1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "dc.h"
28
29 #include "core_status.h"
30 #include "core_types.h"
31 #include "hw_sequencer.h"
32 #include "dce/dce_hwseq.h"
33
34 #include "resource.h"
35
36 #include "clk_mgr.h"
37 #include "clock_source.h"
38 #include "dc_bios_types.h"
39
40 #include "bios_parser_interface.h"
41 #include "bios/bios_parser_helper.h"
42 #include "include/irq_service_interface.h"
43 #include "transform.h"
44 #include "dmcu.h"
45 #include "dpp.h"
46 #include "timing_generator.h"
47 #include "abm.h"
48 #include "virtual/virtual_link_encoder.h"
49 #include "hubp.h"
50
51 #include "link_hwss.h"
52 #include "link_encoder.h"
53 #include "link_enc_cfg.h"
54
55 #include "dc_link.h"
56 #include "dc_link_ddc.h"
57 #include "dm_helpers.h"
58 #include "mem_input.h"
59
60 #include "dc_link_dp.h"
61 #include "dc_dmub_srv.h"
62
63 #include "dsc.h"
64
65 #include "vm_helper.h"
66
67 #include "dce/dce_i2c.h"
68
69 #include "dmub/dmub_srv.h"
70
71 #include "i2caux_interface.h"
72
73 #include "dce/dmub_psr.h"
74
75 #include "dce/dmub_hw_lock_mgr.h"
76
77 #include "dc_trace.h"
78
79 #include "dce/dmub_outbox.h"
80
81 #define CTX \
82 dc->ctx
83
84 #define DC_LOGGER \
85 dc->ctx->logger
86
87 static const char DC_BUILD_ID[] = "production-build";
88
89 /**
90 * DOC: Overview
91 *
92 * DC is the OS-agnostic component of the amdgpu DC driver.
93 *
94 * DC maintains and validates a set of structs representing the state of the
95 * driver and writes that state to AMD hardware
96 *
97 * Main DC HW structs:
98 *
99 * struct dc - The central struct. One per driver. Created on driver load,
100 * destroyed on driver unload.
101 *
102 * struct dc_context - One per driver.
103 * Used as a backpointer by most other structs in dc.
104 *
105 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
106 * plugpoints). Created on driver load, destroyed on driver unload.
107 *
108 * struct dc_sink - One per display. Created on boot or hotplug.
109 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
110 * (the display directly attached). It may also have one or more remote
111 * sinks (in the Multi-Stream Transport case)
112 *
113 * struct resource_pool - One per driver. Represents the hw blocks not in the
114 * main pipeline. Not directly accessible by dm.
115 *
116 * Main dc state structs:
117 *
118 * These structs can be created and destroyed as needed. There is a full set of
119 * these structs in dc->current_state representing the currently programmed state.
120 *
121 * struct dc_state - The global DC state to track global state information,
122 * such as bandwidth values.
123 *
124 * struct dc_stream_state - Represents the hw configuration for the pipeline from
125 * a framebuffer to a display. Maps one-to-one with dc_sink.
126 *
127 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
128 * and may have more in the Multi-Plane Overlay case.
129 *
130 * struct resource_context - Represents the programmable state of everything in
131 * the resource_pool. Not directly accessible by dm.
132 *
133 * struct pipe_ctx - A member of struct resource_context. Represents the
134 * internal hardware pipeline components. Each dc_plane_state has either
135 * one or two (in the pipe-split case).
136 */
137
138 /* Private functions */
139
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)140 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
141 {
142 if (new > *original)
143 *original = new;
144 }
145
destroy_links(struct dc * dc)146 static void destroy_links(struct dc *dc)
147 {
148 uint32_t i;
149
150 for (i = 0; i < dc->link_count; i++) {
151 if (NULL != dc->links[i])
152 link_destroy(&dc->links[i]);
153 }
154 }
155
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)156 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
157 {
158 int i;
159 uint32_t count = 0;
160
161 for (i = 0; i < num_links; i++) {
162 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
163 links[i]->is_internal_display)
164 count++;
165 }
166
167 return count;
168 }
169
get_seamless_boot_stream_count(struct dc_state * ctx)170 static int get_seamless_boot_stream_count(struct dc_state *ctx)
171 {
172 uint8_t i;
173 uint8_t seamless_boot_stream_count = 0;
174
175 for (i = 0; i < ctx->stream_count; i++)
176 if (ctx->streams[i]->apply_seamless_boot_optimization)
177 seamless_boot_stream_count++;
178
179 return seamless_boot_stream_count;
180 }
181
create_links(struct dc * dc,uint32_t num_virtual_links)182 static bool create_links(
183 struct dc *dc,
184 uint32_t num_virtual_links)
185 {
186 int i;
187 int connectors_num;
188 struct dc_bios *bios = dc->ctx->dc_bios;
189
190 dc->link_count = 0;
191
192 connectors_num = bios->funcs->get_connectors_number(bios);
193
194 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
195
196 if (connectors_num > ENUM_ID_COUNT) {
197 dm_error(
198 "DC: Number of connectors %d exceeds maximum of %d!\n",
199 connectors_num,
200 ENUM_ID_COUNT);
201 return false;
202 }
203
204 dm_output_to_console(
205 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
206 __func__,
207 connectors_num,
208 num_virtual_links);
209
210 for (i = 0; i < connectors_num; i++) {
211 struct link_init_data link_init_params = {0};
212 struct dc_link *link;
213
214 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
215
216 link_init_params.ctx = dc->ctx;
217 /* next BIOS object table connector */
218 link_init_params.connector_index = i;
219 link_init_params.link_index = dc->link_count;
220 link_init_params.dc = dc;
221 link = link_create(&link_init_params);
222
223 if (link) {
224 dc->links[dc->link_count] = link;
225 link->dc = dc;
226 ++dc->link_count;
227 }
228 }
229
230 DC_LOG_DC("BIOS object table - end");
231
232 /* Create a link for each usb4 dpia port */
233 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
234 struct link_init_data link_init_params = {0};
235 struct dc_link *link;
236
237 link_init_params.ctx = dc->ctx;
238 link_init_params.connector_index = i;
239 link_init_params.link_index = dc->link_count;
240 link_init_params.dc = dc;
241 link_init_params.is_dpia_link = true;
242
243 link = link_create(&link_init_params);
244 if (link) {
245 dc->links[dc->link_count] = link;
246 link->dc = dc;
247 ++dc->link_count;
248 }
249 }
250
251 for (i = 0; i < num_virtual_links; i++) {
252 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
253 struct encoder_init_data enc_init = {0};
254
255 if (link == NULL) {
256 BREAK_TO_DEBUGGER();
257 goto failed_alloc;
258 }
259
260 link->link_index = dc->link_count;
261 dc->links[dc->link_count] = link;
262 dc->link_count++;
263
264 link->ctx = dc->ctx;
265 link->dc = dc;
266 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
267 link->link_id.type = OBJECT_TYPE_CONNECTOR;
268 link->link_id.id = CONNECTOR_ID_VIRTUAL;
269 link->link_id.enum_id = ENUM_ID_1;
270 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
271
272 if (!link->link_enc) {
273 BREAK_TO_DEBUGGER();
274 goto failed_alloc;
275 }
276
277 link->link_status.dpcd_caps = &link->dpcd_caps;
278
279 enc_init.ctx = dc->ctx;
280 enc_init.channel = CHANNEL_ID_UNKNOWN;
281 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
282 enc_init.transmitter = TRANSMITTER_UNKNOWN;
283 enc_init.connector = link->link_id;
284 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
285 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
286 enc_init.encoder.enum_id = ENUM_ID_1;
287 virtual_link_encoder_construct(link->link_enc, &enc_init);
288 }
289
290 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
291
292 return true;
293
294 failed_alloc:
295 return false;
296 }
297
298 /* Create additional DIG link encoder objects if fewer than the platform
299 * supports were created during link construction. This can happen if the
300 * number of physical connectors is less than the number of DIGs.
301 */
create_link_encoders(struct dc * dc)302 static bool create_link_encoders(struct dc *dc)
303 {
304 bool res = true;
305 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
306 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
307 int i;
308
309 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
310 * link encoders and physical display endpoints and does not require
311 * additional link encoder objects.
312 */
313 if (num_usb4_dpia == 0)
314 return res;
315
316 /* Create as many link encoder objects as the platform supports. DPIA
317 * endpoints can be programmably mapped to any DIG.
318 */
319 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
320 for (i = 0; i < num_dig_link_enc; i++) {
321 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
322
323 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
324 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
325 (enum engine_id)(ENGINE_ID_DIGA + i));
326 if (link_enc) {
327 dc->res_pool->link_encoders[i] = link_enc;
328 dc->res_pool->dig_link_enc_count++;
329 } else {
330 res = false;
331 }
332 }
333 }
334 }
335
336 return res;
337 }
338
339 /* Destroy any additional DIG link encoder objects created by
340 * create_link_encoders().
341 * NB: Must only be called after destroy_links().
342 */
destroy_link_encoders(struct dc * dc)343 static void destroy_link_encoders(struct dc *dc)
344 {
345 unsigned int num_usb4_dpia;
346 unsigned int num_dig_link_enc;
347 int i;
348
349 if (!dc->res_pool)
350 return;
351
352 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
353 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
354
355 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
356 * link encoders and physical display endpoints and does not require
357 * additional link encoder objects.
358 */
359 if (num_usb4_dpia == 0)
360 return;
361
362 for (i = 0; i < num_dig_link_enc; i++) {
363 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
364
365 if (link_enc) {
366 link_enc->funcs->destroy(&link_enc);
367 dc->res_pool->link_encoders[i] = NULL;
368 dc->res_pool->dig_link_enc_count--;
369 }
370 }
371 }
372
dc_perf_trace_create(void)373 static struct dc_perf_trace *dc_perf_trace_create(void)
374 {
375 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
376 }
377
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)378 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
379 {
380 kfree(*perf_trace);
381 *perf_trace = NULL;
382 }
383
384 /**
385 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
386 * @dc: dc reference
387 * @stream: Initial dc stream state
388 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
389 *
390 * Looks up the pipe context of dc_stream_state and updates the
391 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
392 * Rate, which is a power-saving feature that targets reducing panel
393 * refresh rate while the screen is static
394 *
395 * Return: %true if the pipe context is found and adjusted;
396 * %false if the pipe context is not found.
397 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)398 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
399 struct dc_stream_state *stream,
400 struct dc_crtc_timing_adjust *adjust)
401 {
402 int i;
403
404 /*
405 * Don't adjust DRR while there's bandwidth optimizations pending to
406 * avoid conflicting with firmware updates.
407 */
408 if (dc->ctx->dce_version > DCE_VERSION_MAX)
409 if (dc->optimized_required || dc->wm_optimized_required)
410 return false;
411
412 stream->adjust.v_total_max = adjust->v_total_max;
413 stream->adjust.v_total_mid = adjust->v_total_mid;
414 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
415 stream->adjust.v_total_min = adjust->v_total_min;
416
417 for (i = 0; i < MAX_PIPES; i++) {
418 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
419
420 if (pipe->stream == stream && pipe->stream_res.tg) {
421 dc->hwss.set_drr(&pipe,
422 1,
423 *adjust);
424
425 return true;
426 }
427 }
428 return false;
429 }
430
431 /**
432 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
433 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
434 *
435 * @dc: [in] dc reference
436 * @stream: [in] Initial dc stream state
437 * @refresh_rate: [in] new refresh_rate
438 *
439 * Return: %true if the pipe context is found and there is an associated
440 * timing_generator for the DC;
441 * %false if the pipe context is not found or there is no
442 * timing_generator for the DC.
443 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)444 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
445 struct dc_stream_state *stream,
446 uint32_t *refresh_rate)
447 {
448 bool status = false;
449
450 int i = 0;
451
452 for (i = 0; i < MAX_PIPES; i++) {
453 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
454
455 if (pipe->stream == stream && pipe->stream_res.tg) {
456 /* Only execute if a function pointer has been defined for
457 * the DC version in question
458 */
459 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
460 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
461
462 status = true;
463
464 break;
465 }
466 }
467 }
468
469 return status;
470 }
471
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)472 bool dc_stream_get_crtc_position(struct dc *dc,
473 struct dc_stream_state **streams, int num_streams,
474 unsigned int *v_pos, unsigned int *nom_v_pos)
475 {
476 /* TODO: Support multiple streams */
477 const struct dc_stream_state *stream = streams[0];
478 int i;
479 bool ret = false;
480 struct crtc_position position;
481
482 for (i = 0; i < MAX_PIPES; i++) {
483 struct pipe_ctx *pipe =
484 &dc->current_state->res_ctx.pipe_ctx[i];
485
486 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
487 dc->hwss.get_position(&pipe, 1, &position);
488
489 *v_pos = position.vertical_count;
490 *nom_v_pos = position.nominal_vcount;
491 ret = true;
492 }
493 }
494 return ret;
495 }
496
497 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
dc_stream_forward_dmcu_crc_window(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window)498 bool dc_stream_forward_dmcu_crc_window(struct dc *dc, struct dc_stream_state *stream,
499 struct crc_params *crc_window)
500 {
501 int i;
502 struct dmcu *dmcu = dc->res_pool->dmcu;
503 struct pipe_ctx *pipe;
504 struct crc_region tmp_win, *crc_win;
505 struct otg_phy_mux mapping_tmp, *mux_mapping;
506
507 /*crc window can't be null*/
508 if (!crc_window)
509 return false;
510
511 if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
512 crc_win = &tmp_win;
513 mux_mapping = &mapping_tmp;
514 /*set crc window*/
515 tmp_win.x_start = crc_window->windowa_x_start;
516 tmp_win.y_start = crc_window->windowa_y_start;
517 tmp_win.x_end = crc_window->windowa_x_end;
518 tmp_win.y_end = crc_window->windowa_y_end;
519
520 for (i = 0; i < MAX_PIPES; i++) {
521 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
522 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
523 break;
524 }
525
526 /* Stream not found */
527 if (i == MAX_PIPES)
528 return false;
529
530
531 /*set mux routing info*/
532 mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
533 mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
534
535 dmcu->funcs->forward_crc_window(dmcu, crc_win, mux_mapping);
536 } else {
537 DC_LOG_DC("dmcu is not initialized");
538 return false;
539 }
540
541 return true;
542 }
543
dc_stream_stop_dmcu_crc_win_update(struct dc * dc,struct dc_stream_state * stream)544 bool dc_stream_stop_dmcu_crc_win_update(struct dc *dc, struct dc_stream_state *stream)
545 {
546 int i;
547 struct dmcu *dmcu = dc->res_pool->dmcu;
548 struct pipe_ctx *pipe;
549 struct otg_phy_mux mapping_tmp, *mux_mapping;
550
551 if ((dmcu != NULL && dmcu->funcs->is_dmcu_initialized(dmcu))) {
552 mux_mapping = &mapping_tmp;
553
554 for (i = 0; i < MAX_PIPES; i++) {
555 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
556 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
557 break;
558 }
559
560 /* Stream not found */
561 if (i == MAX_PIPES)
562 return false;
563
564
565 /*set mux routing info*/
566 mapping_tmp.phy_output_num = stream->link->link_enc_hw_inst;
567 mapping_tmp.otg_output_num = pipe->stream_res.tg->inst;
568
569 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
570 } else {
571 DC_LOG_DC("dmcu is not initialized");
572 return false;
573 }
574
575 return true;
576 }
577 #endif
578
579 /**
580 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
581 * @dc: DC Object
582 * @stream: The stream to configure CRC on.
583 * @enable: Enable CRC if true, disable otherwise.
584 * @crc_window: CRC window (x/y start/end) information
585 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
586 * once.
587 *
588 * By default, only CRC0 is configured, and the entire frame is used to
589 * calculate the CRC.
590 *
591 * Return: %false if the stream is not found or CRC capture is not supported;
592 * %true if the stream has been configured.
593 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)594 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
595 struct crc_params *crc_window, bool enable, bool continuous)
596 {
597 int i;
598 struct pipe_ctx *pipe;
599 struct crc_params param;
600 struct timing_generator *tg;
601
602 for (i = 0; i < MAX_PIPES; i++) {
603 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
604 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
605 break;
606 }
607 /* Stream not found */
608 if (i == MAX_PIPES)
609 return false;
610
611 /* By default, capture the full frame */
612 param.windowa_x_start = 0;
613 param.windowa_y_start = 0;
614 param.windowa_x_end = pipe->stream->timing.h_addressable;
615 param.windowa_y_end = pipe->stream->timing.v_addressable;
616 param.windowb_x_start = 0;
617 param.windowb_y_start = 0;
618 param.windowb_x_end = pipe->stream->timing.h_addressable;
619 param.windowb_y_end = pipe->stream->timing.v_addressable;
620
621 if (crc_window) {
622 param.windowa_x_start = crc_window->windowa_x_start;
623 param.windowa_y_start = crc_window->windowa_y_start;
624 param.windowa_x_end = crc_window->windowa_x_end;
625 param.windowa_y_end = crc_window->windowa_y_end;
626 param.windowb_x_start = crc_window->windowb_x_start;
627 param.windowb_y_start = crc_window->windowb_y_start;
628 param.windowb_x_end = crc_window->windowb_x_end;
629 param.windowb_y_end = crc_window->windowb_y_end;
630 }
631
632 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
633 param.odm_mode = pipe->next_odm_pipe ? 1:0;
634
635 /* Default to the union of both windows */
636 param.selection = UNION_WINDOW_A_B;
637 param.continuous_mode = continuous;
638 param.enable = enable;
639
640 tg = pipe->stream_res.tg;
641
642 /* Only call if supported */
643 if (tg->funcs->configure_crc)
644 return tg->funcs->configure_crc(tg, ¶m);
645 DC_LOG_WARNING("CRC capture not supported.");
646 return false;
647 }
648
649 /**
650 * dc_stream_get_crc() - Get CRC values for the given stream.
651 *
652 * @dc: DC object.
653 * @stream: The DC stream state of the stream to get CRCs from.
654 * @r_cr: CRC value for the red component.
655 * @g_y: CRC value for the green component.
656 * @b_cb: CRC value for the blue component.
657 *
658 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
659 *
660 * Return:
661 * %false if stream is not found, or if CRCs are not enabled.
