1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
11 #include "dm-ima.h"
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/mutex.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/signal.h>
18 #include <linux/blkpg.h>
19 #include <linux/bio.h>
20 #include <linux/mempool.h>
21 #include <linux/dax.h>
22 #include <linux/slab.h>
23 #include <linux/idr.h>
24 #include <linux/uio.h>
25 #include <linux/hdreg.h>
26 #include <linux/delay.h>
27 #include <linux/wait.h>
28 #include <linux/pr.h>
29 #include <linux/refcount.h>
30 #include <linux/part_stat.h>
31 #include <linux/blk-crypto.h>
32 #include <linux/blk-crypto-profile.h>
33
34 #define DM_MSG_PREFIX "core"
35
36 /*
37 * Cookies are numeric values sent with CHANGE and REMOVE
38 * uevents while resuming, removing or renaming the device.
39 */
40 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
41 #define DM_COOKIE_LENGTH 24
42
43 /*
44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
46 * ending this fs bio, we will recover its ->bi_private.
47 */
48 #define REQ_DM_POLL_LIST REQ_DRV
49
50 static const char *_name = DM_NAME;
51
52 static unsigned int major = 0;
53 static unsigned int _major = 0;
54
55 static DEFINE_IDR(_minor_idr);
56
57 static DEFINE_SPINLOCK(_minor_lock);
58
59 static void do_deferred_remove(struct work_struct *w);
60
61 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
62
63 static struct workqueue_struct *deferred_remove_workqueue;
64
65 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
66 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
67
dm_issue_global_event(void)68 void dm_issue_global_event(void)
69 {
70 atomic_inc(&dm_global_event_nr);
71 wake_up(&dm_global_eventq);
72 }
73
74 DEFINE_STATIC_KEY_FALSE(stats_enabled);
75 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
76 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
77
78 /*
79 * One of these is allocated (on-stack) per original bio.
80 */
81 struct clone_info {
82 struct dm_table *map;
83 struct bio *bio;
84 struct dm_io *io;
85 sector_t sector;
86 unsigned int sector_count;
87 bool is_abnormal_io:1;
88 bool submit_as_polled:1;
89 };
90
clone_to_tio(struct bio * clone)91 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
92 {
93 return container_of(clone, struct dm_target_io, clone);
94 }
95
dm_per_bio_data(struct bio * bio,size_t data_size)96 void *dm_per_bio_data(struct bio *bio, size_t data_size)
97 {
98 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
99 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
100 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
101 }
102 EXPORT_SYMBOL_GPL(dm_per_bio_data);
103
dm_bio_from_per_bio_data(void * data,size_t data_size)104 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
105 {
106 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
107 if (io->magic == DM_IO_MAGIC)
108 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
109 BUG_ON(io->magic != DM_TIO_MAGIC);
110 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
111 }
112 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
113
dm_bio_get_target_bio_nr(const struct bio * bio)114 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
115 {
116 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
117 }
118 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
119
120 #define MINOR_ALLOCED ((void *)-1)
121
122 #define DM_NUMA_NODE NUMA_NO_NODE
123 static int dm_numa_node = DM_NUMA_NODE;
124
125 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
126 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)127 static int get_swap_bios(void)
128 {
129 int latch = READ_ONCE(swap_bios);
130 if (unlikely(latch <= 0))
131 latch = DEFAULT_SWAP_BIOS;
132 return latch;
133 }
134
135 struct table_device {
136 struct list_head list;
137 refcount_t count;
138 struct dm_dev dm_dev;
139 };
140
141 /*
142 * Bio-based DM's mempools' reserved IOs set by the user.
143 */
144 #define RESERVED_BIO_BASED_IOS 16
145 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
146
__dm_get_module_param_int(int * module_param,int min,int max)147 static int __dm_get_module_param_int(int *module_param, int min, int max)
148 {
149 int param = READ_ONCE(*module_param);
150 int modified_param = 0;
151 bool modified = true;
152
153 if (param < min)
154 modified_param = min;
155 else if (param > max)
156 modified_param = max;
157 else
158 modified = false;
159
160 if (modified) {
161 (void)cmpxchg(module_param, param, modified_param);
162 param = modified_param;
163 }
164
165 return param;
166 }
167
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)168 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
169 {
170 unsigned int param = READ_ONCE(*module_param);
171 unsigned int modified_param = 0;
172
173 if (!param)
174 modified_param = def;
175 else if (param > max)
176 modified_param = max;
177
178 if (modified_param) {
179 (void)cmpxchg(module_param, param, modified_param);
180 param = modified_param;
181 }
182
183 return param;
184 }
185
dm_get_reserved_bio_based_ios(void)186 unsigned int dm_get_reserved_bio_based_ios(void)
187 {
188 return __dm_get_module_param(&reserved_bio_based_ios,
189 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
190 }
191 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
192
dm_get_numa_node(void)193 static unsigned int dm_get_numa_node(void)
194 {
195 return __dm_get_module_param_int(&dm_numa_node,
196 DM_NUMA_NODE, num_online_nodes() - 1);
197 }
198
local_init(void)199 static int __init local_init(void)
200 {
201 int r;
202
203 r = dm_uevent_init();
204 if (r)
205 return r;
206
207 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
208 if (!deferred_remove_workqueue) {
209 r = -ENOMEM;
210 goto out_uevent_exit;
211 }
212
213 _major = major;
214 r = register_blkdev(_major, _name);
215 if (r < 0)
216 goto out_free_workqueue;
217
218 if (!_major)
219 _major = r;
220
221 return 0;
222
223 out_free_workqueue:
224 destroy_workqueue(deferred_remove_workqueue);
225 out_uevent_exit:
226 dm_uevent_exit();
227
228 return r;
229 }
230
local_exit(void)231 static void local_exit(void)
232 {
233 destroy_workqueue(deferred_remove_workqueue);
234
235 unregister_blkdev(_major, _name);
236 dm_uevent_exit();
237
238 _major = 0;
239
240 DMINFO("cleaned up");
241 }
242
243 static int (*_inits[])(void) __initdata = {
244 local_init,
245 dm_target_init,
246 dm_linear_init,
247 dm_stripe_init,
248 dm_io_init,
249 dm_kcopyd_init,
250 dm_interface_init,
251 dm_statistics_init,
252 };
253
254 static void (*_exits[])(void) = {
255 local_exit,
256 dm_target_exit,
257 dm_linear_exit,
258 dm_stripe_exit,
259 dm_io_exit,
260 dm_kcopyd_exit,
261 dm_interface_exit,
262 dm_statistics_exit,
263 };
264
dm_init(void)265 static int __init dm_init(void)
266 {
267 const int count = ARRAY_SIZE(_inits);
268 int r, i;
269
270 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
271 DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
272 " Duplicate IMA measurements will not be recorded in the IMA log.");
273 #endif
274
275 for (i = 0; i < count; i++) {
276 r = _inits[i]();
277 if (r)
278 goto bad;
279 }
280
281 return 0;
282 bad:
283 while (i--)
284 _exits[i]();
285
286 return r;
287 }
288
dm_exit(void)289 static void __exit dm_exit(void)
290 {
291 int i = ARRAY_SIZE(_exits);
292
293 while (i--)
294 _exits[i]();
295
296 /*
297 * Should be empty by this point.
298 */
299 idr_destroy(&_minor_idr);
300 }
301
302 /*
303 * Block device functions
304 */
dm_deleting_md(struct mapped_device * md)305 int dm_deleting_md(struct mapped_device *md)
306 {
307 return test_bit(DMF_DELETING, &md->flags);
308 }
309
dm_blk_open(struct block_device * bdev,fmode_t mode)310 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
311 {
312 struct mapped_device *md;
313
314 spin_lock(&_minor_lock);
315
316 md = bdev->bd_disk->private_data;
317 if (!md)
318 goto out;
319
320 if (test_bit(DMF_FREEING, &md->flags) ||
321 dm_deleting_md(md)) {
322 md = NULL;
323 goto out;
324 }
325
326 dm_get(md);
327 atomic_inc(&md->open_count);
328 out:
329 spin_unlock(&_minor_lock);
330
331 return md ? 0 : -ENXIO;
332 }
333
dm_blk_close(struct gendisk * disk,fmode_t mode)334 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
335 {
336 struct mapped_device *md;
337
338 spin_lock(&_minor_lock);
339
340 md = disk->private_data;
341 if (WARN_ON(!md))
342 goto out;
343
344 if (atomic_dec_and_test(&md->open_count) &&
345 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
346 queue_work(deferred_remove_workqueue, &deferred_remove_work);
347
348 dm_put(md);
349 out:
350 spin_unlock(&_minor_lock);
351 }
352
dm_open_count(struct mapped_device * md)353 int dm_open_count(struct mapped_device *md)
354 {
355 return atomic_read(&md->open_count);
356 }
357
358 /*
359 * Guarantees nothing is using the device before it's deleted.
360 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)361 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
362 {
363 int r = 0;
364
365 spin_lock(&_minor_lock);
366
367 if (dm_open_count(md)) {
368 r = -EBUSY;
369 if (mark_deferred)
370 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
371 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
372 r = -EEXIST;
373 else
374 set_bit(DMF_DELETING, &md->flags);
375
376 spin_unlock(&_minor_lock);
377
378 return r;
379 }
380
dm_cancel_deferred_remove(struct mapped_device * md)381 int dm_cancel_deferred_remove(struct mapped_device *md)
382 {
383 int r = 0;
384
385 spin_lock(&_minor_lock);
386
387 if (test_bit(DMF_DELETING, &md->flags))
388 r = -EBUSY;
389 else
390 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
391
392 spin_unlock(&_minor_lock);
393
394 return r;
395 }
396
do_deferred_remove(struct work_struct * w)397 static void do_deferred_remove(struct work_struct *w)
398 {
399 dm_deferred_remove();
400 }
401
dm_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)402 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
403 {
404 struct mapped_device *md = bdev->bd_disk->private_data;
405
406 return dm_get_geometry(md, geo);
407 }
408
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev)409 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
410 struct block_device **bdev)
411 {
412 struct dm_target *ti;
413 struct dm_table *map;
414 int r;
415
416 retry:
417 r = -ENOTTY;
418 map = dm_get_live_table(md, srcu_idx);
419 if (!map || !dm_table_get_size(map))
420 return r;
421
422 /* We only support devices that have a single target */
423 if (map->num_targets != 1)
424 return r;
425
426 ti = dm_table_get_target(map, 0);
427 if (!ti->type->prepare_ioctl)
428 return r;
429
430 if (dm_suspended_md(md))
431 return -EAGAIN;
432
433 r = ti->type->prepare_ioctl(ti, bdev);
434 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
435 dm_put_live_table(md, *srcu_idx);
436 msleep(10);
437 goto retry;
438 }
439
440 return r;
441 }
442
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)443 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
444 {
445 dm_put_live_table(md, srcu_idx);
446 }
447
dm_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)448 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
449 unsigned int cmd, unsigned long arg)
450 {
451 struct mapped_device *md = bdev->bd_disk->private_data;
452 int r, srcu_idx;
453
454 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
455 if (r < 0)
456 goto out;
457
458 if (r > 0) {
459 /*
460 * Target determined this ioctl is being issued against a
461 * subset of the parent bdev; require extra privileges.
462 */
463 if (!capable(CAP_SYS_RAWIO)) {
464 DMDEBUG_LIMIT(
465 "%s: sending ioctl %x to DM device without required privilege.",
466 current->comm, cmd);
467 r = -ENOIOCTLCMD;
468 goto out;
469 }
470 }
471
472 if (!bdev->bd_disk->fops->ioctl)
473 r = -ENOTTY;
474 else
475 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
476 out:
477 dm_unprepare_ioctl(md, srcu_idx);
478 return r;
479 }
480
dm_start_time_ns_from_clone(struct bio * bio)481 u64 dm_start_time_ns_from_clone(struct bio *bio)
482 {
483 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
484 }
485 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
486
bio_is_flush_with_data(struct bio * bio)487 static bool bio_is_flush_with_data(struct bio *bio)
488 {
489 return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
490 }
491
dm_io_acct(struct dm_io * io,bool end)492 static void dm_io_acct(struct dm_io *io, bool end)
493 {
494 struct dm_stats_aux *stats_aux = &io->stats_aux;
495 unsigned long start_time = io->start_time;
496 struct mapped_device *md = io->md;
497 struct bio *bio = io->orig_bio;
498 unsigned int sectors;
499
500 /*
501 * If REQ_PREFLUSH set, don't account payload, it will be
502 * submitted (and accounted) after this flush completes.
