1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4
5 #include <linux/clk.h>
6 #include <linux/completion.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/err.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/slab.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/property.h>
25
26 #include <linux/dma/imx-dma.h>
27
28 #define DRIVER_NAME "spi_imx"
29
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 "time in us to run a transfer in polling mode\n");
39
40 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */
41
42 #define MXC_CSPIRXDATA 0x00
43 #define MXC_CSPITXDATA 0x04
44 #define MXC_CSPICTRL 0x08
45 #define MXC_CSPIINT 0x0c
46 #define MXC_RESET 0x1c
47
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
52
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST 512
56 /* The maximum bytes that IMX53_ECSPI can transfer in slave mode.*/
57 #define MX53_MAX_TRANSFER_BYTES 512
58
59 enum spi_imx_devtype {
60 IMX1_CSPI,
61 IMX21_CSPI,
62 IMX27_CSPI,
63 IMX31_CSPI,
64 IMX35_CSPI, /* CSPI on all i.mx except above */
65 IMX51_ECSPI, /* ECSPI on i.mx51 */
66 IMX53_ECSPI, /* ECSPI on i.mx53 and later */
67 };
68
69 struct spi_imx_data;
70
71 struct spi_imx_devtype_data {
72 void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 void (*trigger)(struct spi_imx_data *spi_imx);
76 int (*rx_available)(struct spi_imx_data *spi_imx);
77 void (*reset)(struct spi_imx_data *spi_imx);
78 void (*setup_wml)(struct spi_imx_data *spi_imx);
79 void (*disable)(struct spi_imx_data *spi_imx);
80 void (*disable_dma)(struct spi_imx_data *spi_imx);
81 bool has_dmamode;
82 bool has_slavemode;
83 unsigned int fifo_size;
84 bool dynamic_burst;
85 /*
86 * ERR009165 fixed or not:
87 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
88 */
89 bool tx_glitch_fixed;
90 enum spi_imx_devtype devtype;
91 };
92
93 struct spi_imx_data {
94 struct spi_controller *controller;
95 struct device *dev;
96
97 struct completion xfer_done;
98 void __iomem *base;
99 unsigned long base_phys;
100
101 struct clk *clk_per;
102 struct clk *clk_ipg;
103 unsigned long spi_clk;
104 unsigned int spi_bus_clk;
105
106 unsigned int bits_per_word;
107 unsigned int spi_drctl;
108
109 unsigned int count, remainder;
110 void (*tx)(struct spi_imx_data *spi_imx);
111 void (*rx)(struct spi_imx_data *spi_imx);
112 void *rx_buf;
113 const void *tx_buf;
114 unsigned int txfifo; /* number of words pushed in tx FIFO */
115 unsigned int dynamic_burst;
116 bool rx_only;
117
118 /* Slave mode */
119 bool slave_mode;
120 bool slave_aborted;
121 unsigned int slave_burst;
122
123 /* DMA */
124 bool usedma;
125 u32 wml;
126 struct completion dma_rx_completion;
127 struct completion dma_tx_completion;
128
129 const struct spi_imx_devtype_data *devtype_data;
130 };
131
is_imx27_cspi(struct spi_imx_data * d)132 static inline int is_imx27_cspi(struct spi_imx_data *d)
133 {
134 return d->devtype_data->devtype == IMX27_CSPI;
135 }
136
is_imx35_cspi(struct spi_imx_data * d)137 static inline int is_imx35_cspi(struct spi_imx_data *d)
138 {
139 return d->devtype_data->devtype == IMX35_CSPI;
140 }
141
is_imx51_ecspi(struct spi_imx_data * d)142 static inline int is_imx51_ecspi(struct spi_imx_data *d)
143 {
144 return d->devtype_data->devtype == IMX51_ECSPI;
145 }
146
is_imx53_ecspi(struct spi_imx_data * d)147 static inline int is_imx53_ecspi(struct spi_imx_data *d)
148 {
149 return d->devtype_data->devtype == IMX53_ECSPI;
150 }
151
152 #define MXC_SPI_BUF_RX(type) \
153 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
154 { \
155 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
156 \
157 if (spi_imx->rx_buf) { \
158 *(type *)spi_imx->rx_buf = val; \
159 spi_imx->rx_buf += sizeof(type); \
160 } \
161 \
162 spi_imx->remainder -= sizeof(type); \
163 }
164
165 #define MXC_SPI_BUF_TX(type) \
166 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
167 { \
168 type val = 0; \
169 \
170 if (spi_imx->tx_buf) { \
171 val = *(type *)spi_imx->tx_buf; \
172 spi_imx->tx_buf += sizeof(type); \
173 } \
174 \
175 spi_imx->count -= sizeof(type); \
176 \
177 writel(val, spi_imx->base + MXC_CSPITXDATA); \
178 }
179
180 MXC_SPI_BUF_RX(u8)
181 MXC_SPI_BUF_TX(u8)
182 MXC_SPI_BUF_RX(u16)
183 MXC_SPI_BUF_TX(u16)
184 MXC_SPI_BUF_RX(u32)
185 MXC_SPI_BUF_TX(u32)
186
187 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
188 * (which is currently not the case in this driver)
189 */
190 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
191 256, 384, 512, 768, 1024};
192
193 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)194 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
195 unsigned int fspi, unsigned int max, unsigned int *fres)
196 {
197 int i;
198
199 for (i = 2; i < max; i++)
200 if (fspi * mxc_clkdivs[i] >= fin)
201 break;
202
203 *fres = fin / mxc_clkdivs[i];
204 return i;
205 }
206
207 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)208 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
209 unsigned int fspi, unsigned int *fres)
210 {
211 int i, div = 4;
212
213 for (i = 0; i < 7; i++) {
214 if (fspi * div >= fin)
215 goto out;
216 div <<= 1;
217 }
218
219 out:
220 *fres = fin / div;
221 return i;
222 }
223
spi_imx_bytes_per_word(const int bits_per_word)224 static int spi_imx_bytes_per_word(const int bits_per_word)
225 {
226 if (bits_per_word <= 8)
227 return 1;
228 else if (bits_per_word <= 16)
229 return 2;
230 else
231 return 4;
232 }
233
spi_imx_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)234 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
235 struct spi_transfer *transfer)
236 {
237 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
238
239 if (!use_dma || controller->fallback)
240 return false;
241
242 if (!controller->dma_rx)
243 return false;
244
245 if (spi_imx->slave_mode)
246 return false;
247
248 if (transfer->len < spi_imx->devtype_data->fifo_size)
249 return false;
250
251 spi_imx->dynamic_burst = 0;
252
253 return true;
254 }
255
256 /*
257 * Note the number of natively supported chip selects for MX51 is 4. Some
258 * devices may have less actual SS pins but the register map supports 4. When
259 * using gpio chip selects the cs values passed into the macros below can go
260 * outside the range 0 - 3. We therefore need to limit the cs value to avoid
261 * corrupting bits outside the allocated locations.
262 *
263 * The simplest way to do this is to just mask the cs bits to 2 bits. This
264 * still allows all 4 native chip selects to work as well as gpio chip selects
265 * (which can use any of the 4 chip select configurations).