662 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)663 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
664 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
665 {
666 int i;
667 struct pipe_ctx *pipe;
668 struct timing_generator *tg;
669
670 for (i = 0; i < MAX_PIPES; i++) {
671 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
672 if (pipe->stream == stream)
673 break;
674 }
675 /* Stream not found */
676 if (i == MAX_PIPES)
677 return false;
678
679 tg = pipe->stream_res.tg;
680
681 if (tg->funcs->get_crc)
682 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
683 DC_LOG_WARNING("CRC capture not supported.");
684 return false;
685 }
686
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)687 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
688 enum dc_dynamic_expansion option)
689 {
690 /* OPP FMT dyn expansion updates*/
691 int i;
692 struct pipe_ctx *pipe_ctx;
693
694 for (i = 0; i < MAX_PIPES; i++) {
695 if (dc->current_state->res_ctx.pipe_ctx[i].stream
696 == stream) {
697 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
698 pipe_ctx->stream_res.opp->dyn_expansion = option;
699 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
700 pipe_ctx->stream_res.opp,
701 COLOR_SPACE_YCBCR601,
702 stream->timing.display_color_depth,
703 stream->signal);
704 }
705 }
706 }
707
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)708 void dc_stream_set_dither_option(struct dc_stream_state *stream,
709 enum dc_dither_option option)
710 {
711 struct bit_depth_reduction_params params;
712 struct dc_link *link = stream->link;
713 struct pipe_ctx *pipes = NULL;
714 int i;
715
716 for (i = 0; i < MAX_PIPES; i++) {
717 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
718 stream) {
719 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
720 break;
721 }
722 }
723
724 if (!pipes)
725 return;
726 if (option > DITHER_OPTION_MAX)
727 return;
728
729 stream->dither_option = option;
730
731 memset(¶ms, 0, sizeof(params));
732 resource_build_bit_depth_reduction_params(stream, ¶ms);
733 stream->bit_depth_params = params;
734
735 if (pipes->plane_res.xfm &&
736 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
737 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
738 pipes->plane_res.xfm,
739 pipes->plane_res.scl_data.lb_params.depth,
740 &stream->bit_depth_params);
741 }
742
743 pipes->stream_res.opp->funcs->
744 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
745 }
746
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)747 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
748 {
749 int i;
750 bool ret = false;
751 struct pipe_ctx *pipes;
752
753 for (i = 0; i < MAX_PIPES; i++) {
754 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
755 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
756 dc->hwss.program_gamut_remap(pipes);
757 ret = true;
758 }
759 }
760
761 return ret;
762 }
763
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)764 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
765 {
766 int i;
767 bool ret = false;
768 struct pipe_ctx *pipes;
769
770 for (i = 0; i < MAX_PIPES; i++) {
771 if (dc->current_state->res_ctx.pipe_ctx[i].stream
772 == stream) {
773
774 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
775 dc->hwss.program_output_csc(dc,
776 pipes,
777 stream->output_color_space,
778 stream->csc_color_matrix.matrix,
779 pipes->stream_res.opp->inst);
780 ret = true;
781 }
782 }
783
784 return ret;
785 }
786
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)787 void dc_stream_set_static_screen_params(struct dc *dc,
788 struct dc_stream_state **streams,
789 int num_streams,
790 const struct dc_static_screen_params *params)
791 {
792 int i, j;
793 struct pipe_ctx *pipes_affected[MAX_PIPES];
794 int num_pipes_affected = 0;
795
796 for (i = 0; i < num_streams; i++) {
797 struct dc_stream_state *stream = streams[i];
798
799 for (j = 0; j < MAX_PIPES; j++) {
800 if (dc->current_state->res_ctx.pipe_ctx[j].stream
801 == stream) {
802 pipes_affected[num_pipes_affected++] =
803 &dc->current_state->res_ctx.pipe_ctx[j];
804 }
805 }
806 }
807
808 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
809 }
810
dc_destruct(struct dc * dc)811 static void dc_destruct(struct dc *dc)
812 {
813 // reset link encoder assignment table on destruct
814 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
815 link_enc_cfg_init(dc, dc->current_state);
816
817 if (dc->current_state) {
818 dc_release_state(dc->current_state);
819 dc->current_state = NULL;
820 }
821
822 destroy_links(dc);
823
824 destroy_link_encoders(dc);
825
826 if (dc->clk_mgr) {
827 dc_destroy_clk_mgr(dc->clk_mgr);
828 dc->clk_mgr = NULL;
829 }
830
831 dc_destroy_resource_pool(dc);
832
833 if (dc->ctx->gpio_service)
834 dal_gpio_service_destroy(&dc->ctx->gpio_service);
835
836 if (dc->ctx->created_bios)
837 dal_bios_parser_destroy(&dc->ctx->dc_bios);
838
839 dc_perf_trace_destroy(&dc->ctx->perf_trace);
840
841 kfree(dc->ctx);
842 dc->ctx = NULL;
843
844 kfree(dc->bw_vbios);
845 dc->bw_vbios = NULL;
846
847 kfree(dc->bw_dceip);
848 dc->bw_dceip = NULL;
849
850 kfree(dc->dcn_soc);
851 dc->dcn_soc = NULL;
852
853 kfree(dc->dcn_ip);
854 dc->dcn_ip = NULL;
855
856 kfree(dc->vm_helper);
857 dc->vm_helper = NULL;
858
859 }
860
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)861 static bool dc_construct_ctx(struct dc *dc,
862 const struct dc_init_data *init_params)
863 {
864 struct dc_context *dc_ctx;
865 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
866
867 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
868 if (!dc_ctx)
869 return false;
870
871 dc_ctx->cgs_device = init_params->cgs_device;
872 dc_ctx->driver_context = init_params->driver;
873 dc_ctx->dc = dc;
874 dc_ctx->asic_id = init_params->asic_id;
875 dc_ctx->dc_sink_id_count = 0;
876 dc_ctx->dc_stream_id_count = 0;
877 dc_ctx->dce_environment = init_params->dce_environment;
878 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
879 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
880
881 /* Create logger */
882
883 dc_version = resource_parse_asic_id(init_params->asic_id);
884 dc_ctx->dce_version = dc_version;
885
886 dc_ctx->perf_trace = dc_perf_trace_create();
887 if (!dc_ctx->perf_trace) {
888 kfree(dc_ctx);
889 ASSERT_CRITICAL(false);
890 return false;
891 }
892
893 dc->ctx = dc_ctx;
894
895 return true;
896 }
897
dc_construct(struct dc * dc,const struct dc_init_data * init_params)898 static bool dc_construct(struct dc *dc,
899 const struct dc_init_data *init_params)
900 {
901 struct dc_context *dc_ctx;
902 struct bw_calcs_dceip *dc_dceip;
903 struct bw_calcs_vbios *dc_vbios;
904 struct dcn_soc_bounding_box *dcn_soc;
905 struct dcn_ip_params *dcn_ip;
906
907 dc->config = init_params->flags;
908
909 // Allocate memory for the vm_helper
910 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
911 if (!dc->vm_helper) {
912 dm_error("%s: failed to create dc->vm_helper\n", __func__);
913 goto fail;
914 }
915
916 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
917
918 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
919 if (!dc_dceip) {
920 dm_error("%s: failed to create dceip\n", __func__);
921 goto fail;
922 }
923
924 dc->bw_dceip = dc_dceip;
925
926 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
927 if (!dc_vbios) {
928 dm_error("%s: failed to create vbios\n", __func__);
929 goto fail;
930 }
931
932 dc->bw_vbios = dc_vbios;
933 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
934 if (!dcn_soc) {
935 dm_error("%s: failed to create dcn_soc\n", __func__);
936 goto fail;
937 }
938
939 dc->dcn_soc = dcn_soc;
940
941 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
942 if (!dcn_ip) {
943 dm_error("%s: failed to create dcn_ip\n", __func__);
944 goto fail;
945 }
946
947 dc->dcn_ip = dcn_ip;
948
949 if (!dc_construct_ctx(dc, init_params)) {
950 dm_error("%s: failed to create ctx\n", __func__);
951 goto fail;
952 }
953
954 dc_ctx = dc->ctx;
955
956 /* Resource should construct all asic specific resources.
957 * This should be the only place where we need to parse the asic id
958 */
959 if (init_params->vbios_override)
960 dc_ctx->dc_bios = init_params->vbios_override;
961 else {
962 /* Create BIOS parser */
963 struct bp_init_data bp_init_data;
964
965 bp_init_data.ctx = dc_ctx;
966 bp_init_data.bios = init_params->asic_id.atombios_base_address;
967
968 dc_ctx->dc_bios = dal_bios_parser_create(
969 &bp_init_data, dc_ctx->dce_version);
970
971 if (!dc_ctx->dc_bios) {
972 ASSERT_CRITICAL(false);
973 goto fail;
974 }
975
976 dc_ctx->created_bios = true;
977 }
978
979 dc->vendor_signature = init_params->vendor_signature;
980
981 /* Create GPIO service */
982 dc_ctx->gpio_service = dal_gpio_service_create(
983 dc_ctx->dce_version,
984 dc_ctx->dce_environment,
985 dc_ctx);
986
987 if (!dc_ctx->gpio_service) {
988 ASSERT_CRITICAL(false);
989 goto fail;
990 }
991
992 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
993 if (!dc->res_pool)
994 goto fail;
995
996 /* set i2c speed if not done by the respective dcnxxx__resource.c */
997 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
998 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
999 if (dc->caps.max_optimizable_video_width == 0)
1000 dc->caps.max_optimizable_video_width = 5120;
1001 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1002 if (!dc->clk_mgr)
1003 goto fail;
1004 #ifdef CONFIG_DRM_AMD_DC_DCN
1005 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1006
1007 if (dc->res_pool->funcs->update_bw_bounding_box) {
1008 DC_FP_START();
1009 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1010 DC_FP_END();
1011 }
1012 #endif
1013
1014 /* Creation of current_state must occur after dc->dml
1015 * is initialized in dc_create_resource_pool because
1016 * on creation it copies the contents of dc->dml
1017 */
1018
1019 dc->current_state = dc_create_state(dc);
1020
1021 if (!dc->current_state) {
1022 dm_error("%s: failed to create validate ctx\n", __func__);
1023 goto fail;
1024 }
1025
1026 if (!create_links(dc, init_params->num_virtual_links))
1027 goto fail;
1028
1029 /* Create additional DIG link encoder objects if fewer than the platform
1030 * supports were created during link construction.
1031 */
1032 if (!create_link_encoders(dc))
1033 goto fail;
1034
1035 dc_resource_state_construct(dc, dc->current_state);
1036
1037 return true;
1038
1039 fail:
1040 return false;
1041 }
1042
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1043 static void disable_all_writeback_pipes_for_stream(
1044 const struct dc *dc,
1045 struct dc_stream_state *stream,
1046 struct dc_state *context)
1047 {
1048 int i;
1049
1050 for (i = 0; i < stream->num_wb_info; i++)
1051 stream->writeback_info[i].wb_enabled = false;
1052 }
1053
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1054 static void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context,
1055 struct dc_stream_state *stream, bool lock)
1056 {
1057 int i;
1058
1059 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1060 if (dc->hwss.interdependent_update_lock)
1061 dc->hwss.interdependent_update_lock(dc, context, lock);
1062 else {
1063 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1064 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1065 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1066
1067 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1068 if (stream == pipe_ctx->stream) {
1069 if (!pipe_ctx->top_pipe &&
1070 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1071 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1072 }
1073 }
1074 }
1075 }
1076
disable_dangling_plane(struct dc * dc,struct dc_state * context)1077 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1078 {
1079 int i, j;
1080 struct dc_state *dangling_context = dc_create_state(dc);
1081 struct dc_state *current_ctx;
1082 struct pipe_ctx *pipe;
1083 struct timing_generator *tg;
1084
1085 if (dangling_context == NULL)
1086 return;
1087
1088 dc_resource_state_copy_construct(dc->current_state, dangling_context);
1089
1090 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1091 struct dc_stream_state *old_stream =
1092 dc->current_state->res_ctx.pipe_ctx[i].stream;
1093 bool should_disable = true;
1094 bool pipe_split_change = false;
1095
1096 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1097 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1098 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1099 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1100 else
1101 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1102 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1103
1104 for (j = 0; j < context->stream_count; j++) {
1105 if (old_stream == context->streams[j]) {
1106 should_disable = false;
1107 break;
1108 }
1109 }
1110 if (!should_disable && pipe_split_change &&
1111 dc->current_state->stream_count != context->stream_count)
1112 should_disable = true;
1113
1114 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1115 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1116 struct pipe_ctx *old_pipe, *new_pipe;
1117
1118 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1119 new_pipe = &context->res_ctx.pipe_ctx[i];
1120
1121 if (old_pipe->plane_state && !new_pipe->plane_state)
1122 should_disable = true;
1123 }
1124
1125 if (should_disable && old_stream) {
1126 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1127 tg = pipe->stream_res.tg;
1128 /* When disabling plane for a phantom pipe, we must turn on the
1129 * phantom OTG so the disable programming gets the double buffer
1130 * update. Otherwise the pipe will be left in a partially disabled
1131 * state that can result in underflow or hang when enabling it
1132 * again for different use.
1133 */
1134 if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1135 if (tg->funcs->enable_crtc)
1136 tg->funcs->enable_crtc(tg);
1137 }
1138 dc_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1139 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1140
1141 if (dc->hwss.apply_ctx_for_surface) {
1142 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1143 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1144 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1145 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1146 }
1147 if (dc->hwss.program_front_end_for_ctx) {
1148 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1149 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1150 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1151 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1152 }
1153 /* We need to put the phantom OTG back into it's default (disabled) state or we
1154 * can get corruption when transition from one SubVP config to a different one.
1155 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1156 * will still get it's double buffer update.
