1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_DMA_MAPPING_H
3 #define _LINUX_DMA_MAPPING_H
4
5 #include <linux/sizes.h>
6 #include <linux/string.h>
7 #include <linux/device.h>
8 #include <linux/err.h>
9 #include <linux/dma-direction.h>
10 #include <linux/scatterlist.h>
11 #include <linux/bug.h>
12 #include <linux/mem_encrypt.h>
13
14 /**
15 * List of possible attributes associated with a DMA mapping. The semantics
16 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
17 */
18
19 /*
20 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
21 * may be weakly ordered, that is that reads and writes may pass each other.
22 */
23 #define DMA_ATTR_WEAK_ORDERING (1UL << 1)
24 /*
25 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
26 * buffered to improve performance.
27 */
28 #define DMA_ATTR_WRITE_COMBINE (1UL << 2)
29 /*
30 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
31 * virtual mapping for the allocated buffer.
32 */
33 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4)
34 /*
35 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
36 * the CPU cache for the given buffer assuming that it has been already
37 * transferred to 'device' domain.
38 */
39 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5)
40 /*
41 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
42 * in physical memory.
43 */
44 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6)
45 /*
46 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
47 * that it's probably not worth the time to try to allocate memory to in a way
48 * that gives better TLB efficiency.
49 */
50 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7)
51 /*
52 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
53 * allocation failure reports (similarly to __GFP_NOWARN).
54 */
55 #define DMA_ATTR_NO_WARN (1UL << 8)
56
57 /*
58 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
59 * accessible at an elevated privilege level (and ideally inaccessible or
60 * at least read-only at lesser-privileged levels).
61 */
62 #define DMA_ATTR_PRIVILEGED (1UL << 9)
63
64 /*
65 * DMA_ATTR_SYS_CACHE: used to indicate that the buffer should be mapped with
66 * the correct memory attributes so that it can be cached in the system or last
67 * level cache. This is useful for buffers that are being mapped for devices
68 * that are non-coherent, but can use the system cache.
69 */
70 #define DMA_ATTR_SYS_CACHE (1UL << 10)
71
72 /*
73 * DMA_ATTR_SYS_CACHE_NWA: used to indicate that the buffer should be mapped
74 * with the correct memory attributes so that it can be cached in the system or
75 * last level cache, with a no write allocate cache policy. This is useful for
76 * buffers that are being mapped for devices that are non-coherent, but can use
77 * the system cache.
78 */
79 #define DMA_ATTR_SYS_CACHE_NWA (1UL << 11)
80
81 /*
82 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can
83 * be given to a device to use as a DMA source or target. It is specific to a
84 * given device and there may be a translation between the CPU physical address
85 * space and the bus address space.
86 *
87 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not
88 * be used directly in drivers, but checked for using dma_mapping_error()
89 * instead.
90 */
91 #define DMA_MAPPING_ERROR (~(dma_addr_t)0)
92
93 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
94
95 #ifdef CONFIG_DMA_API_DEBUG
96 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
97 void debug_dma_map_single(struct device *dev, const void *addr,
98 unsigned long len);
99 #else
debug_dma_mapping_error(struct device * dev,dma_addr_t dma_addr)100 static inline void debug_dma_mapping_error(struct device *dev,
101 dma_addr_t dma_addr)
102 {
103 }
debug_dma_map_single(struct device * dev,const void * addr,unsigned long len)104 static inline void debug_dma_map_single(struct device *dev, const void *addr,
105 unsigned long len)
106 {
107 }
108 #endif /* CONFIG_DMA_API_DEBUG */
109
110 #ifdef CONFIG_HAS_DMA
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)111 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
112 {
113 debug_dma_mapping_error(dev, dma_addr);
114
115 if (unlikely(dma_addr == DMA_MAPPING_ERROR))
116 return -ENOMEM;
117 return 0;
118 }
119
120 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
121 size_t offset, size_t size, enum dma_data_direction dir,
122 unsigned long attrs);
123 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
124 enum dma_data_direction dir, unsigned long attrs);
125 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
126 int nents, enum dma_data_direction dir, unsigned long attrs);
127 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
128 int nents, enum dma_data_direction dir,
129 unsigned long attrs);
130 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
131 enum dma_data_direction dir, unsigned long attrs);
132 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
133 size_t size, enum dma_data_direction dir, unsigned long attrs);
134 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
135 enum dma_data_direction dir, unsigned long attrs);
136 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
137 enum dma_data_direction dir);
138 void dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
139 size_t size, enum dma_data_direction dir);
140 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
