1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300 #if IS_ENABLED(CONFIG_SMC)
301 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302 EXPORT_SYMBOL(tcp_have_smc);
303 #endif
304
305 /*
306 * Current number of TCP sockets.
307 */
308 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309 EXPORT_SYMBOL(tcp_sockets_allocated);
310
311 /*
312 * TCP splice context
313 */
314 struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318 };
319
320 /*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326 unsigned long tcp_memory_pressure __read_mostly;
327 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460
461 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
462 sk_sockets_allocated_inc(sk);
463 }
464 EXPORT_SYMBOL(tcp_init_sock);
465
tcp_tx_timestamp(struct sock * sk,u16 tsflags)466 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
467 {
468 struct sk_buff *skb = tcp_write_queue_tail(sk);
469
470 if (tsflags && skb) {
471 struct skb_shared_info *shinfo = skb_shinfo(skb);
472 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
473
474 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
475 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
476 tcb->txstamp_ack = 1;
477 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
478 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
479 }
480 }
481
tcp_stream_is_readable(struct sock * sk,int target)482 static bool tcp_stream_is_readable(struct sock *sk, int target)
483 {
484 if (tcp_epollin_ready(sk, target))
485 return true;
486 return sk_is_readable(sk);
487 }
488
489 /*
490 * Wait for a TCP event.
491 *
492 * Note that we don't need to lock the socket, as the upper poll layers
493 * take care of normal races (between the test and the event) and we don't
494 * go look at any of the socket buffers directly.
495 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)496 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
497 {
498 __poll_t mask;
499 struct sock *sk = sock->sk;
500 const struct tcp_sock *tp = tcp_sk(sk);
501 u8 shutdown;
502 int state;
503
504 sock_poll_wait(file, sock, wait);
505
506 state = inet_sk_state_load(sk);
507 if (state == TCP_LISTEN)
508 return inet_csk_listen_poll(sk);
509
510 /* Socket is not locked. We are protected from async events
511 * by poll logic and correct handling of state changes
512 * made by other threads is impossible in any case.
513 */
514
515 mask = 0;
516
517 /*
518 * EPOLLHUP is certainly not done right. But poll() doesn't
519 * have a notion of HUP in just one direction, and for a
520 * socket the read side is more interesting.
521 *
522 * Some poll() documentation says that EPOLLHUP is incompatible
523 * with the EPOLLOUT/POLLWR flags, so somebody should check this
524 * all. But careful, it tends to be safer to return too many
525 * bits than too few, and you can easily break real applications
526 * if you don't tell them that something has hung up!
527 *
528 * Check-me.
529 *
530 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
531 * our fs/select.c). It means that after we received EOF,
532 * poll always returns immediately, making impossible poll() on write()
533 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
534 * if and only if shutdown has been made in both directions.
535 * Actually, it is interesting to look how Solaris and DUX
536 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
537 * then we could set it on SND_SHUTDOWN. BTW examples given
538 * in Stevens' books assume exactly this behaviour, it explains
539 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
540 *
541 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
542 * blocking on fresh not-connected or disconnected socket. --ANK
543 */
544 shutdown = READ_ONCE(sk->sk_shutdown);
545 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
546 mask |= EPOLLHUP;
547 if (shutdown & RCV_SHUTDOWN)
548 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
549
550 /* Connected or passive Fast Open socket? */
551 if (state != TCP_SYN_SENT &&
552 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
553 int target = sock_rcvlowat(sk, 0, INT_MAX);
554 u16 urg_data = READ_ONCE(tp->urg_data);
555
556 if (unlikely(urg_data) &&
557 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
558 !sock_flag(sk, SOCK_URGINLINE))
559 target++;
560
561 if (tcp_stream_is_readable(sk, target))
562 mask |= EPOLLIN | EPOLLRDNORM;
563
564 if (!(shutdown & SEND_SHUTDOWN)) {
565 if (__sk_stream_is_writeable(sk, 1)) {
566 mask |= EPOLLOUT | EPOLLWRNORM;
567 } else { /* send SIGIO later */
568 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
569 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
570
571 /* Race breaker. If space is freed after
572 * wspace test but before the flags are set,
573 * IO signal will be lost. Memory barrier
574 * pairs with the input side.
575 */
576 smp_mb__after_atomic();
577 if (__sk_stream_is_writeable(sk, 1))
578 mask |= EPOLLOUT | EPOLLWRNORM;
579 }
580 } else
581 mask |= EPOLLOUT | EPOLLWRNORM;
582
583 if (urg_data & TCP_URG_VALID)
584 mask |= EPOLLPRI;
585 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
586 /* Active TCP fastopen socket with defer_connect
587 * Return EPOLLOUT so application can call write()
588 * in order for kernel to generate SYN+data
589 */
590 mask |= EPOLLOUT | EPOLLWRNORM;
591 }
592 /* This barrier is coupled with smp_wmb() in tcp_reset() */
593 smp_rmb();
594 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
595 mask |= EPOLLERR;
596
597 return mask;
598 }
599 EXPORT_SYMBOL(tcp_poll);
600
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)601 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
602 {
603 struct tcp_sock *tp = tcp_sk(sk);
604 int answ;
605 bool slow;
606
607 switch (cmd) {
608 case SIOCINQ:
609 if (sk->sk_state == TCP_LISTEN)
610 return -EINVAL;
611
612 slow = lock_sock_fast(sk);
613 answ = tcp_inq(sk);
614 unlock_sock_fast(sk, slow);
615 break;
616 case SIOCATMARK:
617 answ = READ_ONCE(tp->urg_data) &&
618 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
619 break;
620 case SIOCOUTQ:
621 if (sk->sk_state == TCP_LISTEN)
622 return -EINVAL;
623
624 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
625 answ = 0;
626 else
627 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
628 break;
629 case SIOCOUTQNSD:
630 if (sk->sk_state == TCP_LISTEN)
631 return -EINVAL;
632
633 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
634 answ = 0;
635 else
636 answ = READ_ONCE(tp->write_seq) -
637 READ_ONCE(tp->snd_nxt);
638 break;
639 default:
640 return -ENOIOCTLCMD;
641 }
642
643 return put_user(answ, (int __user *)arg);
644 }
645 EXPORT_SYMBOL(tcp_ioctl);
646
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)647 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
648 {
649 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
650 tp->pushed_seq = tp->write_seq;
651 }
652
forced_push(const struct tcp_sock * tp)653 static inline bool forced_push(const struct tcp_sock *tp)
654 {
655 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
656 }
657
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)658 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
659 {
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
662
663 tcb->seq = tcb->end_seq = tp->write_seq;
664 tcb->tcp_flags = TCPHDR_ACK;
665 __skb_header_release(skb);
666 tcp_add_write_queue_tail(sk, skb);
667 sk_wmem_queued_add(sk, skb->truesize);
668 sk_mem_charge(sk, skb->truesize);
669 if (tp->nonagle & TCP_NAGLE_PUSH)
670 tp->nonagle &= ~TCP_NAGLE_PUSH;
671
672 tcp_slow_start_after_idle_check(sk);
673 }
674
tcp_mark_urg(struct tcp_sock * tp,int flags)675 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
676 {
677 if (flags & MSG_OOB)
678 tp->snd_up = tp->write_seq;
679 }
680
681 /* If a not yet filled skb is pushed, do not send it if
682 * we have data packets in Qdisc or NIC queues :
683 * Because TX completion will happen shortly, it gives a chance
684 * to coalesce future sendmsg() payload into this skb, without
685 * need for a timer, and with no latency trade off.
686 * As packets containing data payload have a bigger truesize
687 * than pure acks (dataless) packets, the last checks prevent
688 * autocorking if we only have an ACK in Qdisc/NIC queues,
689 * or if TX completion was delayed after we processed ACK packet.
690 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)691 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
692 int size_goal)
693 {
694 return skb->len < size_goal &&
695 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
696 !tcp_rtx_queue_empty(sk) &&
697 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
698 tcp_skb_can_collapse_to(skb);
699 }
700
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)701 void tcp_push(struct sock *sk, int flags, int mss_now,
702 int nonagle, int size_goal)
703 {
704 struct tcp_sock *tp = tcp_sk(sk);
705 struct sk_buff *skb;
706
707 skb = tcp_write_queue_tail(sk);
708 if (!skb)
709 return;
710 if (!(flags & MSG_MORE) || forced_push(tp))
711 tcp_mark_push(tp, skb);
712
713 tcp_mark_urg(tp, flags);
714
715 if (tcp_should_autocork(sk, skb, size_goal)) {
716
717 /* avoid atomic op if TSQ_THROTTLED bit is already set */
718 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
719 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
720 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
721 smp_mb__after_atomic();
722 }
723 /* It is possible TX completion already happened
724 * before we set TSQ_THROTTLED.
725 */
726 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
727 return;
728 }
729
730 if (flags & MSG_MORE)
731 nonagle = TCP_NAGLE_CORK;
732
733 __tcp_push_pending_frames(sk, mss_now, nonagle);
734 }
735
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)736 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
737 unsigned int offset, size_t len)
738 {
739 struct tcp_splice_state *tss = rd_desc->arg.data;
740 int ret;
741
742 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
743 min(rd_desc->count, len), tss->flags);
744 if (ret > 0)
745 rd_desc->count -= ret;
746 return ret;
747 }
748
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)749 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
750 {
751 /* Store TCP splice context information in read_descriptor_t. */
752 read_descriptor_t rd_desc = {
753 .arg.data = tss,
754 .count = tss->len,
755 };
756
757 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
758 }
759
760 /**
761 * tcp_splice_read - splice data from TCP socket to a pipe
762 * @sock: socket to splice from
763 * @ppos: position (not valid)
764 * @pipe: pipe to splice to
765 * @len: number of bytes to splice
766 * @flags: splice modifier flags
767 *
768 * Description:
769 * Will read pages from given socket and fill them into a pipe.
770 *
771 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)772 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
773 struct pipe_inode_info *pipe, size_t len,
774 unsigned int flags)
775 {
776 struct sock *sk = sock->sk;
777 struct tcp_splice_state tss = {
778 .pipe = pipe,
779 .len = len,
780 .flags = flags,
781 };
782 long timeo;
783 ssize_t spliced;
784 int ret;
785
786 sock_rps_record_flow(sk);
787 /*
788 * We can't seek on a socket input
789 */
790 if (unlikely(*ppos))
791 return -ESPIPE;
792
793 ret = spliced = 0;
794
795 lock_sock(sk);
796
797 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
798 while (tss.len) {
799 ret = __tcp_splice_read(sk, &tss);
800 if (ret < 0)
801 break;
802 else if (!ret) {
803 if (spliced)
804 break;
805 if (sock_flag(sk, SOCK_DONE))
806 break;
807 if (sk->sk_err) {
808 ret = sock_error(sk);
809 break;
810 }
811 if (sk->sk_shutdown & RCV_SHUTDOWN)
812 break;
813 if (sk->sk_state == TCP_CLOSE) {
814 /*
815 * This occurs when user tries to read
816 * from never connected socket.
817 */
818 ret = -ENOTCONN;
819 break;
820 }
821 if (!timeo) {
822 ret = -EAGAIN;
823 break;
824 }
825 /* if __tcp_splice_read() got nothing while we have
826 * an skb in receive queue, we do not want to loop.
827 * This might happen with URG data.
828 */
829 if (!skb_queue_empty(&sk->sk_receive_queue))
830 break;
831 sk_wait_data(sk, &timeo, NULL);
832 if (signal_pending(current)) {
833 ret = sock_intr_errno(timeo);
834 break;
835 }
836 continue;
837 }
838 tss.len -= ret;
839 spliced += ret;
840
841 if (!timeo)
842 break;
843 release_sock(sk);
844 lock_sock(sk);
845
846 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
847 (sk->sk_shutdown & RCV_SHUTDOWN) ||
848 signal_pending(current))
849 break;
850 }
851
852 release_sock(sk);
853
854 if (spliced)
855 return spliced;
856
857 return ret;
858 }
859 EXPORT_SYMBOL(tcp_splice_read);
860
tcp_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)861 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
862 bool force_schedule)
863 {
864 struct sk_buff *skb;
865
866 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
867 if (likely(skb)) {
868 bool mem_scheduled;
869
870 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
871 if (force_schedule) {
872 mem_scheduled = true;
873 sk_forced_mem_schedule(sk, skb->truesize);
874 } else {
875 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
876 }
877 if (likely(mem_scheduled)) {
878 skb_reserve(skb, MAX_TCP_HEADER);
879 skb->ip_summed = CHECKSUM_PARTIAL;
880 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
881 return skb;
882 }
883 __kfree_skb(skb);
884 } else {
885 sk->sk_prot->enter_memory_pressure(sk);
886 sk_stream_moderate_sndbuf(sk);
887 }
888 return NULL;
889 }
890
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)891 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
892 int large_allowed)
893 {
894 struct tcp_sock *tp = tcp_sk(sk);
895 u32 new_size_goal, size_goal;
896
897 if (!large_allowed)
898 return mss_now;
899
900 /* Note : tcp_tso_autosize() will eventually split this later */
901 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
902
903 /* We try hard to avoid divides here */
904 size_goal = tp->gso_segs * mss_now;
905 if (unlikely(new_size_goal < size_goal ||
906 new_size_goal >= size_goal + mss_now)) {
907 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
908 sk->sk_gso_max_segs);
909 size_goal = tp->gso_segs * mss_now;
910 }
911
912 return max(size_goal, mss_now);
913 }
914
tcp_send_mss(struct sock * sk,int * size_goal,int flags)915 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
916 {
917 int mss_now;
918
919 mss_now = tcp_current_mss(sk);
920 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
921
922 return mss_now;
923 }
924
925 /* In some cases, both sendpage() and sendmsg() could have added
926 * an skb to the write queue, but failed adding payload on it.
927 * We need to remove it to consume less memory, but more
928 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
929 * users.
