnt);
1866 }
1867 return pick_link(nd, &path, inode, flags);
1868 }
1869
follow_dotdot_rcu(struct nameidata * nd)1870 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1871 {
1872 struct dentry *parent, *old;
1873
1874 if (path_equal(&nd->path, &nd->root))
1875 goto in_root;
1876 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1877 struct path path;
1878 unsigned seq;
1879 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1880 &nd->root, &path, &seq))
1881 goto in_root;
1882 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1883 return ERR_PTR(-ECHILD);
1884 nd->path = path;
1885 nd->inode = path.dentry->d_inode;
1886 nd->seq = seq;
1887 // makes sure that non-RCU pathwalk could reach this state
1888 if (read_seqretry(&mount_lock, nd->m_seq))
1889 return ERR_PTR(-ECHILD);
1890 /* we know that mountpoint was pinned */
1891 }
1892 old = nd->path.dentry;
1893 parent = old->d_parent;
1894 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1895 // makes sure that non-RCU pathwalk could reach this state
1896 if (read_seqcount_retry(&old->d_seq, nd->seq))
1897 return ERR_PTR(-ECHILD);
1898 if (unlikely(!path_connected(nd->path.mnt, parent)))
1899 return ERR_PTR(-ECHILD);
1900 return parent;
1901 in_root:
1902 if (read_seqretry(&mount_lock, nd->m_seq))
1903 return ERR_PTR(-ECHILD);
1904 if (unlikely(nd->flags & LOOKUP_BENEATH))
1905 return ERR_PTR(-ECHILD);
1906 nd->next_seq = nd->seq;
1907 return nd->path.dentry;
1908 }
1909
follow_dotdot(struct nameidata * nd)1910 static struct dentry *follow_dotdot(struct nameidata *nd)
1911 {
1912 struct dentry *parent;
1913
1914 if (path_equal(&nd->path, &nd->root))
1915 goto in_root;
1916 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1917 struct path path;
1918
1919 if (!choose_mountpoint(real_mount(nd->path.mnt),
1920 &nd->root, &path))
1921 goto in_root;
1922 path_put(&nd->path);
1923 nd->path = path;
1924 nd->inode = path.dentry->d_inode;
1925 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1926 return ERR_PTR(-EXDEV);
1927 }
1928 /* rare case of legitimate dget_parent()... */
1929 parent = dget_parent(nd->path.dentry);
1930 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1931 dput(parent);
1932 return ERR_PTR(-ENOENT);
1933 }
1934 return parent;
1935
1936 in_root:
1937 if (unlikely(nd->flags & LOOKUP_BENEATH))
1938 return ERR_PTR(-EXDEV);
1939 return dget(nd->path.dentry);
1940 }
1941
handle_dots(struct nameidata * nd,int type)1942 static const char *handle_dots(struct nameidata *nd, int type)
1943 {
1944 if (type == LAST_DOTDOT) {
1945 const char *error = NULL;
1946 struct dentry *parent;
1947
1948 if (!nd->root.mnt) {
1949 error = ERR_PTR(set_root(nd));
1950 if (error)
1951 return error;
1952 }
1953 if (nd->flags & LOOKUP_RCU)
1954 parent = follow_dotdot_rcu(nd);
1955 else
1956 parent = follow_dotdot(nd);
1957 if (IS_ERR(parent))
1958 return ERR_CAST(parent);
1959 error = step_into(nd, WALK_NOFOLLOW, parent);
1960 if (unlikely(error))
1961 return error;
1962
1963 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1964 /*
1965 * If there was a racing rename or mount along our
1966 * path, then we can't be sure that ".." hasn't jumped
1967 * above nd->root (and so userspace should retry or use
1968 * some fallback).
1969 */
1970 smp_rmb();
1971 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1972 return ERR_PTR(-EAGAIN);
1973 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1974 return ERR_PTR(-EAGAIN);
1975 }
1976 }
1977 return NULL;
1978 }
1979
walk_component(struct nameidata * nd,int flags)1980 static const char *walk_component(struct nameidata *nd, int flags)
1981 {
1982 struct dentry *dentry;
1983 /*
1984 * "." and ".." are special - ".." especially so because it has
1985 * to be able to know about the current root directory and
1986 * parent relationships.
1987 */
1988 if (unlikely(nd->last_type != LAST_NORM)) {
1989 if (!(flags & WALK_MORE) && nd->depth)
1990 put_link(nd);
1991 return handle_dots(nd, nd->last_type);
1992 }
1993 dentry = lookup_fast(nd);
1994 if (IS_ERR(dentry))
1995 return ERR_CAST(dentry);
1996 if (unlikely(!dentry)) {
1997 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1998 if (IS_ERR(dentry))
1999 return ERR_CAST(dentry);
2000 }
2001 if (!(flags & WALK_MORE) && nd->depth)
2002 put_link(nd);
2003 return step_into(nd, flags, dentry);
2004 }
2005
2006 /*
2007 * We can do the critical dentry name comparison and hashing
2008 * operations one word at a time, but we are limited to:
2009 *
2010 * - Architectures with fast unaligned word accesses. We could
2011 * do a "get_unaligned()" if this helps and is sufficiently
2012 * fast.
2013 *
2014 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2015 * do not trap on the (extremely unlikely) case of a page
2016 * crossing operation.
2017 *
2018 * - Furthermore, we need an efficient 64-bit compile for the
2019 * 64-bit case in order to generate the "number of bytes in
2020 * the final mask". Again, that could be replaced with a
2021 * efficient population count instruction or similar.
2022 */
2023 #ifdef CONFIG_DCACHE_WORD_ACCESS
2024
2025 #include <asm/word-at-a-time.h>
2026
2027 #ifdef HASH_MIX
2028
2029 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2030
2031 #elif defined(CONFIG_64BIT)
2032 /*
2033 * Register pressure in the mixing function is an issue, particularly
2034 * on 32-bit x86, but almost any function requires one state value and
2035 * one temporary. Instead, use a function designed for two state values
2036 * and no temporaries.
2037 *
2038 * This function cannot create a collision in only two iterations, so
2039 * we have two iterations to achieve avalanche. In those two iterations,
2040 * we have six layers of mixing, which is enough to spread one bit's
2041 * influence out to 2^6 = 64 state bits.
2042 *
2043 * Rotate constants are scored by considering either 64 one-bit input
2044 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2045 * probability of that delta causing a change to each of the 128 output
2046 * bits, using a sample of random initial states.
2047 *
2048 * The Shannon entropy of the computed probabilities is then summed
2049 * to produce a score. Ideally, any input change has a 50% chance of
2050 * toggling any given output bit.
2051 *
2052 * Mixing scores (in bits) for (12,45):
2053 * Input delta: 1-bit 2-bit
2054 * 1 round: 713.3 42542.6
2055 * 2 rounds: 2753.7 140389.8
2056 * 3 rounds: 5954.1 233458.2
2057 * 4 rounds: 7862.6 256672.2
2058 * Perfect: 8192 258048
2059 * (64*128) (64*63/2 * 128)
2060 */
2061 #define HASH_MIX(x, y, a) \
2062 ( x ^= (a), \
2063 y ^= x, x = rol64(x,12),\
2064 x += y, y = rol64(y,45),\
2065 y *= 9 )
2066
2067 /*
2068 * Fold two longs into one 32-bit hash value. This must be fast, but
2069 * latency isn't quite as critical, as there is a fair bit of additional
2070 * work done before the hash value is used.
2071 */
fold_hash(unsigned long x,unsigned long y)2072 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2073 {
2074 y ^= x * GOLDEN_RATIO_64;
2075 y *= GOLDEN_RATIO_64;
2076 return y >> 32;
2077 }
2078
2079 #else /* 32-bit case */
2080
2081 /*
2082 * Mixing scores (in bits) for (7,20):
2083 * Input delta: 1-bit 2-bit
2084 * 1 round: 330.3 9201.6
2085 * 2 rounds: 1246.4 25475.4
2086 * 3 rounds: 1907.1 31295.1
2087 * 4 rounds: 2042.3 31718.6
2088 * Perfect: 2048 31744
2089 * (32*64) (32*31/2 * 64)
2090 */
2091 #define HASH_MIX(x, y, a) \
2092 ( x ^= (a), \
2093 y ^= x, x = rol32(x, 7),\
2094 x += y, y = rol32(y,20),\
2095 y *= 9 )
2096
fold_hash(unsigned long x,unsigned long y)2097 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2098 {
2099 /* Use arch-optimized multiply if one exists */
2100 return __hash_32(y ^ __hash_32(x));
2101 }
2102
2103 #endif
2104
2105 /*
2106 * Return the hash of a string of known length. This is carfully
2107 * designed to match hash_name(), which is the more critical function.
2108 * In particular, we must end by hashing a final word containing 0..7
2109 * payload bytes, to match the way that hash_name() iterates until it
2110 * finds the delimiter after the name.
2111 */
full_name_hash(const void * salt,const char * name,unsigned int len)2112 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2113 {
2114 unsigned long a, x = 0, y = (unsigned long)salt;
2115
2116 for (;;) {
2117 if (!len)
2118 goto done;
2119 a = load_unaligned_zeropad(name);
2120 if (len < sizeof(unsigned long))
2121 break;
2122 HASH_MIX(x, y, a);
2123 name += sizeof(unsigned long);
2124 len -= sizeof(unsigned long);
2125 }
2126 x ^= a & bytemask_from_count(len);
2127 done:
2128 return fold_hash(x, y);
2129 }
2130 EXPORT_SYMBOL(full_name_hash);
2131
2132 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2133 u64 hashlen_string(const void *salt, const char *name)
2134 {
2135 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2136 unsigned long adata, mask, len;
2137 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2138
2139 len = 0;
2140 goto inside;
2141
2142 do {
2143 HASH_MIX(x, y, a);
2144 len += sizeof(unsigned long);
2145 inside:
2146 a = load_unaligned_zeropad(name+len);
2147 } while (!has_zero(a, &adata, &constants));
2148
2149 adata = prep_zero_mask(a, adata, &constants);
2150 mask = create_zero_mask(adata);
2151 x ^= a & zero_bytemask(mask);
2152
2153 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2154 }
2155 EXPORT_SYMBOL(hashlen_string);
2156
2157 /*
2158 * Calculate the length and hash of the path component, and
2159 * return the "hash_len" as the result.
2160 */
hash_name(const void * salt,const char * name)2161 static inline u64 hash_name(const void *salt, const char *name)
2162 {
2163 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2164 unsigned long adata, bdata, mask, len;
2165 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2166
2167 len = 0;
2168 goto inside;
2169
2170 do {
2171 HASH_MIX(x, y, a);
2172 len += sizeof(unsigned long);
2173 inside:
2174 a = load_unaligned_zeropad(name+len);
2175 b = a ^ REPEAT_BYTE('/');
2176 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2177
2178 adata = prep_zero_mask(a, adata, &constants);
2179 bdata = prep_zero_mask(b, bdata, &constants);
2180 mask = create_zero_mask(adata | bdata);
2181 x ^= a & zero_bytemask(mask);
2182
2183 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2184 }
2185
2186 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2187
2188 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2189 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2190 {
2191 unsigned long hash = init_name_hash(salt);
2192 while (len--)
2193 hash = partial_name_hash((unsigned char)*name++, hash);
2194 return end_name_hash(hash);
2195 }
2196 EXPORT_SYMBOL(full_name_hash);
2197
2198 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2199 u64 hashlen_string(const void *salt, const char *name)
2200 {
2201 unsigned long hash = init_name_hash(salt);
2202 unsigned long len = 0, c;
2203
2204 c = (unsigned char)*name;
2205 while (c) {
2206 len++;
2207 hash = partial_name_hash(c, hash);
2208 c = (unsigned char)name[len];
2209 }
2210 return hashlen_create(end_name_hash(hash), len);
2211 }
2212 EXPORT_SYMBOL(hashlen_string);
2213
2214 /*
2215 * We know there's a real path component here of at least
2216 * one character.
2217 */
hash_name(const void * salt,const char * name)2218 static inline u64 hash_name(const void *salt, const char *name)
2219 {
2220 unsigned long hash = init_name_hash(salt);
2221 unsigned long len = 0, c;
2222
2223 c = (unsigned char)*name;
2224 do {
2225 len++;
2226 hash = partial_name_hash(c, hash);
2227 c = (unsigned char)name[len];
2228 } while (c && c != '/');
2229 return hashlen_create(end_name_hash(hash), len);
2230 }
2231
2232 #endif
2233
2234 /*
2235 * Name resolution.
2236 * This is the basic name resolution function, turning a pathname into
2237 * the final dentry. We expect 'base' to be positive and a directory.
2238 *
2239 * Returns 0 and nd will have valid dentry and mnt on success.
2240 * Returns error and drops reference to input namei data on failure.