1157 */
1158 if (old_stream->mall_stream_config.type == SUBVP_PHANTOM) {
1159 if (tg->funcs->disable_phantom_crtc)
1160 tg->funcs->disable_phantom_crtc(tg);
1161 }
1162 }
1163 }
1164
1165 current_ctx = dc->current_state;
1166 dc->current_state = dangling_context;
1167 dc_release_state(current_ctx);
1168 }
1169
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1170 static void disable_vbios_mode_if_required(
1171 struct dc *dc,
1172 struct dc_state *context)
1173 {
1174 unsigned int i, j;
1175
1176 /* check if timing_changed, disable stream*/
1177 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1178 struct dc_stream_state *stream = NULL;
1179 struct dc_link *link = NULL;
1180 struct pipe_ctx *pipe = NULL;
1181
1182 pipe = &context->res_ctx.pipe_ctx[i];
1183 stream = pipe->stream;
1184 if (stream == NULL)
1185 continue;
1186
1187 if (stream->apply_seamless_boot_optimization)
1188 continue;
1189
1190 // only looking for first odm pipe
1191 if (pipe->prev_odm_pipe)
1192 continue;
1193
1194 if (stream->link->local_sink &&
1195 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1196 link = stream->link;
1197 }
1198
1199 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1200 unsigned int enc_inst, tg_inst = 0;
1201 unsigned int pix_clk_100hz;
1202
1203 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1204 if (enc_inst != ENGINE_ID_UNKNOWN) {
1205 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1206 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1207 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1208 dc->res_pool->stream_enc[j]);
1209 break;
1210 }
1211 }
1212
1213 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1214 dc->res_pool->dp_clock_source,
1215 tg_inst, &pix_clk_100hz);
1216
1217 if (link->link_status.link_active) {
1218 uint32_t requested_pix_clk_100hz =
1219 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1220
1221 if (pix_clk_100hz != requested_pix_clk_100hz) {
1222 core_link_disable_stream(pipe);
1223 pipe->stream->dpms_off = false;
1224 }
1225 }
1226 }
1227 }
1228 }
1229 }
1230
wait_for_no_pipes_pending(struct dc * dc,struct dc_state * context)1231 static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1232 {
1233 int i;
1234 PERF_TRACE();
1235 for (i = 0; i < MAX_PIPES; i++) {
1236 int count = 0;
1237 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1238
1239 if (!pipe->plane_state || pipe->stream->mall_stream_config.type == SUBVP_PHANTOM)
1240 continue;
1241
1242 /* Timeout 100 ms */
1243 while (count < 100000) {
1244 /* Must set to false to start with, due to OR in update function */
1245 pipe->plane_state->status.is_flip_pending = false;
1246 dc->hwss.update_pending_status(pipe);
1247 if (!pipe->plane_state->status.is_flip_pending)
1248 break;
1249 udelay(1);
1250 count++;
1251 }
1252 ASSERT(!pipe->plane_state->status.is_flip_pending);
1253 }
1254 PERF_TRACE();
1255 }
1256
1257 /* Public functions */
1258
dc_create(const struct dc_init_data * init_params)1259 struct dc *dc_create(const struct dc_init_data *init_params)
1260 {
1261 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1262 unsigned int full_pipe_count;
1263
1264 if (!dc)
1265 return NULL;
1266
1267 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1268 if (!dc_construct_ctx(dc, init_params))
1269 goto destruct_dc;
1270 } else {
1271 if (!dc_construct(dc, init_params))
1272 goto destruct_dc;
1273
1274 full_pipe_count = dc->res_pool->pipe_count;
1275 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1276 full_pipe_count--;
1277 dc->caps.max_streams = min(
1278 full_pipe_count,
1279 dc->res_pool->stream_enc_count);
1280
1281 dc->caps.max_links = dc->link_count;
1282 dc->caps.max_audios = dc->res_pool->audio_count;
1283 dc->caps.linear_pitch_alignment = 64;
1284
1285 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1286
1287 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1288
1289 if (dc->res_pool->dmcu != NULL)
1290 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1291 }
1292
1293 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1294 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1295
1296 /* Populate versioning information */
1297 dc->versions.dc_ver = DC_VER;
1298
1299 dc->build_id = DC_BUILD_ID;
1300
1301 DC_LOG_DC("Display Core initialized\n");
1302
1303
1304
1305 return dc;
1306
1307 destruct_dc:
1308 dc_destruct(dc);
1309 kfree(dc);
1310 return NULL;
1311 }
1312
detect_edp_presence(struct dc * dc)1313 static void detect_edp_presence(struct dc *dc)
1314 {
1315 struct dc_link *edp_links[MAX_NUM_EDP];
1316 struct dc_link *edp_link = NULL;
1317 enum dc_connection_type type;
1318 int i;
1319 int edp_num;
1320
1321 get_edp_links(dc, edp_links, &edp_num);
1322 if (!edp_num)
1323 return;
1324
1325 for (i = 0; i < edp_num; i++) {
1326 edp_link = edp_links[i];
1327 if (dc->config.edp_not_connected) {
1328 edp_link->edp_sink_present = false;
1329 } else {
1330 dc_link_detect_sink(edp_link, &type);
1331 edp_link->edp_sink_present = (type != dc_connection_none);
1332 }
1333 }
1334 }
1335
dc_hardware_init(struct dc * dc)1336 void dc_hardware_init(struct dc *dc)
1337 {
1338
1339 detect_edp_presence(dc);
1340 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1341 dc->hwss.init_hw(dc);
1342 }
1343
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1344 void dc_init_callbacks(struct dc *dc,
1345 const struct dc_callback_init *init_params)
1346 {
1347 #ifdef CONFIG_DRM_AMD_DC_HDCP
1348 dc->ctx->cp_psp = init_params->cp_psp;
1349 #endif
1350 }
1351
dc_deinit_callbacks(struct dc * dc)1352 void dc_deinit_callbacks(struct dc *dc)
1353 {
1354 #ifdef CONFIG_DRM_AMD_DC_HDCP
1355 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1356 #endif
1357 }
1358
dc_destroy(struct dc ** dc)1359 void dc_destroy(struct dc **dc)
1360 {
1361 dc_destruct(*dc);
1362 kfree(*dc);
1363 *dc = NULL;
1364 }
1365
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1366 static void enable_timing_multisync(
1367 struct dc *dc,
1368 struct dc_state *ctx)
1369 {
1370 int i, multisync_count = 0;
1371 int pipe_count = dc->res_pool->pipe_count;
1372 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1373
1374 for (i = 0; i < pipe_count; i++) {
1375 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1376 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1377 continue;
1378 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1379 continue;
1380 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1381 multisync_count++;
1382 }
1383
1384 if (multisync_count > 0) {
1385 dc->hwss.enable_per_frame_crtc_position_reset(
1386 dc, multisync_count, multisync_pipes);
1387 }
1388 }
1389
program_timing_sync(struct dc * dc,struct dc_state * ctx)1390 static void program_timing_sync(
1391 struct dc *dc,
1392 struct dc_state *ctx)
1393 {
1394 int i, j, k;
1395 int group_index = 0;
1396 int num_group = 0;
1397 int pipe_count = dc->res_pool->pipe_count;
1398 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1399
1400 for (i = 0; i < pipe_count; i++) {
1401 if (!ctx->res_ctx.pipe_ctx[i].stream
1402 || ctx->res_ctx.pipe_ctx[i].top_pipe
1403 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1404 continue;
1405
1406 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1407 }
1408
1409 for (i = 0; i < pipe_count; i++) {
1410 int group_size = 1;
1411 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1412 struct pipe_ctx *pipe_set[MAX_PIPES];
1413
1414 if (!unsynced_pipes[i])
1415 continue;
1416
1417 pipe_set[0] = unsynced_pipes[i];
1418 unsynced_pipes[i] = NULL;
1419
1420 /* Add tg to the set, search rest of the tg's for ones with
1421 * same timing, add all tgs with same timing to the group
1422 */
1423 for (j = i + 1; j < pipe_count; j++) {
1424 if (!unsynced_pipes[j])
1425 continue;
1426 if (sync_type != TIMING_SYNCHRONIZABLE &&
1427 dc->hwss.enable_vblanks_synchronization &&
1428 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1429 resource_are_vblanks_synchronizable(
1430 unsynced_pipes[j]->stream,
1431 pipe_set[0]->stream)) {
1432 sync_type = VBLANK_SYNCHRONIZABLE;
1433 pipe_set[group_size] = unsynced_pipes[j];
1434 unsynced_pipes[j] = NULL;
1435 group_size++;
1436 } else
1437 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1438 resource_are_streams_timing_synchronizable(
1439 unsynced_pipes[j]->stream,
1440 pipe_set[0]->stream)) {
1441 sync_type = TIMING_SYNCHRONIZABLE;
1442 pipe_set[group_size] = unsynced_pipes[j];
1443 unsynced_pipes[j] = NULL;
1444 group_size++;
1445 }
1446 }
1447
1448 /* set first unblanked pipe as master */
1449 for (j = 0; j < group_size; j++) {
1450 bool is_blanked;
1451
1452 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1453 is_blanked =
1454 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1455 else
1456 is_blanked =
1457 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1458 if (!is_blanked) {
1459 if (j == 0)
1460 break;
1461
1462 swap(pipe_set[0], pipe_set[j]);
1463 break;
1464 }
1465 }
1466
1467 for (k = 0; k < group_size; k++) {
1468 struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream);
1469
1470 status->timing_sync_info.group_id = num_group;
1471 status->timing_sync_info.group_size = group_size;
1472 if (k == 0)
1473 status->timing_sync_info.master = true;
1474 else
1475 status->timing_sync_info.master = false;
1476
1477 }
1478
1479 /* remove any other pipes that are already been synced */
1480 if (dc->config.use_pipe_ctx_sync_logic) {
1481 /* check pipe's syncd to decide which pipe to be removed */
1482 for (j = 1; j < group_size; j++) {
1483 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1484 group_size--;
1485 pipe_set[j] = pipe_set[group_size];
1486 j--;
1487 } else
1488 /* link slave pipe's syncd with master pipe */
1489 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1490 }
1491 } else {
1492 for (j = j + 1; j < group_size; j++) {
1493 bool is_blanked;
1494
1495 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1496 is_blanked =
1497 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1498 else
1499 is_blanked =
1500 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1501 if (!is_blanked) {
1502 group_size--;
1503 pipe_set[j] = pipe_set[group_size];
1504 j--;
1505 }
1506 }
1507 }
1508
1509 if (group_size > 1) {
1510 if (sync_type == TIMING_SYNCHRONIZABLE) {
1511 dc->hwss.enable_timing_synchronization(
1512 dc, group_index, group_size, pipe_set);
1513 } else
1514 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1515 dc->hwss.enable_vblanks_synchronization(
1516 dc, group_index, group_size, pipe_set);
1517 }
1518 group_index++;
1519 }
1520 num_group++;
1521 }
1522 }
1523
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1524 static bool streams_changed(struct dc *dc,
1525 struct dc_stream_state *streams[],
1526 uint8_t stream_count)
1527 {
1528 uint8_t i;
1529
1530 if (stream_count != dc->current_state->stream_count)
1531 return true;
1532
1533 for (i = 0; i < dc->current_state->stream_count; i++) {
1534 if (dc->current_state->streams[i] != streams[i])
1535 return true;
1536 if (!streams[i]->link->link_state_valid)
1537 return true;
1538 }
1539
1540 return false;
1541 }
1542
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1543 bool dc_validate_boot_timing(const struct dc *dc,
1544 const struct dc_sink *sink,
1545 struct dc_crtc_timing *crtc_timing)
1546 {
1547 struct timing_generator *tg;
1548 struct stream_encoder *se = NULL;
1549
1550 struct dc_crtc_timing hw_crtc_timing = {0};
1551
1552 struct dc_link *link = sink->link;
1553 unsigned int i, enc_inst, tg_inst = 0;
1554
1555 /* Support seamless boot on EDP displays only */
1556 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1557 return false;
1558 }
1559
1560 if (dc->debug.force_odm_combine)
1561 return false;
1562
1563 /* Check for enabled DIG to identify enabled display */
1564 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1565 return false;
1566
1567 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1568
1569 if (enc_inst == ENGINE_ID_UNKNOWN)
1570 return false;
1571
1572 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1573 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1574
1575 se = dc->res_pool->stream_enc[i];
1576
1577 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1578 dc->res_pool->stream_enc[i]);
1579 break;
1580 }
1581 }
1582
1583 // tg_inst not found
1584 if (i == dc->res_pool->stream_enc_count)
1585 return false;
1586
1587 if (tg_inst >= dc->res_pool->timing_generator_count)
1588 return false;
1589
1590 tg = dc->res_pool->timing_generators[tg_inst];
1591
1592 if (!tg->funcs->get_hw_timing)
1593 return false;
1594
1595 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1596 return false;
1597
1598 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1599 return false;
1600
1601 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1602 return false;
1603
1604 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1605 return false;
1606
1607 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1608 return false;
1609
1610 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1611 return false;
1612
1613 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1614 return false;
1615
1616 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1617 return false;
1618
1619 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1620 return false;
1621
1622 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1623 return false;
1624
1625 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1626 return false;
1627
1628 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1629 return false;
1630
1631 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1632 return false;
1633
1634 /* block DSC for now, as VBIOS does not currently support DSC timings */
1635 if (crtc_timing->flags.DSC)
1636 return false;
1637
1638 if (dc_is_dp_signal(link->connector_signal)) {
1639 unsigned int pix_clk_100hz;
1640 uint32_t numOdmPipes = 1;
1641 uint32_t id_src[4] = {0};
1642
1643 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1644 dc->res_pool->dp_clock_source,
1645 tg_inst, &pix_clk_100hz);
1646
1647 if (tg->funcs->get_optc_source)
1648 tg->funcs->get_optc_source(tg,
1649 &numOdmPipes, &id_src[0], &id_src[1]);
1650
1651 if (numOdmPipes == 2)
1652 pix_clk_100hz *= 2;
1653 if (numOdmPipes == 4)
1654 pix_clk_100hz *= 4;
1655
1656 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1657 // slightly due to rounding issues in 10 kHz units.
1658 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1659 return false;
1660
1661 if (!se->funcs->dp_get_pixel_format)
1662 return false;
1663
1664 if (!se->funcs->dp_get_pixel_format(
1665 se,
1666 &hw_crtc_timing.pixel_encoding,
1667 &hw_crtc_timing.display_color_depth))
1668 return false;
1669
1670 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1671 return false;
1672
1673 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1674 return false;
1675 }
1676
1677 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1678 return false;
1679 }
1680
1681 if (is_edp_ilr_optimization_required(link, crtc_timing)) {
1682 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1683 return false;
1684 }
1685
1686 return true;
1687 }
1688
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1689 static inline bool should_update_pipe_for_stream(
1690 struct dc_state *context,
1691 struct pipe_ctx *pipe_ctx,
1692 struct dc_stream_state *stream)
1693 {
1694 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1695 }
1696
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1697 static inline bool should_update_pipe_for_plane(
1698 struct dc_state *context,
1699 struct pipe_ctx *pipe_ctx,
1700 struct dc_plane_state *plane_state)
1701 {
1702 return (pipe_ctx->plane_state == plane_state);
1703 }
1704
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1705 void dc_enable_stereo(
1706 struct dc *dc,
1707 struct dc_state *context,
1708 struct dc_stream_state *streams[],
1709 uint8_t stream_count)
1710 {
1711 int i, j;
1712 struct pipe_ctx *pipe;
1713
1714 for (i = 0; i < MAX_PIPES; i++) {
1715 if (context != NULL) {
1716 pipe = &context->res_ctx.pipe_ctx[i];
1717 } else {
1718 context = dc->current_state;
1719 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1720 }
1721
1722 for (j = 0; pipe && j < stream_count; j++) {
1723 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1724 dc->hwss.setup_stereo)
1725 dc->hwss.setup_stereo(pipe, dc);
1726 }
1727 }
1728 }
1729
dc_trigger_sync(struct dc * dc,struct dc_state * context)1730 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1731 {
1732 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1733 enable_timing_multisync(dc, context);
1734 program_timing_sync(dc, context);
1735 }
1736 }
1737
get_stream_mask(struct dc * dc,struct dc_state * context)1738 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1739 {
1740 int i;
1741 unsigned int stream_mask = 0;
1742
1743 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1744 if (context->res_ctx.pipe_ctx[i].stream)
1745 stream_mask |= 1 << i;
1746 }
1747
1748 return stream_mask;
1749 }
1750
dc_z10_restore(const struct dc * dc)1751 void dc_z10_restore(const struct dc *dc)
1752 {
1753 if (dc->hwss.z10_restore)
1754 dc->hwss.z10_restore(dc);
1755 }
1756
dc_z10_save_init(struct dc * dc)1757 void dc_z10_save_init(struct dc *dc)
1758 {
1759 if (dc->hwss.z10_save_init)
1760 dc->hwss.z10_save_init(dc);
1761 }
1762
1763 /*
1764 * Applies given context to HW and copy it into current context.
1765 * It's up to the user to release the src context afterwards.
1766 *
1767 * Return: an enum dc_status result code for the operation
1768 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1769 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1770 {
1771 struct dc_bios *dcb = dc->ctx->dc_bios;
1772 enum dc_status result = DC_ERROR_UNEXPECTED;
1773 struct pipe_ctx *pipe;
1774 int i, k, l;
1775 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1776 struct dc_state *old_state;
1777 bool subvp_prev_use = false;
1778
1779 dc_z10_restore(dc);
1780 dc_allow_idle_optimizations(dc, false);
1781
1782 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1783 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1784
1785 /* Check old context for SubVP */
1786 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
1787 if (subvp_prev_use)
1788 break;
1789 }
1790
1791 for (i = 0; i < context->stream_count; i++)
1792 dc_streams[i] = context->streams[i];
1793
1794 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1795 disable_vbios_mode_if_required(dc, context);
1796 dc->hwss.enable_accelerated_mode(dc, context);
1797 }
1798
1799 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1800 context->stream_count == 0)
1801 dc->hwss.prepare_bandwidth(dc, context);
1802
1803 /* When SubVP is active, all HW programming must be done while
1804 * SubVP lock is acquired
1805 */
1806 if (dc->hwss.subvp_pipe_control_lock)
1807 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1808
1809 if (dc->hwss.update_dsc_pg)
1810 dc->hwss.update_dsc_pg(dc, context, false);
1811
1812 disable_dangling_plane(dc, context);
1813 /* re-program planes for existing stream, in case we need to
1814 * free up plane resource for later use
1815 */
1816 if (dc->hwss.apply_ctx_for_surface) {
1817 for (i = 0; i < context->stream_count; i++) {
1818 if (context->streams[i]->mode_changed)
1819 continue;
1820 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1821 dc->hwss.apply_ctx_for_surface(
1822 dc, context->streams[i],
1823 context->stream_status[i].plane_count,
1824 context); /* use new pipe config in new context */
1825 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1826 dc->hwss.post_unlock_program_front_end(dc, context);
1827 }
1828 }
1829
1830 /* Program hardware */
1831 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1832 pipe = &context->res_ctx.pipe_ctx[i];
1833 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1834 }
1835
1836 result = dc->hwss.apply_ctx_to_hw(dc, context);
1837
1838 if (result != DC_OK) {
1839 /* Application of dc_state to hardware stopped. */
1840 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1841 return result;
1842 }
1843
1844 dc_trigger_sync(dc, context);
1845
1846 /* Program all planes within new context*/
1847 if (dc->hwss.program_front_end_for_ctx) {
1848 dc->hwss.interdependent_update_lock(dc, context, true);
1849 dc->hwss.program_front_end_for_ctx(dc, context);
1850 dc->hwss.interdependent_update_lock(dc, context, false);
1851 dc->hwss.post_unlock_program_front_end(dc, context);
1852 }
1853
1854 if (dc->hwss.commit_subvp_config)
1855 dc->hwss.commit_subvp_config(dc, context);
1856 if (dc->hwss.subvp_pipe_control_lock)
1857 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1858
1859 for (i = 0; i < context->stream_count; i++) {
1860 const struct dc_link *link = context->streams[i]->link;
1861
1862 if (!context->streams[i]->mode_changed)
1863 continue;
1864
1865 if (dc->hwss.apply_ctx_for_surface) {
1866 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1867 dc->hwss.apply_ctx_for_surface(
1868 dc, context->streams[i],
1869 context->stream_status[i].plane_count,
1870 context);
1871 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1872 dc->hwss.post_unlock_program_front_end(dc, context);
1873 }
1874
1875 /*
1876 * enable stereo
1877 * TODO rework dc_enable_stereo call to work with validation sets?
1878 */
1879 for (k = 0; k < MAX_PIPES; k++) {
1880 pipe = &context->res_ctx.pipe_ctx[k];
1881
1882 for (l = 0 ; pipe && l < context->stream_count; l++) {
1883 if (context->streams[l] &&
1884 context->streams[l] == pipe->stream &&
1885 dc->hwss.setup_stereo)
1886 dc->hwss.setup_stereo(pipe, dc);
1887 }
1888 }
1889
1890 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
1891 context->streams[i]->timing.h_addressable,
1892 context->streams[i]->timing.v_addressable,
1893 context->streams[i]->timing.h_total,
1894 context->streams[i]->timing.v_total,
1895 context->streams[i]->timing.pix_clk_100hz / 10);
1896 }
1897
1898 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
1899
1900 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1901 context->stream_count == 0) {
1902 /* Must wait for no flips to be pending before doing optimize bw */
1903 wait_for_no_pipes_pending(dc, context);
1904 /* pplib is notified if disp_num changed */
1905 dc->hwss.optimize_bandwidth(dc, context);
1906 /* Need to do otg sync again as otg could be out of sync due to otg
1907 * workaround applied during clock update
1908 */
1909 dc_trigger_sync(dc, context);
1910 }
1911
1912 if (dc->hwss.update_dsc_pg)
1913 dc->hwss.update_dsc_pg(dc, context, true);
1914
1915 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
1916 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
1917 else
1918 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
1919
1920 context->stream_mask = get_stream_mask(dc, context);
1921
1922 if (context->stream_mask != dc->current_state->stream_mask)
1923 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
1924
1925 for (i = 0; i < context->stream_count; i++)
1926 context->streams[i]->mode_changed = false;
1927
1928 old_state = dc->current_state;
1929 dc->current_state = context;
1930
1931 dc_release_state(old_state);
1932
1933 dc_retain_state(dc->current_state);
1934
1935 return result;
1936 }
1937
1938 static bool commit_minimal_transition_state(struct dc *dc,
1939 struct dc_state *transition_base_context);
1940
1941 /**
1942 * dc_commit_streams - Commit current stream state
1943 *
1944 * @dc: DC object with the commit state to be configured in the hardware
1945 * @streams: Array with a list of stream state
1946 * @stream_count: Total of streams
1947 *
1948 * Function responsible for commit streams change to the hardware.
1949 *
1950 * Return:
1951 * Return DC_OK if everything work as expected, otherwise, return a dc_status
1952 * code.