930 */
tcp_remove_empty_skb(struct sock * sk)931 void tcp_remove_empty_skb(struct sock *sk)
932 {
933 struct sk_buff *skb = tcp_write_queue_tail(sk);
934
935 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
936 tcp_unlink_write_queue(skb, sk);
937 if (tcp_write_queue_empty(sk))
938 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
939 tcp_wmem_free_skb(sk, skb);
940 }
941 }
942
943 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)944 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
945 {
946 if (unlikely(skb_zcopy_pure(skb))) {
947 u32 extra = skb->truesize -
948 SKB_TRUESIZE(skb_end_offset(skb));
949
950 if (!sk_wmem_schedule(sk, extra))
951 return -ENOMEM;
952
953 sk_mem_charge(sk, extra);
954 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
955 }
956 return 0;
957 }
958
959
tcp_wmem_schedule(struct sock * sk,int copy)960 static int tcp_wmem_schedule(struct sock *sk, int copy)
961 {
962 int left;
963
964 if (likely(sk_wmem_schedule(sk, copy)))
965 return copy;
966
967 /* We could be in trouble if we have nothing queued.
968 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
969 * to guarantee some progress.
970 */
971 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
972 if (left > 0)
973 sk_forced_mem_schedule(sk, min(left, copy));
974 return min(copy, sk->sk_forward_alloc);
975 }
976
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)977 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
978 struct page *page, int offset, size_t *size)
979 {
980 struct sk_buff *skb = tcp_write_queue_tail(sk);
981 struct tcp_sock *tp = tcp_sk(sk);
982 bool can_coalesce;
983 int copy, i;
984
985 if (!skb || (copy = size_goal - skb->len) <= 0 ||
986 !tcp_skb_can_collapse_to(skb)) {
987 new_segment:
988 if (!sk_stream_memory_free(sk))
989 return NULL;
990
991 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
992 tcp_rtx_and_write_queues_empty(sk));
993 if (!skb)
994 return NULL;
995
996 #ifdef CONFIG_TLS_DEVICE
997 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
998 #endif
999 tcp_skb_entail(sk, skb);
1000 copy = size_goal;
1001 }
1002
1003 if (copy > *size)
1004 copy = *size;
1005
1006 i = skb_shinfo(skb)->nr_frags;
1007 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1008 if (!can_coalesce && i >= READ_ONCE(sysctl_max_skb_frags)) {
1009 tcp_mark_push(tp, skb);
1010 goto new_segment;
1011 }
1012 if (tcp_downgrade_zcopy_pure(sk, skb))
1013 return NULL;
1014
1015 copy = tcp_wmem_schedule(sk, copy);
1016 if (!copy)
1017 return NULL;
1018
1019 if (can_coalesce) {
1020 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1021 } else {
1022 get_page(page);
1023 skb_fill_page_desc_noacc(skb, i, page, offset, copy);
1024 }
1025
1026 if (!(flags & MSG_NO_SHARED_FRAGS))
1027 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1028
1029 skb->len += copy;
1030 skb->data_len += copy;
1031 skb->truesize += copy;
1032 sk_wmem_queued_add(sk, copy);
1033 sk_mem_charge(sk, copy);
1034 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1035 TCP_SKB_CB(skb)->end_seq += copy;
1036 tcp_skb_pcount_set(skb, 0);
1037
1038 *size = copy;
1039 return skb;
1040 }
1041
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1042 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1043 size_t size, int flags)
1044 {
1045 struct tcp_sock *tp = tcp_sk(sk);
1046 int mss_now, size_goal;
1047 int err;
1048 ssize_t copied;
1049 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1050
1051 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1052 WARN_ONCE(!sendpage_ok(page),
1053 "page must not be a Slab one and have page_count > 0"))
1054 return -EINVAL;
1055
1056 /* Wait for a connection to finish. One exception is TCP Fast Open
1057 * (passive side) where data is allowed to be sent before a connection
1058 * is fully established.
1059 */
1060 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1061 !tcp_passive_fastopen(sk)) {
1062 err = sk_stream_wait_connect(sk, &timeo);
1063 if (err != 0)
1064 goto out_err;
1065 }
1066
1067 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1068
1069 mss_now = tcp_send_mss(sk, &size_goal, flags);
1070 copied = 0;
1071
1072 err = -EPIPE;
1073 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1074 goto out_err;
1075
1076 while (size > 0) {
1077 struct sk_buff *skb;
1078 size_t copy = size;
1079
1080 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1081 if (!skb)
1082 goto wait_for_space;
1083
1084 if (!copied)
1085 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1086
1087 copied += copy;
1088 offset += copy;
1089 size -= copy;
1090 if (!size)
1091 goto out;
1092
1093 if (skb->len < size_goal || (flags & MSG_OOB))
1094 continue;
1095
1096 if (forced_push(tp)) {
1097 tcp_mark_push(tp, skb);
1098 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1099 } else if (skb == tcp_send_head(sk))
1100 tcp_push_one(sk, mss_now);
1101 continue;
1102
1103 wait_for_space:
1104 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1105 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1106 TCP_NAGLE_PUSH, size_goal);
1107
1108 err = sk_stream_wait_memory(sk, &timeo);
1109 if (err != 0)
1110 goto do_error;
1111
1112 mss_now = tcp_send_mss(sk, &size_goal, flags);
1113 }
1114
1115 out:
1116 if (copied) {
1117 tcp_tx_timestamp(sk, sk->sk_tsflags);
1118 if (!(flags & MSG_SENDPAGE_NOTLAST))
1119 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1120 }
1121 return copied;
1122
1123 do_error:
1124 tcp_remove_empty_skb(sk);
1125 if (copied)
1126 goto out;
1127 out_err:
1128 /* make sure we wake any epoll edge trigger waiter */
1129 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1130 sk->sk_write_space(sk);
1131 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1132 }
1133 return sk_stream_error(sk, flags, err);
1134 }
1135 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1136
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1137 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1138 size_t size, int flags)
1139 {
1140 if (!(sk->sk_route_caps & NETIF_F_SG))
1141 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1142
1143 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1144
1145 return do_tcp_sendpages(sk, page, offset, size, flags);
1146 }
1147 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1148
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1149 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1150 size_t size, int flags)
1151 {
1152 int ret;
1153
1154 lock_sock(sk);
1155 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1156 release_sock(sk);
1157
1158 return ret;
1159 }
1160 EXPORT_SYMBOL(tcp_sendpage);
1161
tcp_free_fastopen_req(struct tcp_sock * tp)1162 void tcp_free_fastopen_req(struct tcp_sock *tp)
1163 {
1164 if (tp->fastopen_req) {
1165 kfree(tp->fastopen_req);
1166 tp->fastopen_req = NULL;
1167 }
1168 }
1169
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1170 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1171 size_t size, struct ubuf_info *uarg)
1172 {
1173 struct tcp_sock *tp = tcp_sk(sk);
1174 struct inet_sock *inet = inet_sk(sk);
1175 struct sockaddr *uaddr = msg->msg_name;
1176 int err, flags;
1177
1178 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1179 TFO_CLIENT_ENABLE) ||
1180 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1181 uaddr->sa_family == AF_UNSPEC))
1182 return -EOPNOTSUPP;
1183 if (tp->fastopen_req)
1184 return -EALREADY; /* Another Fast Open is in progress */
1185
1186 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1187 sk->sk_allocation);
1188 if (unlikely(!tp->fastopen_req))
1189 return -ENOBUFS;
1190 tp->fastopen_req->data = msg;
1191 tp->fastopen_req->size = size;
1192 tp->fastopen_req->uarg = uarg;
1193
1194 if (inet->defer_connect) {
1195 err = tcp_connect(sk);
1196 /* Same failure procedure as in tcp_v4/6_connect */
1197 if (err) {
1198 tcp_set_state(sk, TCP_CLOSE);
1199 inet->inet_dport = 0;
1200 sk->sk_route_caps = 0;
1201 }
1202 }
1203 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1204 err = __inet_stream_connect(sk->sk_socket, uaddr,
1205 msg->msg_namelen, flags, 1);
1206 /* fastopen_req could already be freed in __inet_stream_connect
1207 * if the connection times out or gets rst
1208 */
1209 if (tp->fastopen_req) {
1210 *copied = tp->fastopen_req->copied;
1211 tcp_free_fastopen_req(tp);
1212 inet->defer_connect = 0;
1213 }
1214 return err;
1215 }
1216
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1217 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1218 {
1219 struct tcp_sock *tp = tcp_sk(sk);
1220 struct ubuf_info *uarg = NULL;
1221 struct sk_buff *skb;
1222 struct sockcm_cookie sockc;
1223 int flags, err, copied = 0;
1224 int mss_now = 0, size_goal, copied_syn = 0;
1225 int process_backlog = 0;
1226 bool zc = false;
1227 long timeo;
1228
1229 flags = msg->msg_flags;
1230
1231 if ((flags & MSG_ZEROCOPY) && size) {
1232 skb = tcp_write_queue_tail(sk);
1233
1234 if (msg->msg_ubuf) {
1235 uarg = msg->msg_ubuf;
1236 net_zcopy_get(uarg);
1237 zc = sk->sk_route_caps & NETIF_F_SG;
1238 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1239 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1240 if (!uarg) {
1241 err = -ENOBUFS;
1242 goto out_err;
1243 }
1244 zc = sk->sk_route_caps & NETIF_F_SG;
1245 if (!zc)
1246 uarg_to_msgzc(uarg)->zerocopy = 0;
1247 }
1248 }
1249
1250 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1251 !tp->repair) {
1252 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1253 if (err == -EINPROGRESS && copied_syn > 0)
1254 goto out;
1255 else if (err)
1256 goto out_err;
1257 }
1258
1259 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1260
1261 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1262
1263 /* Wait for a connection to finish. One exception is TCP Fast Open
1264 * (passive side) where data is allowed to be sent before a connection
1265 * is fully established.
1266 */
1267 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1268 !tcp_passive_fastopen(sk)) {
1269 err = sk_stream_wait_connect(sk, &timeo);
1270 if (err != 0)
1271 goto do_error;
1272 }
1273
1274 if (unlikely(tp->repair)) {
1275 if (tp->repair_queue == TCP_RECV_QUEUE) {
1276 copied = tcp_send_rcvq(sk, msg, size);
1277 goto out_nopush;
1278 }
1279
1280 err = -EINVAL;
1281 if (tp->repair_queue == TCP_NO_QUEUE)
1282 goto out_err;
1283
1284 /* 'common' sending to sendq */
1285 }
1286
1287 sockcm_init(&sockc, sk);
1288 if (msg->msg_controllen) {
1289 err = sock_cmsg_send(sk, msg, &sockc);
1290 if (unlikely(err)) {
1291 err = -EINVAL;
1292 goto out_err;
1293 }
1294 }
1295
1296 /* This should be in poll */
1297 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1298
1299 /* Ok commence sending. */
1300 copied = 0;
1301
1302 restart:
1303 mss_now = tcp_send_mss(sk, &size_goal, flags);
1304
1305 err = -EPIPE;
1306 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1307 goto do_error;
1308
1309 while (msg_data_left(msg)) {
1310 int copy = 0;
1311
1312 skb = tcp_write_queue_tail(sk);
1313 if (skb)
1314 copy = size_goal - skb->len;
1315
1316 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1317 bool first_skb;
1318
1319 new_segment:
1320 if (!sk_stream_memory_free(sk))
1321 goto wait_for_space;
1322
1323 if (unlikely(process_backlog >= 16)) {
1324 process_backlog = 0;
1325 if (sk_flush_backlog(sk))
1326 goto restart;
1327 }
1328 first_skb = tcp_rtx_and_write_queues_empty(sk);
1329 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1330 first_skb);
1331 if (!skb)
1332 goto wait_for_space;
1333
1334 process_backlog++;
1335
1336 tcp_skb_entail(sk, skb);
1337 copy = size_goal;
1338
1339 /* All packets are restored as if they have
1340 * already been sent. skb_mstamp_ns isn't set to
1341 * avoid wrong rtt estimation.
1342 */
1343 if (tp->repair)
1344 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1345 }
1346
1347 /* Try to append data to the end of skb. */
1348 if (copy > msg_data_left(msg))
1349 copy = msg_data_left(msg);
1350
1351 if (!zc) {
1352 bool merge = true;
1353 int i = skb_shinfo(skb)->nr_frags;
1354 struct page_frag *pfrag = sk_page_frag(sk);
1355
1356 if (!sk_page_frag_refill(sk, pfrag))
1357 goto wait_for_space;
1358
1359 if (!skb_can_coalesce(skb, i, pfrag->page,
1360 pfrag->offset)) {
1361 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1362 tcp_mark_push(tp, skb);
1363 goto new_segment;
1364 }
1365 merge = false;
1366 }
1367
1368 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1369
1370 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1371 if (tcp_downgrade_zcopy_pure(sk, skb))
1372 goto wait_for_space;
1373 skb_zcopy_downgrade_managed(skb);
1374 }
1375
1376 copy = tcp_wmem_schedule(sk, copy);
1377 if (!copy)
1378 goto wait_for_space;
1379
1380 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1381 pfrag->page,
1382 pfrag->offset,
1383 copy);
1384 if (err)
1385 goto do_error;
1386
1387 /* Update the skb. */
1388 if (merge) {
1389 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1390 } else {
1391 skb_fill_page_desc(skb, i, pfrag->page,
1392 pfrag->offset, copy);
1393 page_ref_inc(pfrag->page);
1394 }
1395 pfrag->offset += copy;
1396 } else {
1397 /* First append to a fragless skb builds initial
1398 * pure zerocopy skb
1399 */
1400 if (!skb->len)
1401 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1402
1403 if (!skb_zcopy_pure(skb)) {
1404 copy = tcp_wmem_schedule(sk, copy);
1405 if (!copy)
1406 goto wait_for_space;
1407 }
1408
1409 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1410 if (err == -EMSGSIZE || err == -EEXIST) {
1411 tcp_mark_push(tp, skb);
1412 goto new_segment;
1413 }
1414 if (err < 0)
1415 goto do_error;
1416 copy = err;
1417 }
1418
1419 if (!copied)
1420 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1421
1422 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1423 TCP_SKB_CB(skb)->end_seq += copy;
1424 tcp_skb_pcount_set(skb, 0);
1425
1426 copied += copy;
1427 if (!msg_data_left(msg)) {
1428 if (unlikely(flags & MSG_EOR))
1429 TCP_SKB_CB(skb)->eor = 1;
1430 goto out;
1431 }
1432
1433 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1434 continue;
1435
1436 if (forced_push(tp)) {
1437 tcp_mark_push(tp, skb);
1438 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1439 } else if (skb == tcp_send_head(sk))
1440 tcp_push_one(sk, mss_now);
1441 continue;
1442
1443 wait_for_space:
1444 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1445 if (copied)
1446 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1447 TCP_NAGLE_PUSH, size_goal);
1448
1449 err = sk_stream_wait_memory(sk, &timeo);
1450 if (err != 0)
1451 goto do_error;
1452
1453 mss_now = tcp_send_mss(sk, &size_goal, flags);
1454 }
1455
1456 out:
1457 if (copied) {
1458 tcp_tx_timestamp(sk, sockc.tsflags);
1459 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1460 }
1461 out_nopush:
1462 net_zcopy_put(uarg);
1463 return copied + copied_syn;
1464
1465 do_error:
1466 tcp_remove_empty_skb(sk);
1467
1468 if (copied + copied_syn)
1469 goto out;
1470 out_err:
1471 net_zcopy_put_abort(uarg, true);
1472 err = sk_stream_error(sk, flags, err);
1473 /* make sure we wake any epoll edge trigger waiter */
1474 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1475 sk->sk_write_space(sk);
1476 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1477 }
1478 return err;
1479 }
1480 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1481
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1482 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1483 {
1484 int ret;
1485
1486 lock_sock(sk);
1487 ret = tcp_sendmsg_locked(sk, msg, size);
1488 release_sock(sk);
1489
1490 return ret;
1491 }
1492 EXPORT_SYMBOL(tcp_sendmsg);
1493
1494 /*
1495 * Handle reading urgent data. BSD has very simple semantics for
1496 * this, no blocking and very strange errors 8)
1497 */
1498
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1499 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1500 {
1501 struct tcp_sock *tp = tcp_sk(sk);
1502
1503 /* No URG data to read. */
1504 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1505 tp->urg_data == TCP_URG_READ)
1506 return -EINVAL; /* Yes this is right ! */
1507
1508 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1509 return -ENOTCONN;
1510
1511 if (tp->urg_data & TCP_URG_VALID) {
1512 int err = 0;
1513 char c = tp->urg_data;
1514
1515 if (!(flags & MSG_PEEK))
1516 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1517
1518 /* Read urgent data. */
1519 msg->msg_flags |= MSG_OOB;
1520
1521 if (len > 0) {
1522 if (!(flags & MSG_TRUNC))
1523 err = memcpy_to_msg(msg, &c, 1);
1524 len = 1;
1525 } else
1526 msg->msg_flags |= MSG_TRUNC;
1527
1528 return err ? -EFAULT : len;
1529 }
1530
1531 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1532 return 0;
1533
1534 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1535 * the available implementations agree in this case:
1536 * this call should never block, independent of the
1537 * blocking state of the socket.