503 */
504 if (bio_is_flush_with_data(bio))
505 sectors = 0;
506 else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
507 sectors = bio_sectors(bio);
508 else
509 sectors = io->sectors;
510
511 if (!end)
512 bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
513 start_time);
514 else
515 bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
516
517 if (static_branch_unlikely(&stats_enabled) &&
518 unlikely(dm_stats_used(&md->stats))) {
519 sector_t sector;
520
521 if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
522 sector = bio->bi_iter.bi_sector;
523 else
524 sector = bio_end_sector(bio) - io->sector_offset;
525
526 dm_stats_account_io(&md->stats, bio_data_dir(bio),
527 sector, sectors,
528 end, start_time, stats_aux);
529 }
530 }
531
__dm_start_io_acct(struct dm_io * io)532 static void __dm_start_io_acct(struct dm_io *io)
533 {
534 dm_io_acct(io, false);
535 }
536
dm_start_io_acct(struct dm_io * io,struct bio * clone)537 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
538 {
539 /*
540 * Ensure IO accounting is only ever started once.
541 */
542 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
543 return;
544
545 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
546 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
547 dm_io_set_flag(io, DM_IO_ACCOUNTED);
548 } else {
549 unsigned long flags;
550 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
551 spin_lock_irqsave(&io->lock, flags);
552 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
553 spin_unlock_irqrestore(&io->lock, flags);
554 return;
555 }
556 dm_io_set_flag(io, DM_IO_ACCOUNTED);
557 spin_unlock_irqrestore(&io->lock, flags);
558 }
559
560 __dm_start_io_acct(io);
561 }
562
dm_end_io_acct(struct dm_io * io)563 static void dm_end_io_acct(struct dm_io *io)
564 {
565 dm_io_acct(io, true);
566 }
567
alloc_io(struct mapped_device * md,struct bio * bio)568 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
569 {
570 struct dm_io *io;
571 struct dm_target_io *tio;
572 struct bio *clone;
573
574 clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
575 tio = clone_to_tio(clone);
576 tio->flags = 0;
577 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
578 tio->io = NULL;
579
580 io = container_of(tio, struct dm_io, tio);
581 io->magic = DM_IO_MAGIC;
582 io->status = BLK_STS_OK;
583
584 /* one ref is for submission, the other is for completion */
585 atomic_set(&io->io_count, 2);
586 this_cpu_inc(*md->pending_io);
587 io->orig_bio = bio;
588 io->md = md;
589 spin_lock_init(&io->lock);
590 io->start_time = jiffies;
591 io->flags = 0;
592
593 if (static_branch_unlikely(&stats_enabled))
594 dm_stats_record_start(&md->stats, &io->stats_aux);
595
596 return io;
597 }
598
free_io(struct dm_io * io)599 static void free_io(struct dm_io *io)
600 {
601 bio_put(&io->tio.clone);
602 }
603
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)604 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
605 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
606 {
607 struct mapped_device *md = ci->io->md;
608 struct dm_target_io *tio;
609 struct bio *clone;
610
611 if (!ci->io->tio.io) {
612 /* the dm_target_io embedded in ci->io is available */
613 tio = &ci->io->tio;
614 /* alloc_io() already initialized embedded clone */
615 clone = &tio->clone;
616 } else {
617 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
618 &md->mempools->bs);
619 if (!clone)
620 return NULL;
621
622 /* REQ_DM_POLL_LIST shouldn't be inherited */
623 clone->bi_opf &= ~REQ_DM_POLL_LIST;
624
625 tio = clone_to_tio(clone);
626 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
627 }
628
629 tio->magic = DM_TIO_MAGIC;
630 tio->io = ci->io;
631 tio->ti = ti;
632 tio->target_bio_nr = target_bio_nr;
633 tio->len_ptr = len;
634 tio->old_sector = 0;
635
636 /* Set default bdev, but target must bio_set_dev() before issuing IO */
637 clone->bi_bdev = md->disk->part0;
638 if (unlikely(ti->needs_bio_set_dev))
639 bio_set_dev(clone, md->disk->part0);
640
641 if (len) {
642 clone->bi_iter.bi_size = to_bytes(*len);
643 if (bio_integrity(clone))
644 bio_integrity_trim(clone);
645 }
646
647 return clone;
648 }
649
free_tio(struct bio * clone)650 static void free_tio(struct bio *clone)
651 {
652 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
653 return;
654 bio_put(clone);
655 }
656
657 /*
658 * Add the bio to the list of deferred io.
659 */
queue_io(struct mapped_device * md,struct bio * bio)660 static void queue_io(struct mapped_device *md, struct bio *bio)
661 {
662 unsigned long flags;
663
664 spin_lock_irqsave(&md->deferred_lock, flags);
665 bio_list_add(&md->deferred, bio);
666 spin_unlock_irqrestore(&md->deferred_lock, flags);
667 queue_work(md->wq, &md->work);
668 }
669
670 /*
671 * Everyone (including functions in this file), should use this
672 * function to access the md->map field, and make sure they call
673 * dm_put_live_table() when finished.
674 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)675 struct dm_table *dm_get_live_table(struct mapped_device *md,
676 int *srcu_idx) __acquires(md->io_barrier)
677 {
678 *srcu_idx = srcu_read_lock(&md->io_barrier);
679
680 return srcu_dereference(md->map, &md->io_barrier);
681 }
682
dm_put_live_table(struct mapped_device * md,int srcu_idx)683 void dm_put_live_table(struct mapped_device *md,
684 int srcu_idx) __releases(md->io_barrier)
685 {
686 srcu_read_unlock(&md->io_barrier, srcu_idx);
687 }
688
dm_sync_table(struct mapped_device * md)689 void dm_sync_table(struct mapped_device *md)
690 {
691 synchronize_srcu(&md->io_barrier);
692 synchronize_rcu_expedited();
693 }
694
695 /*
696 * A fast alternative to dm_get_live_table/dm_put_live_table.
697 * The caller must not block between these two functions.
698 */
dm_get_live_table_fast(struct mapped_device * md)699 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
700 {
701 rcu_read_lock();
702 return rcu_dereference(md->map);
703 }
704
dm_put_live_table_fast(struct mapped_device * md)705 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
706 {
707 rcu_read_unlock();
708 }
709
710 static char *_dm_claim_ptr = "I belong to device-mapper";
711
712 /*
713 * Open a table device so we can use it as a map destination.
714 */
open_table_device(struct mapped_device * md,dev_t dev,fmode_t mode)715 static struct table_device *open_table_device(struct mapped_device *md,
716 dev_t dev, fmode_t mode)
717 {
718 struct table_device *td;
719 struct block_device *bdev;
720 u64 part_off;
721 int r;
722
723 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
724 if (!td)
725 return ERR_PTR(-ENOMEM);
726 refcount_set(&td->count, 1);
727
728 bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
729 if (IS_ERR(bdev)) {
730 r = PTR_ERR(bdev);
731 goto out_free_td;
732 }
733
734 /*
735 * We can be called before the dm disk is added. In that case we can't
736 * register the holder relation here. It will be done once add_disk was
737 * called.
738 */
739 if (md->disk->slave_dir) {
740 r = bd_link_disk_holder(bdev, md->disk);
741 if (r)
742 goto out_blkdev_put;
743 }
744
745 td->dm_dev.mode = mode;
746 td->dm_dev.bdev = bdev;
747 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
748 format_dev_t(td->dm_dev.name, dev);
749 list_add(&td->list, &md->table_devices);
750 return td;
751
752 out_blkdev_put:
753 blkdev_put(bdev, mode | FMODE_EXCL);
754 out_free_td:
755 kfree(td);
756 return ERR_PTR(r);
757 }
758
759 /*
760 * Close a table device that we've been using.
761 */
close_table_device(struct table_device * td,struct mapped_device * md)762 static void close_table_device(struct table_device *td, struct mapped_device *md)
763 {
764 if (md->disk->slave_dir)
765 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
766 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
767 put_dax(td->dm_dev.dax_dev);
768 list_del(&td->list);
769 kfree(td);
770 }
771
find_table_device(struct list_head * l,dev_t dev,fmode_t mode)772 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
773 fmode_t mode)
774 {
775 struct table_device *td;
776
777 list_for_each_entry(td, l, list)
778 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
779 return td;
780
781 return NULL;
782 }
783
dm_get_table_device(struct mapped_device * md,dev_t dev,fmode_t mode,struct dm_dev ** result)784 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
785 struct dm_dev **result)
786 {
787 struct table_device *td;
788
789 mutex_lock(&md->table_devices_lock);
790 td = find_table_device(&md->table_devices, dev, mode);
791 if (!td) {
792 td = open_table_device(md, dev, mode);
793 if (IS_ERR(td)) {
794 mutex_unlock(&md->table_devices_lock);
795 return PTR_ERR(td);
796 }
797 } else {
798 refcount_inc(&td->count);
799 }
800 mutex_unlock(&md->table_devices_lock);
801
802 *result = &td->dm_dev;
803 return 0;
804 }
805
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)806 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
807 {
808 struct table_device *td = container_of(d, struct table_device, dm_dev);
809
810 mutex_lock(&md->table_devices_lock);
811 if (refcount_dec_and_test(&td->count))
812 close_table_device(td, md);
813 mutex_unlock(&md->table_devices_lock);
814 }
815
free_table_devices(struct list_head * devices)816 static void free_table_devices(struct list_head *devices)
817 {
818 struct list_head *tmp, *next;
819
820 list_for_each_safe(tmp, next, devices) {
821 struct table_device *td = list_entry(tmp, struct table_device, list);
822
823 DMWARN("dm_destroy: %s still exists with %d references",
824 td->dm_dev.name, refcount_read(&td->count));
825 kfree(td);
826 }
827 }
828
829 /*
830 * Get the geometry associated with a dm device
831 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)832 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
833 {
834 *geo = md->geometry;
835
836 return 0;
837 }
838
839 /*
840 * Set the geometry of a device.
841 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)842 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
843 {
844 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
845
846 if (geo->start > sz) {
847 DMERR("Start sector is beyond the geometry limits.");
848 return -EINVAL;
849 }
850
851 md->geometry = *geo;
852
853 return 0;
854 }
855
__noflush_suspending(struct mapped_device * md)856 static int __noflush_suspending(struct mapped_device *md)
857 {
858 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
859 }
860
dm_requeue_add_io(struct dm_io * io,bool first_stage)861 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
862 {
863 struct mapped_device *md = io->md;
864
865 if (first_stage) {
866 struct dm_io *next = md->requeue_list;
867
868 md->requeue_list = io;
869 io->next = next;
870 } else {
871 bio_list_add_head(&md->deferred, io->orig_bio);
872 }
873 }
874
dm_kick_requeue(struct mapped_device * md,bool first_stage)875 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
876 {
877 if (first_stage)
878 queue_work(md->wq, &md->requeue_work);
879 else
880 queue_work(md->wq, &md->work);
881 }
882
883 /*
884 * Return true if the dm_io's original bio is requeued.
885 * io->status is updated with error if requeue disallowed.
886 */
dm_handle_requeue(struct dm_io * io,bool first_stage)887 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
888 {
889 struct bio *bio = io->orig_bio;
890 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
891 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
892 (bio->bi_opf & REQ_POLLED));
893 struct mapped_device *md = io->md;
894 bool requeued = false;
895
896 if (handle_requeue || handle_polled_eagain) {
897 unsigned long flags;
898
899 if (bio->bi_opf & REQ_POLLED) {
900 /*
901 * Upper layer won't help us poll split bio
902 * (io->orig_bio may only reflect a subset of the
903 * pre-split original) so clear REQ_POLLED.
904 */
905 bio_clear_polled(bio);
906 }
907
908 /*
909 * Target requested pushing back the I/O or
910 * polled IO hit BLK_STS_AGAIN.
911 */
912 spin_lock_irqsave(&md->deferred_lock, flags);
913 if ((__noflush_suspending(md) &&
914 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
915 handle_polled_eagain || first_stage) {
916 dm_requeue_add_io(io, first_stage);
917 requeued = true;
918 } else {
919 /*
920 * noflush suspend was interrupted or this is
921 * a write to a zoned target.