266 */
267
268 #define MX51_ECSPI_CTRL 0x08
269 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
270 #define MX51_ECSPI_CTRL_XCH (1 << 2)
271 #define MX51_ECSPI_CTRL_SMC (1 << 3)
272 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
273 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
274 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
275 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
276 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18)
277 #define MX51_ECSPI_CTRL_BL_OFFSET 20
278 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
279
280 #define MX51_ECSPI_CONFIG 0x0c
281 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0))
282 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4))
283 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8))
284 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12))
285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20))
286
287 #define MX51_ECSPI_INT 0x10
288 #define MX51_ECSPI_INT_TEEN (1 << 0)
289 #define MX51_ECSPI_INT_RREN (1 << 3)
290 #define MX51_ECSPI_INT_RDREN (1 << 4)
291
292 #define MX51_ECSPI_DMA 0x14
293 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
294 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
295 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
296
297 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
298 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
299 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
300
301 #define MX51_ECSPI_STAT 0x18
302 #define MX51_ECSPI_STAT_RR (1 << 3)
303
304 #define MX51_ECSPI_TESTREG 0x20
305 #define MX51_ECSPI_TESTREG_LBC BIT(31)
306
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
308 {
309 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
310
311 if (spi_imx->rx_buf) {
312 #ifdef __LITTLE_ENDIAN
313 unsigned int bytes_per_word;
314
315 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
316 if (bytes_per_word == 1)
317 swab32s(&val);
318 else if (bytes_per_word == 2)
319 swahw32s(&val);
320 #endif
321 *(u32 *)spi_imx->rx_buf = val;
322 spi_imx->rx_buf += sizeof(u32);
323 }
324
325 spi_imx->remainder -= sizeof(u32);
326 }
327
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
329 {
330 int unaligned;
331 u32 val;
332
333 unaligned = spi_imx->remainder % 4;
334
335 if (!unaligned) {
336 spi_imx_buf_rx_swap_u32(spi_imx);
337 return;
338 }
339
340 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
341 spi_imx_buf_rx_u16(spi_imx);
342 return;
343 }
344
345 val = readl(spi_imx->base + MXC_CSPIRXDATA);
346
347 while (unaligned--) {
348 if (spi_imx->rx_buf) {
349 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
350 spi_imx->rx_buf++;
351 }
352 spi_imx->remainder--;
353 }
354 }
355
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
357 {
358 u32 val = 0;
359 #ifdef __LITTLE_ENDIAN
360 unsigned int bytes_per_word;
361 #endif
362
363 if (spi_imx->tx_buf) {
364 val = *(u32 *)spi_imx->tx_buf;
365 spi_imx->tx_buf += sizeof(u32);
366 }
367
368 spi_imx->count -= sizeof(u32);
369 #ifdef __LITTLE_ENDIAN
370 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
371
372 if (bytes_per_word == 1)
373 swab32s(&val);
374 else if (bytes_per_word == 2)
375 swahw32s(&val);
376 #endif
377 writel(val, spi_imx->base + MXC_CSPITXDATA);
378 }
379
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
381 {
382 int unaligned;
383 u32 val = 0;
384
385 unaligned = spi_imx->count % 4;
386
387 if (!unaligned) {
388 spi_imx_buf_tx_swap_u32(spi_imx);
389 return;
390 }
391
392 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
393 spi_imx_buf_tx_u16(spi_imx);
394 return;
395 }
396
397 while (unaligned--) {
398 if (spi_imx->tx_buf) {
399 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
400 spi_imx->tx_buf++;
401 }
402 spi_imx->count--;
403 }
404
405 writel(val, spi_imx->base + MXC_CSPITXDATA);
406 }
407
mx53_ecspi_rx_slave(struct spi_imx_data * spi_imx)408 static void mx53_ecspi_rx_slave(struct spi_imx_data *spi_imx)
409 {
410 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
411
412 if (spi_imx->rx_buf) {
413 int n_bytes = spi_imx->slave_burst % sizeof(val);
414
415 if (!n_bytes)
416 n_bytes = sizeof(val);
417
418 memcpy(spi_imx->rx_buf,
419 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
420
421 spi_imx->rx_buf += n_bytes;
422 spi_imx->slave_burst -= n_bytes;
423 }
424
425 spi_imx->remainder -= sizeof(u32);
426 }
427
mx53_ecspi_tx_slave(struct spi_imx_data * spi_imx)428 static void mx53_ecspi_tx_slave(struct spi_imx_data *spi_imx)
429 {
430 u32 val = 0;
431 int n_bytes = spi_imx->count % sizeof(val);
432
433 if (!n_bytes)
434 n_bytes = sizeof(val);
435
436 if (spi_imx->tx_buf) {
437 memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
438 spi_imx->tx_buf, n_bytes);
439 val = cpu_to_be32(val);
440 spi_imx->tx_buf += n_bytes;
441 }
442
443 spi_imx->count -= n_bytes;
444
445 writel(val, spi_imx->base + MXC_CSPITXDATA);
446 }
447
448 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
450 unsigned int fspi, unsigned int *fres)
451 {
452 /*
453 * there are two 4-bit dividers, the pre-divider divides by
454 * $pre, the post-divider by 2^$post
455 */
456 unsigned int pre, post;
457 unsigned int fin = spi_imx->spi_clk;
458
459 fspi = min(fspi, fin);
460
461 post = fls(fin) - fls(fspi);
462 if (fin > fspi << post)
463 post++;
464
465 /* now we have: (fin <= fspi << post) with post being minimal */
466
467 post = max(4U, post) - 4;
468 if (unlikely(post > 0xf)) {
469 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
470 fspi, fin);
471 return 0xff;
472 }
473
474 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
475
476 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
477 __func__, fin, fspi, post, pre);
478
479 /* Resulting frequency for the SCLK line. */
480 *fres = (fin / (pre + 1)) >> post;
481
482 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
483 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
484 }
485
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
487 {
488 unsigned int val = 0;
489
490 if (enable & MXC_INT_TE)
491 val |= MX51_ECSPI_INT_TEEN;
492
493 if (enable & MXC_INT_RR)
494 val |= MX51_ECSPI_INT_RREN;
495
496 if (enable & MXC_INT_RDR)
497 val |= MX51_ECSPI_INT_RDREN;
498
499 writel(val, spi_imx->base + MX51_ECSPI_INT);
500 }
501
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
503 {
504 u32 reg;
505
506 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
507 reg |= MX51_ECSPI_CTRL_XCH;
508 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
509 }
510
mx51_disable_dma(struct spi_imx_data * spi_imx)511 static void mx51_disable_dma(struct spi_imx_data *spi_imx)
512 {
513 writel(0, spi_imx->base + MX51_ECSPI_DMA);
514 }
515
mx51_ecspi_disable(struct spi_imx_data * spi_imx)516 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
517 {
518 u32 ctrl;
519
520 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
521 ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
522 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
523 }
524
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)525 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
526 struct spi_message *msg)
527 {
528 struct spi_device *spi = msg->spi;
529 struct spi_transfer *xfer;
530 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
531 u32 min_speed_hz = ~0U;
532 u32 testreg, delay;
533 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
534 u32 current_cfg = cfg;
535
536 /* set Master or Slave mode */
537 if (spi_imx->slave_mode)
538 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
539 else
540 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
541
542 /*
543 * Enable SPI_RDY handling (falling edge/level triggered).
544 */
545 if (spi->mode & SPI_READY)
546 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
547
548 /* set chip select to use */
549 ctrl |= MX51_ECSPI_CTRL_CS(spi->chip_select);
550
551 /*
552 * The ctrl register must be written first, with the EN bit set other
553 * registers must not be written to.