1538 * Mike <pall@rz.uni-karlsruhe.de>
1539 */
1540 return -EAGAIN;
1541 }
1542
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1543 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1544 {
1545 struct sk_buff *skb;
1546 int copied = 0, err = 0;
1547
1548 /* XXX -- need to support SO_PEEK_OFF */
1549
1550 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1551 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1552 if (err)
1553 return err;
1554 copied += skb->len;
1555 }
1556
1557 skb_queue_walk(&sk->sk_write_queue, skb) {
1558 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1559 if (err)
1560 break;
1561
1562 copied += skb->len;
1563 }
1564
1565 return err ?: copied;
1566 }
1567
1568 /* Clean up the receive buffer for full frames taken by the user,
1569 * then send an ACK if necessary. COPIED is the number of bytes
1570 * tcp_recvmsg has given to the user so far, it speeds up the
1571 * calculation of whether or not we must ACK for the sake of
1572 * a window update.
1573 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1574 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1575 {
1576 struct tcp_sock *tp = tcp_sk(sk);
1577 bool time_to_ack = false;
1578
1579 if (inet_csk_ack_scheduled(sk)) {
1580 const struct inet_connection_sock *icsk = inet_csk(sk);
1581
1582 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1583 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1584 /*
1585 * If this read emptied read buffer, we send ACK, if
1586 * connection is not bidirectional, user drained
1587 * receive buffer and there was a small segment
1588 * in queue.
1589 */
1590 (copied > 0 &&
1591 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1592 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1593 !inet_csk_in_pingpong_mode(sk))) &&
1594 !atomic_read(&sk->sk_rmem_alloc)))
1595 time_to_ack = true;
1596 }
1597
1598 /* We send an ACK if we can now advertise a non-zero window
1599 * which has been raised "significantly".
1600 *
1601 * Even if window raised up to infinity, do not send window open ACK
1602 * in states, where we will not receive more. It is useless.
1603 */
1604 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1605 __u32 rcv_window_now = tcp_receive_window(tp);
1606
1607 /* Optimize, __tcp_select_window() is not cheap. */
1608 if (2*rcv_window_now <= tp->window_clamp) {
1609 __u32 new_window = __tcp_select_window(sk);
1610
1611 /* Send ACK now, if this read freed lots of space
1612 * in our buffer. Certainly, new_window is new window.
1613 * We can advertise it now, if it is not less than current one.
1614 * "Lots" means "at least twice" here.
1615 */
1616 if (new_window && new_window >= 2 * rcv_window_now)
1617 time_to_ack = true;
1618 }
1619 }
1620 if (time_to_ack)
1621 tcp_send_ack(sk);
1622 }
1623
tcp_cleanup_rbuf(struct sock * sk,int copied)1624 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1625 {
1626 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1627 struct tcp_sock *tp = tcp_sk(sk);
1628
1629 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1630 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1631 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1632 __tcp_cleanup_rbuf(sk, copied);
1633 }
1634
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1635 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1636 {
1637 __skb_unlink(skb, &sk->sk_receive_queue);
1638 if (likely(skb->destructor == sock_rfree)) {
1639 sock_rfree(skb);
1640 skb->destructor = NULL;
1641 skb->sk = NULL;
1642 return skb_attempt_defer_free(skb);
1643 }
1644 __kfree_skb(skb);
1645 }
1646
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1647 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1648 {
1649 struct sk_buff *skb;
1650 u32 offset;
1651
1652 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1653 offset = seq - TCP_SKB_CB(skb)->seq;
1654 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1655 pr_err_once("%s: found a SYN, please report !\n", __func__);
1656 offset--;
1657 }
1658 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1659 *off = offset;
1660 return skb;
1661 }
1662 /* This looks weird, but this can happen if TCP collapsing
1663 * splitted a fat GRO packet, while we released socket lock
1664 * in skb_splice_bits()
1665 */
1666 tcp_eat_recv_skb(sk, skb);
1667 }
1668 return NULL;
1669 }
1670 EXPORT_SYMBOL(tcp_recv_skb);
1671
1672 /*
1673 * This routine provides an alternative to tcp_recvmsg() for routines
1674 * that would like to handle copying from skbuffs directly in 'sendfile'
1675 * fashion.
1676 * Note:
1677 * - It is assumed that the socket was locked by the caller.
1678 * - The routine does not block.
1679 * - At present, there is no support for reading OOB data
1680 * or for 'peeking' the socket using this routine
1681 * (although both would be easy to implement).
1682 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1683 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1684 sk_read_actor_t recv_actor)
1685 {
1686 struct sk_buff *skb;
1687 struct tcp_sock *tp = tcp_sk(sk);
1688 u32 seq = tp->copied_seq;
1689 u32 offset;
1690 int copied = 0;
1691
1692 if (sk->sk_state == TCP_LISTEN)
1693 return -ENOTCONN;
1694 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1695 if (offset < skb->len) {
1696 int used;
1697 size_t len;
1698
1699 len = skb->len - offset;
1700 /* Stop reading if we hit a patch of urgent data */
1701 if (unlikely(tp->urg_data)) {
1702 u32 urg_offset = tp->urg_seq - seq;
1703 if (urg_offset < len)
1704 len = urg_offset;
1705 if (!len)
1706 break;
1707 }
1708 used = recv_actor(desc, skb, offset, len);
1709 if (used <= 0) {
1710 if (!copied)
1711 copied = used;
1712 break;
1713 }
1714 if (WARN_ON_ONCE(used > len))
1715 used = len;
1716 seq += used;
1717 copied += used;
1718 offset += used;
1719
1720 /* If recv_actor drops the lock (e.g. TCP splice
1721 * receive) the skb pointer might be invalid when
1722 * getting here: tcp_collapse might have deleted it
1723 * while aggregating skbs from the socket queue.
1724 */
1725 skb = tcp_recv_skb(sk, seq - 1, &offset);
1726 if (!skb)
1727 break;
1728 /* TCP coalescing might have appended data to the skb.
1729 * Try to splice more frags
1730 */
1731 if (offset + 1 != skb->len)
1732 continue;
1733 }
1734 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1735 tcp_eat_recv_skb(sk, skb);
1736 ++seq;
1737 break;
1738 }
1739 tcp_eat_recv_skb(sk, skb);
1740 if (!desc->count)
1741 break;
1742 WRITE_ONCE(tp->copied_seq, seq);
1743 }
1744 WRITE_ONCE(tp->copied_seq, seq);
1745
1746 tcp_rcv_space_adjust(sk);
1747
1748 /* Clean up data we have read: This will do ACK frames. */
1749 if (copied > 0) {
1750 tcp_recv_skb(sk, seq, &offset);
1751 tcp_cleanup_rbuf(sk, copied);
1752 }
1753 return copied;
1754 }
1755 EXPORT_SYMBOL(tcp_read_sock);
1756
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1757 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1758 {
1759 struct sk_buff *skb;
1760 int copied = 0;
1761
1762 if (sk->sk_state == TCP_LISTEN)
1763 return -ENOTCONN;
1764
1765 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1766 u8 tcp_flags;
1767 int used;
1768
1769 __skb_unlink(skb, &sk->sk_receive_queue);
1770 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1771 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1772 used = recv_actor(sk, skb);
1773 if (used < 0) {
1774 if (!copied)
1775 copied = used;
1776 break;
1777 }
1778 copied += used;
1779
1780 if (tcp_flags & TCPHDR_FIN)
1781 break;
1782 }
1783 return copied;
1784 }
1785 EXPORT_SYMBOL(tcp_read_skb);
1786
tcp_read_done(struct sock * sk,size_t len)1787 void tcp_read_done(struct sock *sk, size_t len)
1788 {
1789 struct tcp_sock *tp = tcp_sk(sk);
1790 u32 seq = tp->copied_seq;
1791 struct sk_buff *skb;
1792 size_t left;
1793 u32 offset;
1794
1795 if (sk->sk_state == TCP_LISTEN)
1796 return;
1797
1798 left = len;
1799 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1800 int used;
1801
1802 used = min_t(size_t, skb->len - offset, left);
1803 seq += used;
1804 left -= used;
1805
1806 if (skb->len > offset + used)
1807 break;
1808
1809 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1810 tcp_eat_recv_skb(sk, skb);
1811 ++seq;
1812 break;
1813 }
1814 tcp_eat_recv_skb(sk, skb);
1815 }
1816 WRITE_ONCE(tp->copied_seq, seq);
1817
1818 tcp_rcv_space_adjust(sk);
1819
1820 /* Clean up data we have read: This will do ACK frames. */
1821 if (left != len)
1822 tcp_cleanup_rbuf(sk, len - left);
1823 }
1824 EXPORT_SYMBOL(tcp_read_done);
1825
tcp_peek_len(struct socket * sock)1826 int tcp_peek_len(struct socket *sock)
1827 {
1828 return tcp_inq(sock->sk);
1829 }
1830 EXPORT_SYMBOL(tcp_peek_len);
1831
1832 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1833 int tcp_set_rcvlowat(struct sock *sk, int val)
1834 {
1835 int cap;
1836
1837 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1838 cap = sk->sk_rcvbuf >> 1;
1839 else
1840 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1841 val = min(val, cap);
1842 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1843
1844 /* Check if we need to signal EPOLLIN right now */
1845 tcp_data_ready(sk);
1846
1847 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1848 return 0;
1849
1850 val <<= 1;
1851 if (val > sk->sk_rcvbuf) {
1852 WRITE_ONCE(sk->sk_rcvbuf, val);
1853 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1854 }
1855 return 0;
1856 }
1857 EXPORT_SYMBOL(tcp_set_rcvlowat);
1858
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1859 void tcp_update_recv_tstamps(struct sk_buff *skb,
1860 struct scm_timestamping_internal *tss)
1861 {
1862 if (skb->tstamp)
1863 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1864 else
1865 tss->ts[0] = (struct timespec64) {0};
1866
1867 if (skb_hwtstamps(skb)->hwtstamp)
1868 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1869 else
1870 tss->ts[2] = (struct timespec64) {0};
1871 }
1872
1873 #ifdef CONFIG_MMU
1874 static const struct vm_operations_struct tcp_vm_ops = {
1875 };
1876
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1877 int tcp_mmap(struct file *file, struct socket *sock,
1878 struct vm_area_struct *vma)
1879 {
1880 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1881 return -EPERM;
1882 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1883
1884 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1885 vm_flags_set(vma, VM_MIXEDMAP);
1886
1887 vma->vm_ops = &tcp_vm_ops;
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(tcp_mmap);
1891
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1892 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1893 u32 *offset_frag)
1894 {
1895 skb_frag_t *frag;
1896
1897 if (unlikely(offset_skb >= skb->len))
1898 return NULL;
1899
1900 offset_skb -= skb_headlen(skb);
1901 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1902 return NULL;
1903
1904 frag = skb_shinfo(skb)->frags;
1905 while (offset_skb) {
1906 if (skb_frag_size(frag) > offset_skb) {
1907 *offset_frag = offset_skb;
1908 return frag;
1909 }
1910 offset_skb -= skb_frag_size(frag);
1911 ++frag;
1912 }
1913 *offset_frag = 0;
1914 return frag;
1915 }
1916
can_map_frag(const skb_frag_t * frag)1917 static bool can_map_frag(const skb_frag_t *frag)
1918 {
1919 struct page *page;
1920
1921 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1922 return false;
1923
1924 page = skb_frag_page(frag);
1925
1926 if (PageCompound(page) || page->mapping)
1927 return false;
1928
1929 return true;
1930 }
1931
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1932 static int find_next_mappable_frag(const skb_frag_t *frag,
1933 int remaining_in_skb)
1934 {
1935 int offset = 0;
1936
1937 if (likely(can_map_frag(frag)))
1938 return 0;
1939
1940 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1941 offset += skb_frag_size(frag);
1942 ++frag;
1943 }
1944 return offset;
1945 }
1946
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1947 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1948 struct tcp_zerocopy_receive *zc,
1949 struct sk_buff *skb, u32 offset)
1950 {
1951 u32 frag_offset, partial_frag_remainder = 0;
1952 int mappable_offset;
1953 skb_frag_t *frag;
1954
1955 /* worst case: skip to next skb. try to improve on this case below */
1956 zc->recv_skip_hint = skb->len - offset;
1957
1958 /* Find the frag containing this offset (and how far into that frag) */
1959 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1960 if (!frag)
1961 return;
1962
1963 if (frag_offset) {
1964 struct skb_shared_info *info = skb_shinfo(skb);
1965
1966 /* We read part of the last frag, must recvmsg() rest of skb. */
1967 if (frag == &info->frags[info->nr_frags - 1])
1968 return;
1969
1970 /* Else, we must at least read the remainder in this frag. */
1971 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1972 zc->recv_skip_hint -= partial_frag_remainder;
1973 ++frag;
1974 }
1975
1976 /* partial_frag_remainder: If part way through a frag, must read rest.