2241 */
link_path_walk(const char * name,struct nameidata * nd)2242 static int link_path_walk(const char *name, struct nameidata *nd)
2243 {
2244 int depth = 0; // depth <= nd->depth
2245 int err;
2246
2247 nd->last_type = LAST_ROOT;
2248 nd->flags |= LOOKUP_PARENT;
2249 if (IS_ERR(name))
2250 return PTR_ERR(name);
2251 while (*name=='/')
2252 name++;
2253 if (!*name) {
2254 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2255 return 0;
2256 }
2257
2258 /* At this point we know we have a real path component. */
2259 for(;;) {
2260 struct user_namespace *mnt_userns;
2261 const char *link;
2262 u64 hash_len;
2263 int type;
2264
2265 mnt_userns = mnt_user_ns(nd->path.mnt);
2266 err = may_lookup(mnt_userns, nd);
2267 if (err)
2268 return err;
2269
2270 hash_len = hash_name(nd->path.dentry, name);
2271
2272 type = LAST_NORM;
2273 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2274 case 2:
2275 if (name[1] == '.') {
2276 type = LAST_DOTDOT;
2277 nd->state |= ND_JUMPED;
2278 }
2279 break;
2280 case 1:
2281 type = LAST_DOT;
2282 }
2283 if (likely(type == LAST_NORM)) {
2284 struct dentry *parent = nd->path.dentry;
2285 nd->state &= ~ND_JUMPED;
2286 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2287 struct qstr this = { { .hash_len = hash_len }, .name = name };
2288 err = parent->d_op->d_hash(parent, &this);
2289 if (err < 0)
2290 return err;
2291 hash_len = this.hash_len;
2292 name = this.name;
2293 }
2294 }
2295
2296 nd->last.hash_len = hash_len;
2297 nd->last.name = name;
2298 nd->last_type = type;
2299
2300 name += hashlen_len(hash_len);
2301 if (!*name)
2302 goto OK;
2303 /*
2304 * If it wasn't NUL, we know it was '/'. Skip that
2305 * slash, and continue until no more slashes.
2306 */
2307 do {
2308 name++;
2309 } while (unlikely(*name == '/'));
2310 if (unlikely(!*name)) {
2311 OK:
2312 /* pathname or trailing symlink, done */
2313 if (!depth) {
2314 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2315 nd->dir_mode = nd->inode->i_mode;
2316 nd->flags &= ~LOOKUP_PARENT;
2317 return 0;
2318 }
2319 /* last component of nested symlink */
2320 name = nd->stack[--depth].name;
2321 link = walk_component(nd, 0);
2322 } else {
2323 /* not the last component */
2324 link = walk_component(nd, WALK_MORE);
2325 }
2326 if (unlikely(link)) {
2327 if (IS_ERR(link))
2328 return PTR_ERR(link);
2329 /* a symlink to follow */
2330 nd->stack[depth++].name = name;
2331 name = link;
2332 continue;
2333 }
2334 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2335 if (nd->flags & LOOKUP_RCU) {
2336 if (!try_to_unlazy(nd))
2337 return -ECHILD;
2338 }
2339 return -ENOTDIR;
2340 }
2341 }
2342 }
2343
2344 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2345 static const char *path_init(struct nameidata *nd, unsigned flags)
2346 {
2347 int error;
2348 const char *s = nd->name->name;
2349
2350 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2351 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2352 return ERR_PTR(-EAGAIN);
2353
2354 if (!*s)
2355 flags &= ~LOOKUP_RCU;
2356 if (flags & LOOKUP_RCU)
2357 rcu_read_lock();
2358 else
2359 nd->seq = nd->next_seq = 0;
2360
2361 nd->flags = flags;
2362 nd->state |= ND_JUMPED;
2363
2364 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2365 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2366 smp_rmb();
2367
2368 if (nd->state & ND_ROOT_PRESET) {
2369 struct dentry *root = nd->root.dentry;
2370 struct inode *inode = root->d_inode;
2371 if (*s && unlikely(!d_can_lookup(root)))
2372 return ERR_PTR(-ENOTDIR);
2373 nd->path = nd->root;
2374 nd->inode = inode;
2375 if (flags & LOOKUP_RCU) {
2376 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2377 nd->root_seq = nd->seq;
2378 } else {
2379 path_get(&nd->path);
2380 }
2381 return s;
2382 }
2383
2384 nd->root.mnt = NULL;
2385
2386 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2387 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2388 error = nd_jump_root(nd);
2389 if (unlikely(error))
2390 return ERR_PTR(error);
2391 return s;
2392 }
2393
2394 /* Relative pathname -- get the starting-point it is relative to. */
2395 if (nd->dfd == AT_FDCWD) {
2396 if (flags & LOOKUP_RCU) {
2397 struct fs_struct *fs = current->fs;
2398 unsigned seq;
2399
2400 do {
2401 seq = read_seqcount_begin(&fs->seq);
2402 nd->path = fs->pwd;
2403 nd->inode = nd->path.dentry->d_inode;
2404 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2405 } while (read_seqcount_retry(&fs->seq, seq));
2406 } else {
2407 get_fs_pwd(current->fs, &nd->path);
2408 nd->inode = nd->path.dentry->d_inode;
2409 }
2410 } else {
2411 /* Caller must check execute permissions on the starting path component */
2412 struct fd f = fdget_raw(nd->dfd);
2413 struct dentry *dentry;
2414
2415 if (!f.file)
2416 return ERR_PTR(-EBADF);
2417
2418 dentry = f.file->f_path.dentry;
2419
2420 if (*s && unlikely(!d_can_lookup(dentry))) {
2421 fdput(f);
2422 return ERR_PTR(-ENOTDIR);
2423 }
2424
2425 nd->path = f.file->f_path;
2426 if (flags & LOOKUP_RCU) {
2427 nd->inode = nd->path.dentry->d_inode;
2428 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2429 } else {
2430 path_get(&nd->path);
2431 nd->inode = nd->path.dentry->d_inode;
2432 }
2433 fdput(f);
2434 }
2435
2436 /* For scoped-lookups we need to set the root to the dirfd as well. */
2437 if (flags & LOOKUP_IS_SCOPED) {
2438 nd->root = nd->path;
2439 if (flags & LOOKUP_RCU) {
2440 nd->root_seq = nd->seq;
2441 } else {
2442 path_get(&nd->root);
2443 nd->state |= ND_ROOT_GRABBED;
2444 }
2445 }
2446 return s;
2447 }
2448
lookup_last(struct nameidata * nd)2449 static inline const char *lookup_last(struct nameidata *nd)
2450 {
2451 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2452 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2453
2454 return walk_component(nd, WALK_TRAILING);
2455 }
2456
handle_lookup_down(struct nameidata * nd)2457 static int handle_lookup_down(struct nameidata *nd)
2458 {
2459 if (!(nd->flags & LOOKUP_RCU))
2460 dget(nd->path.dentry);
2461 nd->next_seq = nd->seq;
2462 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2463 }
2464
2465 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2466 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2467 {
2468 const char *s = path_init(nd, flags);
2469 int err;
2470
2471 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2472 err = handle_lookup_down(nd);
2473 if (unlikely(err < 0))
2474 s = ERR_PTR(err);
2475 }
2476
2477 while (!(err = link_path_walk(s, nd)) &&
2478 (s = lookup_last(nd)) != NULL)
2479 ;
2480 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2481 err = handle_lookup_down(nd);
2482 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2483 }
2484 if (!err)
2485 err = complete_walk(nd);
2486
2487 if (!err && nd->flags & LOOKUP_DIRECTORY)
2488 if (!d_can_lookup(nd->path.dentry))
2489 err = -ENOTDIR;
2490 if (!err) {
2491 *path = nd->path;
2492 nd->path.mnt = NULL;
2493 nd->path.dentry = NULL;
2494 }
2495 terminate_walk(nd);
2496 return err;
2497 }
2498
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2499 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2500 struct path *path, struct path *root)
2501 {
2502 int retval;
2503 struct nameidata nd;
2504 if (IS_ERR(name))
2505 return PTR_ERR(name);
2506 set_nameidata(&nd, dfd, name, root);
2507 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2508 if (unlikely(retval == -ECHILD))
2509 retval = path_lookupat(&nd, flags, path);
2510 if (unlikely(retval == -ESTALE))
2511 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2512
2513 if (likely(!retval))
2514 audit_inode(name, path->dentry,
2515 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2516 restore_nameidata();
2517 return retval;
2518 }
2519
2520 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2521 static int path_parentat(struct nameidata *nd, unsigned flags,
2522 struct path *parent)
2523 {
2524 const char *s = path_init(nd, flags);
2525 int err = link_path_walk(s, nd);
2526 if (!err)
2527 err = complete_walk(nd);
2528 if (!err) {
2529 *parent = nd->path;
2530 nd->path.mnt = NULL;
2531 nd->path.dentry = NULL;
2532 }
2533 terminate_walk(nd);
2534 return err;
2535 }
2536
2537 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2538 static int __filename_parentat(int dfd, struct filename *name,
2539 unsigned int flags, struct path *parent,
2540 struct qstr *last, int *type,
2541 const struct path *root)
2542 {
2543 int retval;
2544 struct nameidata nd;
2545
2546 if (IS_ERR(name))
2547 return PTR_ERR(name);
2548 set_nameidata(&nd, dfd, name, root);
2549 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2550 if (unlikely(retval == -ECHILD))
2551 retval = path_parentat(&nd, flags, parent);
2552 if (unlikely(retval == -ESTALE))
2553 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2554 if (likely(!retval)) {
2555 *last = nd.last;
2556 *type = nd.last_type;
2557 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2558 }
2559 restore_nameidata();
2560 return retval;
2561 }
2562
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2563 static int filename_parentat(int dfd, struct filename *name,
2564 unsigned int flags, struct path *parent,
2565 struct qstr *last, int *type)
2566 {
2567 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2568 }
2569
2570 /* does lookup, returns the object with parent locked */
__kern_path_locked(struct filename * name,struct path * path)2571 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2572 {
2573 struct dentry *d;
2574 struct qstr last;
2575 int type, error;
2576
2577 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2578 if (error)
2579 return ERR_PTR(error);
2580 if (unlikely(type != LAST_NORM)) {
2581 path_put(path);
2582 return ERR_PTR(-EINVAL);
2583 }
2584 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2585 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2586 if (IS_ERR(d)) {
2587 inode_unlock(path->dentry->d_inode);
2588 path_put(path);
2589 }
2590 return d;
2591 }
2592
kern_path_locked(const char * name,struct path * path)2593 struct dentry *kern_path_locked(const char *name, struct path *path)
2594 {
2595 struct filename *filename = getname_kernel(name);
2596 struct dentry *res = __kern_path_locked(filename, path);
2597
2598 putname(filename);
2599 return res;
2600 }
2601
kern_path(const char * name,unsigned int flags,struct path * path)2602 int kern_path(const char *name, unsigned int flags, struct path *path)
2603 {
2604 struct filename *filename = getname_kernel(name);
2605 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2606
2607 putname(filename);
2608 return ret;
2609
2610 }
2611 EXPORT_SYMBOL(kern_path);
2612
2613 /**
2614 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2615 * @filename: filename structure
2616 * @flags: lookup flags
2617 * @parent: pointer to struct path to fill
2618 * @last: last component
2619 * @type: type of the last component
2620 * @root: pointer to struct path of the base directory
2621 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2622 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2623 struct path *parent, struct qstr *last, int *type,
2624 const struct path *root)
2625 {
2626 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2627 type, root);
2628 }
2629 EXPORT_SYMBOL(vfs_path_parent_lookup);
2630
2631 /**
2632 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2633 * @dentry: pointer to dentry of the base directory
2634 * @mnt: pointer to vfs mount of the base directory
2635 * @name: pointer to file name
2636 * @flags: lookup flags
2637 * @path: pointer to struct path to fill
2638 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2639 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2640 const char *name, unsigned int flags,
2641 struct path *path)
2642 {
2643 struct filename *filename;
2644 struct path root = {.mnt = mnt, .dentry = dentry};
2645 int ret;
2646
2647 filename = getname_kernel(name);
2648 /* the first argument of filename_lookup() is ignored with root */
2649 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2650 putname(filename);
2651 return ret;
2652 }
2653 EXPORT_SYMBOL(vfs_path_lookup);
2654
lookup_one_common(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len,struct qstr * this)2655 static int lookup_one_common(struct user_namespace *mnt_userns,
2656 const char *name, struct dentry *base, int len,
2657 struct qstr *this)
2658 {
2659 this->name = name;
2660 this->len = len;
2661 this->hash = full_name_hash(base, name, len);
2662 if (!len)
2663 return -EACCES;
2664
2665 if (unlikely(name[0] == '.')) {
2666 if (len < 2 || (len == 2 && name[1] == '.'))
2667 return -EACCES;
2668 }
2669
2670 while (len--) {
2671 unsigned int c = *(const unsigned char *)name++;
2672 if (c == '/' || c == '\0')
2673 return -EACCES;
2674 }
2675 /*
2676 * See if the low-level filesystem might want
2677 * to use its own hash..
2678 */
2679 if (base->d_flags & DCACHE_OP_HASH) {
2680 int err = base->d_op->d_hash(base, this);
2681 if (err < 0)
2682 return err;
2683 }
2684
2685 return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2686 }
2687
2688 /**
2689 * try_lookup_one_len - filesystem helper to lookup single pathname component
2690 * @name: pathname component to lookup
2691 * @base: base directory to lookup from
2692 * @len: maximum length @len should be interpreted to
2693 *
2694 * Look up a dentry by name in the dcache, returning NULL if it does not
2695 * currently exist. The function does not try to create a dentry.
2696 *
2697 * Note that this routine is purely a helper for filesystem usage and should
2698 * not be called by generic code.
2699 *
2700 * The caller must hold base->i_mutex.