141 int nelems, enum dma_data_direction dir);
142 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
143 int nelems, enum dma_data_direction dir);
144 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
145 gfp_t flag, unsigned long attrs);
146 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t dma_handle, unsigned long attrs);
148 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
149 gfp_t gfp, unsigned long attrs);
150 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
151 dma_addr_t dma_handle);
152 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
153 void *cpu_addr, dma_addr_t dma_addr, size_t size,
154 unsigned long attrs);
155 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
156 void *cpu_addr, dma_addr_t dma_addr, size_t size,
157 unsigned long attrs);
158 bool dma_can_mmap(struct device *dev);
159 bool dma_pci_p2pdma_supported(struct device *dev);
160 int dma_set_mask(struct device *dev, u64 mask);
161 int dma_set_coherent_mask(struct device *dev, u64 mask);
162 u64 dma_get_required_mask(struct device *dev);
163 size_t dma_max_mapping_size(struct device *dev);
164 size_t dma_opt_mapping_size(struct device *dev);
165 bool dma_need_sync(struct device *dev, dma_addr_t dma_addr);
166 unsigned long dma_get_merge_boundary(struct device *dev);
167 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
168 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
169 void dma_free_noncontiguous(struct device *dev, size_t size,
170 struct sg_table *sgt, enum dma_data_direction dir);
171 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
172 struct sg_table *sgt);
173 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
174 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
175 size_t size, struct sg_table *sgt);
176 #else /* CONFIG_HAS_DMA */
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)177 static inline dma_addr_t dma_map_page_attrs(struct device *dev,
178 struct page *page, size_t offset, size_t size,
179 enum dma_data_direction dir, unsigned long attrs)
180 {
181 return DMA_MAPPING_ERROR;
182 }
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)183 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
184 size_t size, enum dma_data_direction dir, unsigned long attrs)
185 {
186 }
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)187 static inline unsigned int dma_map_sg_attrs(struct device *dev,
188 struct scatterlist *sg, int nents, enum dma_data_direction dir,
189 unsigned long attrs)
190 {
191 return 0;
192 }
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)193 static inline void dma_unmap_sg_attrs(struct device *dev,
194 struct scatterlist *sg, int nents, enum dma_data_direction dir,
195 unsigned long attrs)
196 {
197 }
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)198 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
199 enum dma_data_direction dir, unsigned long attrs)
200 {
201 return -EOPNOTSUPP;
202 }
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)203 static inline dma_addr_t dma_map_resource(struct device *dev,
204 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
205 unsigned long attrs)
206 {
207 return DMA_MAPPING_ERROR;
208 }
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)209 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
210 size_t size, enum dma_data_direction dir, unsigned long attrs)
211 {
212 }
dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)213 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
214 size_t size, enum dma_data_direction dir)
215 {
216 }
dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)217 static inline void dma_sync_single_for_device(struct device *dev,
218 dma_addr_t addr, size_t size, enum dma_data_direction dir)
219 {
220 }
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)221 static inline void dma_sync_sg_for_cpu(struct device *dev,
222 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
223 {
224 }
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)225 static inline void dma_sync_sg_for_device(struct device *dev,
226 struct scatterlist *sg, int nelems, enum dma_data_direction dir)
227 {
228 }
dma_mapping_error(struct device * dev,dma_addr_t dma_addr)229 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
230 {
231 return -ENOMEM;
232 }
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)233 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
234 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
235 {
236 return NULL;
237 }
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)238 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
239 dma_addr_t dma_handle, unsigned long attrs)
240 {
241 }
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)242 static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
243 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
244 {
245 return NULL;
246 }
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)247 static inline void dmam_free_coherent(struct device *dev, size_t size,
248 void *vaddr, dma_addr_t dma_handle)
249 {
250 }
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)251 static inline int dma_get_sgtable_attrs(struct device *dev,
252 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
253 size_t size, unsigned long attrs)
254 {
255 return -ENXIO;
256 }
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)257 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