554 */
555 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
556
557 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
558 if (spi->mode & SPI_LOOP)
559 testreg |= MX51_ECSPI_TESTREG_LBC;
560 else
561 testreg &= ~MX51_ECSPI_TESTREG_LBC;
562 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
563
564 /*
565 * eCSPI burst completion by Chip Select signal in Slave mode
566 * is not functional for imx53 Soc, config SPI burst completed when
567 * BURST_LENGTH + 1 bits are received
568 */
569 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
570 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
571 else
572 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(spi->chip_select);
573
574 if (spi->mode & SPI_CPOL) {
575 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
576 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
577 } else {
578 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(spi->chip_select);
579 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(spi->chip_select);
580 }
581
582 if (spi->mode & SPI_CS_HIGH)
583 cfg |= MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
584 else
585 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(spi->chip_select);
586
587 if (cfg == current_cfg)
588 return 0;
589
590 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
591
592 /*
593 * Wait until the changes in the configuration register CONFIGREG
594 * propagate into the hardware. It takes exactly one tick of the
595 * SCLK clock, but we will wait two SCLK clock just to be sure. The
596 * effect of the delay it takes for the hardware to apply changes
597 * is noticable if the SCLK clock run very slow. In such a case, if
598 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
599 * be asserted before the SCLK polarity changes, which would disrupt
600 * the SPI communication as the device on the other end would consider
601 * the change of SCLK polarity as a clock tick already.
602 *
603 * Because spi_imx->spi_bus_clk is only set in prepare_message
604 * callback, iterate over all the transfers in spi_message, find the
605 * one with lowest bus frequency, and use that bus frequency for the
606 * delay calculation. In case all transfers have speed_hz == 0, then
607 * min_speed_hz is ~0 and the resulting delay is zero.
608 */
609 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
610 if (!xfer->speed_hz)
611 continue;
612 min_speed_hz = min(xfer->speed_hz, min_speed_hz);
613 }
614
615 delay = (2 * 1000000) / min_speed_hz;
616 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
617 udelay(delay);
618 else /* SCLK is _very_ slow */
619 usleep_range(delay, delay + 10);
620
621 return 0;
622 }
623
mx51_configure_cpha(struct spi_imx_data * spi_imx,struct spi_device * spi)624 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
625 struct spi_device *spi)
626 {
627 bool cpha = (spi->mode & SPI_CPHA);
628 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
629 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
630
631 /* Flip cpha logical value iff flip_cpha */
632 cpha ^= flip_cpha;
633
634 if (cpha)
635 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
636 else
637 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(spi->chip_select);
638
639 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
640 }
641
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)642 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
643 struct spi_device *spi)
644 {
645 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
646 u32 clk;
647
648 /* Clear BL field and set the right value */
649 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
650 if (spi_imx->slave_mode && is_imx53_ecspi(spi_imx))
651 ctrl |= (spi_imx->slave_burst * 8 - 1)
652 << MX51_ECSPI_CTRL_BL_OFFSET;
653 else
654 ctrl |= (spi_imx->bits_per_word - 1)
655 << MX51_ECSPI_CTRL_BL_OFFSET;
656
657 /* set clock speed */
658 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
659 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
660 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
661 spi_imx->spi_bus_clk = clk;
662
663 mx51_configure_cpha(spi_imx, spi);
664
665 /*
666 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
667 * before i.mx6ul.
668 */
669 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
670 ctrl |= MX51_ECSPI_CTRL_SMC;
671 else
672 ctrl &= ~MX51_ECSPI_CTRL_SMC;
673
674 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
675
676 return 0;
677 }
678
mx51_setup_wml(struct spi_imx_data * spi_imx)679 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
680 {
681 u32 tx_wml = 0;
682
683 if (spi_imx->devtype_data->tx_glitch_fixed)
684 tx_wml = spi_imx->wml;
685 /*
686 * Configure the DMA register: setup the watermark
687 * and enable DMA request.
688 */
689 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
690 MX51_ECSPI_DMA_TX_WML(tx_wml) |
691 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
692 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
693 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
694 }
695
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)696 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
697 {
698 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
699 }
700
mx51_ecspi_reset(struct spi_imx_data * spi_imx)701 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
702 {
703 /* drain receive buffer */
704 while (mx51_ecspi_rx_available(spi_imx))
705 readl(spi_imx->base + MXC_CSPIRXDATA);
706 }
707
708 #define MX31_INTREG_TEEN (1 << 0)
709 #define MX31_INTREG_RREN (1 << 3)
710
711 #define MX31_CSPICTRL_ENABLE (1 << 0)
712 #define MX31_CSPICTRL_MASTER (1 << 1)
713 #define MX31_CSPICTRL_XCH (1 << 2)
714 #define MX31_CSPICTRL_SMC (1 << 3)
715 #define MX31_CSPICTRL_POL (1 << 4)
716 #define MX31_CSPICTRL_PHA (1 << 5)
717 #define MX31_CSPICTRL_SSCTL (1 << 6)
718 #define MX31_CSPICTRL_SSPOL (1 << 7)
719 #define MX31_CSPICTRL_BC_SHIFT 8
720 #define MX35_CSPICTRL_BL_SHIFT 20
721 #define MX31_CSPICTRL_CS_SHIFT 24
722 #define MX35_CSPICTRL_CS_SHIFT 12
723 #define MX31_CSPICTRL_DR_SHIFT 16
724
725 #define MX31_CSPI_DMAREG 0x10
726 #define MX31_DMAREG_RH_DEN (1<<4)
727 #define MX31_DMAREG_TH_DEN (1<<1)
728
729 #define MX31_CSPISTATUS 0x14
730 #define MX31_STATUS_RR (1 << 3)
731
732 #define MX31_CSPI_TESTREG 0x1C
733 #define MX31_TEST_LBC (1 << 14)
734
735 /* These functions also work for the i.MX35, but be aware that
736 * the i.MX35 has a slightly different register layout for bits
737 * we do not use here.
738 */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)739 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
740 {
741 unsigned int val = 0;
742
743 if (enable & MXC_INT_TE)
744 val |= MX31_INTREG_TEEN;
745 if (enable & MXC_INT_RR)
746 val |= MX31_INTREG_RREN;
747
748 writel(val, spi_imx->base + MXC_CSPIINT);
749 }
750
mx31_trigger(struct spi_imx_data * spi_imx)751 static void mx31_trigger(struct spi_imx_data *spi_imx)
752 {
753 unsigned int reg;
754
755 reg = readl(spi_imx->base + MXC_CSPICTRL);
756 reg |= MX31_CSPICTRL_XCH;
757 writel(reg, spi_imx->base + MXC_CSPICTRL);
758 }
759
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)760 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
761 struct spi_message *msg)
762 {
763 return 0;
764 }
765
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)766 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
767 struct spi_device *spi)
768 {
769 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_MASTER;
770 unsigned int clk;
