1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "dc_link_dp.h"
44 #include "virtual/virtual_link_hwss.h"
45 #include "link/link_hwss_dio.h"
46 #include "link/link_hwss_dpia.h"
47 #include "link/link_hwss_hpo_dp.h"
48
49 #if defined(CONFIG_DRM_AMD_DC_SI)
50 #include "dce60/dce60_resource.h"
51 #endif
52 #include "dce80/dce80_resource.h"
53 #include "dce100/dce100_resource.h"
54 #include "dce110/dce110_resource.h"
55 #include "dce112/dce112_resource.h"
56 #include "dce120/dce120_resource.h"
57 #include "dcn10/dcn10_resource.h"
58 #include "dcn20/dcn20_resource.h"
59 #include "dcn21/dcn21_resource.h"
60 #include "dcn201/dcn201_resource.h"
61 #include "dcn30/dcn30_resource.h"
62 #include "dcn301/dcn301_resource.h"
63 #include "dcn302/dcn302_resource.h"
64 #include "dcn303/dcn303_resource.h"
65 #include "dcn31/dcn31_resource.h"
66 #include "dcn314/dcn314_resource.h"
67 #include "dcn315/dcn315_resource.h"
68 #include "dcn316/dcn316_resource.h"
69 #include "../dcn32/dcn32_resource.h"
70 #include "../dcn321/dcn321_resource.h"
71
72 #define DC_LOGGER_INIT(logger)
73
resource_parse_asic_id(struct hw_asic_id asic_id)74 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
75 {
76 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
77
78 switch (asic_id.chip_family) {
79
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81 case FAMILY_SI:
82 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85 dc_version = DCE_VERSION_6_0;
86 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87 dc_version = DCE_VERSION_6_4;
88 else
89 dc_version = DCE_VERSION_6_1;
90 break;
91 #endif
92 case FAMILY_CI:
93 dc_version = DCE_VERSION_8_0;
94 break;
95 case FAMILY_KV:
96 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99 dc_version = DCE_VERSION_8_3;
100 else
101 dc_version = DCE_VERSION_8_1;
102 break;
103 case FAMILY_CZ:
104 dc_version = DCE_VERSION_11_0;
105 break;
106
107 case FAMILY_VI:
108 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110 dc_version = DCE_VERSION_10_0;
111 break;
112 }
113 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116 dc_version = DCE_VERSION_11_2;
117 }
118 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119 dc_version = DCE_VERSION_11_22;
120 break;
121 case FAMILY_AI:
122 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123 dc_version = DCE_VERSION_12_1;
124 else
125 dc_version = DCE_VERSION_12_0;
126 break;
127 case FAMILY_RV:
128 dc_version = DCN_VERSION_1_0;
129 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
130 dc_version = DCN_VERSION_1_01;
131 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
132 dc_version = DCN_VERSION_2_1;
133 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
134 dc_version = DCN_VERSION_2_1;
135 break;
136
137 case FAMILY_NV:
138 dc_version = DCN_VERSION_2_0;
139 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
140 dc_version = DCN_VERSION_2_01;
141 break;
142 }
143 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
144 dc_version = DCN_VERSION_3_0;
145 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
146 dc_version = DCN_VERSION_3_02;
147 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
148 dc_version = DCN_VERSION_3_03;
149 break;
150
151 case FAMILY_VGH:
152 dc_version = DCN_VERSION_3_01;
153 break;
154
155 case FAMILY_YELLOW_CARP:
156 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
157 dc_version = DCN_VERSION_3_1;
158 break;
159 case AMDGPU_FAMILY_GC_10_3_6:
160 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
161 dc_version = DCN_VERSION_3_15;
162 break;
163 case AMDGPU_FAMILY_GC_10_3_7:
164 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
165 dc_version = DCN_VERSION_3_16;
166 break;
167 case AMDGPU_FAMILY_GC_11_0_0:
168 dc_version = DCN_VERSION_3_2;
169 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
170 dc_version = DCN_VERSION_3_21;
171 break;
172 case AMDGPU_FAMILY_GC_11_0_1:
173 dc_version = DCN_VERSION_3_14;
174 break;
175 default:
176 dc_version = DCE_VERSION_UNKNOWN;
177 break;
178 }
179 return dc_version;
180 }
181
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)182 struct resource_pool *dc_create_resource_pool(struct dc *dc,
183 const struct dc_init_data *init_data,
184 enum dce_version dc_version)
185 {
186 struct resource_pool *res_pool = NULL;
187
188 switch (dc_version) {
189 #if defined(CONFIG_DRM_AMD_DC_SI)
190 case DCE_VERSION_6_0:
191 res_pool = dce60_create_resource_pool(
192 init_data->num_virtual_links, dc);
193 break;
194 case DCE_VERSION_6_1:
195 res_pool = dce61_create_resource_pool(
196 init_data->num_virtual_links, dc);
197 break;
198 case DCE_VERSION_6_4:
199 res_pool = dce64_create_resource_pool(
200 init_data->num_virtual_links, dc);
201 break;
202 #endif
203 case DCE_VERSION_8_0:
204 res_pool = dce80_create_resource_pool(
205 init_data->num_virtual_links, dc);
206 break;
207 case DCE_VERSION_8_1:
208 res_pool = dce81_create_resource_pool(
209 init_data->num_virtual_links, dc);
210 break;
211 case DCE_VERSION_8_3:
212 res_pool = dce83_create_resource_pool(
213 init_data->num_virtual_links, dc);
214 break;
215 case DCE_VERSION_10_0:
216 res_pool = dce100_create_resource_pool(
217 init_data->num_virtual_links, dc);
218 break;
219 case DCE_VERSION_11_0:
220 res_pool = dce110_create_resource_pool(
221 init_data->num_virtual_links, dc,
222 init_data->asic_id);
223 break;
224 case DCE_VERSION_11_2:
225 case DCE_VERSION_11_22:
226 res_pool = dce112_create_resource_pool(
227 init_data->num_virtual_links, dc);
228 break;
229 case DCE_VERSION_12_0:
230 case DCE_VERSION_12_1:
231 res_pool = dce120_create_resource_pool(
232 init_data->num_virtual_links, dc);
233 break;
234
235 #if defined(CONFIG_DRM_AMD_DC_DCN)
236 case DCN_VERSION_1_0:
237 case DCN_VERSION_1_01:
238 res_pool = dcn10_create_resource_pool(init_data, dc);
239 break;
240 case DCN_VERSION_2_0:
241 res_pool = dcn20_create_resource_pool(init_data, dc);
242 break;
243 case DCN_VERSION_2_1:
244 res_pool = dcn21_create_resource_pool(init_data, dc);
245 break;
246 case DCN_VERSION_2_01:
247 res_pool = dcn201_create_resource_pool(init_data, dc);
248 break;
249 case DCN_VERSION_3_0:
250 res_pool = dcn30_create_resource_pool(init_data, dc);
251 break;
252 case DCN_VERSION_3_01:
253 res_pool = dcn301_create_resource_pool(init_data, dc);
254 break;
255 case DCN_VERSION_3_02:
256 res_pool = dcn302_create_resource_pool(init_data, dc);
257 break;
258 case DCN_VERSION_3_03:
259 res_pool = dcn303_create_resource_pool(init_data, dc);
260 break;
261 case DCN_VERSION_3_1:
262 res_pool = dcn31_create_resource_pool(init_data, dc);
263 break;
264 case DCN_VERSION_3_14:
265 res_pool = dcn314_create_resource_pool(init_data, dc);
266 break;
267 case DCN_VERSION_3_15:
268 res_pool = dcn315_create_resource_pool(init_data, dc);
269 break;
270 case DCN_VERSION_3_16:
271 res_pool = dcn316_create_resource_pool(init_data, dc);
272 break;
273 case DCN_VERSION_3_2:
274 res_pool = dcn32_create_resource_pool(init_data, dc);
275 break;
276 case DCN_VERSION_3_21:
277 res_pool = dcn321_create_resource_pool(init_data, dc);
278 break;
279 #endif
280 default:
281 break;
282 }
283
284 if (res_pool != NULL) {
285 if (dc->ctx->dc_bios->fw_info_valid) {
286 res_pool->ref_clocks.xtalin_clock_inKhz =
287 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
288 /* initialize with firmware data first, no all
289 * ASIC have DCCG SW component. FPGA or
290 * simulation need initialization of
291 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
292 * with xtalin_clock_inKhz
293 */
294 res_pool->ref_clocks.dccg_ref_clock_inKhz =
295 res_pool->ref_clocks.xtalin_clock_inKhz;
296 res_pool->ref_clocks.dchub_ref_clock_inKhz =
297 res_pool->ref_clocks.xtalin_clock_inKhz;
298 } else
299 ASSERT_CRITICAL(false);
300 }
301
302 return res_pool;
303 }
304
dc_destroy_resource_pool(struct dc * dc)305 void dc_destroy_resource_pool(struct dc *dc)
306 {
307 if (dc) {
308 if (dc->res_pool)
309 dc->res_pool->funcs->destroy(&dc->res_pool);
310
311 kfree(dc->hwseq);
312 }
313 }
314
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)315 static void update_num_audio(
316 const struct resource_straps *straps,
317 unsigned int *num_audio,
318 struct audio_support *aud_support)
319 {
320 aud_support->dp_audio = true;
321 aud_support->hdmi_audio_native = false;
322 aud_support->hdmi_audio_on_dongle = false;
323
324 if (straps->hdmi_disable == 0) {
325 if (straps->dc_pinstraps_audio & 0x2) {
326 aud_support->hdmi_audio_on_dongle = true;
327 aud_support->hdmi_audio_native = true;
328 }
329 }
330
331 switch (straps->audio_stream_number) {
332 case 0: /* multi streams supported */
333 break;
334 case 1: /* multi streams not supported */
335 *num_audio = 1;
336 break;
337 default:
338 DC_ERR("DC: unexpected audio fuse!\n");
339 }
340 }
341
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)342 bool resource_construct(
343 unsigned int num_virtual_links,
344 struct dc *dc,
345 struct resource_pool *pool,
346 const struct resource_create_funcs *create_funcs)
347 {
348 struct dc_context *ctx = dc->ctx;
349 const struct resource_caps *caps = pool->res_cap;
350 int i;
351 unsigned int num_audio = caps->num_audio;
352 struct resource_straps straps = {0};
353
354 if (create_funcs->read_dce_straps)
355 create_funcs->read_dce_straps(dc->ctx, &straps);
356
357 pool->audio_count = 0;
358 if (create_funcs->create_audio) {
359 /* find the total number of streams available via the
360 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
361 * registers (one for each pin) starting from pin 1
362 * up to the max number of audio pins.
363 * We stop on the first pin where
364 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
365 */
366 update_num_audio(&straps, &num_audio, &pool->audio_support);
367 for (i = 0; i < caps->num_audio; i++) {
368 struct audio *aud = create_funcs->create_audio(ctx, i);
369
370 if (aud == NULL) {
371 DC_ERR("DC: failed to create audio!\n");
372 return false;
373 }
374 if (!aud->funcs->endpoint_valid(aud)) {
375 aud->funcs->destroy(&aud);
376 break;
377 }
378 pool->audios[i] = aud;
379 pool->audio_count++;
380 }
381 }
382
383 pool->stream_enc_count = 0;
384 if (create_funcs->create_stream_encoder) {
385 for (i = 0; i < caps->num_stream_encoder; i++) {
386 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
387 if (pool->stream_enc[i] == NULL)
388 DC_ERR("DC: failed to create stream_encoder!\n");
389 pool->stream_enc_count++;
390 }
391 }
392
393 pool->hpo_dp_stream_enc_count = 0;
394 if (create_funcs->create_hpo_dp_stream_encoder) {
395 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
396 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
397 if (pool->hpo_dp_stream_enc[i] == NULL)
398 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
399 pool->hpo_dp_stream_enc_count++;
400
401 }
402 }
403
404 pool->hpo_dp_link_enc_count = 0;
405 if (create_funcs->create_hpo_dp_link_encoder) {
406 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
407 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
408 if (pool->hpo_dp_link_enc[i] == NULL)
409 DC_ERR("DC: failed to create HPO DP link encoder!\n");
410 pool->hpo_dp_link_enc_count++;
411 }
412 }
413
414 for (i = 0; i < caps->num_mpc_3dlut; i++) {
415 pool->mpc_lut[i] = dc_create_3dlut_func();
416 if (pool->mpc_lut[i] == NULL)
417 DC_ERR("DC: failed to create MPC 3dlut!\n");
418 pool->mpc_shaper[i] = dc_create_transfer_func();
419 if (pool->mpc_shaper[i] == NULL)
420 DC_ERR("DC: failed to create MPC shaper!\n");
421 }
422
423 dc->caps.dynamic_audio = false;
424 if (pool->audio_count < pool->stream_enc_count) {
425 dc->caps.dynamic_audio = true;
426 }
427 for (i = 0; i < num_virtual_links; i++) {
428 pool->stream_enc[pool->stream_enc_count] =
429 virtual_stream_encoder_create(
430 ctx, ctx->dc_bios);
431 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
432 DC_ERR("DC: failed to create stream_encoder!\n");
433 return false;
434 }
435 pool->stream_enc_count++;
436 }
437
438 dc->hwseq = create_funcs->create_hwseq(ctx);
439
440 return true;
441 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)442 static int find_matching_clock_source(
443 const struct resource_pool *pool,
444 struct clock_source *clock_source)
445 {
446
447 int i;
448
449 for (i = 0; i < pool->clk_src_count; i++) {
450 if (pool->clock_sources[i] == clock_source)
451 return i;
452 }
453 return -1;
454 }
455
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)456 void resource_unreference_clock_source(
457 struct resource_context *res_ctx,
458 const struct resource_pool *pool,
459 struct clock_source *clock_source)
460 {
461 int i = find_matching_clock_source(pool, clock_source);
462
463 if (i > -1)
464 res_ctx->clock_source_ref_count[i]--;
465
466 if (pool->dp_clock_source == clock_source)
467 res_ctx->dp_clock_source_ref_count--;
468 }
469
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)470 void resource_reference_clock_source(
471 struct resource_context *res_ctx,
472 const struct resource_pool *pool,
473 struct clock_source *clock_source)
474 {
475 int i = find_matching_clock_source(pool, clock_source);
476
477 if (i > -1)
478 res_ctx->clock_source_ref_count[i]++;
479
480 if (pool->dp_clock_source == clock_source)
481 res_ctx->dp_clock_source_ref_count++;
482 }
483
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)484 int resource_get_clock_source_reference(
485 struct resource_context *res_ctx,
486 const struct resource_pool *pool,
487 struct clock_source *clock_source)
488 {
489 int i = find_matching_clock_source(pool, clock_source);
490
491 if (i > -1)
492 return res_ctx->clock_source_ref_count[i];
493
494 if (pool->dp_clock_source == clock_source)
495 return res_ctx->dp_clock_source_ref_count;
496
497 return -1;
498 }
499
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)500 bool resource_are_vblanks_synchronizable(
501 struct dc_stream_state *stream1,
502 struct dc_stream_state *stream2)
503 {
504 uint32_t base60_refresh_rates[] = {10, 20, 5};
505 uint8_t i;
506 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
507 uint64_t frame_time_diff;
508
509 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
510 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
511 dc_is_dp_signal(stream1->signal) &&
512 dc_is_dp_signal(stream2->signal) &&
513 false == stream1->has_non_synchronizable_pclk &&
514 false == stream2->has_non_synchronizable_pclk &&
515 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
516 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
517 /* disable refresh rates higher than 60Hz for now */
518 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
519 stream1->timing.v_total > 60)
520 return false;
521 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
522 stream2->timing.v_total > 60)
523 return false;
524 frame_time_diff = (uint64_t)10000 *
525 stream1->timing.h_total *
526 stream1->timing.v_total *
527 stream2->timing.pix_clk_100hz;
528 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
529 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
530 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
531 for (i = 0; i < rr_count; i++) {
532 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
533
534 if (diff < 0)
535 diff = -diff;
536 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
537 return true;
538 }
539 }
540 return false;
541 }
542
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)543 bool resource_are_streams_timing_synchronizable(
544 struct dc_stream_state *stream1,
545 struct dc_stream_state *stream2)
546 {
547 if (stream1->timing.h_total != stream2->timing.h_total)
548 return false;
549
550 if (stream1->timing.v_total != stream2->timing.v_total)
551 return false;
552
553 if (stream1->timing.h_addressable
554 != stream2->timing.h_addressable)
555 return false;
556
557 if (stream1->timing.v_addressable
558 != stream2->timing.v_addressable)
559 return false;
560
561 if (stream1->timing.v_front_porch
562 != stream2->timing.v_front_porch)
563 return false;
564
565 if (stream1->timing.pix_clk_100hz
566 != stream2->timing.pix_clk_100hz)
567 return false;
568
569 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
570 return false;
571
572 if (stream1->phy_pix_clk != stream2->phy_pix_clk
573 && (!dc_is_dp_signal(stream1->signal)
574 || !dc_is_dp_signal(stream2->signal)))
575 return false;
576
577 if (stream1->view_format != stream2->view_format)
578 return false;
579
580 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
581 return false;
582
583 return true;
584 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)585 static bool is_dp_and_hdmi_sharable(
586 struct dc_stream_state *stream1,
587 struct dc_stream_state *stream2)
588 {
589 if (stream1->ctx->dc->caps.disable_dp_clk_share)
590 return false;
591
592 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
593 stream2->clamping.c_depth != COLOR_DEPTH_888)
594 return false;
595
596 return true;
597
598 }
599
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)600 static bool is_sharable_clk_src(
601 const struct pipe_ctx *pipe_with_clk_src,
602 const struct pipe_ctx *pipe)
603 {
604 if (pipe_with_clk_src->clock_source == NULL)
605 return false;
606
607 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
608 return false;
609
610 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
611 (dc_is_dp_signal(pipe->stream->signal) &&
612 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
613 pipe->stream)))
614 return false;
615
616 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
617 && dc_is_dual_link_signal(pipe->stream->signal))
618 return false;
619
620 if (dc_is_hdmi_signal(pipe->stream->signal)
621 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
622 return false;
623
624 if (!resource_are_streams_timing_synchronizable(
625 pipe_with_clk_src->stream, pipe->stream))
626 return false;
627
