• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "dc_link_dp.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/link_hwss_dio.h"
46 #include "link/link_hwss_dpia.h"
47 #include "link/link_hwss_hpo_dp.h"
48 
49 #if defined(CONFIG_DRM_AMD_DC_SI)
50 #include "dce60/dce60_resource.h"
51 #endif
52 #include "dce80/dce80_resource.h"
53 #include "dce100/dce100_resource.h"
54 #include "dce110/dce110_resource.h"
55 #include "dce112/dce112_resource.h"
56 #include "dce120/dce120_resource.h"
57 #include "dcn10/dcn10_resource.h"
58 #include "dcn20/dcn20_resource.h"
59 #include "dcn21/dcn21_resource.h"
60 #include "dcn201/dcn201_resource.h"
61 #include "dcn30/dcn30_resource.h"
62 #include "dcn301/dcn301_resource.h"
63 #include "dcn302/dcn302_resource.h"
64 #include "dcn303/dcn303_resource.h"
65 #include "dcn31/dcn31_resource.h"
66 #include "dcn314/dcn314_resource.h"
67 #include "dcn315/dcn315_resource.h"
68 #include "dcn316/dcn316_resource.h"
69 #include "../dcn32/dcn32_resource.h"
70 #include "../dcn321/dcn321_resource.h"
71 
72 #define DC_LOGGER_INIT(logger)
73 
resource_parse_asic_id(struct hw_asic_id asic_id)74 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
75 {
76 	enum dce_version dc_version = DCE_VERSION_UNKNOWN;
77 
78 	switch (asic_id.chip_family) {
79 
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81 	case FAMILY_SI:
82 		if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83 		    ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84 		    ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85 			dc_version = DCE_VERSION_6_0;
86 		else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87 			dc_version = DCE_VERSION_6_4;
88 		else
89 			dc_version = DCE_VERSION_6_1;
90 		break;
91 #endif
92 	case FAMILY_CI:
93 		dc_version = DCE_VERSION_8_0;
94 		break;
95 	case FAMILY_KV:
96 		if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97 		    ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98 		    ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99 			dc_version = DCE_VERSION_8_3;
100 		else
101 			dc_version = DCE_VERSION_8_1;
102 		break;
103 	case FAMILY_CZ:
104 		dc_version = DCE_VERSION_11_0;
105 		break;
106 
107 	case FAMILY_VI:
108 		if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109 				ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110 			dc_version = DCE_VERSION_10_0;
111 			break;
112 		}
113 		if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114 				ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115 				ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116 			dc_version = DCE_VERSION_11_2;
117 		}
118 		if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119 			dc_version = DCE_VERSION_11_22;
120 		break;
121 	case FAMILY_AI:
122 		if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123 			dc_version = DCE_VERSION_12_1;
124 		else
125 			dc_version = DCE_VERSION_12_0;
126 		break;
127 	case FAMILY_RV:
128 		dc_version = DCN_VERSION_1_0;
129 		if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
130 			dc_version = DCN_VERSION_1_01;
131 		if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
132 			dc_version = DCN_VERSION_2_1;
133 		if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
134 			dc_version = DCN_VERSION_2_1;
135 		break;
136 
137 	case FAMILY_NV:
138 		dc_version = DCN_VERSION_2_0;
139 		if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
140 			dc_version = DCN_VERSION_2_01;
141 			break;
142 		}
143 		if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
144 			dc_version = DCN_VERSION_3_0;
145 		if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
146 			dc_version = DCN_VERSION_3_02;
147 		if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
148 			dc_version = DCN_VERSION_3_03;
149 		break;
150 
151 	case FAMILY_VGH:
152 		dc_version = DCN_VERSION_3_01;
153 		break;
154 
155 	case FAMILY_YELLOW_CARP:
156 		if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
157 			dc_version = DCN_VERSION_3_1;
158 		break;
159 	case AMDGPU_FAMILY_GC_10_3_6:
160 		if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
161 			dc_version = DCN_VERSION_3_15;
162 		break;
163 	case AMDGPU_FAMILY_GC_10_3_7:
164 		if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
165 			dc_version = DCN_VERSION_3_16;
166 		break;
167 	case AMDGPU_FAMILY_GC_11_0_0:
168 		dc_version = DCN_VERSION_3_2;
169 		if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
170 			dc_version = DCN_VERSION_3_21;
171 		break;
172 	case AMDGPU_FAMILY_GC_11_0_1:
173 		dc_version = DCN_VERSION_3_14;
174 		break;
175 	default:
176 		dc_version = DCE_VERSION_UNKNOWN;
177 		break;
178 	}
179 	return dc_version;
180 }
181 
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)182 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
183 					      const struct dc_init_data *init_data,
184 					      enum dce_version dc_version)
185 {
186 	struct resource_pool *res_pool = NULL;
187 
188 	switch (dc_version) {
189 #if defined(CONFIG_DRM_AMD_DC_SI)
190 	case DCE_VERSION_6_0:
191 		res_pool = dce60_create_resource_pool(
192 			init_data->num_virtual_links, dc);
193 		break;
194 	case DCE_VERSION_6_1:
195 		res_pool = dce61_create_resource_pool(
196 			init_data->num_virtual_links, dc);
197 		break;
198 	case DCE_VERSION_6_4:
199 		res_pool = dce64_create_resource_pool(
200 			init_data->num_virtual_links, dc);
201 		break;
202 #endif
203 	case DCE_VERSION_8_0:
204 		res_pool = dce80_create_resource_pool(
205 				init_data->num_virtual_links, dc);
206 		break;
207 	case DCE_VERSION_8_1:
208 		res_pool = dce81_create_resource_pool(
209 				init_data->num_virtual_links, dc);
210 		break;
211 	case DCE_VERSION_8_3:
212 		res_pool = dce83_create_resource_pool(
213 				init_data->num_virtual_links, dc);
214 		break;
215 	case DCE_VERSION_10_0:
216 		res_pool = dce100_create_resource_pool(
217 				init_data->num_virtual_links, dc);
218 		break;
219 	case DCE_VERSION_11_0:
220 		res_pool = dce110_create_resource_pool(
221 				init_data->num_virtual_links, dc,
222 				init_data->asic_id);
223 		break;
224 	case DCE_VERSION_11_2:
225 	case DCE_VERSION_11_22:
226 		res_pool = dce112_create_resource_pool(
227 				init_data->num_virtual_links, dc);
228 		break;
229 	case DCE_VERSION_12_0:
230 	case DCE_VERSION_12_1:
231 		res_pool = dce120_create_resource_pool(
232 				init_data->num_virtual_links, dc);
233 		break;
234 
235 #if defined(CONFIG_DRM_AMD_DC_DCN)
236 	case DCN_VERSION_1_0:
237 	case DCN_VERSION_1_01:
238 		res_pool = dcn10_create_resource_pool(init_data, dc);
239 		break;
240 	case DCN_VERSION_2_0:
241 		res_pool = dcn20_create_resource_pool(init_data, dc);
242 		break;
243 	case DCN_VERSION_2_1:
244 		res_pool = dcn21_create_resource_pool(init_data, dc);
245 		break;
246 	case DCN_VERSION_2_01:
247 		res_pool = dcn201_create_resource_pool(init_data, dc);
248 		break;
249 	case DCN_VERSION_3_0:
250 		res_pool = dcn30_create_resource_pool(init_data, dc);
251 		break;
252 	case DCN_VERSION_3_01:
253 		res_pool = dcn301_create_resource_pool(init_data, dc);
254 		break;
255 	case DCN_VERSION_3_02:
256 		res_pool = dcn302_create_resource_pool(init_data, dc);
257 		break;
258 	case DCN_VERSION_3_03:
259 		res_pool = dcn303_create_resource_pool(init_data, dc);
260 		break;
261 	case DCN_VERSION_3_1:
262 		res_pool = dcn31_create_resource_pool(init_data, dc);
263 		break;
264 	case DCN_VERSION_3_14:
265 		res_pool = dcn314_create_resource_pool(init_data, dc);
266 		break;
267 	case DCN_VERSION_3_15:
268 		res_pool = dcn315_create_resource_pool(init_data, dc);
269 		break;
270 	case DCN_VERSION_3_16:
271 		res_pool = dcn316_create_resource_pool(init_data, dc);
272 		break;
273 	case DCN_VERSION_3_2:
274 		res_pool = dcn32_create_resource_pool(init_data, dc);
275 		break;
276 	case DCN_VERSION_3_21:
277 		res_pool = dcn321_create_resource_pool(init_data, dc);
278 		break;
279 #endif
280 	default:
281 		break;
282 	}
283 
284 	if (res_pool != NULL) {
285 		if (dc->ctx->dc_bios->fw_info_valid) {
286 			res_pool->ref_clocks.xtalin_clock_inKhz =
287 				dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
288 			/* initialize with firmware data first, no all
289 			 * ASIC have DCCG SW component. FPGA or
290 			 * simulation need initialization of
291 			 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
292 			 * with xtalin_clock_inKhz
293 			 */
294 			res_pool->ref_clocks.dccg_ref_clock_inKhz =
295 				res_pool->ref_clocks.xtalin_clock_inKhz;
296 			res_pool->ref_clocks.dchub_ref_clock_inKhz =
297 				res_pool->ref_clocks.xtalin_clock_inKhz;
298 		} else
299 			ASSERT_CRITICAL(false);
300 	}
301 
302 	return res_pool;
303 }
304 
dc_destroy_resource_pool(struct dc * dc)305 void dc_destroy_resource_pool(struct dc  *dc)
306 {
307 	if (dc) {
308 		if (dc->res_pool)
309 			dc->res_pool->funcs->destroy(&dc->res_pool);
310 
311 		kfree(dc->hwseq);
312 	}
313 }
314 
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)315 static void update_num_audio(
316 	const struct resource_straps *straps,
317 	unsigned int *num_audio,
318 	struct audio_support *aud_support)
319 {
320 	aud_support->dp_audio = true;
321 	aud_support->hdmi_audio_native = false;
322 	aud_support->hdmi_audio_on_dongle = false;
323 
324 	if (straps->hdmi_disable == 0) {
325 		if (straps->dc_pinstraps_audio & 0x2) {
326 			aud_support->hdmi_audio_on_dongle = true;
327 			aud_support->hdmi_audio_native = true;
328 		}
329 	}
330 
331 	switch (straps->audio_stream_number) {
332 	case 0: /* multi streams supported */
333 		break;
334 	case 1: /* multi streams not supported */
335 		*num_audio = 1;
336 		break;
337 	default:
338 		DC_ERR("DC: unexpected audio fuse!\n");
339 	}
340 }
341 
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)342 bool resource_construct(
343 	unsigned int num_virtual_links,
344 	struct dc  *dc,
345 	struct resource_pool *pool,
346 	const struct resource_create_funcs *create_funcs)
347 {
348 	struct dc_context *ctx = dc->ctx;
349 	const struct resource_caps *caps = pool->res_cap;
350 	int i;
351 	unsigned int num_audio = caps->num_audio;
352 	struct resource_straps straps = {0};
353 
354 	if (create_funcs->read_dce_straps)
355 		create_funcs->read_dce_straps(dc->ctx, &straps);
356 
357 	pool->audio_count = 0;
358 	if (create_funcs->create_audio) {
359 		/* find the total number of streams available via the
360 		 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
361 		 * registers (one for each pin) starting from pin 1
362 		 * up to the max number of audio pins.
363 		 * We stop on the first pin where
364 		 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
365 		 */
366 		update_num_audio(&straps, &num_audio, &pool->audio_support);
367 		for (i = 0; i < caps->num_audio; i++) {
368 			struct audio *aud = create_funcs->create_audio(ctx, i);
369 
370 			if (aud == NULL) {
371 				DC_ERR("DC: failed to create audio!\n");
372 				return false;
373 			}
374 			if (!aud->funcs->endpoint_valid(aud)) {
375 				aud->funcs->destroy(&aud);
376 				break;
377 			}
378 			pool->audios[i] = aud;
379 			pool->audio_count++;
380 		}
381 	}
382 
383 	pool->stream_enc_count = 0;
384 	if (create_funcs->create_stream_encoder) {
385 		for (i = 0; i < caps->num_stream_encoder; i++) {
386 			pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
387 			if (pool->stream_enc[i] == NULL)
388 				DC_ERR("DC: failed to create stream_encoder!\n");
389 			pool->stream_enc_count++;
390 		}
391 	}
392 
393 	pool->hpo_dp_stream_enc_count = 0;
394 	if (create_funcs->create_hpo_dp_stream_encoder) {
395 		for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
396 			pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
397 			if (pool->hpo_dp_stream_enc[i] == NULL)
398 				DC_ERR("DC: failed to create HPO DP stream encoder!\n");
399 			pool->hpo_dp_stream_enc_count++;
400 
401 		}
402 	}
403 
404 	pool->hpo_dp_link_enc_count = 0;
405 	if (create_funcs->create_hpo_dp_link_encoder) {
406 		for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
407 			pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
408 			if (pool->hpo_dp_link_enc[i] == NULL)
409 				DC_ERR("DC: failed to create HPO DP link encoder!\n");
410 			pool->hpo_dp_link_enc_count++;
411 		}
412 	}
413 
414 	for (i = 0; i < caps->num_mpc_3dlut; i++) {
415 		pool->mpc_lut[i] = dc_create_3dlut_func();
416 		if (pool->mpc_lut[i] == NULL)
417 			DC_ERR("DC: failed to create MPC 3dlut!\n");
418 		pool->mpc_shaper[i] = dc_create_transfer_func();
419 		if (pool->mpc_shaper[i] == NULL)
420 			DC_ERR("DC: failed to create MPC shaper!\n");
421 	}
422 
423 	dc->caps.dynamic_audio = false;
424 	if (pool->audio_count < pool->stream_enc_count) {
425 		dc->caps.dynamic_audio = true;
426 	}
427 	for (i = 0; i < num_virtual_links; i++) {
428 		pool->stream_enc[pool->stream_enc_count] =
429 			virtual_stream_encoder_create(
430 					ctx, ctx->dc_bios);
431 		if (pool->stream_enc[pool->stream_enc_count] == NULL) {
432 			DC_ERR("DC: failed to create stream_encoder!\n");
433 			return false;
434 		}
435 		pool->stream_enc_count++;
436 	}
437 
438 	dc->hwseq = create_funcs->create_hwseq(ctx);
439 
440 	return true;
441 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)442 static int find_matching_clock_source(
443 		const struct resource_pool *pool,
444 		struct clock_source *clock_source)
445 {
446 
447 	int i;
448 
449 	for (i = 0; i < pool->clk_src_count; i++) {
450 		if (pool->clock_sources[i] == clock_source)
451 			return i;
452 	}
453 	return -1;
454 }
455 
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)456 void resource_unreference_clock_source(
457 		struct resource_context *res_ctx,
458 		const struct resource_pool *pool,
459 		struct clock_source *clock_source)
460 {
461 	int i = find_matching_clock_source(pool, clock_source);
462 
463 	if (i > -1)
464 		res_ctx->clock_source_ref_count[i]--;
465 
466 	if (pool->dp_clock_source == clock_source)
467 		res_ctx->dp_clock_source_ref_count--;
468 }
469 
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)470 void resource_reference_clock_source(
471 		struct resource_context *res_ctx,
472 		const struct resource_pool *pool,
473 		struct clock_source *clock_source)
474 {
475 	int i = find_matching_clock_source(pool, clock_source);
476 
477 	if (i > -1)
478 		res_ctx->clock_source_ref_count[i]++;
479 
480 	if (pool->dp_clock_source == clock_source)
481 		res_ctx->dp_clock_source_ref_count++;
482 }
483 
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)484 int resource_get_clock_source_reference(
485 		struct resource_context *res_ctx,
486 		const struct resource_pool *pool,
487 		struct clock_source *clock_source)
488 {
489 	int i = find_matching_clock_source(pool, clock_source);
490 
491 	if (i > -1)
492 		return res_ctx->clock_source_ref_count[i];
493 
494 	if (pool->dp_clock_source == clock_source)
495 		return res_ctx->dp_clock_source_ref_count;
496 
497 	return -1;
498 }
499 
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)500 bool resource_are_vblanks_synchronizable(
501 	struct dc_stream_state *stream1,
502 	struct dc_stream_state *stream2)
503 {
504 	uint32_t base60_refresh_rates[] = {10, 20, 5};
505 	uint8_t i;
506 	uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
507 	uint64_t frame_time_diff;
508 
509 	if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
510 		stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
511 		dc_is_dp_signal(stream1->signal) &&
512 		dc_is_dp_signal(stream2->signal) &&
513 		false == stream1->has_non_synchronizable_pclk &&
514 		false == stream2->has_non_synchronizable_pclk &&
515 		stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
516 		stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
517 		/* disable refresh rates higher than 60Hz for now */
518 		if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
519 				stream1->timing.v_total > 60)
520 			return false;
521 		if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
522 				stream2->timing.v_total > 60)
523 			return false;
524 		frame_time_diff = (uint64_t)10000 *
525 			stream1->timing.h_total *
526 			stream1->timing.v_total *
527 			stream2->timing.pix_clk_100hz;
528 		frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
529 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
530 		frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
531 		for (i = 0; i < rr_count; i++) {
532 			int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
533 
534 			if (diff < 0)
535 				diff = -diff;
536 			if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
537 				return true;
538 		}
539 	}
540 	return false;
541 }
542 
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)543 bool resource_are_streams_timing_synchronizable(
544 	struct dc_stream_state *stream1,
545 	struct dc_stream_state *stream2)
546 {
547 	if (stream1->timing.h_total != stream2->timing.h_total)
548 		return false;
549 
550 	if (stream1->timing.v_total != stream2->timing.v_total)
551 		return false;
552 
553 	if (stream1->timing.h_addressable
554 				!= stream2->timing.h_addressable)
555 		return false;
556 
557 	if (stream1->timing.v_addressable
558 				!= stream2->timing.v_addressable)