771
772 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
773 MX31_CSPICTRL_DR_SHIFT;
774 spi_imx->spi_bus_clk = clk;
775
776 if (is_imx35_cspi(spi_imx)) {
777 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
778 reg |= MX31_CSPICTRL_SSCTL;
779 } else {
780 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
781 }
782
783 if (spi->mode & SPI_CPHA)
784 reg |= MX31_CSPICTRL_PHA;
785 if (spi->mode & SPI_CPOL)
786 reg |= MX31_CSPICTRL_POL;
787 if (spi->mode & SPI_CS_HIGH)
788 reg |= MX31_CSPICTRL_SSPOL;
789 if (!spi->cs_gpiod)
790 reg |= (spi->chip_select) <<
791 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
792 MX31_CSPICTRL_CS_SHIFT);
793
794 if (spi_imx->usedma)
795 reg |= MX31_CSPICTRL_SMC;
796
797 writel(reg, spi_imx->base + MXC_CSPICTRL);
798
799 reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
800 if (spi->mode & SPI_LOOP)
801 reg |= MX31_TEST_LBC;
802 else
803 reg &= ~MX31_TEST_LBC;
804 writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
805
806 if (spi_imx->usedma) {
807 /*
808 * configure DMA requests when RXFIFO is half full and
809 * when TXFIFO is half empty
810 */
811 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
812 spi_imx->base + MX31_CSPI_DMAREG);
813 }
814
815 return 0;
816 }
817
mx31_rx_available(struct spi_imx_data * spi_imx)818 static int mx31_rx_available(struct spi_imx_data *spi_imx)
819 {
820 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
821 }
822
mx31_reset(struct spi_imx_data * spi_imx)823 static void mx31_reset(struct spi_imx_data *spi_imx)
824 {
825 /* drain receive buffer */
826 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
827 readl(spi_imx->base + MXC_CSPIRXDATA);
828 }
829
830 #define MX21_INTREG_RR (1 << 4)
831 #define MX21_INTREG_TEEN (1 << 9)
832 #define MX21_INTREG_RREN (1 << 13)
833
834 #define MX21_CSPICTRL_POL (1 << 5)
835 #define MX21_CSPICTRL_PHA (1 << 6)
836 #define MX21_CSPICTRL_SSPOL (1 << 8)
837 #define MX21_CSPICTRL_XCH (1 << 9)
838 #define MX21_CSPICTRL_ENABLE (1 << 10)
839 #define MX21_CSPICTRL_MASTER (1 << 11)
840 #define MX21_CSPICTRL_DR_SHIFT 14
841 #define MX21_CSPICTRL_CS_SHIFT 19
842
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)843 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
844 {
845 unsigned int val = 0;
846
847 if (enable & MXC_INT_TE)
848 val |= MX21_INTREG_TEEN;
849 if (enable & MXC_INT_RR)
850 val |= MX21_INTREG_RREN;
851
852 writel(val, spi_imx->base + MXC_CSPIINT);
853 }
854
mx21_trigger(struct spi_imx_data * spi_imx)855 static void mx21_trigger(struct spi_imx_data *spi_imx)
856 {
857 unsigned int reg;
858
859 reg = readl(spi_imx->base + MXC_CSPICTRL);
860 reg |= MX21_CSPICTRL_XCH;
861 writel(reg, spi_imx->base + MXC_CSPICTRL);
862 }
863
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)864 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
865 struct spi_message *msg)
866 {
867 return 0;
868 }
869
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)870 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
871 struct spi_device *spi)
872 {
873 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
874 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
875 unsigned int clk;
876
877 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
878 << MX21_CSPICTRL_DR_SHIFT;
879 spi_imx->spi_bus_clk = clk;
880
881 reg |= spi_imx->bits_per_word - 1;
882
883 if (spi->mode & SPI_CPHA)
884 reg |= MX21_CSPICTRL_PHA;
885 if (spi->mode & SPI_CPOL)
886 reg |= MX21_CSPICTRL_POL;
887 if (spi->mode & SPI_CS_HIGH)
888 reg |= MX21_CSPICTRL_SSPOL;
889 if (!spi->cs_gpiod)
890 reg |= spi->chip_select << MX21_CSPICTRL_CS_SHIFT;
891
892 writel(reg, spi_imx->base + MXC_CSPICTRL);
893
894 return 0;
895 }
896
mx21_rx_available(struct spi_imx_data * spi_imx)897 static int mx21_rx_available(struct spi_imx_data *spi_imx)
898 {
899 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
900 }
901
mx21_reset(struct spi_imx_data * spi_imx)902 static void mx21_reset(struct spi_imx_data *spi_imx)
903 {
904 writel(1, spi_imx->base + MXC_RESET);
905 }
906
907 #define MX1_INTREG_RR (1 << 3)
908 #define MX1_INTREG_TEEN (1 << 8)
909 #define MX1_INTREG_RREN (1 << 11)
910
911 #define MX1_CSPICTRL_POL (1 << 4)
912 #define MX1_CSPICTRL_PHA (1 << 5)
913 #define MX1_CSPICTRL_XCH (1 << 8)
914 #define MX1_CSPICTRL_ENABLE (1 << 9)
915 #define MX1_CSPICTRL_MASTER (1 << 10)
916 #define MX1_CSPICTRL_DR_SHIFT 13
917
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)918 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
919 {
920 unsigned int val = 0;
921
922 if (enable & MXC_INT_TE)
923 val |= MX1_INTREG_TEEN;
924 if (enable & MXC_INT_RR)
925 val |= MX1_INTREG_RREN;
926
927 writel(val, spi_imx->base + MXC_CSPIINT);
928 }
929
mx1_trigger(struct spi_imx_data * spi_imx)930 static void mx1_trigger(struct spi_imx_data *spi_imx)
931 {
932 unsigned int reg;
933
934 reg = readl(spi_imx->base + MXC_CSPICTRL);
935 reg |= MX1_CSPICTRL_XCH;
936 writel(reg, spi_imx->base + MXC_CSPICTRL);
937 }
938
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)939 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
940 struct spi_message *msg)
941 {
942 return 0;
943 }
944
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)945 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
946 struct spi_device *spi)
947 {
948 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_MASTER;
949 unsigned int clk;
950
951 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
952 MX1_CSPICTRL_DR_SHIFT;
953 spi_imx->spi_bus_clk = clk;
954
955 reg |= spi_imx->bits_per_word - 1;
956
957 if (spi->mode & SPI_CPHA)
958 reg |= MX1_CSPICTRL_PHA;
959 if (spi->mode & SPI_CPOL)
960 reg |= MX1_CSPICTRL_POL;
961
962 writel(reg, spi_imx->base + MXC_CSPICTRL);
963
964 return 0;
965 }
966
mx1_rx_available(struct spi_imx_data * spi_imx)967 static int mx1_rx_available(struct spi_imx_data *spi_imx)
968 {
969 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
970 }
971
mx1_reset(struct spi_imx_data * spi_imx)972 static void mx1_reset(struct spi_imx_data *spi_imx)
973 {
974 writel(1, spi_imx->base + MXC_RESET);
975 }
976
977 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
978 .intctrl = mx1_intctrl,
979 .prepare_message = mx1_prepare_message,
980 .prepare_transfer = mx1_prepare_transfer,
981 .trigger = mx1_trigger,
982 .rx_available = mx1_rx_available,
983 .reset = mx1_reset,
984 .fifo_size = 8,
985 .has_dmamode = false,
986 .dynamic_burst = false,
987 .has_slavemode = false,
988 .devtype = IMX1_CSPI,
989 };
990
991 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
992 .intctrl = mx21_intctrl,
993 .prepare_message = mx21_prepare_message,
994 .prepare_transfer = mx21_prepare_transfer,
995 .trigger = mx21_trigger,
996 .rx_available = mx21_rx_available,
997 .reset = mx21_reset,
998 .fifo_size = 8,
999 .has_dmamode = false,
1000 .dynamic_burst = false,
1001 .has_slavemode = false,
1002 .devtype = IMX21_CSPI,
1003 };
1004
1005 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1006 /* i.mx27 cspi shares the functions with i.mx21 one */
1007 .intctrl = mx21_intctrl,
1008 .prepare_message = mx21_prepare_message,
1009 .prepare_transfer = mx21_prepare_transfer,
1010 .trigger = mx21_trigger,
1011 .rx_available = mx21_rx_available,
1012 .reset = mx21_reset,
1013 .fifo_size = 8,
1014 .has_dmamode = false,
1015 .dynamic_burst = false,
1016 .has_slavemode = false,
1017 .devtype = IMX27_CSPI,
1018 };
1019
1020 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1021 .intctrl = mx31_intctrl,