1953 */
dc_commit_streams(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1954 enum dc_status dc_commit_streams(struct dc *dc,
1955 struct dc_stream_state *streams[],
1956 uint8_t stream_count)
1957 {
1958 int i, j;
1959 struct dc_state *context;
1960 enum dc_status res = DC_OK;
1961 struct dc_validation_set set[MAX_STREAMS] = {0};
1962 struct pipe_ctx *pipe;
1963 bool handle_exit_odm2to1 = false;
1964
1965 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
1966 return res;
1967
1968 if (!streams_changed(dc, streams, stream_count))
1969 return res;
1970
1971 DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
1972
1973 for (i = 0; i < stream_count; i++) {
1974 struct dc_stream_state *stream = streams[i];
1975 struct dc_stream_status *status = dc_stream_get_status(stream);
1976
1977 dc_stream_log(dc, stream);
1978
1979 set[i].stream = stream;
1980
1981 if (status) {
1982 set[i].plane_count = status->plane_count;
1983 for (j = 0; j < status->plane_count; j++)
1984 set[i].plane_states[j] = status->plane_states[j];
1985 }
1986 }
1987
1988 /* ODM Combine 2:1 power optimization is only applied for single stream
1989 * scenario, it uses extra pipes than needed to reduce power consumption
1990 * We need to switch off this feature to make room for new streams.
1991 */
1992 if (stream_count > dc->current_state->stream_count &&
1993 dc->current_state->stream_count == 1) {
1994 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1995 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1996 if (pipe->next_odm_pipe)
1997 handle_exit_odm2to1 = true;
1998 }
1999 }
2000
2001 if (handle_exit_odm2to1)
2002 res = commit_minimal_transition_state(dc, dc->current_state);
2003
2004 context = dc_create_state(dc);
2005 if (!context)
2006 goto context_alloc_fail;
2007
2008 dc_resource_state_copy_construct_current(dc, context);
2009
2010 res = dc_validate_with_context(dc, set, stream_count, context, false);
2011 if (res != DC_OK) {
2012 BREAK_TO_DEBUGGER();
2013 goto fail;
2014 }
2015
2016 res = dc_commit_state_no_check(dc, context);
2017
2018 for (i = 0; i < stream_count; i++) {
2019 for (j = 0; j < context->stream_count; j++) {
2020 if (streams[i]->stream_id == context->streams[j]->stream_id)
2021 streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2022
2023 if (dc_is_embedded_signal(streams[i]->signal)) {
2024 struct dc_stream_status *status = dc_stream_get_status_from_state(context, streams[i]);
2025
2026 if (dc->hwss.is_abm_supported)
2027 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2028 else
2029 status->is_abm_supported = true;
2030 }
2031 }
2032 }
2033
2034 fail:
2035 dc_release_state(context);
2036
2037 context_alloc_fail:
2038
2039 DC_LOG_DC("%s Finished.\n", __func__);
2040
2041 return (res == DC_OK);
2042 }
2043
2044 /* TODO: When the transition to the new commit sequence is done, remove this
2045 * function in favor of dc_commit_streams. */
dc_commit_state(struct dc * dc,struct dc_state * context)2046 bool dc_commit_state(struct dc *dc, struct dc_state *context)
2047 {
2048 enum dc_status result = DC_ERROR_UNEXPECTED;
2049 int i;
2050
2051 /* TODO: Since change commit sequence can have a huge impact,
2052 * we decided to only enable it for DCN3x. However, as soon as
2053 * we get more confident about this change we'll need to enable
2054 * the new sequence for all ASICs. */
2055 if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
2056 result = dc_commit_streams(dc, context->streams, context->stream_count);
2057 return result == DC_OK;
2058 }
2059
2060 if (!streams_changed(dc, context->streams, context->stream_count))
2061 return DC_OK;
2062
2063 DC_LOG_DC("%s: %d streams\n",
2064 __func__, context->stream_count);
2065
2066 for (i = 0; i < context->stream_count; i++) {
2067 struct dc_stream_state *stream = context->streams[i];
2068
2069 dc_stream_log(dc, stream);
2070 }
2071
2072 /*
2073 * Previous validation was perfomred with fast_validation = true and
2074 * the full DML state required for hardware programming was skipped.
2075 *
2076 * Re-validate here to calculate these parameters / watermarks.
2077 */
2078 result = dc_validate_global_state(dc, context, false);
2079 if (result != DC_OK) {
2080 DC_LOG_ERROR("DC commit global validation failure: %s (%d)",
2081 dc_status_to_str(result), result);
2082 return result;
2083 }
2084
2085 result = dc_commit_state_no_check(dc, context);
2086
2087 return (result == DC_OK);
2088 }
2089
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2090 bool dc_acquire_release_mpc_3dlut(
2091 struct dc *dc, bool acquire,
2092 struct dc_stream_state *stream,
2093 struct dc_3dlut **lut,
2094 struct dc_transfer_func **shaper)
2095 {
2096 int pipe_idx;
2097 bool ret = false;
2098 bool found_pipe_idx = false;
2099 const struct resource_pool *pool = dc->res_pool;
2100 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2101 int mpcc_id = 0;
2102
2103 if (pool && res_ctx) {
2104 if (acquire) {
2105 /*find pipe idx for the given stream*/
2106 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2107 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2108 found_pipe_idx = true;
2109 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2110 break;
2111 }
2112 }
2113 } else
2114 found_pipe_idx = true;/*for release pipe_idx is not required*/
2115
2116 if (found_pipe_idx) {
2117 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2118 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2119 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2120 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2121 }
2122 }
2123 return ret;
2124 }
2125
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2126 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2127 {
2128 int i;
2129 struct pipe_ctx *pipe;
2130
2131 for (i = 0; i < MAX_PIPES; i++) {
2132 pipe = &context->res_ctx.pipe_ctx[i];
2133
2134 // Don't check flip pending on phantom pipes
2135 if (!pipe->plane_state || (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM))
2136 continue;
2137
2138 /* Must set to false to start with, due to OR in update function */
2139 pipe->plane_state->status.is_flip_pending = false;
2140 dc->hwss.update_pending_status(pipe);
2141 if (pipe->plane_state->status.is_flip_pending)
2142 return true;
2143 }
2144 return false;
2145 }
2146
2147 /* Perform updates here which need to be deferred until next vupdate
2148 *
2149 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2150 * but forcing lut memory to shutdown state is immediate. This causes
2151 * single frame corruption as lut gets disabled mid-frame unless shutdown
2152 * is deferred until after entering bypass.
2153 */
process_deferred_updates(struct dc * dc)2154 static void process_deferred_updates(struct dc *dc)
2155 {
2156 int i = 0;
2157
2158 if (dc->debug.enable_mem_low_power.bits.cm) {
2159 ASSERT(dc->dcn_ip->max_num_dpp);
2160 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2161 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2162 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2163 }
2164 }
2165
dc_post_update_surfaces_to_stream(struct dc * dc)2166 void dc_post_update_surfaces_to_stream(struct dc *dc)
2167 {
2168 int i;
2169 struct dc_state *context = dc->current_state;
2170
2171 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2172 return;
2173
2174 post_surface_trace(dc);
2175
2176 /*
2177 * Only relevant for DCN behavior where we can guarantee the optimization
2178 * is safe to apply - retain the legacy behavior for DCE.
2179 */
2180
2181 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2182 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2183 else {
2184 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2185
2186 if (is_flip_pending_in_pipes(dc, context))
2187 return;
2188
2189 for (i = 0; i < dc->res_pool->pipe_count; i++)
2190 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2191 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2192 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2193 dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]);
2194 }
2195
2196 process_deferred_updates(dc);
2197
2198 dc->hwss.optimize_bandwidth(dc, context);
2199
2200 if (dc->hwss.update_dsc_pg)
2201 dc->hwss.update_dsc_pg(dc, context, true);
2202 }
2203
2204 dc->optimized_required = false;
2205 dc->wm_optimized_required = false;
2206 }
2207
init_state(struct dc * dc,struct dc_state * context)2208 static void init_state(struct dc *dc, struct dc_state *context)
2209 {
2210 /* Each context must have their own instance of VBA and in order to
2211 * initialize and obtain IP and SOC the base DML instance from DC is
2212 * initially copied into every context
2213 */
2214 memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib));
2215 }
2216
dc_create_state(struct dc * dc)2217 struct dc_state *dc_create_state(struct dc *dc)
2218 {
2219 struct dc_state *context = kvzalloc(sizeof(struct dc_state),
2220 GFP_KERNEL);
2221
2222 if (!context)
2223 return NULL;
2224
2225 init_state(dc, context);
2226
2227 kref_init(&context->refcount);
2228
2229 return context;
2230 }
2231
dc_copy_state(struct dc_state * src_ctx)2232 struct dc_state *dc_copy_state(struct dc_state *src_ctx)
2233 {
2234 int i, j;
2235 struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL);
2236
2237 if (!new_ctx)
2238 return NULL;
2239 memcpy(new_ctx, src_ctx, sizeof(struct dc_state));
2240
2241 for (i = 0; i < MAX_PIPES; i++) {
2242 struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i];
2243
2244 if (cur_pipe->top_pipe)
2245 cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2246
2247 if (cur_pipe->bottom_pipe)
2248 cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2249
2250 if (cur_pipe->prev_odm_pipe)
2251 cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2252
2253 if (cur_pipe->next_odm_pipe)
2254 cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2255
2256 }
2257
2258 for (i = 0; i < new_ctx->stream_count; i++) {
2259 dc_stream_retain(new_ctx->streams[i]);
2260 for (j = 0; j < new_ctx->stream_status[i].plane_count; j++)
2261 dc_plane_state_retain(
2262 new_ctx->stream_status[i].plane_states[j]);
2263 }
2264
2265 kref_init(&new_ctx->refcount);
2266
2267 return new_ctx;
2268 }
2269
dc_retain_state(struct dc_state * context)2270 void dc_retain_state(struct dc_state *context)
2271 {
2272 kref_get(&context->refcount);
2273 }
2274
dc_state_free(struct kref * kref)2275 static void dc_state_free(struct kref *kref)
2276 {
2277 struct dc_state *context = container_of(kref, struct dc_state, refcount);
2278 dc_resource_state_destruct(context);
2279 kvfree(context);
2280 }
2281
dc_release_state(struct dc_state * context)2282 void dc_release_state(struct dc_state *context)
2283 {
2284 kref_put(&context->refcount, dc_state_free);
2285 }
2286
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2287 bool dc_set_generic_gpio_for_stereo(bool enable,
2288 struct gpio_service *gpio_service)
2289 {
2290 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2291 struct gpio_pin_info pin_info;
2292 struct gpio *generic;
2293 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2294 GFP_KERNEL);
2295
2296 if (!config)
2297 return false;
2298 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2299
2300 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2301 kfree(config);
2302 return false;
2303 } else {
2304 generic = dal_gpio_service_create_generic_mux(
2305 gpio_service,
2306 pin_info.offset,
2307 pin_info.mask);
2308 }
2309
2310 if (!generic) {
2311 kfree(config);
2312 return false;
2313 }
2314
2315 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2316
2317 config->enable_output_from_mux = enable;
2318 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2319
2320 if (gpio_result == GPIO_RESULT_OK)
2321 gpio_result = dal_mux_setup_config(generic, config);
2322
2323 if (gpio_result == GPIO_RESULT_OK) {
2324 dal_gpio_close(generic);
2325 dal_gpio_destroy_generic_mux(&generic);
2326 kfree(config);
2327 return true;
2328 } else {
2329 dal_gpio_close(generic);
2330 dal_gpio_destroy_generic_mux(&generic);
2331 kfree(config);
2332 return false;
2333 }
2334 }
2335
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2336 static bool is_surface_in_context(
2337 const struct dc_state *context,
2338 const struct dc_plane_state *plane_state)
2339 {
2340 int j;
2341
2342 for (j = 0; j < MAX_PIPES; j++) {
2343 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2344
2345 if (plane_state == pipe_ctx->plane_state) {
2346 return true;
2347 }
2348 }
2349
2350 return false;
2351 }
2352
get_plane_info_update_type(const struct dc_surface_update * u)2353 static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2354 {
2355 union surface_update_flags *update_flags = &u->surface->update_flags;
2356 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2357
2358 if (!u->plane_info)
2359 return UPDATE_TYPE_FAST;
2360
2361 if (u->plane_info->color_space != u->surface->color_space) {
2362 update_flags->bits.color_space_change = 1;
2363 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2364 }
2365
2366 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2367 update_flags->bits.horizontal_mirror_change = 1;
2368 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2369 }
2370
2371 if (u->plane_info->rotation != u->surface->rotation) {
2372 update_flags->bits.rotation_change = 1;
2373 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2374 }
2375
2376 if (u->plane_info->format != u->surface->format) {
2377 update_flags->bits.pixel_format_change = 1;
2378 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2379 }
2380
2381 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2382 update_flags->bits.stereo_format_change = 1;
2383 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2384 }
2385
2386 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2387 update_flags->bits.per_pixel_alpha_change = 1;
2388 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2389 }
2390
2391 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2392 update_flags->bits.global_alpha_change = 1;
2393 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2394 }
2395
2396 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2397 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2398 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2399 /* During DCC on/off, stutter period is calculated before
2400 * DCC has fully transitioned. This results in incorrect
2401 * stutter period calculation. Triggering a full update will
2402 * recalculate stutter period.
2403 */
2404 update_flags->bits.dcc_change = 1;
2405 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2406 }
2407
2408 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2409 resource_pixel_format_to_bpp(u->surface->format)) {
2410 /* different bytes per element will require full bandwidth
2411 * and DML calculation
2412 */
2413 update_flags->bits.bpp_change = 1;
2414 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2415 }
2416
2417 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2418 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2419 update_flags->bits.plane_size_change = 1;
2420 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2421 }
2422
2423
2424 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2425 sizeof(union dc_tiling_info)) != 0) {
2426 update_flags->bits.swizzle_change = 1;
2427 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2428
2429 /* todo: below are HW dependent, we should add a hook to
2430 * DCE/N resource and validated there.
2431 */
2432 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2433 /* swizzled mode requires RQ to be setup properly,
2434 * thus need to run DML to calculate RQ settings
2435 */
2436 update_flags->bits.bandwidth_change = 1;
2437 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2438 }
2439 }
2440
2441 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2442 return update_type;
2443 }
2444
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2445 static enum surface_update_type get_scaling_info_update_type(
2446 const struct dc *dc,
2447 const struct dc_surface_update *u)
2448 {
2449 union surface_update_flags *update_flags = &u->surface->update_flags;
2450
2451 if (!u->scaling_info)
2452 return UPDATE_TYPE_FAST;
2453
2454 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width
2455 || u->scaling_info->clip_rect.height != u->surface->clip_rect.height
2456 || u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2457 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2458 || u->scaling_info->scaling_quality.integer_scaling !=
2459 u->surface->scaling_quality.integer_scaling
2460 ) {
2461 update_flags->bits.scaling_change = 1;
2462
2463 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2464 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2465 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2466 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2467 /* Making dst rect smaller requires a bandwidth change */
2468 update_flags->bits.bandwidth_change = 1;
2469 }
2470
2471 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2472 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2473
2474 update_flags->bits.scaling_change = 1;
2475 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2476 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2477 /* Making src rect bigger requires a bandwidth change */
2478 update_flags->bits.clock_change = 1;
2479 }
2480
2481 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2482 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2483 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2484 /* Changing clip size of a large surface may result in MPC slice count change */
2485 update_flags->bits.bandwidth_change = 1;
2486
2487 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2488 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2489 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2490 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2491 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2492 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2493 update_flags->bits.position_change = 1;
2494
2495 if (update_flags->bits.clock_change
2496 || update_flags->bits.bandwidth_change
2497 || update_flags->bits.scaling_change)
2498 return UPDATE_TYPE_FULL;
2499
2500 if (update_flags->bits.position_change)
2501 return UPDATE_TYPE_MED;
2502
2503 return UPDATE_TYPE_FAST;
2504 }
2505
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2506 static enum surface_update_type det_surface_update(const struct dc *dc,
2507 const struct dc_surface_update *u)
2508 {
2509 const struct dc_state *context = dc->current_state;
2510 enum surface_update_type type;
2511 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2512 union surface_update_flags *update_flags = &u->surface->update_flags;
2513
2514 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2515 update_flags->raw = 0xFFFFFFFF;
2516 return UPDATE_TYPE_FULL;
2517 }
2518
2519 update_flags->raw = 0; // Reset all flags
2520
2521 type = get_plane_info_update_type(u);
2522 elevate_update_type(&overall_type, type);
2523
2524 type = get_scaling_info_update_type(dc, u);
2525 elevate_update_type(&overall_type, type);
2526
2527 if (u->flip_addr) {
2528 update_flags->bits.addr_update = 1;
2529 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2530 update_flags->bits.tmz_changed = 1;
2531 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2532 }
2533 }
2534 if (u->in_transfer_func)
2535 update_flags->bits.in_transfer_func_change = 1;
2536
2537 if (u->input_csc_color_matrix)
2538 update_flags->bits.input_csc_change = 1;
2539
2540 if (u->coeff_reduction_factor)
2541 update_flags->bits.coeff_reduction_change = 1;
2542
2543 if (u->gamut_remap_matrix)
2544 update_flags->bits.gamut_remap_change = 1;
2545
2546 if (u->gamma) {
2547 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2548
2549 if (u->plane_info)
2550 format = u->plane_info->format;
2551 else if (u->surface)
2552 format = u->surface->format;
2553
2554 if (dce_use_lut(format))
2555 update_flags->bits.gamma_change = 1;
2556 }
2557
2558 if (u->lut3d_func || u->func_shaper)
2559 update_flags->bits.lut_3d = 1;
2560
2561 if (u->hdr_mult.value)
2562 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2563 update_flags->bits.hdr_mult = 1;
2564 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2565 }
2566
2567 if (update_flags->bits.in_transfer_func_change) {
2568 type = UPDATE_TYPE_MED;
2569 elevate_update_type(&overall_type, type);
2570 }
2571
2572 if (update_flags->bits.input_csc_change
2573 || update_flags->bits.coeff_reduction_change
2574 || update_flags->bits.lut_3d
2575 || update_flags->bits.gamma_change
2576 || update_flags->bits.gamut_remap_change) {
2577 type = UPDATE_TYPE_FULL;
2578 elevate_update_type(&overall_type, type);
2579 }
2580
2581 return overall_type;
2582 }
2583
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2584 static enum surface_update_type check_update_surfaces_for_stream(
2585 struct dc *dc,
2586 struct dc_surface_update *updates,
2587 int surface_count,
2588 struct dc_stream_update *stream_update,
2589 const struct dc_stream_status *stream_status)
2590 {
2591 int i;
2592 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2593
2594 if (dc->idle_optimizations_allowed)
2595 overall_type = UPDATE_TYPE_FULL;
2596
2597 if (stream_status == NULL || stream_status->plane_count != surface_count)
2598 overall_type = UPDATE_TYPE_FULL;
2599
2600 if (stream_update && stream_update->pending_test_pattern) {
2601 overall_type = UPDATE_TYPE_FULL;
2602 }
2603
2604 /* some stream updates require passive update */
2605 if (stream_update) {
2606 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2607
2608 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2609 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2610 stream_update->integer_scaling_update)
2611 su_flags->bits.scaling = 1;
2612
2613 if (stream_update->out_transfer_func)
2614 su_flags->bits.out_tf = 1;
2615
2616 if (stream_update->abm_level)
2617 su_flags->bits.abm_level = 1;
2618
2619 if (stream_update->dpms_off)
2620 su_flags->bits.dpms_off = 1;
2621
2622 if (stream_update->gamut_remap)
2623 su_flags->bits.gamut_remap = 1;
2624
2625 if (stream_update->wb_update)
2626 su_flags->bits.wb_update = 1;
2627
2628 if (stream_update->dsc_config)
2629 su_flags->bits.dsc_changed = 1;
2630
2631 if (stream_update->mst_bw_update)
2632 su_flags->bits.mst_bw = 1;
2633
2634 if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2635 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2636 stream_update->vrr_active_variable))
2637 su_flags->bits.fams_changed = 1;
2638
2639 if (su_flags->raw != 0)
2640 overall_type = UPDATE_TYPE_FULL;
2641
2642 if (stream_update->output_csc_transform || stream_update->output_color_space)
2643 su_flags->bits.out_csc = 1;
2644 }
2645
2646 for (i = 0 ; i < surface_count; i++) {
2647 enum surface_update_type type =
2648 det_surface_update(dc, &updates[i]);
2649
2650 elevate_update_type(&overall_type, type);
2651 }
2652
2653 return overall_type;
2654 }
2655
dc_check_is_fullscreen_video(struct rect src,struct rect clip_rect)2656 static bool dc_check_is_fullscreen_video(struct rect src, struct rect clip_rect)
2657 {
2658 int view_height, view_width, clip_x, clip_y, clip_width, clip_height;
2659
2660 view_height = src.height;
2661 view_width = src.width;
2662
2663 clip_x = clip_rect.x;
2664 clip_y = clip_rect.y;
2665
2666 clip_width = clip_rect.width;
2667 clip_height = clip_rect.height;
2668
2669 /* check for centered video accounting for off by 1 scaling truncation */
2670 if ((view_height - clip_y - clip_height <= clip_y + 1) &&
2671 (view_width - clip_x - clip_width <= clip_x + 1) &&
2672 (view_height - clip_y - clip_height >= clip_y - 1) &&
2673 (view_width - clip_x - clip_width >= clip_x - 1)) {
2674
2675 /* when OS scales up/down to letter box, it may end up
2676 * with few blank pixels on the border due to truncating.