258 void *cpu_addr, dma_addr_t dma_addr, size_t size,
259 unsigned long attrs)
260 {
261 return -ENXIO;
262 }
dma_can_mmap(struct device * dev)263 static inline bool dma_can_mmap(struct device *dev)
264 {
265 return false;
266 }
dma_pci_p2pdma_supported(struct device * dev)267 static inline bool dma_pci_p2pdma_supported(struct device *dev)
268 {
269 return false;
270 }
dma_set_mask(struct device * dev,u64 mask)271 static inline int dma_set_mask(struct device *dev, u64 mask)
272 {
273 return -EIO;
274 }
dma_set_coherent_mask(struct device * dev,u64 mask)275 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
276 {
277 return -EIO;
278 }
dma_get_required_mask(struct device * dev)279 static inline u64 dma_get_required_mask(struct device *dev)
280 {
281 return 0;
282 }
dma_max_mapping_size(struct device * dev)283 static inline size_t dma_max_mapping_size(struct device *dev)
284 {
285 return 0;
286 }
dma_opt_mapping_size(struct device * dev)287 static inline size_t dma_opt_mapping_size(struct device *dev)
288 {
289 return 0;
290 }
dma_need_sync(struct device * dev,dma_addr_t dma_addr)291 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
292 {
293 return false;
294 }
dma_get_merge_boundary(struct device * dev)295 static inline unsigned long dma_get_merge_boundary(struct device *dev)
296 {
297 return 0;
298 }
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)299 static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
300 size_t size, enum dma_data_direction dir, gfp_t gfp,
301 unsigned long attrs)
302 {
303 return NULL;
304 }
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)305 static inline void dma_free_noncontiguous(struct device *dev, size_t size,
306 struct sg_table *sgt, enum dma_data_direction dir)
307 {
308 }
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)309 static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
310 struct sg_table *sgt)
311 {
312 return NULL;
313 }
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)314 static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
315 {
316 }
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)317 static inline int dma_mmap_noncontiguous(struct device *dev,
318 struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
319 {
320 return -EINVAL;
321 }
322 #endif /* CONFIG_HAS_DMA */
323
324 struct page *dma_alloc_pages(struct device *dev, size_t size,
325 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
326 void dma_free_pages(struct device *dev, size_t size, struct page *page,
327 dma_addr_t dma_handle, enum dma_data_direction dir);
328 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
329 size_t size, struct page *page);
330
dma_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)331 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
332 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
333 {
334 struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
335 return page ? page_address(page) : NULL;
336 }
337
dma_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)338 static inline void dma_free_noncoherent(struct device *dev, size_t size,
339 void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
340 {
341 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
342 }
343
dma_map_single_attrs(struct device * dev,void * ptr,size_t size,enum dma_data_direction dir,unsigned long attrs)344 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
345 size_t size, enum dma_data_direction dir, unsigned long attrs)
346 {
347 /* DMA must never operate on areas that might be remapped. */
348 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
349 "rejecting DMA map of vmalloc memory\n"))
350 return DMA_MAPPING_ERROR;
351 debug_dma_map_single(dev, ptr, size);
352 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
353 size, dir, attrs);
354 }
355
dma_unmap_single_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)356 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
357 size_t size, enum dma_data_direction dir, unsigned long attrs)
358 {
359 return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
360 }
361
dma_sync_single_range_for_cpu(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)362 static inline void dma_sync_single_range_for_cpu(struct device *dev,
363 dma_addr_t addr, unsigned long offset, size_t size,
364 enum dma_data_direction dir)
365 {
366 return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
367 }
368
dma_sync_single_range_for_device(struct device * dev,dma_addr_t addr,unsigned long offset,size_t size,enum dma_data_direction dir)369 static inline void dma_sync_single_range_for_device(struct device *dev,
370 dma_addr_t addr, unsigned long offset, size_t size,
371 enum dma_data_direction dir)
372 {
373 return dma_sync_single_for_device(dev, addr + offset, size, dir);
374 }
375
376 /**
377 * dma_unmap_sgtable - Unmap the given buffer for DMA
378 * @dev: The device for which to perform the DMA operation
379 * @sgt: The sg_table object describing the buffer
380 * @dir: DMA direction
381 * @attrs: Optional DMA attributes for the unmap operation
382 *
383 * Unmaps a buffer described by a scatterlist stored in the given sg_table
384 * object for the @dir DMA operation by the @dev device. After this function
385 * the ownership of the buffer is transferred back to the CPU domain.