922 */
923 io->status = BLK_STS_IOERR;
924 }
925 spin_unlock_irqrestore(&md->deferred_lock, flags);
926 }
927
928 if (requeued)
929 dm_kick_requeue(md, first_stage);
930
931 return requeued;
932 }
933
__dm_io_complete(struct dm_io * io,bool first_stage)934 static void __dm_io_complete(struct dm_io *io, bool first_stage)
935 {
936 struct bio *bio = io->orig_bio;
937 struct mapped_device *md = io->md;
938 blk_status_t io_error;
939 bool requeued;
940
941 requeued = dm_handle_requeue(io, first_stage);
942 if (requeued && first_stage)
943 return;
944
945 io_error = io->status;
946 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
947 dm_end_io_acct(io);
948 else if (!io_error) {
949 /*
950 * Must handle target that DM_MAPIO_SUBMITTED only to
951 * then bio_endio() rather than dm_submit_bio_remap()
952 */
953 __dm_start_io_acct(io);
954 dm_end_io_acct(io);
955 }
956 free_io(io);
957 smp_wmb();
958 this_cpu_dec(*md->pending_io);
959
960 /* nudge anyone waiting on suspend queue */
961 if (unlikely(wq_has_sleeper(&md->wait)))
962 wake_up(&md->wait);
963
964 /* Return early if the original bio was requeued */
965 if (requeued)
966 return;
967
968 if (bio_is_flush_with_data(bio)) {
969 /*
970 * Preflush done for flush with data, reissue
971 * without REQ_PREFLUSH.
972 */
973 bio->bi_opf &= ~REQ_PREFLUSH;
974 queue_io(md, bio);
975 } else {
976 /* done with normal IO or empty flush */
977 if (io_error)
978 bio->bi_status = io_error;
979 bio_endio(bio);
980 }
981 }
982
dm_wq_requeue_work(struct work_struct * work)983 static void dm_wq_requeue_work(struct work_struct *work)
984 {
985 struct mapped_device *md = container_of(work, struct mapped_device,
986 requeue_work);
987 unsigned long flags;
988 struct dm_io *io;
989
990 /* reuse deferred lock to simplify dm_handle_requeue */
991 spin_lock_irqsave(&md->deferred_lock, flags);
992 io = md->requeue_list;
993 md->requeue_list = NULL;
994 spin_unlock_irqrestore(&md->deferred_lock, flags);
995
996 while (io) {
997 struct dm_io *next = io->next;
998
999 dm_io_rewind(io, &md->disk->bio_split);
1000
1001 io->next = NULL;
1002 __dm_io_complete(io, false);
1003 io = next;
1004 cond_resched();
1005 }
1006 }
1007
1008 /*
1009 * Two staged requeue:
1010 *
1011 * 1) io->orig_bio points to the real original bio, and the part mapped to
1012 * this io must be requeued, instead of other parts of the original bio.
1013 *
1014 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1015 */
dm_io_complete(struct dm_io * io)1016 static void dm_io_complete(struct dm_io *io)
1017 {
1018 bool first_requeue;
1019
1020 /*
1021 * Only dm_io that has been split needs two stage requeue, otherwise
1022 * we may run into long bio clone chain during suspend and OOM could
1023 * be triggered.
1024 *
1025 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1026 * also aren't handled via the first stage requeue.
1027 */
1028 if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1029 first_requeue = true;
1030 else
1031 first_requeue = false;
1032
1033 __dm_io_complete(io, first_requeue);
1034 }
1035
1036 /*
1037 * Decrements the number of outstanding ios that a bio has been
1038 * cloned into, completing the original io if necc.
1039 */
__dm_io_dec_pending(struct dm_io * io)1040 static inline void __dm_io_dec_pending(struct dm_io *io)
1041 {
1042 if (atomic_dec_and_test(&io->io_count))
1043 dm_io_complete(io);
1044 }
1045
dm_io_set_error(struct dm_io * io,blk_status_t error)1046 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1047 {
1048 unsigned long flags;
1049
1050 /* Push-back supersedes any I/O errors */
1051 spin_lock_irqsave(&io->lock, flags);
1052 if (!(io->status == BLK_STS_DM_REQUEUE &&
1053 __noflush_suspending(io->md))) {
1054 io->status = error;
1055 }
1056 spin_unlock_irqrestore(&io->lock, flags);
1057 }
1058
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1059 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1060 {
1061 if (unlikely(error))
1062 dm_io_set_error(io, error);
1063
1064 __dm_io_dec_pending(io);
1065 }
1066
disable_discard(struct mapped_device * md)1067 void disable_discard(struct mapped_device *md)
1068 {
1069 struct queue_limits *limits = dm_get_queue_limits(md);
1070
1071 /* device doesn't really support DISCARD, disable it */
1072 limits->max_discard_sectors = 0;
1073 }
1074
disable_write_zeroes(struct mapped_device * md)1075 void disable_write_zeroes(struct mapped_device *md)
1076 {
1077 struct queue_limits *limits = dm_get_queue_limits(md);
1078
1079 /* device doesn't really support WRITE ZEROES, disable it */
1080 limits->max_write_zeroes_sectors = 0;
1081 }
1082
swap_bios_limit(struct dm_target * ti,struct bio * bio)1083 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1084 {
1085 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1086 }
1087
clone_endio(struct bio * bio)1088 static void clone_endio(struct bio *bio)
1089 {
1090 blk_status_t error = bio->bi_status;
1091 struct dm_target_io *tio = clone_to_tio(bio);
1092 struct dm_target *ti = tio->ti;
1093 dm_endio_fn endio = ti->type->end_io;
1094 struct dm_io *io = tio->io;
1095 struct mapped_device *md = io->md;
1096
1097 if (unlikely(error == BLK_STS_TARGET)) {
1098 if (bio_op(bio) == REQ_OP_DISCARD &&
1099 !bdev_max_discard_sectors(bio->bi_bdev))
1100 disable_discard(md);
1101 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1102 !bdev_write_zeroes_sectors(bio->bi_bdev))
1103 disable_write_zeroes(md);
1104 }
1105
1106 if (static_branch_unlikely(&zoned_enabled) &&
1107 unlikely(bdev_is_zoned(bio->bi_bdev)))
1108 dm_zone_endio(io, bio);
1109
1110 if (endio) {
1111 int r = endio(ti, bio, &error);
1112 switch (r) {
1113 case DM_ENDIO_REQUEUE:
1114 if (static_branch_unlikely(&zoned_enabled)) {
1115 /*
1116 * Requeuing writes to a sequential zone of a zoned
1117 * target will break the sequential write pattern:
1118 * fail such IO.
1119 */
1120 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1121 error = BLK_STS_IOERR;
1122 else
1123 error = BLK_STS_DM_REQUEUE;
1124 } else
1125 error = BLK_STS_DM_REQUEUE;
1126 fallthrough;
1127 case DM_ENDIO_DONE:
1128 break;
1129 case DM_ENDIO_INCOMPLETE:
1130 /* The target will handle the io */
1131 return;
1132 default:
1133 DMCRIT("unimplemented target endio return value: %d", r);
1134 BUG();
1135 }
1136 }
1137
1138 if (static_branch_unlikely(&swap_bios_enabled) &&
1139 unlikely(swap_bios_limit(ti, bio)))
1140 up(&md->swap_bios_semaphore);
1141
1142 free_tio(bio);
1143 dm_io_dec_pending(io, error);
1144 }
1145
1146 /*
1147 * Return maximum size of I/O possible at the supplied sector up to the current
1148 * target boundary.
1149 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1150 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1151 sector_t target_offset)
1152 {
1153 return ti->len - target_offset;
1154 }
1155
max_io_len(struct dm_target * ti,sector_t sector)1156 static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1157 {
1158 sector_t target_offset = dm_target_offset(ti, sector);
1159 sector_t len = max_io_len_target_boundary(ti, target_offset);
1160
1161 /*
1162 * Does the target need to split IO even further?
1163 * - varied (per target) IO splitting is a tenet of DM; this
1164 * explains why stacked chunk_sectors based splitting via
1165 * bio_split_to_limits() isn't possible here.
1166 */
1167 if (!ti->max_io_len)
1168 return len;
1169 return min_t(sector_t, len,
1170 min(queue_max_sectors(ti->table->md->queue),
1171 blk_chunk_sectors_left(target_offset, ti->max_io_len)));
1172 }
1173
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1174 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1175 {
1176 if (len > UINT_MAX) {
1177 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1178 (unsigned long long)len, UINT_MAX);
1179 ti->error = "Maximum size of target IO is too large";
1180 return -EINVAL;
1181 }
1182
1183 ti->max_io_len = (uint32_t) len;
1184
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1188
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1189 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1190 sector_t sector, int *srcu_idx)
1191 __acquires(md->io_barrier)
1192 {
1193 struct dm_table *map;
1194 struct dm_target *ti;
1195
1196 map = dm_get_live_table(md, srcu_idx);
1197 if (!map)
1198 return NULL;
1199
1200 ti = dm_table_find_target(map, sector);
1201 if (!ti)
1202 return NULL;
1203
1204 return ti;
1205 }
1206
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,pfn_t * pfn)1207 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1208 long nr_pages, enum dax_access_mode mode, void **kaddr,
1209 pfn_t *pfn)
1210 {
1211 struct mapped_device *md = dax_get_private(dax_dev);
1212 sector_t sector = pgoff * PAGE_SECTORS;
1213 struct dm_target *ti;
1214 long len, ret = -EIO;
1215 int srcu_idx;
1216
1217 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1218
1219 if (!ti)
1220 goto out;
1221 if (!ti->type->direct_access)
1222 goto out;
1223 len = max_io_len(ti, sector) / PAGE_SECTORS;
1224 if (len < 1)
1225 goto out;
1226 nr_pages = min(len, nr_pages);
1227 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1228
1229 out:
1230 dm_put_live_table(md, srcu_idx);
1231
1232 return ret;
1233 }
1234
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1235 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1236 size_t nr_pages)
1237 {
1238 struct mapped_device *md = dax_get_private(dax_dev);
1239 sector_t sector = pgoff * PAGE_SECTORS;
1240 struct dm_target *ti;
1241 int ret = -EIO;
1242 int srcu_idx;
1243
1244 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1245
1246 if (!ti)
1247 goto out;
1248 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1249 /*
1250 * ->zero_page_range() is mandatory dax operation. If we are
1251 * here, something is wrong.
1252 */
1253 goto out;
1254 }
1255 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1256 out:
1257 dm_put_live_table(md, srcu_idx);
1258
1259 return ret;
1260 }
1261
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1262 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1263 void *addr, size_t bytes, struct iov_iter *i)
1264 {
1265 struct mapped_device *md = dax_get_private(dax_dev);
1266 sector_t sector = pgoff * PAGE_SECTORS;
1267 struct dm_target *ti;
1268 int srcu_idx;
1269 long ret = 0;
1270
1271 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1272 if (!ti || !ti->type->dax_recovery_write)
1273 goto out;
1274
1275 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1276 out:
1277 dm_put_live_table(md, srcu_idx);
1278 return ret;
1279 }
1280
1281 /*
1282 * A target may call dm_accept_partial_bio only from the map routine. It is
1283 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1284 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1285 * __send_duplicate_bios().
1286 *
1287 * dm_accept_partial_bio informs the dm that the target only wants to process
1288 * additional n_sectors sectors of the bio and the rest of the data should be
1289 * sent in a next bio.
1290 *
1291 * A diagram that explains the arithmetics:
1292 * +--------------------+---------------+-------+
1293 * | 1 | 2 | 3 |
1294 * +--------------------+---------------+-------+
1295 *
1296 * <-------------- *tio->len_ptr --------------->
1297 * <----- bio_sectors ----->
1298 * <-- n_sectors -->
1299 *
1300 * Region 1 was already iterated over with bio_advance or similar function.
1301 * (it may be empty if the target doesn't use bio_advance)
1302 * Region 2 is the remaining bio size that the target wants to process.
1303 * (it may be empty if region 1 is non-empty, although there is no reason
1304 * to make it empty)
1305 * The target requires that region 3 is to be sent in the next bio.
1306 *
1307 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1308 * the partially processed part (the sum of regions 1+2) must be the same for all
1309 * copies of the bio.
1310 */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1311 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1312 {
1313 struct dm_target_io *tio = clone_to_tio(bio);
1314 struct dm_io *io = tio->io;
1315 unsigned int bio_sectors = bio_sectors(bio);
1316
1317 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1318 BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1319 BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1320 BUG_ON(bio_sectors > *tio->len_ptr);
1321 BUG_ON(n_sectors > bio_sectors);
1322
1323 *tio->len_ptr -= bio_sectors - n_sectors;
1324 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1325
1326 /*
1327 * __split_and_process_bio() may have already saved mapped part
1328 * for accounting but it is being reduced so update accordingly.