2701 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2702 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2703 {
2704 struct qstr this;
2705 int err;
2706
2707 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2708
2709 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2710 if (err)
2711 return ERR_PTR(err);
2712
2713 return lookup_dcache(&this, base, 0);
2714 }
2715 EXPORT_SYMBOL(try_lookup_one_len);
2716
2717 /**
2718 * lookup_one_len - filesystem helper to lookup single pathname component
2719 * @name: pathname component to lookup
2720 * @base: base directory to lookup from
2721 * @len: maximum length @len should be interpreted to
2722 *
2723 * Note that this routine is purely a helper for filesystem usage and should
2724 * not be called by generic code.
2725 *
2726 * The caller must hold base->i_mutex.
2727 */
lookup_one_len(const char * name,struct dentry * base,int len)2728 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2729 {
2730 struct dentry *dentry;
2731 struct qstr this;
2732 int err;
2733
2734 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2735
2736 err = lookup_one_common(&init_user_ns, name, base, len, &this);
2737 if (err)
2738 return ERR_PTR(err);
2739
2740 dentry = lookup_dcache(&this, base, 0);
2741 return dentry ? dentry : __lookup_slow(&this, base, 0);
2742 }
2743 EXPORT_SYMBOL(lookup_one_len);
2744
2745 /**
2746 * lookup_one - filesystem helper to lookup single pathname component
2747 * @mnt_userns: user namespace of the mount the lookup is performed from
2748 * @name: pathname component to lookup
2749 * @base: base directory to lookup from
2750 * @len: maximum length @len should be interpreted to
2751 *
2752 * Note that this routine is purely a helper for filesystem usage and should
2753 * not be called by generic code.
2754 *
2755 * The caller must hold base->i_mutex.
2756 */
lookup_one(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2757 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2758 struct dentry *base, int len)
2759 {
2760 struct dentry *dentry;
2761 struct qstr this;
2762 int err;
2763
2764 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2765
2766 err = lookup_one_common(mnt_userns, name, base, len, &this);
2767 if (err)
2768 return ERR_PTR(err);
2769
2770 dentry = lookup_dcache(&this, base, 0);
2771 return dentry ? dentry : __lookup_slow(&this, base, 0);
2772 }
2773 EXPORT_SYMBOL(lookup_one);
2774
2775 /**
2776 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2777 * @mnt_userns: idmapping of the mount the lookup is performed from
2778 * @name: pathname component to lookup
2779 * @base: base directory to lookup from
2780 * @len: maximum length @len should be interpreted to
2781 *
2782 * Note that this routine is purely a helper for filesystem usage and should
2783 * not be called by generic code.
2784 *
2785 * Unlike lookup_one_len, it should be called without the parent
2786 * i_mutex held, and will take the i_mutex itself if necessary.
2787 */
lookup_one_unlocked(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2788 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2789 const char *name, struct dentry *base,
2790 int len)
2791 {
2792 struct qstr this;
2793 int err;
2794 struct dentry *ret;
2795
2796 err = lookup_one_common(mnt_userns, name, base, len, &this);
2797 if (err)
2798 return ERR_PTR(err);
2799
2800 ret = lookup_dcache(&this, base, 0);
2801 if (!ret)
2802 ret = lookup_slow(&this, base, 0);
2803 return ret;
2804 }
2805 EXPORT_SYMBOL(lookup_one_unlocked);
2806
2807 /**
2808 * lookup_one_positive_unlocked - filesystem helper to lookup single
2809 * pathname component
2810 * @mnt_userns: idmapping of the mount the lookup is performed from
2811 * @name: pathname component to lookup
2812 * @base: base directory to lookup from
2813 * @len: maximum length @len should be interpreted to
2814 *
2815 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2816 * known positive or ERR_PTR(). This is what most of the users want.
2817 *
2818 * Note that pinned negative with unlocked parent _can_ become positive at any
2819 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2820 * positives have >d_inode stable, so this one avoids such problems.
2821 *
2822 * Note that this routine is purely a helper for filesystem usage and should
2823 * not be called by generic code.
2824 *
2825 * The helper should be called without i_mutex held.
2826 */
lookup_one_positive_unlocked(struct user_namespace * mnt_userns,const char * name,struct dentry * base,int len)2827 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2828 const char *name,
2829 struct dentry *base, int len)
2830 {
2831 struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2832
2833 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2834 dput(ret);
2835 ret = ERR_PTR(-ENOENT);
2836 }
2837 return ret;
2838 }
2839 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2840
2841 /**
2842 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2843 * @name: pathname component to lookup
2844 * @base: base directory to lookup from
2845 * @len: maximum length @len should be interpreted to
2846 *
2847 * Note that this routine is purely a helper for filesystem usage and should
2848 * not be called by generic code.
2849 *
2850 * Unlike lookup_one_len, it should be called without the parent
2851 * i_mutex held, and will take the i_mutex itself if necessary.
2852 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2853 struct dentry *lookup_one_len_unlocked(const char *name,
2854 struct dentry *base, int len)
2855 {
2856 return lookup_one_unlocked(&init_user_ns, name, base, len);
2857 }
2858 EXPORT_SYMBOL(lookup_one_len_unlocked);
2859
2860 /*
2861 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2862 * on negatives. Returns known positive or ERR_PTR(); that's what
2863 * most of the users want. Note that pinned negative with unlocked parent
2864 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2865 * need to be very careful; pinned positives have ->d_inode stable, so
2866 * this one avoids such problems.
2867 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2868 struct dentry *lookup_positive_unlocked(const char *name,
2869 struct dentry *base, int len)
2870 {
2871 return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2872 }
2873 EXPORT_SYMBOL(lookup_positive_unlocked);
2874
2875 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2876 int path_pts(struct path *path)
2877 {
2878 /* Find something mounted on "pts" in the same directory as
2879 * the input path.
2880 */
2881 struct dentry *parent = dget_parent(path->dentry);
2882 struct dentry *child;
2883 struct qstr this = QSTR_INIT("pts", 3);
2884
2885 if (unlikely(!path_connected(path->mnt, parent))) {
2886 dput(parent);
2887 return -ENOENT;
2888 }
2889 dput(path->dentry);
2890 path->dentry = parent;
2891 child = d_hash_and_lookup(parent, &this);
2892 if (IS_ERR_OR_NULL(child))
2893 return -ENOENT;
2894
2895 path->dentry = child;
2896 dput(parent);
2897 follow_down(path);
2898 return 0;
2899 }
2900 #endif
2901
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2902 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2903 struct path *path, int *empty)
2904 {
2905 struct filename *filename = getname_flags(name, flags, empty);
2906 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2907
2908 putname(filename);
2909 return ret;
2910 }
2911 EXPORT_SYMBOL(user_path_at_empty);
2912
__check_sticky(struct user_namespace * mnt_userns,struct inode * dir,struct inode * inode)2913 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2914 struct inode *inode)
2915 {
2916 kuid_t fsuid = current_fsuid();
2917
2918 if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2919 return 0;
2920 if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2921 return 0;
2922 return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2923 }
2924 EXPORT_SYMBOL(__check_sticky);
2925
2926 /*
2927 * Check whether we can remove a link victim from directory dir, check
2928 * whether the type of victim is right.
2929 * 1. We can't do it if dir is read-only (done in permission())
2930 * 2. We should have write and exec permissions on dir
2931 * 3. We can't remove anything from append-only dir
2932 * 4. We can't do anything with immutable dir (done in permission())
2933 * 5. If the sticky bit on dir is set we should either
2934 * a. be owner of dir, or
2935 * b. be owner of victim, or
2936 * c. have CAP_FOWNER capability
2937 * 6. If the victim is append-only or immutable we can't do antyhing with
2938 * links pointing to it.
2939 * 7. If the victim has an unknown uid or gid we can't change the inode.
2940 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2941 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2942 * 10. We can't remove a root or mountpoint.
2943 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2944 * nfs_async_unlink().
2945 */
may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,bool isdir)2946 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2947 struct dentry *victim, bool isdir)
2948 {
2949 struct inode *inode = d_backing_inode(victim);
2950 int error;
2951
2952 if (d_is_negative(victim))
2953 return -ENOENT;
2954 BUG_ON(!inode);
2955
2956 BUG_ON(victim->d_parent->d_inode != dir);
2957
2958 /* Inode writeback is not safe when the uid or gid are invalid. */
2959 if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2960 !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2961 return -EOVERFLOW;
2962
2963 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2964
2965 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2966 if (error)
2967 return error;
2968 if (IS_APPEND(dir))
2969 return -EPERM;
2970
2971 if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2972 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2973 HAS_UNMAPPED_ID(mnt_userns, inode))
2974 return -EPERM;
2975 if (isdir) {
2976 if (!d_is_dir(victim))
2977 return -ENOTDIR;
2978 if (IS_ROOT(victim))
2979 return -EBUSY;
2980 } else if (d_is_dir(victim))
2981 return -EISDIR;
2982 if (IS_DEADDIR(dir))
2983 return -ENOENT;
2984 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2985 return -EBUSY;
2986 return 0;
2987 }
2988
2989 /* Check whether we can create an object with dentry child in directory
2990 * dir.
2991 * 1. We can't do it if child already exists (open has special treatment for
2992 * this case, but since we are inlined it's OK)
2993 * 2. We can't do it if dir is read-only (done in permission())
2994 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2995 * 4. We should have write and exec permissions on dir
2996 * 5. We can't do it if dir is immutable (done in permission())
2997 */
may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)2998 static inline int may_create(struct user_namespace *mnt_userns,
2999 struct inode *dir, struct dentry *child)
3000 {
3001 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3002 if (child->d_inode)
3003 return -EEXIST;
3004 if (IS_DEADDIR(dir))
3005 return -ENOENT;
3006 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
3007 return -EOVERFLOW;
3008
3009 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3010 }
3011
lock_two_directories(struct dentry * p1,struct dentry * p2)3012 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3013 {
3014 struct dentry *p;
3015
3016 p = d_ancestor(p2, p1);
3017 if (p) {
3018 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3019 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3020 return p;
3021 }
3022
3023 p = d_ancestor(p1, p2);
3024 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3025 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3026 return p;
3027 }
3028
3029 /*
3030 * p1 and p2 should be directories on the same fs.
3031 */
lock_rename(struct dentry * p1,struct dentry * p2)3032 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3033 {
3034 if (p1 == p2) {
3035 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3036 return NULL;
3037 }
3038
3039 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3040 return lock_two_directories(p1, p2);
3041 }
3042 EXPORT_SYMBOL(lock_rename);
3043
3044 /*
3045 * c1 and p2 should be on the same fs.
3046 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3047 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3048 {
3049 if (READ_ONCE(c1->d_parent) == p2) {
3050 /*
3051 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3052 */
3053 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3054 /*
3055 * now that p2 is locked, nobody can move in or out of it,
3056 * so the test below is safe.
3057 */
3058 if (likely(c1->d_parent == p2))
3059 return NULL;
3060
3061 /*
3062 * c1 got moved out of p2 while we'd been taking locks;
3063 * unlock and fall back to slow case.
3064 */
3065 inode_unlock(p2->d_inode);
3066 }
3067
3068 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3069 /*
3070 * nobody can move out of any directories on this fs.
3071 */
3072 if (likely(c1->d_parent != p2))
3073 return lock_two_directories(c1->d_parent, p2);
3074
3075 /*
3076 * c1 got moved into p2 while we were taking locks;
3077 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3078 * for consistency with lock_rename().
3079 */
3080 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3081 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3082 return NULL;
3083 }
3084 EXPORT_SYMBOL(lock_rename_child);
3085
unlock_rename(struct dentry * p1,struct dentry * p2)3086 void unlock_rename(struct dentry *p1, struct dentry *p2)
3087 {
3088 inode_unlock(p1->d_inode);
3089 if (p1 != p2) {
3090 inode_unlock(p2->d_inode);
3091 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3092 }
3093 }
3094 EXPORT_SYMBOL(unlock_rename);
3095
3096 /**
3097 * mode_strip_umask - handle vfs umask stripping
3098 * @dir: parent directory of the new inode
3099 * @mode: mode of the new inode to be created in @dir
3100 *
3101 * Umask stripping depends on whether or not the filesystem supports POSIX
3102 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3103 * in here. If the filesystem does support POSIX ACLs umask stripping is
3104 * deferred until the filesystem calls posix_acl_create().
3105 *
3106 * Returns: mode
3107 */
mode_strip_umask(const struct inode * dir,umode_t mode)3108 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3109 {
3110 if (!IS_POSIXACL(dir))
3111 mode &= ~current_umask();
3112 return mode;
3113 }
3114
3115 /**
3116 * vfs_prepare_mode - prepare the mode to be used for a new inode
3117 * @mnt_userns: user namespace of the mount the inode was found from
3118 * @dir: parent directory of the new inode
3119 * @mode: mode of the new inode
3120 * @mask_perms: allowed permission by the vfs
3121 * @type: type of file to be created
3122 *
3123 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3124 * object to be created.
3125 *
3126 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3127 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3128 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3129 * POSIX ACL supporting filesystems.
3130 *
3131 * Note that it's currently valid for @type to be 0 if a directory is created.
3132 * Filesystems raise that flag individually and we need to check whether each
3133 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3134 * non-zero type.