2677 * Add offset margin to account for this
2678 */
2679 if (clip_x <= 4 || clip_y <= 4)
2680 return true;
2681 }
2682
2683 return false;
2684 }
2685
check_boundary_crossing_for_windowed_mpo_with_odm(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,enum surface_update_type update_type)2686 static enum surface_update_type check_boundary_crossing_for_windowed_mpo_with_odm(struct dc *dc,
2687 struct dc_surface_update *srf_updates, int surface_count,
2688 enum surface_update_type update_type)
2689 {
2690 enum surface_update_type new_update_type = update_type;
2691 int i, j;
2692 struct pipe_ctx *pipe = NULL;
2693 struct dc_stream_state *stream;
2694
2695 /* Check that we are in windowed MPO with ODM
2696 * - look for MPO pipe by scanning pipes for first pipe matching
2697 * surface that has moved ( position change )
2698 * - MPO pipe will have top pipe
2699 * - check that top pipe has ODM pointer
2700 */
2701 if ((surface_count > 1) && dc->config.enable_windowed_mpo_odm) {
2702 for (i = 0; i < surface_count; i++) {
2703 if (srf_updates[i].surface && srf_updates[i].scaling_info
2704 && srf_updates[i].surface->update_flags.bits.position_change) {
2705
2706 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2707 if (srf_updates[i].surface == dc->current_state->res_ctx.pipe_ctx[j].plane_state) {
2708 pipe = &dc->current_state->res_ctx.pipe_ctx[j];
2709 stream = pipe->stream;
2710 break;
2711 }
2712 }
2713
2714 if (pipe && pipe->top_pipe && (get_num_odm_splits(pipe->top_pipe) > 0) && stream
2715 && !dc_check_is_fullscreen_video(stream->src, srf_updates[i].scaling_info->clip_rect)) {
2716 struct rect old_clip_rect, new_clip_rect;
2717 bool old_clip_rect_left, old_clip_rect_right, old_clip_rect_middle;
2718 bool new_clip_rect_left, new_clip_rect_right, new_clip_rect_middle;
2719
2720 old_clip_rect = srf_updates[i].surface->clip_rect;
2721 new_clip_rect = srf_updates[i].scaling_info->clip_rect;
2722
2723 old_clip_rect_left = ((old_clip_rect.x + old_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
2724 old_clip_rect_right = (old_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
2725 old_clip_rect_middle = !old_clip_rect_left && !old_clip_rect_right;
2726
2727 new_clip_rect_left = ((new_clip_rect.x + new_clip_rect.width) <= (stream->src.x + (stream->src.width/2)));
2728 new_clip_rect_right = (new_clip_rect.x >= (stream->src.x + (stream->src.width/2)));
2729 new_clip_rect_middle = !new_clip_rect_left && !new_clip_rect_right;
2730
2731 if (old_clip_rect_left && new_clip_rect_middle)
2732 new_update_type = UPDATE_TYPE_FULL;
2733 else if (old_clip_rect_middle && new_clip_rect_right)
2734 new_update_type = UPDATE_TYPE_FULL;
2735 else if (old_clip_rect_right && new_clip_rect_middle)
2736 new_update_type = UPDATE_TYPE_FULL;
2737 else if (old_clip_rect_middle && new_clip_rect_left)
2738 new_update_type = UPDATE_TYPE_FULL;
2739 }
2740 }
2741 }
2742 }
2743 return new_update_type;
2744 }
2745
2746 /*
2747 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2748 *
2749 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2750 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2751 enum surface_update_type dc_check_update_surfaces_for_stream(
2752 struct dc *dc,
2753 struct dc_surface_update *updates,
2754 int surface_count,
2755 struct dc_stream_update *stream_update,
2756 const struct dc_stream_status *stream_status)
2757 {
2758 int i;
2759 enum surface_update_type type;
2760
2761 if (stream_update)
2762 stream_update->stream->update_flags.raw = 0;
2763 for (i = 0; i < surface_count; i++)
2764 updates[i].surface->update_flags.raw = 0;
2765
2766 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2767 if (type == UPDATE_TYPE_FULL) {
2768 if (stream_update) {
2769 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2770 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2771 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2772 }
2773 for (i = 0; i < surface_count; i++)
2774 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2775 }
2776
2777 if (type == UPDATE_TYPE_MED)
2778 type = check_boundary_crossing_for_windowed_mpo_with_odm(dc,
2779 updates, surface_count, type);
2780
2781 if (type == UPDATE_TYPE_FAST) {
2782 // If there's an available clock comparator, we use that.
2783 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2784 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2785 dc->optimized_required = true;
2786 // Else we fallback to mem compare.
2787 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2788 dc->optimized_required = true;
2789 }
2790
2791 dc->optimized_required |= dc->wm_optimized_required;
2792 }
2793
2794 return type;
2795 }
2796
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2797 static struct dc_stream_status *stream_get_status(
2798 struct dc_state *ctx,
2799 struct dc_stream_state *stream)
2800 {
2801 uint8_t i;
2802
2803 for (i = 0; i < ctx->stream_count; i++) {
2804 if (stream == ctx->streams[i]) {
2805 return &ctx->stream_status[i];
2806 }
2807 }
2808
2809 return NULL;
2810 }
2811
2812 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2813
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2814 static void copy_surface_update_to_plane(
2815 struct dc_plane_state *surface,
2816 struct dc_surface_update *srf_update)
2817 {
2818 if (srf_update->flip_addr) {
2819 surface->address = srf_update->flip_addr->address;
2820 surface->flip_immediate =
2821 srf_update->flip_addr->flip_immediate;
2822 surface->time.time_elapsed_in_us[surface->time.index] =
2823 srf_update->flip_addr->flip_timestamp_in_us -
2824 surface->time.prev_update_time_in_us;
2825 surface->time.prev_update_time_in_us =
2826 srf_update->flip_addr->flip_timestamp_in_us;
2827 surface->time.index++;
2828 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2829 surface->time.index = 0;
2830
2831 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2832 }
2833
2834 if (srf_update->scaling_info) {
2835 surface->scaling_quality =
2836 srf_update->scaling_info->scaling_quality;
2837 surface->dst_rect =
2838 srf_update->scaling_info->dst_rect;
2839 surface->src_rect =
2840 srf_update->scaling_info->src_rect;
2841 surface->clip_rect =
2842 srf_update->scaling_info->clip_rect;
2843 }
2844
2845 if (srf_update->plane_info) {
2846 surface->color_space =
2847 srf_update->plane_info->color_space;
2848 surface->format =
2849 srf_update->plane_info->format;
2850 surface->plane_size =
2851 srf_update->plane_info->plane_size;
2852 surface->rotation =
2853 srf_update->plane_info->rotation;
2854 surface->horizontal_mirror =
2855 srf_update->plane_info->horizontal_mirror;
2856 surface->stereo_format =
2857 srf_update->plane_info->stereo_format;
2858 surface->tiling_info =
2859 srf_update->plane_info->tiling_info;
2860 surface->visible =
2861 srf_update->plane_info->visible;
2862 surface->per_pixel_alpha =
2863 srf_update->plane_info->per_pixel_alpha;
2864 surface->global_alpha =
2865 srf_update->plane_info->global_alpha;
2866 surface->global_alpha_value =
2867 srf_update->plane_info->global_alpha_value;
2868 surface->dcc =
2869 srf_update->plane_info->dcc;
2870 surface->layer_index =
2871 srf_update->plane_info->layer_index;
2872 }
2873
2874 if (srf_update->gamma &&
2875 (surface->gamma_correction !=
2876 srf_update->gamma)) {
2877 memcpy(&surface->gamma_correction->entries,
2878 &srf_update->gamma->entries,
2879 sizeof(struct dc_gamma_entries));
2880 surface->gamma_correction->is_identity =
2881 srf_update->gamma->is_identity;
2882 surface->gamma_correction->num_entries =
2883 srf_update->gamma->num_entries;
2884 surface->gamma_correction->type =
2885 srf_update->gamma->type;
2886 }
2887
2888 if (srf_update->in_transfer_func &&
2889 (surface->in_transfer_func !=
2890 srf_update->in_transfer_func)) {
2891 surface->in_transfer_func->sdr_ref_white_level =
2892 srf_update->in_transfer_func->sdr_ref_white_level;
2893 surface->in_transfer_func->tf =
2894 srf_update->in_transfer_func->tf;
2895 surface->in_transfer_func->type =
2896 srf_update->in_transfer_func->type;
2897 memcpy(&surface->in_transfer_func->tf_pts,
2898 &srf_update->in_transfer_func->tf_pts,
2899 sizeof(struct dc_transfer_func_distributed_points));
2900 }
2901
2902 if (srf_update->func_shaper &&
2903 (surface->in_shaper_func !=
2904 srf_update->func_shaper))
2905 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2906 sizeof(*surface->in_shaper_func));
2907
2908 if (srf_update->lut3d_func &&
2909 (surface->lut3d_func !=
2910 srf_update->lut3d_func))
2911 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2912 sizeof(*surface->lut3d_func));
2913
2914 if (srf_update->hdr_mult.value)
2915 surface->hdr_mult =
2916 srf_update->hdr_mult;
2917
2918 if (srf_update->blend_tf &&
2919 (surface->blend_tf !=
2920 srf_update->blend_tf))
2921 memcpy(surface->blend_tf, srf_update->blend_tf,
2922 sizeof(*surface->blend_tf));
2923
2924 if (srf_update->input_csc_color_matrix)
2925 surface->input_csc_color_matrix =
2926 *srf_update->input_csc_color_matrix;
2927
2928 if (srf_update->coeff_reduction_factor)
2929 surface->coeff_reduction_factor =
2930 *srf_update->coeff_reduction_factor;
2931
2932 if (srf_update->gamut_remap_matrix)
2933 surface->gamut_remap_matrix =
2934 *srf_update->gamut_remap_matrix;
2935 }
2936
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2937 static void copy_stream_update_to_stream(struct dc *dc,
2938 struct dc_state *context,
2939 struct dc_stream_state *stream,
2940 struct dc_stream_update *update)
2941 {
2942 struct dc_context *dc_ctx = dc->ctx;
2943
2944 if (update == NULL || stream == NULL)
2945 return;
2946
2947 if (update->src.height && update->src.width)
2948 stream->src = update->src;
2949
2950 if (update->dst.height && update->dst.width)
2951 stream->dst = update->dst;
2952
2953 if (update->out_transfer_func &&
2954 stream->out_transfer_func != update->out_transfer_func) {
2955 stream->out_transfer_func->sdr_ref_white_level =
2956 update->out_transfer_func->sdr_ref_white_level;
2957 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2958 stream->out_transfer_func->type =
2959 update->out_transfer_func->type;
2960 memcpy(&stream->out_transfer_func->tf_pts,
2961 &update->out_transfer_func->tf_pts,
2962 sizeof(struct dc_transfer_func_distributed_points));
2963 }
2964
2965 if (update->hdr_static_metadata)
2966 stream->hdr_static_metadata = *update->hdr_static_metadata;
2967
2968 if (update->abm_level)
2969 stream->abm_level = *update->abm_level;
2970
2971 if (update->periodic_interrupt)
2972 stream->periodic_interrupt = *update->periodic_interrupt;
2973
2974 if (update->gamut_remap)
2975 stream->gamut_remap_matrix = *update->gamut_remap;
2976
2977 /* Note: this being updated after mode set is currently not a use case
2978 * however if it arises OCSC would need to be reprogrammed at the
2979 * minimum
2980 */
2981 if (update->output_color_space)
2982 stream->output_color_space = *update->output_color_space;
2983
2984 if (update->output_csc_transform)
2985 stream->csc_color_matrix = *update->output_csc_transform;
2986
2987 if (update->vrr_infopacket)
2988 stream->vrr_infopacket = *update->vrr_infopacket;
2989
2990 if (update->allow_freesync)
2991 stream->allow_freesync = *update->allow_freesync;
2992
2993 if (update->vrr_active_variable)
2994 stream->vrr_active_variable = *update->vrr_active_variable;
2995
2996 if (update->crtc_timing_adjust)
2997 stream->adjust = *update->crtc_timing_adjust;
2998
2999 if (update->dpms_off)
3000 stream->dpms_off = *update->dpms_off;
3001
3002 if (update->hfvsif_infopacket)
3003 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
3004
3005 if (update->vtem_infopacket)
3006 stream->vtem_infopacket = *update->vtem_infopacket;
3007
3008 if (update->vsc_infopacket)
3009 stream->vsc_infopacket = *update->vsc_infopacket;
3010
3011 if (update->vsp_infopacket)
3012 stream->vsp_infopacket = *update->vsp_infopacket;
3013
3014 if (update->dither_option)
3015 stream->dither_option = *update->dither_option;
3016
3017 if (update->pending_test_pattern)
3018 stream->test_pattern = *update->pending_test_pattern;
3019 /* update current stream with writeback info */
3020 if (update->wb_update) {
3021 int i;
3022
3023 stream->num_wb_info = update->wb_update->num_wb_info;
3024 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3025 for (i = 0; i < stream->num_wb_info; i++)
3026 stream->writeback_info[i] =
3027 update->wb_update->writeback_info[i];
3028 }
3029 if (update->dsc_config) {
3030 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3031 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3032 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3033 update->dsc_config->num_slices_v != 0);
3034
3035 /* Use temporarry context for validating new DSC config */
3036 struct dc_state *dsc_validate_context = dc_create_state(dc);
3037
3038 if (dsc_validate_context) {
3039 dc_resource_state_copy_construct(dc->current_state, dsc_validate_context);
3040
3041 stream->timing.dsc_cfg = *update->dsc_config;
3042 stream->timing.flags.DSC = enable_dsc;
3043 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3044 stream->timing.dsc_cfg = old_dsc_cfg;
3045 stream->timing.flags.DSC = old_dsc_enabled;
3046 update->dsc_config = NULL;
3047 }
3048
3049 dc_release_state(dsc_validate_context);
3050 } else {
3051 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3052 update->dsc_config = NULL;
3053 }
3054 }
3055 }
3056
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3057 static bool update_planes_and_stream_state(struct dc *dc,
3058 struct dc_surface_update *srf_updates, int surface_count,
3059 struct dc_stream_state *stream,
3060 struct dc_stream_update *stream_update,
3061 enum surface_update_type *new_update_type,
3062 struct dc_state **new_context)
3063 {
3064 struct dc_state *context;
3065 int i, j;
3066 enum surface_update_type update_type;
3067 const struct dc_stream_status *stream_status;
3068 struct dc_context *dc_ctx = dc->ctx;
3069
3070 stream_status = dc_stream_get_status(stream);
3071
3072 if (!stream_status) {
3073 if (surface_count) /* Only an error condition if surf_count non-zero*/
3074 ASSERT(false);
3075
3076 return false; /* Cannot commit surface to stream that is not committed */
3077 }
3078
3079 context = dc->current_state;
3080
3081 update_type = dc_check_update_surfaces_for_stream(
3082 dc, srf_updates, surface_count, stream_update, stream_status);
3083
3084 /* update current stream with the new updates */
3085 copy_stream_update_to_stream(dc, context, stream, stream_update);
3086
3087 /* do not perform surface update if surface has invalid dimensions
3088 * (all zero) and no scaling_info is provided
3089 */
3090 if (surface_count > 0) {
3091 for (i = 0; i < surface_count; i++) {
3092 if ((srf_updates[i].surface->src_rect.width == 0 ||
3093 srf_updates[i].surface->src_rect.height == 0 ||
3094 srf_updates[i].surface->dst_rect.width == 0 ||
3095 srf_updates[i].surface->dst_rect.height == 0) &&
3096 (!srf_updates[i].scaling_info ||
3097 srf_updates[i].scaling_info->src_rect.width == 0 ||
3098 srf_updates[i].scaling_info->src_rect.height == 0 ||
3099 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3100 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3101 DC_ERROR("Invalid src/dst rects in surface update!\n");
3102 return false;
3103 }
3104 }
3105 }
3106
3107 if (update_type >= update_surface_trace_level)
3108 update_surface_trace(dc, srf_updates, surface_count);
3109
3110 if (update_type >= UPDATE_TYPE_FULL) {
3111 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3112
3113 for (i = 0; i < surface_count; i++)
3114 new_planes[i] = srf_updates[i].surface;
3115
3116 /* initialize scratch memory for building context */
3117 context = dc_create_state(dc);
3118 if (context == NULL) {
3119 DC_ERROR("Failed to allocate new validate context!\n");
3120 return false;
3121 }
3122
3123 dc_resource_state_copy_construct(
3124 dc->current_state, context);
3125
3126 /* For each full update, remove all existing phantom pipes first.