1329 */
1330 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1331 io->sectors = n_sectors;
1332 io->sector_offset = bio_sectors(io->orig_bio);
1333 }
1334 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1335
1336 /*
1337 * @clone: clone bio that DM core passed to target's .map function
1338 * @tgt_clone: clone of @clone bio that target needs submitted
1339 *
1340 * Targets should use this interface to submit bios they take
1341 * ownership of when returning DM_MAPIO_SUBMITTED.
1342 *
1343 * Target should also enable ti->accounts_remapped_io
1344 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1345 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1346 {
1347 struct dm_target_io *tio = clone_to_tio(clone);
1348 struct dm_io *io = tio->io;
1349
1350 /* establish bio that will get submitted */
1351 if (!tgt_clone)
1352 tgt_clone = clone;
1353
1354 /*
1355 * Account io->origin_bio to DM dev on behalf of target
1356 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1357 */
1358 dm_start_io_acct(io, clone);
1359
1360 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1361 tio->old_sector);
1362 submit_bio_noacct(tgt_clone);
1363 }
1364 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1365
__set_swap_bios_limit(struct mapped_device * md,int latch)1366 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1367 {
1368 mutex_lock(&md->swap_bios_lock);
1369 while (latch < md->swap_bios) {
1370 cond_resched();
1371 down(&md->swap_bios_semaphore);
1372 md->swap_bios--;
1373 }
1374 while (latch > md->swap_bios) {
1375 cond_resched();
1376 up(&md->swap_bios_semaphore);
1377 md->swap_bios++;
1378 }
1379 mutex_unlock(&md->swap_bios_lock);
1380 }
1381
__map_bio(struct bio * clone)1382 static void __map_bio(struct bio *clone)
1383 {
1384 struct dm_target_io *tio = clone_to_tio(clone);
1385 struct dm_target *ti = tio->ti;
1386 struct dm_io *io = tio->io;
1387 struct mapped_device *md = io->md;
1388 int r;
1389
1390 clone->bi_end_io = clone_endio;
1391
1392 /*
1393 * Map the clone.
1394 */
1395 tio->old_sector = clone->bi_iter.bi_sector;
1396
1397 if (static_branch_unlikely(&swap_bios_enabled) &&
1398 unlikely(swap_bios_limit(ti, clone))) {
1399 int latch = get_swap_bios();
1400 if (unlikely(latch != md->swap_bios))
1401 __set_swap_bios_limit(md, latch);
1402 down(&md->swap_bios_semaphore);
1403 }
1404
1405 if (static_branch_unlikely(&zoned_enabled)) {
1406 /*
1407 * Check if the IO needs a special mapping due to zone append
1408 * emulation on zoned target. In this case, dm_zone_map_bio()
1409 * calls the target map operation.
1410 */
1411 if (unlikely(dm_emulate_zone_append(md)))
1412 r = dm_zone_map_bio(tio);
1413 else
1414 r = ti->type->map(ti, clone);
1415 } else
1416 r = ti->type->map(ti, clone);
1417
1418 switch (r) {
1419 case DM_MAPIO_SUBMITTED:
1420 /* target has assumed ownership of this io */
1421 if (!ti->accounts_remapped_io)
1422 dm_start_io_acct(io, clone);
1423 break;
1424 case DM_MAPIO_REMAPPED:
1425 dm_submit_bio_remap(clone, NULL);
1426 break;
1427 case DM_MAPIO_KILL:
1428 case DM_MAPIO_REQUEUE:
1429 if (static_branch_unlikely(&swap_bios_enabled) &&
1430 unlikely(swap_bios_limit(ti, clone)))
1431 up(&md->swap_bios_semaphore);
1432 free_tio(clone);
1433 if (r == DM_MAPIO_KILL)
1434 dm_io_dec_pending(io, BLK_STS_IOERR);
1435 else
1436 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1437 break;
1438 default:
1439 DMCRIT("unimplemented target map return value: %d", r);
1440 BUG();
1441 }
1442 }
1443
setup_split_accounting(struct clone_info * ci,unsigned int len)1444 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1445 {
1446 struct dm_io *io = ci->io;
1447
1448 if (ci->sector_count > len) {
1449 /*
1450 * Split needed, save the mapped part for accounting.
1451 * NOTE: dm_accept_partial_bio() will update accordingly.
1452 */
1453 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1454 io->sectors = len;
1455 io->sector_offset = bio_sectors(ci->bio);
1456 }
1457 }
1458
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1459 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1460 struct dm_target *ti, unsigned int num_bios,
1461 unsigned *len)
1462 {
1463 struct bio *bio;
1464 int try;
1465
1466 for (try = 0; try < 2; try++) {
1467 int bio_nr;
1468
1469 if (try)
1470 mutex_lock(&ci->io->md->table_devices_lock);
1471 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1472 bio = alloc_tio(ci, ti, bio_nr, len,
1473 try ? GFP_NOIO : GFP_NOWAIT);
1474 if (!bio)
1475 break;
1476
1477 bio_list_add(blist, bio);
1478 }
1479 if (try)
1480 mutex_unlock(&ci->io->md->table_devices_lock);
1481 if (bio_nr == num_bios)
1482 return;
1483
1484 while ((bio = bio_list_pop(blist)))
1485 free_tio(bio);
1486 }
1487 }
1488
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1489 static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1490 unsigned int num_bios, unsigned int *len)
1491 {
1492 struct bio_list blist = BIO_EMPTY_LIST;
1493 struct bio *clone;
1494 unsigned int ret = 0;
1495
1496 switch (num_bios) {
1497 case 0:
1498 break;
1499 case 1:
1500 if (len)
1501 setup_split_accounting(ci, *len);
1502 clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1503 __map_bio(clone);
1504 ret = 1;
1505 break;
1506 default:
1507 if (len)
1508 setup_split_accounting(ci, *len);
1509 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1510 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1511 while ((clone = bio_list_pop(&blist))) {
1512 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1513 __map_bio(clone);
1514 ret += 1;
1515 }
1516 break;
1517 }
1518
1519 return ret;
1520 }
1521
__send_empty_flush(struct clone_info * ci)1522 static void __send_empty_flush(struct clone_info *ci)
1523 {
1524 struct dm_table *t = ci->map;
1525 struct bio flush_bio;
1526
1527 /*
1528 * Use an on-stack bio for this, it's safe since we don't
1529 * need to reference it after submit. It's just used as
1530 * the basis for the clone(s).
1531 */
1532 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1533 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1534
1535 ci->bio = &flush_bio;
1536 ci->sector_count = 0;
1537 ci->io->tio.clone.bi_iter.bi_size = 0;
1538
1539 for (unsigned int i = 0; i < t->num_targets; i++) {
1540 unsigned int bios;
1541 struct dm_target *ti = dm_table_get_target(t, i);
1542
1543 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1544 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1545 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1546 }
1547
1548 /*
1549 * alloc_io() takes one extra reference for submission, so the
1550 * reference won't reach 0 without the following subtraction
1551 */
1552 atomic_sub(1, &ci->io->io_count);
1553
1554 bio_uninit(ci->bio);
1555 }
1556
__send_changing_extent_only(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios)1557 static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1558 unsigned int num_bios)
1559 {
1560 unsigned int len, bios;
1561
1562 len = min_t(sector_t, ci->sector_count,
1563 max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1564
1565 atomic_add(num_bios, &ci->io->io_count);
1566 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1567 /*
1568 * alloc_io() takes one extra reference for submission, so the
1569 * reference won't reach 0 without the following (+1) subtraction
1570 */
1571 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1572
1573 ci->sector += len;
1574 ci->sector_count -= len;
1575 }
1576
is_abnormal_io(struct bio * bio)1577 static bool is_abnormal_io(struct bio *bio)
1578 {
1579 enum req_op op = bio_op(bio);
1580
1581 if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1582 switch (op) {
1583 case REQ_OP_DISCARD:
1584 case REQ_OP_SECURE_ERASE:
1585 case REQ_OP_WRITE_ZEROES:
1586 return true;
1587 default:
1588 break;
1589 }
1590 }
1591
1592 return false;
1593 }
1594
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1595 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1596 struct dm_target *ti)
1597 {
1598 unsigned int num_bios = 0;
1599
1600 switch (bio_op(ci->bio)) {
1601 case REQ_OP_DISCARD:
1602 num_bios = ti->num_discard_bios;
1603 break;
1604 case REQ_OP_SECURE_ERASE:
1605 num_bios = ti->num_secure_erase_bios;
1606 break;
1607 case REQ_OP_WRITE_ZEROES:
1608 num_bios = ti->num_write_zeroes_bios;
1609 break;
1610 default:
1611 break;
1612 }
1613
1614 /*
1615 * Even though the device advertised support for this type of
1616 * request, that does not mean every target supports it, and
1617 * reconfiguration might also have changed that since the
1618 * check was performed.
1619 */
1620 if (unlikely(!num_bios))
1621 return BLK_STS_NOTSUPP;
1622
1623 __send_changing_extent_only(ci, ti, num_bios);
1624 return BLK_STS_OK;
1625 }
1626
1627 /*
1628 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1629 * associated with this bio, and this bio's bi_private needs to be
1630 * stored in dm_io->data before the reuse.
1631 *
1632 * bio->bi_private is owned by fs or upper layer, so block layer won't
1633 * touch it after splitting. Meantime it won't be changed by anyone after
1634 * bio is submitted. So this reuse is safe.
1635 */
dm_poll_list_head(struct bio * bio)1636 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1637 {
1638 return (struct dm_io **)&bio->bi_private;
1639 }
1640
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1641 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1642 {
1643 struct dm_io **head = dm_poll_list_head(bio);
1644
1645 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1646 bio->bi_opf |= REQ_DM_POLL_LIST;
1647 /*
1648 * Save .bi_private into dm_io, so that we can reuse
1649 * .bi_private as dm_io list head for storing dm_io list
1650 */
1651 io->data = bio->bi_private;
1652
1653 /* tell block layer to poll for completion */
1654 bio->bi_cookie = ~BLK_QC_T_NONE;
1655
1656 io->next = NULL;
1657 } else {
1658 /*
1659 * bio recursed due to split, reuse original poll list,
1660 * and save bio->bi_private too.
1661 */
1662 io->data = (*head)->data;
1663 io->next = *head;
1664 }
1665
1666 *head = io;
1667 }
1668
1669 /*
1670 * Select the correct strategy for processing a non-flush bio.
1671 */
__split_and_process_bio(struct clone_info * ci)1672 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1673 {
1674 struct bio *clone;
1675 struct dm_target *ti;
1676 unsigned int len;
1677
1678 ti = dm_table_find_target(ci->map, ci->sector);
1679 if (unlikely(!ti))
1680 return BLK_STS_IOERR;
1681
1682 if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1683 unlikely(!dm_target_supports_nowait(ti->type)))
1684 return BLK_STS_NOTSUPP;
1685
1686 if (unlikely(ci->is_abnormal_io))
1687 return __process_abnormal_io(ci, ti);
1688
1689 /*
1690 * Only support bio polling for normal IO, and the target io is
1691 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1692 */
1693 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1694
1695 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1696 setup_split_accounting(ci, len);
1697 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1698 __map_bio(clone);
1699
1700 ci->sector += len;
1701 ci->sector_count -= len;
1702
1703 return BLK_STS_OK;
1704 }
1705
init_clone_info(struct clone_info * ci,struct mapped_device * md,struct dm_table * map,struct bio * bio,bool is_abnormal)1706 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1707 struct dm_table *map, struct bio *bio, bool is_abnormal)
1708 {
1709 ci->map = map;
1710 ci->io = alloc_io(md, bio);
1711 ci->bio = bio;
1712 ci->is_abnormal_io = is_abnormal;
1713 ci->submit_as_polled = false;
1714 ci->sector = bio->bi_iter.bi_sector;
1715 ci->sector_count = bio_sectors(bio);
1716
1717 /* Shouldn't happen but sector_count was being set to 0 so... */
1718 if (static_branch_unlikely(&zoned_enabled) &&
1719 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1720 ci->sector_count = 0;
1721 }
1722
1723 /*
1724 * Entry point to split a bio into clones and submit them to the targets.