3135 *
3136 * Returns: mode to be passed to the filesystem
3137 */
vfs_prepare_mode(struct user_namespace * mnt_userns,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3138 static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns,
3139 const struct inode *dir, umode_t mode,
3140 umode_t mask_perms, umode_t type)
3141 {
3142 mode = mode_strip_sgid(mnt_userns, dir, mode);
3143 mode = mode_strip_umask(dir, mode);
3144
3145 /*
3146 * Apply the vfs mandated allowed permission mask and set the type of
3147 * file to be created before we call into the filesystem.
3148 */
3149 mode &= (mask_perms & ~S_IFMT);
3150 mode |= (type & S_IFMT);
3151
3152 return mode;
3153 }
3154
3155 /**
3156 * vfs_create - create new file
3157 * @mnt_userns: user namespace of the mount the inode was found from
3158 * @dir: inode of @dentry
3159 * @dentry: pointer to dentry of the base directory
3160 * @mode: mode of the new file
3161 * @want_excl: whether the file must not yet exist
3162 *
3163 * Create a new file.
3164 *
3165 * If the inode has been found through an idmapped mount the user namespace of
3166 * the vfsmount must be passed through @mnt_userns. This function will then take
3167 * care to map the inode according to @mnt_userns before checking permissions.
3168 * On non-idmapped mounts or if permission checking is to be performed on the
3169 * raw inode simply passs init_user_ns.
3170 */
vfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3171 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3172 struct dentry *dentry, umode_t mode, bool want_excl)
3173 {
3174 int error = may_create(mnt_userns, dir, dentry);
3175 if (error)
3176 return error;
3177
3178 if (!dir->i_op->create)
3179 return -EACCES; /* shouldn't it be ENOSYS? */
3180
3181 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG);
3182 error = security_inode_create(dir, dentry, mode);
3183 if (error)
3184 return error;
3185 error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3186 if (!error)
3187 fsnotify_create(dir, dentry);
3188 return error;
3189 }
3190 EXPORT_SYMBOL(vfs_create);
3191
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3192 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3193 int (*f)(struct dentry *, umode_t, void *),
3194 void *arg)
3195 {
3196 struct inode *dir = dentry->d_parent->d_inode;
3197 int error = may_create(&init_user_ns, dir, dentry);
3198 if (error)
3199 return error;
3200
3201 mode &= S_IALLUGO;
3202 mode |= S_IFREG;
3203 error = security_inode_create(dir, dentry, mode);
3204 if (error)
3205 return error;
3206 error = f(dentry, mode, arg);
3207 if (!error)
3208 fsnotify_create(dir, dentry);
3209 return error;
3210 }
3211 EXPORT_SYMBOL(vfs_mkobj);
3212
may_open_dev(const struct path * path)3213 bool may_open_dev(const struct path *path)
3214 {
3215 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3216 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3217 }
3218
may_open(struct user_namespace * mnt_userns,const struct path * path,int acc_mode,int flag)3219 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3220 int acc_mode, int flag)
3221 {
3222 struct dentry *dentry = path->dentry;
3223 struct inode *inode = dentry->d_inode;
3224 int error;
3225
3226 if (!inode)
3227 return -ENOENT;
3228
3229 switch (inode->i_mode & S_IFMT) {
3230 case S_IFLNK:
3231 return -ELOOP;
3232 case S_IFDIR:
3233 if (acc_mode & MAY_WRITE)
3234 return -EISDIR;
3235 if (acc_mode & MAY_EXEC)
3236 return -EACCES;
3237 break;
3238 case S_IFBLK:
3239 case S_IFCHR:
3240 if (!may_open_dev(path))
3241 return -EACCES;
3242 fallthrough;
3243 case S_IFIFO:
3244 case S_IFSOCK:
3245 if (acc_mode & MAY_EXEC)
3246 return -EACCES;
3247 flag &= ~O_TRUNC;
3248 break;
3249 case S_IFREG:
3250 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3251 return -EACCES;
3252 break;
3253 }
3254
3255 error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3256 if (error)
3257 return error;
3258
3259 /*
3260 * An append-only file must be opened in append mode for writing.
3261 */
3262 if (IS_APPEND(inode)) {
3263 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3264 return -EPERM;
3265 if (flag & O_TRUNC)
3266 return -EPERM;
3267 }
3268
3269 /* O_NOATIME can only be set by the owner or superuser */
3270 if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3271 return -EPERM;
3272
3273 return 0;
3274 }
3275
handle_truncate(struct user_namespace * mnt_userns,struct file * filp)3276 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3277 {
3278 const struct path *path = &filp->f_path;
3279 struct inode *inode = path->dentry->d_inode;
3280 int error = get_write_access(inode);
3281 if (error)
3282 return error;
3283
3284 error = security_path_truncate(path);
3285 if (!error) {
3286 error = do_truncate(mnt_userns, path->dentry, 0,
3287 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3288 filp);
3289 }
3290 put_write_access(inode);
3291 return error;
3292 }
3293
open_to_namei_flags(int flag)3294 static inline int open_to_namei_flags(int flag)
3295 {
3296 if ((flag & O_ACCMODE) == 3)
3297 flag--;
3298 return flag;
3299 }
3300
may_o_create(struct user_namespace * mnt_userns,const struct path * dir,struct dentry * dentry,umode_t mode)3301 static int may_o_create(struct user_namespace *mnt_userns,
3302 const struct path *dir, struct dentry *dentry,
3303 umode_t mode)
3304 {
3305 int error = security_path_mknod(dir, dentry, mode, 0);
3306 if (error)
3307 return error;
3308
3309 if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3310 return -EOVERFLOW;
3311
3312 error = inode_permission(mnt_userns, dir->dentry->d_inode,
3313 MAY_WRITE | MAY_EXEC);
3314 if (error)
3315 return error;
3316
3317 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3318 }
3319
3320 /*
3321 * Attempt to atomically look up, create and open a file from a negative
3322 * dentry.
3323 *
3324 * Returns 0 if successful. The file will have been created and attached to
3325 * @file by the filesystem calling finish_open().
3326 *
3327 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3328 * be set. The caller will need to perform the open themselves. @path will
3329 * have been updated to point to the new dentry. This may be negative.
3330 *
3331 * Returns an error code otherwise.
3332 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3333 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3334 struct file *file,
3335 int open_flag, umode_t mode)
3336 {
3337 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3338 struct inode *dir = nd->path.dentry->d_inode;
3339 int error;
3340
3341 if (nd->flags & LOOKUP_DIRECTORY)
3342 open_flag |= O_DIRECTORY;
3343
3344 file->f_path.dentry = DENTRY_NOT_SET;
3345 file->f_path.mnt = nd->path.mnt;
3346 error = dir->i_op->atomic_open(dir, dentry, file,
3347 open_to_namei_flags(open_flag), mode);
3348 d_lookup_done(dentry);
3349 if (!error) {
3350 if (file->f_mode & FMODE_OPENED) {
3351 if (unlikely(dentry != file->f_path.dentry)) {
3352 dput(dentry);
3353 dentry = dget(file->f_path.dentry);
3354 }
3355 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3356 error = -EIO;
3357 } else {
3358 if (file->f_path.dentry) {
3359 dput(dentry);
3360 dentry = file->f_path.dentry;
3361 }
3362 if (unlikely(d_is_negative(dentry)))
3363 error = -ENOENT;
3364 }
3365 }
3366 if (error) {
3367 dput(dentry);
3368 dentry = ERR_PTR(error);
3369 }
3370 return dentry;
3371 }
3372
3373 /*
3374 * Look up and maybe create and open the last component.
3375 *
3376 * Must be called with parent locked (exclusive in O_CREAT case).
3377 *
3378 * Returns 0 on success, that is, if
3379 * the file was successfully atomically created (if necessary) and opened, or
3380 * the file was not completely opened at this time, though lookups and
3381 * creations were performed.
3382 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3383 * In the latter case dentry returned in @path might be negative if O_CREAT
3384 * hadn't been specified.
3385 *
3386 * An error code is returned on failure.
3387 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3388 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3389 const struct open_flags *op,
3390 bool got_write)
3391 {
3392 struct user_namespace *mnt_userns;
3393 struct dentry *dir = nd->path.dentry;
3394 struct inode *dir_inode = dir->d_inode;
3395 int open_flag = op->open_flag;
3396 struct dentry *dentry;
3397 int error, create_error = 0;
3398 umode_t mode = op->mode;
3399 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3400
3401 if (unlikely(IS_DEADDIR(dir_inode)))
3402 return ERR_PTR(-ENOENT);
3403
3404 file->f_mode &= ~FMODE_CREATED;
3405 dentry = d_lookup(dir, &nd->last);
3406 for (;;) {
3407 if (!dentry) {
3408 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3409 if (IS_ERR(dentry))
3410 return dentry;
3411 }
3412 if (d_in_lookup(dentry))
3413 break;
3414
3415 error = d_revalidate(dentry, nd->flags);
3416 if (likely(error > 0))
3417 break;
3418 if (error)
3419 goto out_dput;
3420 d_invalidate(dentry);
3421 dput(dentry);
3422 dentry = NULL;
3423 }
3424 if (dentry->d_inode) {
3425 /* Cached positive dentry: will open in f_op->open */
3426 return dentry;
3427 }
3428
3429 /*
3430 * Checking write permission is tricky, bacuse we don't know if we are
3431 * going to actually need it: O_CREAT opens should work as long as the
3432 * file exists. But checking existence breaks atomicity. The trick is
3433 * to check access and if not granted clear O_CREAT from the flags.
3434 *
3435 * Another problem is returing the "right" error value (e.g. for an
3436 * O_EXCL open we want to return EEXIST not EROFS).
3437 */
3438 if (unlikely(!got_write))
3439 open_flag &= ~O_TRUNC;
3440 mnt_userns = mnt_user_ns(nd->path.mnt);
3441 if (open_flag & O_CREAT) {
3442 if (open_flag & O_EXCL)
3443 open_flag &= ~O_TRUNC;
3444 mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode);
3445 if (likely(got_write))
3446 create_error = may_o_create(mnt_userns, &nd->path,
3447 dentry, mode);
3448 else
3449 create_error = -EROFS;
3450 }
3451 if (create_error)
3452 open_flag &= ~O_CREAT;
3453 if (dir_inode->i_op->atomic_open) {
3454 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3455 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3456 dentry = ERR_PTR(create_error);
3457 return dentry;
3458 }
3459
3460 if (d_in_lookup(dentry)) {
3461 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3462 nd->flags);
3463 d_lookup_done(dentry);
3464 if (unlikely(res)) {
3465 if (IS_ERR(res)) {
3466 error = PTR_ERR(res);
3467 goto out_dput;
3468 }
3469 dput(dentry);
3470 dentry = res;
3471 }
3472 }
3473
3474 /* Negative dentry, just create the file */
3475 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3476 file->f_mode |= FMODE_CREATED;
3477 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3478 if (!dir_inode->i_op->create) {
3479 error = -EACCES;
3480 goto out_dput;
3481 }
3482
3483 error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3484 mode, open_flag & O_EXCL);
3485 if (error)
3486 goto out_dput;
3487 }
3488 if (unlikely(create_error) && !dentry->d_inode) {
3489 error = create_error;
3490 goto out_dput;
3491 }
3492 return dentry;
3493
3494 out_dput:
3495 dput(dentry);
3496 return ERR_PTR(error);
3497 }
3498
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3499 static const char *open_last_lookups(struct nameidata *nd,
3500 struct file *file, const struct open_flags *op)
3501 {
3502 struct dentry *dir = nd->path.dentry;
3503 int open_flag = op->open_flag;
3504 bool got_write = false;
3505 struct dentry *dentry;
3506 const char *res;
3507
3508 nd->flags |= op->intent;
3509
3510 if (nd->last_type != LAST_NORM) {
3511 if (nd->depth)
3512 put_link(nd);
3513 return handle_dots(nd, nd->last_type);
3514 }
3515
3516 if (!(open_flag & O_CREAT)) {
3517 if (nd->last.name[nd->last.len])
3518 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3519 /* we _can_ be in RCU mode here */
3520 dentry = lookup_fast(nd);
3521 if (IS_ERR(dentry))
3522 return ERR_CAST(dentry);
3523 if (likely(dentry))
3524 goto finish_lookup;
3525
3526 BUG_ON(nd->flags & LOOKUP_RCU);
3527 } else {
3528 /* create side of things */
3529 if (nd->flags & LOOKUP_RCU) {
3530 if (!try_to_unlazy(nd))
3531 return ERR_PTR(-ECHILD);
3532 }
3533 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3534 /* trailing slashes? */
3535 if (unlikely(nd->last.name[nd->last.len]))
3536 return ERR_PTR(-EISDIR);
3537 }
3538
3539 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3540 got_write = !mnt_want_write(nd->path.mnt);
3541 /*
3542 * do _not_ fail yet - we might not need that or fail with
3543 * a different error; let lookup_open() decide; we'll be
3544 * dropping this one anyway.