1977 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1978 * in partial_frag_remainder.
1979 */
1980 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1981 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1982 }
1983
1984 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1985 int flags, struct scm_timestamping_internal *tss,
1986 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1987 static int receive_fallback_to_copy(struct sock *sk,
1988 struct tcp_zerocopy_receive *zc, int inq,
1989 struct scm_timestamping_internal *tss)
1990 {
1991 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1992 struct msghdr msg = {};
1993 struct iovec iov;
1994 int err;
1995
1996 zc->length = 0;
1997 zc->recv_skip_hint = 0;
1998
1999 if (copy_address != zc->copybuf_address)
2000 return -EINVAL;
2001
2002 err = import_single_range(ITER_DEST, (void __user *)copy_address,
2003 inq, &iov, &msg.msg_iter);
2004 if (err)
2005 return err;
2006
2007 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
2008 tss, &zc->msg_flags);
2009 if (err < 0)
2010 return err;
2011
2012 zc->copybuf_len = err;
2013 if (likely(zc->copybuf_len)) {
2014 struct sk_buff *skb;
2015 u32 offset;
2016
2017 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
2018 if (skb)
2019 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
2020 }
2021 return 0;
2022 }
2023
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)2024 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
2025 struct sk_buff *skb, u32 copylen,
2026 u32 *offset, u32 *seq)
2027 {
2028 unsigned long copy_address = (unsigned long)zc->copybuf_address;
2029 struct msghdr msg = {};
2030 struct iovec iov;
2031 int err;
2032
2033 if (copy_address != zc->copybuf_address)
2034 return -EINVAL;
2035
2036 err = import_single_range(ITER_DEST, (void __user *)copy_address,
2037 copylen, &iov, &msg.msg_iter);
2038 if (err)
2039 return err;
2040 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
2041 if (err)
2042 return err;
2043 zc->recv_skip_hint -= copylen;
2044 *offset += copylen;
2045 *seq += copylen;
2046 return (__s32)copylen;
2047 }
2048
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)2049 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
2050 struct sock *sk,
2051 struct sk_buff *skb,
2052 u32 *seq,
2053 s32 copybuf_len,
2054 struct scm_timestamping_internal *tss)
2055 {
2056 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
2057
2058 if (!copylen)
2059 return 0;
2060 /* skb is null if inq < PAGE_SIZE. */
2061 if (skb) {
2062 offset = *seq - TCP_SKB_CB(skb)->seq;
2063 } else {
2064 skb = tcp_recv_skb(sk, *seq, &offset);
2065 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2066 tcp_update_recv_tstamps(skb, tss);
2067 zc->msg_flags |= TCP_CMSG_TS;
2068 }
2069 }
2070
2071 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2072 seq);
2073 return zc->copybuf_len < 0 ? 0 : copylen;
2074 }
2075
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2076 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2077 struct page **pending_pages,
2078 unsigned long pages_remaining,
2079 unsigned long *address,
2080 u32 *length,
2081 u32 *seq,
2082 struct tcp_zerocopy_receive *zc,
2083 u32 total_bytes_to_map,
2084 int err)
2085 {
2086 /* At least one page did not map. Try zapping if we skipped earlier. */
2087 if (err == -EBUSY &&
2088 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2089 u32 maybe_zap_len;
2090
2091 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2092 *length + /* Mapped or pending */
2093 (pages_remaining * PAGE_SIZE); /* Failed map. */
2094 zap_page_range(vma, *address, maybe_zap_len);
2095 err = 0;
2096 }
2097
2098 if (!err) {
2099 unsigned long leftover_pages = pages_remaining;
2100 int bytes_mapped;
2101
2102 /* We called zap_page_range, try to reinsert. */
2103 err = vm_insert_pages(vma, *address,
2104 pending_pages,
2105 &pages_remaining);
2106 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2107 *seq += bytes_mapped;
2108 *address += bytes_mapped;
2109 }
2110 if (err) {
2111 /* Either we were unable to zap, OR we zapped, retried an
2112 * insert, and still had an issue. Either ways, pages_remaining
2113 * is the number of pages we were unable to map, and we unroll
2114 * some state we speculatively touched before.
2115 */
2116 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2117
2118 *length -= bytes_not_mapped;
2119 zc->recv_skip_hint += bytes_not_mapped;
2120 }
2121 return err;
2122 }
2123
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2124 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2125 struct page **pages,
2126 unsigned int pages_to_map,
2127 unsigned long *address,
2128 u32 *length,
2129 u32 *seq,
2130 struct tcp_zerocopy_receive *zc,
2131 u32 total_bytes_to_map)
2132 {
2133 unsigned long pages_remaining = pages_to_map;
2134 unsigned int pages_mapped;
2135 unsigned int bytes_mapped;
2136 int err;
2137
2138 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2139 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2140 bytes_mapped = PAGE_SIZE * pages_mapped;
2141 /* Even if vm_insert_pages fails, it may have partially succeeded in
2142 * mapping (some but not all of the pages).
2143 */
2144 *seq += bytes_mapped;
2145 *address += bytes_mapped;
2146
2147 if (likely(!err))
2148 return 0;
2149
2150 /* Error: maybe zap and retry + rollback state for failed inserts. */
2151 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2152 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2153 err);
2154 }
2155
2156 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2157 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2158 struct tcp_zerocopy_receive *zc,
2159 struct scm_timestamping_internal *tss)
2160 {
2161 unsigned long msg_control_addr;
2162 struct msghdr cmsg_dummy;
2163
2164 msg_control_addr = (unsigned long)zc->msg_control;
2165 cmsg_dummy.msg_control = (void *)msg_control_addr;
2166 cmsg_dummy.msg_controllen =
2167 (__kernel_size_t)zc->msg_controllen;
2168 cmsg_dummy.msg_flags = in_compat_syscall()
2169 ? MSG_CMSG_COMPAT : 0;
2170 cmsg_dummy.msg_control_is_user = true;
2171 zc->msg_flags = 0;
2172 if (zc->msg_control == msg_control_addr &&
2173 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2174 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2175 zc->msg_control = (__u64)
2176 ((uintptr_t)cmsg_dummy.msg_control);
2177 zc->msg_controllen =
2178 (__u64)cmsg_dummy.msg_controllen;
2179 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2180 }
2181 }
2182
2183 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2184 static int tcp_zerocopy_receive(struct sock *sk,
2185 struct tcp_zerocopy_receive *zc,
2186 struct scm_timestamping_internal *tss)
2187 {
2188 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2189 unsigned long address = (unsigned long)zc->address;
2190 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2191 s32 copybuf_len = zc->copybuf_len;
2192 struct tcp_sock *tp = tcp_sk(sk);
2193 const skb_frag_t *frags = NULL;
2194 unsigned int pages_to_map = 0;
2195 struct vm_area_struct *vma;
2196 struct sk_buff *skb = NULL;
2197 u32 seq = tp->copied_seq;
2198 u32 total_bytes_to_map;
2199 int inq = tcp_inq(sk);
2200 int ret;
2201
2202 zc->copybuf_len = 0;
2203 zc->msg_flags = 0;
2204
2205 if (address & (PAGE_SIZE - 1) || address != zc->address)
2206 return -EINVAL;
2207
2208 if (sk->sk_state == TCP_LISTEN)
2209 return -ENOTCONN;
2210
2211 sock_rps_record_flow(sk);
2212
2213 if (inq && inq <= copybuf_len)
2214 return receive_fallback_to_copy(sk, zc, inq, tss);
2215
2216 if (inq < PAGE_SIZE) {
2217 zc->length = 0;
2218 zc->recv_skip_hint = inq;
2219 if (!inq && sock_flag(sk, SOCK_DONE))
2220 return -EIO;
2221 return 0;
2222 }
2223
2224 mmap_read_lock(current->mm);
2225
2226 vma = vma_lookup(current->mm, address);
2227 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2228 mmap_read_unlock(current->mm);
2229 return -EINVAL;
2230 }
2231 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2232 avail_len = min_t(u32, vma_len, inq);
2233 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2234 if (total_bytes_to_map) {
2235 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2236 zap_page_range(vma, address, total_bytes_to_map);
2237 zc->length = total_bytes_to_map;
2238 zc->recv_skip_hint = 0;
2239 } else {
2240 zc->length = avail_len;
2241 zc->recv_skip_hint = avail_len;
2242 }
2243 ret = 0;
2244 while (length + PAGE_SIZE <= zc->length) {
2245 int mappable_offset;
2246 struct page *page;
2247
2248 if (zc->recv_skip_hint < PAGE_SIZE) {
2249 u32 offset_frag;
2250
2251 if (skb) {
2252 if (zc->recv_skip_hint > 0)
2253 break;
2254 skb = skb->next;
2255 offset = seq - TCP_SKB_CB(skb)->seq;
2256 } else {
2257 skb = tcp_recv_skb(sk, seq, &offset);
2258 }
2259
2260 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2261 tcp_update_recv_tstamps(skb, tss);
2262 zc->msg_flags |= TCP_CMSG_TS;
2263 }
2264 zc->recv_skip_hint = skb->len - offset;
2265 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2266 if (!frags || offset_frag)
2267 break;
2268 }
2269
2270 mappable_offset = find_next_mappable_frag(frags,
2271 zc->recv_skip_hint);
2272 if (mappable_offset) {
2273 zc->recv_skip_hint = mappable_offset;
2274 break;
2275 }
2276 page = skb_frag_page(frags);
2277 prefetchw(page);
2278 pages[pages_to_map++] = page;
2279 length += PAGE_SIZE;
2280 zc->recv_skip_hint -= PAGE_SIZE;
2281 frags++;
2282 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2283 zc->recv_skip_hint < PAGE_SIZE) {
2284 /* Either full batch, or we're about to go to next skb
2285 * (and we cannot unroll failed ops across skbs).
2286 */
2287 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2288 pages_to_map,
2289 &address, &length,
2290 &seq, zc,
2291 total_bytes_to_map);
2292 if (ret)
2293 goto out;
2294 pages_to_map = 0;
2295 }
2296 }
2297 if (pages_to_map) {
2298 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2299 &address, &length, &seq,
2300 zc, total_bytes_to_map);
2301 }
2302 out:
2303 mmap_read_unlock(current->mm);
2304 /* Try to copy straggler data. */
2305 if (!ret)
2306 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2307
2308 if (length + copylen) {
2309 WRITE_ONCE(tp->copied_seq, seq);
2310 tcp_rcv_space_adjust(sk);
2311
2312 /* Clean up data we have read: This will do ACK frames. */
2313 tcp_recv_skb(sk, seq, &offset);
2314 tcp_cleanup_rbuf(sk, length + copylen);
2315 ret = 0;
2316 if (length == zc->length)
2317 zc->recv_skip_hint = 0;
2318 } else {
2319 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2320 ret = -EIO;
2321 }
2322 zc->length = length;
2323 return ret;
2324 }
2325 #endif
2326
2327 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2328 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2329 struct scm_timestamping_internal *tss)
2330 {
2331 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2332 bool has_timestamping = false;
2333
2334 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2335 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2336 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2337 if (new_tstamp) {
2338 struct __kernel_timespec kts = {
2339 .tv_sec = tss->ts[0].tv_sec,
2340 .tv_nsec = tss->ts[0].tv_nsec,
2341 };
2342 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2343 sizeof(kts), &kts);
2344 } else {
2345 struct __kernel_old_timespec ts_old = {
2346 .tv_sec = tss->ts[0].tv_sec,
2347 .tv_nsec = tss->ts[0].tv_nsec,
2348 };
2349 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2350 sizeof(ts_old), &ts_old);
2351 }
2352 } else {
2353 if (new_tstamp) {
2354 struct __kernel_sock_timeval stv = {
2355 .tv_sec = tss->ts[0].tv_sec,
2356 .tv_usec = tss->ts[0].tv_nsec / 1000,
2357 };
2358 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2359 sizeof(stv), &stv);
2360 } else {
2361 struct __kernel_old_timeval tv = {
2362 .tv_sec = tss->ts[0].tv_sec,
2363 .tv_usec = tss->ts[0].tv_nsec / 1000,
2364 };
2365 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2366 sizeof(tv), &tv);
2367 }
2368 }
2369 }
2370
2371 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2372 has_timestamping = true;
2373 else
2374 tss->ts[0] = (struct timespec64) {0};
2375 }
2376
2377 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2378 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2379 has_timestamping = true;
2380 else
2381 tss->ts[2] = (struct timespec64) {0};
2382 }
2383
2384 if (has_timestamping) {
2385 tss->ts[1] = (struct timespec64) {0};
2386 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2387 put_cmsg_scm_timestamping64(msg, tss);
2388 else
2389 put_cmsg_scm_timestamping(msg, tss);
2390 }
2391 }
2392
tcp_inq_hint(struct sock * sk)2393 static int tcp_inq_hint(struct sock *sk)
2394 {
2395 const struct tcp_sock *tp = tcp_sk(sk);
2396 u32 copied_seq = READ_ONCE(tp->copied_seq);
2397 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2398 int inq;
2399
2400 inq = rcv_nxt - copied_seq;
2401 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2402 lock_sock(sk);
2403 inq = tp->rcv_nxt - tp->copied_seq;
2404 release_sock(sk);
2405 }
2406 /* After receiving a FIN, tell the user-space to continue reading
2407 * by returning a non-zero inq.
2408 */
2409 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2410 inq = 1;
2411 return inq;
2412 }
2413
2414 /*
2415 * This routine copies from a sock struct into the user buffer.