628 return true;
629 }
630
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)631 struct clock_source *resource_find_used_clk_src_for_sharing(
632 struct resource_context *res_ctx,
633 struct pipe_ctx *pipe_ctx)
634 {
635 int i;
636
637 for (i = 0; i < MAX_PIPES; i++) {
638 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
639 return res_ctx->pipe_ctx[i].clock_source;
640 }
641
642 return NULL;
643 }
644
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)645 static enum pixel_format convert_pixel_format_to_dalsurface(
646 enum surface_pixel_format surface_pixel_format)
647 {
648 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
649
650 switch (surface_pixel_format) {
651 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
652 dal_pixel_format = PIXEL_FORMAT_INDEX8;
653 break;
654 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
655 dal_pixel_format = PIXEL_FORMAT_RGB565;
656 break;
657 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
658 dal_pixel_format = PIXEL_FORMAT_RGB565;
659 break;
660 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
661 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
662 break;
663 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
664 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
665 break;
666 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
667 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
668 break;
669 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
670 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
671 break;
672 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
673 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
674 break;
675 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
676 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
677 dal_pixel_format = PIXEL_FORMAT_FP16;
678 break;
679 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
680 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
681 dal_pixel_format = PIXEL_FORMAT_420BPP8;
682 break;
683 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
684 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
685 dal_pixel_format = PIXEL_FORMAT_420BPP10;
686 break;
687 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
688 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
689 default:
690 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
691 break;
692 }
693 return dal_pixel_format;
694 }
695
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)696 static inline void get_vp_scan_direction(
697 enum dc_rotation_angle rotation,
698 bool horizontal_mirror,
699 bool *orthogonal_rotation,
700 bool *flip_vert_scan_dir,
701 bool *flip_horz_scan_dir)
702 {
703 *orthogonal_rotation = false;
704 *flip_vert_scan_dir = false;
705 *flip_horz_scan_dir = false;
706 if (rotation == ROTATION_ANGLE_180) {
707 *flip_vert_scan_dir = true;
708 *flip_horz_scan_dir = true;
709 } else if (rotation == ROTATION_ANGLE_90) {
710 *orthogonal_rotation = true;
711 *flip_horz_scan_dir = true;
712 } else if (rotation == ROTATION_ANGLE_270) {
713 *orthogonal_rotation = true;
714 *flip_vert_scan_dir = true;
715 }
716
717 if (horizontal_mirror)
718 *flip_horz_scan_dir = !*flip_horz_scan_dir;
719 }
720
get_num_mpc_splits(struct pipe_ctx * pipe)721 int get_num_mpc_splits(struct pipe_ctx *pipe)
722 {
723 int mpc_split_count = 0;
724 struct pipe_ctx *other_pipe = pipe->bottom_pipe;
725
726 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
727 mpc_split_count++;
728 other_pipe = other_pipe->bottom_pipe;
729 }
730 other_pipe = pipe->top_pipe;
731 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
732 mpc_split_count++;
733 other_pipe = other_pipe->top_pipe;
734 }
735
736 return mpc_split_count;
737 }
738
get_num_odm_splits(struct pipe_ctx * pipe)739 int get_num_odm_splits(struct pipe_ctx *pipe)
740 {
741 int odm_split_count = 0;
742 struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
743 while (next_pipe) {
744 odm_split_count++;
745 next_pipe = next_pipe->next_odm_pipe;
746 }
747 pipe = pipe->prev_odm_pipe;
748 while (pipe) {
749 odm_split_count++;
750 pipe = pipe->prev_odm_pipe;
751 }
752 return odm_split_count;
753 }
754
calculate_split_count_and_index(struct pipe_ctx * pipe_ctx,int * split_count,int * split_idx)755 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
756 {
757 *split_count = get_num_odm_splits(pipe_ctx);
758 *split_idx = 0;
759 if (*split_count == 0) {
760 /*Check for mpc split*/
761 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
762
763 *split_count = get_num_mpc_splits(pipe_ctx);
764 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
765 (*split_idx)++;
766 split_pipe = split_pipe->top_pipe;
767 }
768
769 /* MPO window on right side of ODM split */
770 if (split_pipe && split_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe)
771 (*split_idx)++;
772 } else {
773 /*Get odm split index*/
774 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
775
776 while (split_pipe) {
777 (*split_idx)++;
778 split_pipe = split_pipe->prev_odm_pipe;
779 }
780 }
781 }
782
783 /*
784 * This is a preliminary vp size calculation to allow us to check taps support.
785 * The result is completely overridden afterwards.
786 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)787 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
788 {
789 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790
791 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
792 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
793 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
794 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
795 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
796 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
797 swap(data->viewport.width, data->viewport.height);
798 swap(data->viewport_c.width, data->viewport_c.height);
799 }
800 }
801
calculate_recout(struct pipe_ctx * pipe_ctx)802 static void calculate_recout(struct pipe_ctx *pipe_ctx)
803 {
804 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
805 const struct dc_stream_state *stream = pipe_ctx->stream;
806 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
807 struct rect surf_clip = plane_state->clip_rect;
808 bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
809 int split_count, split_idx;
810
811 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
812 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
813 split_idx = 0;
814
815 /*
816 * Only the leftmost ODM pipe should be offset by a nonzero distance
817 */
818 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe && !pipe_ctx->prev_odm_pipe) {
819 /* MPO window on right side of ODM split */
820 data->recout.x = stream->dst.x + (surf_clip.x - stream->src.x - stream->src.width/2) *
821 stream->dst.width / stream->src.width;
822 } else if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
823 data->recout.x = stream->dst.x;
824 if (stream->src.x < surf_clip.x)
825 data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
826 / stream->src.width;
827 } else
828 data->recout.x = 0;
829
830 if (stream->src.x > surf_clip.x)
831 surf_clip.width -= stream->src.x - surf_clip.x;
832 data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
833 if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
834 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
835
836 data->recout.y = stream->dst.y;
837 if (stream->src.y < surf_clip.y)
838 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
839 / stream->src.height;
840 else if (stream->src.y > surf_clip.y)
841 surf_clip.height -= stream->src.y - surf_clip.y;
842
843 data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
844 if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
845 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
846
847 /* Handle h & v split */
848 if (split_tb) {
849 ASSERT(data->recout.height % 2 == 0);
850 data->recout.height /= 2;
851 } else if (split_count) {
852 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
853 /* extra pixels in the division remainder need to go to pipes after
854 * the extra pixel index minus one(epimo) defined here as:
855 */
856 int epimo = split_count - data->recout.width % (split_count + 1);
857
858 data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
859 if (split_idx > epimo)
860 data->recout.x += split_idx - epimo - 1;
861 ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
862 data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
863 } else {
864 /* odm */
865 if (split_idx == split_count) {
866 /* rightmost pipe is the remainder recout */
867 data->recout.width -= data->h_active * split_count - data->recout.x;
868
869 /* ODM combine cases with MPO we can get negative widths */
870 if (data->recout.width < 0)
871 data->recout.width = 0;
872
873 data->recout.x = 0;
874 } else
875 data->recout.width = data->h_active - data->recout.x;
876 }
877 }
878 }
879
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)880 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
881 {
882 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
883 const struct dc_stream_state *stream = pipe_ctx->stream;
884 struct rect surf_src = plane_state->src_rect;
885 const int in_w = stream->src.width;
886 const int in_h = stream->src.height;
887 const int out_w = stream->dst.width;
888 const int out_h = stream->dst.height;
889
890 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
891 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
892 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
893 swap(surf_src.height, surf_src.width);
894
895 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
896 surf_src.width,
897 plane_state->dst_rect.width);
898 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
899 surf_src.height,
900 plane_state->dst_rect.height);
901
902 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
903 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
904 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
905 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
906
907 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
908 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
909 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
910 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
911
912 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
913 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
914
915 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
916 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
917 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
918 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
919 }
920 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
921 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
922 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
923 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
924 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
925 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
926 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
927 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
928 }
929
930
931 /*
932 * We completely calculate vp offset, size and inits here based entirely on scaling
933 * ratios and recout for pixel perfect pipe combine.
934 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)935 static void calculate_init_and_vp(
936 bool flip_scan_dir,
937 int recout_offset_within_recout_full,
938 int recout_size,
939 int src_size,
940 int taps,
941 struct fixed31_32 ratio,
942 struct fixed31_32 *init,
943 int *vp_offset,
944 int *vp_size)
945 {
946 struct fixed31_32 temp;
947 int int_part;
948
949 /*
950 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
951 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
952 * All following calculations are based on this logic.
953 *
954 * Init calculated according to formula:
955 * init = (scaling_ratio + number_of_taps + 1) / 2
956 * init_bot = init + scaling_ratio
957 * to get pixel perfect combine add the fraction from calculating vp offset
958 */
959 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
960 *vp_offset = dc_fixpt_floor(temp);
961 temp.value &= 0xffffffff;
962 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
963 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
964 /*
965 * If viewport has non 0 offset and there are more taps than covered by init then
966 * we should decrease the offset and increase init so we are never sampling
967 * outside of viewport.
968 */
969 int_part = dc_fixpt_floor(*init);
970 if (int_part < taps) {
971 int_part = taps - int_part;
972 if (int_part > *vp_offset)
973 int_part = *vp_offset;
974 *vp_offset -= int_part;
975 *init = dc_fixpt_add_int(*init, int_part);
976 }
977 /*
978 * If taps are sampling outside of viewport at end of recout and there are more pixels
979 * available in the surface we should increase the viewport size, regardless set vp to
980 * only what is used.
981 */
982 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
983 *vp_size = dc_fixpt_floor(temp);
984 if (*vp_size + *vp_offset > src_size)
985 *vp_size = src_size - *vp_offset;
986
987 /* We did all the math assuming we are scanning same direction as display does,
988 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
989 * is flipped we simply need to calculate offset from the other side of plane.
990 * Note that outside of viewport all scaling hardware works in recout space.
991 */
992 if (flip_scan_dir)
993 *vp_offset = src_size - *vp_offset - *vp_size;
994 }
995
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)996 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
997 {
998 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
999 const struct dc_stream_state *stream = pipe_ctx->stream;
1000 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1001 struct rect src = plane_state->src_rect;
1002 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1003 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1004 int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
1005 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1006
1007 calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
1008 /*
1009 * recout full is what the recout would have been if we didnt clip
1010 * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
1011 * offsets of recout within recout full because those are the directions
1012 * we scan from and therefore the only ones that affect inits.
1013 */
1014 recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1015 * stream->dst.width / stream->src.width;
1016 recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1017 * stream->dst.height / stream->src.height;
1018 if (pipe_ctx->prev_odm_pipe && split_idx)
1019 ro_lb = data->h_active * split_idx - recout_full_x;
1020 else if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->prev_odm_pipe)
1021 ro_lb = data->h_active * split_idx - recout_full_x + data->recout.x;
1022 else
1023 ro_lb = data->recout.x - recout_full_x;
1024 ro_tb = data->recout.y - recout_full_y;
1025 ASSERT(ro_lb >= 0 && ro_tb >= 0);
1026
1027 /*
1028 * Work in recout rotation since that requires less transformations
1029 */
1030 get_vp_scan_direction(
1031 plane_state->rotation,
1032 plane_state->horizontal_mirror,
1033 &orthogonal_rotation,
1034 &flip_vert_scan_dir,
1035 &flip_horz_scan_dir);
1036
1037 if (orthogonal_rotation) {
1038 swap(src.width, src.height);
1039 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1040 }
1041
1042 calculate_init_and_vp(
1043 flip_horz_scan_dir,
1044 ro_lb,
1045 data->recout.width,
1046 src.width,
1047 data->taps.h_taps,
1048 data->ratios.horz,
1049 &data->inits.h,
1050 &data->viewport.x,
1051 &data->viewport.width);
1052 calculate_init_and_vp(
1053 flip_horz_scan_dir,
1054 ro_lb,
1055 data->recout.width,
1056 src.width / vpc_div,
1057 data->taps.h_taps_c,
1058 data->ratios.horz_c,
1059 &data->inits.h_c,
1060 &data->viewport_c.x,
1061 &data->viewport_c.width);
1062 calculate_init_and_vp(
1063 flip_vert_scan_dir,
1064 ro_tb,
1065 data->recout.height,
1066 src.height,
1067 data->taps.v_taps,
1068 data->ratios.vert,
1069 &data->inits.v,
1070 &data->viewport.y,
1071 &data->viewport.height);
1072 calculate_init_and_vp(
1073 flip_vert_scan_dir,
1074 ro_tb,
1075 data->recout.height,
1076 src.height / vpc_div,
1077 data->taps.v_taps_c,
1078 data->ratios.vert_c,
1079 &data->inits.v_c,
1080 &data->viewport_c.y,
1081 &data->viewport_c.height);
1082 if (orthogonal_rotation) {
1083 swap(data->viewport.x, data->viewport.y);
1084 swap(data->viewport.width, data->viewport.height);
1085 swap(data->viewport_c.x, data->viewport_c.y);
1086 swap(data->viewport_c.width, data->viewport_c.height);
1087 }
1088 data->viewport.x += src.x;
1089 data->viewport.y += src.y;
1090 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1091 data->viewport_c.x += src.x / vpc_div;
1092 data->viewport_c.y += src.y / vpc_div;
1093 }
1094
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1095 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1096 {
1097 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1098 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1099 bool res = false;
1100 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1101
1102 /* Invalid input */
1103 if (!plane_state->dst_rect.width ||
1104 !plane_state->dst_rect.height ||
1105 !plane_state->src_rect.width ||
1106 !plane_state->src_rect.height) {
1107 ASSERT(0);
1108 return false;
1109 }
1110
1111 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1112 pipe_ctx->plane_state->format);
1113
1114 /* Timing borders are part of vactive that we are also supposed to skip in addition
1115 * to any stream dst offset. Since dm logic assumes dst is in addressable
1116 * space we need to add the left and top borders to dst offsets temporarily.