559 		return false;
560 
561 	if (stream1->timing.v_front_porch
562 				!= stream2->timing.v_front_porch)
563 		return false;
564 
565 	if (stream1->timing.pix_clk_100hz
566 				!= stream2->timing.pix_clk_100hz)
567 		return false;
568 
569 	if (stream1->clamping.c_depth != stream2->clamping.c_depth)
570 		return false;
571 
572 	if (stream1->phy_pix_clk != stream2->phy_pix_clk
573 			&& (!dc_is_dp_signal(stream1->signal)
574 			|| !dc_is_dp_signal(stream2->signal)))
575 		return false;
576 
577 	if (stream1->view_format != stream2->view_format)
578 		return false;
579 
580 	if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
581 		return false;
582 
583 	return true;
584 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)585 static bool is_dp_and_hdmi_sharable(
586 		struct dc_stream_state *stream1,
587 		struct dc_stream_state *stream2)
588 {
589 	if (stream1->ctx->dc->caps.disable_dp_clk_share)
590 		return false;
591 
592 	if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
593 		stream2->clamping.c_depth != COLOR_DEPTH_888)
594 		return false;
595 
596 	return true;
597 
598 }
599 
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)600 static bool is_sharable_clk_src(
601 	const struct pipe_ctx *pipe_with_clk_src,
602 	const struct pipe_ctx *pipe)
603 {
604 	if (pipe_with_clk_src->clock_source == NULL)
605 		return false;
606 
607 	if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
608 		return false;
609 
610 	if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
611 		(dc_is_dp_signal(pipe->stream->signal) &&
612 		!is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
613 				     pipe->stream)))
614 		return false;
615 
616 	if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
617 			&& dc_is_dual_link_signal(pipe->stream->signal))
618 		return false;
619 
620 	if (dc_is_hdmi_signal(pipe->stream->signal)
621 			&& dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
622 		return false;
623 
624 	if (!resource_are_streams_timing_synchronizable(
625 			pipe_with_clk_src->stream, pipe->stream))
626 		return false;
627 
628 	return true;
629 }
630 
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)631 struct clock_source *resource_find_used_clk_src_for_sharing(
632 					struct resource_context *res_ctx,
633 					struct pipe_ctx *pipe_ctx)
634 {
635 	int i;
636 
637 	for (i = 0; i < MAX_PIPES; i++) {
638 		if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
639 			return res_ctx->pipe_ctx[i].clock_source;
640 	}
641 
642 	return NULL;
643 }
644 
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)645 static enum pixel_format convert_pixel_format_to_dalsurface(
646 		enum surface_pixel_format surface_pixel_format)
647 {
648 	enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
649 
650 	switch (surface_pixel_format) {
651 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
652 		dal_pixel_format = PIXEL_FORMAT_INDEX8;
653 		break;
654 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
655 		dal_pixel_format = PIXEL_FORMAT_RGB565;
656 		break;
657 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
658 		dal_pixel_format = PIXEL_FORMAT_RGB565;
659 		break;
660 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
661 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
662 		break;
663 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
664 		dal_pixel_format = PIXEL_FORMAT_ARGB8888;
665 		break;
666 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
667 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
668 		break;
669 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
670 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
671 		break;
672 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
673 		dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
674 		break;
675 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
676 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
677 		dal_pixel_format = PIXEL_FORMAT_FP16;
678 		break;
679 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
680 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
681 		dal_pixel_format = PIXEL_FORMAT_420BPP8;
682 		break;
683 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
684 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
685 		dal_pixel_format = PIXEL_FORMAT_420BPP10;
686 		break;
687 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
688 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
689 	default:
690 		dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
691 		break;
692 	}
693 	return dal_pixel_format;
694 }
695 
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)696 static inline void get_vp_scan_direction(
697 	enum dc_rotation_angle rotation,
698 	bool horizontal_mirror,
699 	bool *orthogonal_rotation,
700 	bool *flip_vert_scan_dir,
701 	bool *flip_horz_scan_dir)
702 {
703 	*orthogonal_rotation = false;
704 	*flip_vert_scan_dir = false;
705 	*flip_horz_scan_dir = false;
706 	if (rotation == ROTATION_ANGLE_180) {
707 		*flip_vert_scan_dir = true;
708 		*flip_horz_scan_dir = true;
709 	} else if (rotation == ROTATION_ANGLE_90) {
710 		*orthogonal_rotation = true;
711 		*flip_horz_scan_dir = true;
712 	} else if (rotation == ROTATION_ANGLE_270) {
713 		*orthogonal_rotation = true;
714 		*flip_vert_scan_dir = true;
715 	}
716 
717 	if (horizontal_mirror)
718 		*flip_horz_scan_dir = !*flip_horz_scan_dir;
719 }
720 
get_num_mpc_splits(struct pipe_ctx * pipe)721 int get_num_mpc_splits(struct pipe_ctx *pipe)
722 {
723 	int mpc_split_count = 0;
724 	struct pipe_ctx *other_pipe = pipe->bottom_pipe;
725 
726 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
727 		mpc_split_count++;
728 		other_pipe = other_pipe->bottom_pipe;
729 	}
730 	other_pipe = pipe->top_pipe;
731 	while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
732 		mpc_split_count++;
733 		other_pipe = other_pipe->top_pipe;
734 	}
735 
736 	return mpc_split_count;
737 }
738 
get_num_odm_splits(struct pipe_ctx * pipe)739 int get_num_odm_splits(struct pipe_ctx *pipe)
740 {
741 	int odm_split_count = 0;
742 	struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
743 	while (next_pipe) {
744 		odm_split_count++;
745 		next_pipe = next_pipe->next_odm_pipe;
746 	}
747 	pipe = pipe->prev_odm_pipe;
748 	while (pipe) {
749 		odm_split_count++;
750 		pipe = pipe->prev_odm_pipe;
751 	}
752 	return odm_split_count;
753 }
754 
calculate_split_count_and_index(struct pipe_ctx * pipe_ctx,int * split_count,int * split_idx)755 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
756 {
757 	*split_count = get_num_odm_splits(pipe_ctx);
758 	*split_idx = 0;
759 	if (*split_count == 0) {
760 		/*Check for mpc split*/
761 		struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
762 
763 		*split_count = get_num_mpc_splits(pipe_ctx);
764 		while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
765 			(*split_idx)++;
766 			split_pipe = split_pipe->top_pipe;
767 		}
768 
769 		/* MPO window on right side of ODM split */
770 		if (split_pipe && split_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe)
771 			(*split_idx)++;
772 	} else {
773 		/*Get odm split index*/
774 		struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
775 
776 		while (split_pipe) {
777 			(*split_idx)++;
778 			split_pipe = split_pipe->prev_odm_pipe;
779 		}
780 	}
781 }
782 
783 /*
784  * This is a preliminary vp size calculation to allow us to check taps support.
785  * The result is completely overridden afterwards.
786  */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)787 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
788 {
789 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790 
791 	data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
792 	data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
793 	data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
794 	data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
795 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
796 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
797 		swap(data->viewport.width, data->viewport.height);
798 		swap(data->viewport_c.width, data->viewport_c.height);
799 	}
800 }
801 
calculate_recout(struct pipe_ctx * pipe_ctx)802 static void calculate_recout(struct pipe_ctx *pipe_ctx)
803 {
804 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
805 	const struct dc_stream_state *stream = pipe_ctx->stream;
806 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
807 	struct rect surf_clip = plane_state->clip_rect;
808 	bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
809 	int split_count, split_idx;
810 
811 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
812 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
813 		split_idx = 0;
814 
815 	/*
816 	 * Only the leftmost ODM pipe should be offset by a nonzero distance
817 	 */
818 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe) {
819 		/* MPO window on right side of ODM split */
820 		data->recout.x = stream->dst.x + (surf_clip.x - stream->src.x - stream->src.width/2) *
821 				stream->dst.width / stream->src.width;
822 	} else if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
823 		data->recout.x = stream->dst.x;
824 		if (stream->src.x < surf_clip.x)
825 			data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
826 						/ stream->src.width;
827 	} else
828 		data->recout.x = 0;
829 
830 	if (stream->src.x > surf_clip.x)
831 		surf_clip.width -= stream->src.x - surf_clip.x;
832 	data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
833 	if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
834 		data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
835 
836 	data->recout.y = stream->dst.y;
837 	if (stream->src.y < surf_clip.y)
838 		data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
839 						/ stream->src.height;
840 	else if (stream->src.y > surf_clip.y)
841 		surf_clip.height -= stream->src.y - surf_clip.y;
842 
843 	data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
844 	if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
845 		data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
846 
847 	/* Handle h & v split */
848 	if (split_tb) {
849 		ASSERT(data->recout.height % 2 == 0);
850 		data->recout.height /= 2;
851 	} else if (split_count) {
852 		if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
853 			/* extra pixels in the division remainder need to go to pipes after
854 			 * the extra pixel index minus one(epimo) defined here as:
855 			 */
856 			int epimo = split_count - data->recout.width % (split_count + 1);
857 
858 			data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
859 			if (split_idx > epimo)
860 				data->recout.x += split_idx - epimo - 1;
861 			ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
862 			data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
863 		} else {
864 			/* odm */
865 			if (split_idx == split_count) {
866 				/* rightmost pipe is the remainder recout */
867 				data->recout.width -= data->h_active * split_count - data->recout.x;
868 
869 				/* ODM combine cases with MPO we can get negative widths */
870 				if (data->recout.width < 0)
871 					data->recout.width = 0;
872 
873 				data->recout.x = 0;
874 			} else
875 				data->recout.width = data->h_active - data->recout.x;
876 		}
877 	}
878 }
879 
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)880 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
881 {
882 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
883 	const struct dc_stream_state *stream = pipe_ctx->stream;
884 	struct rect surf_src = plane_state->src_rect;
885 	const int in_w = stream->src.width;
886 	const int in_h = stream->src.height;
887 	const int out_w = stream->dst.width;
888 	const int out_h = stream->dst.height;
889 
890 	/*Swap surf_src height and width since scaling ratios are in recout rotation*/
891 	if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
892 			pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
893 		swap(surf_src.height, surf_src.width);
894 
895 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
896 					surf_src.width,
897 					plane_state->dst_rect.width);
898 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
899 					surf_src.height,
900 					plane_state->dst_rect.height);
901 
902 	if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
903 		pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
904 	else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
905 		pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
906 
907 	pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
908 		pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
909 	pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
910 		pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
911 
912 	pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
913 	pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
914 
915 	if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
916 			|| pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
917 		pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
918 		pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
919 	}
920 	pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
921 			pipe_ctx->plane_res.scl_data.ratios.horz, 19);
922 	pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
923 			pipe_ctx->plane_res.scl_data.ratios.vert, 19);
924 	pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
925 			pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
926 	pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
927 			pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
928 }
929 
930 
931 /*
932  * We completely calculate vp offset, size and inits here based entirely on scaling
933  * ratios and recout for pixel perfect pipe combine.
934  */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)935 static void calculate_init_and_vp(
936 		bool flip_scan_dir,
937 		int recout_offset_within_recout_full,
938 		int recout_size,
939 		int src_size,
940 		int taps,
941 		struct fixed31_32 ratio,
942 		struct fixed31_32 *init,
943 		int *vp_offset,
944 		int *vp_size)
945 {
946 	struct fixed31_32 temp;
947 	int int_part;
948 
949 	/*
950 	 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
951 	 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
952 	 * All following calculations are based on this logic.
953 	 *
954 	 * Init calculated according to formula:
955 	 * 	init = (scaling_ratio + number_of_taps + 1) / 2
956 	 * 	init_bot = init + scaling_ratio
957 	 * 	to get pixel perfect combine add the fraction from calculating vp offset
958 	 */
959 	temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
960 	*vp_offset = dc_fixpt_floor(temp);
961 	temp.value &= 0xffffffff;
962 	*init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
963 			dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
964 	/*
965 	 * If viewport has non 0 offset and there are more taps than covered by init then
966 	 * we should decrease the offset and increase init so we are never sampling
967 	 * outside of viewport.
968 	 */
969 	int_part = dc_fixpt_floor(*init);
970 	if (int_part < taps) {
971 		int_part = taps - int_part;
972 		if (int_part > *vp_offset)
973 			int_part = *vp_offset;
974 		*vp_offset -= int_part;
975 		*init = dc_fixpt_add_int(*init, int_part);
976 	}
977 	/*
978 	 * If taps are sampling outside of viewport at end of recout and there are more pixels
979 	 * available in the surface we should increase the viewport size, regardless set vp to
980 	 * only what is used.
981 	 */
982 	temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
983 	*vp_size = dc_fixpt_floor(temp);
984 	if (*vp_size + *vp_offset > src_size)
985 		*vp_size = src_size - *vp_offset;
986 
987 	/* We did all the math assuming we are scanning same direction as display does,
988 	 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
989 	 * is flipped we simply need to calculate offset from the other side of plane.
990 	 * Note that outside of viewport all scaling hardware works in recout space.
991 	 */
992 	if (flip_scan_dir)
993 		*vp_offset = src_size - *vp_offset - *vp_size;
994 }
995 
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)996 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
997 {
998 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
999 	const struct dc_stream_state *stream = pipe_ctx->stream;
1000 	struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1001 	struct rect src = plane_state->src_rect;
1002 	int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1003 				|| data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1004 	int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
1005 	bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1006 
1007 	calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
1008 	/*
1009 	 * recout full is what the recout would have been if we didnt clip
1010 	 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
1011 	 * offsets of recout within recout full because those are the directions
1012 	 * we scan from and therefore the only ones that affect inits.