2416 *
2417 * Technical note: in 2.3 we work on _locked_ socket, so that
2418 * tricks with *seq access order and skb->users are not required.
2419 * Probably, code can be easily improved even more.
2420 */
2421
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2422 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2423 int flags, struct scm_timestamping_internal *tss,
2424 int *cmsg_flags)
2425 {
2426 struct tcp_sock *tp = tcp_sk(sk);
2427 int copied = 0;
2428 u32 peek_seq;
2429 u32 *seq;
2430 unsigned long used;
2431 int err;
2432 int target; /* Read at least this many bytes */
2433 long timeo;
2434 struct sk_buff *skb, *last;
2435 u32 urg_hole = 0;
2436
2437 err = -ENOTCONN;
2438 if (sk->sk_state == TCP_LISTEN)
2439 goto out;
2440
2441 if (tp->recvmsg_inq) {
2442 *cmsg_flags = TCP_CMSG_INQ;
2443 msg->msg_get_inq = 1;
2444 }
2445 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2446
2447 /* Urgent data needs to be handled specially. */
2448 if (flags & MSG_OOB)
2449 goto recv_urg;
2450
2451 if (unlikely(tp->repair)) {
2452 err = -EPERM;
2453 if (!(flags & MSG_PEEK))
2454 goto out;
2455
2456 if (tp->repair_queue == TCP_SEND_QUEUE)
2457 goto recv_sndq;
2458
2459 err = -EINVAL;
2460 if (tp->repair_queue == TCP_NO_QUEUE)
2461 goto out;
2462
2463 /* 'common' recv queue MSG_PEEK-ing */
2464 }
2465
2466 seq = &tp->copied_seq;
2467 if (flags & MSG_PEEK) {
2468 peek_seq = tp->copied_seq;
2469 seq = &peek_seq;
2470 }
2471
2472 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2473
2474 do {
2475 u32 offset;
2476
2477 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2478 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2479 if (copied)
2480 break;
2481 if (signal_pending(current)) {
2482 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2483 break;
2484 }
2485 }
2486
2487 /* Next get a buffer. */
2488
2489 last = skb_peek_tail(&sk->sk_receive_queue);
2490 skb_queue_walk(&sk->sk_receive_queue, skb) {
2491 last = skb;
2492 /* Now that we have two receive queues this
2493 * shouldn't happen.
2494 */
2495 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2496 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2497 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2498 flags))
2499 break;
2500
2501 offset = *seq - TCP_SKB_CB(skb)->seq;
2502 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2503 pr_err_once("%s: found a SYN, please report !\n", __func__);
2504 offset--;
2505 }
2506 if (offset < skb->len)
2507 goto found_ok_skb;
2508 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2509 goto found_fin_ok;
2510 WARN(!(flags & MSG_PEEK),
2511 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2512 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2513 }
2514
2515 /* Well, if we have backlog, try to process it now yet. */
2516
2517 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2518 break;
2519
2520 if (copied) {
2521 if (!timeo ||
2522 sk->sk_err ||
2523 sk->sk_state == TCP_CLOSE ||
2524 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2525 signal_pending(current))
2526 break;
2527 } else {
2528 if (sock_flag(sk, SOCK_DONE))
2529 break;
2530
2531 if (sk->sk_err) {
2532 copied = sock_error(sk);
2533 break;
2534 }
2535
2536 if (sk->sk_shutdown & RCV_SHUTDOWN)
2537 break;
2538
2539 if (sk->sk_state == TCP_CLOSE) {
2540 /* This occurs when user tries to read
2541 * from never connected socket.
2542 */
2543 copied = -ENOTCONN;
2544 break;
2545 }
2546
2547 if (!timeo) {
2548 copied = -EAGAIN;
2549 break;
2550 }
2551
2552 if (signal_pending(current)) {
2553 copied = sock_intr_errno(timeo);
2554 break;
2555 }
2556 }
2557
2558 if (copied >= target) {
2559 /* Do not sleep, just process backlog. */
2560 __sk_flush_backlog(sk);
2561 } else {
2562 tcp_cleanup_rbuf(sk, copied);
2563 sk_wait_data(sk, &timeo, last);
2564 }
2565
2566 if ((flags & MSG_PEEK) &&
2567 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2568 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2569 current->comm,
2570 task_pid_nr(current));
2571 peek_seq = tp->copied_seq;
2572 }
2573 continue;
2574
2575 found_ok_skb:
2576 /* Ok so how much can we use? */
2577 used = skb->len - offset;
2578 if (len < used)
2579 used = len;
2580
2581 /* Do we have urgent data here? */
2582 if (unlikely(tp->urg_data)) {
2583 u32 urg_offset = tp->urg_seq - *seq;
2584 if (urg_offset < used) {
2585 if (!urg_offset) {
2586 if (!sock_flag(sk, SOCK_URGINLINE)) {
2587 WRITE_ONCE(*seq, *seq + 1);
2588 urg_hole++;
2589 offset++;
2590 used--;
2591 if (!used)
2592 goto skip_copy;
2593 }
2594 } else
2595 used = urg_offset;
2596 }
2597 }
2598
2599 if (!(flags & MSG_TRUNC)) {
2600 err = skb_copy_datagram_msg(skb, offset, msg, used);
2601 if (err) {
2602 /* Exception. Bailout! */
2603 if (!copied)
2604 copied = -EFAULT;
2605 break;
2606 }
2607 }
2608
2609 WRITE_ONCE(*seq, *seq + used);
2610 copied += used;
2611 len -= used;
2612
2613 tcp_rcv_space_adjust(sk);
2614
2615 skip_copy:
2616 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2617 WRITE_ONCE(tp->urg_data, 0);
2618 tcp_fast_path_check(sk);
2619 }
2620
2621 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2622 tcp_update_recv_tstamps(skb, tss);
2623 *cmsg_flags |= TCP_CMSG_TS;
2624 }
2625
2626 if (used + offset < skb->len)
2627 continue;
2628
2629 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2630 goto found_fin_ok;
2631 if (!(flags & MSG_PEEK))
2632 tcp_eat_recv_skb(sk, skb);
2633 continue;
2634
2635 found_fin_ok:
2636 /* Process the FIN. */
2637 WRITE_ONCE(*seq, *seq + 1);
2638 if (!(flags & MSG_PEEK))
2639 tcp_eat_recv_skb(sk, skb);
2640 break;
2641 } while (len > 0);
2642
2643 /* According to UNIX98, msg_name/msg_namelen are ignored
2644 * on connected socket. I was just happy when found this 8) --ANK
2645 */
2646
2647 /* Clean up data we have read: This will do ACK frames. */
2648 tcp_cleanup_rbuf(sk, copied);
2649 return copied;
2650
2651 out:
2652 return err;
2653
2654 recv_urg:
2655 err = tcp_recv_urg(sk, msg, len, flags);
2656 goto out;
2657
2658 recv_sndq:
2659 err = tcp_peek_sndq(sk, msg, len);
2660 goto out;
2661 }
2662
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2663 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2664 int *addr_len)
2665 {
2666 int cmsg_flags = 0, ret;
2667 struct scm_timestamping_internal tss;
2668
2669 if (unlikely(flags & MSG_ERRQUEUE))
2670 return inet_recv_error(sk, msg, len, addr_len);
2671
2672 if (sk_can_busy_loop(sk) &&
2673 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2674 sk->sk_state == TCP_ESTABLISHED)
2675 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2676
2677 lock_sock(sk);
2678 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2679 release_sock(sk);
2680
2681 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2682 if (cmsg_flags & TCP_CMSG_TS)
2683 tcp_recv_timestamp(msg, sk, &tss);
2684 if (msg->msg_get_inq) {
2685 msg->msg_inq = tcp_inq_hint(sk);
2686 if (cmsg_flags & TCP_CMSG_INQ)
2687 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2688 sizeof(msg->msg_inq), &msg->msg_inq);
2689 }
2690 }
2691 return ret;
2692 }
2693 EXPORT_SYMBOL(tcp_recvmsg);
2694
tcp_set_state(struct sock * sk,int state)2695 void tcp_set_state(struct sock *sk, int state)
2696 {
2697 int oldstate = sk->sk_state;
2698
2699 /* We defined a new enum for TCP states that are exported in BPF
2700 * so as not force the internal TCP states to be frozen. The
2701 * following checks will detect if an internal state value ever
2702 * differs from the BPF value. If this ever happens, then we will
2703 * need to remap the internal value to the BPF value before calling
2704 * tcp_call_bpf_2arg.
2705 */
2706 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2707 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2708 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2709 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2710 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2711 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2712 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2713 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2714 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2715 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2716 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2717 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2718 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2719
2720 /* bpf uapi header bpf.h defines an anonymous enum with values
2721 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2722 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2723 * But clang built vmlinux does not have this enum in DWARF
2724 * since clang removes the above code before generating IR/debuginfo.
2725 * Let us explicitly emit the type debuginfo to ensure the
2726 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2727 * regardless of which compiler is used.
2728 */
2729 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2730
2731 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2732 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2733
2734 switch (state) {
2735 case TCP_ESTABLISHED:
2736 if (oldstate != TCP_ESTABLISHED)
2737 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2738 break;
2739
2740 case TCP_CLOSE:
2741 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2742 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2743
2744 sk->sk_prot->unhash(sk);
2745 if (inet_csk(sk)->icsk_bind_hash &&
2746 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2747 inet_put_port(sk);
2748 fallthrough;
2749 default:
2750 if (oldstate == TCP_ESTABLISHED)
2751 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2752 }
2753
2754 /* Change state AFTER socket is unhashed to avoid closed
2755 * socket sitting in hash tables.
2756 */
2757 inet_sk_state_store(sk, state);
2758 }
2759 EXPORT_SYMBOL_GPL(tcp_set_state);
2760
2761 /*
2762 * State processing on a close. This implements the state shift for
2763 * sending our FIN frame. Note that we only send a FIN for some
2764 * states. A shutdown() may have already sent the FIN, or we may be
2765 * closed.
2766 */
2767
2768 static const unsigned char new_state[16] = {
2769 /* current state: new state: action: */
2770 [0 /* (Invalid) */] = TCP_CLOSE,
2771 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2772 [TCP_SYN_SENT] = TCP_CLOSE,
2773 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2774 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2775 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2776 [TCP_TIME_WAIT] = TCP_CLOSE,
2777 [TCP_CLOSE] = TCP_CLOSE,
2778 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2779 [TCP_LAST_ACK] = TCP_LAST_ACK,
2780 [TCP_LISTEN] = TCP_CLOSE,
2781 [TCP_CLOSING] = TCP_CLOSING,
2782 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2783 };
2784
tcp_close_state(struct sock * sk)2785 static int tcp_close_state(struct sock *sk)
2786 {
2787 int next = (int)new_state[sk->sk_state];
2788 int ns = next & TCP_STATE_MASK;
2789
2790 tcp_set_state(sk, ns);
2791
2792 return next & TCP_ACTION_FIN;
2793 }
2794
2795 /*
2796 * Shutdown the sending side of a connection. Much like close except
2797 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2798 */
2799
tcp_shutdown(struct sock * sk,int how)2800 void tcp_shutdown(struct sock *sk, int how)
2801 {
2802 /* We need to grab some memory, and put together a FIN,
2803 * and then put it into the queue to be sent.
2804 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2805 */
2806 if (!(how & SEND_SHUTDOWN))
2807 return;
2808
2809 /* If we've already sent a FIN, or it's a closed state, skip this. */
2810 if ((1 << sk->sk_state) &
2811 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2812 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2813 /* Clear out any half completed packets. FIN if needed. */
2814 if (tcp_close_state(sk))
2815 tcp_send_fin(sk);
2816 }
2817 }
2818 EXPORT_SYMBOL(tcp_shutdown);
2819
tcp_orphan_count_sum(void)2820 int tcp_orphan_count_sum(void)
2821 {
2822 int i, total = 0;
2823
2824 for_each_possible_cpu(i)
2825 total += per_cpu(tcp_orphan_count, i);
2826
2827 return max(total, 0);
2828 }
2829
2830 static int tcp_orphan_cache;
2831 static struct timer_list tcp_orphan_timer;
2832 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2833
tcp_orphan_update(struct timer_list * unused)2834 static void tcp_orphan_update(struct timer_list *unused)
2835 {
2836 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2837 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2838 }
2839
tcp_too_many_orphans(int shift)2840 static bool tcp_too_many_orphans(int shift)
2841 {
2842 return READ_ONCE(tcp_orphan_cache) << shift >
2843 READ_ONCE(sysctl_tcp_max_orphans);
2844 }
2845
tcp_check_oom(struct sock * sk,int shift)2846 bool tcp_check_oom(struct sock *sk, int shift)
2847 {
2848 bool too_many_orphans, out_of_socket_memory;
2849
2850 too_many_orphans = tcp_too_many_orphans(shift);
2851 out_of_socket_memory = tcp_out_of_memory(sk);
2852
2853 if (too_many_orphans)
2854 net_info_ratelimited("too many orphaned sockets\n");
2855 if (out_of_socket_memory)
2856 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2857 return too_many_orphans || out_of_socket_memory;
2858 }
2859
__tcp_close(struct sock * sk,long timeout)2860 void __tcp_close(struct sock *sk, long timeout)
2861 {
2862 struct sk_buff *skb;
2863 int data_was_unread = 0;
2864 int state;
2865
2866 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2867
2868 if (sk->sk_state == TCP_LISTEN) {
2869 tcp_set_state(sk, TCP_CLOSE);
2870
2871 /* Special case. */
2872 inet_csk_listen_stop(sk);
2873
2874 goto adjudge_to_death;
2875 }
2876
2877 /* We need to flush the recv. buffs. We do this only on the
2878 * descriptor close, not protocol-sourced closes, because the
2879 * reader process may not have drained the data yet!
2880 */
2881 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2882 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2883
2884 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2885 len--;
2886 data_was_unread += len;
2887 __kfree_skb(skb);
2888 }
2889
2890 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2891 if (sk->sk_state == TCP_CLOSE)
2892 goto adjudge_to_death;
2893
2894 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2895 * data was lost. To witness the awful effects of the old behavior of
2896 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2897 * GET in an FTP client, suspend the process, wait for the client to
2898 * advertise a zero window, then kill -9 the FTP client, wheee...
2899 * Note: timeout is always zero in such a case.