3545 */
3546 }
3547 if (open_flag & O_CREAT)
3548 inode_lock(dir->d_inode);
3549 else
3550 inode_lock_shared(dir->d_inode);
3551 dentry = lookup_open(nd, file, op, got_write);
3552 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3553 fsnotify_create(dir->d_inode, dentry);
3554 if (open_flag & O_CREAT)
3555 inode_unlock(dir->d_inode);
3556 else
3557 inode_unlock_shared(dir->d_inode);
3558
3559 if (got_write)
3560 mnt_drop_write(nd->path.mnt);
3561
3562 if (IS_ERR(dentry))
3563 return ERR_CAST(dentry);
3564
3565 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3566 dput(nd->path.dentry);
3567 nd->path.dentry = dentry;
3568 return NULL;
3569 }
3570
3571 finish_lookup:
3572 if (nd->depth)
3573 put_link(nd);
3574 res = step_into(nd, WALK_TRAILING, dentry);
3575 if (unlikely(res))
3576 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3577 return res;
3578 }
3579
3580 /*
3581 * Handle the last step of open()
3582 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3583 static int do_open(struct nameidata *nd,
3584 struct file *file, const struct open_flags *op)
3585 {
3586 struct user_namespace *mnt_userns;
3587 int open_flag = op->open_flag;
3588 bool do_truncate;
3589 int acc_mode;
3590 int error;
3591
3592 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3593 error = complete_walk(nd);
3594 if (error)
3595 return error;
3596 }
3597 if (!(file->f_mode & FMODE_CREATED))
3598 audit_inode(nd->name, nd->path.dentry, 0);
3599 mnt_userns = mnt_user_ns(nd->path.mnt);
3600 if (open_flag & O_CREAT) {
3601 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3602 return -EEXIST;
3603 if (d_is_dir(nd->path.dentry))
3604 return -EISDIR;
3605 error = may_create_in_sticky(mnt_userns, nd,
3606 d_backing_inode(nd->path.dentry));
3607 if (unlikely(error))
3608 return error;
3609 }
3610 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3611 return -ENOTDIR;
3612
3613 do_truncate = false;
3614 acc_mode = op->acc_mode;
3615 if (file->f_mode & FMODE_CREATED) {
3616 /* Don't check for write permission, don't truncate */
3617 open_flag &= ~O_TRUNC;
3618 acc_mode = 0;
3619 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3620 error = mnt_want_write(nd->path.mnt);
3621 if (error)
3622 return error;
3623 do_truncate = true;
3624 }
3625 error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3626 if (!error && !(file->f_mode & FMODE_OPENED))
3627 error = vfs_open(&nd->path, file);
3628 if (!error)
3629 error = ima_file_check(file, op->acc_mode);
3630 if (!error && do_truncate)
3631 error = handle_truncate(mnt_userns, file);
3632 if (unlikely(error > 0)) {
3633 WARN_ON(1);
3634 error = -EINVAL;
3635 }
3636 if (do_truncate)
3637 mnt_drop_write(nd->path.mnt);
3638 return error;
3639 }
3640
3641 /**
3642 * vfs_tmpfile - create tmpfile
3643 * @mnt_userns: user namespace of the mount the inode was found from
3644 * @dentry: pointer to dentry of the base directory
3645 * @mode: mode of the new tmpfile
3646 * @open_flag: flags
3647 *
3648 * Create a temporary file.
3649 *
3650 * If the inode has been found through an idmapped mount the user namespace of
3651 * the vfsmount must be passed through @mnt_userns. This function will then take
3652 * care to map the inode according to @mnt_userns before checking permissions.
3653 * On non-idmapped mounts or if permission checking is to be performed on the
3654 * raw inode simply passs init_user_ns.
3655 */
vfs_tmpfile(struct user_namespace * mnt_userns,const struct path * parentpath,struct file * file,umode_t mode)3656 static int vfs_tmpfile(struct user_namespace *mnt_userns,
3657 const struct path *parentpath,
3658 struct file *file, umode_t mode)
3659 {
3660 struct dentry *child;
3661 struct inode *dir = d_inode(parentpath->dentry);
3662 struct inode *inode;
3663 int error;
3664 int open_flag = file->f_flags;
3665
3666 /* we want directory to be writable */
3667 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3668 if (error)
3669 return error;
3670 if (!dir->i_op->tmpfile)
3671 return -EOPNOTSUPP;
3672 child = d_alloc(parentpath->dentry, &slash_name);
3673 if (unlikely(!child))
3674 return -ENOMEM;
3675 file->f_path.mnt = parentpath->mnt;
3676 file->f_path.dentry = child;
3677 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3678 error = dir->i_op->tmpfile(mnt_userns, dir, file, mode);
3679 dput(child);
3680 if (error)
3681 return error;
3682 /* Don't check for other permissions, the inode was just created */
3683 error = may_open(mnt_userns, &file->f_path, 0, file->f_flags);
3684 if (error)
3685 return error;
3686 inode = file_inode(file);
3687 if (!(open_flag & O_EXCL)) {
3688 spin_lock(&inode->i_lock);
3689 inode->i_state |= I_LINKABLE;
3690 spin_unlock(&inode->i_lock);
3691 }
3692 ima_post_create_tmpfile(mnt_userns, inode);
3693 return 0;
3694 }
3695
3696 /**
3697 * vfs_tmpfile_open - open a tmpfile for kernel internal use
3698 * @mnt_userns: user namespace of the mount the inode was found from
3699 * @parentpath: path of the base directory
3700 * @mode: mode of the new tmpfile
3701 * @open_flag: flags
3702 * @cred: credentials for open
3703 *
3704 * Create and open a temporary file. The file is not accounted in nr_files,
3705 * hence this is only for kernel internal use, and must not be installed into
3706 * file tables or such.
3707 */
vfs_tmpfile_open(struct user_namespace * mnt_userns,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3708 struct file *vfs_tmpfile_open(struct user_namespace *mnt_userns,
3709 const struct path *parentpath,
3710 umode_t mode, int open_flag, const struct cred *cred)
3711 {
3712 struct file *file;
3713 int error;
3714
3715 file = alloc_empty_file_noaccount(open_flag, cred);
3716 if (!IS_ERR(file)) {
3717 error = vfs_tmpfile(mnt_userns, parentpath, file, mode);
3718 if (error) {
3719 fput(file);
3720 file = ERR_PTR(error);
3721 }
3722 }
3723 return file;
3724 }
3725 EXPORT_SYMBOL(vfs_tmpfile_open);
3726
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3727 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3728 const struct open_flags *op,
3729 struct file *file)
3730 {
3731 struct user_namespace *mnt_userns;
3732 struct path path;
3733 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3734
3735 if (unlikely(error))
3736 return error;
3737 error = mnt_want_write(path.mnt);
3738 if (unlikely(error))
3739 goto out;
3740 mnt_userns = mnt_user_ns(path.mnt);
3741 error = vfs_tmpfile(mnt_userns, &path, file, op->mode);
3742 if (error)
3743 goto out2;
3744 audit_inode(nd->name, file->f_path.dentry, 0);
3745 out2:
3746 mnt_drop_write(path.mnt);
3747 out:
3748 path_put(&path);
3749 return error;
3750 }
3751
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3752 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3753 {
3754 struct path path;
3755 int error = path_lookupat(nd, flags, &path);
3756 if (!error) {
3757 audit_inode(nd->name, path.dentry, 0);
3758 error = vfs_open(&path, file);
3759 path_put(&path);
3760 }
3761 return error;
3762 }
3763
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3764 static struct file *path_openat(struct nameidata *nd,
3765 const struct open_flags *op, unsigned flags)
3766 {
3767 struct file *file;
3768 int error;
3769
3770 file = alloc_empty_file(op->open_flag, current_cred());
3771 if (IS_ERR(file))
3772 return file;
3773
3774 if (unlikely(file->f_flags & __O_TMPFILE)) {
3775 error = do_tmpfile(nd, flags, op, file);
3776 } else if (unlikely(file->f_flags & O_PATH)) {
3777 error = do_o_path(nd, flags, file);
3778 } else {
3779 const char *s = path_init(nd, flags);
3780 while (!(error = link_path_walk(s, nd)) &&
3781 (s = open_last_lookups(nd, file, op)) != NULL)
3782 ;
3783 if (!error)
3784 error = do_open(nd, file, op);
3785 terminate_walk(nd);
3786 }
3787 if (likely(!error)) {
3788 if (likely(file->f_mode & FMODE_OPENED))
3789 return file;
3790 WARN_ON(1);
3791 error = -EINVAL;
3792 }
3793 fput(file);
3794 if (error == -EOPENSTALE) {
3795 if (flags & LOOKUP_RCU)
3796 error = -ECHILD;
3797 else
3798 error = -ESTALE;
3799 }
3800 return ERR_PTR(error);
3801 }
3802
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3803 struct file *do_filp_open(int dfd, struct filename *pathname,
3804 const struct open_flags *op)
3805 {
3806 struct nameidata nd;
3807 int flags = op->lookup_flags;
3808 struct file *filp;
3809
3810 set_nameidata(&nd, dfd, pathname, NULL);
3811 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3812 if (unlikely(filp == ERR_PTR(-ECHILD)))
3813 filp = path_openat(&nd, op, flags);
3814 if (unlikely(filp == ERR_PTR(-ESTALE)))
3815 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3816 restore_nameidata();
3817 return filp;
3818 }
3819
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)3820 struct file *do_file_open_root(const struct path *root,
3821 const char *name, const struct open_flags *op)
3822 {
3823 struct nameidata nd;
3824 struct file *file;
3825 struct filename *filename;
3826 int flags = op->lookup_flags;
3827
3828 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3829 return ERR_PTR(-ELOOP);
3830
3831 filename = getname_kernel(name);
3832 if (IS_ERR(filename))
3833 return ERR_CAST(filename);
3834
3835 set_nameidata(&nd, -1, filename, root);
3836 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3837 if (unlikely(file == ERR_PTR(-ECHILD)))
3838 file = path_openat(&nd, op, flags);
3839 if (unlikely(file == ERR_PTR(-ESTALE)))
3840 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3841 restore_nameidata();
3842 putname(filename);
3843 return file;
3844 }
3845
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3846 static struct dentry *filename_create(int dfd, struct filename *name,
3847 struct path *path, unsigned int lookup_flags)
3848 {
3849 struct dentry *dentry = ERR_PTR(-EEXIST);
3850 struct qstr last;
3851 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3852 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3853 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3854 int type;
3855 int err2;
3856 int error;
3857
3858 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3859 if (error)
3860 return ERR_PTR(error);
3861
3862 /*
3863 * Yucky last component or no last component at all?
3864 * (foo/., foo/.., /////)
3865 */
3866 if (unlikely(type != LAST_NORM))
3867 goto out;
3868
3869 /* don't fail immediately if it's r/o, at least try to report other errors */
3870 err2 = mnt_want_write(path->mnt);
3871 /*
3872 * Do the final lookup. Suppress 'create' if there is a trailing
3873 * '/', and a directory wasn't requested.
3874 */
3875 if (last.name[last.len] && !want_dir)
3876 create_flags = 0;
3877 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3878 dentry = lookup_one_qstr_excl(&last, path->dentry,
3879 reval_flag | create_flags);
3880 if (IS_ERR(dentry))
3881 goto unlock;
3882
3883 error = -EEXIST;
3884 if (d_is_positive(dentry))
3885 goto fail;
3886
3887 /*
3888 * Special case - lookup gave negative, but... we had foo/bar/
3889 * From the vfs_mknod() POV we just have a negative dentry -
3890 * all is fine. Let's be bastards - you had / on the end, you've
3891 * been asking for (non-existent) directory. -ENOENT for you.
3892 */
3893 if (unlikely(!create_flags)) {
3894 error = -ENOENT;
3895 goto fail;
3896 }
3897 if (unlikely(err2)) {
3898 error = err2;
3899 goto fail;
3900 }
3901 return dentry;
3902 fail:
3903 dput(dentry);
3904 dentry = ERR_PTR(error);
3905 unlock:
3906 inode_unlock(path->dentry->d_inode);
3907 if (!err2)
3908 mnt_drop_write(path->mnt);
3909 out:
3910 path_put(path);
3911 return dentry;
3912 }
3913
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3914 struct dentry *kern_path_create(int dfd, const char *pathname,
3915 struct path *path, unsigned int lookup_flags)
3916 {
3917 struct filename *filename = getname_kernel(pathname);
3918 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3919
3920 putname(filename);
3921 return res;
3922 }
3923 EXPORT_SYMBOL(kern_path_create);
3924
done_path_create(struct path * path,struct dentry * dentry)3925 void done_path_create(struct path *path, struct dentry *dentry)
3926 {
3927 dput(dentry);
3928 inode_unlock(path->dentry->d_inode);
3929 mnt_drop_write(path->mnt);
3930 path_put(path);
3931 }
3932 EXPORT_SYMBOL(done_path_create);
3933
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3934 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3935 struct path *path, unsigned int lookup_flags)
3936 {
3937 struct filename *filename = getname(pathname);
3938 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3939
3940 putname(filename);
3941 return res;
3942 }
3943 EXPORT_SYMBOL(user_path_create);
3944
3945 /**
3946 * vfs_mknod - create device node or file
3947 * @mnt_userns: user namespace of the mount the inode was found from
3948 * @dir: inode of @dentry
3949 * @dentry: pointer to dentry of the base directory
3950 * @mode: mode of the new device node or file
3951 * @dev: device number of device to create
3952 *
3953 * Create a device node or file.
3954 *
3955 * If the inode has been found through an idmapped mount the user namespace of
3956 * the vfsmount must be passed through @mnt_userns. This function will then take
3957 * care to map the inode according to @mnt_userns before checking permissions.