1013 	 */
1014 	recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1015 			* stream->dst.width / stream->src.width;
1016 	recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1017 			* stream->dst.height / stream->src.height;
1018 	if (pipe_ctx->prev_odm_pipe && split_idx)
1019 		ro_lb = data->h_active * split_idx - recout_full_x;
1020 	else if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe)
1021 		ro_lb = data->h_active * split_idx - recout_full_x + data->recout.x;
1022 	else
1023 		ro_lb = data->recout.x - recout_full_x;
1024 	ro_tb = data->recout.y - recout_full_y;
1025 	ASSERT(ro_lb >= 0 && ro_tb >= 0);
1026 
1027 	/*
1028 	 * Work in recout rotation since that requires less transformations
1029 	 */
1030 	get_vp_scan_direction(
1031 			plane_state->rotation,
1032 			plane_state->horizontal_mirror,
1033 			&orthogonal_rotation,
1034 			&flip_vert_scan_dir,
1035 			&flip_horz_scan_dir);
1036 
1037 	if (orthogonal_rotation) {
1038 		swap(src.width, src.height);
1039 		swap(flip_vert_scan_dir, flip_horz_scan_dir);
1040 	}
1041 
1042 	calculate_init_and_vp(
1043 			flip_horz_scan_dir,
1044 			ro_lb,
1045 			data->recout.width,
1046 			src.width,
1047 			data->taps.h_taps,
1048 			data->ratios.horz,
1049 			&data->inits.h,
1050 			&data->viewport.x,
1051 			&data->viewport.width);
1052 	calculate_init_and_vp(
1053 			flip_horz_scan_dir,
1054 			ro_lb,
1055 			data->recout.width,
1056 			src.width / vpc_div,
1057 			data->taps.h_taps_c,
1058 			data->ratios.horz_c,
1059 			&data->inits.h_c,
1060 			&data->viewport_c.x,
1061 			&data->viewport_c.width);
1062 	calculate_init_and_vp(
1063 			flip_vert_scan_dir,
1064 			ro_tb,
1065 			data->recout.height,
1066 			src.height,
1067 			data->taps.v_taps,
1068 			data->ratios.vert,
1069 			&data->inits.v,
1070 			&data->viewport.y,
1071 			&data->viewport.height);
1072 	calculate_init_and_vp(
1073 			flip_vert_scan_dir,
1074 			ro_tb,
1075 			data->recout.height,
1076 			src.height / vpc_div,
1077 			data->taps.v_taps_c,
1078 			data->ratios.vert_c,
1079 			&data->inits.v_c,
1080 			&data->viewport_c.y,
1081 			&data->viewport_c.height);
1082 	if (orthogonal_rotation) {
1083 		swap(data->viewport.x, data->viewport.y);
1084 		swap(data->viewport.width, data->viewport.height);
1085 		swap(data->viewport_c.x, data->viewport_c.y);
1086 		swap(data->viewport_c.width, data->viewport_c.height);
1087 	}
1088 	data->viewport.x += src.x;
1089 	data->viewport.y += src.y;
1090 	ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1091 	data->viewport_c.x += src.x / vpc_div;
1092 	data->viewport_c.y += src.y / vpc_div;
1093 }
1094 
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1095 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1096 {
1097 	const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1098 	struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1099 	bool res = false;
1100 	DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1101 
1102 	/* Invalid input */
1103 	if (!plane_state->dst_rect.width ||
1104 			!plane_state->dst_rect.height ||
1105 			!plane_state->src_rect.width ||
1106 			!plane_state->src_rect.height) {
1107 		ASSERT(0);
1108 		return false;
1109 	}
1110 
1111 	pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1112 			pipe_ctx->plane_state->format);
1113 
1114 	/* Timing borders are part of vactive that we are also supposed to skip in addition
1115 	 * to any stream dst offset. Since dm logic assumes dst is in addressable
1116 	 * space we need to add the left and top borders to dst offsets temporarily.
1117 	 * TODO: fix in DM, stream dst is supposed to be in vactive
1118 	 */
1119 	pipe_ctx->stream->dst.x += timing->h_border_left;
1120 	pipe_ctx->stream->dst.y += timing->v_border_top;
1121 
1122 	/* Calculate H and V active size */
1123 	pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1124 			timing->h_border_left + timing->h_border_right;
1125 	pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1126 		timing->v_border_top + timing->v_border_bottom;
1127 	if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe) {
1128 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1129 
1130 		DC_LOG_SCALER("%s pipe %d: next_odm_pipe:%d   prev_odm_pipe:%d\n",
1131 				__func__,
1132 				pipe_ctx->pipe_idx,
1133 				pipe_ctx->next_odm_pipe ? pipe_ctx->next_odm_pipe->pipe_idx : -1,
1134 				pipe_ctx->prev_odm_pipe ? pipe_ctx->prev_odm_pipe->pipe_idx : -1);
1135 	}	/* ODM + windows MPO, where window is on either right or left ODM half */
1136 	else if (pipe_ctx->top_pipe && (pipe_ctx->top_pipe->next_odm_pipe || pipe_ctx->top_pipe->prev_odm_pipe)) {
1137 
1138 		pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx->top_pipe) + 1;
1139 
1140 		DC_LOG_SCALER("%s ODM + windows MPO: pipe:%d top_pipe:%d   top_pipe->next_odm_pipe:%d   top_pipe->prev_odm_pipe:%d\n",
1141 				__func__,
1142 				pipe_ctx->pipe_idx,
1143 				pipe_ctx->top_pipe->pipe_idx,
1144 				pipe_ctx->top_pipe->next_odm_pipe ? pipe_ctx->top_pipe->next_odm_pipe->pipe_idx : -1,
1145 				pipe_ctx->top_pipe->prev_odm_pipe ? pipe_ctx->top_pipe->prev_odm_pipe->pipe_idx : -1);
1146 	}
1147 	/* depends on h_active */
1148 	calculate_recout(pipe_ctx);
1149 	/* depends on pixel format */
1150 	calculate_scaling_ratios(pipe_ctx);
1151 	/* depends on scaling ratios and recout, does not calculate offset yet */
1152 	calculate_viewport_size(pipe_ctx);
1153 
1154 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1155 		/* Stopgap for validation of ODM + MPO on one side of screen case */
1156 		if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1157 				pipe_ctx->plane_res.scl_data.viewport.width < 1)
1158 			return false;
1159 	}
1160 
1161 	/*
1162 	 * LB calculations depend on vp size, h/v_active and scaling ratios
1163 	 * Setting line buffer pixel depth to 24bpp yields banding
1164 	 * on certain displays, such as the Sharp 4k. 36bpp is needed
1165 	 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1166 	 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1167 	 * precision on DCN display engines, but apparently not for DCE, as
1168 	 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1169 	 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1170 	 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1171 	 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1172 	 */
1173 	if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1174 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1175 	else
1176 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1177 
1178 	pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1179 
1180 	if (pipe_ctx->plane_res.xfm != NULL)
1181 		res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1182 				pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1183 
1184 	if (pipe_ctx->plane_res.dpp != NULL)
1185 		res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1186 				pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1187 
1188 
1189 	if (!res) {
1190 		/* Try 24 bpp linebuffer */
1191 		pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1192 
1193 		if (pipe_ctx->plane_res.xfm != NULL)
1194 			res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1195 					pipe_ctx->plane_res.xfm,
1196 					&pipe_ctx->plane_res.scl_data,
1197 					&plane_state->scaling_quality);
1198 
1199 		if (pipe_ctx->plane_res.dpp != NULL)
1200 			res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1201 					pipe_ctx->plane_res.dpp,
1202 					&pipe_ctx->plane_res.scl_data,
1203 					&plane_state->scaling_quality);
1204 	}
1205 
1206 	/*
1207 	 * Depends on recout, scaling ratios, h_active and taps
1208 	 * May need to re-check lb size after this in some obscure scenario
1209 	 */
1210 	if (res)
1211 		calculate_inits_and_viewports(pipe_ctx);
1212 
1213 	/*
1214 	 * Handle side by side and top bottom 3d recout offsets after vp calculation
1215 	 * since 3d is special and needs to calculate vp as if there is no recout offset
1216 	 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1217 	 */
1218 	if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1219 		ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1220 			(pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1221 				pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1222 		if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1223 			pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1224 		else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1225 			pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1226 	}
1227 
1228 	if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1229 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1230 				pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1231 			res = false;
1232 	} else {
1233 		/* Clamp minimum viewport size */
1234 		if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1235 			pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1236 		if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1237 			pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1238 	}
1239 
1240 	DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1241 			"src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1242 			__func__,
1243 			pipe_ctx->pipe_idx,
1244 			pipe_ctx->plane_res.scl_data.viewport.height,
1245 			pipe_ctx->plane_res.scl_data.viewport.width,
1246 			pipe_ctx->plane_res.scl_data.viewport.x,
1247 			pipe_ctx->plane_res.scl_data.viewport.y,
1248 			pipe_ctx->plane_res.scl_data.recout.height,
1249 			pipe_ctx->plane_res.scl_data.recout.width,
1250 			pipe_ctx->plane_res.scl_data.recout.x,
1251 			pipe_ctx->plane_res.scl_data.recout.y,
1252 			pipe_ctx->plane_res.scl_data.h_active,
1253 			pipe_ctx->plane_res.scl_data.v_active,
1254 			plane_state->src_rect.height,
1255 			plane_state->src_rect.width,
1256 			plane_state->src_rect.x,
1257 			plane_state->src_rect.y,
1258 			plane_state->dst_rect.height,
1259 			plane_state->dst_rect.width,
1260 			plane_state->dst_rect.x,
1261 			plane_state->dst_rect.y,
1262 			plane_state->clip_rect.height,
1263 			plane_state->clip_rect.width,
1264 			plane_state->clip_rect.x,
1265 			plane_state->clip_rect.y);
1266 
1267 	pipe_ctx->stream->dst.x -= timing->h_border_left;
1268 	pipe_ctx->stream->dst.y -= timing->v_border_top;
1269 
1270 	return res;
1271 }
1272 
1273 
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1274 enum dc_status resource_build_scaling_params_for_context(
1275 	const struct dc  *dc,
1276 	struct dc_state *context)
1277 {
1278 	int i;
1279 
1280 	for (i = 0; i < MAX_PIPES; i++) {
1281 		if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1282 				context->res_ctx.pipe_ctx[i].stream != NULL)
1283 			if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1284 				return DC_FAIL_SCALING;
1285 	}
1286 
1287 	return DC_OK;
1288 }
1289 
find_idle_secondary_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1290 struct pipe_ctx *find_idle_secondary_pipe(
1291 		struct resource_context *res_ctx,
1292 		const struct resource_pool *pool,
1293 		const struct pipe_ctx *primary_pipe)
1294 {
1295 	int i;
1296 	struct pipe_ctx *secondary_pipe = NULL;
1297 
1298 	/*
1299 	 * We add a preferred pipe mapping to avoid the chance that
1300 	 * MPCCs already in use will need to be reassigned to other trees.
1301 	 * For example, if we went with the strict, assign backwards logic:
1302 	 *
1303 	 * (State 1)
1304 	 * Display A on, no surface, top pipe = 0
1305 	 * Display B on, no surface, top pipe = 1
1306 	 *
1307 	 * (State 2)
1308 	 * Display A on, no surface, top pipe = 0
1309 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1310 	 *
1311 	 * (State 3)
1312 	 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1313 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1314 	 *
1315 	 * The state 2->3 transition requires remapping MPCC 5 from display B
1316 	 * to display A.
1317 	 *
1318 	 * However, with the preferred pipe logic, state 2 would look like:
1319 	 *
1320 	 * (State 2)
1321 	 * Display A on, no surface, top pipe = 0
1322 	 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1323 	 *
1324 	 * This would then cause 2->3 to not require remapping any MPCCs.
1325 	 */
1326 	if (primary_pipe) {
1327 		int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1328 		if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1329 			secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1330 			secondary_pipe->pipe_idx = preferred_pipe_idx;
1331 		}
1332 	}
1333 
1334 	/*
1335 	 * search backwards for the second pipe to keep pipe
1336 	 * assignment more consistent
1337 	 */
1338 	if (!secondary_pipe)
1339 		for (i = pool->pipe_count - 1; i >= 0; i--) {
1340 			if (res_ctx->pipe_ctx[i].stream == NULL) {
1341 				secondary_pipe = &res_ctx->pipe_ctx[i];
1342 				secondary_pipe->pipe_idx = i;
1343 				break;
1344 			}
1345 		}
1346 
1347 	return secondary_pipe;
1348 }
1349 
resource_get_head_pipe_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1350 struct pipe_ctx *resource_get_head_pipe_for_stream(
1351 		struct resource_context *res_ctx,
1352 		struct dc_stream_state *stream)
1353 {
1354 	int i;
1355 
1356 	for (i = 0; i < MAX_PIPES; i++) {
1357 		if (res_ctx->pipe_ctx[i].stream == stream
1358 				&& !res_ctx->pipe_ctx[i].top_pipe
1359 				&& !res_ctx->pipe_ctx[i].prev_odm_pipe)
1360 			return &res_ctx->pipe_ctx[i];
1361 	}
1362 	return NULL;
1363 }
1364 
resource_get_tail_pipe(struct resource_context * res_ctx,struct pipe_ctx * head_pipe)1365 static struct pipe_ctx *resource_get_tail_pipe(
1366 		struct resource_context *res_ctx,
1367 		struct pipe_ctx *head_pipe)
1368 {
1369 	struct pipe_ctx *tail_pipe;
1370 
1371 	tail_pipe = head_pipe->bottom_pipe;
1372 
1373 	while (tail_pipe) {
1374 		head_pipe = tail_pipe;
1375 		tail_pipe = tail_pipe->bottom_pipe;
1376 	}
1377 
1378 	return head_pipe;
1379 }
1380 
1381 /*
1382  * A free_pipe for a stream is defined here as a pipe
1383  * that has no surface attached yet
1384  */
acquire_free_pipe_for_head(struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * head_pipe)1385 static struct pipe_ctx *acquire_free_pipe_for_head(
1386 		struct dc_state *context,
1387 		const struct resource_pool *pool,
1388 		struct pipe_ctx *head_pipe)
1389 {
1390 	int i;
1391 	struct resource_context *res_ctx = &context->res_ctx;
1392 
1393 	if (!head_pipe->plane_state)
1394 		return head_pipe;
1395 
1396 	/* Re-use pipe already acquired for this stream if available*/
1397 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1398 		if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1399 				!res_ctx->pipe_ctx[i].plane_state) {
1400 			return &res_ctx->pipe_ctx[i];
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * At this point we have no re-useable pipe for this stream and we need
1406 	 * to acquire an idle one to satisfy the request
1407 	 */
1408 
1409 	if (!pool->funcs->acquire_idle_pipe_for_layer) {
1410 		if (!pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer)
1411 			return NULL;
1412 		else
1413 			return pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer(context, pool, head_pipe->stream, head_pipe);
1414 	}
1415 
1416 	return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1417 }
1418 
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1419 static int acquire_first_split_pipe(
1420 		struct resource_context *res_ctx,
1421 		const struct resource_pool *pool,
1422 		struct dc_stream_state *stream)
1423 {
1424 	int i;
1425 
1426 	for (i = 0; i < pool->pipe_count; i++) {
1427 		struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1428 
1429 		if (split_pipe->top_pipe &&
1430 				split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1431 			split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1432 			if (split_pipe->bottom_pipe)
1433 				split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1434 
1435 			if (split_pipe->top_pipe->plane_state)
1436 				resource_build_scaling_params(split_pipe->top_pipe);
1437 
1438 			memset(split_pipe, 0, sizeof(*split_pipe));
1439 			split_pipe->stream_res.tg = pool->timing_generators[i];
1440 			split_pipe->plane_res.hubp = pool->hubps[i];
1441 			split_pipe->plane_res.ipp = pool->ipps[i];
1442 			split_pipe->plane_res.dpp = pool->dpps[i];
1443 			split_pipe->stream_res.opp = pool->opps[i];
1444 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1445 			split_pipe->pipe_idx = i;
1446 
1447 			split_pipe->stream = stream;
1448 			return i;
1449 		} else if (split_pipe->prev_odm_pipe &&
1450 				split_pipe->prev_odm_pipe->plane_state == split_pipe->plane_state) {
1451 			split_pipe->prev_odm_pipe->next_odm_pipe = split_pipe->next_odm_pipe;
1452 			if (split_pipe->next_odm_pipe)
1453 				split_pipe->next_odm_pipe->prev_odm_pipe = split_pipe->prev_odm_pipe;
1454 
1455 			if (split_pipe->prev_odm_pipe->plane_state)
1456 				resource_build_scaling_params(split_pipe->prev_odm_pipe);
1457 
1458 			memset(split_pipe, 0, sizeof(*split_pipe));
1459 			split_pipe->stream_res.tg = pool->timing_generators[i];
1460 			split_pipe->plane_res.hubp = pool->hubps[i];
1461 			split_pipe->plane_res.ipp = pool->ipps[i];
1462 			split_pipe->plane_res.dpp = pool->dpps[i];
1463 			split_pipe->stream_res.opp = pool->opps[i];
1464 			split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1465 			split_pipe->pipe_idx = i;
1466 
1467 			split_pipe->stream = stream;
1468 			return i;
1469 		}
1470 	}
1471 	return -1;
1472 }
1473 
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1474 bool dc_add_plane_to_context(
1475 		const struct dc *dc,
1476 		struct dc_stream_state *stream,
1477 		struct dc_plane_state *plane_state,
1478 		struct dc_state *context)
1479 {
1480 	int i;
1481 	struct resource_pool *pool = dc->res_pool;
1482 	struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1483 	struct dc_stream_status *stream_status = NULL;
1484 	struct pipe_ctx *prev_right_head = NULL;
1485 	struct pipe_ctx *free_right_pipe = NULL;
1486 	struct pipe_ctx *prev_left_head = NULL;
1487 
1488 	DC_LOGGER_INIT(stream->ctx->logger);
1489 	for (i = 0; i < context->stream_count; i++)
1490 		if (context->streams[i] == stream) {
1491 			stream_status = &context->stream_status[i];
1492 			break;
1493 		}
1494 	if (stream_status == NULL) {
1495 		dm_error("Existing stream not found; failed to attach surface!\n");
1496 		return false;
1497 	}
1498 
1499 
1500 	if (stream_status->plane_count == MAX_SURFACE_NUM) {
1501 		dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1502 				plane_state, MAX_SURFACE_NUM);
1503 		return false;
1504 	}
1505 
1506 	head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1507 
1508 	if (!head_pipe) {
1509 		dm_error("Head pipe not found for stream_state %p !\n", stream);
1510 		return false;
1511 	}
1512 
1513 	/* retain new surface, but only once per stream */
1514 	dc_plane_state_retain(plane_state);
1515 
1516 	while (head_pipe) {
1517 		free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1518 
1519 		if (!free_pipe) {
1520 			int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1521 			if (pipe_idx >= 0)
1522 				free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1523 		}
1524 
1525 		if (!free_pipe) {
1526 			dc_plane_state_release(plane_state);
1527 			return false;
1528 		}
1529 
1530 		free_pipe->plane_state = plane_state;
1531 
1532 		if (head_pipe != free_pipe) {
1533 			tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1534 			ASSERT(tail_pipe);
1535 
1536 			/* ODM + window MPO, where MPO window is on right half only */
1537 			if (free_pipe->plane_state &&
1538 				(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2) &&
1539 				tail_pipe->next_odm_pipe) {
1540 
1541 				/* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1542 				 *  the right side, then we will invalidate a 2nd one on the right side
1543 				 */
1544 				if (head_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1545 					dc_plane_state_release(plane_state);
1546 					return false;
1547 				}
1548 
1549 				DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d  tail_pipe->next_odm_pipe:%d\n",
1550 						__func__,
1551 						free_pipe->pipe_idx,
1552 						tail_pipe->next_odm_pipe ? tail_pipe->next_odm_pipe->pipe_idx : -1);
1553 
1554 				/*
1555 				 * We want to avoid the case where the right side already has a pipe assigned to
1556 				 *  it and is different from free_pipe ( which would cause trigger a pipe
1557 				 *  reallocation ).