1022 .prepare_message = mx31_prepare_message,
1023 .prepare_transfer = mx31_prepare_transfer,
1024 .trigger = mx31_trigger,
1025 .rx_available = mx31_rx_available,
1026 .reset = mx31_reset,
1027 .fifo_size = 8,
1028 .has_dmamode = false,
1029 .dynamic_burst = false,
1030 .has_slavemode = false,
1031 .devtype = IMX31_CSPI,
1032 };
1033
1034 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1035 /* i.mx35 and later cspi shares the functions with i.mx31 one */
1036 .intctrl = mx31_intctrl,
1037 .prepare_message = mx31_prepare_message,
1038 .prepare_transfer = mx31_prepare_transfer,
1039 .trigger = mx31_trigger,
1040 .rx_available = mx31_rx_available,
1041 .reset = mx31_reset,
1042 .fifo_size = 8,
1043 .has_dmamode = true,
1044 .dynamic_burst = false,
1045 .has_slavemode = false,
1046 .devtype = IMX35_CSPI,
1047 };
1048
1049 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1050 .intctrl = mx51_ecspi_intctrl,
1051 .prepare_message = mx51_ecspi_prepare_message,
1052 .prepare_transfer = mx51_ecspi_prepare_transfer,
1053 .trigger = mx51_ecspi_trigger,
1054 .rx_available = mx51_ecspi_rx_available,
1055 .reset = mx51_ecspi_reset,
1056 .setup_wml = mx51_setup_wml,
1057 .disable_dma = mx51_disable_dma,
1058 .fifo_size = 64,
1059 .has_dmamode = true,
1060 .dynamic_burst = true,
1061 .has_slavemode = true,
1062 .disable = mx51_ecspi_disable,
1063 .devtype = IMX51_ECSPI,
1064 };
1065
1066 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1067 .intctrl = mx51_ecspi_intctrl,
1068 .prepare_message = mx51_ecspi_prepare_message,
1069 .prepare_transfer = mx51_ecspi_prepare_transfer,
1070 .trigger = mx51_ecspi_trigger,
1071 .rx_available = mx51_ecspi_rx_available,
1072 .disable_dma = mx51_disable_dma,
1073 .reset = mx51_ecspi_reset,
1074 .fifo_size = 64,
1075 .has_dmamode = true,
1076 .has_slavemode = true,
1077 .disable = mx51_ecspi_disable,
1078 .devtype = IMX53_ECSPI,
1079 };
1080
1081 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1082 .intctrl = mx51_ecspi_intctrl,
1083 .prepare_message = mx51_ecspi_prepare_message,
1084 .prepare_transfer = mx51_ecspi_prepare_transfer,
1085 .trigger = mx51_ecspi_trigger,
1086 .rx_available = mx51_ecspi_rx_available,
1087 .reset = mx51_ecspi_reset,
1088 .setup_wml = mx51_setup_wml,
1089 .fifo_size = 64,
1090 .has_dmamode = true,
1091 .dynamic_burst = true,
1092 .has_slavemode = true,
1093 .tx_glitch_fixed = true,
1094 .disable = mx51_ecspi_disable,
1095 .devtype = IMX51_ECSPI,
1096 };
1097
1098 static const struct of_device_id spi_imx_dt_ids[] = {
1099 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1100 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1101 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1102 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1103 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1104 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1105 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1106 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1107 { /* sentinel */ }
1108 };
1109 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1110
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1111 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1112 {
1113 u32 ctrl;
1114
1115 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1116 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1117 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1118 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1119 }
1120
spi_imx_push(struct spi_imx_data * spi_imx)1121 static void spi_imx_push(struct spi_imx_data *spi_imx)
1122 {
1123 unsigned int burst_len;
1124
1125 /*
1126 * Reload the FIFO when the remaining bytes to be transferred in the
1127 * current burst is 0. This only applies when bits_per_word is a
1128 * multiple of 8.
1129 */
1130 if (!spi_imx->remainder) {
1131 if (spi_imx->dynamic_burst) {
1132
1133 /* We need to deal unaligned data first */
1134 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1135
1136 if (!burst_len)
1137 burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1138
1139 spi_imx_set_burst_len(spi_imx, burst_len * 8);
1140
1141 spi_imx->remainder = burst_len;
1142 } else {
1143 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1144 }
1145 }
1146
1147 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1148 if (!spi_imx->count)
1149 break;
1150 if (spi_imx->dynamic_burst &&
1151 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1152 break;
1153 spi_imx->tx(spi_imx);
1154 spi_imx->txfifo++;
1155 }
1156
1157 if (!spi_imx->slave_mode)
1158 spi_imx->devtype_data->trigger(spi_imx);
1159 }
1160
spi_imx_isr(int irq,void * dev_id)1161 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1162 {
1163 struct spi_imx_data *spi_imx = dev_id;
1164
1165 while (spi_imx->txfifo &&
1166 spi_imx->devtype_data->rx_available(spi_imx)) {
1167 spi_imx->rx(spi_imx);
1168 spi_imx->txfifo--;
1169 }
1170
1171 if (spi_imx->count) {
1172 spi_imx_push(spi_imx);
1173 return IRQ_HANDLED;
1174 }
1175
1176 if (spi_imx->txfifo) {
1177 /* No data left to push, but still waiting for rx data,
1178 * enable receive data available interrupt.
1179 */
1180 spi_imx->devtype_data->intctrl(
1181 spi_imx, MXC_INT_RR);
1182 return IRQ_HANDLED;
1183 }
1184
1185 spi_imx->devtype_data->intctrl(spi_imx, 0);
1186 complete(&spi_imx->xfer_done);
1187
1188 return IRQ_HANDLED;
1189 }
1190
spi_imx_dma_configure(struct spi_controller * controller)1191 static int spi_imx_dma_configure(struct spi_controller *controller)
1192 {
1193 int ret;
1194 enum dma_slave_buswidth buswidth;
1195 struct dma_slave_config rx = {}, tx = {};
1196 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1197
1198 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1199 case 4:
1200 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1201 break;
1202 case 2:
1203 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1204 break;
1205 case 1:
1206 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1207 break;
1208 default:
1209 return -EINVAL;
1210 }
1211
1212 tx.direction = DMA_MEM_TO_DEV;
1213 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1214 tx.dst_addr_width = buswidth;
1215 tx.dst_maxburst = spi_imx->wml;
1216 ret = dmaengine_slave_config(controller->dma_tx, &tx);
1217 if (ret) {
1218 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1219 return ret;
1220 }
1221
1222 rx.direction = DMA_DEV_TO_MEM;
1223 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1224 rx.src_addr_width = buswidth;
1225 rx.src_maxburst = spi_imx->wml;
1226 ret = dmaengine_slave_config(controller->dma_rx, &rx);
1227 if (ret) {
1228 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1229 return ret;
1230 }
1231
1232 return 0;
1233 }
1234
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1235 static int spi_imx_setupxfer(struct spi_device *spi,
1236 struct spi_transfer *t)
1237 {
1238 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1239
1240 if (!t)
1241 return 0;
1242
1243 if (!t->speed_hz) {
1244 if (!spi->max_speed_hz) {
1245 dev_err(&spi->dev, "no speed_hz provided!\n");
1246 return -EINVAL;
1247 }
1248 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1249 spi_imx->spi_bus_clk = spi->max_speed_hz;
1250 } else
1251 spi_imx->spi_bus_clk = t->speed_hz;
1252
1253 spi_imx->bits_per_word = t->bits_per_word;
1254
1255 /*
1256 * Initialize the functions for transfer. To transfer non byte-aligned
1257 * words, we have to use multiple word-size bursts, we can't use
1258 * dynamic_burst in that case.