3958 * On non-idmapped mounts or if permission checking is to be performed on the
3959 * raw inode simply passs init_user_ns.
3960 */
vfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3961 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3962 struct dentry *dentry, umode_t mode, dev_t dev)
3963 {
3964 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3965 int error = may_create(mnt_userns, dir, dentry);
3966
3967 if (error)
3968 return error;
3969
3970 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3971 !capable(CAP_MKNOD))
3972 return -EPERM;
3973
3974 if (!dir->i_op->mknod)
3975 return -EPERM;
3976
3977 mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3978 error = devcgroup_inode_mknod(mode, dev);
3979 if (error)
3980 return error;
3981
3982 error = security_inode_mknod(dir, dentry, mode, dev);
3983 if (error)
3984 return error;
3985
3986 error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3987 if (!error)
3988 fsnotify_create(dir, dentry);
3989 return error;
3990 }
3991 EXPORT_SYMBOL(vfs_mknod);
3992
may_mknod(umode_t mode)3993 static int may_mknod(umode_t mode)
3994 {
3995 switch (mode & S_IFMT) {
3996 case S_IFREG:
3997 case S_IFCHR:
3998 case S_IFBLK:
3999 case S_IFIFO:
4000 case S_IFSOCK:
4001 case 0: /* zero mode translates to S_IFREG */
4002 return 0;
4003 case S_IFDIR:
4004 return -EPERM;
4005 default:
4006 return -EINVAL;
4007 }
4008 }
4009
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4010 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4011 unsigned int dev)
4012 {
4013 struct user_namespace *mnt_userns;
4014 struct dentry *dentry;
4015 struct path path;
4016 int error;
4017 unsigned int lookup_flags = 0;
4018
4019 error = may_mknod(mode);
4020 if (error)
4021 goto out1;
4022 retry:
4023 dentry = filename_create(dfd, name, &path, lookup_flags);
4024 error = PTR_ERR(dentry);
4025 if (IS_ERR(dentry))
4026 goto out1;
4027
4028 error = security_path_mknod(&path, dentry,
4029 mode_strip_umask(path.dentry->d_inode, mode), dev);
4030 if (error)
4031 goto out2;
4032
4033 mnt_userns = mnt_user_ns(path.mnt);
4034 switch (mode & S_IFMT) {
4035 case 0: case S_IFREG:
4036 error = vfs_create(mnt_userns, path.dentry->d_inode,
4037 dentry, mode, true);
4038 if (!error)
4039 ima_post_path_mknod(mnt_userns, dentry);
4040 break;
4041 case S_IFCHR: case S_IFBLK:
4042 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
4043 dentry, mode, new_decode_dev(dev));
4044 break;
4045 case S_IFIFO: case S_IFSOCK:
4046 error = vfs_mknod(mnt_userns, path.dentry->d_inode,
4047 dentry, mode, 0);
4048 break;
4049 }
4050 out2:
4051 done_path_create(&path, dentry);
4052 if (retry_estale(error, lookup_flags)) {
4053 lookup_flags |= LOOKUP_REVAL;
4054 goto retry;
4055 }
4056 out1:
4057 putname(name);
4058 return error;
4059 }
4060
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4061 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4062 unsigned int, dev)
4063 {
4064 return do_mknodat(dfd, getname(filename), mode, dev);
4065 }
4066
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4067 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4068 {
4069 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4070 }
4071
4072 /**
4073 * vfs_mkdir - create directory
4074 * @mnt_userns: user namespace of the mount the inode was found from
4075 * @dir: inode of @dentry
4076 * @dentry: pointer to dentry of the base directory
4077 * @mode: mode of the new directory
4078 *
4079 * Create a directory.
4080 *
4081 * If the inode has been found through an idmapped mount the user namespace of
4082 * the vfsmount must be passed through @mnt_userns. This function will then take
4083 * care to map the inode according to @mnt_userns before checking permissions.
4084 * On non-idmapped mounts or if permission checking is to be performed on the
4085 * raw inode simply passs init_user_ns.
4086 */
vfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)4087 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
4088 struct dentry *dentry, umode_t mode)
4089 {
4090 int error = may_create(mnt_userns, dir, dentry);
4091 unsigned max_links = dir->i_sb->s_max_links;
4092
4093 if (error)
4094 return error;
4095
4096 if (!dir->i_op->mkdir)
4097 return -EPERM;
4098
4099 mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4100 error = security_inode_mkdir(dir, dentry, mode);
4101 if (error)
4102 return error;
4103
4104 if (max_links && dir->i_nlink >= max_links)
4105 return -EMLINK;
4106
4107 error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
4108 if (!error)
4109 fsnotify_mkdir(dir, dentry);
4110 return error;
4111 }
4112 EXPORT_SYMBOL(vfs_mkdir);
4113
do_mkdirat(int dfd,struct filename * name,umode_t mode)4114 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4115 {
4116 struct dentry *dentry;
4117 struct path path;
4118 int error;
4119 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4120
4121 retry:
4122 dentry = filename_create(dfd, name, &path, lookup_flags);
4123 error = PTR_ERR(dentry);
4124 if (IS_ERR(dentry))
4125 goto out_putname;
4126
4127 error = security_path_mkdir(&path, dentry,
4128 mode_strip_umask(path.dentry->d_inode, mode));
4129 if (!error) {
4130 struct user_namespace *mnt_userns;
4131 mnt_userns = mnt_user_ns(path.mnt);
4132 error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4133 mode);
4134 }
4135 done_path_create(&path, dentry);
4136 if (retry_estale(error, lookup_flags)) {
4137 lookup_flags |= LOOKUP_REVAL;
4138 goto retry;
4139 }
4140 out_putname:
4141 putname(name);
4142 return error;
4143 }
4144
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4145 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4146 {
4147 return do_mkdirat(dfd, getname(pathname), mode);
4148 }
4149
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4150 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4151 {
4152 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4153 }
4154
4155 /**
4156 * vfs_rmdir - remove directory
4157 * @mnt_userns: user namespace of the mount the inode was found from
4158 * @dir: inode of @dentry
4159 * @dentry: pointer to dentry of the base directory
4160 *
4161 * Remove a directory.
4162 *
4163 * If the inode has been found through an idmapped mount the user namespace of
4164 * the vfsmount must be passed through @mnt_userns. This function will then take
4165 * care to map the inode according to @mnt_userns before checking permissions.
4166 * On non-idmapped mounts or if permission checking is to be performed on the
4167 * raw inode simply passs init_user_ns.
4168 */
vfs_rmdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry)4169 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4170 struct dentry *dentry)
4171 {
4172 int error = may_delete(mnt_userns, dir, dentry, 1);
4173
4174 if (error)
4175 return error;
4176
4177 if (!dir->i_op->rmdir)
4178 return -EPERM;
4179
4180 dget(dentry);
4181 inode_lock(dentry->d_inode);
4182
4183 error = -EBUSY;
4184 if (is_local_mountpoint(dentry) ||
4185 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4186 goto out;
4187
4188 error = security_inode_rmdir(dir, dentry);
4189 if (error)
4190 goto out;
4191
4192 error = dir->i_op->rmdir(dir, dentry);
4193 if (error)
4194 goto out;
4195
4196 shrink_dcache_parent(dentry);
4197 dentry->d_inode->i_flags |= S_DEAD;
4198 dont_mount(dentry);
4199 detach_mounts(dentry);
4200
4201 out:
4202 inode_unlock(dentry->d_inode);
4203 dput(dentry);
4204 if (!error)
4205 d_delete_notify(dir, dentry);
4206 return error;
4207 }
4208 EXPORT_SYMBOL(vfs_rmdir);
4209
do_rmdir(int dfd,struct filename * name)4210 int do_rmdir(int dfd, struct filename *name)
4211 {
4212 struct user_namespace *mnt_userns;
4213 int error;
4214 struct dentry *dentry;
4215 struct path path;
4216 struct qstr last;
4217 int type;
4218 unsigned int lookup_flags = 0;
4219 retry:
4220 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4221 if (error)
4222 goto exit1;
4223
4224 switch (type) {
4225 case LAST_DOTDOT:
4226 error = -ENOTEMPTY;
4227 goto exit2;
4228 case LAST_DOT:
4229 error = -EINVAL;
4230 goto exit2;
4231 case LAST_ROOT:
4232 error = -EBUSY;
4233 goto exit2;
4234 }
4235
4236 error = mnt_want_write(path.mnt);
4237 if (error)
4238 goto exit2;
4239
4240 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4241 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4242 error = PTR_ERR(dentry);
4243 if (IS_ERR(dentry))
4244 goto exit3;
4245 if (!dentry->d_inode) {
4246 error = -ENOENT;
4247 goto exit4;
4248 }
4249 error = security_path_rmdir(&path, dentry);
4250 if (error)
4251 goto exit4;
4252 mnt_userns = mnt_user_ns(path.mnt);
4253 error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4254 exit4:
4255 dput(dentry);
4256 exit3:
4257 inode_unlock(path.dentry->d_inode);
4258 mnt_drop_write(path.mnt);
4259 exit2:
4260 path_put(&path);
4261 if (retry_estale(error, lookup_flags)) {
4262 lookup_flags |= LOOKUP_REVAL;
4263 goto retry;
4264 }
4265 exit1:
4266 putname(name);
4267 return error;
4268 }
4269
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4270 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4271 {
4272 return do_rmdir(AT_FDCWD, getname(pathname));
4273 }
4274
4275 /**
4276 * vfs_unlink - unlink a filesystem object
4277 * @mnt_userns: user namespace of the mount the inode was found from
4278 * @dir: parent directory
4279 * @dentry: victim
4280 * @delegated_inode: returns victim inode, if the inode is delegated.
4281 *
4282 * The caller must hold dir->i_mutex.
4283 *
4284 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4285 * return a reference to the inode in delegated_inode. The caller
4286 * should then break the delegation on that inode and retry. Because
4287 * breaking a delegation may take a long time, the caller should drop
4288 * dir->i_mutex before doing so.
4289 *
4290 * Alternatively, a caller may pass NULL for delegated_inode. This may
4291 * be appropriate for callers that expect the underlying filesystem not
4292 * to be NFS exported.
4293 *
4294 * If the inode has been found through an idmapped mount the user namespace of
4295 * the vfsmount must be passed through @mnt_userns. This function will then take
4296 * care to map the inode according to @mnt_userns before checking permissions.
4297 * On non-idmapped mounts or if permission checking is to be performed on the
4298 * raw inode simply passs init_user_ns.
4299 */
vfs_unlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4300 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4301 struct dentry *dentry, struct inode **delegated_inode)
4302 {
4303 struct inode *target = dentry->d_inode;
4304 int error = may_delete(mnt_userns, dir, dentry, 0);
4305
4306 if (error)
4307 return error;
4308
4309 if (!dir->i_op->unlink)
4310 return -EPERM;
4311
4312 inode_lock(target);
4313 if (IS_SWAPFILE(target))
4314 error = -EPERM;
4315 else if (is_local_mountpoint(dentry))
4316 error = -EBUSY;
4317 else {
4318 error = security_inode_unlink(dir, dentry);
4319 if (!error) {
4320 error = try_break_deleg(target, delegated_inode);
4321 if (error)
4322 goto out;
4323 error = dir->i_op->unlink(dir, dentry);
4324 if (!error) {
4325 dont_mount(dentry);
4326 detach_mounts(dentry);
4327 }
4328 }
4329 }
4330 out:
4331 inode_unlock(target);
4332
4333 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4334 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4335 fsnotify_unlink(dir, dentry);
4336 } else if (!error) {
4337 fsnotify_link_count(target);
4338 d_delete_notify(dir, dentry);
4339 }
4340
4341 return error;
4342 }
4343 EXPORT_SYMBOL(vfs_unlink);
4344
4345 /*
4346 * Make sure that the actual truncation of the file will occur outside its
4347 * directory's i_mutex. Truncate can take a long time if there is a lot of
4348 * writeout happening, and we don't want to prevent access to the directory
4349 * while waiting on the I/O.