3127 * Ensures that we have enough pipes for newly added MPO planes
3128 */
3129 if (dc->res_pool->funcs->remove_phantom_pipes)
3130 dc->res_pool->funcs->remove_phantom_pipes(dc, context);
3131
3132 /*remove old surfaces from context */
3133 if (!dc_rem_all_planes_for_stream(dc, stream, context)) {
3134
3135 BREAK_TO_DEBUGGER();
3136 goto fail;
3137 }
3138
3139 /* add surface to context */
3140 if (!dc_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3141
3142 BREAK_TO_DEBUGGER();
3143 goto fail;
3144 }
3145 }
3146
3147 /* save update parameters into surface */
3148 for (i = 0; i < surface_count; i++) {
3149 struct dc_plane_state *surface = srf_updates[i].surface;
3150
3151 copy_surface_update_to_plane(surface, &srf_updates[i]);
3152
3153 if (update_type >= UPDATE_TYPE_MED) {
3154 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3155 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3156
3157 if (pipe_ctx->plane_state != surface)
3158 continue;
3159
3160 resource_build_scaling_params(pipe_ctx);
3161 }
3162 }
3163 }
3164
3165 if (update_type == UPDATE_TYPE_FULL) {
3166 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3167 /* For phantom pipes we remove and create a new set of phantom pipes
3168 * for each full update (because we don't know if we'll need phantom
3169 * pipes until after the first round of validation). However, if validation
3170 * fails we need to keep the existing phantom pipes (because we don't update
3171 * the dc->current_state).
3172 *
3173 * The phantom stream/plane refcount is decremented for validation because
3174 * we assume it'll be removed (the free comes when the dc_state is freed),
3175 * but if validation fails we have to increment back the refcount so it's
3176 * consistent.
3177 */
3178 if (dc->res_pool->funcs->retain_phantom_pipes)
3179 dc->res_pool->funcs->retain_phantom_pipes(dc, dc->current_state);
3180 BREAK_TO_DEBUGGER();
3181 goto fail;
3182 }
3183 }
3184
3185 *new_context = context;
3186 *new_update_type = update_type;
3187
3188 return true;
3189
3190 fail:
3191 dc_release_state(context);
3192
3193 return false;
3194
3195 }
3196
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3197 static void commit_planes_do_stream_update(struct dc *dc,
3198 struct dc_stream_state *stream,
3199 struct dc_stream_update *stream_update,
3200 enum surface_update_type update_type,
3201 struct dc_state *context)
3202 {
3203 int j;
3204
3205 // Stream updates
3206 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3207 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3208
3209 if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) {
3210
3211 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3212 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3213
3214 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3215 stream_update->vrr_infopacket ||
3216 stream_update->vsc_infopacket ||
3217 stream_update->vsp_infopacket ||
3218 stream_update->hfvsif_infopacket ||
3219 stream_update->vtem_infopacket) {
3220 resource_build_info_frame(pipe_ctx);
3221 dc->hwss.update_info_frame(pipe_ctx);
3222
3223 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3224 dp_source_sequence_trace(pipe_ctx->stream->link, DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3225 }
3226
3227 if (stream_update->hdr_static_metadata &&
3228 stream->use_dynamic_meta &&
3229 dc->hwss.set_dmdata_attributes &&
3230 pipe_ctx->stream->dmdata_address.quad_part != 0)
3231 dc->hwss.set_dmdata_attributes(pipe_ctx);
3232
3233 if (stream_update->gamut_remap)
3234 dc_stream_set_gamut_remap(dc, stream);
3235
3236 if (stream_update->output_csc_transform)
3237 dc_stream_program_csc_matrix(dc, stream);
3238
3239 if (stream_update->dither_option) {
3240 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3241 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3242 &pipe_ctx->stream->bit_depth_params);
3243 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3244 &stream->bit_depth_params,
3245 &stream->clamping);
3246 while (odm_pipe) {
3247 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3248 &stream->bit_depth_params,
3249 &stream->clamping);
3250 odm_pipe = odm_pipe->next_odm_pipe;
3251 }
3252 }
3253
3254
3255 /* Full fe update*/
3256 if (update_type == UPDATE_TYPE_FAST)
3257 continue;
3258
3259 if (stream_update->dsc_config)
3260 dp_update_dsc_config(pipe_ctx);
3261
3262 if (stream_update->mst_bw_update) {
3263 if (stream_update->mst_bw_update->is_increase)
3264 dc_link_increase_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw);
3265 else
3266 dc_link_reduce_mst_payload(pipe_ctx, stream_update->mst_bw_update->mst_stream_bw);
3267 }
3268
3269 if (stream_update->pending_test_pattern) {
3270 dc_link_dp_set_test_pattern(stream->link,
3271 stream->test_pattern.type,
3272 stream->test_pattern.color_space,
3273 stream->test_pattern.p_link_settings,
3274 stream->test_pattern.p_custom_pattern,
3275 stream->test_pattern.cust_pattern_size);
3276 }
3277
3278 if (stream_update->dpms_off) {
3279 if (*stream_update->dpms_off) {
3280 core_link_disable_stream(pipe_ctx);
3281 /* for dpms, keep acquired resources*/
3282 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3283 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3284
3285 dc->optimized_required = true;
3286
3287 } else {
3288 if (get_seamless_boot_stream_count(context) == 0)
3289 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3290 core_link_enable_stream(dc->current_state, pipe_ctx);
3291 }
3292 }
3293
3294 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3295 bool should_program_abm = true;
3296
3297 // if otg funcs defined check if blanked before programming
3298 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3299 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3300 should_program_abm = false;
3301
3302 if (should_program_abm) {
3303 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3304 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3305 } else {
3306 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3307 pipe_ctx->stream_res.abm, stream->abm_level);
3308 }
3309 }
3310 }
3311 }
3312 }
3313 }
3314
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3315 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3316 {
3317 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3318 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3319 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3320 return true;
3321
3322 return false;
3323 }
3324
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3325 void dc_dmub_update_dirty_rect(struct dc *dc,
3326 int surface_count,
3327 struct dc_stream_state *stream,
3328 struct dc_surface_update *srf_updates,
3329 struct dc_state *context)
3330 {
3331 union dmub_rb_cmd cmd;
3332 struct dc_context *dc_ctx = dc->ctx;
3333 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3334 unsigned int i, j;
3335 unsigned int panel_inst = 0;
3336
3337 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3338 return;
3339
3340 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3341 return;
3342
3343 memset(&cmd, 0x0, sizeof(cmd));
3344 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3345 cmd.update_dirty_rect.header.sub_type = 0;
3346 cmd.update_dirty_rect.header.payload_bytes =
3347 sizeof(cmd.update_dirty_rect) -
3348 sizeof(cmd.update_dirty_rect.header);
3349 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3350 for (i = 0; i < surface_count; i++) {
3351 struct dc_plane_state *plane_state = srf_updates[i].surface;
3352 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3353
3354 if (!srf_updates[i].surface || !flip_addr)
3355 continue;
3356 /* Do not send in immediate flip mode */
3357 if (srf_updates[i].surface->flip_immediate)
3358 continue;
3359
3360 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3361 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3362 sizeof(flip_addr->dirty_rects));
3363 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3364 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3365
3366 if (pipe_ctx->stream != stream)
3367 continue;
3368 if (pipe_ctx->plane_state != plane_state)
3369 continue;
3370
3371 update_dirty_rect->panel_inst = panel_inst;
3372 update_dirty_rect->pipe_idx = j;
3373 dc_dmub_srv_cmd_queue(dc_ctx->dmub_srv, &cmd);
3374 dc_dmub_srv_cmd_execute(dc_ctx->dmub_srv);
3375 }
3376 }
3377 }
3378
wait_for_outstanding_hw_updates(struct dc * dc,const struct dc_state * dc_context)3379 static void wait_for_outstanding_hw_updates(struct dc *dc, const struct dc_state *dc_context)
3380 {
3381 /*
3382 * This function calls HWSS to wait for any potentially double buffered
3383 * operations to complete. It should be invoked as a pre-amble prior
3384 * to full update programming before asserting any HW locks.
3385 */
3386 int pipe_idx;
3387 int opp_inst;
3388 int opp_count = dc->res_pool->pipe_count;
3389 struct hubp *hubp;
3390 int mpcc_inst;
3391 const struct pipe_ctx *pipe_ctx;
3392
3393 for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3394 pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3395
3396 if (!pipe_ctx->stream)
3397 continue;
3398
3399 if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3400 pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3401
3402 hubp = pipe_ctx->plane_res.hubp;
3403 if (!hubp)
3404 continue;
3405
3406 mpcc_inst = hubp->inst;
3407 // MPCC inst is equal to pipe index in practice
3408 for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3409 if (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst]) {
3410 dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3411 dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3412 break;
3413 }
3414 }
3415 }
3416 }
3417
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3418 static void commit_planes_for_stream(struct dc *dc,
3419 struct dc_surface_update *srf_updates,
3420 int surface_count,
3421 struct dc_stream_state *stream,
3422 struct dc_stream_update *stream_update,
3423 enum surface_update_type update_type,
3424 struct dc_state *context)
3425 {
3426 int i, j;
3427 struct pipe_ctx *top_pipe_to_program = NULL;
3428 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3429 bool subvp_prev_use = false;
3430
3431 // Once we apply the new subvp context to hardware it won't be in the
3432 // dc->current_state anymore, so we have to cache it before we apply
3433 // the new SubVP context
3434 subvp_prev_use = false;
3435 dc_z10_restore(dc);
3436 if (update_type == UPDATE_TYPE_FULL)
3437 wait_for_outstanding_hw_updates(dc, context);
3438
3439 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3440 /* Optimize seamless boot flag keeps clocks and watermarks high until
3441 * first flip. After first flip, optimization is required to lower
3442 * bandwidth. Important to note that it is expected UEFI will
3443 * only light up a single display on POST, therefore we only expect
3444 * one stream with seamless boot flag set.
3445 */
3446 if (stream->apply_seamless_boot_optimization) {
3447 stream->apply_seamless_boot_optimization = false;
3448
3449 if (get_seamless_boot_stream_count(context) == 0)
3450 dc->optimized_required = true;
3451 }
3452 }
3453
3454 if (update_type == UPDATE_TYPE_FULL) {
3455 dc_allow_idle_optimizations(dc, false);
3456
3457 if (get_seamless_boot_stream_count(context) == 0)
3458 dc->hwss.prepare_bandwidth(dc, context);
3459
3460 if (dc->hwss.update_dsc_pg)
3461 dc->hwss.update_dsc_pg(dc, context, false);
3462
3463 context_clock_trace(dc, context);
3464 }
3465
3466 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3467 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3468
3469 if (!pipe_ctx->top_pipe &&
3470 !pipe_ctx->prev_odm_pipe &&
3471 pipe_ctx->stream &&
3472 pipe_ctx->stream == stream) {
3473 top_pipe_to_program = pipe_ctx;
3474 }
3475 }
3476
3477 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3478 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3479
3480 // Check old context for SubVP
3481 subvp_prev_use |= (old_pipe->stream && old_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM);
3482 if (subvp_prev_use)
3483 break;
3484 }
3485
3486 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3487 struct pipe_ctx *mpcc_pipe;
3488 struct pipe_ctx *odm_pipe;
3489
3490 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3491 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3492 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3493 }
3494
3495 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3496 if (top_pipe_to_program &&
3497 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3498 if (should_use_dmub_lock(stream->link)) {
3499 union dmub_hw_lock_flags hw_locks = { 0 };
3500 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3501
3502 hw_locks.bits.lock_dig = 1;
3503 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3504
3505 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3506 true,
3507 &hw_locks,
3508 &inst_flags);
3509 } else
3510 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3511 top_pipe_to_program->stream_res.tg);
3512 }
3513
3514 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3515 if (dc->hwss.subvp_pipe_control_lock)
3516 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3517 dc->hwss.interdependent_update_lock(dc, context, true);
3518
3519 } else {
3520 if (dc->hwss.subvp_pipe_control_lock)
3521 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3522 /* Lock the top pipe while updating plane addrs, since freesync requires
3523 * plane addr update event triggers to be synchronized.
3524 * top_pipe_to_program is expected to never be NULL
3525 */
3526 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3527 }
3528
3529 if (update_type != UPDATE_TYPE_FAST) {
3530 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3531 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
3532
3533 if ((new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) ||
3534 subvp_prev_use) {
3535 // If old context or new context has phantom pipes, apply
3536 // the phantom timings now. We can't change the phantom
3537 // pipe configuration safely without driver acquiring
3538 // the DMCUB lock first.
3539 dc->hwss.apply_ctx_to_hw(dc, context);
3540 break;
3541 }
3542 }
3543 }
3544
3545 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3546
3547 if (update_type != UPDATE_TYPE_FAST) {
3548 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3549 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
3550
3551 if ((new_pipe->stream && new_pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) ||
3552 subvp_prev_use) {
3553 // If old context or new context has phantom pipes, apply
3554 // the phantom timings now. We can't change the phantom
3555 // pipe configuration safely without driver acquiring
3556 // the DMCUB lock first.
3557 dc->hwss.apply_ctx_to_hw(dc, context);
3558 break;
3559 }
3560 }
3561 }
3562
3563 // Stream updates
3564 if (stream_update)
3565 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3566
3567 if (surface_count == 0) {
3568 /*
3569 * In case of turning off screen, no need to program front end a second time.
3570 * just return after program blank.
3571 */
3572 if (dc->hwss.apply_ctx_for_surface)
3573 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3574 if (dc->hwss.program_front_end_for_ctx)
3575 dc->hwss.program_front_end_for_ctx(dc, context);
3576
3577 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3578 dc->hwss.interdependent_update_lock(dc, context, false);
3579 } else {
3580 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3581 }
3582 dc->hwss.post_unlock_program_front_end(dc, context);
3583
3584 if (update_type != UPDATE_TYPE_FAST)
3585 if (dc->hwss.commit_subvp_config)
3586 dc->hwss.commit_subvp_config(dc, context);
3587
3588 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3589 * move the SubVP lock to after the phantom pipes have been setup
3590 */
3591 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3592 if (dc->hwss.subvp_pipe_control_lock)
3593 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3594 } else {
3595 if (dc->hwss.subvp_pipe_control_lock)
3596 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3597 }
3598
3599 return;
3600 }
3601
3602 if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
3603 for (i = 0; i < surface_count; i++) {
3604 struct dc_plane_state *plane_state = srf_updates[i].surface;
3605 /*set logical flag for lock/unlock use*/
3606 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3607 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3608 if (!pipe_ctx->plane_state)
3609 continue;
3610 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3611 continue;
3612 pipe_ctx->plane_state->triplebuffer_flips = false;
3613 if (update_type == UPDATE_TYPE_FAST &&
3614 dc->hwss.program_triplebuffer != NULL &&
3615 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3616 /*triple buffer for VUpdate only*/
3617 pipe_ctx->plane_state->triplebuffer_flips = true;
3618 }
3619 }
3620 if (update_type == UPDATE_TYPE_FULL) {
3621 /* force vsync flip when reconfiguring pipes to prevent underflow */
3622 plane_state->flip_immediate = false;
3623 }
3624 }
3625 }
3626
3627 // Update Type FULL, Surface updates
3628 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3629 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3630
3631 if (!pipe_ctx->top_pipe &&
3632 !pipe_ctx->prev_odm_pipe &&
3633 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3634 struct dc_stream_status *stream_status = NULL;
3635
3636 if (!pipe_ctx->plane_state)
3637 continue;
3638
3639 /* Full fe update*/
3640 if (update_type == UPDATE_TYPE_FAST)
3641 continue;
3642
3643 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3644
3645 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3646 /*turn off triple buffer for full update*/
3647 dc->hwss.program_triplebuffer(
3648 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3649 }
3650 stream_status =
3651 stream_get_status(context, pipe_ctx->stream);
3652
3653 if (dc->hwss.apply_ctx_for_surface)
3654 dc->hwss.apply_ctx_for_surface(
3655 dc, pipe_ctx->stream, stream_status->plane_count, context);
3656 }
3657 }
3658 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3659 dc->hwss.program_front_end_for_ctx(dc, context);
3660 if (dc->debug.validate_dml_output) {
3661 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3662 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3663 if (cur_pipe->stream == NULL)
3664 continue;
3665
3666 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3667 cur_pipe->plane_res.hubp, dc->ctx,
3668 &context->res_ctx.pipe_ctx[i].rq_regs,
3669 &context->res_ctx.pipe_ctx[i].dlg_regs,
3670 &context->res_ctx.pipe_ctx[i].ttu_regs);
3671 }
3672 }
3673 }
3674
3675 // Update Type FAST, Surface updates
3676 if (update_type == UPDATE_TYPE_FAST) {
3677 if (dc->hwss.set_flip_control_gsl)
3678 for (i = 0; i < surface_count; i++) {
3679 struct dc_plane_state *plane_state = srf_updates[i].surface;
3680
3681 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3682 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3683
3684 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3685 continue;
3686
3687 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3688 continue;
3689
3690 // GSL has to be used for flip immediate
3691 dc->hwss.set_flip_control_gsl(pipe_ctx,
3692 pipe_ctx->plane_state->flip_immediate);
3693 }
3694 }
3695
3696 /* Perform requested Updates */
3697 for (i = 0; i < surface_count; i++) {
3698 struct dc_plane_state *plane_state = srf_updates[i].surface;
3699
3700 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3701 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3702
3703 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3704 continue;
3705
3706 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3707 continue;
3708
3709 /*program triple buffer after lock based on flip type*/
3710 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3711 /*only enable triplebuffer for fast_update*/
3712 dc->hwss.program_triplebuffer(
3713 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3714 }
3715 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3716 dc->hwss.update_plane_addr(dc, pipe_ctx);
3717 }
3718 }
3719
3720 }
3721
3722 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3723 dc->hwss.interdependent_update_lock(dc, context, false);
3724 } else {
3725 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3726 }
3727
3728 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3729 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3730 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3731 top_pipe_to_program->stream_res.tg,
3732 CRTC_STATE_VACTIVE);
3733 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3734 top_pipe_to_program->stream_res.tg,
3735 CRTC_STATE_VBLANK);
3736 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3737 top_pipe_to_program->stream_res.tg,
3738 CRTC_STATE_VACTIVE);
3739
3740 if (should_use_dmub_lock(stream->link)) {
3741 union dmub_hw_lock_flags hw_locks = { 0 };
3742 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3743
3744 hw_locks.bits.lock_dig = 1;
3745 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3746
3747 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3748 false,
3749 &hw_locks,
3750 &inst_flags);
3751 } else
3752 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3753 top_pipe_to_program->stream_res.tg);
3754 }
3755
3756 if (update_type != UPDATE_TYPE_FAST)
3757 dc->hwss.post_unlock_program_front_end(dc, context);
3758 if (update_type != UPDATE_TYPE_FAST)
3759 if (dc->hwss.commit_subvp_config)
3760 dc->hwss.commit_subvp_config(dc, context);
3761
3762 if (update_type != UPDATE_TYPE_FAST)
3763 if (dc->hwss.commit_subvp_config)
3764 dc->hwss.commit_subvp_config(dc, context);
3765
3766 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3767 * move the SubVP lock to after the phantom pipes have been setup
3768 */
3769 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3770 if (dc->hwss.subvp_pipe_control_lock)
3771 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3772 } else {
3773 if (dc->hwss.subvp_pipe_control_lock)
3774 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3775 }
3776
3777 // Fire manual trigger only when bottom plane is flipped
3778 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3779 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3780
3781 if (!pipe_ctx->plane_state)
3782 continue;
3783
3784 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3785 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3786 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
3787 pipe_ctx->plane_state->skip_manual_trigger)
3788 continue;
3789
3790 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3791 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3792 }
3793 }
3794
3795 /* Determines if the incoming context requires a applying transition state with unnecessary
3796 * pipe splitting and ODM disabled, due to hardware limitations. In a case where
3797 * the OPP associated with an MPCC might change due to plane additions, this function
3798 * returns true.