1558 				 * Check the old context to see if the right side already has a pipe allocated
1559 				 * - If not, continue to use free_pipe
1560 				 * - If the right side already has a pipe, use that pipe instead if its available
1561 				 */
1562 
1563 				/*
1564 				 * We also want to avoid the case where with three plane ( 2 MPO videos ), we have
1565 				 *  both videos on the left side so one of the videos is invalidated.  Then we
1566 				 *  move the invalidated video back to the right side.  If the order of the plane
1567 				 *  states is such that the right MPO plane is processed first, the free pipe
1568 				 *  selected by the head will be the left MPO pipe. But since there was no right
1569 				 *  MPO pipe, it will assign the free pipe to the right MPO pipe instead and
1570 				 *  a pipe reallocation will occur.
1571 				 * Check the old context to see if the left side already has a pipe allocated
1572 				 * - If not, continue to use free_pipe
1573 				 * - If the left side is already using this pipe, then pick another pipe for right
1574 				 */
1575 
1576 				prev_right_head = &dc->current_state->res_ctx.pipe_ctx[tail_pipe->next_odm_pipe->pipe_idx];
1577 				if ((prev_right_head->bottom_pipe) &&
1578 					(free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1579 					free_right_pipe = acquire_free_pipe_for_head(context, pool, tail_pipe->next_odm_pipe);
1580 				} else {
1581 					prev_left_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->pipe_idx];
1582 					if ((prev_left_head->bottom_pipe) &&
1583 						(free_pipe->pipe_idx == prev_left_head->bottom_pipe->pipe_idx)) {
1584 						free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1585 					}
1586 				}
1587 
1588 				if (free_right_pipe) {
1589 					free_pipe->stream = NULL;
1590 					memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1591 					memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1592 					free_pipe->plane_state = NULL;
1593 					free_pipe->pipe_idx = 0;
1594 					free_right_pipe->plane_state = plane_state;
1595 					free_pipe = free_right_pipe;
1596 				}
1597 
1598 				free_pipe->stream_res.tg = tail_pipe->next_odm_pipe->stream_res.tg;
1599 				free_pipe->stream_res.abm = tail_pipe->next_odm_pipe->stream_res.abm;
1600 				free_pipe->stream_res.opp = tail_pipe->next_odm_pipe->stream_res.opp;
1601 				free_pipe->stream_res.stream_enc = tail_pipe->next_odm_pipe->stream_res.stream_enc;
1602 				free_pipe->stream_res.audio = tail_pipe->next_odm_pipe->stream_res.audio;
1603 				free_pipe->clock_source = tail_pipe->next_odm_pipe->clock_source;
1604 
1605 				free_pipe->top_pipe = tail_pipe->next_odm_pipe;
1606 				tail_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1607 			} else if (free_pipe->plane_state &&
1608 				(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)
1609 				&& head_pipe->next_odm_pipe) {
1610 
1611 				/* For ODM + window MPO, support 3 plane ( 2 MPO ) case.
1612 				 * Here we have a desktop ODM + left window MPO and a new MPO window appears
1613 				 *  on the right side only.  It fails the first case, because tail_pipe is the
1614 				 *  left window MPO, so it has no next_odm_pipe.  So in this scenario, we check
1615 				 *  for head_pipe->next_odm_pipe instead
1616 				 */
1617 				DC_LOG_SCALER("%s - ODM + win MPO (left) + win MPO (right). free_pipe:%d  head_pipe->next_odm:%d\n",
1618 						__func__,
1619 						free_pipe->pipe_idx,
1620 						head_pipe->next_odm_pipe ? head_pipe->next_odm_pipe->pipe_idx : -1);
1621 
1622 				/*
1623 				 * We want to avoid the case where the right side already has a pipe assigned to
1624 				 *  it and is different from free_pipe ( which would cause trigger a pipe
1625 				 *  reallocation ).
1626 				 * Check the old context to see if the right side already has a pipe allocated
1627 				 * - If not, continue to use free_pipe
1628 				 * - If the right side already has a pipe, use that pipe instead if its available
1629 				 */
1630 				prev_right_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->next_odm_pipe->pipe_idx];
1631 				if ((prev_right_head->bottom_pipe) &&
1632 					(free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1633 					free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe->next_odm_pipe);
1634 					if (free_right_pipe) {
1635 						free_pipe->stream = NULL;
1636 						memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1637 						memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1638 						free_pipe->plane_state = NULL;
1639 						free_pipe->pipe_idx = 0;
1640 						free_right_pipe->plane_state = plane_state;
1641 						free_pipe = free_right_pipe;
1642 					}
1643 				}
1644 
1645 				free_pipe->stream_res.tg = head_pipe->next_odm_pipe->stream_res.tg;
1646 				free_pipe->stream_res.abm = head_pipe->next_odm_pipe->stream_res.abm;
1647 				free_pipe->stream_res.opp = head_pipe->next_odm_pipe->stream_res.opp;
1648 				free_pipe->stream_res.stream_enc = head_pipe->next_odm_pipe->stream_res.stream_enc;
1649 				free_pipe->stream_res.audio = head_pipe->next_odm_pipe->stream_res.audio;
1650 				free_pipe->clock_source = head_pipe->next_odm_pipe->clock_source;
1651 
1652 				free_pipe->top_pipe = head_pipe->next_odm_pipe;
1653 				head_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1654 			} else {
1655 
1656 				/* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1657 				 *  the left side, then we will invalidate a 2nd one on the left side
1658 				 */
1659 				if (head_pipe->next_odm_pipe && tail_pipe->top_pipe) {
1660 					dc_plane_state_release(plane_state);
1661 					return false;
1662 				}
1663 
1664 				free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1665 				free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1666 				free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1667 				free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1668 				free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1669 				free_pipe->clock_source = tail_pipe->clock_source;
1670 
1671 				free_pipe->top_pipe = tail_pipe;
1672 				tail_pipe->bottom_pipe = free_pipe;
1673 
1674 				/* Connect MPO pipes together if MPO window is in the centre */
1675 				if (!(free_pipe->plane_state &&
1676 						(free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1677 						free_pipe->stream->src.x + free_pipe->stream->src.width/2))) {
1678 					if (!free_pipe->next_odm_pipe &&
1679 						tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1680 						free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1681 						tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1682 					}
1683 					if (!free_pipe->prev_odm_pipe &&
1684 						tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1685 						free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1686 						tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1687 					}
1688 				}
1689 			}
1690 		}
1691 
1692 		/* ODM + window MPO, where MPO window is on left half only */
1693 		if (free_pipe->plane_state &&
1694 			(free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1695 			free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1696 			DC_LOG_SCALER("%s - ODM + window MPO(left). free_pipe:%d\n",
1697 					__func__,
1698 					free_pipe->pipe_idx);
1699 			break;
1700 		}
1701 		/* ODM + window MPO, where MPO window is on right half only */
1702 		if (free_pipe->plane_state &&
1703 			(free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1704 			DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d\n",
1705 					__func__,
1706 					free_pipe->pipe_idx);
1707 			break;
1708 		}
1709 
1710 		head_pipe = head_pipe->next_odm_pipe;
1711 	}
1712 	/* assign new surfaces*/
1713 	stream_status->plane_states[stream_status->plane_count] = plane_state;
1714 
1715 	stream_status->plane_count++;
1716 
1717 	return true;
1718 }
1719 
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1720 bool dc_remove_plane_from_context(
1721 		const struct dc *dc,
1722 		struct dc_stream_state *stream,
1723 		struct dc_plane_state *plane_state,
1724 		struct dc_state *context)
1725 {
1726 	int i;
1727 	struct dc_stream_status *stream_status = NULL;
1728 	struct resource_pool *pool = dc->res_pool;
1729 
1730 	if (!plane_state)
1731 		return true;
1732 
1733 	for (i = 0; i < context->stream_count; i++)
1734 		if (context->streams[i] == stream) {
1735 			stream_status = &context->stream_status[i];
1736 			break;
1737 		}
1738 
1739 	if (stream_status == NULL) {
1740 		dm_error("Existing stream not found; failed to remove plane.\n");
1741 		return false;
1742 	}
1743 
1744 	/* release pipe for plane*/
1745 	for (i = pool->pipe_count - 1; i >= 0; i--) {
1746 		struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1747 
1748 		if (pipe_ctx->plane_state == plane_state) {
1749 			if (pipe_ctx->top_pipe)
1750 				pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1751 
1752 			/* Second condition is to avoid setting NULL to top pipe
1753 			 * of tail pipe making it look like head pipe in subsequent
1754 			 * deletes
1755 			 */
1756 			if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1757 				pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1758 
1759 			/*
1760 			 * For head pipe detach surfaces from pipe for tail
1761 			 * pipe just zero it out
1762 			 */
1763 			if (!pipe_ctx->top_pipe)
1764 				pipe_ctx->plane_state = NULL;
1765 			else
1766 				memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1767 		}
1768 	}
1769 
1770 
1771 	for (i = 0; i < stream_status->plane_count; i++) {
1772 		if (stream_status->plane_states[i] == plane_state) {
1773 			dc_plane_state_release(stream_status->plane_states[i]);
1774 			break;
1775 		}
1776 	}
1777 
1778 	if (i == stream_status->plane_count) {
1779 		dm_error("Existing plane_state not found; failed to detach it!\n");
1780 		return false;
1781 	}
1782 
1783 	stream_status->plane_count--;
1784 
1785 	/* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1786 	for (; i < stream_status->plane_count; i++)
1787 		stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1788 
1789 	stream_status->plane_states[stream_status->plane_count] = NULL;
1790 
1791 	return true;
1792 }
1793 
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1794 bool dc_rem_all_planes_for_stream(
1795 		const struct dc *dc,
1796 		struct dc_stream_state *stream,
1797 		struct dc_state *context)
1798 {
1799 	int i, old_plane_count;
1800 	struct dc_stream_status *stream_status = NULL;
1801 	struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1802 
1803 	for (i = 0; i < context->stream_count; i++)
1804 			if (context->streams[i] == stream) {
1805 				stream_status = &context->stream_status[i];
1806 				break;
1807 			}
1808 
1809 	if (stream_status == NULL) {
1810 		dm_error("Existing stream %p not found!\n", stream);
1811 		return false;
1812 	}
1813 
1814 	old_plane_count = stream_status->plane_count;
1815 
1816 	for (i = 0; i < old_plane_count; i++)
1817 		del_planes[i] = stream_status->plane_states[i];
1818 
1819 	for (i = 0; i < old_plane_count; i++)
1820 		if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1821 			return false;
1822 
1823 	return true;
1824 }
1825 
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)1826 static bool add_all_planes_for_stream(
1827 		const struct dc *dc,
1828 		struct dc_stream_state *stream,
1829 		const struct dc_validation_set set[],
1830 		int set_count,
1831 		struct dc_state *context)
1832 {
1833 	int i, j;
1834 
1835 	for (i = 0; i < set_count; i++)
1836 		if (set[i].stream == stream)
1837 			break;
1838 
1839 	if (i == set_count) {
1840 		dm_error("Stream %p not found in set!\n", stream);
1841 		return false;
1842 	}
1843 
1844 	for (j = 0; j < set[i].plane_count; j++)
1845 		if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1846 			return false;
1847 
1848 	return true;
1849 }
1850 
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)1851 bool dc_add_all_planes_for_stream(
1852 		const struct dc *dc,
1853 		struct dc_stream_state *stream,
1854 		struct dc_plane_state * const *plane_states,
1855 		int plane_count,
1856 		struct dc_state *context)
1857 {
1858 	struct dc_validation_set set;
1859 	int i;
1860 
1861 	set.stream = stream;
1862 	set.plane_count = plane_count;
1863 
1864 	for (i = 0; i < plane_count; i++)
1865 		set.plane_states[i] = plane_states[i];
1866 
1867 	return add_all_planes_for_stream(dc, stream, &set, 1, context);
1868 }
1869 
is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)1870 bool is_timing_changed(struct dc_stream_state *cur_stream,
1871 		       struct dc_stream_state *new_stream)
1872 {
1873 	if (cur_stream == NULL)
1874 		return true;
1875 
1876 	/* If output color space is changed, need to reprogram info frames */
1877 	if (cur_stream->output_color_space != new_stream->output_color_space)
1878 		return true;
1879 
1880 	return memcmp(
1881 		&cur_stream->timing,
1882 		&new_stream->timing,
1883 		sizeof(struct dc_crtc_timing)) != 0;
1884 }
1885 
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)1886 static bool are_stream_backends_same(
1887 	struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1888 {
1889 	if (stream_a == stream_b)
1890 		return true;
1891 
1892 	if (stream_a == NULL || stream_b == NULL)
1893 		return false;
1894 
1895 	if (is_timing_changed(stream_a, stream_b))
1896 		return false;
1897 
1898 	if (stream_a->signal != stream_b->signal)
1899 		return false;
1900 
1901 	if (stream_a->dpms_off != stream_b->dpms_off)
1902 		return false;
1903 
1904 	return true;
1905 }
1906 
1907 /*
1908  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1909  *
1910  * Checks if there a difference between the two states
1911  * that would require a mode change.
1912  *
1913  * Does not compare cursor position or attributes.