1117 * TODO: fix in DM, stream dst is supposed to be in vactive
1118 */
1119 pipe_ctx->stream->dst.x += timing->h_border_left;
1120 pipe_ctx->stream->dst.y += timing->v_border_top;
1121
1122 /* Calculate H and V active size */
1123 pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1124 timing->h_border_left + timing->h_border_right;
1125 pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1126 timing->v_border_top + timing->v_border_bottom;
1127 if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe) {
1128 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1129
1130 DC_LOG_SCALER("%s pipe %d: next_odm_pipe:%d prev_odm_pipe:%d\n",
1131 __func__,
1132 pipe_ctx->pipe_idx,
1133 pipe_ctx->next_odm_pipe ? pipe_ctx->next_odm_pipe->pipe_idx : -1,
1134 pipe_ctx->prev_odm_pipe ? pipe_ctx->prev_odm_pipe->pipe_idx : -1);
1135 } /* ODM + windows MPO, where window is on either right or left ODM half */
1136 else if (pipe_ctx->top_pipe && (pipe_ctx->top_pipe->next_odm_pipe || pipe_ctx->top_pipe->prev_odm_pipe)) {
1137
1138 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx->top_pipe) + 1;
1139
1140 DC_LOG_SCALER("%s ODM + windows MPO: pipe:%d top_pipe:%d top_pipe->next_odm_pipe:%d top_pipe->prev_odm_pipe:%d\n",
1141 __func__,
1142 pipe_ctx->pipe_idx,
1143 pipe_ctx->top_pipe->pipe_idx,
1144 pipe_ctx->top_pipe->next_odm_pipe ? pipe_ctx->top_pipe->next_odm_pipe->pipe_idx : -1,
1145 pipe_ctx->top_pipe->prev_odm_pipe ? pipe_ctx->top_pipe->prev_odm_pipe->pipe_idx : -1);
1146 }
1147 /* depends on h_active */
1148 calculate_recout(pipe_ctx);
1149 /* depends on pixel format */
1150 calculate_scaling_ratios(pipe_ctx);
1151 /* depends on scaling ratios and recout, does not calculate offset yet */
1152 calculate_viewport_size(pipe_ctx);
1153
1154 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1155 /* Stopgap for validation of ODM + MPO on one side of screen case */
1156 if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1157 pipe_ctx->plane_res.scl_data.viewport.width < 1)
1158 return false;
1159 }
1160
1161 /*
1162 * LB calculations depend on vp size, h/v_active and scaling ratios
1163 * Setting line buffer pixel depth to 24bpp yields banding
1164 * on certain displays, such as the Sharp 4k. 36bpp is needed
1165 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1166 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1167 * precision on DCN display engines, but apparently not for DCE, as
1168 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1169 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1170 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1171 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1172 */
1173 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1174 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1175 else
1176 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1177
1178 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1179
1180 if (pipe_ctx->plane_res.xfm != NULL)
1181 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1182 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1183
1184 if (pipe_ctx->plane_res.dpp != NULL)
1185 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1186 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1187
1188
1189 if (!res) {
1190 /* Try 24 bpp linebuffer */
1191 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1192
1193 if (pipe_ctx->plane_res.xfm != NULL)
1194 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1195 pipe_ctx->plane_res.xfm,
1196 &pipe_ctx->plane_res.scl_data,
1197 &plane_state->scaling_quality);
1198
1199 if (pipe_ctx->plane_res.dpp != NULL)
1200 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1201 pipe_ctx->plane_res.dpp,
1202 &pipe_ctx->plane_res.scl_data,
1203 &plane_state->scaling_quality);
1204 }
1205
1206 /*
1207 * Depends on recout, scaling ratios, h_active and taps
1208 * May need to re-check lb size after this in some obscure scenario
1209 */
1210 if (res)
1211 calculate_inits_and_viewports(pipe_ctx);
1212
1213 /*
1214 * Handle side by side and top bottom 3d recout offsets after vp calculation
1215 * since 3d is special and needs to calculate vp as if there is no recout offset
1216 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1217 */
1218 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1219 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1220 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1221 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1222 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1223 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1224 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1225 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1226 }
1227
1228 if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1229 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1230 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1231 res = false;
1232 } else {
1233 /* Clamp minimum viewport size */
1234 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1235 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1236 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1237 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1238 }
1239
1240 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1241 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1242 __func__,
1243 pipe_ctx->pipe_idx,
1244 pipe_ctx->plane_res.scl_data.viewport.height,
1245 pipe_ctx->plane_res.scl_data.viewport.width,
1246 pipe_ctx->plane_res.scl_data.viewport.x,
1247 pipe_ctx->plane_res.scl_data.viewport.y,
1248 pipe_ctx->plane_res.scl_data.recout.height,
1249 pipe_ctx->plane_res.scl_data.recout.width,
1250 pipe_ctx->plane_res.scl_data.recout.x,
1251 pipe_ctx->plane_res.scl_data.recout.y,
1252 pipe_ctx->plane_res.scl_data.h_active,
1253 pipe_ctx->plane_res.scl_data.v_active,
1254 plane_state->src_rect.height,
1255 plane_state->src_rect.width,
1256 plane_state->src_rect.x,
1257 plane_state->src_rect.y,
1258 plane_state->dst_rect.height,
1259 plane_state->dst_rect.width,
1260 plane_state->dst_rect.x,
1261 plane_state->dst_rect.y,
1262 plane_state->clip_rect.height,
1263 plane_state->clip_rect.width,
1264 plane_state->clip_rect.x,
1265 plane_state->clip_rect.y);
1266
1267 pipe_ctx->stream->dst.x -= timing->h_border_left;
1268 pipe_ctx->stream->dst.y -= timing->v_border_top;
1269
1270 return res;
1271 }
1272
1273
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1274 enum dc_status resource_build_scaling_params_for_context(
1275 const struct dc *dc,
1276 struct dc_state *context)
1277 {
1278 int i;
1279
1280 for (i = 0; i < MAX_PIPES; i++) {
1281 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1282 context->res_ctx.pipe_ctx[i].stream != NULL)
1283 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1284 return DC_FAIL_SCALING;
1285 }
1286
1287 return DC_OK;
1288 }
1289
find_idle_secondary_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1290 struct pipe_ctx *find_idle_secondary_pipe(
1291 struct resource_context *res_ctx,
1292 const struct resource_pool *pool,
1293 const struct pipe_ctx *primary_pipe)
1294 {
1295 int i;
1296 struct pipe_ctx *secondary_pipe = NULL;
1297
1298 /*
1299 * We add a preferred pipe mapping to avoid the chance that
1300 * MPCCs already in use will need to be reassigned to other trees.
1301 * For example, if we went with the strict, assign backwards logic:
1302 *
1303 * (State 1)
1304 * Display A on, no surface, top pipe = 0
1305 * Display B on, no surface, top pipe = 1
1306 *
1307 * (State 2)
1308 * Display A on, no surface, top pipe = 0
1309 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1310 *
1311 * (State 3)
1312 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1313 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1314 *
1315 * The state 2->3 transition requires remapping MPCC 5 from display B
1316 * to display A.
1317 *
1318 * However, with the preferred pipe logic, state 2 would look like:
1319 *
1320 * (State 2)
1321 * Display A on, no surface, top pipe = 0
1322 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1323 *
1324 * This would then cause 2->3 to not require remapping any MPCCs.
1325 */
1326 if (primary_pipe) {
1327 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1328 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1329 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1330 secondary_pipe->pipe_idx = preferred_pipe_idx;
1331 }
1332 }
1333
1334 /*
1335 * search backwards for the second pipe to keep pipe
1336 * assignment more consistent
1337 */
1338 if (!secondary_pipe)
1339 for (i = pool->pipe_count - 1; i >= 0; i--) {
1340 if (res_ctx->pipe_ctx[i].stream == NULL) {
1341 secondary_pipe = &res_ctx->pipe_ctx[i];
1342 secondary_pipe->pipe_idx = i;
1343 break;
1344 }
1345 }
1346
1347 return secondary_pipe;
1348 }
1349
resource_get_head_pipe_for_stream(struct resource_context * res_ctx,struct dc_stream_state * stream)1350 struct pipe_ctx *resource_get_head_pipe_for_stream(
1351 struct resource_context *res_ctx,
1352 struct dc_stream_state *stream)
1353 {
1354 int i;
1355
1356 for (i = 0; i < MAX_PIPES; i++) {
1357 if (res_ctx->pipe_ctx[i].stream == stream
1358 && !res_ctx->pipe_ctx[i].top_pipe
1359 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1360 return &res_ctx->pipe_ctx[i];
1361 }
1362 return NULL;
1363 }
1364
resource_get_tail_pipe(struct resource_context * res_ctx,struct pipe_ctx * head_pipe)1365 static struct pipe_ctx *resource_get_tail_pipe(
1366 struct resource_context *res_ctx,
1367 struct pipe_ctx *head_pipe)
1368 {
1369 struct pipe_ctx *tail_pipe;
1370
1371 tail_pipe = head_pipe->bottom_pipe;
1372
1373 while (tail_pipe) {
1374 head_pipe = tail_pipe;
1375 tail_pipe = tail_pipe->bottom_pipe;
1376 }
1377
1378 return head_pipe;
1379 }
1380
1381 /*
1382 * A free_pipe for a stream is defined here as a pipe
1383 * that has no surface attached yet
1384 */
acquire_free_pipe_for_head(struct dc_state * context,const struct resource_pool * pool,struct pipe_ctx * head_pipe)1385 static struct pipe_ctx *acquire_free_pipe_for_head(
1386 struct dc_state *context,
1387 const struct resource_pool *pool,
1388 struct pipe_ctx *head_pipe)
1389 {
1390 int i;
1391 struct resource_context *res_ctx = &context->res_ctx;
1392
1393 if (!head_pipe->plane_state)
1394 return head_pipe;
1395
1396 /* Re-use pipe already acquired for this stream if available*/
1397 for (i = pool->pipe_count - 1; i >= 0; i--) {
1398 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1399 !res_ctx->pipe_ctx[i].plane_state) {
1400 return &res_ctx->pipe_ctx[i];
1401 }
1402 }
1403
1404 /*
1405 * At this point we have no re-useable pipe for this stream and we need
1406 * to acquire an idle one to satisfy the request
1407 */
1408
1409 if (!pool->funcs->acquire_idle_pipe_for_layer) {
1410 if (!pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer)
1411 return NULL;
1412 else
1413 return pool->funcs->acquire_idle_pipe_for_head_pipe_in_layer(context, pool, head_pipe->stream, head_pipe);
1414 }
1415
1416 return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1417 }
1418
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)1419 static int acquire_first_split_pipe(
1420 struct resource_context *res_ctx,
1421 const struct resource_pool *pool,
1422 struct dc_stream_state *stream)
1423 {
1424 int i;
1425
1426 for (i = 0; i < pool->pipe_count; i++) {
1427 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1428
1429 if (split_pipe->top_pipe &&
1430 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1431 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1432 if (split_pipe->bottom_pipe)
1433 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1434
1435 if (split_pipe->top_pipe->plane_state)
1436 resource_build_scaling_params(split_pipe->top_pipe);
1437
1438 memset(split_pipe, 0, sizeof(*split_pipe));
1439 split_pipe->stream_res.tg = pool->timing_generators[i];
1440 split_pipe->plane_res.hubp = pool->hubps[i];
1441 split_pipe->plane_res.ipp = pool->ipps[i];
1442 split_pipe->plane_res.dpp = pool->dpps[i];
1443 split_pipe->stream_res.opp = pool->opps[i];
1444 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1445 split_pipe->pipe_idx = i;
1446
1447 split_pipe->stream = stream;
1448 return i;
1449 } else if (split_pipe->prev_odm_pipe &&
1450 split_pipe->prev_odm_pipe->plane_state == split_pipe->plane_state) {
1451 split_pipe->prev_odm_pipe->next_odm_pipe = split_pipe->next_odm_pipe;
1452 if (split_pipe->next_odm_pipe)
1453 split_pipe->next_odm_pipe->prev_odm_pipe = split_pipe->prev_odm_pipe;
1454
1455 if (split_pipe->prev_odm_pipe->plane_state)
1456 resource_build_scaling_params(split_pipe->prev_odm_pipe);
1457
1458 memset(split_pipe, 0, sizeof(*split_pipe));
1459 split_pipe->stream_res.tg = pool->timing_generators[i];
1460 split_pipe->plane_res.hubp = pool->hubps[i];
1461 split_pipe->plane_res.ipp = pool->ipps[i];
1462 split_pipe->plane_res.dpp = pool->dpps[i];
1463 split_pipe->stream_res.opp = pool->opps[i];
1464 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1465 split_pipe->pipe_idx = i;
1466
1467 split_pipe->stream = stream;
1468 return i;
1469 }
1470 }
1471 return -1;
1472 }
1473
dc_add_plane_to_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1474 bool dc_add_plane_to_context(
1475 const struct dc *dc,
1476 struct dc_stream_state *stream,
1477 struct dc_plane_state *plane_state,
1478 struct dc_state *context)
1479 {
1480 int i;
1481 struct resource_pool *pool = dc->res_pool;
1482 struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1483 struct dc_stream_status *stream_status = NULL;
1484 struct pipe_ctx *prev_right_head = NULL;
1485 struct pipe_ctx *free_right_pipe = NULL;
1486 struct pipe_ctx *prev_left_head = NULL;
1487
1488 DC_LOGGER_INIT(stream->ctx->logger);
1489 for (i = 0; i < context->stream_count; i++)
1490 if (context->streams[i] == stream) {
1491 stream_status = &context->stream_status[i];
1492 break;
1493 }
1494 if (stream_status == NULL) {
1495 dm_error("Existing stream not found; failed to attach surface!\n");
1496 return false;
1497 }
1498
1499
1500 if (stream_status->plane_count == MAX_SURFACE_NUM) {
1501 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1502 plane_state, MAX_SURFACE_NUM);
1503 return false;
1504 }
1505
1506 head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1507
1508 if (!head_pipe) {
1509 dm_error("Head pipe not found for stream_state %p !\n", stream);
1510 return false;
1511 }
1512
1513 /* retain new surface, but only once per stream */
1514 dc_plane_state_retain(plane_state);
1515
1516 while (head_pipe) {
1517 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1518
1519 if (!free_pipe) {
1520 int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1521 if (pipe_idx >= 0)
1522 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1523 }
1524
1525 if (!free_pipe) {
1526 dc_plane_state_release(plane_state);
1527 return false;
1528 }
1529
1530 free_pipe->plane_state = plane_state;
1531
1532 if (head_pipe != free_pipe) {
1533 tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1534 ASSERT(tail_pipe);
1535
1536 /* ODM + window MPO, where MPO window is on right half only */
1537 if (free_pipe->plane_state &&
1538 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2) &&
1539 tail_pipe->next_odm_pipe) {
1540
1541 /* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1542 * the right side, then we will invalidate a 2nd one on the right side
1543 */
1544 if (head_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1545 dc_plane_state_release(plane_state);
1546 return false;
1547 }
1548
1549 DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d tail_pipe->next_odm_pipe:%d\n",
1550 __func__,
1551 free_pipe->pipe_idx,
1552 tail_pipe->next_odm_pipe ? tail_pipe->next_odm_pipe->pipe_idx : -1);
1553
1554 /*
1555 * We want to avoid the case where the right side already has a pipe assigned to
1556 * it and is different from free_pipe ( which would cause trigger a pipe
1557 * reallocation ).