3799 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,int surface_count,bool * is_plane_addition)3800 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3801 struct dc_stream_state *stream,
3802 int surface_count,
3803 bool *is_plane_addition)
3804 {
3805
3806 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
3807 bool force_minimal_pipe_splitting = false;
3808
3809 *is_plane_addition = false;
3810
3811 if (cur_stream_status &&
3812 dc->current_state->stream_count > 0 &&
3813 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
3814 /* determine if minimal transition is required due to MPC*/
3815 if (surface_count > 0) {
3816 if (cur_stream_status->plane_count > surface_count) {
3817 force_minimal_pipe_splitting = true;
3818 } else if (cur_stream_status->plane_count < surface_count) {
3819 force_minimal_pipe_splitting = true;
3820 *is_plane_addition = true;
3821 }
3822 }
3823 }
3824
3825 if (cur_stream_status &&
3826 dc->current_state->stream_count == 1 &&
3827 dc->debug.enable_single_display_2to1_odm_policy) {
3828 /* determine if minimal transition is required due to dynamic ODM*/
3829 if (surface_count > 0) {
3830 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
3831 force_minimal_pipe_splitting = true;
3832 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
3833 force_minimal_pipe_splitting = true;
3834 *is_plane_addition = true;
3835 }
3836 }
3837 }
3838
3839 /* For SubVP when adding or removing planes we need to add a minimal transition
3840 * (even when disabling all planes). Whenever disabling a phantom pipe, we
3841 * must use the minimal transition path to disable the pipe correctly.
3842 */
3843 if (cur_stream_status && stream->mall_stream_config.type == SUBVP_MAIN) {
3844 /* determine if minimal transition is required due to SubVP*/
3845 if (cur_stream_status->plane_count > surface_count) {
3846 force_minimal_pipe_splitting = true;
3847 } else if (cur_stream_status->plane_count < surface_count) {
3848 force_minimal_pipe_splitting = true;
3849 *is_plane_addition = true;
3850 }
3851 }
3852
3853 return force_minimal_pipe_splitting;
3854 }
3855
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)3856 static bool commit_minimal_transition_state(struct dc *dc,
3857 struct dc_state *transition_base_context)
3858 {
3859 struct dc_state *transition_context = dc_create_state(dc);
3860 enum pipe_split_policy tmp_mpc_policy;
3861 bool temp_dynamic_odm_policy;
3862 bool temp_subvp_policy;
3863 enum dc_status ret = DC_ERROR_UNEXPECTED;
3864 unsigned int i, j;
3865 unsigned int pipe_in_use = 0;
3866 bool subvp_in_use = false;
3867 bool odm_in_use = false;
3868
3869 if (!transition_context)
3870 return false;
3871
3872 /* check current pipes in use*/
3873 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3874 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
3875
3876 if (pipe->plane_state)
3877 pipe_in_use++;
3878 }
3879
3880 /* If SubVP is enabled and we are adding or removing planes from any main subvp
3881 * pipe, we must use the minimal transition.
3882 */
3883 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3884 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3885
3886 if (pipe->stream && pipe->stream->mall_stream_config.type == SUBVP_PHANTOM) {
3887 subvp_in_use = true;
3888 break;
3889 }
3890 }
3891
3892 /* If ODM is enabled and we are adding or removing planes from any ODM
3893 * pipe, we must use the minimal transition.
3894 */
3895 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3896 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3897
3898 if (pipe->stream && pipe->next_odm_pipe) {
3899 odm_in_use = true;
3900 break;
3901 }
3902 }
3903
3904 /* When the OS add a new surface if we have been used all of pipes with odm combine
3905 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
3906 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
3907 * call it again. Otherwise return true to skip.
3908 *
3909 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
3910 * enter/exit MPO when DCN still have enough resources.
3911 */
3912 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use) {
3913 dc_release_state(transition_context);
3914 return true;
3915 }
3916
3917 if (!dc->config.is_vmin_only_asic) {
3918 tmp_mpc_policy = dc->debug.pipe_split_policy;
3919 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
3920 }
3921
3922 temp_dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
3923 dc->debug.enable_single_display_2to1_odm_policy = false;
3924
3925 temp_subvp_policy = dc->debug.force_disable_subvp;
3926 dc->debug.force_disable_subvp = true;
3927
3928 dc_resource_state_copy_construct(transition_base_context, transition_context);
3929
3930 //commit minimal state
3931 if (dc->res_pool->funcs->validate_bandwidth(dc, transition_context, false)) {
3932 for (i = 0; i < transition_context->stream_count; i++) {
3933 struct dc_stream_status *stream_status = &transition_context->stream_status[i];
3934
3935 for (j = 0; j < stream_status->plane_count; j++) {
3936 struct dc_plane_state *plane_state = stream_status->plane_states[j];
3937
3938 /* force vsync flip when reconfiguring pipes to prevent underflow
3939 * and corruption
3940 */
3941 plane_state->flip_immediate = false;
3942 }
3943 }
3944
3945 ret = dc_commit_state_no_check(dc, transition_context);
3946 }
3947
3948 /*always release as dc_commit_state_no_check retains in good case*/
3949 dc_release_state(transition_context);
3950
3951 /*restore previous pipe split and odm policy*/
3952 if (!dc->config.is_vmin_only_asic)
3953 dc->debug.pipe_split_policy = tmp_mpc_policy;
3954
3955 dc->debug.enable_single_display_2to1_odm_policy = temp_dynamic_odm_policy;
3956 dc->debug.force_disable_subvp = temp_subvp_policy;
3957
3958 if (ret != DC_OK) {
3959 /*this should never happen*/
3960 BREAK_TO_DEBUGGER();
3961 return false;
3962 }
3963
3964 /*force full surface update*/
3965 for (i = 0; i < dc->current_state->stream_count; i++) {
3966 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
3967 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
3968 }
3969 }
3970
3971 return true;
3972 }
3973
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)3974 bool dc_update_planes_and_stream(struct dc *dc,
3975 struct dc_surface_update *srf_updates, int surface_count,
3976 struct dc_stream_state *stream,
3977 struct dc_stream_update *stream_update)
3978 {
3979 struct dc_state *context;
3980 enum surface_update_type update_type;
3981 int i;
3982
3983 /* In cases where MPO and split or ODM are used transitions can
3984 * cause underflow. Apply stream configuration with minimal pipe
3985 * split first to avoid unsupported transitions for active pipes.
3986 */
3987 bool force_minimal_pipe_splitting;
3988 bool is_plane_addition;
3989
3990 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
3991 dc,
3992 stream,
3993 surface_count,
3994 &is_plane_addition);
3995
3996 /* on plane addition, minimal state is the current one */
3997 if (force_minimal_pipe_splitting && is_plane_addition &&
3998 !commit_minimal_transition_state(dc, dc->current_state))
3999 return false;
4000
4001 if (!update_planes_and_stream_state(
4002 dc,
4003 srf_updates,
4004 surface_count,
4005 stream,
4006 stream_update,
4007 &update_type,
4008 &context))
4009 return false;
4010
4011 /* on plane removal, minimal state is the new one */
4012 if (force_minimal_pipe_splitting && !is_plane_addition) {
4013 if (!commit_minimal_transition_state(dc, context)) {
4014 dc_release_state(context);
4015 return false;
4016 }
4017
4018 update_type = UPDATE_TYPE_FULL;
4019 }
4020
4021 commit_planes_for_stream(
4022 dc,
4023 srf_updates,
4024 surface_count,
4025 stream,
4026 stream_update,
4027 update_type,
4028 context);
4029
4030 if (dc->current_state != context) {
4031
4032 /* Since memory free requires elevated IRQL, an interrupt
4033 * request is generated by mem free. If this happens
4034 * between freeing and reassigning the context, our vsync
4035 * interrupt will call into dc and cause a memory
4036 * corruption BSOD. Hence, we first reassign the context,
4037 * then free the old context.
4038 */
4039
4040 struct dc_state *old = dc->current_state;
4041
4042 dc->current_state = context;
4043 dc_release_state(old);
4044
4045 // clear any forced full updates
4046 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4047 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4048
4049 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4050 pipe_ctx->plane_state->force_full_update = false;
4051 }
4052 }
4053 return true;
4054 }
4055
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4056 void dc_commit_updates_for_stream(struct dc *dc,
4057 struct dc_surface_update *srf_updates,
4058 int surface_count,
4059 struct dc_stream_state *stream,
4060 struct dc_stream_update *stream_update,
4061 struct dc_state *state)
4062 {
4063 const struct dc_stream_status *stream_status;
4064 enum surface_update_type update_type;
4065 struct dc_state *context;
4066 struct dc_context *dc_ctx = dc->ctx;
4067 int i, j;
4068
4069 /* TODO: Since change commit sequence can have a huge impact,
4070 * we decided to only enable it for DCN3x. However, as soon as
4071 * we get more confident about this change we'll need to enable
4072 * the new sequence for all ASICs.
4073 */
4074 if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4075 dc_update_planes_and_stream(dc, srf_updates,
4076 surface_count, stream,
4077 stream_update);
4078 return;
4079 }
4080
4081 stream_status = dc_stream_get_status(stream);
4082 context = dc->current_state;
4083
4084 update_type = dc_check_update_surfaces_for_stream(
4085 dc, srf_updates, surface_count, stream_update, stream_status);
4086
4087 if (update_type >= update_surface_trace_level)
4088 update_surface_trace(dc, srf_updates, surface_count);
4089
4090
4091 if (update_type >= UPDATE_TYPE_FULL) {
4092
4093 /* initialize scratch memory for building context */
4094 context = dc_create_state(dc);
4095 if (context == NULL) {
4096 DC_ERROR("Failed to allocate new validate context!\n");
4097 return;
4098 }
4099
4100 dc_resource_state_copy_construct(state, context);
4101
4102 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4103 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4104 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4105
4106 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4107 new_pipe->plane_state->force_full_update = true;
4108 }
4109 } else if (update_type == UPDATE_TYPE_FAST) {
4110 /*
4111 * Previous frame finished and HW is ready for optimization.
4112 */
4113 dc_post_update_surfaces_to_stream(dc);
4114 }
4115
4116
4117 for (i = 0; i < surface_count; i++) {
4118 struct dc_plane_state *surface = srf_updates[i].surface;
4119
4120 copy_surface_update_to_plane(surface, &srf_updates[i]);
4121
4122 if (update_type >= UPDATE_TYPE_MED) {
4123 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4124 struct pipe_ctx *pipe_ctx =
4125 &context->res_ctx.pipe_ctx[j];
4126
4127 if (pipe_ctx->plane_state != surface)
4128 continue;
4129
4130 resource_build_scaling_params(pipe_ctx);
4131 }
4132 }
4133 }
4134
4135 copy_stream_update_to_stream(dc, context, stream, stream_update);
4136
4137 if (update_type >= UPDATE_TYPE_FULL) {
4138 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4139 DC_ERROR("Mode validation failed for stream update!\n");
4140 dc_release_state(context);
4141 return;
4142 }
4143 }
4144
4145 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4146
4147 commit_planes_for_stream(
4148 dc,
4149 srf_updates,
4150 surface_count,
4151 stream,
4152 stream_update,
4153 update_type,
4154 context);
4155 /*update current_State*/
4156 if (dc->current_state != context) {
4157
4158 struct dc_state *old = dc->current_state;
4159
4160 dc->current_state = context;
4161 dc_release_state(old);
4162
4163 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4164 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4165
4166 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4167 pipe_ctx->plane_state->force_full_update = false;
4168 }
4169 }
4170
4171 /* Legacy optimization path for DCE. */
4172 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4173 dc_post_update_surfaces_to_stream(dc);
4174 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4175 }
4176
4177 return;
4178
4179 }
4180
dc_get_current_stream_count(struct dc * dc)4181 uint8_t dc_get_current_stream_count(struct dc *dc)
4182 {
4183 return dc->current_state->stream_count;
4184 }
4185
dc_get_stream_at_index(struct dc * dc,uint8_t i)4186 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4187 {
4188 if (i < dc->current_state->stream_count)
4189 return dc->current_state->streams[i];
4190 return NULL;
4191 }
4192
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)4193 enum dc_irq_source dc_interrupt_to_irq_source(
4194 struct dc *dc,
4195 uint32_t src_id,
4196 uint32_t ext_id)
4197 {
4198 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
4199 }
4200
4201 /*
4202 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4203 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)4204 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4205 {
4206
4207 if (dc == NULL)
4208 return false;
4209
4210 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
4211 }
4212
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)4213 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4214 {
4215 dal_irq_service_ack(dc->res_pool->irqs, src);
4216 }
4217
dc_power_down_on_boot(struct dc * dc)4218 void dc_power_down_on_boot(struct dc *dc)
4219 {
4220 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4221 dc->hwss.power_down_on_boot)
4222 dc->hwss.power_down_on_boot(dc);
4223 }
4224
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)4225 void dc_set_power_state(
4226 struct dc *dc,
4227 enum dc_acpi_cm_power_state power_state)
4228 {
4229 struct kref refcount;
4230 struct display_mode_lib *dml;
4231
4232 if (!dc->current_state)
4233 return;
4234
4235 switch (power_state) {
4236 case DC_ACPI_CM_POWER_STATE_D0:
4237 dc_resource_state_construct(dc, dc->current_state);
4238
4239 dc_z10_restore(dc);
4240
4241 if (dc->ctx->dmub_srv)
4242 dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv);
4243
4244 dc->hwss.init_hw(dc);
4245
4246 if (dc->hwss.init_sys_ctx != NULL &&
4247 dc->vm_pa_config.valid) {
4248 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4249 }
4250
4251 break;
4252 default:
4253 ASSERT(dc->current_state->stream_count == 0);
4254 /* Zero out the current context so that on resume we start with
4255 * clean state, and dc hw programming optimizations will not
4256 * cause any trouble.