1914  */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1915 bool dc_is_stream_unchanged(
1916 	struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1917 {
1918 
1919 	if (!are_stream_backends_same(old_stream, stream))
1920 		return false;
1921 
1922 	if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1923 		return false;
1924 
1925 	/*compare audio info*/
1926 	if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1927 		return false;
1928 
1929 	return true;
1930 }
1931 
1932 /*
1933  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1934  */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1935 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1936 				    struct dc_stream_state *stream)
1937 {
1938 	if (old_stream == stream)
1939 		return true;
1940 
1941 	if (old_stream == NULL || stream == NULL)
1942 		return false;
1943 
1944 	if (memcmp(&old_stream->src,
1945 			&stream->src,
1946 			sizeof(struct rect)) != 0)
1947 		return false;
1948 
1949 	if (memcmp(&old_stream->dst,
1950 			&stream->dst,
1951 			sizeof(struct rect)) != 0)
1952 		return false;
1953 
1954 	return true;
1955 }
1956 
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)1957 static void update_stream_engine_usage(
1958 		struct resource_context *res_ctx,
1959 		const struct resource_pool *pool,
1960 		struct stream_encoder *stream_enc,
1961 		bool acquired)
1962 {
1963 	int i;
1964 
1965 	for (i = 0; i < pool->stream_enc_count; i++) {
1966 		if (pool->stream_enc[i] == stream_enc)
1967 			res_ctx->is_stream_enc_acquired[i] = acquired;
1968 	}
1969 }
1970 
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)1971 static void update_hpo_dp_stream_engine_usage(
1972 		struct resource_context *res_ctx,
1973 		const struct resource_pool *pool,
1974 		struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1975 		bool acquired)
1976 {
1977 	int i;
1978 
1979 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1980 		if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1981 			res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1982 	}
1983 }
1984 
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)1985 static inline int find_acquired_hpo_dp_link_enc_for_link(
1986 		const struct resource_context *res_ctx,
1987 		const struct dc_link *link)
1988 {
1989 	int i;
1990 
1991 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1992 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1993 				res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1994 			return i;
1995 
1996 	return -1;
1997 }
1998 
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)1999 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2000 		const struct resource_pool *pool)
2001 {
2002 	int i;
2003 
2004 	for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2005 		if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2006 			break;
2007 
2008 	return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2009 			i < pool->hpo_dp_link_enc_count) ? i : -1;
2010 }
2011 
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2012 static inline void acquire_hpo_dp_link_enc(
2013 		struct resource_context *res_ctx,
2014 		unsigned int link_index,
2015 		int enc_index)
2016 {
2017 	res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2018 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2019 }
2020 
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2021 static inline void retain_hpo_dp_link_enc(
2022 		struct resource_context *res_ctx,
2023 		int enc_index)
2024 {
2025 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2026 }
2027 
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2028 static inline void release_hpo_dp_link_enc(
2029 		struct resource_context *res_ctx,
2030 		int enc_index)
2031 {
2032 	ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2033 	res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2034 }
2035 
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2036 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2037 		const struct resource_pool *pool,
2038 		struct pipe_ctx *pipe_ctx,
2039 		struct dc_stream_state *stream)
2040 {
2041 	int enc_index;
2042 
2043 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2044 
2045 	if (enc_index >= 0) {
2046 		retain_hpo_dp_link_enc(res_ctx, enc_index);
2047 	} else {
2048 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2049 		if (enc_index >= 0)
2050 			acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2051 	}
2052 
2053 	if (enc_index >= 0)
2054 		pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2055 
2056 	return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2057 }
2058 
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2059 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2060 		struct pipe_ctx *pipe_ctx,
2061 		struct dc_stream_state *stream)
2062 {
2063 	int enc_index;
2064 
2065 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2066 
2067 	if (enc_index >= 0) {
2068 		release_hpo_dp_link_enc(res_ctx, enc_index);
2069 		pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2070 	}
2071 }
2072 
2073 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)2074 void update_audio_usage(
2075 		struct resource_context *res_ctx,
2076 		const struct resource_pool *pool,
2077 		struct audio *audio,
2078 		bool acquired)
2079 {
2080 	int i;
2081 	for (i = 0; i < pool->audio_count; i++) {
2082 		if (pool->audios[i] == audio)
2083 			res_ctx->is_audio_acquired[i] = acquired;
2084 	}
2085 }
2086 
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2087 static int acquire_first_free_pipe(
2088 		struct resource_context *res_ctx,
2089 		const struct resource_pool *pool,
2090 		struct dc_stream_state *stream)
2091 {
2092 	int i;
2093 
2094 	for (i = 0; i < pool->pipe_count; i++) {
2095 		if (!res_ctx->pipe_ctx[i].stream) {
2096 			struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2097 
2098 			pipe_ctx->stream_res.tg = pool->timing_generators[i];
2099 			pipe_ctx->plane_res.mi = pool->mis[i];
2100 			pipe_ctx->plane_res.hubp = pool->hubps[i];
2101 			pipe_ctx->plane_res.ipp = pool->ipps[i];
2102 			pipe_ctx->plane_res.xfm = pool->transforms[i];
2103 			pipe_ctx->plane_res.dpp = pool->dpps[i];
2104 			pipe_ctx->stream_res.opp = pool->opps[i];
2105 			if (pool->dpps[i])
2106 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2107 			pipe_ctx->pipe_idx = i;
2108 
2109 			if (i >= pool->timing_generator_count) {
2110 				int tg_inst = pool->timing_generator_count - 1;
2111 
2112 				pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2113 				pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2114 			}
2115 
2116 			pipe_ctx->stream = stream;
2117 			return i;
2118 		}
2119 	}
2120 	return -1;
2121 }
2122 
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2123 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2124 		struct resource_context *res_ctx,
2125 		const struct resource_pool *pool,
2126 		struct dc_stream_state *stream)
2127 {
2128 	int i;
2129 
2130 	for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2131 		if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2132 				pool->hpo_dp_stream_enc[i]) {
2133 
2134 			return pool->hpo_dp_stream_enc[i];
2135 		}
2136 	}
2137 
2138 	return NULL;
2139 }
2140 
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)2141 static struct audio *find_first_free_audio(
2142 		struct resource_context *res_ctx,
2143 		const struct resource_pool *pool,
2144 		enum engine_id id,
2145 		enum dce_version dc_version)
2146 {
2147 	int i, available_audio_count;
2148 
2149 	available_audio_count = pool->audio_count;
2150 
2151 	for (i = 0; i < available_audio_count; i++) {
2152 		if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2153 			/*we have enough audio endpoint, find the matching inst*/
2154 			if (id != i)
2155 				continue;
2156 			return pool->audios[i];
2157 		}
2158 	}
2159 
2160 	/* use engine id to find free audio */
2161 	if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2162 		return pool->audios[id];
2163 	}
2164 	/*not found the matching one, first come first serve*/
2165 	for (i = 0; i < available_audio_count; i++) {
2166 		if (res_ctx->is_audio_acquired[i] == false) {
2167 			return pool->audios[i];
2168 		}
2169 	}
2170 	return NULL;
2171 }
2172 
2173 /*
2174  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2175  */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2176 enum dc_status dc_add_stream_to_ctx(
2177 		struct dc *dc,
2178 		struct dc_state *new_ctx,
2179 		struct dc_stream_state *stream)
2180 {
2181 	enum dc_status res;
2182 	DC_LOGGER_INIT(dc->ctx->logger);
2183 
2184 	if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2185 		DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2186 		return DC_ERROR_UNEXPECTED;
2187 	}
2188 
2189 	new_ctx->streams[new_ctx->stream_count] = stream;
2190 	dc_stream_retain(stream);
2191 	new_ctx->stream_count++;
2192 
2193 	res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2194 	if (res != DC_OK)
2195 		DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2196 
2197 	return res;
2198 }
2199 
2200 /*
2201  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2202  */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2203 enum dc_status dc_remove_stream_from_ctx(
2204 			struct dc *dc,
2205 			struct dc_state *new_ctx,
2206 			struct dc_stream_state *stream)
2207 {
2208 	int i;
2209 	struct dc_context *dc_ctx = dc->ctx;
2210 	struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
2211 	struct pipe_ctx *odm_pipe;
2212 
2213 	if (!del_pipe) {
2214 		DC_ERROR("Pipe not found for stream %p !\n", stream);
2215 		return DC_ERROR_UNEXPECTED;
2216 	}
2217 
2218 	odm_pipe = del_pipe->next_odm_pipe;
2219 
2220 	/* Release primary pipe */
2221 	ASSERT(del_pipe->stream_res.stream_enc);
2222 	update_stream_engine_usage(
2223 			&new_ctx->res_ctx,
2224 				dc->res_pool,
2225 			del_pipe->stream_res.stream_enc,
2226 			false);
2227 
2228 	if (is_dp_128b_132b_signal(del_pipe)) {
2229 		update_hpo_dp_stream_engine_usage(
2230 			&new_ctx->res_ctx, dc->res_pool,
2231 			del_pipe->stream_res.hpo_dp_stream_enc,
2232 			false);
2233 		remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2234 	}
2235 
2236 	if (del_pipe->stream_res.audio)
2237 		update_audio_usage(
2238 			&new_ctx->res_ctx,
2239 			dc->res_pool,
2240 			del_pipe->stream_res.audio,
2241 			false);
2242 
2243 	resource_unreference_clock_source(&new_ctx->res_ctx,
2244 					  dc->res_pool,
2245 					  del_pipe->clock_source);
2246 
2247 	if (dc->res_pool->funcs->remove_stream_from_ctx)
2248 		dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2249 
2250 	while (odm_pipe) {
2251 		struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2252 
2253 		memset(odm_pipe, 0, sizeof(*odm_pipe));
2254 		odm_pipe = next_odm_pipe;
2255 	}
2256 	memset(del_pipe, 0, sizeof(*del_pipe));
2257 
2258 	for (i = 0; i < new_ctx->stream_count; i++)
2259 		if (new_ctx->streams[i] == stream)
2260 			break;
2261 
2262 	if (new_ctx->streams[i] != stream) {
2263 		DC_ERROR("Context doesn't have stream %p !\n", stream);
2264 		return DC_ERROR_UNEXPECTED;
2265 	}
2266 
2267 	dc_stream_release(new_ctx->streams[i]);
2268 	new_ctx->stream_count--;
2269 
2270 	/* Trim back arrays */
2271 	for (; i < new_ctx->stream_count; i++) {
2272 		new_ctx->streams[i] = new_ctx->streams[i + 1];
2273 		new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2274 	}
2275 
2276 	new_ctx->streams[new_ctx->stream_count] = NULL;
2277 	memset(
2278 			&new_ctx->stream_status[new_ctx->stream_count],
2279 			0,
2280 			sizeof(new_ctx->stream_status[0]));
2281 
2282 	return DC_OK;
2283 }
2284 
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)2285 static struct dc_stream_state *find_pll_sharable_stream(
2286 		struct dc_stream_state *stream_needs_pll,
2287 		struct dc_state *context)
2288 {
2289 	int i;
2290 
2291 	for (i = 0; i < context->stream_count; i++) {
2292 		struct dc_stream_state *stream_has_pll = context->streams[i];
2293 
2294 		/* We are looking for non dp, non virtual stream */
2295 		if (resource_are_streams_timing_synchronizable(
2296 			stream_needs_pll, stream_has_pll)
2297 			&& !dc_is_dp_signal(stream_has_pll->signal)
2298 			&& stream_has_pll->link->connector_signal
2299 			!= SIGNAL_TYPE_VIRTUAL)
2300 			return stream_has_pll;
2301 
2302 	}
2303 
2304 	return NULL;
2305 }
2306 
get_norm_pix_clk(const struct dc_crtc_timing * timing)2307 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2308 {
2309 	uint32_t pix_clk = timing->pix_clk_100hz;
2310 	uint32_t normalized_pix_clk = pix_clk;
2311 
2312 	if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2313 		pix_clk /= 2;
2314 	if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2315 		switch (timing->display_color_depth) {
2316 		case COLOR_DEPTH_666:
2317 		case COLOR_DEPTH_888:
2318 			normalized_pix_clk = pix_clk;
2319 			break;
2320 		case COLOR_DEPTH_101010:
2321 			normalized_pix_clk = (pix_clk * 30) / 24;
2322 			break;
2323 		case COLOR_DEPTH_121212:
2324 			normalized_pix_clk = (pix_clk * 36) / 24;
2325 		break;
2326 		case COLOR_DEPTH_161616:
2327 			normalized_pix_clk = (pix_clk * 48) / 24;
2328 		break;
2329 		default:
2330 			ASSERT(0);
2331 		break;
2332 		}
2333 	}
2334 	return normalized_pix_clk;
2335 }
2336 
calculate_phy_pix_clks(struct dc_stream_state * stream)2337 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2338 {
2339 	/* update actual pixel clock on all streams */
2340 	if (dc_is_hdmi_signal(stream->signal))
2341 		stream->phy_pix_clk = get_norm_pix_clk(
2342 			&stream->timing) / 10;
2343 	else
2344 		stream->phy_pix_clk =
2345 			stream->timing.pix_clk_100hz / 10;
2346 
2347 	if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2348 		stream->phy_pix_clk *= 2;
2349 }
2350 
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2351 static int acquire_resource_from_hw_enabled_state(
2352 		struct resource_context *res_ctx,
2353 		const struct resource_pool *pool,
2354 		struct dc_stream_state *stream)
2355 {
2356 	struct dc_link *link = stream->link;
2357 	unsigned int i, inst, tg_inst = 0;
2358 	uint32_t numPipes = 1;
2359 	uint32_t id_src[4] = {0};
2360 
2361 	/* Check for enabled DIG to identify enabled display */
2362 	if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2363 		return -1;
2364 
2365 	inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2366 
2367 	if (inst == ENGINE_ID_UNKNOWN)
2368 		return -1;
2369 
2370 	for (i = 0; i < pool->stream_enc_count; i++) {
2371 		if (pool->stream_enc[i]->id == inst) {
2372 			tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2373 				pool->stream_enc[i]);
2374 			break;
2375 		}
2376 	}
2377 
2378 	// tg_inst not found
2379 	if (i == pool->stream_enc_count)
2380 		return -1;
2381 
2382 	if (tg_inst >= pool->timing_generator_count)
2383 		return -1;
2384 
2385 	if (!res_ctx->pipe_ctx[tg_inst].stream) {
2386 		struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2387 
2388 		pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2389 		id_src[0] = tg_inst;
2390 
2391 		if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2392 			pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2393 						&numPipes, &id_src[0], &id_src[1]);
2394 
2395 		if (id_src[0] == 0xf && id_src[1] == 0xf) {
2396 			id_src[0] = tg_inst;
2397 			numPipes = 1;
2398 		}
2399 
2400 		for (i = 0; i < numPipes; i++) {
2401 			//Check if src id invalid
2402 			if (id_src[i] == 0xf)
2403 				return -1;
2404 
2405 			pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2406 
2407 			pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2408 			pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2409 			pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2410 			pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2411 			pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2412 			pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2413 			pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2414 
2415 			if (pool->dpps[id_src[i]]) {
2416 				pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2417 
2418 				if (pool->mpc->funcs->read_mpcc_state) {
2419 					struct mpcc_state s = {0};
2420 
2421 					pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2422 
2423 					if (s.dpp_id < MAX_MPCC)
2424 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2425 								s.dpp_id;
2426 
2427 					if (s.bot_mpcc_id < MAX_MPCC)
2428 						pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2429 								&pool->mpc->mpcc_array[s.bot_mpcc_id];
2430 
2431 					if (s.opp_id < MAX_OPP)
2432 						pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2433 				}
2434 			}
2435 			pipe_ctx->pipe_idx = id_src[i];
2436 
2437 			if (id_src[i] >= pool->timing_generator_count) {
2438 				id_src[i] = pool->timing_generator_count - 1;
2439 
2440 				pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2441 				pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2442 			}
2443 
2444 			pipe_ctx->stream = stream;
2445 		}
2446 
2447 		if (numPipes == 2) {
2448 			stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2449 			res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2450 			res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2451 			res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2452 			res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2453 		} else
2454 			stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2455 
2456 		return id_src[0];
2457 	}
2458 
2459 	return -1;
2460 }
2461 
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2462 static void mark_seamless_boot_stream(
2463 		const struct dc  *dc,
2464 		struct dc_stream_state *stream)
2465 {
2466 	struct dc_bios *dcb = dc->ctx->dc_bios;
2467 
2468 	if (dc->config.allow_seamless_boot_optimization &&
2469 			!dcb->funcs->is_accelerated_mode(dcb)) {
2470 		if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2471 			stream->apply_seamless_boot_optimization = true;
2472 	}
2473 }
2474 
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2475 enum dc_status resource_map_pool_resources(
2476 		const struct dc  *dc,
2477 		struct dc_state *context,
2478 		struct dc_stream_state *stream)
2479 {
2480 	const struct resource_pool *pool = dc->res_pool;
2481 	int i;
2482 	struct dc_context *dc_ctx = dc->ctx;
2483 	struct pipe_ctx *pipe_ctx = NULL;
2484 	int pipe_idx = -1;
2485 
2486 	calculate_phy_pix_clks(stream);
2487 
2488 	mark_seamless_boot_stream(dc, stream);
2489 
2490 	if (stream->apply_seamless_boot_optimization) {
2491 		pipe_idx = acquire_resource_from_hw_enabled_state(
2492 				&context->res_ctx,
2493 				pool,
2494 				stream);
2495 		if (pipe_idx < 0)
2496 			/* hw resource was assigned to other stream */
2497 			stream->apply_seamless_boot_optimization = false;
2498 	}
2499 
2500 	if (pipe_idx < 0)
2501 		/* acquire new resources */
2502 		pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2503 
2504 	if (pipe_idx < 0)
2505 		pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2506 
2507 	if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2508 		return DC_NO_CONTROLLER_RESOURCE;
2509 
2510 	pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2511 
2512 	pipe_ctx->stream_res.stream_enc =
2513 		dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2514 			&context->res_ctx, pool, stream);
2515 
2516 	if (!pipe_ctx->stream_res.stream_enc)
2517 		return DC_NO_STREAM_ENC_RESOURCE;
2518 
2519 	update_stream_engine_usage(
2520 		&context->res_ctx, pool,
2521 		pipe_ctx->stream_res.stream_enc,
2522 		true);
2523 
2524 	/* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2525 	 * and link settings
2526 	 */
2527 	if (dc_is_dp_signal(stream->signal)) {
2528 		if (!decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2529 			return DC_FAIL_DP_LINK_BANDWIDTH;
2530 		if (dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2531 			pipe_ctx->stream_res.hpo_dp_stream_enc =
2532 					find_first_free_match_hpo_dp_stream_enc_for_link(
2533 							&context->res_ctx, pool, stream);
2534 
2535 			if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2536 				return DC_NO_STREAM_ENC_RESOURCE;
2537 
2538 			update_hpo_dp_stream_engine_usage(
2539 					&context->res_ctx, pool,
2540 					pipe_ctx->stream_res.hpo_dp_stream_enc,
2541 					true);
2542 			if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2543 				return DC_NO_LINK_ENC_RESOURCE;
2544 		}
2545 	}
2546 
2547 	/* TODO: Add check if ASIC support and EDID audio */
2548 	if (!stream->converter_disable_audio &&
2549 	    dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2550 	    stream->audio_info.mode_count && stream->audio_info.flags.all) {
2551 		pipe_ctx->stream_res.audio = find_first_free_audio(
2552 		&context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2553 
2554 		/*
2555 		 * Audio assigned in order first come first get.