1725 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1726 static void dm_split_and_process_bio(struct mapped_device *md,
1727 struct dm_table *map, struct bio *bio)
1728 {
1729 struct clone_info ci;
1730 struct dm_io *io;
1731 blk_status_t error = BLK_STS_OK;
1732 bool is_abnormal;
1733
1734 is_abnormal = is_abnormal_io(bio);
1735 if (unlikely(is_abnormal)) {
1736 /*
1737 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1738 * otherwise associated queue_limits won't be imposed.
1739 */
1740 bio = bio_split_to_limits(bio);
1741 if (!bio)
1742 return;
1743 }
1744
1745 init_clone_info(&ci, md, map, bio, is_abnormal);
1746 io = ci.io;
1747
1748 if (bio->bi_opf & REQ_PREFLUSH) {
1749 __send_empty_flush(&ci);
1750 /* dm_io_complete submits any data associated with flush */
1751 goto out;
1752 }
1753
1754 error = __split_and_process_bio(&ci);
1755 if (error || !ci.sector_count)
1756 goto out;
1757 /*
1758 * Remainder must be passed to submit_bio_noacct() so it gets handled
1759 * *after* bios already submitted have been completely processed.
1760 */
1761 bio_trim(bio, io->sectors, ci.sector_count);
1762 trace_block_split(bio, bio->bi_iter.bi_sector);
1763 bio_inc_remaining(bio);
1764 submit_bio_noacct(bio);
1765 out:
1766 /*
1767 * Drop the extra reference count for non-POLLED bio, and hold one
1768 * reference for POLLED bio, which will be released in dm_poll_bio
1769 *
1770 * Add every dm_io instance into the dm_io list head which is stored
1771 * in bio->bi_private, so that dm_poll_bio can poll them all.
1772 */
1773 if (error || !ci.submit_as_polled) {
1774 /*
1775 * In case of submission failure, the extra reference for
1776 * submitting io isn't consumed yet
1777 */
1778 if (error)
1779 atomic_dec(&io->io_count);
1780 dm_io_dec_pending(io, error);
1781 } else
1782 dm_queue_poll_io(bio, io);
1783 }
1784
dm_submit_bio(struct bio * bio)1785 static void dm_submit_bio(struct bio *bio)
1786 {
1787 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1788 int srcu_idx;
1789 struct dm_table *map;
1790
1791 map = dm_get_live_table(md, &srcu_idx);
1792
1793 /* If suspended, or map not yet available, queue this IO for later */
1794 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1795 unlikely(!map)) {
1796 if (bio->bi_opf & REQ_NOWAIT)
1797 bio_wouldblock_error(bio);
1798 else if (bio->bi_opf & REQ_RAHEAD)
1799 bio_io_error(bio);
1800 else
1801 queue_io(md, bio);
1802 goto out;
1803 }
1804
1805 dm_split_and_process_bio(md, map, bio);
1806 out:
1807 dm_put_live_table(md, srcu_idx);
1808 }
1809
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)1810 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1811 unsigned int flags)
1812 {
1813 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1814
1815 /* don't poll if the mapped io is done */
1816 if (atomic_read(&io->io_count) > 1)
1817 bio_poll(&io->tio.clone, iob, flags);
1818
1819 /* bio_poll holds the last reference */
1820 return atomic_read(&io->io_count) == 1;
1821 }
1822
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1823 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1824 unsigned int flags)
1825 {
1826 struct dm_io **head = dm_poll_list_head(bio);
1827 struct dm_io *list = *head;
1828 struct dm_io *tmp = NULL;
1829 struct dm_io *curr, *next;
1830
1831 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1832 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1833 return 0;
1834
1835 WARN_ON_ONCE(!list);
1836
1837 /*
1838 * Restore .bi_private before possibly completing dm_io.
1839 *
1840 * bio_poll() is only possible once @bio has been completely
1841 * submitted via submit_bio_noacct()'s depth-first submission.
1842 * So there is no dm_queue_poll_io() race associated with
1843 * clearing REQ_DM_POLL_LIST here.
1844 */
1845 bio->bi_opf &= ~REQ_DM_POLL_LIST;
1846 bio->bi_private = list->data;
1847
1848 for (curr = list, next = curr->next; curr; curr = next, next =
1849 curr ? curr->next : NULL) {
1850 if (dm_poll_dm_io(curr, iob, flags)) {
1851 /*
1852 * clone_endio() has already occurred, so no
1853 * error handling is needed here.
1854 */
1855 __dm_io_dec_pending(curr);
1856 } else {
1857 curr->next = tmp;
1858 tmp = curr;
1859 }
1860 }
1861
1862 /* Not done? */
1863 if (tmp) {
1864 bio->bi_opf |= REQ_DM_POLL_LIST;
1865 /* Reset bio->bi_private to dm_io list head */
1866 *head = tmp;
1867 return 0;
1868 }
1869 return 1;
1870 }
1871
1872 /*-----------------------------------------------------------------
1873 * An IDR is used to keep track of allocated minor numbers.
1874 *---------------------------------------------------------------*/
free_minor(int minor)1875 static void free_minor(int minor)
1876 {
1877 spin_lock(&_minor_lock);
1878 idr_remove(&_minor_idr, minor);
1879 spin_unlock(&_minor_lock);
1880 }
1881
1882 /*
1883 * See if the device with a specific minor # is free.
1884 */
specific_minor(int minor)1885 static int specific_minor(int minor)
1886 {
1887 int r;
1888
1889 if (minor >= (1 << MINORBITS))
1890 return -EINVAL;
1891
1892 idr_preload(GFP_KERNEL);
1893 spin_lock(&_minor_lock);
1894
1895 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1896
1897 spin_unlock(&_minor_lock);
1898 idr_preload_end();
1899 if (r < 0)
1900 return r == -ENOSPC ? -EBUSY : r;
1901 return 0;
1902 }
1903
next_free_minor(int * minor)1904 static int next_free_minor(int *minor)
1905 {
1906 int r;
1907
1908 idr_preload(GFP_KERNEL);
1909 spin_lock(&_minor_lock);
1910
1911 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1912
1913 spin_unlock(&_minor_lock);
1914 idr_preload_end();
1915 if (r < 0)
1916 return r;
1917 *minor = r;
1918 return 0;
1919 }
1920
1921 static const struct block_device_operations dm_blk_dops;
1922 static const struct block_device_operations dm_rq_blk_dops;
1923 static const struct dax_operations dm_dax_ops;
1924
1925 static void dm_wq_work(struct work_struct *work);
1926
1927 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)1928 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1929 {
1930 dm_destroy_crypto_profile(q->crypto_profile);
1931 }
1932
1933 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1934
dm_queue_destroy_crypto_profile(struct request_queue * q)1935 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1936 {
1937 }
1938 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1939
cleanup_mapped_device(struct mapped_device * md)1940 static void cleanup_mapped_device(struct mapped_device *md)
1941 {
1942 if (md->wq)
1943 destroy_workqueue(md->wq);
1944 dm_free_md_mempools(md->mempools);
1945
1946 if (md->dax_dev) {
1947 dax_remove_host(md->disk);
1948 kill_dax(md->dax_dev);
1949 put_dax(md->dax_dev);
1950 md->dax_dev = NULL;
1951 }
1952
1953 dm_cleanup_zoned_dev(md);
1954 if (md->disk) {
1955 spin_lock(&_minor_lock);
1956 md->disk->private_data = NULL;
1957 spin_unlock(&_minor_lock);
1958 if (dm_get_md_type(md) != DM_TYPE_NONE) {
1959 struct table_device *td;
1960
1961 dm_sysfs_exit(md);
1962 list_for_each_entry(td, &md->table_devices, list) {
1963 bd_unlink_disk_holder(td->dm_dev.bdev,
1964 md->disk);
1965 }
1966
1967 /*
1968 * Hold lock to make sure del_gendisk() won't concurrent
1969 * with open/close_table_device().
1970 */
1971 mutex_lock(&md->table_devices_lock);
1972 del_gendisk(md->disk);
1973 mutex_unlock(&md->table_devices_lock);
1974 }
1975 dm_queue_destroy_crypto_profile(md->queue);
1976 put_disk(md->disk);
1977 }
1978
1979 if (md->pending_io) {
1980 free_percpu(md->pending_io);
1981 md->pending_io = NULL;
1982 }
1983
1984 cleanup_srcu_struct(&md->io_barrier);
1985
1986 mutex_destroy(&md->suspend_lock);
1987 mutex_destroy(&md->type_lock);
1988 mutex_destroy(&md->table_devices_lock);
1989 mutex_destroy(&md->swap_bios_lock);
1990
1991 dm_mq_cleanup_mapped_device(md);
1992 }
1993
1994 /*
1995 * Allocate and initialise a blank device with a given minor.
1996 */
alloc_dev(int minor)1997 static struct mapped_device *alloc_dev(int minor)
1998 {
1999 int r, numa_node_id = dm_get_numa_node();
2000 struct mapped_device *md;
2001 void *old_md;
2002
2003 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2004 if (!md) {
2005 DMERR("unable to allocate device, out of memory.");
2006 return NULL;
2007 }
2008
2009 if (!try_module_get(THIS_MODULE))
2010 goto bad_module_get;
2011
2012 /* get a minor number for the dev */
2013 if (minor == DM_ANY_MINOR)
2014 r = next_free_minor(&minor);
2015 else
2016 r = specific_minor(minor);
2017 if (r < 0)
2018 goto bad_minor;
2019
2020 r = init_srcu_struct(&md->io_barrier);
2021 if (r < 0)
2022 goto bad_io_barrier;
2023
2024 md->numa_node_id = numa_node_id;
2025 md->init_tio_pdu = false;
2026 md->type = DM_TYPE_NONE;
2027 mutex_init(&md->suspend_lock);
2028 mutex_init(&md->type_lock);
2029 mutex_init(&md->table_devices_lock);
2030 spin_lock_init(&md->deferred_lock);
2031 atomic_set(&md->holders, 1);
2032 atomic_set(&md->open_count, 0);
2033 atomic_set(&md->event_nr, 0);
2034 atomic_set(&md->uevent_seq, 0);
2035 INIT_LIST_HEAD(&md->uevent_list);
2036 INIT_LIST_HEAD(&md->table_devices);
2037 spin_lock_init(&md->uevent_lock);
2038
2039 /*
2040 * default to bio-based until DM table is loaded and md->type
2041 * established. If request-based table is loaded: blk-mq will
2042 * override accordingly.
2043 */
2044 md->disk = blk_alloc_disk(md->numa_node_id);
2045 if (!md->disk)
2046 goto bad;
2047 md->queue = md->disk->queue;
2048
2049 init_waitqueue_head(&md->wait);
2050 INIT_WORK(&md->work, dm_wq_work);
2051 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2052 init_waitqueue_head(&md->eventq);
2053 init_completion(&md->kobj_holder.completion);
2054
2055 md->requeue_list = NULL;
2056 md->swap_bios = get_swap_bios();
2057 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2058 mutex_init(&md->swap_bios_lock);
2059
2060 md->disk->major = _major;
2061 md->disk->first_minor = minor;
2062 md->disk->minors = 1;
2063 md->disk->flags |= GENHD_FL_NO_PART;
2064 md->disk->fops = &dm_blk_dops;
2065 md->disk->private_data = md;
2066 sprintf(md->disk->disk_name, "dm-%d", minor);
2067
2068 if (IS_ENABLED(CONFIG_FS_DAX)) {
2069 md->dax_dev = alloc_dax(md, &dm_dax_ops);
2070 if (IS_ERR(md->dax_dev)) {
2071 md->dax_dev = NULL;
2072 goto bad;
2073 }
2074 set_dax_nocache(md->dax_dev);
2075 set_dax_nomc(md->dax_dev);
2076 if (dax_add_host(md->dax_dev, md->disk))
2077 goto bad;
2078 }
2079
2080 format_dev_t(md->name, MKDEV(_major, minor));
2081
2082 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2083 if (!md->wq)
2084 goto bad;
2085
2086 md->pending_io = alloc_percpu(unsigned long);
2087 if (!md->pending_io)
2088 goto bad;
2089
2090 r = dm_stats_init(&md->stats);
2091 if (r < 0)
2092 goto bad;
2093
2094 /* Populate the mapping, nobody knows we exist yet */
2095 spin_lock(&_minor_lock);
2096 old_md = idr_replace(&_minor_idr, md, minor);
2097 spin_unlock(&_minor_lock);
2098
2099 BUG_ON(old_md != MINOR_ALLOCED);
2100
2101 return md;
2102
2103 bad:
2104 cleanup_mapped_device(md);
2105 bad_io_barrier:
2106 free_minor(minor);
2107 bad_minor:
2108 module_put(THIS_MODULE);
2109 bad_module_get:
2110 kvfree(md);
2111 return NULL;
2112 }
2113
2114 static void unlock_fs(struct mapped_device *md);
2115
free_dev(struct mapped_device * md)2116 static void free_dev(struct mapped_device *md)
2117 {
2118 int minor = MINOR(disk_devt(md->disk));
2119
2120 unlock_fs(md);
2121
2122 cleanup_mapped_device(md);
2123
2124 free_table_devices(&md->table_devices);
2125 dm_stats_cleanup(&md->stats);
2126 free_minor(minor);
2127
2128 module_put(THIS_MODULE);
2129 kvfree(md);
2130 }
2131
2132 /*
2133 * Bind a table to the device.