1558 * Check the old context to see if the right side already has a pipe allocated
1559 * - If not, continue to use free_pipe
1560 * - If the right side already has a pipe, use that pipe instead if its available
1561 */
1562
1563 /*
1564 * We also want to avoid the case where with three plane ( 2 MPO videos ), we have
1565 * both videos on the left side so one of the videos is invalidated. Then we
1566 * move the invalidated video back to the right side. If the order of the plane
1567 * states is such that the right MPO plane is processed first, the free pipe
1568 * selected by the head will be the left MPO pipe. But since there was no right
1569 * MPO pipe, it will assign the free pipe to the right MPO pipe instead and
1570 * a pipe reallocation will occur.
1571 * Check the old context to see if the left side already has a pipe allocated
1572 * - If not, continue to use free_pipe
1573 * - If the left side is already using this pipe, then pick another pipe for right
1574 */
1575
1576 prev_right_head = &dc->current_state->res_ctx.pipe_ctx[tail_pipe->next_odm_pipe->pipe_idx];
1577 if ((prev_right_head->bottom_pipe) &&
1578 (free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1579 free_right_pipe = acquire_free_pipe_for_head(context, pool, tail_pipe->next_odm_pipe);
1580 } else {
1581 prev_left_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->pipe_idx];
1582 if ((prev_left_head->bottom_pipe) &&
1583 (free_pipe->pipe_idx == prev_left_head->bottom_pipe->pipe_idx)) {
1584 free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1585 }
1586 }
1587
1588 if (free_right_pipe) {
1589 free_pipe->stream = NULL;
1590 memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1591 memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1592 free_pipe->plane_state = NULL;
1593 free_pipe->pipe_idx = 0;
1594 free_right_pipe->plane_state = plane_state;
1595 free_pipe = free_right_pipe;
1596 }
1597
1598 free_pipe->stream_res.tg = tail_pipe->next_odm_pipe->stream_res.tg;
1599 free_pipe->stream_res.abm = tail_pipe->next_odm_pipe->stream_res.abm;
1600 free_pipe->stream_res.opp = tail_pipe->next_odm_pipe->stream_res.opp;
1601 free_pipe->stream_res.stream_enc = tail_pipe->next_odm_pipe->stream_res.stream_enc;
1602 free_pipe->stream_res.audio = tail_pipe->next_odm_pipe->stream_res.audio;
1603 free_pipe->clock_source = tail_pipe->next_odm_pipe->clock_source;
1604
1605 free_pipe->top_pipe = tail_pipe->next_odm_pipe;
1606 tail_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1607 } else if (free_pipe->plane_state &&
1608 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)
1609 && head_pipe->next_odm_pipe) {
1610
1611 /* For ODM + window MPO, support 3 plane ( 2 MPO ) case.
1612 * Here we have a desktop ODM + left window MPO and a new MPO window appears
1613 * on the right side only. It fails the first case, because tail_pipe is the
1614 * left window MPO, so it has no next_odm_pipe. So in this scenario, we check
1615 * for head_pipe->next_odm_pipe instead
1616 */
1617 DC_LOG_SCALER("%s - ODM + win MPO (left) + win MPO (right). free_pipe:%d head_pipe->next_odm:%d\n",
1618 __func__,
1619 free_pipe->pipe_idx,
1620 head_pipe->next_odm_pipe ? head_pipe->next_odm_pipe->pipe_idx : -1);
1621
1622 /*
1623 * We want to avoid the case where the right side already has a pipe assigned to
1624 * it and is different from free_pipe ( which would cause trigger a pipe
1625 * reallocation ).
1626 * Check the old context to see if the right side already has a pipe allocated
1627 * - If not, continue to use free_pipe
1628 * - If the right side already has a pipe, use that pipe instead if its available
1629 */
1630 prev_right_head = &dc->current_state->res_ctx.pipe_ctx[head_pipe->next_odm_pipe->pipe_idx];
1631 if ((prev_right_head->bottom_pipe) &&
1632 (free_pipe->pipe_idx != prev_right_head->bottom_pipe->pipe_idx)) {
1633 free_right_pipe = acquire_free_pipe_for_head(context, pool, head_pipe->next_odm_pipe);
1634 if (free_right_pipe) {
1635 free_pipe->stream = NULL;
1636 memset(&free_pipe->stream_res, 0, sizeof(struct stream_resource));
1637 memset(&free_pipe->plane_res, 0, sizeof(struct plane_resource));
1638 free_pipe->plane_state = NULL;
1639 free_pipe->pipe_idx = 0;
1640 free_right_pipe->plane_state = plane_state;
1641 free_pipe = free_right_pipe;
1642 }
1643 }
1644
1645 free_pipe->stream_res.tg = head_pipe->next_odm_pipe->stream_res.tg;
1646 free_pipe->stream_res.abm = head_pipe->next_odm_pipe->stream_res.abm;
1647 free_pipe->stream_res.opp = head_pipe->next_odm_pipe->stream_res.opp;
1648 free_pipe->stream_res.stream_enc = head_pipe->next_odm_pipe->stream_res.stream_enc;
1649 free_pipe->stream_res.audio = head_pipe->next_odm_pipe->stream_res.audio;
1650 free_pipe->clock_source = head_pipe->next_odm_pipe->clock_source;
1651
1652 free_pipe->top_pipe = head_pipe->next_odm_pipe;
1653 head_pipe->next_odm_pipe->bottom_pipe = free_pipe;
1654 } else {
1655
1656 /* For ODM + window MPO, in 3 plane case, if we already have a MPO window on
1657 * the left side, then we will invalidate a 2nd one on the left side
1658 */
1659 if (head_pipe->next_odm_pipe && tail_pipe->top_pipe) {
1660 dc_plane_state_release(plane_state);
1661 return false;
1662 }
1663
1664 free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1665 free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1666 free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1667 free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1668 free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1669 free_pipe->clock_source = tail_pipe->clock_source;
1670
1671 free_pipe->top_pipe = tail_pipe;
1672 tail_pipe->bottom_pipe = free_pipe;
1673
1674 /* Connect MPO pipes together if MPO window is in the centre */
1675 if (!(free_pipe->plane_state &&
1676 (free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1677 free_pipe->stream->src.x + free_pipe->stream->src.width/2))) {
1678 if (!free_pipe->next_odm_pipe &&
1679 tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1680 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1681 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1682 }
1683 if (!free_pipe->prev_odm_pipe &&
1684 tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1685 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1686 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1687 }
1688 }
1689 }
1690 }
1691
1692 /* ODM + window MPO, where MPO window is on left half only */
1693 if (free_pipe->plane_state &&
1694 (free_pipe->plane_state->clip_rect.x + free_pipe->plane_state->clip_rect.width <=
1695 free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1696 DC_LOG_SCALER("%s - ODM + window MPO(left). free_pipe:%d\n",
1697 __func__,
1698 free_pipe->pipe_idx);
1699 break;
1700 }
1701 /* ODM + window MPO, where MPO window is on right half only */
1702 if (free_pipe->plane_state &&
1703 (free_pipe->plane_state->clip_rect.x >= free_pipe->stream->src.x + free_pipe->stream->src.width/2)) {
1704 DC_LOG_SCALER("%s - ODM + window MPO(right). free_pipe:%d\n",
1705 __func__,
1706 free_pipe->pipe_idx);
1707 break;
1708 }
1709
1710 head_pipe = head_pipe->next_odm_pipe;
1711 }
1712 /* assign new surfaces*/
1713 stream_status->plane_states[stream_status->plane_count] = plane_state;
1714
1715 stream_status->plane_count++;
1716
1717 return true;
1718 }
1719
dc_remove_plane_from_context(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * plane_state,struct dc_state * context)1720 bool dc_remove_plane_from_context(
1721 const struct dc *dc,
1722 struct dc_stream_state *stream,
1723 struct dc_plane_state *plane_state,
1724 struct dc_state *context)
1725 {
1726 int i;
1727 struct dc_stream_status *stream_status = NULL;
1728 struct resource_pool *pool = dc->res_pool;
1729
1730 if (!plane_state)
1731 return true;
1732
1733 for (i = 0; i < context->stream_count; i++)
1734 if (context->streams[i] == stream) {
1735 stream_status = &context->stream_status[i];
1736 break;
1737 }
1738
1739 if (stream_status == NULL) {
1740 dm_error("Existing stream not found; failed to remove plane.\n");
1741 return false;
1742 }
1743
1744 /* release pipe for plane*/
1745 for (i = pool->pipe_count - 1; i >= 0; i--) {
1746 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1747
1748 if (pipe_ctx->plane_state == plane_state) {
1749 if (pipe_ctx->top_pipe)
1750 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1751
1752 /* Second condition is to avoid setting NULL to top pipe
1753 * of tail pipe making it look like head pipe in subsequent
1754 * deletes
1755 */
1756 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1757 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1758
1759 /*
1760 * For head pipe detach surfaces from pipe for tail
1761 * pipe just zero it out
1762 */
1763 if (!pipe_ctx->top_pipe)
1764 pipe_ctx->plane_state = NULL;
1765 else
1766 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1767 }
1768 }
1769
1770
1771 for (i = 0; i < stream_status->plane_count; i++) {
1772 if (stream_status->plane_states[i] == plane_state) {
1773 dc_plane_state_release(stream_status->plane_states[i]);
1774 break;
1775 }
1776 }
1777
1778 if (i == stream_status->plane_count) {
1779 dm_error("Existing plane_state not found; failed to detach it!\n");
1780 return false;
1781 }
1782
1783 stream_status->plane_count--;
1784
1785 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1786 for (; i < stream_status->plane_count; i++)
1787 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1788
1789 stream_status->plane_states[stream_status->plane_count] = NULL;
1790
1791 return true;
1792 }
1793
dc_rem_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1794 bool dc_rem_all_planes_for_stream(
1795 const struct dc *dc,
1796 struct dc_stream_state *stream,
1797 struct dc_state *context)
1798 {
1799 int i, old_plane_count;
1800 struct dc_stream_status *stream_status = NULL;
1801 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1802
1803 for (i = 0; i < context->stream_count; i++)
1804 if (context->streams[i] == stream) {
1805 stream_status = &context->stream_status[i];
1806 break;
1807 }
1808
1809 if (stream_status == NULL) {
1810 dm_error("Existing stream %p not found!\n", stream);
1811 return false;
1812 }
1813
1814 old_plane_count = stream_status->plane_count;
1815
1816 for (i = 0; i < old_plane_count; i++)
1817 del_planes[i] = stream_status->plane_states[i];
1818
1819 for (i = 0; i < old_plane_count; i++)
1820 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1821 return false;
1822
1823 return true;
1824 }
1825
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * context)1826 static bool add_all_planes_for_stream(
1827 const struct dc *dc,
1828 struct dc_stream_state *stream,
1829 const struct dc_validation_set set[],
1830 int set_count,
1831 struct dc_state *context)
1832 {
1833 int i, j;
1834
1835 for (i = 0; i < set_count; i++)
1836 if (set[i].stream == stream)
1837 break;
1838
1839 if (i == set_count) {
1840 dm_error("Stream %p not found in set!\n", stream);
1841 return false;
1842 }
1843
1844 for (j = 0; j < set[i].plane_count; j++)
1845 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1846 return false;
1847
1848 return true;
1849 }
1850
dc_add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_plane_state * const * plane_states,int plane_count,struct dc_state * context)1851 bool dc_add_all_planes_for_stream(
1852 const struct dc *dc,
1853 struct dc_stream_state *stream,
1854 struct dc_plane_state * const *plane_states,
1855 int plane_count,
1856 struct dc_state *context)
1857 {
1858 struct dc_validation_set set;
1859 int i;
1860
1861 set.stream = stream;
1862 set.plane_count = plane_count;
1863
1864 for (i = 0; i < plane_count; i++)
1865 set.plane_states[i] = plane_states[i];
1866
1867 return add_all_planes_for_stream(dc, stream, &set, 1, context);
1868 }
1869
is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)1870 bool is_timing_changed(struct dc_stream_state *cur_stream,
1871 struct dc_stream_state *new_stream)
1872 {
1873 if (cur_stream == NULL)
1874 return true;
1875
1876 /* If output color space is changed, need to reprogram info frames */
1877 if (cur_stream->output_color_space != new_stream->output_color_space)
1878 return true;
1879
1880 return memcmp(
1881 &cur_stream->timing,
1882 &new_stream->timing,
1883 sizeof(struct dc_crtc_timing)) != 0;
1884 }
1885
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)1886 static bool are_stream_backends_same(
1887 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1888 {
1889 if (stream_a == stream_b)
1890 return true;
1891
1892 if (stream_a == NULL || stream_b == NULL)
1893 return false;
1894
1895 if (is_timing_changed(stream_a, stream_b))
1896 return false;
1897
1898 if (stream_a->signal != stream_b->signal)
1899 return false;
1900
1901 if (stream_a->dpms_off != stream_b->dpms_off)
1902 return false;
1903
1904 return true;
1905 }
1906
1907 /*
1908 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1909 *
1910 * Checks if there a difference between the two states
1911 * that would require a mode change.
1912 *
1913 * Does not compare cursor position or attributes.