4257 */
4258 dml = kzalloc(sizeof(struct display_mode_lib),
4259 GFP_KERNEL);
4260
4261 ASSERT(dml);
4262 if (!dml)
4263 return;
4264
4265 /* Preserve refcount */
4266 refcount = dc->current_state->refcount;
4267 /* Preserve display mode lib */
4268 memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib));
4269
4270 dc_resource_state_destruct(dc->current_state);
4271 memset(dc->current_state, 0,
4272 sizeof(*dc->current_state));
4273
4274 dc->current_state->refcount = refcount;
4275 dc->current_state->bw_ctx.dml = *dml;
4276
4277 kfree(dml);
4278
4279 break;
4280 }
4281 }
4282
dc_resume(struct dc * dc)4283 void dc_resume(struct dc *dc)
4284 {
4285 uint32_t i;
4286
4287 for (i = 0; i < dc->link_count; i++)
4288 core_link_resume(dc->links[i]);
4289 }
4290
dc_is_dmcu_initialized(struct dc * dc)4291 bool dc_is_dmcu_initialized(struct dc *dc)
4292 {
4293 struct dmcu *dmcu = dc->res_pool->dmcu;
4294
4295 if (dmcu)
4296 return dmcu->funcs->is_dmcu_initialized(dmcu);
4297 return false;
4298 }
4299
dc_is_oem_i2c_device_present(struct dc * dc,size_t slave_address)4300 bool dc_is_oem_i2c_device_present(
4301 struct dc *dc,
4302 size_t slave_address)
4303 {
4304 if (dc->res_pool->oem_device)
4305 return dce_i2c_oem_device_present(
4306 dc->res_pool,
4307 dc->res_pool->oem_device,
4308 slave_address);
4309
4310 return false;
4311 }
4312
dc_submit_i2c(struct dc * dc,uint32_t link_index,struct i2c_command * cmd)4313 bool dc_submit_i2c(
4314 struct dc *dc,
4315 uint32_t link_index,
4316 struct i2c_command *cmd)
4317 {
4318
4319 struct dc_link *link = dc->links[link_index];
4320 struct ddc_service *ddc = link->ddc;
4321 return dce_i2c_submit_command(
4322 dc->res_pool,
4323 ddc->ddc_pin,
4324 cmd);
4325 }
4326
dc_submit_i2c_oem(struct dc * dc,struct i2c_command * cmd)4327 bool dc_submit_i2c_oem(
4328 struct dc *dc,
4329 struct i2c_command *cmd)
4330 {
4331 struct ddc_service *ddc = dc->res_pool->oem_device;
4332 if (ddc)
4333 return dce_i2c_submit_command(
4334 dc->res_pool,
4335 ddc->ddc_pin,
4336 cmd);
4337
4338 return false;
4339 }
4340
link_add_remote_sink_helper(struct dc_link * dc_link,struct dc_sink * sink)4341 static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink)
4342 {
4343 if (dc_link->sink_count >= MAX_SINKS_PER_LINK) {
4344 BREAK_TO_DEBUGGER();
4345 return false;
4346 }
4347
4348 dc_sink_retain(sink);
4349
4350 dc_link->remote_sinks[dc_link->sink_count] = sink;
4351 dc_link->sink_count++;
4352
4353 return true;
4354 }
4355
4356 /*
4357 * dc_link_add_remote_sink() - Create a sink and attach it to an existing link
4358 *
4359 * EDID length is in bytes
4360 */
dc_link_add_remote_sink(struct dc_link * link,const uint8_t * edid,int len,struct dc_sink_init_data * init_data)4361 struct dc_sink *dc_link_add_remote_sink(
4362 struct dc_link *link,
4363 const uint8_t *edid,
4364 int len,
4365 struct dc_sink_init_data *init_data)
4366 {
4367 struct dc_sink *dc_sink;
4368 enum dc_edid_status edid_status;
4369
4370 if (len > DC_MAX_EDID_BUFFER_SIZE) {
4371 dm_error("Max EDID buffer size breached!\n");
4372 return NULL;
4373 }
4374
4375 if (!init_data) {
4376 BREAK_TO_DEBUGGER();
4377 return NULL;
4378 }
4379
4380 if (!init_data->link) {
4381 BREAK_TO_DEBUGGER();
4382 return NULL;
4383 }
4384
4385 dc_sink = dc_sink_create(init_data);
4386
4387 if (!dc_sink)
4388 return NULL;
4389
4390 memmove(dc_sink->dc_edid.raw_edid, edid, len);
4391 dc_sink->dc_edid.length = len;
4392
4393 if (!link_add_remote_sink_helper(
4394 link,
4395 dc_sink))
4396 goto fail_add_sink;
4397
4398 edid_status = dm_helpers_parse_edid_caps(
4399 link,
4400 &dc_sink->dc_edid,
4401 &dc_sink->edid_caps);
4402
4403 /*
4404 * Treat device as no EDID device if EDID
4405 * parsing fails
4406 */
4407 if (edid_status != EDID_OK && edid_status != EDID_PARTIAL_VALID) {
4408 dc_sink->dc_edid.length = 0;
4409 dm_error("Bad EDID, status%d!\n", edid_status);
4410 }
4411
4412 return dc_sink;
4413
4414 fail_add_sink:
4415 dc_sink_release(dc_sink);
4416 return NULL;
4417 }
4418
4419 /*
4420 * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link
4421 *
4422 * Note that this just removes the struct dc_sink - it doesn't
4423 * program hardware or alter other members of dc_link
4424 */
dc_link_remove_remote_sink(struct dc_link * link,struct dc_sink * sink)4425 void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink)
4426 {
4427 int i;
4428
4429 if (!link->sink_count) {
4430 BREAK_TO_DEBUGGER();
4431 return;
4432 }
4433
4434 for (i = 0; i < link->sink_count; i++) {
4435 if (link->remote_sinks[i] == sink) {
4436 dc_sink_release(sink);
4437 link->remote_sinks[i] = NULL;
4438
4439 /* shrink array to remove empty place */
4440 while (i < link->sink_count - 1) {
4441 link->remote_sinks[i] = link->remote_sinks[i+1];
4442 i++;
4443 }
4444 link->remote_sinks[i] = NULL;
4445 link->sink_count--;
4446 return;
4447 }
4448 }
4449 }
4450
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)4451 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4452 {
4453 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4454 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4455 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4456 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4457 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4458 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4459 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4460 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4461 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4462 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)4463 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4464 {
4465 if (dc->hwss.set_clock)
4466 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4467 return DC_ERROR_UNEXPECTED;
4468 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)4469 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4470 {
4471 if (dc->hwss.get_clock)
4472 dc->hwss.get_clock(dc, clock_type, clock_cfg);
4473 }
4474
4475 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)4476 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4477 {
4478 int i;
4479 bool allow_active;
4480
4481 for (i = 0; i < dc->current_state->stream_count ; i++) {
4482 struct dc_link *link;
4483 struct dc_stream_state *stream = dc->current_state->streams[i];
4484
4485 link = stream->link;
4486 if (!link)
4487 continue;
4488
4489 if (link->psr_settings.psr_feature_enabled) {
4490 if (enable && !link->psr_settings.psr_allow_active) {
4491 allow_active = true;
4492 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
4493 return false;
4494 } else if (!enable && link->psr_settings.psr_allow_active) {
4495 allow_active = false;
4496 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
4497 return false;
4498 }
4499 }
4500 }
4501
4502 return true;
4503 }
4504
dc_allow_idle_optimizations(struct dc * dc,bool allow)4505 void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4506 {
4507 if (dc->debug.disable_idle_power_optimizations)
4508 return;
4509
4510 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4511 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4512 return;
4513
4514 if (allow == dc->idle_optimizations_allowed)
4515 return;
4516
4517 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4518 dc->idle_optimizations_allowed = allow;
4519 }
4520
4521 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)4522 void dc_unlock_memory_clock_frequency(struct dc *dc)
4523 {
4524 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4525 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4526
4527 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4528 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4529 }
4530
4531 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)4532 void dc_lock_memory_clock_frequency(struct dc *dc)
4533 {
4534 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4535 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4536
4537 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4538 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4539
4540 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4541 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4542 }
4543
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)4544 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4545 {
4546 struct dc_state *context = dc->current_state;
4547 struct hubp *hubp;
4548 struct pipe_ctx *pipe;
4549 int i;
4550
4551 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4552 pipe = &context->res_ctx.pipe_ctx[i];
4553
4554 if (pipe->stream != NULL) {
4555 dc->hwss.disable_pixel_data(dc, pipe, true);
4556
4557 // wait for double buffer
4558 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4559 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4560 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4561
4562 hubp = pipe->plane_res.hubp;
4563 hubp->funcs->set_blank_regs(hubp, true);
4564 }
4565 }
4566
4567 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4568 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4569
4570 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4571 pipe = &context->res_ctx.pipe_ctx[i];
4572
4573 if (pipe->stream != NULL) {
4574 dc->hwss.disable_pixel_data(dc, pipe, false);
4575
4576 hubp = pipe->plane_res.hubp;
4577 hubp->funcs->set_blank_regs(hubp, false);
4578 }
4579 }
4580 }
4581
4582
4583 /**
4584 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4585 * @dc: pointer to dc of the dm calling this
4586 * @enable: True = transition to DC mode, false = transition back to AC mode
4587 *
4588 * Some SoCs define additional clock limits when in DC mode, DM should
4589 * invoke this function when the platform undergoes a power source transition
4590 * so DC can apply/unapply the limit. This interface may be disruptive to
4591 * the onscreen content.
4592 *
4593 * Context: Triggered by OS through DM interface, or manually by escape calls.
4594 * Need to hold a dclock when doing so.
4595 *
4596 * Return: none (void function)
4597 *
4598 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)4599 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4600 {
4601 uint32_t hw_internal_rev = dc->ctx->asic_id.hw_internal_rev;
4602 unsigned int softMax, maxDPM, funcMin;
4603 bool p_state_change_support;
4604
4605 if (!ASICREV_IS_BEIGE_GOBY_P(hw_internal_rev))
4606 return;
4607
4608 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
4609 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[dc->clk_mgr->bw_params->clk_table.num_entries - 1].memclk_mhz;
4610 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
4611 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
4612
4613 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
4614 if (p_state_change_support) {
4615 if (funcMin <= softMax)
4616 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
4617 // else: No-Op
4618 } else {
4619 if (funcMin <= softMax)
4620 blank_and_force_memclk(dc, true, softMax);
4621 // else: No-Op
4622 }
4623 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
4624 if (p_state_change_support) {
4625 if (funcMin <= softMax)
4626 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
4627 // else: No-Op
4628 } else {
4629 if (funcMin <= softMax)
4630 blank_and_force_memclk(dc, true, maxDPM);
4631 // else: No-Op
4632 }
4633 }
4634 dc->clk_mgr->dc_mode_softmax_enabled = enable;
4635 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,struct dc_plane_state * plane,struct dc_cursor_attributes * cursor_attr)4636 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
4637 struct dc_cursor_attributes *cursor_attr)
4638 {
4639 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
4640 return true;
4641 return false;
4642 }
4643
4644 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)4645 void dc_hardware_release(struct dc *dc)
4646 {
4647 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
4648
4649 if (dc->hwss.hardware_release)
4650 dc->hwss.hardware_release(dc);
4651 }
4652
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)4653 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
4654 {
4655 if (dc->current_state)
4656 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
4657 }
4658
4659 /**
4660 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
4661 *
4662 * @dc: [in] dc structure
4663 *
4664 * Checks whether DMUB FW supports outbox notifications, if supported DM
4665 * should register outbox interrupt prior to actually enabling interrupts
4666 * via dc_enable_dmub_outbox
4667 *
4668 * Return:
4669 * True if DMUB FW supports outbox notifications, False otherwise
4670 */
dc_is_dmub_outbox_supported(struct dc * dc)4671 bool dc_is_dmub_outbox_supported(struct dc *dc)
4672 {
4673 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
4674 if (dc->ctx->asic_id.chip_family == FAMILY_YELLOW_CARP &&
4675 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
4676 !dc->debug.dpia_debug.bits.disable_dpia)
4677 return true;
4678
4679 if (dc->ctx->asic_id.chip_family == AMDGPU_FAMILY_GC_11_0_1 &&
4680 !dc->debug.dpia_debug.bits.disable_dpia)
4681 return true;
4682
4683 /* dmub aux needs dmub notifications to be enabled */
4684 return dc->debug.enable_dmub_aux_for_legacy_ddc;
4685 }
4686
4687 /**
4688 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
4689 *
4690 * @dc: [in] dc structure
4691 *
4692 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
4693 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
4694 * API shall be removed after switching.
4695 *
4696 * Return:
4697 * True if DMUB FW supports outbox notifications, False otherwise
4698 */
dc_enable_dmub_notifications(struct dc * dc)4699 bool dc_enable_dmub_notifications(struct dc *dc)
4700 {
4701 return dc_is_dmub_outbox_supported(dc);
4702 }
4703
4704 /**
4705 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
4706 *
4707 * @dc: [in] dc structure
4708 *
4709 * Enables DMUB unsolicited notifications to x86 via outbox.
4710 */
dc_enable_dmub_outbox(struct dc * dc)4711 void dc_enable_dmub_outbox(struct dc *dc)
4712 {
4713 struct dc_context *dc_ctx = dc->ctx;
4714
4715 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
4716 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
4717 }
4718
4719 /**
4720 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
4721 * Sets port index appropriately for legacy DDC
4722 * @dc: dc structure
4723 * @link_index: link index
4724 * @payload: aux payload
4725 *
4726 * Returns: True if successful, False if failure
4727 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)4728 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
4729 uint32_t link_index,
4730 struct aux_payload *payload)
4731 {
4732 uint8_t action;
4733 union dmub_rb_cmd cmd = {0};
4734 struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4735
4736 ASSERT(payload->length <= 16);
4737
4738 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
4739 cmd.dp_aux_access.header.payload_bytes = 0;
4740 /* For dpia, ddc_pin is set to NULL */
4741 if (!dc->links[link_index]->ddc->ddc_pin)
4742 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
4743 else
4744 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
4745
4746 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
4747 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
4748 cmd.dp_aux_access.aux_control.timeout = 0;
4749 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
4750 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
4751 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
4752
4753 /* set aux action */
4754 if (payload->i2c_over_aux) {
4755 if (payload->write) {
4756 if (payload->mot)
4757 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
4758 else
4759 action = DP_AUX_REQ_ACTION_I2C_WRITE;
4760 } else {
4761 if (payload->mot)
4762 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
4763 else
4764 action = DP_AUX_REQ_ACTION_I2C_READ;
4765 }
4766 } else {
4767 if (payload->write)
4768 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
4769 else
4770 action = DP_AUX_REQ_ACTION_DPCD_READ;
4771 }
4772
4773 cmd.dp_aux_access.aux_control.dpaux.action = action;
4774
4775 if (payload->length && payload->write) {
4776 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
4777 payload->data,
4778 payload->length
4779 );
4780 }
4781
4782 dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
4783 dc_dmub_srv_cmd_execute(dmub_srv);
4784 dc_dmub_srv_wait_idle(dmub_srv);
4785
4786 return true;
4787 }
4788
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)4789 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
4790 uint8_t dpia_port_index)
4791 {
4792 uint8_t index, link_index = 0xFF;
4793
4794 for (index = 0; index < dc->link_count; index++) {
4795 /* ddc_hw_inst has dpia port index for dpia links
4796 * and ddc instance for legacy links
4797 */
4798 if (!dc->links[index]->ddc->ddc_pin) {
4799 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
4800 link_index = index;
4801 break;
4802 }
4803 }
4804 }
4805 ASSERT(link_index != 0xFF);
4806 return link_index;
4807 }
4808
4809 /**
4810 * dc_process_dmub_set_config_async - Submits set_config command
4811 *
4812 * @dc: [in] dc structure
4813 * @link_index: [in] link_index: link index
4814 * @payload: [in] aux payload
4815 * @notify: [out] set_config immediate reply
4816 *
4817 * Submits set_config command to dmub via inbox message.
4818 *
4819 * Return:
4820 * True if successful, False if failure
4821 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)4822 bool dc_process_dmub_set_config_async(struct dc *dc,
4823 uint32_t link_index,
4824 struct set_config_cmd_payload *payload,
4825 struct dmub_notification *notify)
4826 {
4827 union dmub_rb_cmd cmd = {0};
4828 struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4829 bool is_cmd_complete = true;
4830
4831 /* prepare SET_CONFIG command */
4832 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
4833 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
4834
4835 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
4836 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
4837 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
4838
4839 if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd)) {
4840 /* command is not processed by dmub */
4841 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
4842 return is_cmd_complete;
4843 }
4844
4845 /* command processed by dmub, if ret_status is 1, it is completed instantly */
4846 if (cmd.set_config_access.header.ret_status == 1)
4847 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
4848 else
4849 /* cmd pending, will receive notification via outbox */
4850 is_cmd_complete = false;
4851
4852 return is_cmd_complete;
4853 }
4854
4855 /**
4856 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
4857 *
4858 * @dc: [in] dc structure
4859 * @link_index: [in] link index
4860 * @mst_alloc_slots: [in] mst slots to be allotted
4861 * @mst_slots_in_use: [out] mst slots in use returned in failure case
4862 *
4863 * Submits mst slot allocation command to dmub via inbox message
4864 *
4865 * Return:
4866 * DC_OK if successful, DC_ERROR if failure
4867 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)4868 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
4869 uint32_t link_index,
4870 uint8_t mst_alloc_slots,
4871 uint8_t *mst_slots_in_use)
4872 {
4873 union dmub_rb_cmd cmd = {0};
4874 struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4875
4876 /* prepare MST_ALLOC_SLOTS command */
4877 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
4878 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
4879
4880 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
4881 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
4882
4883 if (!dc_dmub_srv_cmd_with_reply_data(dmub_srv, &cmd))
4884 /* command is not processed by dmub */
4885 return DC_ERROR_UNEXPECTED;
4886
4887 /* command processed by dmub, if ret_status is 1 */
4888 if (cmd.set_config_access.header.ret_status != 1)
4889 /* command processing error */
4890 return DC_ERROR_UNEXPECTED;
4891
4892 /* command processed and we have a status of 2, mst not enabled in dpia */
4893 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
4894 return DC_FAIL_UNSUPPORTED_1;
4895
4896 /* previously configured mst alloc and used slots did not match */
4897 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
4898 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
4899 return DC_NOT_SUPPORTED;
4900 }
4901
4902 return DC_OK;
4903 }
4904
4905 /**
4906 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
4907 *
4908 * @dc: [in] dc structure
4909 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
4910 *
4911 * Submits dpia hpd int enable command to dmub via inbox message
4912 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)4913 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
4914 uint32_t hpd_int_enable)
4915 {
4916 union dmub_rb_cmd cmd = {0};
4917 struct dc_dmub_srv *dmub_srv = dc->ctx->dmub_srv;
4918
4919 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
4920 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
4921
4922 dc_dmub_srv_cmd_queue(dmub_srv, &cmd);
4923 dc_dmub_srv_cmd_execute(dmub_srv);
4924 dc_dmub_srv_wait_idle(dmub_srv);
4925
4926 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
4927 }
4928
4929 /**
4930 * dc_disable_accelerated_mode - disable accelerated mode
4931 * @dc: dc structure
4932 */
dc_disable_accelerated_mode(struct dc * dc)4933 void dc_disable_accelerated_mode(struct dc *dc)
4934 {
4935 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
4936 }
4937
4938
4939 /**
4940 * dc_notify_vsync_int_state - notifies vsync enable/disable state
4941 * @dc: dc structure
4942 * @stream: stream where vsync int state changed
4943 * @enable: whether vsync is enabled or disabled
4944 *
4945 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
4946 * interrupts after steady state is reached.
4947 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)4948 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
4949 {
4950 int i;
4951 int edp_num;
4952 struct pipe_ctx *pipe = NULL;
4953 struct dc_link *link = stream->sink->link;
4954 struct dc_link *edp_links[MAX_NUM_EDP];
4955
4956
4957 if (link->psr_settings.psr_feature_enabled)
4958 return;
4959
4960 /*find primary pipe associated with stream*/
4961 for (i = 0; i < MAX_PIPES; i++) {
4962 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4963
4964 if (pipe->stream == stream && pipe->stream_res.tg)
4965 break;
4966 }
4967
4968 if (i == MAX_PIPES) {
4969 ASSERT(0);
4970 return;
4971 }
4972
4973 get_edp_links(dc, edp_links, &edp_num);
4974
4975 /* Determine panel inst */
4976 for (i = 0; i < edp_num; i++) {
4977 if (edp_links[i] == link)
4978 break;
4979 }
4980
4981 if (i == edp_num) {
4982 return;
4983 }
4984
4985 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
4986 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
4987 }
4988