2134 */
event_callback(void * context)2135 static void event_callback(void *context)
2136 {
2137 unsigned long flags;
2138 LIST_HEAD(uevents);
2139 struct mapped_device *md = (struct mapped_device *) context;
2140
2141 spin_lock_irqsave(&md->uevent_lock, flags);
2142 list_splice_init(&md->uevent_list, &uevents);
2143 spin_unlock_irqrestore(&md->uevent_lock, flags);
2144
2145 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2146
2147 atomic_inc(&md->event_nr);
2148 wake_up(&md->eventq);
2149 dm_issue_global_event();
2150 }
2151
2152 /*
2153 * Returns old map, which caller must destroy.
2154 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2155 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2156 struct queue_limits *limits)
2157 {
2158 struct dm_table *old_map;
2159 sector_t size;
2160 int ret;
2161
2162 lockdep_assert_held(&md->suspend_lock);
2163
2164 size = dm_table_get_size(t);
2165
2166 /*
2167 * Wipe any geometry if the size of the table changed.
2168 */
2169 if (size != dm_get_size(md))
2170 memset(&md->geometry, 0, sizeof(md->geometry));
2171
2172 set_capacity(md->disk, size);
2173
2174 dm_table_event_callback(t, event_callback, md);
2175
2176 if (dm_table_request_based(t)) {
2177 /*
2178 * Leverage the fact that request-based DM targets are
2179 * immutable singletons - used to optimize dm_mq_queue_rq.
2180 */
2181 md->immutable_target = dm_table_get_immutable_target(t);
2182
2183 /*
2184 * There is no need to reload with request-based dm because the
2185 * size of front_pad doesn't change.
2186 *
2187 * Note for future: If you are to reload bioset, prep-ed
2188 * requests in the queue may refer to bio from the old bioset,
2189 * so you must walk through the queue to unprep.
2190 */
2191 if (!md->mempools) {
2192 md->mempools = t->mempools;
2193 t->mempools = NULL;
2194 }
2195 } else {
2196 /*
2197 * The md may already have mempools that need changing.
2198 * If so, reload bioset because front_pad may have changed
2199 * because a different table was loaded.
2200 */
2201 dm_free_md_mempools(md->mempools);
2202 md->mempools = t->mempools;
2203 t->mempools = NULL;
2204 }
2205
2206 ret = dm_table_set_restrictions(t, md->queue, limits);
2207 if (ret) {
2208 old_map = ERR_PTR(ret);
2209 goto out;
2210 }
2211
2212 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2213 rcu_assign_pointer(md->map, (void *)t);
2214 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2215
2216 if (old_map)
2217 dm_sync_table(md);
2218 out:
2219 return old_map;
2220 }
2221
2222 /*
2223 * Returns unbound table for the caller to free.
2224 */
__unbind(struct mapped_device * md)2225 static struct dm_table *__unbind(struct mapped_device *md)
2226 {
2227 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2228
2229 if (!map)
2230 return NULL;
2231
2232 dm_table_event_callback(map, NULL, NULL);
2233 RCU_INIT_POINTER(md->map, NULL);
2234 dm_sync_table(md);
2235
2236 return map;
2237 }
2238
2239 /*
2240 * Constructor for a new device.
2241 */
dm_create(int minor,struct mapped_device ** result)2242 int dm_create(int minor, struct mapped_device **result)
2243 {
2244 struct mapped_device *md;
2245
2246 md = alloc_dev(minor);
2247 if (!md)
2248 return -ENXIO;
2249
2250 dm_ima_reset_data(md);
2251
2252 *result = md;
2253 return 0;
2254 }
2255
2256 /*
2257 * Functions to manage md->type.
2258 * All are required to hold md->type_lock.
2259 */
dm_lock_md_type(struct mapped_device * md)2260 void dm_lock_md_type(struct mapped_device *md)
2261 {
2262 mutex_lock(&md->type_lock);
2263 }
2264
dm_unlock_md_type(struct mapped_device * md)2265 void dm_unlock_md_type(struct mapped_device *md)
2266 {
2267 mutex_unlock(&md->type_lock);
2268 }
2269
dm_set_md_type(struct mapped_device * md,enum dm_queue_mode type)2270 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2271 {
2272 BUG_ON(!mutex_is_locked(&md->type_lock));
2273 md->type = type;
2274 }
2275
dm_get_md_type(struct mapped_device * md)2276 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2277 {
2278 return md->type;
2279 }
2280
dm_get_immutable_target_type(struct mapped_device * md)2281 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2282 {
2283 return md->immutable_target_type;
2284 }
2285
2286 /*
2287 * The queue_limits are only valid as long as you have a reference
2288 * count on 'md'.
2289 */
dm_get_queue_limits(struct mapped_device * md)2290 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2291 {
2292 BUG_ON(!atomic_read(&md->holders));
2293 return &md->queue->limits;
2294 }
2295 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2296
2297 /*
2298 * Setup the DM device's queue based on md's type
2299 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2300 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2301 {
2302 enum dm_queue_mode type = dm_table_get_type(t);
2303 struct queue_limits limits;
2304 struct table_device *td;
2305 int r;
2306
2307 switch (type) {
2308 case DM_TYPE_REQUEST_BASED:
2309 md->disk->fops = &dm_rq_blk_dops;
2310 r = dm_mq_init_request_queue(md, t);
2311 if (r) {
2312 DMERR("Cannot initialize queue for request-based dm mapped device");
2313 return r;
2314 }
2315 break;
2316 case DM_TYPE_BIO_BASED:
2317 case DM_TYPE_DAX_BIO_BASED:
2318 break;
2319 case DM_TYPE_NONE:
2320 WARN_ON_ONCE(true);
2321 break;
2322 }
2323
2324 r = dm_calculate_queue_limits(t, &limits);
2325 if (r) {
2326 DMERR("Cannot calculate initial queue limits");
2327 return r;
2328 }
2329 r = dm_table_set_restrictions(t, md->queue, &limits);
2330 if (r)
2331 return r;
2332
2333 /*
2334 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2335 * with open_table_device() and close_table_device().
2336 */
2337 mutex_lock(&md->table_devices_lock);
2338 r = add_disk(md->disk);
2339 mutex_unlock(&md->table_devices_lock);
2340 if (r)
2341 return r;
2342
2343 /*
2344 * Register the holder relationship for devices added before the disk
2345 * was live.
2346 */
2347 list_for_each_entry(td, &md->table_devices, list) {
2348 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2349 if (r)
2350 goto out_undo_holders;
2351 }
2352
2353 r = dm_sysfs_init(md);
2354 if (r)
2355 goto out_undo_holders;
2356
2357 md->type = type;
2358 return 0;
2359
2360 out_undo_holders:
2361 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2362 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2363 mutex_lock(&md->table_devices_lock);
2364 del_gendisk(md->disk);
2365 mutex_unlock(&md->table_devices_lock);
2366 return r;
2367 }
2368
dm_get_md(dev_t dev)2369 struct mapped_device *dm_get_md(dev_t dev)
2370 {
2371 struct mapped_device *md;
2372 unsigned int minor = MINOR(dev);
2373
2374 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2375 return NULL;
2376
2377 spin_lock(&_minor_lock);
2378
2379 md = idr_find(&_minor_idr, minor);
2380 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2381 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2382 md = NULL;
2383 goto out;
2384 }
2385 dm_get(md);
2386 out:
2387 spin_unlock(&_minor_lock);
2388
2389 return md;
2390 }
2391 EXPORT_SYMBOL_GPL(dm_get_md);
2392
dm_get_mdptr(struct mapped_device * md)2393 void *dm_get_mdptr(struct mapped_device *md)
2394 {
2395 return md->interface_ptr;
2396 }
2397
dm_set_mdptr(struct mapped_device * md,void * ptr)2398 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2399 {
2400 md->interface_ptr = ptr;
2401 }
2402
dm_get(struct mapped_device * md)2403 void dm_get(struct mapped_device *md)
2404 {
2405 atomic_inc(&md->holders);
2406 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2407 }
2408
dm_hold(struct mapped_device * md)2409 int dm_hold(struct mapped_device *md)
2410 {
2411 spin_lock(&_minor_lock);
2412 if (test_bit(DMF_FREEING, &md->flags)) {
2413 spin_unlock(&_minor_lock);
2414 return -EBUSY;
2415 }
2416 dm_get(md);
2417 spin_unlock(&_minor_lock);
2418 return 0;
2419 }
2420 EXPORT_SYMBOL_GPL(dm_hold);
2421
dm_device_name(struct mapped_device * md)2422 const char *dm_device_name(struct mapped_device *md)
2423 {
2424 return md->name;
2425 }
2426 EXPORT_SYMBOL_GPL(dm_device_name);
2427
__dm_destroy(struct mapped_device * md,bool wait)2428 static void __dm_destroy(struct mapped_device *md, bool wait)
2429 {
2430 struct dm_table *map;
2431 int srcu_idx;
2432
2433 might_sleep();
2434
2435 spin_lock(&_minor_lock);
2436 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2437 set_bit(DMF_FREEING, &md->flags);
2438 spin_unlock(&_minor_lock);
2439
2440 blk_mark_disk_dead(md->disk);
2441
2442 /*
2443 * Take suspend_lock so that presuspend and postsuspend methods
2444 * do not race with internal suspend.
2445 */
2446 mutex_lock(&md->suspend_lock);
2447 map = dm_get_live_table(md, &srcu_idx);
2448 if (!dm_suspended_md(md)) {
2449 dm_table_presuspend_targets(map);
2450 set_bit(DMF_SUSPENDED, &md->flags);
2451 set_bit(DMF_POST_SUSPENDING, &md->flags);
2452 dm_table_postsuspend_targets(map);
2453 }
2454 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2455 dm_put_live_table(md, srcu_idx);
2456 mutex_unlock(&md->suspend_lock);
2457
2458 /*
2459 * Rare, but there may be I/O requests still going to complete,
2460 * for example. Wait for all references to disappear.
2461 * No one should increment the reference count of the mapped_device,
2462 * after the mapped_device state becomes DMF_FREEING.