2556 		 * There are asics which has number of audio
2557 		 * resources less then number of pipes
2558 		 */
2559 		if (pipe_ctx->stream_res.audio)
2560 			update_audio_usage(&context->res_ctx, pool,
2561 					   pipe_ctx->stream_res.audio, true);
2562 	}
2563 
2564 	/* Add ABM to the resource if on EDP */
2565 	if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2566 		if (pool->abm)
2567 			pipe_ctx->stream_res.abm = pool->abm;
2568 		else
2569 			pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2570 	}
2571 
2572 	for (i = 0; i < context->stream_count; i++)
2573 		if (context->streams[i] == stream) {
2574 			context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2575 			context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2576 			context->stream_status[i].audio_inst =
2577 				pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2578 
2579 			return DC_OK;
2580 		}
2581 
2582 	DC_ERROR("Stream %p not found in new ctx!\n", stream);
2583 	return DC_ERROR_UNEXPECTED;
2584 }
2585 
2586 /**
2587  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2588  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2589  * @dc: copy out of dc->current_state
2590  * @dst_ctx: copy into this
2591  */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2592 void dc_resource_state_copy_construct_current(
2593 		const struct dc *dc,
2594 		struct dc_state *dst_ctx)
2595 {
2596 	dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2597 }
2598 
2599 
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2600 void dc_resource_state_construct(
2601 		const struct dc *dc,
2602 		struct dc_state *dst_ctx)
2603 {
2604 	dst_ctx->clk_mgr = dc->clk_mgr;
2605 
2606 	/* Initialise DIG link encoder resource tracking variables. */
2607 	link_enc_cfg_init(dc, dst_ctx);
2608 }
2609 
2610 
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2611 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2612 {
2613 	if (dc->res_pool == NULL)
2614 		return false;
2615 
2616 	return dc->res_pool->res_cap->num_dsc > 0;
2617 }
2618 
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)2619 static bool planes_changed_for_existing_stream(struct dc_state *context,
2620 					       struct dc_stream_state *stream,
2621 					       const struct dc_validation_set set[],
2622 					       int set_count)
2623 {
2624 	int i, j;
2625 	struct dc_stream_status *stream_status = NULL;
2626 
2627 	for (i = 0; i < context->stream_count; i++) {
2628 		if (context->streams[i] == stream) {
2629 			stream_status = &context->stream_status[i];
2630 			break;
2631 		}
2632 	}
2633 
2634 	if (!stream_status)
2635 		ASSERT(0);
2636 
2637 	for (i = 0; i < set_count; i++)
2638 		if (set[i].stream == stream)
2639 			break;
2640 
2641 	if (i == set_count)
2642 		ASSERT(0);
2643 
2644 	if (set[i].plane_count != stream_status->plane_count)
2645 		return true;
2646 
2647 	for (j = 0; j < set[i].plane_count; j++)
2648 		if (set[i].plane_states[j] != stream_status->plane_states[j])
2649 			return true;
2650 
2651 	return false;
2652 }
2653 
2654 /**
2655  * dc_validate_with_context - Validate and update the potential new stream in the context object
2656  *
2657  * @dc: Used to get the current state status
2658  * @set: An array of dc_validation_set with all the current streams reference
2659  * @set_count: Total of streams
2660  * @context: New context
2661  * @fast_validate: Enable or disable fast validation
2662  *
2663  * This function updates the potential new stream in the context object. It
2664  * creates multiple lists for the add, remove, and unchanged streams. In
2665  * particular, if the unchanged streams have a plane that changed, it is
2666  * necessary to remove all planes from the unchanged streams. In summary, this
2667  * function is responsible for validating the new context.
2668  *
2669  * Return:
2670  * In case of success, return DC_OK (1), otherwise, return a DC error.
2671  */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)2672 enum dc_status dc_validate_with_context(struct dc *dc,
2673 					const struct dc_validation_set set[],
2674 					int set_count,
2675 					struct dc_state *context,
2676 					bool fast_validate)
2677 {
2678 	struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2679 	struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2680 	struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2681 	int old_stream_count = context->stream_count;
2682 	enum dc_status res = DC_ERROR_UNEXPECTED;
2683 	int unchanged_streams_count = 0;
2684 	int del_streams_count = 0;
2685 	int add_streams_count = 0;
2686 	bool found = false;
2687 	int i, j, k;
2688 
2689 	DC_LOGGER_INIT(dc->ctx->logger);
2690 
2691 	/* First build a list of streams to be remove from current context */
2692 	for (i = 0; i < old_stream_count; i++) {
2693 		struct dc_stream_state *stream = context->streams[i];
2694 
2695 		for (j = 0; j < set_count; j++) {
2696 			if (stream == set[j].stream) {
2697 				found = true;
2698 				break;
2699 			}
2700 		}
2701 
2702 		if (!found)
2703 			del_streams[del_streams_count++] = stream;
2704 
2705 		found = false;
2706 	}
2707 
2708 	/* Second, build a list of new streams */
2709 	for (i = 0; i < set_count; i++) {
2710 		struct dc_stream_state *stream = set[i].stream;
2711 
2712 		for (j = 0; j < old_stream_count; j++) {
2713 			if (stream == context->streams[j]) {
2714 				found = true;
2715 				break;
2716 			}
2717 		}
2718 
2719 		if (!found)
2720 			add_streams[add_streams_count++] = stream;
2721 
2722 		found = false;
2723 	}
2724 
2725 	/* Build a list of unchanged streams which is necessary for handling
2726 	 * planes change such as added, removed, and updated.
2727 	 */
2728 	for (i = 0; i < set_count; i++) {
2729 		/* Check if stream is part of the delete list */
2730 		for (j = 0; j < del_streams_count; j++) {
2731 			if (set[i].stream == del_streams[j]) {
2732 				found = true;
2733 				break;
2734 			}
2735 		}
2736 
2737 		if (!found) {
2738 			/* Check if stream is part of the add list */
2739 			for (j = 0; j < add_streams_count; j++) {
2740 				if (set[i].stream == add_streams[j]) {
2741 					found = true;
2742 					break;
2743 				}
2744 			}
2745 		}
2746 
2747 		if (!found)
2748 			unchanged_streams[unchanged_streams_count++] = set[i].stream;
2749 
2750 		found = false;
2751 	}
2752 
2753 	/* Remove all planes for unchanged streams if planes changed */
2754 	for (i = 0; i < unchanged_streams_count; i++) {
2755 		if (planes_changed_for_existing_stream(context,
2756 						       unchanged_streams[i],
2757 						       set,
2758 						       set_count)) {
2759 			if (!dc_rem_all_planes_for_stream(dc,
2760 							  unchanged_streams[i],
2761 							  context)) {
2762 				res = DC_FAIL_DETACH_SURFACES;
2763 				goto fail;
2764 			}
2765 		}
2766 	}
2767 
2768 	/* Remove all planes for removed streams and then remove the streams */
2769 	for (i = 0; i < del_streams_count; i++) {
2770 		/* Need to cpy the dwb data from the old stream in order to efc to work */
2771 		if (del_streams[i]->num_wb_info > 0) {
2772 			for (j = 0; j < add_streams_count; j++) {
2773 				if (del_streams[i]->sink == add_streams[j]->sink) {
2774 					add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
2775 					for (k = 0; k < del_streams[i]->num_wb_info; k++)
2776 						add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
2777 				}
2778 			}
2779 		}
2780 
2781 		if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
2782 			res = DC_FAIL_DETACH_SURFACES;
2783 			goto fail;
2784 		}
2785 
2786 		res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
2787 		if (res != DC_OK)
2788 			goto fail;
2789 	}
2790 
2791 	/* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
2792 	 * matches. This may change in the future if seamless_boot_stream can be
2793 	 * multiple.
2794 	 */
2795 	for (i = 0; i < add_streams_count; i++) {
2796 		mark_seamless_boot_stream(dc, add_streams[i]);
2797 		if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
2798 			struct dc_stream_state *temp = add_streams[0];
2799 
2800 			add_streams[0] = add_streams[i];
2801 			add_streams[i] = temp;
2802 			break;
2803 		}
2804 	}
2805 
2806 	/* Add new streams and then add all planes for the new stream */
2807 	for (i = 0; i < add_streams_count; i++) {
2808 		calculate_phy_pix_clks(add_streams[i]);
2809 		res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
2810 		if (res != DC_OK)
2811 			goto fail;
2812 
2813 		if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
2814 			res = DC_FAIL_ATTACH_SURFACES;
2815 			goto fail;
2816 		}
2817 	}
2818 
2819 	/* Add all planes for unchanged streams if planes changed */
2820 	for (i = 0; i < unchanged_streams_count; i++) {
2821 		if (planes_changed_for_existing_stream(context,
2822 						       unchanged_streams[i],
2823 						       set,
2824 						       set_count)) {
2825 			if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
2826 				res = DC_FAIL_ATTACH_SURFACES;
2827 				goto fail;
2828 			}
2829 		}
2830 	}
2831 
2832 	res = dc_validate_global_state(dc, context, fast_validate);
2833 
2834 fail:
2835 	if (res != DC_OK)
2836 		DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
2837 			       __func__,
2838 			       res);
2839 
2840 	return res;
2841 }
2842 
2843 /**
2844  * dc_validate_global_state() - Determine if hardware can support a given state
2845  *
2846  * @dc: dc struct for this driver
2847  * @new_ctx: state to be validated
2848  * @fast_validate: set to true if only yes/no to support matters
2849  *
2850  * Checks hardware resource availability and bandwidth requirement.
2851  *
2852  * Return:
2853  * DC_OK if the result can be programmed. Otherwise, an error code.
2854  */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)2855 enum dc_status dc_validate_global_state(
2856 		struct dc *dc,
2857 		struct dc_state *new_ctx,
2858 		bool fast_validate)
2859 {
2860 	enum dc_status result = DC_ERROR_UNEXPECTED;
2861 	int i, j;
2862 
2863 	if (!new_ctx)
2864 		return DC_ERROR_UNEXPECTED;
2865 
2866 	if (dc->res_pool->funcs->validate_global) {
2867 		result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2868 		if (result != DC_OK)
2869 			return result;
2870 	}
2871 
2872 	for (i = 0; i < new_ctx->stream_count; i++) {
2873 		struct dc_stream_state *stream = new_ctx->streams[i];
2874 
2875 		for (j = 0; j < dc->res_pool->pipe_count; j++) {
2876 			struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2877 
2878 			if (pipe_ctx->stream != stream)
2879 				continue;
2880 
2881 			if (dc->res_pool->funcs->patch_unknown_plane_state &&
2882 					pipe_ctx->plane_state &&
2883 					pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2884 				result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2885 				if (result != DC_OK)
2886 					return result;
2887 			}
2888 
2889 			/* Switch to dp clock source only if there is
2890 			 * no non dp stream that shares the same timing
2891 			 * with the dp stream.
2892 			 */
2893 			if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2894 				!find_pll_sharable_stream(stream, new_ctx)) {
2895 
2896 				resource_unreference_clock_source(
2897 						&new_ctx->res_ctx,
2898 						dc->res_pool,
2899 						pipe_ctx->clock_source);
2900 
2901 				pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2902 				resource_reference_clock_source(
2903 						&new_ctx->res_ctx,
2904 						dc->res_pool,
2905 						 pipe_ctx->clock_source);
2906 			}
2907 		}
2908 	}
2909 
2910 	result = resource_build_scaling_params_for_context(dc, new_ctx);
2911 
2912 	if (result == DC_OK)
2913 		if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2914 			result = DC_FAIL_BANDWIDTH_VALIDATE;
2915 
2916 	/*
2917 	 * Only update link encoder to stream assignment after bandwidth validation passed.
2918 	 * TODO: Split out assignment and validation.