386 */
dma_unmap_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)387 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
388 enum dma_data_direction dir, unsigned long attrs)
389 {
390 dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
391 }
392
393 /**
394 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
395 * @dev: The device for which to perform the DMA operation
396 * @sgt: The sg_table object describing the buffer
397 * @dir: DMA direction
398 *
399 * Performs the needed cache synchronization and moves the ownership of the
400 * buffer back to the CPU domain, so it is safe to perform any access to it
401 * by the CPU. Before doing any further DMA operations, one has to transfer
402 * the ownership of the buffer back to the DMA domain by calling the
403 * dma_sync_sgtable_for_device().
404 */
dma_sync_sgtable_for_cpu(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)405 static inline void dma_sync_sgtable_for_cpu(struct device *dev,
406 struct sg_table *sgt, enum dma_data_direction dir)
407 {
408 dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
409 }
410
411 /**
412 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
413 * @dev: The device for which to perform the DMA operation
414 * @sgt: The sg_table object describing the buffer
415 * @dir: DMA direction
416 *
417 * Performs the needed cache synchronization and moves the ownership of the
418 * buffer back to the DMA domain, so it is safe to perform the DMA operation.
419 * Once finished, one has to call dma_sync_sgtable_for_cpu() or
420 * dma_unmap_sgtable().
421 */
dma_sync_sgtable_for_device(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)422 static inline void dma_sync_sgtable_for_device(struct device *dev,
423 struct sg_table *sgt, enum dma_data_direction dir)
424 {
425 dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
426 }
427
428 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
429 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
430 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
431 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
432 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
433 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
434 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
435 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
436
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)437 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
438 dma_addr_t *dma_handle, gfp_t gfp)
439 {
440 return dma_alloc_attrs(dev, size, dma_handle, gfp,
441 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
442 }
443
dma_free_coherent(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle)444 static inline void dma_free_coherent(struct device *dev, size_t size,
445 void *cpu_addr, dma_addr_t dma_handle)
446 {
447 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
448 }
449
450
dma_get_mask(struct device * dev)451 static inline u64 dma_get_mask(struct device *dev)
452 {
453 if (dev->dma_mask && *dev->dma_mask)
454 return *dev->dma_mask;
455 return DMA_BIT_MASK(32);
456 }
457
458 /*
459 * Set both the DMA mask and the coherent DMA mask to the same thing.
460 * Note that we don't check the return value from dma_set_coherent_mask()
461 * as the DMA API guarantees that the coherent DMA mask can be set to
462 * the same or smaller than the streaming DMA mask.
463 */
dma_set_mask_and_coherent(struct device * dev,u64 mask)464 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
465 {
466 int rc = dma_set_mask(dev, mask);
467 if (rc == 0)
468 dma_set_coherent_mask(dev, mask);
469 return rc;
470 }
471
472 /*
473 * Similar to the above, except it deals with the case where the device
474 * does not have dev->dma_mask appropriately setup.
475 */
dma_coerce_mask_and_coherent(struct device * dev,u64 mask)476 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
477 {
478 dev->dma_mask = &dev->coherent_dma_mask;
479 return dma_set_mask_and_coherent(dev, mask);
480 }
481
482 /**
483 * dma_addressing_limited - return if the device is addressing limited
484 * @dev: device to check
485 *
486 * Return %true if the devices DMA mask is too small to address all memory in
487 * the system, else %false. Lack of addressing bits is the prime reason for
488 * bounce buffering, but might not be the only one.