2900 */
2901 if (unlikely(tcp_sk(sk)->repair)) {
2902 sk->sk_prot->disconnect(sk, 0);
2903 } else if (data_was_unread) {
2904 /* Unread data was tossed, zap the connection. */
2905 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2906 tcp_set_state(sk, TCP_CLOSE);
2907 tcp_send_active_reset(sk, sk->sk_allocation);
2908 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2909 /* Check zero linger _after_ checking for unread data. */
2910 sk->sk_prot->disconnect(sk, 0);
2911 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2912 } else if (tcp_close_state(sk)) {
2913 /* We FIN if the application ate all the data before
2914 * zapping the connection.
2915 */
2916
2917 /* RED-PEN. Formally speaking, we have broken TCP state
2918 * machine. State transitions:
2919 *
2920 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2921 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2922 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2923 *
2924 * are legal only when FIN has been sent (i.e. in window),
2925 * rather than queued out of window. Purists blame.
2926 *
2927 * F.e. "RFC state" is ESTABLISHED,
2928 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2929 *
2930 * The visible declinations are that sometimes
2931 * we enter time-wait state, when it is not required really
2932 * (harmless), do not send active resets, when they are
2933 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2934 * they look as CLOSING or LAST_ACK for Linux)
2935 * Probably, I missed some more holelets.
2936 * --ANK
2937 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2938 * in a single packet! (May consider it later but will
2939 * probably need API support or TCP_CORK SYN-ACK until
2940 * data is written and socket is closed.)
2941 */
2942 tcp_send_fin(sk);
2943 }
2944
2945 sk_stream_wait_close(sk, timeout);
2946
2947 adjudge_to_death:
2948 state = sk->sk_state;
2949 sock_hold(sk);
2950 sock_orphan(sk);
2951
2952 local_bh_disable();
2953 bh_lock_sock(sk);
2954 /* remove backlog if any, without releasing ownership. */
2955 __release_sock(sk);
2956
2957 this_cpu_inc(tcp_orphan_count);
2958
2959 /* Have we already been destroyed by a softirq or backlog? */
2960 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2961 goto out;
2962
2963 /* This is a (useful) BSD violating of the RFC. There is a
2964 * problem with TCP as specified in that the other end could
2965 * keep a socket open forever with no application left this end.
2966 * We use a 1 minute timeout (about the same as BSD) then kill
2967 * our end. If they send after that then tough - BUT: long enough
2968 * that we won't make the old 4*rto = almost no time - whoops
2969 * reset mistake.
2970 *
2971 * Nope, it was not mistake. It is really desired behaviour
2972 * f.e. on http servers, when such sockets are useless, but
2973 * consume significant resources. Let's do it with special
2974 * linger2 option. --ANK
2975 */
2976
2977 if (sk->sk_state == TCP_FIN_WAIT2) {
2978 struct tcp_sock *tp = tcp_sk(sk);
2979 if (tp->linger2 < 0) {
2980 tcp_set_state(sk, TCP_CLOSE);
2981 tcp_send_active_reset(sk, GFP_ATOMIC);
2982 __NET_INC_STATS(sock_net(sk),
2983 LINUX_MIB_TCPABORTONLINGER);
2984 } else {
2985 const int tmo = tcp_fin_time(sk);
2986
2987 if (tmo > TCP_TIMEWAIT_LEN) {
2988 inet_csk_reset_keepalive_timer(sk,
2989 tmo - TCP_TIMEWAIT_LEN);
2990 } else {
2991 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2992 goto out;
2993 }
2994 }
2995 }
2996 if (sk->sk_state != TCP_CLOSE) {
2997 if (tcp_check_oom(sk, 0)) {
2998 tcp_set_state(sk, TCP_CLOSE);
2999 tcp_send_active_reset(sk, GFP_ATOMIC);
3000 __NET_INC_STATS(sock_net(sk),
3001 LINUX_MIB_TCPABORTONMEMORY);
3002 } else if (!check_net(sock_net(sk))) {
3003 /* Not possible to send reset; just close */
3004 tcp_set_state(sk, TCP_CLOSE);
3005 }
3006 }
3007
3008 if (sk->sk_state == TCP_CLOSE) {
3009 struct request_sock *req;
3010
3011 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3012 lockdep_sock_is_held(sk));
3013 /* We could get here with a non-NULL req if the socket is
3014 * aborted (e.g., closed with unread data) before 3WHS
3015 * finishes.
3016 */
3017 if (req)
3018 reqsk_fastopen_remove(sk, req, false);
3019 inet_csk_destroy_sock(sk);
3020 }
3021 /* Otherwise, socket is reprieved until protocol close. */
3022
3023 out:
3024 bh_unlock_sock(sk);
3025 local_bh_enable();
3026 }
3027
tcp_close(struct sock * sk,long timeout)3028 void tcp_close(struct sock *sk, long timeout)
3029 {
3030 lock_sock(sk);
3031 __tcp_close(sk, timeout);
3032 release_sock(sk);
3033 sock_put(sk);
3034 }
3035 EXPORT_SYMBOL(tcp_close);
3036
3037 /* These states need RST on ABORT according to RFC793 */
3038
tcp_need_reset(int state)3039 static inline bool tcp_need_reset(int state)
3040 {
3041 return (1 << state) &
3042 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3043 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3044 }
3045
tcp_rtx_queue_purge(struct sock * sk)3046 static void tcp_rtx_queue_purge(struct sock *sk)
3047 {
3048 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3049
3050 tcp_sk(sk)->highest_sack = NULL;
3051 while (p) {
3052 struct sk_buff *skb = rb_to_skb(p);
3053
3054 p = rb_next(p);
3055 /* Since we are deleting whole queue, no need to
3056 * list_del(&skb->tcp_tsorted_anchor)
3057 */
3058 tcp_rtx_queue_unlink(skb, sk);
3059 tcp_wmem_free_skb(sk, skb);
3060 }
3061 }
3062
tcp_write_queue_purge(struct sock * sk)3063 void tcp_write_queue_purge(struct sock *sk)
3064 {
3065 struct sk_buff *skb;
3066
3067 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3068 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3069 tcp_skb_tsorted_anchor_cleanup(skb);
3070 tcp_wmem_free_skb(sk, skb);
3071 }
3072 tcp_rtx_queue_purge(sk);
3073 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3074 tcp_clear_all_retrans_hints(tcp_sk(sk));
3075 tcp_sk(sk)->packets_out = 0;
3076 inet_csk(sk)->icsk_backoff = 0;
3077 }
3078
tcp_disconnect(struct sock * sk,int flags)3079 int tcp_disconnect(struct sock *sk, int flags)
3080 {
3081 struct inet_sock *inet = inet_sk(sk);
3082 struct inet_connection_sock *icsk = inet_csk(sk);
3083 struct tcp_sock *tp = tcp_sk(sk);
3084 int old_state = sk->sk_state;
3085 u32 seq;
3086
3087 /* Deny disconnect if other threads are blocked in sk_wait_event()
3088 * or inet_wait_for_connect().
3089 */
3090 if (sk->sk_wait_pending)
3091 return -EBUSY;
3092
3093 if (old_state != TCP_CLOSE)
3094 tcp_set_state(sk, TCP_CLOSE);
3095
3096 /* ABORT function of RFC793 */
3097 if (old_state == TCP_LISTEN) {
3098 inet_csk_listen_stop(sk);
3099 } else if (unlikely(tp->repair)) {
3100 sk->sk_err = ECONNABORTED;
3101 } else if (tcp_need_reset(old_state) ||
3102 (tp->snd_nxt != tp->write_seq &&
3103 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
3104 /* The last check adjusts for discrepancy of Linux wrt. RFC
3105 * states
3106 */
3107 tcp_send_active_reset(sk, gfp_any());
3108 sk->sk_err = ECONNRESET;
3109 } else if (old_state == TCP_SYN_SENT)
3110 sk->sk_err = ECONNRESET;
3111
3112 tcp_clear_xmit_timers(sk);
3113 __skb_queue_purge(&sk->sk_receive_queue);
3114 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3115 WRITE_ONCE(tp->urg_data, 0);
3116 tcp_write_queue_purge(sk);
3117 tcp_fastopen_active_disable_ofo_check(sk);
3118 skb_rbtree_purge(&tp->out_of_order_queue);
3119
3120 inet->inet_dport = 0;
3121
3122 inet_bhash2_reset_saddr(sk);
3123
3124 WRITE_ONCE(sk->sk_shutdown, 0);
3125 sock_reset_flag(sk, SOCK_DONE);
3126 tp->srtt_us = 0;
3127 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3128 tp->rcv_rtt_last_tsecr = 0;
3129
3130 seq = tp->write_seq + tp->max_window + 2;
3131 if (!seq)
3132 seq = 1;
3133 WRITE_ONCE(tp->write_seq, seq);
3134
3135 icsk->icsk_backoff = 0;
3136 icsk->icsk_probes_out = 0;
3137 icsk->icsk_probes_tstamp = 0;
3138 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3139 icsk->icsk_rto_min = TCP_RTO_MIN;
3140 icsk->icsk_delack_max = TCP_DELACK_MAX;
3141 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3142 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3143 tp->snd_cwnd_cnt = 0;
3144 tp->is_cwnd_limited = 0;
3145 tp->max_packets_out = 0;
3146 tp->window_clamp = 0;
3147 tp->delivered = 0;
3148 tp->delivered_ce = 0;
3149 if (icsk->icsk_ca_ops->release)
3150 icsk->icsk_ca_ops->release(sk);
3151 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3152 icsk->icsk_ca_initialized = 0;
3153 tcp_set_ca_state(sk, TCP_CA_Open);
3154 tp->is_sack_reneg = 0;
3155 tcp_clear_retrans(tp);
3156 tp->total_retrans = 0;
3157 inet_csk_delack_init(sk);
3158 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3159 * issue in __tcp_select_window()
3160 */
3161 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3162 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3163 __sk_dst_reset(sk);
3164 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3165 tcp_saved_syn_free(tp);
3166 tp->compressed_ack = 0;
3167 tp->segs_in = 0;
3168 tp->segs_out = 0;
3169 tp->bytes_sent = 0;
3170 tp->bytes_acked = 0;
3171 tp->bytes_received = 0;
3172 tp->bytes_retrans = 0;
3173 tp->data_segs_in = 0;
3174 tp->data_segs_out = 0;
3175 tp->duplicate_sack[0].start_seq = 0;
3176 tp->duplicate_sack[0].end_seq = 0;
3177 tp->dsack_dups = 0;
3178 tp->reord_seen = 0;
3179 tp->retrans_out = 0;
3180 tp->sacked_out = 0;
3181 tp->tlp_high_seq = 0;
3182 tp->last_oow_ack_time = 0;
3183 /* There's a bubble in the pipe until at least the first ACK. */
3184 tp->app_limited = ~0U;
3185 tp->rate_app_limited = 1;
3186 tp->rack.mstamp = 0;
3187 tp->rack.advanced = 0;
3188 tp->rack.reo_wnd_steps = 1;
3189 tp->rack.last_delivered = 0;
3190 tp->rack.reo_wnd_persist = 0;
3191 tp->rack.dsack_seen = 0;
3192 tp->syn_data_acked = 0;
3193 tp->rx_opt.saw_tstamp = 0;
3194 tp->rx_opt.dsack = 0;
3195 tp->rx_opt.num_sacks = 0;
3196 tp->rcv_ooopack = 0;
3197
3198
3199 /* Clean up fastopen related fields */
3200 tcp_free_fastopen_req(tp);
3201 inet->defer_connect = 0;
3202 tp->fastopen_client_fail = 0;
3203
3204 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3205
3206 if (sk->sk_frag.page) {
3207 put_page(sk->sk_frag.page);
3208 sk->sk_frag.page = NULL;
3209 sk->sk_frag.offset = 0;
3210 }
3211 sk_error_report(sk);
3212 return 0;
3213 }
3214 EXPORT_SYMBOL(tcp_disconnect);
3215
tcp_can_repair_sock(const struct sock * sk)3216 static inline bool tcp_can_repair_sock(const struct sock *sk)
3217 {
3218 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3219 (sk->sk_state != TCP_LISTEN);
3220 }
3221
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3222 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3223 {
3224 struct tcp_repair_window opt;
3225
3226 if (!tp->repair)
3227 return -EPERM;
3228
3229 if (len != sizeof(opt))
3230 return -EINVAL;
3231
3232 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3233 return -EFAULT;
3234
3235 if (opt.max_window < opt.snd_wnd)
3236 return -EINVAL;
3237
3238 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3239 return -EINVAL;
3240
3241 if (after(opt.rcv_wup, tp->rcv_nxt))
3242 return -EINVAL;
3243
3244 tp->snd_wl1 = opt.snd_wl1;
3245 tp->snd_wnd = opt.snd_wnd;
3246 tp->max_window = opt.max_window;
3247
3248 tp->rcv_wnd = opt.rcv_wnd;
3249 tp->rcv_wup = opt.rcv_wup;
3250
3251 return 0;
3252 }
3253
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3254 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3255 unsigned int len)
3256 {
3257 struct tcp_sock *tp = tcp_sk(sk);
3258 struct tcp_repair_opt opt;
3259 size_t offset = 0;
3260
3261 while (len >= sizeof(opt)) {
3262 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3263 return -EFAULT;
3264
3265 offset += sizeof(opt);
3266 len -= sizeof(opt);
3267
3268 switch (opt.opt_code) {
3269 case TCPOPT_MSS:
3270 tp->rx_opt.mss_clamp = opt.opt_val;
3271 tcp_mtup_init(sk);
3272 break;
3273 case TCPOPT_WINDOW:
3274 {
3275 u16 snd_wscale = opt.opt_val & 0xFFFF;
3276 u16 rcv_wscale = opt.opt_val >> 16;
3277
3278 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3279 return -EFBIG;
3280
3281 tp->rx_opt.snd_wscale = snd_wscale;
3282 tp->rx_opt.rcv_wscale = rcv_wscale;
3283 tp->rx_opt.wscale_ok = 1;
3284 }
3285 break;
3286 case TCPOPT_SACK_PERM:
3287 if (opt.opt_val != 0)
3288 return -EINVAL;
3289
3290 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3291 break;
3292 case TCPOPT_TIMESTAMP:
3293 if (opt.opt_val != 0)
3294 return -EINVAL;
3295
3296 tp->rx_opt.tstamp_ok = 1;
3297 break;
3298 }
3299 }
3300
3301 return 0;
3302 }
3303
3304 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3305 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3306
tcp_enable_tx_delay(void)3307 static void tcp_enable_tx_delay(void)
3308 {
3309 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3310 static int __tcp_tx_delay_enabled = 0;
3311
3312 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3313 static_branch_enable(&tcp_tx_delay_enabled);
3314 pr_info("TCP_TX_DELAY enabled\n");
3315 }
3316 }
3317 }
3318
3319 /* When set indicates to always queue non-full frames. Later the user clears
3320 * this option and we transmit any pending partial frames in the queue. This is
3321 * meant to be used alongside sendfile() to get properly filled frames when the
3322 * user (for example) must write out headers with a write() call first and then
3323 * use sendfile to send out the data parts.