1259 */
1260 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->slave_mode &&
1261 !(spi->mode & SPI_CS_WORD) &&
1262 (spi_imx->bits_per_word == 8 ||
1263 spi_imx->bits_per_word == 16 ||
1264 spi_imx->bits_per_word == 32)) {
1265
1266 spi_imx->rx = spi_imx_buf_rx_swap;
1267 spi_imx->tx = spi_imx_buf_tx_swap;
1268 spi_imx->dynamic_burst = 1;
1269
1270 } else {
1271 if (spi_imx->bits_per_word <= 8) {
1272 spi_imx->rx = spi_imx_buf_rx_u8;
1273 spi_imx->tx = spi_imx_buf_tx_u8;
1274 } else if (spi_imx->bits_per_word <= 16) {
1275 spi_imx->rx = spi_imx_buf_rx_u16;
1276 spi_imx->tx = spi_imx_buf_tx_u16;
1277 } else {
1278 spi_imx->rx = spi_imx_buf_rx_u32;
1279 spi_imx->tx = spi_imx_buf_tx_u32;
1280 }
1281 spi_imx->dynamic_burst = 0;
1282 }
1283
1284 if (spi_imx_can_dma(spi_imx->controller, spi, t))
1285 spi_imx->usedma = true;
1286 else
1287 spi_imx->usedma = false;
1288
1289 spi_imx->rx_only = ((t->tx_buf == NULL)
1290 || (t->tx_buf == spi->controller->dummy_tx));
1291
1292 if (is_imx53_ecspi(spi_imx) && spi_imx->slave_mode) {
1293 spi_imx->rx = mx53_ecspi_rx_slave;
1294 spi_imx->tx = mx53_ecspi_tx_slave;
1295 spi_imx->slave_burst = t->len;
1296 }
1297
1298 spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1299
1300 return 0;
1301 }
1302
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1303 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1304 {
1305 struct spi_controller *controller = spi_imx->controller;
1306
1307 if (controller->dma_rx) {
1308 dma_release_channel(controller->dma_rx);
1309 controller->dma_rx = NULL;
1310 }
1311
1312 if (controller->dma_tx) {
1313 dma_release_channel(controller->dma_tx);
1314 controller->dma_tx = NULL;
1315 }
1316 }
1317
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_controller * controller)1318 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1319 struct spi_controller *controller)
1320 {
1321 int ret;
1322
1323 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1324
1325 /* Prepare for TX DMA: */
1326 controller->dma_tx = dma_request_chan(dev, "tx");
1327 if (IS_ERR(controller->dma_tx)) {
1328 ret = PTR_ERR(controller->dma_tx);
1329 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1330 controller->dma_tx = NULL;
1331 goto err;
1332 }
1333
1334 /* Prepare for RX : */
1335 controller->dma_rx = dma_request_chan(dev, "rx");
1336 if (IS_ERR(controller->dma_rx)) {
1337 ret = PTR_ERR(controller->dma_rx);
1338 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1339 controller->dma_rx = NULL;
1340 goto err;
1341 }
1342
1343 init_completion(&spi_imx->dma_rx_completion);
1344 init_completion(&spi_imx->dma_tx_completion);
1345 controller->can_dma = spi_imx_can_dma;
1346 controller->max_dma_len = MAX_SDMA_BD_BYTES;
1347 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1348 SPI_CONTROLLER_MUST_TX;
1349
1350 return 0;
1351 err:
1352 spi_imx_sdma_exit(spi_imx);
1353 return ret;
1354 }
1355
spi_imx_dma_rx_callback(void * cookie)1356 static void spi_imx_dma_rx_callback(void *cookie)
1357 {
1358 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1359
1360 complete(&spi_imx->dma_rx_completion);
1361 }
1362
spi_imx_dma_tx_callback(void * cookie)1363 static void spi_imx_dma_tx_callback(void *cookie)
1364 {
1365 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1366
1367 complete(&spi_imx->dma_tx_completion);
1368 }
1369
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1370 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1371 {
1372 unsigned long timeout = 0;
1373
1374 /* Time with actual data transfer and CS change delay related to HW */
1375 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1376
1377 /* Add extra second for scheduler related activities */
1378 timeout += 1;
1379
1380 /* Double calculated timeout */
1381 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1382 }
1383
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1384 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1385 struct spi_transfer *transfer)
1386 {
1387 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1388 unsigned long transfer_timeout;
1389 unsigned long timeout;
1390 struct spi_controller *controller = spi_imx->controller;
1391 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1392 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1393 unsigned int bytes_per_word, i;
1394 int ret;
1395
1396 /* Get the right burst length from the last sg to ensure no tail data */
1397 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1398 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1399 if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1400 break;
1401 }
1402 /* Use 1 as wml in case no available burst length got */
1403 if (i == 0)
1404 i = 1;
1405
1406 spi_imx->wml = i;
1407
1408 ret = spi_imx_dma_configure(controller);
1409 if (ret)
1410 goto dma_failure_no_start;
1411
1412 if (!spi_imx->devtype_data->setup_wml) {
1413 dev_err(spi_imx->dev, "No setup_wml()?\n");
1414 ret = -EINVAL;
1415 goto dma_failure_no_start;
1416 }
1417 spi_imx->devtype_data->setup_wml(spi_imx);
1418
1419 /*
1420 * The TX DMA setup starts the transfer, so make sure RX is configured
1421 * before TX.
1422 */
1423 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1424 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1425 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1426 if (!desc_rx) {
1427 ret = -EINVAL;
1428 goto dma_failure_no_start;
1429 }
1430
1431 desc_rx->callback = spi_imx_dma_rx_callback;
1432 desc_rx->callback_param = (void *)spi_imx;
1433 dmaengine_submit(desc_rx);
1434 reinit_completion(&spi_imx->dma_rx_completion);
1435 dma_async_issue_pending(controller->dma_rx);
1436
1437 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1438 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1439 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1440 if (!desc_tx) {
1441 dmaengine_terminate_all(controller->dma_tx);
1442 dmaengine_terminate_all(controller->dma_rx);
1443 return -EINVAL;
1444 }
1445
1446 desc_tx->callback = spi_imx_dma_tx_callback;
1447 desc_tx->callback_param = (void *)spi_imx;
1448 dmaengine_submit(desc_tx);
1449 reinit_completion(&spi_imx->dma_tx_completion);
1450 dma_async_issue_pending(controller->dma_tx);
1451
1452 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1453
1454 /* Wait SDMA to finish the data transfer.*/
1455 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1456 transfer_timeout);
1457 if (!timeout) {
1458 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1459 dmaengine_terminate_all(controller->dma_tx);
1460 dmaengine_terminate_all(controller->dma_rx);
1461 return -ETIMEDOUT;
1462 }
1463
1464 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1465 transfer_timeout);
1466 if (!timeout) {
1467 dev_err(&controller->dev, "I/O Error in DMA RX\n");
1468 spi_imx->devtype_data->reset(spi_imx);
1469 dmaengine_terminate_all(controller->dma_rx);
1470 return -ETIMEDOUT;
1471 }
1472
1473 return 0;
1474 /* fallback to pio */
1475 dma_failure_no_start:
1476 transfer->error |= SPI_TRANS_FAIL_NO_START;
1477 return ret;
1478 }
1479
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1480 static int spi_imx_pio_transfer(struct spi_device *spi,
1481 struct spi_transfer *transfer)
1482 {
1483 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1484 unsigned long transfer_timeout;
1485 unsigned long timeout;
1486
1487 spi_imx->tx_buf = transfer->tx_buf;
1488 spi_imx->rx_buf = transfer->rx_buf;
1489 spi_imx->count = transfer->len;
1490 spi_imx->txfifo = 0;
1491 spi_imx->remainder = 0;
1492
1493 reinit_completion(&spi_imx->xfer_done);
1494
1495 spi_imx_push(spi_imx);
1496
1497 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1498