1914 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1915 bool dc_is_stream_unchanged(
1916 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1917 {
1918
1919 if (!are_stream_backends_same(old_stream, stream))
1920 return false;
1921
1922 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1923 return false;
1924
1925 /*compare audio info*/
1926 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1927 return false;
1928
1929 return true;
1930 }
1931
1932 /*
1933 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1934 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)1935 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1936 struct dc_stream_state *stream)
1937 {
1938 if (old_stream == stream)
1939 return true;
1940
1941 if (old_stream == NULL || stream == NULL)
1942 return false;
1943
1944 if (memcmp(&old_stream->src,
1945 &stream->src,
1946 sizeof(struct rect)) != 0)
1947 return false;
1948
1949 if (memcmp(&old_stream->dst,
1950 &stream->dst,
1951 sizeof(struct rect)) != 0)
1952 return false;
1953
1954 return true;
1955 }
1956
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)1957 static void update_stream_engine_usage(
1958 struct resource_context *res_ctx,
1959 const struct resource_pool *pool,
1960 struct stream_encoder *stream_enc,
1961 bool acquired)
1962 {
1963 int i;
1964
1965 for (i = 0; i < pool->stream_enc_count; i++) {
1966 if (pool->stream_enc[i] == stream_enc)
1967 res_ctx->is_stream_enc_acquired[i] = acquired;
1968 }
1969 }
1970
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)1971 static void update_hpo_dp_stream_engine_usage(
1972 struct resource_context *res_ctx,
1973 const struct resource_pool *pool,
1974 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1975 bool acquired)
1976 {
1977 int i;
1978
1979 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1980 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1981 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1982 }
1983 }
1984
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)1985 static inline int find_acquired_hpo_dp_link_enc_for_link(
1986 const struct resource_context *res_ctx,
1987 const struct dc_link *link)
1988 {
1989 int i;
1990
1991 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1992 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1993 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1994 return i;
1995
1996 return -1;
1997 }
1998
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)1999 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2000 const struct resource_pool *pool)
2001 {
2002 int i;
2003
2004 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2005 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2006 break;
2007
2008 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2009 i < pool->hpo_dp_link_enc_count) ? i : -1;
2010 }
2011
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2012 static inline void acquire_hpo_dp_link_enc(
2013 struct resource_context *res_ctx,
2014 unsigned int link_index,
2015 int enc_index)
2016 {
2017 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2018 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2019 }
2020
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2021 static inline void retain_hpo_dp_link_enc(
2022 struct resource_context *res_ctx,
2023 int enc_index)
2024 {
2025 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2026 }
2027
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2028 static inline void release_hpo_dp_link_enc(
2029 struct resource_context *res_ctx,
2030 int enc_index)
2031 {
2032 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2033 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2034 }
2035
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2036 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2037 const struct resource_pool *pool,
2038 struct pipe_ctx *pipe_ctx,
2039 struct dc_stream_state *stream)
2040 {
2041 int enc_index;
2042
2043 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2044
2045 if (enc_index >= 0) {
2046 retain_hpo_dp_link_enc(res_ctx, enc_index);
2047 } else {
2048 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2049 if (enc_index >= 0)
2050 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2051 }
2052
2053 if (enc_index >= 0)
2054 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2055
2056 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2057 }
2058
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2059 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2060 struct pipe_ctx *pipe_ctx,
2061 struct dc_stream_state *stream)
2062 {
2063 int enc_index;
2064
2065 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2066
2067 if (enc_index >= 0) {
2068 release_hpo_dp_link_enc(res_ctx, enc_index);
2069 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2070 }
2071 }
2072
2073 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)2074 void update_audio_usage(
2075 struct resource_context *res_ctx,
2076 const struct resource_pool *pool,
2077 struct audio *audio,
2078 bool acquired)
2079 {
2080 int i;
2081 for (i = 0; i < pool->audio_count; i++) {
2082 if (pool->audios[i] == audio)
2083 res_ctx->is_audio_acquired[i] = acquired;
2084 }
2085 }
2086
acquire_first_free_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2087 static int acquire_first_free_pipe(
2088 struct resource_context *res_ctx,
2089 const struct resource_pool *pool,
2090 struct dc_stream_state *stream)
2091 {
2092 int i;
2093
2094 for (i = 0; i < pool->pipe_count; i++) {
2095 if (!res_ctx->pipe_ctx[i].stream) {
2096 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
2097
2098 pipe_ctx->stream_res.tg = pool->timing_generators[i];
2099 pipe_ctx->plane_res.mi = pool->mis[i];
2100 pipe_ctx->plane_res.hubp = pool->hubps[i];
2101 pipe_ctx->plane_res.ipp = pool->ipps[i];
2102 pipe_ctx->plane_res.xfm = pool->transforms[i];
2103 pipe_ctx->plane_res.dpp = pool->dpps[i];
2104 pipe_ctx->stream_res.opp = pool->opps[i];
2105 if (pool->dpps[i])
2106 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
2107 pipe_ctx->pipe_idx = i;
2108
2109 if (i >= pool->timing_generator_count) {
2110 int tg_inst = pool->timing_generator_count - 1;
2111
2112 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2113 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2114 }
2115
2116 pipe_ctx->stream = stream;
2117 return i;
2118 }
2119 }
2120 return -1;
2121 }
2122
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2123 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
2124 struct resource_context *res_ctx,
2125 const struct resource_pool *pool,
2126 struct dc_stream_state *stream)
2127 {
2128 int i;
2129
2130 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2131 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
2132 pool->hpo_dp_stream_enc[i]) {
2133
2134 return pool->hpo_dp_stream_enc[i];
2135 }
2136 }
2137
2138 return NULL;
2139 }
2140
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)2141 static struct audio *find_first_free_audio(
2142 struct resource_context *res_ctx,
2143 const struct resource_pool *pool,
2144 enum engine_id id,
2145 enum dce_version dc_version)
2146 {
2147 int i, available_audio_count;
2148
2149 available_audio_count = pool->audio_count;
2150
2151 for (i = 0; i < available_audio_count; i++) {
2152 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
2153 /*we have enough audio endpoint, find the matching inst*/
2154 if (id != i)
2155 continue;
2156 return pool->audios[i];
2157 }
2158 }
2159
2160 /* use engine id to find free audio */
2161 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
2162 return pool->audios[id];
2163 }
2164 /*not found the matching one, first come first serve*/
2165 for (i = 0; i < available_audio_count; i++) {
2166 if (res_ctx->is_audio_acquired[i] == false) {
2167 return pool->audios[i];
2168 }
2169 }
2170 return NULL;
2171 }
2172
2173 /*
2174 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
2175 */
dc_add_stream_to_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2176 enum dc_status dc_add_stream_to_ctx(
2177 struct dc *dc,
2178 struct dc_state *new_ctx,
2179 struct dc_stream_state *stream)
2180 {
2181 enum dc_status res;
2182 DC_LOGGER_INIT(dc->ctx->logger);
2183
2184 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
2185 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
2186 return DC_ERROR_UNEXPECTED;
2187 }
2188
2189 new_ctx->streams[new_ctx->stream_count] = stream;
2190 dc_stream_retain(stream);
2191 new_ctx->stream_count++;
2192
2193 res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2194 if (res != DC_OK)
2195 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
2196
2197 return res;
2198 }
2199
2200 /*
2201 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
2202 */
dc_remove_stream_from_ctx(struct dc * dc,struct dc_state * new_ctx,struct dc_stream_state * stream)2203 enum dc_status dc_remove_stream_from_ctx(
2204 struct dc *dc,
2205 struct dc_state *new_ctx,
2206 struct dc_stream_state *stream)
2207 {
2208 int i;
2209 struct dc_context *dc_ctx = dc->ctx;
2210 struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
2211 struct pipe_ctx *odm_pipe;
2212
2213 if (!del_pipe) {
2214 DC_ERROR("Pipe not found for stream %p !\n", stream);
2215 return DC_ERROR_UNEXPECTED;
2216 }
2217
2218 odm_pipe = del_pipe->next_odm_pipe;
2219
2220 /* Release primary pipe */
2221 ASSERT(del_pipe->stream_res.stream_enc);
2222 update_stream_engine_usage(
2223 &new_ctx->res_ctx,
2224 dc->res_pool,
2225 del_pipe->stream_res.stream_enc,
2226 false);
2227
2228 if (is_dp_128b_132b_signal(del_pipe)) {
2229 update_hpo_dp_stream_engine_usage(
2230 &new_ctx->res_ctx, dc->res_pool,
2231 del_pipe->stream_res.hpo_dp_stream_enc,
2232 false);
2233 remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
2234 }
2235
2236 if (del_pipe->stream_res.audio)
2237 update_audio_usage(
2238 &new_ctx->res_ctx,
2239 dc->res_pool,
2240 del_pipe->stream_res.audio,
2241 false);
2242
2243 resource_unreference_clock_source(&new_ctx->res_ctx,
2244 dc->res_pool,
2245 del_pipe->clock_source);
2246
2247 if (dc->res_pool->funcs->remove_stream_from_ctx)
2248 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2249
2250 while (odm_pipe) {
2251 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2252
2253 memset(odm_pipe, 0, sizeof(*odm_pipe));
2254 odm_pipe = next_odm_pipe;
2255 }
2256 memset(del_pipe, 0, sizeof(*del_pipe));
2257
2258 for (i = 0; i < new_ctx->stream_count; i++)
2259 if (new_ctx->streams[i] == stream)
2260 break;
2261
2262 if (new_ctx->streams[i] != stream) {
2263 DC_ERROR("Context doesn't have stream %p !\n", stream);
2264 return DC_ERROR_UNEXPECTED;
2265 }
2266
2267 dc_stream_release(new_ctx->streams[i]);
2268 new_ctx->stream_count--;
2269
2270 /* Trim back arrays */
2271 for (; i < new_ctx->stream_count; i++) {
2272 new_ctx->streams[i] = new_ctx->streams[i + 1];
2273 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2274 }
2275
2276 new_ctx->streams[new_ctx->stream_count] = NULL;
2277 memset(
2278 &new_ctx->stream_status[new_ctx->stream_count],
2279 0,
2280 sizeof(new_ctx->stream_status[0]));
2281
2282 return DC_OK;
2283 }
2284
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)2285 static struct dc_stream_state *find_pll_sharable_stream(
2286 struct dc_stream_state *stream_needs_pll,
2287 struct dc_state *context)
2288 {
2289 int i;
2290
2291 for (i = 0; i < context->stream_count; i++) {
2292 struct dc_stream_state *stream_has_pll = context->streams[i];
2293
2294 /* We are looking for non dp, non virtual stream */
2295 if (resource_are_streams_timing_synchronizable(
2296 stream_needs_pll, stream_has_pll)
2297 && !dc_is_dp_signal(stream_has_pll->signal)
2298 && stream_has_pll->link->connector_signal
2299 != SIGNAL_TYPE_VIRTUAL)
2300 return stream_has_pll;
2301
2302 }
2303
2304 return NULL;
2305 }
2306
get_norm_pix_clk(const struct dc_crtc_timing * timing)2307 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2308 {
2309 uint32_t pix_clk = timing->pix_clk_100hz;
2310 uint32_t normalized_pix_clk = pix_clk;
2311
2312 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2313 pix_clk /= 2;
2314 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2315 switch (timing->display_color_depth) {
2316 case COLOR_DEPTH_666:
2317 case COLOR_DEPTH_888:
2318 normalized_pix_clk = pix_clk;
2319 break;
2320 case COLOR_DEPTH_101010:
2321 normalized_pix_clk = (pix_clk * 30) / 24;
2322 break;
2323 case COLOR_DEPTH_121212:
2324 normalized_pix_clk = (pix_clk * 36) / 24;
2325 break;
2326 case COLOR_DEPTH_161616:
2327 normalized_pix_clk = (pix_clk * 48) / 24;
2328 break;
2329 default:
2330 ASSERT(0);
2331 break;
2332 }
2333 }
2334 return normalized_pix_clk;
2335 }
2336
calculate_phy_pix_clks(struct dc_stream_state * stream)2337 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2338 {
2339 /* update actual pixel clock on all streams */
2340 if (dc_is_hdmi_signal(stream->signal))
2341 stream->phy_pix_clk = get_norm_pix_clk(
2342 &stream->timing) / 10;
2343 else
2344 stream->phy_pix_clk =
2345 stream->timing.pix_clk_100hz / 10;
2346
2347 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2348 stream->phy_pix_clk *= 2;
2349 }
2350
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2351 static int acquire_resource_from_hw_enabled_state(
2352 struct resource_context *res_ctx,
2353 const struct resource_pool *pool,
2354 struct dc_stream_state *stream)
2355 {
2356 struct dc_link *link = stream->link;
2357 unsigned int i, inst, tg_inst = 0;
2358 uint32_t numPipes = 1;
2359 uint32_t id_src[4] = {0};
2360
2361 /* Check for enabled DIG to identify enabled display */
2362 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2363 return -1;
2364
2365 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2366
2367 if (inst == ENGINE_ID_UNKNOWN)
2368 return -1;
2369
2370 for (i = 0; i < pool->stream_enc_count; i++) {
2371 if (pool->stream_enc[i]->id == inst) {
2372 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2373 pool->stream_enc[i]);
2374 break;
2375 }
2376 }
2377
2378 // tg_inst not found
2379 if (i == pool->stream_enc_count)
2380 return -1;
2381
2382 if (tg_inst >= pool->timing_generator_count)
2383 return -1;
2384
2385 if (!res_ctx->pipe_ctx[tg_inst].stream) {
2386 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2387
2388 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2389 id_src[0] = tg_inst;
2390
2391 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
2392 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
2393 &numPipes, &id_src[0], &id_src[1]);
2394
2395 if (id_src[0] == 0xf && id_src[1] == 0xf) {
2396 id_src[0] = tg_inst;
2397 numPipes = 1;
2398 }
2399
2400 for (i = 0; i < numPipes; i++) {
2401 //Check if src id invalid
2402 if (id_src[i] == 0xf)
2403 return -1;
2404
2405 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
2406
2407 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2408 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
2409 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
2410 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
2411 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
2412 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
2413 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2414
2415 if (pool->dpps[id_src[i]]) {
2416 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
2417
2418 if (pool->mpc->funcs->read_mpcc_state) {
2419 struct mpcc_state s = {0};
2420
2421 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2422
2423 if (s.dpp_id < MAX_MPCC)
2424 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
2425 s.dpp_id;
2426
2427 if (s.bot_mpcc_id < MAX_MPCC)
2428 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2429 &pool->mpc->mpcc_array[s.bot_mpcc_id];
2430
2431 if (s.opp_id < MAX_OPP)
2432 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2433 }
2434 }
2435 pipe_ctx->pipe_idx = id_src[i];
2436
2437 if (id_src[i] >= pool->timing_generator_count) {
2438 id_src[i] = pool->timing_generator_count - 1;
2439
2440 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
2441 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
2442 }
2443
2444 pipe_ctx->stream = stream;
2445 }
2446
2447 if (numPipes == 2) {
2448 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
2449 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
2450 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
2451 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
2452 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
2453 } else
2454 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
2455
2456 return id_src[0];
2457 }
2458
2459 return -1;
2460 }
2461
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)2462 static void mark_seamless_boot_stream(
2463 const struct dc *dc,
2464 struct dc_stream_state *stream)
2465 {
2466 struct dc_bios *dcb = dc->ctx->dc_bios;
2467
2468 if (dc->config.allow_seamless_boot_optimization &&
2469 !dcb->funcs->is_accelerated_mode(dcb)) {
2470 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2471 stream->apply_seamless_boot_optimization = true;
2472 }
2473 }
2474
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)2475 enum dc_status resource_map_pool_resources(
2476 const struct dc *dc,
2477 struct dc_state *context,
2478 struct dc_stream_state *stream)
2479 {
2480 const struct resource_pool *pool = dc->res_pool;
2481 int i;
2482 struct dc_context *dc_ctx = dc->ctx;
2483 struct pipe_ctx *pipe_ctx = NULL;
2484 int pipe_idx = -1;
2485
2486 calculate_phy_pix_clks(stream);
2487
2488 mark_seamless_boot_stream(dc, stream);
2489
2490 if (stream->apply_seamless_boot_optimization) {
2491 pipe_idx = acquire_resource_from_hw_enabled_state(
2492 &context->res_ctx,
2493 pool,
2494 stream);
2495 if (pipe_idx < 0)
2496 /* hw resource was assigned to other stream */
2497 stream->apply_seamless_boot_optimization = false;
2498 }
2499
2500 if (pipe_idx < 0)
2501 /* acquire new resources */
2502 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2503
2504 if (pipe_idx < 0)
2505 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2506
2507 if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2508 return DC_NO_CONTROLLER_RESOURCE;
2509
2510 pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2511
2512 pipe_ctx->stream_res.stream_enc =
2513 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2514 &context->res_ctx, pool, stream);
2515
2516 if (!pipe_ctx->stream_res.stream_enc)
2517 return DC_NO_STREAM_ENC_RESOURCE;
2518
2519 update_stream_engine_usage(
2520 &context->res_ctx, pool,
2521 pipe_ctx->stream_res.stream_enc,
2522 true);
2523
2524 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2525 * and link settings
2526 */
2527 if (dc_is_dp_signal(stream->signal)) {
2528 if (!decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
2529 return DC_FAIL_DP_LINK_BANDWIDTH;
2530 if (dp_get_link_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
2531 pipe_ctx->stream_res.hpo_dp_stream_enc =
2532 find_first_free_match_hpo_dp_stream_enc_for_link(
2533 &context->res_ctx, pool, stream);
2534
2535 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2536 return DC_NO_STREAM_ENC_RESOURCE;
2537
2538 update_hpo_dp_stream_engine_usage(
2539 &context->res_ctx, pool,
2540 pipe_ctx->stream_res.hpo_dp_stream_enc,
2541 true);
2542 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2543 return DC_NO_LINK_ENC_RESOURCE;
2544 }
2545 }
2546
2547 /* TODO: Add check if ASIC support and EDID audio */
2548 if (!stream->converter_disable_audio &&
2549 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2550 stream->audio_info.mode_count && stream->audio_info.flags.all) {
2551 pipe_ctx->stream_res.audio = find_first_free_audio(
2552 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2553
2554 /*
2555 * Audio assigned in order first come first get.