3324 *
3325 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3326 * TCP_NODELAY.
3327 */
__tcp_sock_set_cork(struct sock * sk,bool on)3328 void __tcp_sock_set_cork(struct sock *sk, bool on)
3329 {
3330 struct tcp_sock *tp = tcp_sk(sk);
3331
3332 if (on) {
3333 tp->nonagle |= TCP_NAGLE_CORK;
3334 } else {
3335 tp->nonagle &= ~TCP_NAGLE_CORK;
3336 if (tp->nonagle & TCP_NAGLE_OFF)
3337 tp->nonagle |= TCP_NAGLE_PUSH;
3338 tcp_push_pending_frames(sk);
3339 }
3340 }
3341
tcp_sock_set_cork(struct sock * sk,bool on)3342 void tcp_sock_set_cork(struct sock *sk, bool on)
3343 {
3344 lock_sock(sk);
3345 __tcp_sock_set_cork(sk, on);
3346 release_sock(sk);
3347 }
3348 EXPORT_SYMBOL(tcp_sock_set_cork);
3349
3350 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3351 * remembered, but it is not activated until cork is cleared.
3352 *
3353 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3354 * even TCP_CORK for currently queued segments.
3355 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3356 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3357 {
3358 if (on) {
3359 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3360 tcp_push_pending_frames(sk);
3361 } else {
3362 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3363 }
3364 }
3365
tcp_sock_set_nodelay(struct sock * sk)3366 void tcp_sock_set_nodelay(struct sock *sk)
3367 {
3368 lock_sock(sk);
3369 __tcp_sock_set_nodelay(sk, true);
3370 release_sock(sk);
3371 }
3372 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3373
__tcp_sock_set_quickack(struct sock * sk,int val)3374 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3375 {
3376 if (!val) {
3377 inet_csk_enter_pingpong_mode(sk);
3378 return;
3379 }
3380
3381 inet_csk_exit_pingpong_mode(sk);
3382 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3383 inet_csk_ack_scheduled(sk)) {
3384 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3385 tcp_cleanup_rbuf(sk, 1);
3386 if (!(val & 1))
3387 inet_csk_enter_pingpong_mode(sk);
3388 }
3389 }
3390
tcp_sock_set_quickack(struct sock * sk,int val)3391 void tcp_sock_set_quickack(struct sock *sk, int val)
3392 {
3393 lock_sock(sk);
3394 __tcp_sock_set_quickack(sk, val);
3395 release_sock(sk);
3396 }
3397 EXPORT_SYMBOL(tcp_sock_set_quickack);
3398
tcp_sock_set_syncnt(struct sock * sk,int val)3399 int tcp_sock_set_syncnt(struct sock *sk, int val)
3400 {
3401 if (val < 1 || val > MAX_TCP_SYNCNT)
3402 return -EINVAL;
3403
3404 lock_sock(sk);
3405 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3406 release_sock(sk);
3407 return 0;
3408 }
3409 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3410
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3411 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3412 {
3413 lock_sock(sk);
3414 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3415 release_sock(sk);
3416 }
3417 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3418
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3419 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3420 {
3421 struct tcp_sock *tp = tcp_sk(sk);
3422
3423 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3424 return -EINVAL;
3425
3426 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3427 WRITE_ONCE(tp->keepalive_time, val * HZ);
3428 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3429 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3430 u32 elapsed = keepalive_time_elapsed(tp);
3431
3432 if (tp->keepalive_time > elapsed)
3433 elapsed = tp->keepalive_time - elapsed;
3434 else
3435 elapsed = 0;
3436 inet_csk_reset_keepalive_timer(sk, elapsed);
3437 }
3438
3439 return 0;
3440 }
3441
tcp_sock_set_keepidle(struct sock * sk,int val)3442 int tcp_sock_set_keepidle(struct sock *sk, int val)
3443 {
3444 int err;
3445
3446 lock_sock(sk);
3447 err = tcp_sock_set_keepidle_locked(sk, val);
3448 release_sock(sk);
3449 return err;
3450 }
3451 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3452
tcp_sock_set_keepintvl(struct sock * sk,int val)3453 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3454 {
3455 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3456 return -EINVAL;
3457
3458 lock_sock(sk);
3459 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3460 release_sock(sk);
3461 return 0;
3462 }
3463 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3464
tcp_sock_set_keepcnt(struct sock * sk,int val)3465 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3466 {
3467 if (val < 1 || val > MAX_TCP_KEEPCNT)
3468 return -EINVAL;
3469
3470 lock_sock(sk);
3471 /* Paired with READ_ONCE() in keepalive_probes() */
3472 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3473 release_sock(sk);
3474 return 0;
3475 }
3476 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3477
tcp_set_window_clamp(struct sock * sk,int val)3478 int tcp_set_window_clamp(struct sock *sk, int val)
3479 {
3480 struct tcp_sock *tp = tcp_sk(sk);
3481
3482 if (!val) {
3483 if (sk->sk_state != TCP_CLOSE)
3484 return -EINVAL;
3485 tp->window_clamp = 0;
3486 } else {
3487 u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3488 u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3489 SOCK_MIN_RCVBUF / 2 : val;
3490
3491 if (new_window_clamp == old_window_clamp)
3492 return 0;
3493
3494 tp->window_clamp = new_window_clamp;
3495 if (new_window_clamp < old_window_clamp) {
3496 /* need to apply the reserved mem provisioning only
3497 * when shrinking the window clamp
3498 */
3499 __tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3500
3501 } else {
3502 new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3503 tp->rcv_ssthresh = max(new_rcv_ssthresh,
3504 tp->rcv_ssthresh);
3505 }
3506 }
3507 return 0;
3508 }
3509
3510 /*
3511 * Socket option code for TCP.
3512 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3513 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3514 sockptr_t optval, unsigned int optlen)
3515 {
3516 struct tcp_sock *tp = tcp_sk(sk);
3517 struct inet_connection_sock *icsk = inet_csk(sk);
3518 struct net *net = sock_net(sk);
3519 int val;
3520 int err = 0;
3521
3522 /* These are data/string values, all the others are ints */
3523 switch (optname) {
3524 case TCP_CONGESTION: {
3525 char name[TCP_CA_NAME_MAX];
3526
3527 if (optlen < 1)
3528 return -EINVAL;
3529
3530 val = strncpy_from_sockptr(name, optval,
3531 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3532 if (val < 0)
3533 return -EFAULT;
3534 name[val] = 0;
3535
3536 sockopt_lock_sock(sk);
3537 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3538 sockopt_ns_capable(sock_net(sk)->user_ns,
3539 CAP_NET_ADMIN));
3540 sockopt_release_sock(sk);
3541 return err;
3542 }
3543 case TCP_ULP: {
3544 char name[TCP_ULP_NAME_MAX];
3545
3546 if (optlen < 1)
3547 return -EINVAL;
3548
3549 val = strncpy_from_sockptr(name, optval,
3550 min_t(long, TCP_ULP_NAME_MAX - 1,
3551 optlen));
3552 if (val < 0)
3553 return -EFAULT;
3554 name[val] = 0;
3555
3556 sockopt_lock_sock(sk);
3557 err = tcp_set_ulp(sk, name);
3558 sockopt_release_sock(sk);
3559 return err;
3560 }
3561 case TCP_FASTOPEN_KEY: {
3562 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3563 __u8 *backup_key = NULL;
3564
3565 /* Allow a backup key as well to facilitate key rotation
3566 * First key is the active one.
3567 */
3568 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3569 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3570 return -EINVAL;
3571
3572 if (copy_from_sockptr(key, optval, optlen))
3573 return -EFAULT;
3574
3575 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3576 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3577
3578 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3579 }
3580 default:
3581 /* fallthru */
3582 break;
3583 }
3584
3585 if (optlen < sizeof(int))
3586 return -EINVAL;
3587
3588 if (copy_from_sockptr(&val, optval, sizeof(val)))
3589 return -EFAULT;
3590
3591 sockopt_lock_sock(sk);
3592
3593 switch (optname) {
3594 case TCP_MAXSEG:
3595 /* Values greater than interface MTU won't take effect. However
3596 * at the point when this call is done we typically don't yet
3597 * know which interface is going to be used
3598 */
3599 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3600 err = -EINVAL;
3601 break;
3602 }
3603 tp->rx_opt.user_mss = val;
3604 break;
3605
3606 case TCP_NODELAY:
3607 __tcp_sock_set_nodelay(sk, val);
3608 break;
3609
3610 case TCP_THIN_LINEAR_TIMEOUTS:
3611 if (val < 0 || val > 1)
3612 err = -EINVAL;
3613 else
3614 tp->thin_lto = val;
3615 break;
3616
3617 case TCP_THIN_DUPACK:
3618 if (val < 0 || val > 1)
3619 err = -EINVAL;
3620 break;
3621
3622 case TCP_REPAIR:
3623 if (!tcp_can_repair_sock(sk))
3624 err = -EPERM;
3625 else if (val == TCP_REPAIR_ON) {
3626 tp->repair = 1;
3627 sk->sk_reuse = SK_FORCE_REUSE;
3628 tp->repair_queue = TCP_NO_QUEUE;
3629 } else if (val == TCP_REPAIR_OFF) {
3630 tp->repair = 0;
3631 sk->sk_reuse = SK_NO_REUSE;
3632 tcp_send_window_probe(sk);
3633 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3634 tp->repair = 0;
3635 sk->sk_reuse = SK_NO_REUSE;
3636 } else
3637 err = -EINVAL;
3638
3639 break;
3640
3641 case TCP_REPAIR_QUEUE:
3642 if (!tp->repair)
3643 err = -EPERM;
3644 else if ((unsigned int)val < TCP_QUEUES_NR)
3645 tp->repair_queue = val;
3646 else
3647 err = -EINVAL;
3648 break;
3649
3650 case TCP_QUEUE_SEQ:
3651 if (sk->sk_state != TCP_CLOSE) {
3652 err = -EPERM;
3653 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3654 if (!tcp_rtx_queue_empty(sk))
3655 err = -EPERM;
3656 else
3657 WRITE_ONCE(tp->write_seq, val);
3658 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3659 if (tp->rcv_nxt != tp->copied_seq) {
3660 err = -EPERM;
3661 } else {
3662 WRITE_ONCE(tp->rcv_nxt, val);
3663 WRITE_ONCE(tp->copied_seq, val);
3664 }
3665 } else {
3666 err = -EINVAL;
3667 }
3668 break;
3669
3670 case TCP_REPAIR_OPTIONS:
3671 if (!tp->repair)
3672 err = -EINVAL;
3673 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3674 err = tcp_repair_options_est(sk, optval, optlen);
3675 else
3676 err = -EPERM;
3677 break;
3678
3679 case TCP_CORK:
3680 __tcp_sock_set_cork(sk, val);
3681 break;
3682
3683 case TCP_KEEPIDLE:
3684 err = tcp_sock_set_keepidle_locked(sk, val);
3685 break;
3686 case TCP_KEEPINTVL:
3687 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3688 err = -EINVAL;
3689 else
3690 WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3691 break;
3692 case TCP_KEEPCNT:
3693 if (val < 1 || val > MAX_TCP_KEEPCNT)
3694 err = -EINVAL;
3695 else
3696 WRITE_ONCE(tp->keepalive_probes, val);
3697 break;
3698 case TCP_SYNCNT:
3699 if (val < 1 || val > MAX_TCP_SYNCNT)
3700 err = -EINVAL;
3701 else
3702 WRITE_ONCE(icsk->icsk_syn_retries, val);
3703 break;
3704
3705 case TCP_SAVE_SYN:
3706 /* 0: disable, 1: enable, 2: start from ether_header */
3707 if (val < 0 || val > 2)
3708 err = -EINVAL;
3709 else
3710 tp->save_syn = val;
3711 break;
3712
3713 case TCP_LINGER2:
3714 if (val < 0)
3715 WRITE_ONCE(tp->linger2, -1);
3716 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3717 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3718 else
3719 WRITE_ONCE(tp->linger2, val * HZ);
3720 break;
3721
3722 case TCP_DEFER_ACCEPT:
3723 /* Translate value in seconds to number of retransmits */
3724 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3725 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3726 TCP_RTO_MAX / HZ));
3727 break;
3728
3729 case TCP_WINDOW_CLAMP:
3730 err = tcp_set_window_clamp(sk, val);
3731 break;
3732
3733 case TCP_QUICKACK:
3734 __tcp_sock_set_quickack(sk, val);
3735 break;
3736
3737 #ifdef CONFIG_TCP_MD5SIG
3738 case TCP_MD5SIG:
3739 case TCP_MD5SIG_EXT:
3740 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3741 break;
3742 #endif
3743 case TCP_USER_TIMEOUT:
3744 /* Cap the max time in ms TCP will retry or probe the window
3745 * before giving up and aborting (ETIMEDOUT) a connection.