1499 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1500
1501 timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1502 transfer_timeout);
1503 if (!timeout) {
1504 dev_err(&spi->dev, "I/O Error in PIO\n");
1505 spi_imx->devtype_data->reset(spi_imx);
1506 return -ETIMEDOUT;
1507 }
1508
1509 return 0;
1510 }
1511
spi_imx_poll_transfer(struct spi_device * spi,struct spi_transfer * transfer)1512 static int spi_imx_poll_transfer(struct spi_device *spi,
1513 struct spi_transfer *transfer)
1514 {
1515 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1516 unsigned long timeout;
1517
1518 spi_imx->tx_buf = transfer->tx_buf;
1519 spi_imx->rx_buf = transfer->rx_buf;
1520 spi_imx->count = transfer->len;
1521 spi_imx->txfifo = 0;
1522 spi_imx->remainder = 0;
1523
1524 /* fill in the fifo before timeout calculations if we are
1525 * interrupted here, then the data is getting transferred by
1526 * the HW while we are interrupted
1527 */
1528 spi_imx_push(spi_imx);
1529
1530 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1531 while (spi_imx->txfifo) {
1532 /* RX */
1533 while (spi_imx->txfifo &&
1534 spi_imx->devtype_data->rx_available(spi_imx)) {
1535 spi_imx->rx(spi_imx);
1536 spi_imx->txfifo--;
1537 }
1538
1539 /* TX */
1540 if (spi_imx->count) {
1541 spi_imx_push(spi_imx);
1542 continue;
1543 }
1544
1545 if (spi_imx->txfifo &&
1546 time_after(jiffies, timeout)) {
1547
1548 dev_err_ratelimited(&spi->dev,
1549 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1550 jiffies - timeout);
1551
1552 /* fall back to interrupt mode */
1553 return spi_imx_pio_transfer(spi, transfer);
1554 }
1555 }
1556
1557 return 0;
1558 }
1559
spi_imx_pio_transfer_slave(struct spi_device * spi,struct spi_transfer * transfer)1560 static int spi_imx_pio_transfer_slave(struct spi_device *spi,
1561 struct spi_transfer *transfer)
1562 {
1563 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1564 int ret = 0;
1565
1566 if (is_imx53_ecspi(spi_imx) &&
1567 transfer->len > MX53_MAX_TRANSFER_BYTES) {
1568 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1569 MX53_MAX_TRANSFER_BYTES);
1570 return -EMSGSIZE;
1571 }
1572
1573 spi_imx->tx_buf = transfer->tx_buf;
1574 spi_imx->rx_buf = transfer->rx_buf;
1575 spi_imx->count = transfer->len;
1576 spi_imx->txfifo = 0;
1577 spi_imx->remainder = 0;
1578
1579 reinit_completion(&spi_imx->xfer_done);
1580 spi_imx->slave_aborted = false;
1581
1582 spi_imx_push(spi_imx);
1583
1584 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1585
1586 if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1587 spi_imx->slave_aborted) {
1588 dev_dbg(&spi->dev, "interrupted\n");
1589 ret = -EINTR;
1590 }
1591
1592 /* ecspi has a HW issue when works in Slave mode,
1593 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1594 * ECSPI_TXDATA keeps shift out the last word data,
1595 * so we have to disable ECSPI when in slave mode after the
1596 * transfer completes
1597 */
1598 if (spi_imx->devtype_data->disable)
1599 spi_imx->devtype_data->disable(spi_imx);
1600
1601 return ret;
1602 }
1603
spi_imx_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)1604 static int spi_imx_transfer_one(struct spi_controller *controller,
1605 struct spi_device *spi,
1606 struct spi_transfer *transfer)
1607 {
1608 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1609 unsigned long hz_per_byte, byte_limit;
1610
1611 spi_imx_setupxfer(spi, transfer);
1612 transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1613
1614 /* flush rxfifo before transfer */
1615 while (spi_imx->devtype_data->rx_available(spi_imx))
1616 readl(spi_imx->base + MXC_CSPIRXDATA);
1617
1618 if (spi_imx->slave_mode)
1619 return spi_imx_pio_transfer_slave(spi, transfer);
1620
1621 /*
1622 * If we decided in spi_imx_can_dma() that we want to do a DMA
1623 * transfer, the SPI transfer has already been mapped, so we
1624 * have to do the DMA transfer here.
1625 */
1626 if (spi_imx->usedma)
1627 return spi_imx_dma_transfer(spi_imx, transfer);
1628 /*
1629 * Calculate the estimated time in us the transfer runs. Find
1630 * the number of Hz per byte per polling limit.
1631 */
1632 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1633 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1634
1635 /* run in polling mode for short transfers */
1636 if (transfer->len < byte_limit)
1637 return spi_imx_poll_transfer(spi, transfer);
1638
1639 return spi_imx_pio_transfer(spi, transfer);
1640 }
1641
spi_imx_setup(struct spi_device * spi)1642 static int spi_imx_setup(struct spi_device *spi)
1643 {
1644 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1645 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1646
1647 return 0;
1648 }
1649
spi_imx_cleanup(struct spi_device * spi)1650 static void spi_imx_cleanup(struct spi_device *spi)
1651 {
1652 }
1653
1654 static int
spi_imx_prepare_message(struct spi_controller * controller,struct spi_message * msg)1655 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1656 {
1657 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1658 int ret;
1659
1660 ret = pm_runtime_resume_and_get(spi_imx->dev);
1661 if (ret < 0) {
1662 dev_err(spi_imx->dev, "failed to enable clock\n");
1663 return ret;
1664 }
1665
1666 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1667 if (ret) {
1668 pm_runtime_mark_last_busy(spi_imx->dev);
1669 pm_runtime_put_autosuspend(spi_imx->dev);
1670 }
1671
1672 return ret;
1673 }
1674
1675 static int
spi_imx_unprepare_message(struct spi_controller * controller,struct spi_message * msg)1676 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1677 {
1678 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1679
1680 pm_runtime_mark_last_busy(spi_imx->dev);
1681 pm_runtime_put_autosuspend(spi_imx->dev);
1682 return 0;
1683 }
1684
spi_imx_slave_abort(struct spi_controller * controller)1685 static int spi_imx_slave_abort(struct spi_controller *controller)
1686 {
1687 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1688
1689 spi_imx->slave_aborted = true;
1690 complete(&spi_imx->xfer_done);
1691
1692 return 0;
1693 }
1694
spi_imx_probe(struct platform_device * pdev)1695 static int spi_imx_probe(struct platform_device *pdev)
1696 {
1697 struct device_node *np = pdev->dev.of_node;
1698 struct spi_controller *controller;
1699 struct spi_imx_data *spi_imx;
1700 struct resource *res;
1701 int ret, irq, spi_drctl;
1702 const struct spi_imx_devtype_data *devtype_data =
1703 of_device_get_match_data(&pdev->dev);
1704 bool slave_mode;
1705 u32 val;
1706
1707 slave_mode = devtype_data->has_slavemode &&
1708 of_property_read_bool(np, "spi-slave");
1709 if (slave_mode)
1710 controller = spi_alloc_slave(&pdev->dev,
1711 sizeof(struct spi_imx_data));
1712 else
1713 controller = spi_alloc_master(&pdev->dev,
1714 sizeof(struct spi_imx_data));
1715 if (!controller)
1716 return -ENOMEM;
1717
1718 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1719 if ((ret < 0) || (spi_drctl >= 0x3)) {
1720 /* '11' is reserved */
1721 spi_drctl = 0;
1722 }
1723
1724 platform_set_drvdata(pdev, controller);
1725
1726 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1727 controller->bus_num = np ? -1 : pdev->id;
1728 controller->use_gpio_descriptors = true;
1729
1730 spi_imx = spi_controller_get_devdata(controller);
1731 spi_imx->controller = controller;
1732 spi_imx->dev = &pdev->dev;
1733 spi_imx->slave_mode = slave_mode;
1734
1735 spi_imx->devtype_data = devtype_data;
1736
1737 /*
1738 * Get number of chip selects from device properties. This can be
1739 * coming from device tree or boardfiles, if it is not defined,
1740 * a default value of 3 chip selects will be used, as all the legacy
1741 * board files have <= 3 chip selects.