2463 */
2464 if (wait)
2465 while (atomic_read(&md->holders))
2466 msleep(1);
2467 else if (atomic_read(&md->holders))
2468 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2469 dm_device_name(md), atomic_read(&md->holders));
2470
2471 dm_table_destroy(__unbind(md));
2472 free_dev(md);
2473 }
2474
dm_destroy(struct mapped_device * md)2475 void dm_destroy(struct mapped_device *md)
2476 {
2477 __dm_destroy(md, true);
2478 }
2479
dm_destroy_immediate(struct mapped_device * md)2480 void dm_destroy_immediate(struct mapped_device *md)
2481 {
2482 __dm_destroy(md, false);
2483 }
2484
dm_put(struct mapped_device * md)2485 void dm_put(struct mapped_device *md)
2486 {
2487 atomic_dec(&md->holders);
2488 }
2489 EXPORT_SYMBOL_GPL(dm_put);
2490
dm_in_flight_bios(struct mapped_device * md)2491 static bool dm_in_flight_bios(struct mapped_device *md)
2492 {
2493 int cpu;
2494 unsigned long sum = 0;
2495
2496 for_each_possible_cpu(cpu)
2497 sum += *per_cpu_ptr(md->pending_io, cpu);
2498
2499 return sum != 0;
2500 }
2501
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2502 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2503 {
2504 int r = 0;
2505 DEFINE_WAIT(wait);
2506
2507 while (true) {
2508 prepare_to_wait(&md->wait, &wait, task_state);
2509
2510 if (!dm_in_flight_bios(md))
2511 break;
2512
2513 if (signal_pending_state(task_state, current)) {
2514 r = -EINTR;
2515 break;
2516 }
2517
2518 io_schedule();
2519 }
2520 finish_wait(&md->wait, &wait);
2521
2522 smp_rmb();
2523
2524 return r;
2525 }
2526
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2527 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2528 {
2529 int r = 0;
2530
2531 if (!queue_is_mq(md->queue))
2532 return dm_wait_for_bios_completion(md, task_state);
2533
2534 while (true) {
2535 if (!blk_mq_queue_inflight(md->queue))
2536 break;
2537
2538 if (signal_pending_state(task_state, current)) {
2539 r = -EINTR;
2540 break;
2541 }
2542
2543 msleep(5);
2544 }
2545
2546 return r;
2547 }
2548
2549 /*
2550 * Process the deferred bios
2551 */
dm_wq_work(struct work_struct * work)2552 static void dm_wq_work(struct work_struct *work)
2553 {
2554 struct mapped_device *md = container_of(work, struct mapped_device, work);
2555 struct bio *bio;
2556
2557 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2558 spin_lock_irq(&md->deferred_lock);
2559 bio = bio_list_pop(&md->deferred);
2560 spin_unlock_irq(&md->deferred_lock);
2561
2562 if (!bio)
2563 break;
2564
2565 submit_bio_noacct(bio);
2566 cond_resched();
2567 }
2568 }
2569
dm_queue_flush(struct mapped_device * md)2570 static void dm_queue_flush(struct mapped_device *md)
2571 {
2572 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2573 smp_mb__after_atomic();
2574 queue_work(md->wq, &md->work);
2575 }
2576
2577 /*
2578 * Swap in a new table, returning the old one for the caller to destroy.
2579 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2580 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2581 {
2582 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2583 struct queue_limits limits;
2584 int r;
2585
2586 mutex_lock(&md->suspend_lock);
2587
2588 /* device must be suspended */
2589 if (!dm_suspended_md(md))
2590 goto out;
2591
2592 /*
2593 * If the new table has no data devices, retain the existing limits.
2594 * This helps multipath with queue_if_no_path if all paths disappear,
2595 * then new I/O is queued based on these limits, and then some paths
2596 * reappear.
2597 */
2598 if (dm_table_has_no_data_devices(table)) {
2599 live_map = dm_get_live_table_fast(md);
2600 if (live_map)
2601 limits = md->queue->limits;
2602 dm_put_live_table_fast(md);
2603 }
2604
2605 if (!live_map) {
2606 r = dm_calculate_queue_limits(table, &limits);
2607 if (r) {
2608 map = ERR_PTR(r);
2609 goto out;
2610 }
2611 }
2612
2613 map = __bind(md, table, &limits);
2614 dm_issue_global_event();
2615
2616 out:
2617 mutex_unlock(&md->suspend_lock);
2618 return map;
2619 }
2620
2621 /*
2622 * Functions to lock and unlock any filesystem running on the
2623 * device.
2624 */
lock_fs(struct mapped_device * md)2625 static int lock_fs(struct mapped_device *md)
2626 {
2627 int r;
2628
2629 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2630
2631 r = freeze_bdev(md->disk->part0);
2632 if (!r)
2633 set_bit(DMF_FROZEN, &md->flags);
2634 return r;
2635 }
2636
unlock_fs(struct mapped_device * md)2637 static void unlock_fs(struct mapped_device *md)
2638 {
2639 if (!test_bit(DMF_FROZEN, &md->flags))
2640 return;
2641 thaw_bdev(md->disk->part0);
2642 clear_bit(DMF_FROZEN, &md->flags);
2643 }
2644
2645 /*
2646 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2647 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2648 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2649 *
2650 * If __dm_suspend returns 0, the device is completely quiescent
2651 * now. There is no request-processing activity. All new requests
2652 * are being added to md->deferred list.
2653 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2654 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2655 unsigned int suspend_flags, unsigned int task_state,
2656 int dmf_suspended_flag)
2657 {
2658 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2659 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2660 int r;
2661
2662 lockdep_assert_held(&md->suspend_lock);
2663
2664 /*
2665 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2666 * This flag is cleared before dm_suspend returns.
2667 */
2668 if (noflush)
2669 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2670 else
2671 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2672
2673 /*
2674 * This gets reverted if there's an error later and the targets
2675 * provide the .presuspend_undo hook.
2676 */
2677 dm_table_presuspend_targets(map);
2678
2679 /*
2680 * Flush I/O to the device.
2681 * Any I/O submitted after lock_fs() may not be flushed.
2682 * noflush takes precedence over do_lockfs.
2683 * (lock_fs() flushes I/Os and waits for them to complete.)
2684 */
2685 if (!noflush && do_lockfs) {
2686 r = lock_fs(md);
2687 if (r) {
2688 dm_table_presuspend_undo_targets(map);
2689 return r;
2690 }
2691 }
2692
2693 /*
2694 * Here we must make sure that no processes are submitting requests
2695 * to target drivers i.e. no one may be executing
2696 * dm_split_and_process_bio from dm_submit_bio.
2697 *
2698 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2699 * we take the write lock. To prevent any process from reentering
2700 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2701 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2702 * flush_workqueue(md->wq).
2703 */
2704 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2705 if (map)
2706 synchronize_srcu(&md->io_barrier);
2707
2708 /*
2709 * Stop md->queue before flushing md->wq in case request-based
2710 * dm defers requests to md->wq from md->queue.
2711 */
2712 if (dm_request_based(md))
2713 dm_stop_queue(md->queue);
2714
2715 flush_workqueue(md->wq);
2716
2717 /*
2718 * At this point no more requests are entering target request routines.
2719 * We call dm_wait_for_completion to wait for all existing requests
2720 * to finish.
2721 */
2722 r = dm_wait_for_completion(md, task_state);
2723 if (!r)
2724 set_bit(dmf_suspended_flag, &md->flags);
2725
2726 if (noflush)
2727 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2728 if (map)
2729 synchronize_srcu(&md->io_barrier);
2730
2731 /* were we interrupted ? */
2732 if (r < 0) {
2733 dm_queue_flush(md);
2734
2735 if (dm_request_based(md))
2736 dm_start_queue(md->queue);
2737
2738 unlock_fs(md);
2739 dm_table_presuspend_undo_targets(map);
2740 /* pushback list is already flushed, so skip flush */
2741 }
2742
2743 return r;
2744 }
2745
2746 /*
2747 * We need to be able to change a mapping table under a mounted
2748 * filesystem. For example we might want to move some data in
2749 * the background. Before the table can be swapped with
2750 * dm_bind_table, dm_suspend must be called to flush any in
2751 * flight bios and ensure that any further io gets deferred.
2752 */
2753 /*
2754 * Suspend mechanism in request-based dm.
2755 *
2756 * 1. Flush all I/Os by lock_fs() if needed.
2757 * 2. Stop dispatching any I/O by stopping the request_queue.
2758 * 3. Wait for all in-flight I/Os to be completed or requeued.
2759 *
2760 * To abort suspend, start the request_queue.
2761 */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)2762 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
2763 {
2764 struct dm_table *map = NULL;
2765 int r = 0;
2766
2767 retry:
2768 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2769
2770 if (dm_suspended_md(md)) {
2771 r = -EINVAL;
2772 goto out_unlock;
2773 }
2774
2775 if (dm_suspended_internally_md(md)) {
2776 /* already internally suspended, wait for internal resume */
2777 mutex_unlock(&md->suspend_lock);
2778 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2779 if (r)
2780 return r;
2781 goto retry;
2782 }
2783
2784 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2785 if (!map) {
2786 /* avoid deadlock with fs/namespace.c:do_mount() */
2787 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
2788 }
2789
2790 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2791 if (r)
2792 goto out_unlock;
2793
2794 set_bit(DMF_POST_SUSPENDING, &md->flags);
2795 dm_table_postsuspend_targets(map);
2796 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2797
2798 out_unlock:
2799 mutex_unlock(&md->suspend_lock);
2800 return r;
2801 }
2802
__dm_resume(struct mapped_device * md,struct dm_table * map)2803 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2804 {
2805 if (map) {
2806 int r = dm_table_resume_targets(map);
2807 if (r)
2808 return r;
2809 }
2810
2811 dm_queue_flush(md);
2812
2813 /*
2814 * Flushing deferred I/Os must be done after targets are resumed
2815 * so that mapping of targets can work correctly.
2816 * Request-based dm is queueing the deferred I/Os in its request_queue.
2817 */
2818 if (dm_request_based(md))
2819 dm_start_queue(md->queue);
2820
2821 unlock_fs(md);
2822
2823 return 0;
2824 }
2825
dm_resume(struct mapped_device * md)2826 int dm_resume(struct mapped_device *md)
2827 {
2828 int r;
2829 struct dm_table *map = NULL;
2830
2831 retry:
2832 r = -EINVAL;
2833 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2834
2835 if (!dm_suspended_md(md))
2836 goto out;
2837
2838 if (dm_suspended_internally_md(md)) {
2839 /* already internally suspended, wait for internal resume */
2840 mutex_unlock(&md->suspend_lock);
2841 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2842 if (r)
2843 return r;
2844 goto retry;
2845 }
2846
2847 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2848 if (!map || !dm_table_get_size(map))
2849 goto out;
2850
2851 r = __dm_resume(md, map);
2852 if (r)
2853 goto out;
2854
2855 clear_bit(DMF_SUSPENDED, &md->flags);
2856 out:
2857 mutex_unlock(&md->suspend_lock);
2858
2859 return r;
2860 }
2861
2862 /*
2863 * Internal suspend/resume works like userspace-driven suspend. It waits
2864 * until all bios finish and prevents issuing new bios to the target drivers.
2865 * It may be used only from the kernel.
2866 */
2867
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)2868 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
2869 {
2870 struct dm_table *map = NULL;
2871
2872 lockdep_assert_held(&md->suspend_lock);
2873
2874 if (md->internal_suspend_count++)
2875 return; /* nested internal suspend */
2876
2877 if (dm_suspended_md(md)) {
2878 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2879 return; /* nest suspend */
2880 }
2881
2882 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2883
2884 /*
2885 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2886 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2887 * would require changing .presuspend to return an error -- avoid this
2888 * until there is a need for more elaborate variants of internal suspend.
2889 */
2890 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2891 DMF_SUSPENDED_INTERNALLY);
2892
2893 set_bit(DMF_POST_SUSPENDING, &md->flags);
2894 dm_table_postsuspend_targets(map);
2895 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2896 }
2897
__dm_internal_resume(struct mapped_device * md)2898 static void __dm_internal_resume(struct mapped_device *md)
2899 {
2900 BUG_ON(!md->internal_suspend_count);
2901
2902 if (--md->internal_suspend_count)
2903 return; /* resume from nested internal suspend */
2904
2905 if (dm_suspended_md(md))
2906 goto done; /* resume from nested suspend */
2907
2908 /*
2909 * NOTE: existing callers don't need to call dm_table_resume_targets
2910 * (which may fail -- so best to avoid it for now by passing NULL map)
2911 */
2912 (void) __dm_resume(md, NULL);
2913
2914 done:
2915 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2916 smp_mb__after_atomic();
2917 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2918 }
2919
dm_internal_suspend_noflush(struct mapped_device * md)2920 void dm_internal_suspend_noflush(struct mapped_device *md)
2921 {
2922 mutex_lock(&md->suspend_lock);
2923 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2924 mutex_unlock(&md->suspend_lock);
2925 }
2926 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2927
dm_internal_resume(struct mapped_device * md)2928 void dm_internal_resume(struct mapped_device *md)
2929 {
2930 mutex_lock(&md->suspend_lock);
2931 __dm_internal_resume(md);
2932 mutex_unlock(&md->suspend_lock);
2933 }
2934 EXPORT_SYMBOL_GPL(dm_internal_resume);
2935
2936 /*
2937 * Fast variants of internal suspend/resume hold md->suspend_lock,
2938 * which prevents interaction with userspace-driven suspend.