2556 * There are asics which has number of audio
2557 * resources less then number of pipes
2558 */
2559 if (pipe_ctx->stream_res.audio)
2560 update_audio_usage(&context->res_ctx, pool,
2561 pipe_ctx->stream_res.audio, true);
2562 }
2563
2564 /* Add ABM to the resource if on EDP */
2565 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2566 if (pool->abm)
2567 pipe_ctx->stream_res.abm = pool->abm;
2568 else
2569 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2570 }
2571
2572 for (i = 0; i < context->stream_count; i++)
2573 if (context->streams[i] == stream) {
2574 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2575 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2576 context->stream_status[i].audio_inst =
2577 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2578
2579 return DC_OK;
2580 }
2581
2582 DC_ERROR("Stream %p not found in new ctx!\n", stream);
2583 return DC_ERROR_UNEXPECTED;
2584 }
2585
2586 /**
2587 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2588 * Is a shallow copy. Increments refcounts on existing streams and planes.
2589 * @dc: copy out of dc->current_state
2590 * @dst_ctx: copy into this
2591 */
dc_resource_state_copy_construct_current(const struct dc * dc,struct dc_state * dst_ctx)2592 void dc_resource_state_copy_construct_current(
2593 const struct dc *dc,
2594 struct dc_state *dst_ctx)
2595 {
2596 dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2597 }
2598
2599
dc_resource_state_construct(const struct dc * dc,struct dc_state * dst_ctx)2600 void dc_resource_state_construct(
2601 const struct dc *dc,
2602 struct dc_state *dst_ctx)
2603 {
2604 dst_ctx->clk_mgr = dc->clk_mgr;
2605
2606 /* Initialise DIG link encoder resource tracking variables. */
2607 link_enc_cfg_init(dc, dst_ctx);
2608 }
2609
2610
dc_resource_is_dsc_encoding_supported(const struct dc * dc)2611 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2612 {
2613 if (dc->res_pool == NULL)
2614 return false;
2615
2616 return dc->res_pool->res_cap->num_dsc > 0;
2617 }
2618
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)2619 static bool planes_changed_for_existing_stream(struct dc_state *context,
2620 struct dc_stream_state *stream,
2621 const struct dc_validation_set set[],
2622 int set_count)
2623 {
2624 int i, j;
2625 struct dc_stream_status *stream_status = NULL;
2626
2627 for (i = 0; i < context->stream_count; i++) {
2628 if (context->streams[i] == stream) {
2629 stream_status = &context->stream_status[i];
2630 break;
2631 }
2632 }
2633
2634 if (!stream_status)
2635 ASSERT(0);
2636
2637 for (i = 0; i < set_count; i++)
2638 if (set[i].stream == stream)
2639 break;
2640
2641 if (i == set_count)
2642 ASSERT(0);
2643
2644 if (set[i].plane_count != stream_status->plane_count)
2645 return true;
2646
2647 for (j = 0; j < set[i].plane_count; j++)
2648 if (set[i].plane_states[j] != stream_status->plane_states[j])
2649 return true;
2650
2651 return false;
2652 }
2653
2654 /**
2655 * dc_validate_with_context - Validate and update the potential new stream in the context object
2656 *
2657 * @dc: Used to get the current state status
2658 * @set: An array of dc_validation_set with all the current streams reference
2659 * @set_count: Total of streams
2660 * @context: New context
2661 * @fast_validate: Enable or disable fast validation
2662 *
2663 * This function updates the potential new stream in the context object. It
2664 * creates multiple lists for the add, remove, and unchanged streams. In
2665 * particular, if the unchanged streams have a plane that changed, it is
2666 * necessary to remove all planes from the unchanged streams. In summary, this
2667 * function is responsible for validating the new context.
2668 *
2669 * Return:
2670 * In case of success, return DC_OK (1), otherwise, return a DC error.
2671 */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)2672 enum dc_status dc_validate_with_context(struct dc *dc,
2673 const struct dc_validation_set set[],
2674 int set_count,
2675 struct dc_state *context,
2676 bool fast_validate)
2677 {
2678 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
2679 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
2680 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
2681 int old_stream_count = context->stream_count;
2682 enum dc_status res = DC_ERROR_UNEXPECTED;
2683 int unchanged_streams_count = 0;
2684 int del_streams_count = 0;
2685 int add_streams_count = 0;
2686 bool found = false;
2687 int i, j, k;
2688
2689 DC_LOGGER_INIT(dc->ctx->logger);
2690
2691 /* First build a list of streams to be remove from current context */
2692 for (i = 0; i < old_stream_count; i++) {
2693 struct dc_stream_state *stream = context->streams[i];
2694
2695 for (j = 0; j < set_count; j++) {
2696 if (stream == set[j].stream) {
2697 found = true;
2698 break;
2699 }
2700 }
2701
2702 if (!found)
2703 del_streams[del_streams_count++] = stream;
2704
2705 found = false;
2706 }
2707
2708 /* Second, build a list of new streams */
2709 for (i = 0; i < set_count; i++) {
2710 struct dc_stream_state *stream = set[i].stream;
2711
2712 for (j = 0; j < old_stream_count; j++) {
2713 if (stream == context->streams[j]) {
2714 found = true;
2715 break;
2716 }
2717 }
2718
2719 if (!found)
2720 add_streams[add_streams_count++] = stream;
2721
2722 found = false;
2723 }
2724
2725 /* Build a list of unchanged streams which is necessary for handling
2726 * planes change such as added, removed, and updated.
2727 */
2728 for (i = 0; i < set_count; i++) {
2729 /* Check if stream is part of the delete list */
2730 for (j = 0; j < del_streams_count; j++) {
2731 if (set[i].stream == del_streams[j]) {
2732 found = true;
2733 break;
2734 }
2735 }
2736
2737 if (!found) {
2738 /* Check if stream is part of the add list */
2739 for (j = 0; j < add_streams_count; j++) {
2740 if (set[i].stream == add_streams[j]) {
2741 found = true;
2742 break;
2743 }
2744 }
2745 }
2746
2747 if (!found)
2748 unchanged_streams[unchanged_streams_count++] = set[i].stream;
2749
2750 found = false;
2751 }
2752
2753 /* Remove all planes for unchanged streams if planes changed */
2754 for (i = 0; i < unchanged_streams_count; i++) {
2755 if (planes_changed_for_existing_stream(context,
2756 unchanged_streams[i],
2757 set,
2758 set_count)) {
2759 if (!dc_rem_all_planes_for_stream(dc,
2760 unchanged_streams[i],
2761 context)) {
2762 res = DC_FAIL_DETACH_SURFACES;
2763 goto fail;
2764 }
2765 }
2766 }
2767
2768 /* Remove all planes for removed streams and then remove the streams */
2769 for (i = 0; i < del_streams_count; i++) {
2770 /* Need to cpy the dwb data from the old stream in order to efc to work */
2771 if (del_streams[i]->num_wb_info > 0) {
2772 for (j = 0; j < add_streams_count; j++) {
2773 if (del_streams[i]->sink == add_streams[j]->sink) {
2774 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
2775 for (k = 0; k < del_streams[i]->num_wb_info; k++)
2776 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
2777 }
2778 }
2779 }
2780
2781 if (!dc_rem_all_planes_for_stream(dc, del_streams[i], context)) {
2782 res = DC_FAIL_DETACH_SURFACES;
2783 goto fail;
2784 }
2785
2786 res = dc_remove_stream_from_ctx(dc, context, del_streams[i]);
2787 if (res != DC_OK)
2788 goto fail;
2789 }
2790
2791 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
2792 * matches. This may change in the future if seamless_boot_stream can be
2793 * multiple.
2794 */
2795 for (i = 0; i < add_streams_count; i++) {
2796 mark_seamless_boot_stream(dc, add_streams[i]);
2797 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
2798 struct dc_stream_state *temp = add_streams[0];
2799
2800 add_streams[0] = add_streams[i];
2801 add_streams[i] = temp;
2802 break;
2803 }
2804 }
2805
2806 /* Add new streams and then add all planes for the new stream */
2807 for (i = 0; i < add_streams_count; i++) {
2808 calculate_phy_pix_clks(add_streams[i]);
2809 res = dc_add_stream_to_ctx(dc, context, add_streams[i]);
2810 if (res != DC_OK)
2811 goto fail;
2812
2813 if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
2814 res = DC_FAIL_ATTACH_SURFACES;
2815 goto fail;
2816 }
2817 }
2818
2819 /* Add all planes for unchanged streams if planes changed */
2820 for (i = 0; i < unchanged_streams_count; i++) {
2821 if (planes_changed_for_existing_stream(context,
2822 unchanged_streams[i],
2823 set,
2824 set_count)) {
2825 if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
2826 res = DC_FAIL_ATTACH_SURFACES;
2827 goto fail;
2828 }
2829 }
2830 }
2831
2832 res = dc_validate_global_state(dc, context, fast_validate);
2833
2834 fail:
2835 if (res != DC_OK)
2836 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
2837 __func__,
2838 res);
2839
2840 return res;
2841 }
2842
2843 /**
2844 * dc_validate_global_state() - Determine if hardware can support a given state
2845 *
2846 * @dc: dc struct for this driver
2847 * @new_ctx: state to be validated
2848 * @fast_validate: set to true if only yes/no to support matters
2849 *
2850 * Checks hardware resource availability and bandwidth requirement.
2851 *
2852 * Return:
2853 * DC_OK if the result can be programmed. Otherwise, an error code.
2854 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)2855 enum dc_status dc_validate_global_state(
2856 struct dc *dc,
2857 struct dc_state *new_ctx,
2858 bool fast_validate)
2859 {
2860 enum dc_status result = DC_ERROR_UNEXPECTED;
2861 int i, j;
2862
2863 if (!new_ctx)
2864 return DC_ERROR_UNEXPECTED;
2865
2866 if (dc->res_pool->funcs->validate_global) {
2867 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2868 if (result != DC_OK)
2869 return result;
2870 }
2871
2872 for (i = 0; i < new_ctx->stream_count; i++) {
2873 struct dc_stream_state *stream = new_ctx->streams[i];
2874
2875 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2876 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2877
2878 if (pipe_ctx->stream != stream)
2879 continue;
2880
2881 if (dc->res_pool->funcs->patch_unknown_plane_state &&
2882 pipe_ctx->plane_state &&
2883 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2884 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2885 if (result != DC_OK)
2886 return result;
2887 }
2888
2889 /* Switch to dp clock source only if there is
2890 * no non dp stream that shares the same timing
2891 * with the dp stream.
2892 */
2893 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2894 !find_pll_sharable_stream(stream, new_ctx)) {
2895
2896 resource_unreference_clock_source(
2897 &new_ctx->res_ctx,
2898 dc->res_pool,
2899 pipe_ctx->clock_source);
2900
2901 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2902 resource_reference_clock_source(
2903 &new_ctx->res_ctx,
2904 dc->res_pool,
2905 pipe_ctx->clock_source);
2906 }
2907 }
2908 }
2909
2910 result = resource_build_scaling_params_for_context(dc, new_ctx);
2911
2912 if (result == DC_OK)
2913 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2914 result = DC_FAIL_BANDWIDTH_VALIDATE;
2915
2916 /*
2917 * Only update link encoder to stream assignment after bandwidth validation passed.
2918 * TODO: Split out assignment and validation.