4350 */
do_unlinkat(int dfd,struct filename * name)4351 int do_unlinkat(int dfd, struct filename *name)
4352 {
4353 int error;
4354 struct dentry *dentry;
4355 struct path path;
4356 struct qstr last;
4357 int type;
4358 struct inode *inode = NULL;
4359 struct inode *delegated_inode = NULL;
4360 unsigned int lookup_flags = 0;
4361 retry:
4362 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4363 if (error)
4364 goto exit1;
4365
4366 error = -EISDIR;
4367 if (type != LAST_NORM)
4368 goto exit2;
4369
4370 error = mnt_want_write(path.mnt);
4371 if (error)
4372 goto exit2;
4373 retry_deleg:
4374 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4375 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4376 error = PTR_ERR(dentry);
4377 if (!IS_ERR(dentry)) {
4378 struct user_namespace *mnt_userns;
4379
4380 /* Why not before? Because we want correct error value */
4381 if (last.name[last.len])
4382 goto slashes;
4383 inode = dentry->d_inode;
4384 if (d_is_negative(dentry))
4385 goto slashes;
4386 ihold(inode);
4387 error = security_path_unlink(&path, dentry);
4388 if (error)
4389 goto exit3;
4390 mnt_userns = mnt_user_ns(path.mnt);
4391 error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4392 &delegated_inode);
4393 exit3:
4394 dput(dentry);
4395 }
4396 inode_unlock(path.dentry->d_inode);
4397 if (inode)
4398 iput(inode); /* truncate the inode here */
4399 inode = NULL;
4400 if (delegated_inode) {
4401 error = break_deleg_wait(&delegated_inode);
4402 if (!error)
4403 goto retry_deleg;
4404 }
4405 mnt_drop_write(path.mnt);
4406 exit2:
4407 path_put(&path);
4408 if (retry_estale(error, lookup_flags)) {
4409 lookup_flags |= LOOKUP_REVAL;
4410 inode = NULL;
4411 goto retry;
4412 }
4413 exit1:
4414 putname(name);
4415 return error;
4416
4417 slashes:
4418 if (d_is_negative(dentry))
4419 error = -ENOENT;
4420 else if (d_is_dir(dentry))
4421 error = -EISDIR;
4422 else
4423 error = -ENOTDIR;
4424 goto exit3;
4425 }
4426
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4427 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4428 {
4429 if ((flag & ~AT_REMOVEDIR) != 0)
4430 return -EINVAL;
4431
4432 if (flag & AT_REMOVEDIR)
4433 return do_rmdir(dfd, getname(pathname));
4434 return do_unlinkat(dfd, getname(pathname));
4435 }
4436
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4437 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4438 {
4439 return do_unlinkat(AT_FDCWD, getname(pathname));
4440 }
4441
4442 /**
4443 * vfs_symlink - create symlink
4444 * @mnt_userns: user namespace of the mount the inode was found from
4445 * @dir: inode of @dentry
4446 * @dentry: pointer to dentry of the base directory
4447 * @oldname: name of the file to link to
4448 *
4449 * Create a symlink.
4450 *
4451 * If the inode has been found through an idmapped mount the user namespace of
4452 * the vfsmount must be passed through @mnt_userns. This function will then take
4453 * care to map the inode according to @mnt_userns before checking permissions.
4454 * On non-idmapped mounts or if permission checking is to be performed on the
4455 * raw inode simply passs init_user_ns.
4456 */
vfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * oldname)4457 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4458 struct dentry *dentry, const char *oldname)
4459 {
4460 int error = may_create(mnt_userns, dir, dentry);
4461
4462 if (error)
4463 return error;
4464
4465 if (!dir->i_op->symlink)
4466 return -EPERM;
4467
4468 error = security_inode_symlink(dir, dentry, oldname);
4469 if (error)
4470 return error;
4471
4472 error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4473 if (!error)
4474 fsnotify_create(dir, dentry);
4475 return error;
4476 }
4477 EXPORT_SYMBOL(vfs_symlink);
4478
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4479 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4480 {
4481 int error;
4482 struct dentry *dentry;
4483 struct path path;
4484 unsigned int lookup_flags = 0;
4485
4486 if (IS_ERR(from)) {
4487 error = PTR_ERR(from);
4488 goto out_putnames;
4489 }
4490 retry:
4491 dentry = filename_create(newdfd, to, &path, lookup_flags);
4492 error = PTR_ERR(dentry);
4493 if (IS_ERR(dentry))
4494 goto out_putnames;
4495
4496 error = security_path_symlink(&path, dentry, from->name);
4497 if (!error) {
4498 struct user_namespace *mnt_userns;
4499
4500 mnt_userns = mnt_user_ns(path.mnt);
4501 error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4502 from->name);
4503 }
4504 done_path_create(&path, dentry);
4505 if (retry_estale(error, lookup_flags)) {
4506 lookup_flags |= LOOKUP_REVAL;
4507 goto retry;
4508 }
4509 out_putnames:
4510 putname(to);
4511 putname(from);
4512 return error;
4513 }
4514
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4515 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4516 int, newdfd, const char __user *, newname)
4517 {
4518 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4519 }
4520
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4521 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4522 {
4523 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4524 }
4525
4526 /**
4527 * vfs_link - create a new link
4528 * @old_dentry: object to be linked
4529 * @mnt_userns: the user namespace of the mount
4530 * @dir: new parent
4531 * @new_dentry: where to create the new link
4532 * @delegated_inode: returns inode needing a delegation break
4533 *
4534 * The caller must hold dir->i_mutex
4535 *
4536 * If vfs_link discovers a delegation on the to-be-linked file in need
4537 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4538 * inode in delegated_inode. The caller should then break the delegation
4539 * and retry. Because breaking a delegation may take a long time, the
4540 * caller should drop the i_mutex before doing so.
4541 *
4542 * Alternatively, a caller may pass NULL for delegated_inode. This may
4543 * be appropriate for callers that expect the underlying filesystem not
4544 * to be NFS exported.
4545 *
4546 * If the inode has been found through an idmapped mount the user namespace of
4547 * the vfsmount must be passed through @mnt_userns. This function will then take
4548 * care to map the inode according to @mnt_userns before checking permissions.
4549 * On non-idmapped mounts or if permission checking is to be performed on the
4550 * raw inode simply passs init_user_ns.
4551 */
vfs_link(struct dentry * old_dentry,struct user_namespace * mnt_userns,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4552 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4553 struct inode *dir, struct dentry *new_dentry,
4554 struct inode **delegated_inode)
4555 {
4556 struct inode *inode = old_dentry->d_inode;
4557 unsigned max_links = dir->i_sb->s_max_links;
4558 int error;
4559
4560 if (!inode)
4561 return -ENOENT;
4562
4563 error = may_create(mnt_userns, dir, new_dentry);
4564 if (error)
4565 return error;
4566
4567 if (dir->i_sb != inode->i_sb)
4568 return -EXDEV;
4569
4570 /*
4571 * A link to an append-only or immutable file cannot be created.
4572 */
4573 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4574 return -EPERM;
4575 /*
4576 * Updating the link count will likely cause i_uid and i_gid to
4577 * be writen back improperly if their true value is unknown to
4578 * the vfs.
4579 */
4580 if (HAS_UNMAPPED_ID(mnt_userns, inode))
4581 return -EPERM;
4582 if (!dir->i_op->link)
4583 return -EPERM;
4584 if (S_ISDIR(inode->i_mode))
4585 return -EPERM;
4586
4587 error = security_inode_link(old_dentry, dir, new_dentry);
4588 if (error)
4589 return error;
4590
4591 inode_lock(inode);
4592 /* Make sure we don't allow creating hardlink to an unlinked file */
4593 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4594 error = -ENOENT;
4595 else if (max_links && inode->i_nlink >= max_links)
4596 error = -EMLINK;
4597 else {
4598 error = try_break_deleg(inode, delegated_inode);
4599 if (!error)
4600 error = dir->i_op->link(old_dentry, dir, new_dentry);
4601 }
4602
4603 if (!error && (inode->i_state & I_LINKABLE)) {
4604 spin_lock(&inode->i_lock);
4605 inode->i_state &= ~I_LINKABLE;
4606 spin_unlock(&inode->i_lock);
4607 }
4608 inode_unlock(inode);
4609 if (!error)
4610 fsnotify_link(dir, inode, new_dentry);
4611 return error;
4612 }
4613 EXPORT_SYMBOL(vfs_link);
4614
4615 /*
4616 * Hardlinks are often used in delicate situations. We avoid
4617 * security-related surprises by not following symlinks on the
4618 * newname. --KAB
4619 *
4620 * We don't follow them on the oldname either to be compatible
4621 * with linux 2.0, and to avoid hard-linking to directories
4622 * and other special files. --ADM
4623 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4624 int do_linkat(int olddfd, struct filename *old, int newdfd,
4625 struct filename *new, int flags)
4626 {
4627 struct user_namespace *mnt_userns;
4628 struct dentry *new_dentry;
4629 struct path old_path, new_path;
4630 struct inode *delegated_inode = NULL;
4631 int how = 0;
4632 int error;
4633
4634 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4635 error = -EINVAL;
4636 goto out_putnames;
4637 }
4638 /*
4639 * To use null names we require CAP_DAC_READ_SEARCH
4640 * This ensures that not everyone will be able to create
4641 * handlink using the passed filedescriptor.
4642 */
4643 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4644 error = -ENOENT;
4645 goto out_putnames;
4646 }
4647
4648 if (flags & AT_SYMLINK_FOLLOW)
4649 how |= LOOKUP_FOLLOW;
4650 retry:
4651 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4652 if (error)
4653 goto out_putnames;
4654
4655 new_dentry = filename_create(newdfd, new, &new_path,
4656 (how & LOOKUP_REVAL));
4657 error = PTR_ERR(new_dentry);
4658 if (IS_ERR(new_dentry))
4659 goto out_putpath;
4660
4661 error = -EXDEV;
4662 if (old_path.mnt != new_path.mnt)
4663 goto out_dput;
4664 mnt_userns = mnt_user_ns(new_path.mnt);
4665 error = may_linkat(mnt_userns, &old_path);
4666 if (unlikely(error))
4667 goto out_dput;
4668 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4669 if (error)
4670 goto out_dput;
4671 error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4672 new_dentry, &delegated_inode);
4673 out_dput:
4674 done_path_create(&new_path, new_dentry);
4675 if (delegated_inode) {
4676 error = break_deleg_wait(&delegated_inode);
4677 if (!error) {
4678 path_put(&old_path);
4679 goto retry;
4680 }
4681 }
4682 if (retry_estale(error, how)) {
4683 path_put(&old_path);
4684 how |= LOOKUP_REVAL;
4685 goto retry;
4686 }
4687 out_putpath:
4688 path_put(&old_path);
4689 out_putnames:
4690 putname(old);
4691 putname(new);
4692
4693 return error;
4694 }
4695
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4696 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4697 int, newdfd, const char __user *, newname, int, flags)
4698 {
4699 return do_linkat(olddfd, getname_uflags(oldname, flags),
4700 newdfd, getname(newname), flags);
4701 }
4702
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4703 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4704 {
4705 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4706 }
4707
4708 /**
4709 * vfs_rename - rename a filesystem object
4710 * @rd: pointer to &struct renamedata info
4711 *
4712 * The caller must hold multiple mutexes--see lock_rename()).
4713 *
4714 * If vfs_rename discovers a delegation in need of breaking at either
4715 * the source or destination, it will return -EWOULDBLOCK and return a
4716 * reference to the inode in delegated_inode. The caller should then
4717 * break the delegation and retry. Because breaking a delegation may
4718 * take a long time, the caller should drop all locks before doing
4719 * so.
4720 *
4721 * Alternatively, a caller may pass NULL for delegated_inode. This may
4722 * be appropriate for callers that expect the underlying filesystem not
4723 * to be NFS exported.
4724 *
4725 * The worst of all namespace operations - renaming directory. "Perverted"
4726 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4727 * Problems:
4728 *
4729 * a) we can get into loop creation.
4730 * b) race potential - two innocent renames can create a loop together.
4731 * That's where 4.4BSD screws up. Current fix: serialization on
4732 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4733 * story.
4734 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4735 * and source (if it's a non-directory or a subdirectory that moves to
4736 * different parent).
4737 * And that - after we got ->i_mutex on parents (until then we don't know
4738 * whether the target exists). Solution: try to be smart with locking
4739 * order for inodes. We rely on the fact that tree topology may change
4740 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4741 * move will be locked. Thus we can rank directories by the tree
4742 * (ancestors first) and rank all non-directories after them.
4743 * That works since everybody except rename does "lock parent, lookup,
4744 * lock child" and rename is under ->s_vfs_rename_mutex.
4745 * HOWEVER, it relies on the assumption that any object with ->lookup()
4746 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4747 * we'd better make sure that there's no link(2) for them.
4748 * d) conversion from fhandle to dentry may come in the wrong moment - when
4749 * we are removing the target. Solution: we will have to grab ->i_mutex
4750 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4751 * ->i_mutex on parents, which works but leads to some truly excessive
4752 * locking].
4753 */
vfs_rename(struct renamedata * rd)4754 int vfs_rename(struct renamedata *rd)
4755 {
4756 int error;
4757 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4758 struct dentry *old_dentry = rd->old_dentry;
4759 struct dentry *new_dentry = rd->new_dentry;
4760 struct inode **delegated_inode = rd->delegated_inode;
4761 unsigned int flags = rd->flags;
4762 bool is_dir = d_is_dir(old_dentry);
4763 struct inode *source = old_dentry->d_inode;
4764 struct inode *target = new_dentry->d_inode;
4765 bool new_is_dir = false;
4766 unsigned max_links = new_dir->i_sb->s_max_links;
4767 struct name_snapshot old_name;
4768 bool lock_old_subdir, lock_new_subdir;
4769
4770 if (source == target)
4771 return 0;
4772
4773 error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4774 if (error)
4775 return error;
4776
4777 if (!target) {
4778 error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4779 } else {
4780 new_is_dir = d_is_dir(new_dentry);
4781
4782 if (!(flags & RENAME_EXCHANGE))
4783 error = may_delete(rd->new_mnt_userns, new_dir,
4784 new_dentry, is_dir);
4785 else
4786 error = may_delete(rd->new_mnt_userns, new_dir,
4787 new_dentry, new_is_dir);
4788 }
4789 if (error)
4790 return error;
4791
4792 if (!old_dir->i_op->rename)
4793 return -EPERM;
4794
4795 /*
4796 * If we are going to change the parent - check write permissions,
4797 * we'll need to flip '..'.