489 */
dma_addressing_limited(struct device * dev)490 static inline bool dma_addressing_limited(struct device *dev)
491 {
492 return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
493 dma_get_required_mask(dev);
494 }
495
dma_get_max_seg_size(struct device * dev)496 static inline unsigned int dma_get_max_seg_size(struct device *dev)
497 {
498 if (dev->dma_parms && dev->dma_parms->max_segment_size)
499 return dev->dma_parms->max_segment_size;
500 return SZ_64K;
501 }
502
dma_set_max_seg_size(struct device * dev,unsigned int size)503 static inline int dma_set_max_seg_size(struct device *dev, unsigned int size)
504 {
505 if (dev->dma_parms) {
506 dev->dma_parms->max_segment_size = size;
507 return 0;
508 }
509 return -EIO;
510 }
511
dma_get_seg_boundary(struct device * dev)512 static inline unsigned long dma_get_seg_boundary(struct device *dev)
513 {
514 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
515 return dev->dma_parms->segment_boundary_mask;
516 return ULONG_MAX;
517 }
518
519 /**
520 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
521 * @dev: device to guery the boundary for
522 * @page_shift: ilog() of the IOMMU page size
523 *
524 * Return the segment boundary in IOMMU page units (which may be different from
525 * the CPU page size) for the passed in device.
526 *
527 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
528 * non-DMA API callers.
529 */
dma_get_seg_boundary_nr_pages(struct device * dev,unsigned int page_shift)530 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
531 unsigned int page_shift)
532 {
533 if (!dev)
534 return (U32_MAX >> page_shift) + 1;
535 return (dma_get_seg_boundary(dev) >> page_shift) + 1;
536 }
537
dma_set_seg_boundary(struct device * dev,unsigned long mask)538 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
539 {
540 if (dev->dma_parms) {
541 dev->dma_parms->segment_boundary_mask = mask;
542 return 0;
543 }
544 return -EIO;
545 }
546
dma_get_min_align_mask(struct device * dev)547 static inline unsigned int dma_get_min_align_mask(struct device *dev)
548 {
549 if (dev->dma_parms)
550 return dev->dma_parms->min_align_mask;
551 return 0;
552 }
553
dma_set_min_align_mask(struct device * dev,unsigned int min_align_mask)554 static inline int dma_set_min_align_mask(struct device *dev,
555 unsigned int min_align_mask)
556 {
557 if (WARN_ON_ONCE(!dev->dma_parms))
558 return -EIO;
559 dev->dma_parms->min_align_mask = min_align_mask;
560 return 0;
561 }
562
dma_get_cache_alignment(void)563 static inline int dma_get_cache_alignment(void)
564 {
565 #ifdef ARCH_DMA_MINALIGN
566 return ARCH_DMA_MINALIGN;
567 #endif
568 return 1;
569 }
570
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)571 static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
572 dma_addr_t *dma_handle, gfp_t gfp)
573 {
574 return dmam_alloc_attrs(dev, size, dma_handle, gfp,
575 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
576 }
577
dma_alloc_wc(struct device * dev,size_t size,dma_addr_t * dma_addr,gfp_t gfp)578 static inline void *dma_alloc_wc(struct device *dev, size_t size,
579 dma_addr_t *dma_addr, gfp_t gfp)
580 {
581 unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
582
583 if (gfp & __GFP_NOWARN)
584 attrs |= DMA_ATTR_NO_WARN;
585
586 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
587 }
588
dma_free_wc(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr)589 static inline void dma_free_wc(struct device *dev, size_t size,
590 void *cpu_addr, dma_addr_t dma_addr)
591 {
592 return dma_free_attrs(dev, size, cpu_addr, dma_addr,
593 DMA_ATTR_WRITE_COMBINE);
594 }
595
dma_mmap_wc(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)596 static inline int dma_mmap_wc(struct device *dev,
597 struct vm_area_struct *vma,
598 void *cpu_addr, dma_addr_t dma_addr,
599 size_t size)
600 {
601 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
602 DMA_ATTR_WRITE_COMBINE);
603 }
604
605 #ifdef CONFIG_NEED_DMA_MAP_STATE
606 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME
607 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME
608 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME)
609 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL))
610 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME)
611 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL))
612 #else
613 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
614 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
615 #define dma_unmap_addr(PTR, ADDR_NAME) (0)
616 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0)
617 #define dma_unmap_len(PTR, LEN_NAME) (0)
618 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0)
619 #endif
620
621 #endif /* _LINUX_DMA_MAPPING_H */
622