2919 */
2920 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2921 dc->res_pool->funcs->link_encs_assign(
2922 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2923
2924 return result;
2925 }
2926
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)2927 static void patch_gamut_packet_checksum(
2928 struct dc_info_packet *gamut_packet)
2929 {
2930 /* For gamut we recalc checksum */
2931 if (gamut_packet->valid) {
2932 uint8_t chk_sum = 0;
2933 uint8_t *ptr;
2934 uint8_t i;
2935
2936 /*start of the Gamut data. */
2937 ptr = &gamut_packet->sb[3];
2938
2939 for (i = 0; i <= gamut_packet->sb[1]; i++)
2940 chk_sum += ptr[i];
2941
2942 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2943 }
2944 }
2945
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)2946 static void set_avi_info_frame(
2947 struct dc_info_packet *info_packet,
2948 struct pipe_ctx *pipe_ctx)
2949 {
2950 struct dc_stream_state *stream = pipe_ctx->stream;
2951 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2952 uint32_t pixel_encoding = 0;
2953 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2954 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2955 bool itc = false;
2956 uint8_t itc_value = 0;
2957 uint8_t cn0_cn1 = 0;
2958 unsigned int cn0_cn1_value = 0;
2959 uint8_t *check_sum = NULL;
2960 uint8_t byte_index = 0;
2961 union hdmi_info_packet hdmi_info;
2962 union display_content_support support = {0};
2963 unsigned int vic = pipe_ctx->stream->timing.vic;
2964 unsigned int rid = pipe_ctx->stream->timing.rid;
2965 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
2966 enum dc_timing_3d_format format;
2967
2968 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2969
2970 color_space = pipe_ctx->stream->output_color_space;
2971 if (color_space == COLOR_SPACE_UNKNOWN)
2972 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2973 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2974
2975 /* Initialize header */
2976 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2977 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2978 * not be used in HDMI 2.0 (Section 10.1) */
2979 hdmi_info.bits.header.version = 2;
2980 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2981
2982 /*
2983 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2984 * according to HDMI 2.0 spec (Section 10.1)
2985 */
2986
2987 switch (stream->timing.pixel_encoding) {
2988 case PIXEL_ENCODING_YCBCR422:
2989 pixel_encoding = 1;
2990 break;
2991
2992 case PIXEL_ENCODING_YCBCR444:
2993 pixel_encoding = 2;
2994 break;
2995 case PIXEL_ENCODING_YCBCR420:
2996 pixel_encoding = 3;
2997 break;
2998
2999 case PIXEL_ENCODING_RGB:
3000 default:
3001 pixel_encoding = 0;
3002 }
3003
3004 /* Y0_Y1_Y2 : The pixel encoding */
3005 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3006 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3007
3008 /* A0 = 1 Active Format Information valid */
3009 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3010
3011 /* B0, B1 = 3; Bar info data is valid */
3012 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3013
3014 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3015
3016 /* S0, S1 : Underscan / Overscan */
3017 /* TODO: un-hardcode scan type */
3018 scan_type = SCANNING_TYPE_UNDERSCAN;
3019 hdmi_info.bits.S0_S1 = scan_type;
3020
3021 /* C0, C1 : Colorimetry */
3022 if (color_space == COLOR_SPACE_YCBCR709 ||
3023 color_space == COLOR_SPACE_YCBCR709_LIMITED)
3024 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3025 else if (color_space == COLOR_SPACE_YCBCR601 ||
3026 color_space == COLOR_SPACE_YCBCR601_LIMITED)
3027 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3028 else {
3029 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
3030 }
3031 if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
3032 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
3033 color_space == COLOR_SPACE_2020_YCBCR) {
3034 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3035 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3036 } else if (color_space == COLOR_SPACE_ADOBERGB) {
3037 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3038 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3039 }
3040
3041 /* TODO: un-hardcode aspect ratio */
3042 aspect = stream->timing.aspect_ratio;
3043
3044 switch (aspect) {
3045 case ASPECT_RATIO_4_3:
3046 case ASPECT_RATIO_16_9:
3047 hdmi_info.bits.M0_M1 = aspect;
3048 break;
3049
3050 case ASPECT_RATIO_NO_DATA:
3051 case ASPECT_RATIO_64_27:
3052 case ASPECT_RATIO_256_135:
3053 default:
3054 hdmi_info.bits.M0_M1 = 0;
3055 }
3056
3057 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
3058 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
3059
3060 /* TODO: un-hardcode cn0_cn1 and itc */
3061
3062 cn0_cn1 = 0;
3063 cn0_cn1_value = 0;
3064
3065 itc = true;
3066 itc_value = 1;
3067
3068 support = stream->content_support;
3069
3070 if (itc) {
3071 if (!support.bits.valid_content_type) {
3072 cn0_cn1_value = 0;
3073 } else {
3074 if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
3075 if (support.bits.graphics_content == 1) {
3076 cn0_cn1_value = 0;
3077 }
3078 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
3079 if (support.bits.photo_content == 1) {
3080 cn0_cn1_value = 1;
3081 } else {
3082 cn0_cn1_value = 0;
3083 itc_value = 0;
3084 }
3085 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
3086 if (support.bits.cinema_content == 1) {
3087 cn0_cn1_value = 2;
3088 } else {
3089 cn0_cn1_value = 0;
3090 itc_value = 0;
3091 }
3092 } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
3093 if (support.bits.game_content == 1) {
3094 cn0_cn1_value = 3;
3095 } else {
3096 cn0_cn1_value = 0;
3097 itc_value = 0;
3098 }
3099 }
3100 }
3101 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
3102 hdmi_info.bits.ITC = itc_value;
3103 }
3104
3105 if (stream->qs_bit == 1) {
3106 if (color_space == COLOR_SPACE_SRGB ||
3107 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
3108 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
3109 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
3110 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
3111 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
3112 else
3113 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
3114 } else
3115 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
3116
3117 /* TODO : We should handle YCC quantization */
3118 /* but we do not have matrix calculation */
3119 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
3120
3121 ///VIC
3122 if (pipe_ctx->stream->timing.hdmi_vic != 0)
3123 vic = 0;
3124 format = stream->timing.timing_3d_format;
3125 /*todo, add 3DStereo support*/
3126 if (format != TIMING_3D_FORMAT_NONE) {
3127 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
3128 switch (pipe_ctx->stream->timing.hdmi_vic) {
3129 case 1:
3130 vic = 95;
3131 break;
3132 case 2:
3133 vic = 94;
3134 break;
3135 case 3:
3136 vic = 93;
3137 break;
3138 case 4:
3139 vic = 98;
3140 break;
3141 default:
3142 break;
3143 }
3144 }
3145 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
3146 hdmi_info.bits.VIC0_VIC7 = vic;
3147 if (vic >= 128)
3148 hdmi_info.bits.header.version = 3;
3149 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
3150 * the Source shall use 20 AVI InfoFrame Version 4
3151 */
3152 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
3153 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
3154 hdmi_info.bits.header.version = 4;
3155 hdmi_info.bits.header.length = 14;
3156 }
3157
3158 if (rid != 0 && fr_ind != 0) {
3159 hdmi_info.bits.header.version = 5;
3160 hdmi_info.bits.header.length = 15;
3161
3162 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
3163 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
3164 hdmi_info.bits.RID0_RID5 = rid;
3165 }
3166
3167 /* pixel repetition
3168 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
3169 * repetition start from 1 */
3170 hdmi_info.bits.PR0_PR3 = 0;
3171
3172 /* Bar Info
3173 * barTop: Line Number of End of Top Bar.
3174 * barBottom: Line Number of Start of Bottom Bar.
3175 * barLeft: Pixel Number of End of Left Bar.
3176 * barRight: Pixel Number of Start of Right Bar. */
3177 hdmi_info.bits.bar_top = stream->timing.v_border_top;
3178 hdmi_info.bits.bar_bottom = (stream->timing.v_total
3179 - stream->timing.v_border_bottom + 1);
3180 hdmi_info.bits.bar_left = stream->timing.h_border_left;
3181 hdmi_info.bits.bar_right = (stream->timing.h_total
3182 - stream->timing.h_border_right + 1);
3183
3184 /* Additional Colorimetry Extension
3185 * Used in conduction with C0-C1 and EC0-EC2
3186 * 0 = DCI-P3 RGB (D65)
3187 * 1 = DCI-P3 RGB (theater)
3188 */
3189 hdmi_info.bits.ACE0_ACE3 = 0;
3190
3191 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
3192 check_sum = &hdmi_info.packet_raw_data.sb[0];
3193
3194 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
3195
3196 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
3197 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
3198
3199 /* one byte complement */
3200 *check_sum = (uint8_t) (0x100 - *check_sum);
3201
3202 /* Store in hw_path_mode */
3203 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
3204 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
3205 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
3206
3207 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
3208 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
3209
3210 info_packet->valid = true;
3211 }
3212
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3213 static void set_vendor_info_packet(
3214 struct dc_info_packet *info_packet,
3215 struct dc_stream_state *stream)
3216 {
3217 /* SPD info packet for FreeSync */
3218
3219 /* Check if Freesync is supported. Return if false. If true,
3220 * set the corresponding bit in the info packet
3221 */
3222 if (!stream->vsp_infopacket.valid)
3223 return;
3224
3225 *info_packet = stream->vsp_infopacket;
3226 }
3227
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3228 static void set_spd_info_packet(
3229 struct dc_info_packet *info_packet,
3230 struct dc_stream_state *stream)
3231 {
3232 /* SPD info packet for FreeSync */
3233
3234 /* Check if Freesync is supported. Return if false. If true,
3235 * set the corresponding bit in the info packet
3236 */
3237 if (!stream->vrr_infopacket.valid)
3238 return;
3239
3240 *info_packet = stream->vrr_infopacket;
3241 }
3242
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3243 static void set_hdr_static_info_packet(
3244 struct dc_info_packet *info_packet,
3245 struct dc_stream_state *stream)
3246 {
3247 /* HDR Static Metadata info packet for HDR10 */
3248
3249 if (!stream->hdr_static_metadata.valid ||
3250 stream->use_dynamic_meta)
3251 return;
3252
3253 *info_packet = stream->hdr_static_metadata;
3254 }
3255
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3256 static void set_vsc_info_packet(
3257 struct dc_info_packet *info_packet,
3258 struct dc_stream_state *stream)
3259 {
3260 if (!stream->vsc_infopacket.valid)
3261 return;
3262
3263 *info_packet = stream->vsc_infopacket;
3264 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3265 static void set_hfvs_info_packet(
3266 struct dc_info_packet *info_packet,
3267 struct dc_stream_state *stream)
3268 {
3269 if (!stream->hfvsif_infopacket.valid)
3270 return;
3271
3272 *info_packet = stream->hfvsif_infopacket;
3273 }
3274
3275
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)3276 static void set_vtem_info_packet(
3277 struct dc_info_packet *info_packet,
3278 struct dc_stream_state *stream)
3279 {
3280 if (!stream->vtem_infopacket.valid)
3281 return;
3282
3283 *info_packet = stream->vtem_infopacket;
3284 }
3285
dc_resource_state_destruct(struct dc_state * context)3286 void dc_resource_state_destruct(struct dc_state *context)
3287 {
3288 int i, j;
3289
3290 for (i = 0; i < context->stream_count; i++) {
3291 for (j = 0; j < context->stream_status[i].plane_count; j++)
3292 dc_plane_state_release(
3293 context->stream_status[i].plane_states[j]);
3294
3295 context->stream_status[i].plane_count = 0;
3296 dc_stream_release(context->streams[i]);
3297 context->streams[i] = NULL;
3298 }
3299 context->stream_count = 0;
3300 }
3301
dc_resource_state_copy_construct(const struct dc_state * src_ctx,struct dc_state * dst_ctx)3302 void dc_resource_state_copy_construct(
3303 const struct dc_state *src_ctx,
3304 struct dc_state *dst_ctx)
3305 {
3306 int i, j;
3307 struct kref refcount = dst_ctx->refcount;
3308
3309 *dst_ctx = *src_ctx;
3310
3311 for (i = 0; i < MAX_PIPES; i++) {
3312 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
3313
3314 if (cur_pipe->top_pipe)
3315 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
3316
3317 if (cur_pipe->bottom_pipe)
3318 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
3319
3320 if (cur_pipe->next_odm_pipe)
3321 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
3322
3323 if (cur_pipe->prev_odm_pipe)
3324 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
3325 }
3326
3327 for (i = 0; i < dst_ctx->stream_count; i++) {
3328 dc_stream_retain(dst_ctx->streams[i]);
3329 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
3330 dc_plane_state_retain(
3331 dst_ctx->stream_status[i].plane_states[j]);
3332 }
3333
3334 /* context refcount should not be overridden */
3335 dst_ctx->refcount = refcount;
3336
3337 }
3338
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)3339 struct clock_source *dc_resource_find_first_free_pll(
3340 struct resource_context *res_ctx,
3341 const struct resource_pool *pool)
3342 {
3343 int i;
3344
3345 for (i = 0; i < pool->clk_src_count; ++i) {
3346 if (res_ctx->clock_source_ref_count[i] == 0)
3347 return pool->clock_sources[i];
3348 }
3349
3350 return NULL;
3351 }
3352
resource_build_info_frame(struct pipe_ctx * pipe_ctx)3353 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
3354 {
3355 enum signal_type signal = SIGNAL_TYPE_NONE;
3356 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
3357
3358 /* default all packets to invalid */
3359 info->avi.valid = false;
3360 info->gamut.valid = false;
3361 info->vendor.valid = false;
3362 info->spd.valid = false;
3363 info->hdrsmd.valid = false;
3364 info->vsc.valid = false;
3365 info->hfvsif.valid = false;
3366 info->vtem.valid = false;
3367 signal = pipe_ctx->stream->signal;
3368
3369 /* HDMi and DP have different info packets*/
3370 if (dc_is_hdmi_signal(signal)) {
3371 set_avi_info_frame(&info->avi, pipe_ctx);
3372
3373 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
3374 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
3375 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
3376
3377 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3378
3379 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3380
3381 } else if (dc_is_dp_signal(signal)) {
3382 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
3383
3384 set_spd_info_packet(&info->spd, pipe_ctx->stream);
3385
3386 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
3387 }
3388
3389 patch_gamut_packet_checksum(&info->gamut);
3390 }
3391
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3392 enum dc_status resource_map_clock_resources(
3393 const struct dc *dc,
3394 struct dc_state *context,
3395 struct dc_stream_state *stream)
3396 {
3397 /* acquire new resources */
3398 const struct resource_pool *pool = dc->res_pool;
3399 struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
3400 &context->res_ctx, stream);
3401
3402 if (!pipe_ctx)
3403 return DC_ERROR_UNEXPECTED;
3404
3405 if (dc_is_dp_signal(pipe_ctx->stream->signal)
3406 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
3407 pipe_ctx->clock_source = pool->dp_clock_source;
3408 else {
3409 pipe_ctx->clock_source = NULL;
3410
3411 if (!dc->config.disable_disp_pll_sharing)
3412 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
3413 &context->res_ctx,
3414 pipe_ctx);
3415
3416 if (pipe_ctx->clock_source == NULL)
3417 pipe_ctx->clock_source =
3418 dc_resource_find_first_free_pll(
3419 &context->res_ctx,
3420 pool);
3421 }
3422
3423 if (pipe_ctx->clock_source == NULL)
3424 return DC_NO_CLOCK_SOURCE_RESOURCE;
3425
3426 resource_reference_clock_source(
3427 &context->res_ctx, pool,
3428 pipe_ctx->clock_source);
3429
3430 return DC_OK;
3431 }
3432
3433 /*
3434 * Note: We need to disable output if clock sources change,
3435 * since bios does optimization and doesn't apply if changing
3436 * PHY when not already disabled.