2919 	 */
2920 	if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2921 		dc->res_pool->funcs->link_encs_assign(
2922 			dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2923 
2924 	return result;
2925 }
2926 
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)2927 static void patch_gamut_packet_checksum(
2928 		struct dc_info_packet *gamut_packet)
2929 {
2930 	/* For gamut we recalc checksum */
2931 	if (gamut_packet->valid) {
2932 		uint8_t chk_sum = 0;
2933 		uint8_t *ptr;
2934 		uint8_t i;
2935 
2936 		/*start of the Gamut data. */
2937 		ptr = &gamut_packet->sb[3];
2938 
2939 		for (i = 0; i <= gamut_packet->sb[1]; i++)
2940 			chk_sum += ptr[i];
2941 
2942 		gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2943 	}
2944 }
2945 
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)2946 static void set_avi_info_frame(
2947 		struct dc_info_packet *info_packet,
2948 		struct pipe_ctx *pipe_ctx)
2949 {
2950 	struct dc_stream_state *stream = pipe_ctx->stream;
2951 	enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2952 	uint32_t pixel_encoding = 0;
2953 	enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2954 	enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2955 	bool itc = false;
2956 	uint8_t itc_value = 0;
2957 	uint8_t cn0_cn1 = 0;
2958 	unsigned int cn0_cn1_value = 0;
2959 	uint8_t *check_sum = NULL;
2960 	uint8_t byte_index = 0;
2961 	union hdmi_info_packet hdmi_info;
2962 	union display_content_support support = {0};
2963 	unsigned int vic = pipe_ctx->stream->timing.vic;
2964 	unsigned int rid = pipe_ctx->stream->timing.rid;
2965 	unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
2966 	enum dc_timing_3d_format format;
2967 
2968 	memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2969 
2970 	color_space = pipe_ctx->stream->output_color_space;
2971 	if (color_space == COLOR_SPACE_UNKNOWN)
2972 		color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2973 			COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2974 
2975 	/* Initialize header */
2976 	hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2977 	/* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2978 	* not be used in HDMI 2.0 (Section 10.1) */
2979 	hdmi_info.bits.header.version = 2;
2980 	hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2981 
2982 	/*
2983 	 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2984 	 * according to HDMI 2.0 spec (Section 10.1)
2985 	 */
2986 
2987 	switch (stream->timing.pixel_encoding) {
2988 	case PIXEL_ENCODING_YCBCR422:
2989 		pixel_encoding = 1;
2990 		break;
2991 
2992 	case PIXEL_ENCODING_YCBCR444:
2993 		pixel_encoding = 2;
2994 		break;
2995 	case PIXEL_ENCODING_YCBCR420:
2996 		pixel_encoding = 3;
2997 		break;
2998 
2999 	case PIXEL_ENCODING_RGB:
3000 	default:
3001 		pixel_encoding = 0;
3002 	}
3003 
3004 	/* Y0_Y1_Y2 : The pixel encoding */
3005 	/* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3006 	hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3007 
3008 	/* A0 = 1 Active Format Information valid */
3009 	hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3010 
3011 	/* B0, B1 = 3; Bar info data is valid */
3012 	hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3013 
3014 	hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3015 
3016 	/* S0, S1 : Underscan / Overscan */
3017 	/* TODO: un-hardcode scan type */
3018 	scan_type = SCANNING_TYPE_UNDERSCAN;
3019 	hdmi_info.bits.S0_S1 = scan_type;
3020 
3021 	/* C0, C1 : Colorimetry */
3022 	if (color_space == COLOR_SPACE_YCBCR709 ||
3023 			color_space == COLOR_SPACE_YCBCR709_LIMITED)
3024 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3025 	else if (color_space == COLOR_SPACE_YCBCR601 ||
3026 			color_space == COLOR_SPACE_YCBCR601_LIMITED)
3027 		hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3028 	else {
3029 		hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3030 	}
3031 	if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
3032 			color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
3033 			color_space == COLOR_SPACE_2020_YCBCR) {
3034 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3035 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3036 	} else if (color_space == COLOR_SPACE_ADOBERGB) {
3037 		hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3038 		hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
3039 	}
3040 
3041 	/* TODO: un-hardcode aspect ratio */
3042 	aspect = stream->timing.aspect_ratio;
3043 
3044 	switch (aspect) {
3045 	case ASPECT_RATIO_4_3:
3046 	case ASPECT_RATIO_16_9:
3047 		hdmi_info.bits.M0_M1 = aspect;
3048 		break;
3049 
3050 	case ASPECT_RATIO_NO_DATA:
3051 	case ASPECT_RATIO_64_27:
3052 	case ASPECT_RATIO_256_135:
3053 	default:
3054 		hdmi_info.bits.M0_M1 = 0;
3055 	}
3056 
3057 	/* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3058 	hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3059 
3060 	/* TODO: un-hardcode cn0_cn1 and itc */
3061 
3062 	cn0_cn1 = 0;
3063 	cn0_cn1_value = 0;
3064 
3065 	itc = true;
3066 	itc_value = 1;
3067 
3068 	support = stream->content_support;
3069 
3070 	if (itc) {
3071 		if (!support.bits.valid_content_type) {
3072 			cn0_cn1_value = 0;
3073 		} else {
3074 			if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3075 				if (support.bits.graphics_content == 1) {
3076 					cn0_cn1_value = 0;
3077 				}
3078 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3079 				if (support.bits.photo_content == 1) {
3080 					cn0_cn1_value = 1;
3081 				} else {
3082 					cn0_cn1_value = 0;
3083 					itc_value = 0;
3084 				}
3085 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3086 				if (support.bits.cinema_content == 1) {
3087 					cn0_cn1_value = 2;
3088 				} else {
3089 					cn0_cn1_value = 0;
3090 					itc_value = 0;
3091 				}
3092 			} else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3093 				if (support.bits.game_content == 1) {
3094 					cn0_cn1_value = 3;
3095 				} else {
3096 					cn0_cn1_value = 0;
3097 					itc_value = 0;
3098 				}
3099 			}
3100 		}
3101 		hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3102 		hdmi_info.bits.ITC = itc_value;
3103 	}
3104 
3105 	if (stream->qs_bit == 1) {
3106 		if (color_space == COLOR_SPACE_SRGB ||
3107 			color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3108 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
3109 		else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3110 					color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3111 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
3112 		else
3113 			hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3114 	} else
3115 		hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
3116 
3117 	/* TODO : We should handle YCC quantization */
3118 	/* but we do not have matrix calculation */
3119 	hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3120 
3121 	///VIC
3122 	if (pipe_ctx->stream->timing.hdmi_vic != 0)
3123 		vic = 0;
3124 	format = stream->timing.timing_3d_format;
3125 	/*todo, add 3DStereo support*/
3126 	if (format != TIMING_3D_FORMAT_NONE) {
3127 		// Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3128 		switch (pipe_ctx->stream->timing.hdmi_vic) {
3129 		case 1:
3130 			vic = 95;
3131 			break;
3132 		case 2:
3133 			vic = 94;
3134 			break;
3135 		case 3:
3136 			vic = 93;
3137 			break;
3138 		case 4:
3139 			vic = 98;
3140 			break;
3141 		default:
3142 			break;
3143 		}
3144 	}
3145 	/* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3146 	hdmi_info.bits.VIC0_VIC7 = vic;
3147 	if (vic >= 128)
3148 		hdmi_info.bits.header.version = 3;
3149 	/* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3150 	 * the Source shall use 20 AVI InfoFrame Version 4
3151 	 */
3152 	if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3153 			hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3154 		hdmi_info.bits.header.version = 4;
3155 		hdmi_info.bits.header.length = 14;
3156 	}
3157 
3158 	if (rid != 0 && fr_ind != 0) {
3159 		hdmi_info.bits.header.version = 5;
3160 		hdmi_info.bits.header.length = 15;
3161 
3162 		hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3163 		hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3164 		hdmi_info.bits.RID0_RID5 = rid;
3165 	}
3166 
3167 	/* pixel repetition
3168 	 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3169 	 * repetition start from 1 */
3170 	hdmi_info.bits.PR0_PR3 = 0;
3171 
3172 	/* Bar Info
3173 	 * barTop:    Line Number of End of Top Bar.
3174 	 * barBottom: Line Number of Start of Bottom Bar.
3175 	 * barLeft:   Pixel Number of End of Left Bar.
3176 	 * barRight:  Pixel Number of Start of Right Bar. */
3177 	hdmi_info.bits.bar_top = stream->timing.v_border_top;
3178 	hdmi_info.bits.bar_bottom = (stream->timing.v_total
3179 			- stream->timing.v_border_bottom + 1);
3180 	hdmi_info.bits.bar_left  = stream->timing.h_border_left;
3181 	hdmi_info.bits.bar_right = (stream->timing.h_total
3182 			- stream->timing.h_border_right + 1);
3183 
3184     /* Additional Colorimetry Extension
3185      * Used in conduction with C0-C1 and EC0-EC2
3186      * 0 = DCI-P3 RGB (D65)
3187      * 1 = DCI-P3 RGB (theater)
3188      */
3189 	hdmi_info.bits.ACE0_ACE3 = 0;
3190 
3191 	/* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3192 	check_sum = &hdmi_info.packet_raw_data.sb[0];
3193 
3194 	*check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3195 
3196 	for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3197 		*check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3198 
3199 	/* one byte complement */
3200 	*check_sum = (uint8_t) (0x100 - *check_sum);
3201 
3202 	/* Store in hw_path_mode */
3203 	info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3204 	info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3205 	info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3206 
3207 	for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3208 		info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3209 
3210 	info_packet->valid = true;
3211 }
3212 
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3213 static void set_vendor_info_packet(
3214 		struct dc_info_packet *info_packet,
3215 		struct dc_stream_state *stream)
3216 {
3217 	/* SPD info packet for FreeSync */
3218 
3219 	/* Check if Freesync is supported. Return if false. If true,
3220 	 * set the corresponding bit in the info packet
3221 	 */
3222 	if (!stream->vsp_infopacket.valid)
3223 		return;
3224 
3225 	*info_packet = stream->vsp_infopacket;
3226 }
3227 
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3228 static void set_spd_info_packet(
3229 		struct dc_info_packet *info_packet,
3230 		struct dc_stream_state *stream)
3231 {
3232 	/* SPD info packet for FreeSync */
3233 
3234 	/* Check if Freesync is supported. Return if false. If true,
3235 	 * set the corresponding bit in the info packet
3236 	 */
3237 	if (!stream->vrr_infopacket.valid)
3238 		return;
3239 
3240 	*info_packet = stream->vrr_infopacket;
3241 }
3242 
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3243 static void set_hdr_static_info_packet(
3244 		struct dc_info_packet *info_packet,
3245 		struct dc_stream_state *stream)
3246 {
3247 	/* HDR Static Metadata info packet for HDR10 */
3248 
3249 	if (!stream->hdr_static_metadata.valid ||
3250 			stream->use_dynamic_meta)
3251 		return;
3252 
3253 	*info_packet = stream->hdr_static_metadata;
3254 }
3255 
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3256 static void set_vsc_info_packet(
3257 		struct dc_info_packet *info_packet,
3258 		struct dc_stream_state *stream)
3259 {
3260 	if (!stream->vsc_infopacket.valid)
3261 		return;
3262 
3263 	*info_packet = stream->vsc_infopacket;
3264 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3265 static void set_hfvs_info_packet(
3266 		struct dc_info_packet *info_packet,
3267 		struct dc_stream_state *stream)
3268 {
3269 	if (!stream->hfvsif_infopacket.valid)
3270 		return;
3271 
3272 	*info_packet = stream->hfvsif_infopacket;
3273 }
3274 
3275 
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3276 static void set_vtem_info_packet(
3277 		struct dc_info_packet *info_packet,
3278 		struct dc_stream_state *stream)
3279 {
3280 	if (!stream->vtem_infopacket.valid)
3281 		return;
3282 
3283 	*info_packet = stream->vtem_infopacket;
3284 }
3285 
dc_resource_state_destruct(struct dc_state * context)3286 void dc_resource_state_destruct(struct dc_state *context)
3287 {
3288 	int i, j;
3289 
3290 	for (i = 0; i < context->stream_count; i++) {
3291 		for (j = 0; j < context->stream_status[i].plane_count; j++)
3292 			dc_plane_state_release(
3293 				context->stream_status[i].plane_states[j]);
3294 
3295 		context->stream_status[i].plane_count = 0;
3296 		dc_stream_release(context->streams[i]);
3297 		context->streams[i] = NULL;
3298 	}
3299 	context->stream_count = 0;
3300 }
3301 
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)3302 void dc_resource_state_copy_construct(
3303 		const struct dc_state *src_ctx,
3304 		struct dc_state *dst_ctx)
3305 {
3306 	int i, j;
3307 	struct kref refcount = dst_ctx->refcount;
3308 
3309 	*dst_ctx = *src_ctx;
3310 
3311 	for (i = 0; i < MAX_PIPES; i++) {
3312 		struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3313 
3314 		if (cur_pipe->top_pipe)
3315 			cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3316 
3317 		if (cur_pipe->bottom_pipe)
3318 			cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3319 
3320 		if (cur_pipe->next_odm_pipe)
3321 			cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3322 
3323 		if (cur_pipe->prev_odm_pipe)
3324 			cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3325 	}
3326 
3327 	for (i = 0; i < dst_ctx->stream_count; i++) {
3328 		dc_stream_retain(dst_ctx->streams[i]);
3329 		for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3330 			dc_plane_state_retain(
3331 				dst_ctx->stream_status[i].plane_states[j]);
3332 	}
3333 
3334 	/* context refcount should not be overridden */
3335 	dst_ctx->refcount = refcount;
3336 
3337 }
3338 
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)3339 struct clock_source *dc_resource_find_first_free_pll(
3340 		struct resource_context *res_ctx,
3341 		const struct resource_pool *pool)
3342 {
3343 	int i;
3344 
3345 	for (i = 0; i < pool->clk_src_count; ++i) {
3346 		if (res_ctx->clock_source_ref_count[i] == 0)
3347 			return pool->clock_sources[i];
3348 	}
3349 
3350 	return NULL;
3351 }
3352 
resource_build_info_frame(struct pipe_ctx * pipe_ctx)3353 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3354 {
3355 	enum signal_type signal = SIGNAL_TYPE_NONE;
3356 	struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3357 
3358 	/* default all packets to invalid */
3359 	info->avi.valid = false;
3360 	info->gamut.valid = false;
3361 	info->vendor.valid = false;
3362 	info->spd.valid = false;
3363 	info->hdrsmd.valid = false;
3364 	info->vsc.valid = false;
3365 	info->hfvsif.valid = false;
3366 	info->vtem.valid = false;
3367 	signal = pipe_ctx->stream->signal;
3368 
3369 	/* HDMi and DP have different info packets*/
3370 	if (dc_is_hdmi_signal(signal)) {
3371 		set_avi_info_frame(&info->avi, pipe_ctx);
3372 
3373 		set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3374 		set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3375 		set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3376 
3377 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3378 
3379 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3380 
3381 	} else if (dc_is_dp_signal(signal)) {
3382 		set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3383 
3384 		set_spd_info_packet(&info->spd, pipe_ctx->stream);
3385 
3386 		set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3387 	}
3388 
3389 	patch_gamut_packet_checksum(&info->gamut);
3390 }
3391 
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3392 enum dc_status resource_map_clock_resources(
3393 		const struct dc  *dc,
3394 		struct dc_state *context,
3395 		struct dc_stream_state *stream)
3396 {
3397 	/* acquire new resources */
3398 	const struct resource_pool *pool = dc->res_pool;
3399 	struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
3400 				&context->res_ctx, stream);
3401 
3402 	if (!pipe_ctx)
3403 		return DC_ERROR_UNEXPECTED;
3404 
3405 	if (dc_is_dp_signal(pipe_ctx->stream->signal)
3406 		|| pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3407 		pipe_ctx->clock_source = pool->dp_clock_source;
3408 	else {
3409 		pipe_ctx->clock_source = NULL;
3410 
3411 		if (!dc->config.disable_disp_pll_sharing)
3412 			pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3413 				&context->res_ctx,
3414 				pipe_ctx);
3415 
3416 		if (pipe_ctx->clock_source == NULL)
3417 			pipe_ctx->clock_source =
3418 				dc_resource_find_first_free_pll(
3419 					&context->res_ctx,
3420 					pool);
3421 	}
3422 
3423 	if (pipe_ctx->clock_source == NULL)
3424 		return DC_NO_CLOCK_SOURCE_RESOURCE;
3425 
3426 	resource_reference_clock_source(
3427 		&context->res_ctx, pool,
3428 		pipe_ctx->clock_source);
3429 
3430 	return DC_OK;
3431 }
3432 
3433 /*
3434  * Note: We need to disable output if clock sources change,
3435  * since bios does optimization and doesn't apply if changing
3436  * PHY when not already disabled.