2939 */
2940
dm_internal_suspend_fast(struct mapped_device * md)2941 void dm_internal_suspend_fast(struct mapped_device *md)
2942 {
2943 mutex_lock(&md->suspend_lock);
2944 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2945 return;
2946
2947 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2948 synchronize_srcu(&md->io_barrier);
2949 flush_workqueue(md->wq);
2950 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2951 }
2952 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2953
dm_internal_resume_fast(struct mapped_device * md)2954 void dm_internal_resume_fast(struct mapped_device *md)
2955 {
2956 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2957 goto done;
2958
2959 dm_queue_flush(md);
2960
2961 done:
2962 mutex_unlock(&md->suspend_lock);
2963 }
2964 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2965
2966 /*-----------------------------------------------------------------
2967 * Event notification.
2968 *---------------------------------------------------------------*/
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)2969 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2970 unsigned int cookie, bool need_resize_uevent)
2971 {
2972 int r;
2973 unsigned int noio_flag;
2974 char udev_cookie[DM_COOKIE_LENGTH];
2975 char *envp[3] = { NULL, NULL, NULL };
2976 char **envpp = envp;
2977 if (cookie) {
2978 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2979 DM_COOKIE_ENV_VAR_NAME, cookie);
2980 *envpp++ = udev_cookie;
2981 }
2982 if (need_resize_uevent) {
2983 *envpp++ = "RESIZE=1";
2984 }
2985
2986 noio_flag = memalloc_noio_save();
2987
2988 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
2989
2990 memalloc_noio_restore(noio_flag);
2991
2992 return r;
2993 }
2994
dm_next_uevent_seq(struct mapped_device * md)2995 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2996 {
2997 return atomic_add_return(1, &md->uevent_seq);
2998 }
2999
dm_get_event_nr(struct mapped_device * md)3000 uint32_t dm_get_event_nr(struct mapped_device *md)
3001 {
3002 return atomic_read(&md->event_nr);
3003 }
3004
dm_wait_event(struct mapped_device * md,int event_nr)3005 int dm_wait_event(struct mapped_device *md, int event_nr)
3006 {
3007 return wait_event_interruptible(md->eventq,
3008 (event_nr != atomic_read(&md->event_nr)));
3009 }
3010
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3011 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3012 {
3013 unsigned long flags;
3014
3015 spin_lock_irqsave(&md->uevent_lock, flags);
3016 list_add(elist, &md->uevent_list);
3017 spin_unlock_irqrestore(&md->uevent_lock, flags);
3018 }
3019
3020 /*
3021 * The gendisk is only valid as long as you have a reference
3022 * count on 'md'.
3023 */
dm_disk(struct mapped_device * md)3024 struct gendisk *dm_disk(struct mapped_device *md)
3025 {
3026 return md->disk;
3027 }
3028 EXPORT_SYMBOL_GPL(dm_disk);
3029
dm_kobject(struct mapped_device * md)3030 struct kobject *dm_kobject(struct mapped_device *md)
3031 {
3032 return &md->kobj_holder.kobj;
3033 }
3034
dm_get_from_kobject(struct kobject * kobj)3035 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3036 {
3037 struct mapped_device *md;
3038
3039 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3040
3041 spin_lock(&_minor_lock);
3042 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3043 md = NULL;
3044 goto out;
3045 }
3046 dm_get(md);
3047 out:
3048 spin_unlock(&_minor_lock);
3049
3050 return md;
3051 }
3052
dm_suspended_md(struct mapped_device * md)3053 int dm_suspended_md(struct mapped_device *md)
3054 {
3055 return test_bit(DMF_SUSPENDED, &md->flags);
3056 }
3057
dm_post_suspending_md(struct mapped_device * md)3058 static int dm_post_suspending_md(struct mapped_device *md)
3059 {
3060 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3061 }
3062
dm_suspended_internally_md(struct mapped_device * md)3063 int dm_suspended_internally_md(struct mapped_device *md)
3064 {
3065 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3066 }
3067
dm_test_deferred_remove_flag(struct mapped_device * md)3068 int dm_test_deferred_remove_flag(struct mapped_device *md)
3069 {
3070 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3071 }
3072
dm_suspended(struct dm_target * ti)3073 int dm_suspended(struct dm_target *ti)
3074 {
3075 return dm_suspended_md(ti->table->md);
3076 }
3077 EXPORT_SYMBOL_GPL(dm_suspended);
3078
dm_post_suspending(struct dm_target * ti)3079 int dm_post_suspending(struct dm_target *ti)
3080 {
3081 return dm_post_suspending_md(ti->table->md);
3082 }
3083 EXPORT_SYMBOL_GPL(dm_post_suspending);
3084
dm_noflush_suspending(struct dm_target * ti)3085 int dm_noflush_suspending(struct dm_target *ti)
3086 {
3087 return __noflush_suspending(ti->table->md);
3088 }
3089 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3090
dm_free_md_mempools(struct dm_md_mempools * pools)3091 void dm_free_md_mempools(struct dm_md_mempools *pools)
3092 {
3093 if (!pools)
3094 return;
3095
3096 bioset_exit(&pools->bs);
3097 bioset_exit(&pools->io_bs);
3098
3099 kfree(pools);
3100 }
3101
3102 struct dm_pr {
3103 u64 old_key;
3104 u64 new_key;
3105 u32 flags;
3106 bool abort;
3107 bool fail_early;
3108 int ret;
3109 enum pr_type type;
3110 };
3111
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3112 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3113 struct dm_pr *pr)
3114 {
3115 struct mapped_device *md = bdev->bd_disk->private_data;
3116 struct dm_table *table;
3117 struct dm_target *ti;
3118 int ret = -ENOTTY, srcu_idx;
3119
3120 table = dm_get_live_table(md, &srcu_idx);
3121 if (!table || !dm_table_get_size(table))
3122 goto out;
3123
3124 /* We only support devices that have a single target */
3125 if (table->num_targets != 1)
3126 goto out;
3127 ti = dm_table_get_target(table, 0);
3128
3129 if (dm_suspended_md(md)) {
3130 ret = -EAGAIN;
3131 goto out;
3132 }
3133
3134 ret = -EINVAL;
3135 if (!ti->type->iterate_devices)
3136 goto out;
3137
3138 ti->type->iterate_devices(ti, fn, pr);
3139 ret = 0;
3140 out:
3141 dm_put_live_table(md, srcu_idx);
3142 return ret;
3143 }
3144
3145 /*
3146 * For register / unregister we need to manually call out to every path.
3147 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3148 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3149 sector_t start, sector_t len, void *data)
3150 {
3151 struct dm_pr *pr = data;
3152 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3153 int ret;
3154
3155 if (!ops || !ops->pr_register) {
3156 pr->ret = -EOPNOTSUPP;
3157 return -1;
3158 }
3159
3160 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3161 if (!ret)
3162 return 0;
3163
3164 if (!pr->ret)
3165 pr->ret = ret;
3166
3167 if (pr->fail_early)
3168 return -1;
3169
3170 return 0;
3171 }
3172
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3173 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3174 u32 flags)
3175 {
3176 struct dm_pr pr = {
3177 .old_key = old_key,
3178 .new_key = new_key,
3179 .flags = flags,
3180 .fail_early = true,
3181 .ret = 0,
3182 };
3183 int ret;
3184
3185 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3186 if (ret) {
3187 /* Didn't even get to register a path */
3188 return ret;
3189 }
3190
3191 if (!pr.ret)
3192 return 0;
3193 ret = pr.ret;
3194
3195 if (!new_key)
3196 return ret;
3197
3198 /* unregister all paths if we failed to register any path */
3199 pr.old_key = new_key;
3200 pr.new_key = 0;
3201 pr.flags = 0;
3202 pr.fail_early = false;
3203 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3204 return ret;
3205 }
3206
3207
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3208 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3209 sector_t start, sector_t len, void *data)
3210 {
3211 struct dm_pr *pr = data;
3212 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3213
3214 if (!ops || !ops->pr_reserve) {
3215 pr->ret = -EOPNOTSUPP;
3216 return -1;
3217 }
3218
3219 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3220 if (!pr->ret)
3221 return -1;
3222
3223 return 0;
3224 }
3225
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3226 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3227 u32 flags)
3228 {
3229 struct dm_pr pr = {
3230 .old_key = key,
3231 .flags = flags,
3232 .type = type,
3233 .fail_early = false,
3234 .ret = 0,
3235 };
3236 int ret;
3237
3238 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3239 if (ret)
3240 return ret;
3241
3242 return pr.ret;
3243 }
3244
3245 /*
3246 * If there is a non-All Registrants type of reservation, the release must be
3247 * sent down the holding path. For the cases where there is no reservation or
3248 * the path is not the holder the device will also return success, so we must
3249 * try each path to make sure we got the correct path.
3250 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3251 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3252 sector_t start, sector_t len, void *data)
3253 {
3254 struct dm_pr *pr = data;
3255 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3256
3257 if (!ops || !ops->pr_release) {
3258 pr->ret = -EOPNOTSUPP;
3259 return -1;
3260 }
3261
3262 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3263 if (pr->ret)
3264 return -1;
3265
3266 return 0;
3267 }
3268
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3269 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3270 {
3271 struct dm_pr pr = {
3272 .old_key = key,
3273 .type = type,
3274 .fail_early = false,
3275 };
3276 int ret;
3277
3278 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3279 if (ret)
3280 return ret;
3281
3282 return pr.ret;
3283 }
3284
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3285 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3286 sector_t start, sector_t len, void *data)
3287 {
3288 struct dm_pr *pr = data;
3289 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3290
3291 if (!ops || !ops->pr_preempt) {
3292 pr->ret = -EOPNOTSUPP;
3293 return -1;
3294 }
3295
3296 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3297 pr->abort);
3298 if (!pr->ret)
3299 return -1;
3300
3301 return 0;
3302 }
3303
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3304 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3305 enum pr_type type, bool abort)
3306 {
3307 struct dm_pr pr = {
3308 .new_key = new_key,
3309 .old_key = old_key,
3310 .type = type,
3311 .fail_early = false,
3312 };
3313 int ret;
3314
3315 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3316 if (ret)
3317 return ret;
3318
3319 return pr.ret;
3320 }
3321
dm_pr_clear(struct block_device * bdev,u64 key)3322 static int dm_pr_clear(struct block_device *bdev, u64 key)
3323 {
3324 struct mapped_device *md = bdev->bd_disk->private_data;
3325 const struct pr_ops *ops;
3326 int r, srcu_idx;
3327
3328 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3329 if (r < 0)
3330 goto out;
3331
3332 ops = bdev->bd_disk->fops->pr_ops;
3333 if (ops && ops->pr_clear)
3334 r = ops->pr_clear(bdev, key);
3335 else
3336 r = -EOPNOTSUPP;
3337 out:
3338 dm_unprepare_ioctl(md, srcu_idx);
3339 return r;
3340 }
3341
3342 static const struct pr_ops dm_pr_ops = {
3343 .pr_register = dm_pr_register,
3344 .pr_reserve = dm_pr_reserve,
3345 .pr_release = dm_pr_release,
3346 .pr_preempt = dm_pr_preempt,
3347 .pr_clear = dm_pr_clear,
3348 };
3349
3350 static const struct block_device_operations dm_blk_dops = {
3351 .submit_bio = dm_submit_bio,
3352 .poll_bio = dm_poll_bio,
3353 .open = dm_blk_open,
3354 .release = dm_blk_close,
3355 .ioctl = dm_blk_ioctl,
3356 .getgeo = dm_blk_getgeo,
3357 .report_zones = dm_blk_report_zones,
3358 .pr_ops = &dm_pr_ops,
3359 .owner = THIS_MODULE
3360 };
3361
3362 static const struct block_device_operations dm_rq_blk_dops = {
3363 .open = dm_blk_open,
3364 .release = dm_blk_close,
3365 .ioctl = dm_blk_ioctl,
3366 .getgeo = dm_blk_getgeo,
3367 .pr_ops = &dm_pr_ops,
3368 .owner = THIS_MODULE
3369 };
3370
3371 static const struct dax_operations dm_dax_ops = {
3372 .direct_access = dm_dax_direct_access,
3373 .zero_page_range = dm_dax_zero_page_range,
3374 .recovery_write = dm_dax_recovery_write,
3375 };
3376
3377 /*
3378 * module hooks
3379 */
3380 module_init(dm_init);
3381 module_exit(dm_exit);
3382
3383 module_param(major, uint, 0);
3384 MODULE_PARM_DESC(major, "The major number of the device mapper");
3385
3386 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3387 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3388
3389 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3390 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3391
3392 module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3393 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3394
3395 MODULE_DESCRIPTION(DM_NAME " driver");
3396 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3397 MODULE_LICENSE("GPL");
3398