3437 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)3438 bool pipe_need_reprogram(
3439 struct pipe_ctx *pipe_ctx_old,
3440 struct pipe_ctx *pipe_ctx)
3441 {
3442 if (!pipe_ctx_old->stream)
3443 return false;
3444
3445 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
3446 return true;
3447
3448 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
3449 return true;
3450
3451 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
3452 return true;
3453
3454 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
3455 && pipe_ctx_old->stream != pipe_ctx->stream)
3456 return true;
3457
3458 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
3459 return true;
3460
3461 if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
3462 return true;
3463
3464 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
3465 return true;
3466
3467 if (false == pipe_ctx_old->stream->link->link_state_valid &&
3468 false == pipe_ctx_old->stream->dpms_off)
3469 return true;
3470
3471 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
3472 return true;
3473
3474 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
3475 return true;
3476 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
3477 return true;
3478
3479 /* DIG link encoder resource assignment for stream changed. */
3480 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
3481 bool need_reprogram = false;
3482 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
3483 struct link_encoder *link_enc_prev =
3484 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
3485
3486 if (link_enc_prev != pipe_ctx->stream->link_enc)
3487 need_reprogram = true;
3488
3489 return need_reprogram;
3490 }
3491
3492 return false;
3493 }
3494
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)3495 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
3496 struct bit_depth_reduction_params *fmt_bit_depth)
3497 {
3498 enum dc_dither_option option = stream->dither_option;
3499 enum dc_pixel_encoding pixel_encoding =
3500 stream->timing.pixel_encoding;
3501
3502 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
3503
3504 if (option == DITHER_OPTION_DEFAULT) {
3505 switch (stream->timing.display_color_depth) {
3506 case COLOR_DEPTH_666:
3507 option = DITHER_OPTION_SPATIAL6;
3508 break;
3509 case COLOR_DEPTH_888:
3510 option = DITHER_OPTION_SPATIAL8;
3511 break;
3512 case COLOR_DEPTH_101010:
3513 option = DITHER_OPTION_SPATIAL10;
3514 break;
3515 default:
3516 option = DITHER_OPTION_DISABLE;
3517 }
3518 }
3519
3520 if (option == DITHER_OPTION_DISABLE)
3521 return;
3522
3523 if (option == DITHER_OPTION_TRUN6) {
3524 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3525 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
3526 } else if (option == DITHER_OPTION_TRUN8 ||
3527 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
3528 option == DITHER_OPTION_TRUN8_FM6) {
3529 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3530 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
3531 } else if (option == DITHER_OPTION_TRUN10 ||
3532 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3533 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3534 option == DITHER_OPTION_TRUN10_FM8 ||
3535 option == DITHER_OPTION_TRUN10_FM6 ||
3536 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3537 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3538 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3539 }
3540
3541 /* special case - Formatter can only reduce by 4 bits at most.
3542 * When reducing from 12 to 6 bits,
3543 * HW recommends we use trunc with round mode
3544 * (if we did nothing, trunc to 10 bits would be used)
3545 * note that any 12->10 bit reduction is ignored prior to DCE8,
3546 * as the input was 10 bits.
3547 */
3548 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3549 option == DITHER_OPTION_SPATIAL6 ||
3550 option == DITHER_OPTION_FM6) {
3551 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3552 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3553 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3554 }
3555
3556 /* spatial dither
3557 * note that spatial modes 1-3 are never used
3558 */
3559 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3560 option == DITHER_OPTION_SPATIAL6 ||
3561 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
3562 option == DITHER_OPTION_TRUN8_SPATIAL6) {
3563 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3564 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3565 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3566 fmt_bit_depth->flags.RGB_RANDOM =
3567 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3568 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
3569 option == DITHER_OPTION_SPATIAL8 ||
3570 option == DITHER_OPTION_SPATIAL8_FM6 ||
3571 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
3572 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3573 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3574 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3575 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3576 fmt_bit_depth->flags.RGB_RANDOM =
3577 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3578 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3579 option == DITHER_OPTION_SPATIAL10 ||
3580 option == DITHER_OPTION_SPATIAL10_FM8 ||
3581 option == DITHER_OPTION_SPATIAL10_FM6) {
3582 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3583 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3584 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3585 fmt_bit_depth->flags.RGB_RANDOM =
3586 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3587 }
3588
3589 if (option == DITHER_OPTION_SPATIAL6 ||
3590 option == DITHER_OPTION_SPATIAL8 ||
3591 option == DITHER_OPTION_SPATIAL10) {
3592 fmt_bit_depth->flags.FRAME_RANDOM = 0;
3593 } else {
3594 fmt_bit_depth->flags.FRAME_RANDOM = 1;
3595 }
3596
3597 //////////////////////
3598 //// temporal dither
3599 //////////////////////
3600 if (option == DITHER_OPTION_FM6 ||
3601 option == DITHER_OPTION_SPATIAL8_FM6 ||
3602 option == DITHER_OPTION_SPATIAL10_FM6 ||
3603 option == DITHER_OPTION_TRUN10_FM6 ||
3604 option == DITHER_OPTION_TRUN8_FM6 ||
3605 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3606 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3607 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3608 } else if (option == DITHER_OPTION_FM8 ||
3609 option == DITHER_OPTION_SPATIAL10_FM8 ||
3610 option == DITHER_OPTION_TRUN10_FM8) {
3611 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3612 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3613 } else if (option == DITHER_OPTION_FM10) {
3614 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3615 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3616 }
3617
3618 fmt_bit_depth->pixel_encoding = pixel_encoding;
3619 }
3620
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)3621 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3622 {
3623 struct dc_link *link = stream->link;
3624 struct timing_generator *tg = dc->res_pool->timing_generators[0];
3625 enum dc_status res = DC_OK;
3626
3627 calculate_phy_pix_clks(stream);
3628
3629 if (!tg->funcs->validate_timing(tg, &stream->timing))
3630 res = DC_FAIL_CONTROLLER_VALIDATE;
3631
3632 if (res == DC_OK) {
3633 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3634 !link->link_enc->funcs->validate_output_with_stream(
3635 link->link_enc, stream))
3636 res = DC_FAIL_ENC_VALIDATE;
3637 }
3638
3639 /* TODO: validate audio ASIC caps, encoder */
3640
3641 if (res == DC_OK)
3642 res = dc_link_validate_mode_timing(stream,
3643 link,
3644 &stream->timing);
3645
3646 return res;
3647 }
3648
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)3649 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3650 {
3651 enum dc_status res = DC_OK;
3652
3653 /* check if surface has invalid dimensions */
3654 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3655 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3656 return DC_FAIL_SURFACE_VALIDATE;
3657
3658 /* TODO For now validates pixel format only */
3659 if (dc->res_pool->funcs->validate_plane)
3660 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3661
3662 return res;
3663 }
3664
resource_pixel_format_to_bpp(enum surface_pixel_format format)3665 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3666 {
3667 switch (format) {
3668 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3669 return 8;
3670 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3671 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3672 return 12;
3673 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3674 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3675 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3676 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3677 return 16;
3678 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3679 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3680 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3681 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3682 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3683 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3684 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3685 return 32;
3686 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3687 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3688 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3689 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3690 return 64;
3691 default:
3692 ASSERT_CRITICAL(false);
3693 return -1;
3694 }
3695 }
get_max_audio_sample_rate(struct audio_mode * modes)3696 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3697 {
3698 if (modes) {
3699 if (modes->sample_rates.rate.RATE_192)
3700 return 192000;
3701 if (modes->sample_rates.rate.RATE_176_4)
3702 return 176400;
3703 if (modes->sample_rates.rate.RATE_96)
3704 return 96000;
3705 if (modes->sample_rates.rate.RATE_88_2)
3706 return 88200;
3707 if (modes->sample_rates.rate.RATE_48)
3708 return 48000;
3709 if (modes->sample_rates.rate.RATE_44_1)
3710 return 44100;
3711 if (modes->sample_rates.rate.RATE_32)
3712 return 32000;
3713 }
3714 /*original logic when no audio info*/
3715 return 441000;
3716 }
3717
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)3718 void get_audio_check(struct audio_info *aud_modes,
3719 struct audio_check *audio_chk)
3720 {
3721 unsigned int i;
3722 unsigned int max_sample_rate = 0;
3723
3724 if (aud_modes) {
3725 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3726
3727 audio_chk->max_audiosample_rate = 0;
3728 for (i = 0; i < aud_modes->mode_count; i++) {
3729 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3730 if (audio_chk->max_audiosample_rate < max_sample_rate)
3731 audio_chk->max_audiosample_rate = max_sample_rate;
3732 /*dts takes the same as type 2: AP = 0.25*/
3733 }
3734 /*check which one take more bandwidth*/
3735 if (audio_chk->max_audiosample_rate > 192000)
3736 audio_chk->audio_packet_type = 0x9;/*AP =1*/
3737 audio_chk->acat = 0;/*not support*/
3738 }
3739 }
3740
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)3741 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3742 const struct resource_context *res_ctx,
3743 const struct resource_pool *const pool,
3744 const struct dc_link *link)
3745 {
3746 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3747 int enc_index;
3748
3749 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3750
3751 if (enc_index < 0)
3752 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3753
3754 if (enc_index >= 0)
3755 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3756
3757 return hpo_dp_link_enc;
3758 }
3759
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)3760 bool get_temp_dp_link_res(struct dc_link *link,
3761 struct link_resource *link_res,
3762 struct dc_link_settings *link_settings)
3763 {
3764 const struct dc *dc = link->dc;
3765 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3766
3767 memset(link_res, 0, sizeof(*link_res));
3768
3769 if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3770 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3771 dc->res_pool, link);
3772 if (!link_res->hpo_dp_link_enc)
3773 return false;
3774 }
3775 return true;
3776 }
3777
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)3778 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3779 struct dc_state *context)
3780 {
3781 int i, j;
3782 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3783
3784 /* If pipe backend is reset, need to reset pipe syncd status */
3785 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3786 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
3787 pipe_ctx = &context->res_ctx.pipe_ctx[i];
3788
3789 if (!pipe_ctx_old->stream)
3790 continue;
3791
3792 if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3793 continue;
3794
3795 if (!pipe_ctx->stream ||
3796 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3797
3798 /* Reset all the syncd pipes from the disabled pipe */
3799 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3800 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3801 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3802 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3803 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3804 }
3805 }
3806 }
3807 }
3808
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)3809 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3810 struct dc_state *context,
3811 uint8_t disabled_master_pipe_idx)
3812 {
3813 int i;
3814 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3815
3816 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3817 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3818 !IS_PIPE_SYNCD_VALID(pipe_ctx))
3819 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3820
3821 /* for the pipe disabled, check if any slave pipe exists and assert */
3822 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3823 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3824
3825 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3826 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx))
3827 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3828 i, disabled_master_pipe_idx);
3829 }
3830 }
3831
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)3832 void reset_sync_context_for_pipe(const struct dc *dc,
3833 struct dc_state *context,
3834 uint8_t pipe_idx)
3835 {
3836 int i;
3837 struct pipe_ctx *pipe_ctx_reset;
3838
3839 /* reset the otg sync context for the pipe and its slave pipes if any */
3840 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3841 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
3842
3843 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
3844 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
3845 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
3846 }
3847 }
3848
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)3849 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3850 {
3851 /* TODO - get transmitter to phy idx mapping from DMUB */
3852 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3853
3854 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3855 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3856 switch (transmitter) {
3857 case TRANSMITTER_UNIPHY_A:
3858 phy_idx = 0;
3859 break;
3860 case TRANSMITTER_UNIPHY_B:
3861 phy_idx = 1;
3862 break;
3863 case TRANSMITTER_UNIPHY_C:
3864 phy_idx = 5;
3865 break;
3866 case TRANSMITTER_UNIPHY_D:
3867 phy_idx = 6;
3868 break;
3869 case TRANSMITTER_UNIPHY_E:
3870 phy_idx = 4;
3871 break;
3872 default:
3873 phy_idx = 0;
3874 break;
3875 }
3876 }
3877
3878 return phy_idx;
3879 }
3880
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)3881 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3882 const struct link_resource *link_res)
3883 {
3884 /* Link_hwss is only accessible by getter function instead of accessing
3885 * by pointers in dc with the intent to protect against breaking polymorphism.
3886 */
3887 if (can_use_hpo_dp_link_hwss(link, link_res))
3888 /* TODO: some assumes that if decided link settings is 128b/132b
3889 * channel coding format hpo_dp_link_enc should be used.
3890 * Others believe that if hpo_dp_link_enc is available in link
3891 * resource then hpo_dp_link_enc must be used. This bound between
3892 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3893 * with a premise that both hpo_dp_link_enc pointer and decided link
3894 * settings are determined based on single policy function like
3895 * "decide_link_settings" from upper layer. This "convention"
3896 * cannot be maintained and enforced at current level.
3897 * Therefore a refactor is due so we can enforce a strong bound
3898 * between those two parameters at this level.
3899 *
3900 * To put it simple, we want to make enforcement at low level so that
3901 * we will not return link hwss if caller plans to do 8b/10b
3902 * with an hpo encoder. Or we can return a very dummy one that doesn't
3903 * do work for all functions
3904 */
3905 return get_hpo_dp_link_hwss();
3906 else if (can_use_dpia_link_hwss(link, link_res))
3907 return get_dpia_link_hwss();
3908 else if (can_use_dio_link_hwss(link, link_res))
3909 return get_dio_link_hwss();
3910 else
3911 return get_virtual_link_hwss();
3912 }
3913
is_h_timing_divisible_by_2(struct dc_stream_state * stream)3914 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
3915 {
3916 bool divisible = false;
3917 uint16_t h_blank_start = 0;
3918 uint16_t h_blank_end = 0;
3919
3920 if (stream) {
3921 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
3922 h_blank_end = h_blank_start - stream->timing.h_addressable;
3923
3924 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
3925 * divisible by 2 in order for the horizontal timing params
3926 * to be considered divisible by 2. Hsync start is always 0.
3927 */
3928 divisible = (stream->timing.h_total % 2 == 0) &&
3929 (h_blank_start % 2 == 0) &&
3930 (h_blank_end % 2 == 0) &&
3931 (stream->timing.h_sync_width % 2 == 0);
3932 }
3933 return divisible;
3934 }
3935
dc_resource_acquire_secondary_pipe_for_mpc_odm(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)3936 bool dc_resource_acquire_secondary_pipe_for_mpc_odm(
3937 const struct dc *dc,
3938 struct dc_state *state,
3939 struct pipe_ctx *pri_pipe,
3940 struct pipe_ctx *sec_pipe,
3941 bool odm)
3942 {
3943 int pipe_idx = sec_pipe->pipe_idx;
3944 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
3945 const struct resource_pool *pool = dc->res_pool;
3946
3947 sec_top = sec_pipe->top_pipe;
3948 sec_bottom = sec_pipe->bottom_pipe;
3949 sec_next = sec_pipe->next_odm_pipe;
3950 sec_prev = sec_pipe->prev_odm_pipe;
3951
3952 *sec_pipe = *pri_pipe;
3953
3954 sec_pipe->top_pipe = sec_top;
3955 sec_pipe->bottom_pipe = sec_bottom;
3956 sec_pipe->next_odm_pipe = sec_next;
3957 sec_pipe->prev_odm_pipe = sec_prev;
3958
3959 sec_pipe->pipe_idx = pipe_idx;
3960 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
3961 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
3962 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
3963 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
3964 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
3965 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3966 sec_pipe->stream_res.dsc = NULL;
3967 if (odm) {
3968 if (!sec_pipe->top_pipe)
3969 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
3970 else
3971 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
3972 if (sec_pipe->stream->timing.flags.DSC == 1) {
3973 #if defined(CONFIG_DRM_AMD_DC_DCN)
3974 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
3975 #endif
3976 ASSERT(sec_pipe->stream_res.dsc);
3977 if (sec_pipe->stream_res.dsc == NULL)
3978 return false;
3979 }
3980 #if defined(CONFIG_DRM_AMD_DC_DCN)
3981 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
3982 #endif
3983 }
3984
3985 return true;
3986 }
3987