4798 */
4799 if (new_dir != old_dir) {
4800 if (is_dir) {
4801 error = inode_permission(rd->old_mnt_userns, source,
4802 MAY_WRITE);
4803 if (error)
4804 return error;
4805 }
4806 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4807 error = inode_permission(rd->new_mnt_userns, target,
4808 MAY_WRITE);
4809 if (error)
4810 return error;
4811 }
4812 }
4813
4814 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4815 flags);
4816 if (error)
4817 return error;
4818
4819 take_dentry_name_snapshot(&old_name, old_dentry);
4820 dget(new_dentry);
4821 /*
4822 * Lock children.
4823 * The source subdirectory needs to be locked on cross-directory
4824 * rename or cross-directory exchange since its parent changes.
4825 * The target subdirectory needs to be locked on cross-directory
4826 * exchange due to parent change and on any rename due to becoming
4827 * a victim.
4828 * Non-directories need locking in all cases (for NFS reasons);
4829 * they get locked after any subdirectories (in inode address order).
4830 *
4831 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
4832 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
4833 */
4834 lock_old_subdir = new_dir != old_dir;
4835 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
4836 if (is_dir) {
4837 if (lock_old_subdir)
4838 inode_lock_nested(source, I_MUTEX_CHILD);
4839 if (target && (!new_is_dir || lock_new_subdir))
4840 inode_lock(target);
4841 } else if (new_is_dir) {
4842 if (lock_new_subdir)
4843 inode_lock_nested(target, I_MUTEX_CHILD);
4844 inode_lock(source);
4845 } else {
4846 lock_two_nondirectories(source, target);
4847 }
4848
4849 error = -EPERM;
4850 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4851 goto out;
4852
4853 error = -EBUSY;
4854 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4855 goto out;
4856
4857 if (max_links && new_dir != old_dir) {
4858 error = -EMLINK;
4859 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4860 goto out;
4861 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4862 old_dir->i_nlink >= max_links)
4863 goto out;
4864 }
4865 if (!is_dir) {
4866 error = try_break_deleg(source, delegated_inode);
4867 if (error)
4868 goto out;
4869 }
4870 if (target && !new_is_dir) {
4871 error = try_break_deleg(target, delegated_inode);
4872 if (error)
4873 goto out;
4874 }
4875 error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4876 new_dir, new_dentry, flags);
4877 if (error)
4878 goto out;
4879
4880 if (!(flags & RENAME_EXCHANGE) && target) {
4881 if (is_dir) {
4882 shrink_dcache_parent(new_dentry);
4883 target->i_flags |= S_DEAD;
4884 }
4885 dont_mount(new_dentry);
4886 detach_mounts(new_dentry);
4887 }
4888 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4889 if (!(flags & RENAME_EXCHANGE))
4890 d_move(old_dentry, new_dentry);
4891 else
4892 d_exchange(old_dentry, new_dentry);
4893 }
4894 out:
4895 if (!is_dir || lock_old_subdir)
4896 inode_unlock(source);
4897 if (target && (!new_is_dir || lock_new_subdir))
4898 inode_unlock(target);
4899 dput(new_dentry);
4900 if (!error) {
4901 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4902 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4903 if (flags & RENAME_EXCHANGE) {
4904 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4905 new_is_dir, NULL, new_dentry);
4906 }
4907 }
4908 release_dentry_name_snapshot(&old_name);
4909
4910 return error;
4911 }
4912 EXPORT_SYMBOL(vfs_rename);
4913
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)4914 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4915 struct filename *to, unsigned int flags)
4916 {
4917 struct renamedata rd;
4918 struct dentry *old_dentry, *new_dentry;
4919 struct dentry *trap;
4920 struct path old_path, new_path;
4921 struct qstr old_last, new_last;
4922 int old_type, new_type;
4923 struct inode *delegated_inode = NULL;
4924 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4925 bool should_retry = false;
4926 int error = -EINVAL;
4927
4928 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4929 goto put_names;
4930
4931 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4932 (flags & RENAME_EXCHANGE))
4933 goto put_names;
4934
4935 if (flags & RENAME_EXCHANGE)
4936 target_flags = 0;
4937
4938 retry:
4939 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4940 &old_last, &old_type);
4941 if (error)
4942 goto put_names;
4943
4944 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4945 &new_type);
4946 if (error)
4947 goto exit1;
4948
4949 error = -EXDEV;
4950 if (old_path.mnt != new_path.mnt)
4951 goto exit2;
4952
4953 error = -EBUSY;
4954 if (old_type != LAST_NORM)
4955 goto exit2;
4956
4957 if (flags & RENAME_NOREPLACE)
4958 error = -EEXIST;
4959 if (new_type != LAST_NORM)
4960 goto exit2;
4961
4962 error = mnt_want_write(old_path.mnt);
4963 if (error)
4964 goto exit2;
4965
4966 retry_deleg:
4967 trap = lock_rename(new_path.dentry, old_path.dentry);
4968
4969 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4970 lookup_flags);
4971 error = PTR_ERR(old_dentry);
4972 if (IS_ERR(old_dentry))
4973 goto exit3;
4974 /* source must exist */
4975 error = -ENOENT;
4976 if (d_is_negative(old_dentry))
4977 goto exit4;
4978 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4979 lookup_flags | target_flags);
4980 error = PTR_ERR(new_dentry);
4981 if (IS_ERR(new_dentry))
4982 goto exit4;
4983 error = -EEXIST;
4984 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4985 goto exit5;
4986 if (flags & RENAME_EXCHANGE) {
4987 error = -ENOENT;
4988 if (d_is_negative(new_dentry))
4989 goto exit5;
4990
4991 if (!d_is_dir(new_dentry)) {
4992 error = -ENOTDIR;
4993 if (new_last.name[new_last.len])
4994 goto exit5;
4995 }
4996 }
4997 /* unless the source is a directory trailing slashes give -ENOTDIR */
4998 if (!d_is_dir(old_dentry)) {
4999 error = -ENOTDIR;
5000 if (old_last.name[old_last.len])
5001 goto exit5;
5002 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5003 goto exit5;
5004 }
5005 /* source should not be ancestor of target */
5006 error = -EINVAL;
5007 if (old_dentry == trap)
5008 goto exit5;
5009 /* target should not be an ancestor of source */
5010 if (!(flags & RENAME_EXCHANGE))
5011 error = -ENOTEMPTY;
5012 if (new_dentry == trap)
5013 goto exit5;
5014
5015 error = security_path_rename(&old_path, old_dentry,
5016 &new_path, new_dentry, flags);
5017 if (error)
5018 goto exit5;
5019
5020 rd.old_dir = old_path.dentry->d_inode;
5021 rd.old_dentry = old_dentry;
5022 rd.old_mnt_userns = mnt_user_ns(old_path.mnt);
5023 rd.new_dir = new_path.dentry->d_inode;
5024 rd.new_dentry = new_dentry;
5025 rd.new_mnt_userns = mnt_user_ns(new_path.mnt);
5026 rd.delegated_inode = &delegated_inode;
5027 rd.flags = flags;
5028 error = vfs_rename(&rd);
5029 exit5:
5030 dput(new_dentry);
5031 exit4:
5032 dput(old_dentry);
5033 exit3:
5034 unlock_rename(new_path.dentry, old_path.dentry);
5035 if (delegated_inode) {
5036 error = break_deleg_wait(&delegated_inode);
5037 if (!error)
5038 goto retry_deleg;
5039 }
5040 mnt_drop_write(old_path.mnt);
5041 exit2:
5042 if (retry_estale(error, lookup_flags))
5043 should_retry = true;
5044 path_put(&new_path);
5045 exit1:
5046 path_put(&old_path);
5047 if (should_retry) {
5048 should_retry = false;
5049 lookup_flags |= LOOKUP_REVAL;
5050 goto retry;
5051 }
5052 put_names:
5053 putname(from);
5054 putname(to);
5055 return error;
5056 }
5057
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5058 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5059 int, newdfd, const char __user *, newname, unsigned int, flags)
5060 {
5061 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5062 flags);
5063 }
5064
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5065 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5066 int, newdfd, const char __user *, newname)
5067 {
5068 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5069 0);
5070 }
5071
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5072 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5073 {
5074 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5075 getname(newname), 0);
5076 }
5077
readlink_copy(char __user * buffer,int buflen,const char * link)5078 int readlink_copy(char __user *buffer, int buflen, const char *link)
5079 {
5080 int len = PTR_ERR(link);
5081 if (IS_ERR(link))
5082 goto out;
5083
5084 len = strlen(link);
5085 if (len > (unsigned) buflen)
5086 len = buflen;
5087 if (copy_to_user(buffer, link, len))
5088 len = -EFAULT;
5089 out:
5090 return len;
5091 }
5092
5093 /**
5094 * vfs_readlink - copy symlink body into userspace buffer
5095 * @dentry: dentry on which to get symbolic link
5096 * @buffer: user memory pointer
5097 * @buflen: size of buffer
5098 *
5099 * Does not touch atime. That's up to the caller if necessary
5100 *
5101 * Does not call security hook.
5102 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5103 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5104 {
5105 struct inode *inode = d_inode(dentry);
5106 DEFINE_DELAYED_CALL(done);
5107 const char *link;
5108 int res;
5109
5110 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5111 if (unlikely(inode->i_op->readlink))
5112 return inode->i_op->readlink(dentry, buffer, buflen);
5113
5114 if (!d_is_symlink(dentry))
5115 return -EINVAL;
5116
5117 spin_lock(&inode->i_lock);
5118 inode->i_opflags |= IOP_DEFAULT_READLINK;
5119 spin_unlock(&inode->i_lock);
5120 }
5121
5122 link = READ_ONCE(inode->i_link);
5123 if (!link) {
5124 link = inode->i_op->get_link(dentry, inode, &done);
5125 if (IS_ERR(link))
5126 return PTR_ERR(link);
5127 }
5128 res = readlink_copy(buffer, buflen, link);
5129 do_delayed_call(&done);
5130 return res;
5131 }
5132 EXPORT_SYMBOL(vfs_readlink);
5133
5134 /**
5135 * vfs_get_link - get symlink body
5136 * @dentry: dentry on which to get symbolic link
5137 * @done: caller needs to free returned data with this
5138 *
5139 * Calls security hook and i_op->get_link() on the supplied inode.
5140 *
5141 * It does not touch atime. That's up to the caller if necessary.
5142 *
5143 * Does not work on "special" symlinks like /proc/$$/fd/N
5144 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5145 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5146 {
5147 const char *res = ERR_PTR(-EINVAL);
5148 struct inode *inode = d_inode(dentry);
5149
5150 if (d_is_symlink(dentry)) {
5151 res = ERR_PTR(security_inode_readlink(dentry));
5152 if (!res)
5153 res = inode->i_op->get_link(dentry, inode, done);
5154 }
5155 return res;
5156 }
5157 EXPORT_SYMBOL(vfs_get_link);
5158
5159 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5160 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5161 struct delayed_call *callback)
5162 {
5163 char *kaddr;
5164 struct page *page;
5165 struct address_space *mapping = inode->i_mapping;
5166
5167 if (!dentry) {
5168 page = find_get_page(mapping, 0);
5169 if (!page)
5170 return ERR_PTR(-ECHILD);
5171 if (!PageUptodate(page)) {
5172 put_page(page);
5173 return ERR_PTR(-ECHILD);
5174 }
5175 } else {
5176 page = read_mapping_page(mapping, 0, NULL);
5177 if (IS_ERR(page))
5178 return (char*)page;
5179 }
5180 set_delayed_call(callback, page_put_link, page);
5181 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5182 kaddr = page_address(page);
5183 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5184 return kaddr;
5185 }
5186
5187 EXPORT_SYMBOL(page_get_link);
5188
page_put_link(void * arg)5189 void page_put_link(void *arg)
5190 {
5191 put_page(arg);
5192 }
5193 EXPORT_SYMBOL(page_put_link);
5194
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5195 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5196 {
5197 DEFINE_DELAYED_CALL(done);
5198 int res = readlink_copy(buffer, buflen,
5199 page_get_link(dentry, d_inode(dentry),
5200 &done));
5201 do_delayed_call(&done);
5202 return res;
5203 }
5204 EXPORT_SYMBOL(page_readlink);
5205
page_symlink(struct inode * inode,const char * symname,int len)5206 int page_symlink(struct inode *inode, const char *symname, int len)
5207 {
5208 struct address_space *mapping = inode->i_mapping;
5209 const struct address_space_operations *aops = mapping->a_ops;
5210 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5211 struct page *page;
5212 void *fsdata = NULL;
5213 int err;
5214 unsigned int flags;
5215
5216 retry:
5217 if (nofs)
5218 flags = memalloc_nofs_save();
5219 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5220 if (nofs)
5221 memalloc_nofs_restore(flags);
5222 if (err)
5223 goto fail;
5224
5225 memcpy(page_address(page), symname, len-1);
5226
5227 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5228 page, fsdata);
5229 if (err < 0)
5230 goto fail;
5231 if (err < len-1)
5232 goto retry;
5233
5234 mark_inode_dirty(inode);
5235 return 0;
5236 fail:
5237 return err;
5238 }
5239 EXPORT_SYMBOL(page_symlink);
5240
5241 const struct inode_operations page_symlink_inode_operations = {
5242 .get_link = page_get_link,
5243 };
5244 EXPORT_SYMBOL(page_symlink_inode_operations);
5245