3437  */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)3438 bool pipe_need_reprogram(
3439 		struct pipe_ctx *pipe_ctx_old,
3440 		struct pipe_ctx *pipe_ctx)
3441 {
3442 	if (!pipe_ctx_old->stream)
3443 		return false;
3444 
3445 	if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3446 		return true;
3447 
3448 	if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3449 		return true;
3450 
3451 	if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3452 		return true;
3453 
3454 	if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3455 			&& pipe_ctx_old->stream != pipe_ctx->stream)
3456 		return true;
3457 
3458 	if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3459 		return true;
3460 
3461 	if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3462 		return true;
3463 
3464 	if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3465 		return true;
3466 
3467 	if (false == pipe_ctx_old->stream->link->link_state_valid &&
3468 		false == pipe_ctx_old->stream->dpms_off)
3469 		return true;
3470 
3471 	if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3472 		return true;
3473 
3474 	if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3475 		return true;
3476 	if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3477 		return true;
3478 
3479 	/* DIG link encoder resource assignment for stream changed. */
3480 	if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3481 		bool need_reprogram = false;
3482 		struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3483 		struct link_encoder *link_enc_prev =
3484 			link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3485 
3486 		if (link_enc_prev != pipe_ctx->stream->link_enc)
3487 			need_reprogram = true;
3488 
3489 		return need_reprogram;
3490 	}
3491 
3492 	return false;
3493 }
3494 
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)3495 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3496 		struct bit_depth_reduction_params *fmt_bit_depth)
3497 {
3498 	enum dc_dither_option option = stream->dither_option;
3499 	enum dc_pixel_encoding pixel_encoding =
3500 			stream->timing.pixel_encoding;
3501 
3502 	memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3503 
3504 	if (option == DITHER_OPTION_DEFAULT) {
3505 		switch (stream->timing.display_color_depth) {
3506 		case COLOR_DEPTH_666:
3507 			option = DITHER_OPTION_SPATIAL6;
3508 			break;
3509 		case COLOR_DEPTH_888:
3510 			option = DITHER_OPTION_SPATIAL8;
3511 			break;
3512 		case COLOR_DEPTH_101010:
3513 			option = DITHER_OPTION_SPATIAL10;
3514 			break;
3515 		default:
3516 			option = DITHER_OPTION_DISABLE;
3517 		}
3518 	}
3519 
3520 	if (option == DITHER_OPTION_DISABLE)
3521 		return;
3522 
3523 	if (option == DITHER_OPTION_TRUN6) {
3524 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3525 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3526 	} else if (option == DITHER_OPTION_TRUN8 ||
3527 			option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3528 			option == DITHER_OPTION_TRUN8_FM6) {
3529 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3530 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3531 	} else if (option == DITHER_OPTION_TRUN10        ||
3532 			option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3533 			option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3534 			option == DITHER_OPTION_TRUN10_FM8     ||
3535 			option == DITHER_OPTION_TRUN10_FM6     ||
3536 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3537 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3538 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3539 	}
3540 
3541 	/* special case - Formatter can only reduce by 4 bits at most.
3542 	 * When reducing from 12 to 6 bits,
3543 	 * HW recommends we use trunc with round mode
3544 	 * (if we did nothing, trunc to 10 bits would be used)
3545 	 * note that any 12->10 bit reduction is ignored prior to DCE8,
3546 	 * as the input was 10 bits.
3547 	 */
3548 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3549 			option == DITHER_OPTION_SPATIAL6 ||
3550 			option == DITHER_OPTION_FM6) {
3551 		fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3552 		fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3553 		fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3554 	}
3555 
3556 	/* spatial dither
3557 	 * note that spatial modes 1-3 are never used
3558 	 */
3559 	if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3560 			option == DITHER_OPTION_SPATIAL6 ||
3561 			option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3562 			option == DITHER_OPTION_TRUN8_SPATIAL6) {
3563 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3564 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3565 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3566 		fmt_bit_depth->flags.RGB_RANDOM =
3567 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3568 	} else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3569 			option == DITHER_OPTION_SPATIAL8 ||
3570 			option == DITHER_OPTION_SPATIAL8_FM6        ||
3571 			option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3572 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3573 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3574 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3575 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3576 		fmt_bit_depth->flags.RGB_RANDOM =
3577 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3578 	} else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3579 			option == DITHER_OPTION_SPATIAL10 ||
3580 			option == DITHER_OPTION_SPATIAL10_FM8 ||
3581 			option == DITHER_OPTION_SPATIAL10_FM6) {
3582 		fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3583 		fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3584 		fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3585 		fmt_bit_depth->flags.RGB_RANDOM =
3586 				(pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3587 	}
3588 
3589 	if (option == DITHER_OPTION_SPATIAL6 ||
3590 			option == DITHER_OPTION_SPATIAL8 ||
3591 			option == DITHER_OPTION_SPATIAL10) {
3592 		fmt_bit_depth->flags.FRAME_RANDOM = 0;
3593 	} else {
3594 		fmt_bit_depth->flags.FRAME_RANDOM = 1;
3595 	}
3596 
3597 	//////////////////////
3598 	//// temporal dither
3599 	//////////////////////
3600 	if (option == DITHER_OPTION_FM6           ||
3601 			option == DITHER_OPTION_SPATIAL8_FM6     ||
3602 			option == DITHER_OPTION_SPATIAL10_FM6     ||
3603 			option == DITHER_OPTION_TRUN10_FM6     ||
3604 			option == DITHER_OPTION_TRUN8_FM6      ||
3605 			option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3606 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3607 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3608 	} else if (option == DITHER_OPTION_FM8        ||
3609 			option == DITHER_OPTION_SPATIAL10_FM8  ||
3610 			option == DITHER_OPTION_TRUN10_FM8) {
3611 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3612 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3613 	} else if (option == DITHER_OPTION_FM10) {
3614 		fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3615 		fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3616 	}
3617 
3618 	fmt_bit_depth->pixel_encoding = pixel_encoding;
3619 }
3620 
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)3621 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3622 {
3623 	struct dc_link *link = stream->link;
3624 	struct timing_generator *tg = dc->res_pool->timing_generators[0];
3625 	enum dc_status res = DC_OK;
3626 
3627 	calculate_phy_pix_clks(stream);
3628 
3629 	if (!tg->funcs->validate_timing(tg, &stream->timing))
3630 		res = DC_FAIL_CONTROLLER_VALIDATE;
3631 
3632 	if (res == DC_OK) {
3633 		if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3634 				!link->link_enc->funcs->validate_output_with_stream(
3635 						link->link_enc, stream))
3636 			res = DC_FAIL_ENC_VALIDATE;
3637 	}
3638 
3639 	/* TODO: validate audio ASIC caps, encoder */
3640 
3641 	if (res == DC_OK)
3642 		res = dc_link_validate_mode_timing(stream,
3643 		      link,
3644 		      &stream->timing);
3645 
3646 	return res;
3647 }
3648 
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3649 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3650 {
3651 	enum dc_status res = DC_OK;
3652 
3653 	/* check if surface has invalid dimensions */
3654 	if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3655 		plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3656 		return DC_FAIL_SURFACE_VALIDATE;
3657 
3658 	/* TODO For now validates pixel format only */
3659 	if (dc->res_pool->funcs->validate_plane)
3660 		return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3661 
3662 	return res;
3663 }
3664 
resource_pixel_format_to_bpp(enum surface_pixel_format format)3665 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3666 {
3667 	switch (format) {
3668 	case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3669 		return 8;
3670 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3671 	case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3672 		return 12;
3673 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3674 	case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3675 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3676 	case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3677 		return 16;
3678 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3679 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3680 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3681 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3682 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3683 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3684 	case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3685 		return 32;
3686 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3687 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3688 	case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3689 	case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3690 		return 64;
3691 	default:
3692 		ASSERT_CRITICAL(false);
3693 		return -1;
3694 	}
3695 }
get_max_audio_sample_rate(struct audio_mode * modes)3696 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3697 {
3698 	if (modes) {
3699 		if (modes->sample_rates.rate.RATE_192)
3700 			return 192000;
3701 		if (modes->sample_rates.rate.RATE_176_4)
3702 			return 176400;
3703 		if (modes->sample_rates.rate.RATE_96)
3704 			return 96000;
3705 		if (modes->sample_rates.rate.RATE_88_2)
3706 			return 88200;
3707 		if (modes->sample_rates.rate.RATE_48)
3708 			return 48000;
3709 		if (modes->sample_rates.rate.RATE_44_1)
3710 			return 44100;
3711 		if (modes->sample_rates.rate.RATE_32)
3712 			return 32000;
3713 	}
3714 	/*original logic when no audio info*/
3715 	return 441000;
3716 }
3717 
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)3718 void get_audio_check(struct audio_info *aud_modes,
3719 	struct audio_check *audio_chk)
3720 {
3721 	unsigned int i;
3722 	unsigned int max_sample_rate = 0;
3723 
3724 	if (aud_modes) {
3725 		audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3726 
3727 		audio_chk->max_audiosample_rate = 0;
3728 		for (i = 0; i < aud_modes->mode_count; i++) {
3729 			max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3730 			if (audio_chk->max_audiosample_rate < max_sample_rate)
3731 				audio_chk->max_audiosample_rate = max_sample_rate;
3732 			/*dts takes the same as type 2: AP = 0.25*/
3733 		}
3734 		/*check which one take more bandwidth*/
3735 		if (audio_chk->max_audiosample_rate > 192000)
3736 			audio_chk->audio_packet_type = 0x9;/*AP =1*/
3737 		audio_chk->acat = 0;/*not support*/
3738 	}
3739 }
3740 
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)3741 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3742 		const struct resource_context *res_ctx,
3743 		const struct resource_pool *const pool,
3744 		const struct dc_link *link)
3745 {
3746 	struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3747 	int enc_index;
3748 
3749 	enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3750 
3751 	if (enc_index < 0)
3752 		enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3753 
3754 	if (enc_index >= 0)
3755 		hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3756 
3757 	return hpo_dp_link_enc;
3758 }
3759 
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)3760 bool get_temp_dp_link_res(struct dc_link *link,
3761 		struct link_resource *link_res,
3762 		struct dc_link_settings *link_settings)
3763 {
3764 	const struct dc *dc  = link->dc;
3765 	const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3766 
3767 	memset(link_res, 0, sizeof(*link_res));
3768 
3769 	if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3770 		link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3771 				dc->res_pool, link);
3772 		if (!link_res->hpo_dp_link_enc)
3773 			return false;
3774 	}
3775 	return true;
3776 }
3777 
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)3778 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3779 		struct dc_state *context)
3780 {
3781 	int i, j;
3782 	struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3783 
3784 	/* If pipe backend is reset, need to reset pipe syncd status */
3785 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3786 		pipe_ctx_old =	&dc->current_state->res_ctx.pipe_ctx[i];
3787 		pipe_ctx = &context->res_ctx.pipe_ctx[i];
3788 
3789 		if (!pipe_ctx_old->stream)
3790 			continue;
3791 
3792 		if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3793 			continue;
3794 
3795 		if (!pipe_ctx->stream ||
3796 				pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3797 
3798 			/* Reset all the syncd pipes from the disabled pipe */
3799 			for (j = 0; j < dc->res_pool->pipe_count; j++) {
3800 				pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3801 				if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3802 					!IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3803 					SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3804 			}
3805 		}
3806 	}
3807 }
3808 
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)3809 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3810 	struct dc_state *context,
3811 	uint8_t disabled_master_pipe_idx)
3812 {
3813 	int i;
3814 	struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3815 
3816 	pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3817 	if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3818 		!IS_PIPE_SYNCD_VALID(pipe_ctx))
3819 		SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3820 
3821 	/* for the pipe disabled, check if any slave pipe exists and assert */
3822 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3823 		pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3824 
3825 		if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3826 			IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx))
3827 			DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3828 				i, disabled_master_pipe_idx);
3829 	}
3830 }
3831 
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)3832 void reset_sync_context_for_pipe(const struct dc *dc,
3833 	struct dc_state *context,
3834 	uint8_t pipe_idx)
3835 {
3836 	int i;
3837 	struct pipe_ctx *pipe_ctx_reset;
3838 
3839 	/* reset the otg sync context for the pipe and its slave pipes if any */
3840 	for (i = 0; i < dc->res_pool->pipe_count; i++) {
3841 		pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
3842 
3843 		if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
3844 			IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
3845 			SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
3846 	}
3847 }
3848 
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)3849 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3850 {
3851 	/* TODO - get transmitter to phy idx mapping from DMUB */
3852 	uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3853 
3854 	if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3855 			dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3856 		switch (transmitter) {
3857 		case TRANSMITTER_UNIPHY_A:
3858 			phy_idx = 0;
3859 			break;
3860 		case TRANSMITTER_UNIPHY_B:
3861 			phy_idx = 1;
3862 			break;
3863 		case TRANSMITTER_UNIPHY_C:
3864 			phy_idx = 5;
3865 			break;
3866 		case TRANSMITTER_UNIPHY_D:
3867 			phy_idx = 6;
3868 			break;
3869 		case TRANSMITTER_UNIPHY_E:
3870 			phy_idx = 4;
3871 			break;
3872 		default:
3873 			phy_idx = 0;
3874 			break;
3875 		}
3876 	}
3877 
3878 	return phy_idx;
3879 }
3880 
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)3881 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3882 		const struct link_resource *link_res)
3883 {
3884 	/* Link_hwss is only accessible by getter function instead of accessing
3885 	 * by pointers in dc with the intent to protect against breaking polymorphism.
3886 	 */
3887 	if (can_use_hpo_dp_link_hwss(link, link_res))
3888 		/* TODO: some assumes that if decided link settings is 128b/132b
3889 		 * channel coding format hpo_dp_link_enc should be used.
3890 		 * Others believe that if hpo_dp_link_enc is available in link
3891 		 * resource then hpo_dp_link_enc must be used. This bound between
3892 		 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3893 		 * with a premise that both hpo_dp_link_enc pointer and decided link
3894 		 * settings are determined based on single policy function like
3895 		 * "decide_link_settings" from upper layer. This "convention"
3896 		 * cannot be maintained and enforced at current level.
3897 		 * Therefore a refactor is due so we can enforce a strong bound
3898 		 * between those two parameters at this level.
3899 		 *
3900 		 * To put it simple, we want to make enforcement at low level so that
3901 		 * we will not return link hwss if caller plans to do 8b/10b
3902 		 * with an hpo encoder. Or we can return a very dummy one that doesn't
3903 		 * do work for all functions
3904 		 */
3905 		return get_hpo_dp_link_hwss();
3906 	else if (can_use_dpia_link_hwss(link, link_res))
3907 		return get_dpia_link_hwss();
3908 	else if (can_use_dio_link_hwss(link, link_res))
3909 		return get_dio_link_hwss();
3910 	else
3911 		return get_virtual_link_hwss();
3912 }
3913 
is_h_timing_divisible_by_2(struct dc_stream_state * stream)3914 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
3915 {
3916 	bool divisible = false;
3917 	uint16_t h_blank_start = 0;
3918 	uint16_t h_blank_end = 0;
3919 
3920 	if (stream) {
3921 		h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
3922 		h_blank_end = h_blank_start - stream->timing.h_addressable;
3923 
3924 		/* HTOTAL, Hblank start/end, and Hsync start/end all must be
3925 		 * divisible by 2 in order for the horizontal timing params
3926 		 * to be considered divisible by 2. Hsync start is always 0.
3927 		 */
3928 		divisible = (stream->timing.h_total % 2 == 0) &&
3929 				(h_blank_start % 2 == 0) &&
3930 				(h_blank_end % 2 == 0) &&
3931 				(stream->timing.h_sync_width % 2 == 0);
3932 	}
3933 	return divisible;
3934 }
3935 
dc_resource_acquire_secondary_pipe_for_mpc_odm(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)3936 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
3937 		const struct dc *dc,
3938 		struct dc_state *state,
3939 		struct pipe_ctx *pri_pipe,
3940 		struct pipe_ctx *sec_pipe,
3941 		bool odm)
3942 {
3943 	int pipe_idx = sec_pipe->pipe_idx;
3944 	struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
3945 	const struct resource_pool *pool = dc->res_pool;
3946 
3947 	sec_top = sec_pipe->top_pipe;
3948 	sec_bottom = sec_pipe->bottom_pipe;
3949 	sec_next = sec_pipe->next_odm_pipe;
3950 	sec_prev = sec_pipe->prev_odm_pipe;
3951 
3952 	*sec_pipe = *pri_pipe;
3953 
3954 	sec_pipe->top_pipe = sec_top;
3955 	sec_pipe->bottom_pipe = sec_bottom;
3956 	sec_pipe->next_odm_pipe = sec_next;
3957 	sec_pipe->prev_odm_pipe = sec_prev;
3958 
3959 	sec_pipe->pipe_idx = pipe_idx;
3960 	sec_pipe->plane_res.mi = pool->mis[pipe_idx];
3961 	sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
3962 	sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
3963 	sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
3964 	sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
3965 	sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3966 	sec_pipe->stream_res.dsc = NULL;
3967 	if (odm) {
3968 		if (!sec_pipe->top_pipe)
3969 			sec_pipe->stream_res.opp = pool->opps[pipe_idx];
3970 		else
3971 			sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
3972 		if (sec_pipe->stream->timing.flags.DSC == 1) {
3973 #if defined(CONFIG_DRM_AMD_DC_DCN)
3974 			dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
3975 #endif
3976 			ASSERT(sec_pipe->stream_res.dsc);
3977 			if (sec_pipe->stream_res.dsc == NULL)
3978 				return false;
3979 		}
3980 #if defined(CONFIG_DRM_AMD_DC_DCN)
3981 		dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
3982 #endif
3983 	}
3984 
3985 	return true;
3986 }
3987