1742 */
1743 if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1744 controller->num_chipselect = val;
1745 else
1746 controller->num_chipselect = 3;
1747
1748 spi_imx->controller->transfer_one = spi_imx_transfer_one;
1749 spi_imx->controller->setup = spi_imx_setup;
1750 spi_imx->controller->cleanup = spi_imx_cleanup;
1751 spi_imx->controller->prepare_message = spi_imx_prepare_message;
1752 spi_imx->controller->unprepare_message = spi_imx_unprepare_message;
1753 spi_imx->controller->slave_abort = spi_imx_slave_abort;
1754 spi_imx->controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS;
1755
1756 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1757 is_imx53_ecspi(spi_imx))
1758 spi_imx->controller->mode_bits |= SPI_LOOP | SPI_READY;
1759
1760 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1761 spi_imx->controller->mode_bits |= SPI_RX_CPHA_FLIP;
1762
1763 if (is_imx51_ecspi(spi_imx) &&
1764 device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1765 /*
1766 * When using HW-CS implementing SPI_CS_WORD can be done by just
1767 * setting the burst length to the word size. This is
1768 * considerably faster than manually controlling the CS.
1769 */
1770 spi_imx->controller->mode_bits |= SPI_CS_WORD;
1771
1772 spi_imx->spi_drctl = spi_drctl;
1773
1774 init_completion(&spi_imx->xfer_done);
1775
1776 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1777 spi_imx->base = devm_ioremap_resource(&pdev->dev, res);
1778 if (IS_ERR(spi_imx->base)) {
1779 ret = PTR_ERR(spi_imx->base);
1780 goto out_controller_put;
1781 }
1782 spi_imx->base_phys = res->start;
1783
1784 irq = platform_get_irq(pdev, 0);
1785 if (irq < 0) {
1786 ret = irq;
1787 goto out_controller_put;
1788 }
1789
1790 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1791 dev_name(&pdev->dev), spi_imx);
1792 if (ret) {
1793 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1794 goto out_controller_put;
1795 }
1796
1797 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1798 if (IS_ERR(spi_imx->clk_ipg)) {
1799 ret = PTR_ERR(spi_imx->clk_ipg);
1800 goto out_controller_put;
1801 }
1802
1803 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1804 if (IS_ERR(spi_imx->clk_per)) {
1805 ret = PTR_ERR(spi_imx->clk_per);
1806 goto out_controller_put;
1807 }
1808
1809 ret = clk_prepare_enable(spi_imx->clk_per);
1810 if (ret)
1811 goto out_controller_put;
1812
1813 ret = clk_prepare_enable(spi_imx->clk_ipg);
1814 if (ret)
1815 goto out_put_per;
1816
1817 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1818 pm_runtime_use_autosuspend(spi_imx->dev);
1819 pm_runtime_get_noresume(spi_imx->dev);
1820 pm_runtime_set_active(spi_imx->dev);
1821 pm_runtime_enable(spi_imx->dev);
1822
1823 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1824 /*
1825 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1826 * if validated on other chips.
1827 */
1828 if (spi_imx->devtype_data->has_dmamode) {
1829 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1830 if (ret == -EPROBE_DEFER)
1831 goto out_runtime_pm_put;
1832
1833 if (ret < 0)
1834 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1835 ret);
1836 }
1837
1838 spi_imx->devtype_data->reset(spi_imx);
1839
1840 spi_imx->devtype_data->intctrl(spi_imx, 0);
1841
1842 controller->dev.of_node = pdev->dev.of_node;
1843 ret = spi_register_controller(controller);
1844 if (ret) {
1845 dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1846 goto out_register_controller;
1847 }
1848
1849 pm_runtime_mark_last_busy(spi_imx->dev);
1850 pm_runtime_put_autosuspend(spi_imx->dev);
1851
1852 return ret;
1853
1854 out_register_controller:
1855 if (spi_imx->devtype_data->has_dmamode)
1856 spi_imx_sdma_exit(spi_imx);
1857 out_runtime_pm_put:
1858 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1859 pm_runtime_set_suspended(&pdev->dev);
1860 pm_runtime_disable(spi_imx->dev);
1861
1862 clk_disable_unprepare(spi_imx->clk_ipg);
1863 out_put_per:
1864 clk_disable_unprepare(spi_imx->clk_per);
1865 out_controller_put:
1866 spi_controller_put(controller);
1867
1868 return ret;
1869 }
1870
spi_imx_remove(struct platform_device * pdev)1871 static int spi_imx_remove(struct platform_device *pdev)
1872 {
1873 struct spi_controller *controller = platform_get_drvdata(pdev);
1874 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1875 int ret;
1876
1877 spi_unregister_controller(controller);
1878
1879 ret = pm_runtime_get_sync(spi_imx->dev);
1880 if (ret >= 0)
1881 writel(0, spi_imx->base + MXC_CSPICTRL);
1882 else
1883 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1884
1885 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1886 pm_runtime_put_sync(spi_imx->dev);
1887 pm_runtime_disable(spi_imx->dev);
1888
1889 spi_imx_sdma_exit(spi_imx);
1890
1891 return 0;
1892 }
1893
spi_imx_runtime_resume(struct device * dev)1894 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1895 {
1896 struct spi_controller *controller = dev_get_drvdata(dev);
1897 struct spi_imx_data *spi_imx;
1898 int ret;
1899
1900 spi_imx = spi_controller_get_devdata(controller);
1901
1902 ret = clk_prepare_enable(spi_imx->clk_per);
1903 if (ret)
1904 return ret;
1905
1906 ret = clk_prepare_enable(spi_imx->clk_ipg);
1907 if (ret) {
1908 clk_disable_unprepare(spi_imx->clk_per);
1909 return ret;
1910 }
1911
1912 return 0;
1913 }
1914
spi_imx_runtime_suspend(struct device * dev)1915 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1916 {
1917 struct spi_controller *controller = dev_get_drvdata(dev);
1918 struct spi_imx_data *spi_imx;
1919
1920 spi_imx = spi_controller_get_devdata(controller);
1921
1922 clk_disable_unprepare(spi_imx->clk_per);
1923 clk_disable_unprepare(spi_imx->clk_ipg);
1924
1925 return 0;
1926 }
1927
spi_imx_suspend(struct device * dev)1928 static int __maybe_unused spi_imx_suspend(struct device *dev)
1929 {
1930 pinctrl_pm_select_sleep_state(dev);
1931 return 0;
1932 }
1933
spi_imx_resume(struct device * dev)1934 static int __maybe_unused spi_imx_resume(struct device *dev)
1935 {
1936 pinctrl_pm_select_default_state(dev);
1937 return 0;
1938 }
1939
1940 static const struct dev_pm_ops imx_spi_pm = {
1941 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1942 spi_imx_runtime_resume, NULL)
1943 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1944 };
1945
1946 static struct platform_driver spi_imx_driver = {
1947 .driver = {
1948 .name = DRIVER_NAME,
1949 .of_match_table = spi_imx_dt_ids,
1950 .pm = &imx_spi_pm,
1951 },
1952 .probe = spi_imx_probe,
1953 .remove = spi_imx_remove,
1954 };
1955 module_platform_driver(spi_imx_driver);
1956
1957 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1958 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1959 MODULE_LICENSE("GPL");
1960 MODULE_ALIAS("platform:" DRIVER_NAME);
1961