3746 */
3747 if (val < 0)
3748 err = -EINVAL;
3749 else
3750 WRITE_ONCE(icsk->icsk_user_timeout, val);
3751 break;
3752
3753 case TCP_FASTOPEN:
3754 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3755 TCPF_LISTEN))) {
3756 tcp_fastopen_init_key_once(net);
3757
3758 fastopen_queue_tune(sk, val);
3759 } else {
3760 err = -EINVAL;
3761 }
3762 break;
3763 case TCP_FASTOPEN_CONNECT:
3764 if (val > 1 || val < 0) {
3765 err = -EINVAL;
3766 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3767 TFO_CLIENT_ENABLE) {
3768 if (sk->sk_state == TCP_CLOSE)
3769 tp->fastopen_connect = val;
3770 else
3771 err = -EINVAL;
3772 } else {
3773 err = -EOPNOTSUPP;
3774 }
3775 break;
3776 case TCP_FASTOPEN_NO_COOKIE:
3777 if (val > 1 || val < 0)
3778 err = -EINVAL;
3779 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3780 err = -EINVAL;
3781 else
3782 tp->fastopen_no_cookie = val;
3783 break;
3784 case TCP_TIMESTAMP:
3785 if (!tp->repair)
3786 err = -EPERM;
3787 else
3788 WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3789 break;
3790 case TCP_REPAIR_WINDOW:
3791 err = tcp_repair_set_window(tp, optval, optlen);
3792 break;
3793 case TCP_NOTSENT_LOWAT:
3794 WRITE_ONCE(tp->notsent_lowat, val);
3795 sk->sk_write_space(sk);
3796 break;
3797 case TCP_INQ:
3798 if (val > 1 || val < 0)
3799 err = -EINVAL;
3800 else
3801 tp->recvmsg_inq = val;
3802 break;
3803 case TCP_TX_DELAY:
3804 if (val)
3805 tcp_enable_tx_delay();
3806 WRITE_ONCE(tp->tcp_tx_delay, val);
3807 break;
3808 default:
3809 err = -ENOPROTOOPT;
3810 break;
3811 }
3812
3813 sockopt_release_sock(sk);
3814 return err;
3815 }
3816
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3817 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3818 unsigned int optlen)
3819 {
3820 const struct inet_connection_sock *icsk = inet_csk(sk);
3821
3822 if (level != SOL_TCP)
3823 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3824 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3825 optval, optlen);
3826 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3827 }
3828 EXPORT_SYMBOL(tcp_setsockopt);
3829
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3830 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3831 struct tcp_info *info)
3832 {
3833 u64 stats[__TCP_CHRONO_MAX], total = 0;
3834 enum tcp_chrono i;
3835
3836 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3837 stats[i] = tp->chrono_stat[i - 1];
3838 if (i == tp->chrono_type)
3839 stats[i] += tcp_jiffies32 - tp->chrono_start;
3840 stats[i] *= USEC_PER_SEC / HZ;
3841 total += stats[i];
3842 }
3843
3844 info->tcpi_busy_time = total;
3845 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3846 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3847 }
3848
3849 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3850 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3851 {
3852 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3853 const struct inet_connection_sock *icsk = inet_csk(sk);
3854 unsigned long rate;
3855 u32 now;
3856 u64 rate64;
3857 bool slow;
3858
3859 memset(info, 0, sizeof(*info));
3860 if (sk->sk_type != SOCK_STREAM)
3861 return;
3862
3863 info->tcpi_state = inet_sk_state_load(sk);
3864
3865 /* Report meaningful fields for all TCP states, including listeners */
3866 rate = READ_ONCE(sk->sk_pacing_rate);
3867 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3868 info->tcpi_pacing_rate = rate64;
3869
3870 rate = READ_ONCE(sk->sk_max_pacing_rate);
3871 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3872 info->tcpi_max_pacing_rate = rate64;
3873
3874 info->tcpi_reordering = tp->reordering;
3875 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3876
3877 if (info->tcpi_state == TCP_LISTEN) {
3878 /* listeners aliased fields :
3879 * tcpi_unacked -> Number of children ready for accept()
3880 * tcpi_sacked -> max backlog
3881 */
3882 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3883 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3884 return;
3885 }
3886
3887 slow = lock_sock_fast(sk);
3888
3889 info->tcpi_ca_state = icsk->icsk_ca_state;
3890 info->tcpi_retransmits = icsk->icsk_retransmits;
3891 info->tcpi_probes = icsk->icsk_probes_out;
3892 info->tcpi_backoff = icsk->icsk_backoff;
3893
3894 if (tp->rx_opt.tstamp_ok)
3895 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3896 if (tcp_is_sack(tp))
3897 info->tcpi_options |= TCPI_OPT_SACK;
3898 if (tp->rx_opt.wscale_ok) {
3899 info->tcpi_options |= TCPI_OPT_WSCALE;
3900 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3901 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3902 }
3903
3904 if (tp->ecn_flags & TCP_ECN_OK)
3905 info->tcpi_options |= TCPI_OPT_ECN;
3906 if (tp->ecn_flags & TCP_ECN_SEEN)
3907 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3908 if (tp->syn_data_acked)
3909 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3910
3911 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3912 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3913 info->tcpi_snd_mss = tp->mss_cache;
3914 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3915
3916 info->tcpi_unacked = tp->packets_out;
3917 info->tcpi_sacked = tp->sacked_out;
3918
3919 info->tcpi_lost = tp->lost_out;
3920 info->tcpi_retrans = tp->retrans_out;
3921
3922 now = tcp_jiffies32;
3923 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3924 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3925 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3926
3927 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3928 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3929 info->tcpi_rtt = tp->srtt_us >> 3;
3930 info->tcpi_rttvar = tp->mdev_us >> 2;
3931 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3932 info->tcpi_advmss = tp->advmss;
3933
3934 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3935 info->tcpi_rcv_space = tp->rcvq_space.space;
3936
3937 info->tcpi_total_retrans = tp->total_retrans;
3938
3939 info->tcpi_bytes_acked = tp->bytes_acked;
3940 info->tcpi_bytes_received = tp->bytes_received;
3941 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3942 tcp_get_info_chrono_stats(tp, info);
3943
3944 info->tcpi_segs_out = tp->segs_out;
3945
3946 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3947 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3948 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3949
3950 info->tcpi_min_rtt = tcp_min_rtt(tp);
3951 info->tcpi_data_segs_out = tp->data_segs_out;
3952
3953 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3954 rate64 = tcp_compute_delivery_rate(tp);
3955 if (rate64)
3956 info->tcpi_delivery_rate = rate64;
3957 info->tcpi_delivered = tp->delivered;
3958 info->tcpi_delivered_ce = tp->delivered_ce;
3959 info->tcpi_bytes_sent = tp->bytes_sent;
3960 info->tcpi_bytes_retrans = tp->bytes_retrans;
3961 info->tcpi_dsack_dups = tp->dsack_dups;
3962 info->tcpi_reord_seen = tp->reord_seen;
3963 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3964 info->tcpi_snd_wnd = tp->snd_wnd;
3965 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3966 unlock_sock_fast(sk, slow);
3967 }
3968 EXPORT_SYMBOL_GPL(tcp_get_info);
3969
tcp_opt_stats_get_size(void)3970 static size_t tcp_opt_stats_get_size(void)
3971 {
3972 return
3973 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3974 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3975 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3976 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3977 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3978 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3979 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3980 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3981 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3982 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3983 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3984 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3985 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3986 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3987 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3988 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3989 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3990 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3991 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3992 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3993 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3994 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3995 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3996 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3997 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3998 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3999 0;
4000 }
4001
4002 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4003 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4004 {
4005 if (skb->protocol == htons(ETH_P_IP))
4006 return ip_hdr(skb)->ttl;
4007 else if (skb->protocol == htons(ETH_P_IPV6))
4008 return ipv6_hdr(skb)->hop_limit;
4009 else
4010 return 0;
4011 }
4012
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4013 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4014 const struct sk_buff *orig_skb,
4015 const struct sk_buff *ack_skb)
4016 {
4017 const struct tcp_sock *tp = tcp_sk(sk);
4018 struct sk_buff *stats;
4019 struct tcp_info info;
4020 unsigned long rate;
4021 u64 rate64;
4022
4023 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4024 if (!stats)
4025 return NULL;
4026
4027 tcp_get_info_chrono_stats(tp, &info);
4028 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4029 info.tcpi_busy_time, TCP_NLA_PAD);
4030 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4031 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4032 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4033 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4034 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4035 tp->data_segs_out, TCP_NLA_PAD);
4036 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4037 tp->total_retrans, TCP_NLA_PAD);
4038
4039 rate = READ_ONCE(sk->sk_pacing_rate);
4040 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4041 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4042
4043 rate64 = tcp_compute_delivery_rate(tp);
4044 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4045
4046 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4047 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4048 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4049
4050 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4051 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4052 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4053 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4054 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4055
4056 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4057 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4058
4059 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4060 TCP_NLA_PAD);
4061 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4062 TCP_NLA_PAD);
4063 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4064 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4065 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4066 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4067 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4068 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4069 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4070 TCP_NLA_PAD);
4071 if (ack_skb)
4072 nla_put_u8(stats, TCP_NLA_TTL,
4073 tcp_skb_ttl_or_hop_limit(ack_skb));
4074
4075 return stats;
4076 }
4077
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4078 int do_tcp_getsockopt(struct sock *sk, int level,
4079 int optname, sockptr_t optval, sockptr_t optlen)
4080 {
4081 struct inet_connection_sock *icsk = inet_csk(sk);
4082 struct tcp_sock *tp = tcp_sk(sk);
4083 struct net *net = sock_net(sk);
4084 int val, len;
4085
4086 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4087 return -EFAULT;
4088
4089 len = min_t(unsigned int, len, sizeof(int));
4090
4091 if (len < 0)
4092 return -EINVAL;
4093
4094 switch (optname) {
4095 case TCP_MAXSEG:
4096 val = tp->mss_cache;
4097 if (tp->rx_opt.user_mss &&
4098 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4099 val = tp->rx_opt.user_mss;
4100 if (tp->repair)
4101 val = tp->rx_opt.mss_clamp;
4102 break;
4103 case TCP_NODELAY:
4104 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4105 break;
4106 case TCP_CORK:
4107 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4108 break;
4109 case TCP_KEEPIDLE:
4110 val = keepalive_time_when(tp) / HZ;
4111 break;
4112 case TCP_KEEPINTVL:
4113 val = keepalive_intvl_when(tp) / HZ;
4114 break;
4115 case TCP_KEEPCNT:
4116 val = keepalive_probes(tp);
4117 break;
4118 case TCP_SYNCNT:
4119 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4120 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4121 break;
4122 case TCP_LINGER2:
4123 val = READ_ONCE(tp->linger2);
4124 if (val >= 0)
4125 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4126 break;
4127 case TCP_DEFER_ACCEPT:
4128 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4129 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4130 TCP_RTO_MAX / HZ);
4131 break;
4132 case TCP_WINDOW_CLAMP:
4133 val = tp->window_clamp;
4134 break;
4135 case TCP_INFO: {
4136 struct tcp_info info;
4137
4138 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4139 return -EFAULT;
4140
4141 tcp_get_info(sk, &info);
4142
4143 len = min_t(unsigned int, len, sizeof(info));
4144 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4145 return -EFAULT;
4146 if (copy_to_sockptr(optval, &info, len))
4147 return -EFAULT;
4148 return 0;
4149 }
4150 case TCP_CC_INFO: {
4151 const struct tcp_congestion_ops *ca_ops;
4152 union tcp_cc_info info;
4153 size_t sz = 0;
4154 int attr;
4155
4156 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4157 return -EFAULT;
4158
4159 ca_ops = icsk->icsk_ca_ops;
4160 if (ca_ops && ca_ops->get_info)
4161 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4162
4163 len = min_t(unsigned int, len, sz);
4164 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4165 return -EFAULT;
4166 if (copy_to_sockptr(optval, &info, len))
4167 return -EFAULT;
4168 return 0;
4169 }
4170 case TCP_QUICKACK:
4171 val = !inet_csk_in_pingpong_mode(sk);
4172 break;
4173
4174 case TCP_CONGESTION:
4175 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4176 return -EFAULT;
4177 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4178 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4179 return -EFAULT;
4180 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4181 return -EFAULT;
4182 return 0;
4183
4184 case TCP_ULP:
4185 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4186 return -EFAULT;
4187 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4188 if (!icsk->icsk_ulp_ops) {
4189 len = 0;
4190 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4191 return -EFAULT;
4192 return 0;
4193 }
4194 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4195 return -EFAULT;
4196 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4197 return -EFAULT;
4198 return 0;
4199
4200 case TCP_FASTOPEN_KEY: {
4201 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4202 unsigned int key_len;
4203
4204 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4205 return -EFAULT;
4206
4207 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4208 TCP_FASTOPEN_KEY_LENGTH;
4209 len = min_t(unsigned int, len, key_len);
4210 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4211 return -EFAULT;
4212 if (copy_to_sockptr(optval, key, len))
4213 return -EFAULT;
4214 return 0;
4215 }
4216 case TCP_THIN_LINEAR_TIMEOUTS:
4217 val = tp->thin_lto;
4218 break;
4219
4220 case TCP_THIN_DUPACK:
4221 val = 0;
4222 break;
4223
4224 case TCP_REPAIR:
4225 val = tp->repair;
4226 break;
4227
4228 case TCP_REPAIR_QUEUE:
4229 if (tp->repair)
4230 val = tp->repair_queue;
4231 else
4232 return -EINVAL;
4233 break;
4234
4235 case TCP_REPAIR_WINDOW: {
4236 struct tcp_repair_window opt;
4237
4238 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4239 return -EFAULT;
4240
4241 if (len != sizeof(opt))
4242 return -EINVAL;
4243
4244 if (!tp->repair)
4245 return -EPERM;
4246
4247 opt.snd_wl1 = tp->snd_wl1;
4248 opt.snd_wnd = tp->snd_wnd;
4249 opt.max_window = tp->max_window;
4250 opt.rcv_wnd = tp->rcv_wnd;
4251 opt.rcv_wup = tp->rcv_wup;
4252
4253 if (copy_to_sockptr(optval, &opt, len))
4254 return -EFAULT;
4255 return 0;
4256 }
4257 case TCP_QUEUE_SEQ:
4258 if (tp->repair_queue == TCP_SEND_QUEUE)
4259 val = tp->write_seq;
4260 else if (tp->repair_queue == TCP_RECV_QUEUE)
4261 val = tp->rcv_nxt;
4262 else
4263 return -EINVAL;
4264 break;
4265
4266 case TCP_USER_TIMEOUT:
4267 val = READ_ONCE(icsk->icsk_user_timeout);
4268 break;
4269
4270 case TCP_FASTOPEN:
4271 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4272 break;
4273
4274 case TCP_FASTOPEN_CONNECT:
4275 val = tp->fastopen_connect;
4276 break;
4277
4278 case TCP_FASTOPEN_NO_COOKIE:
4279 val = tp->fastopen_no_cookie;
4280 break;
4281
4282 case TCP_TX_DELAY:
4283 val = READ_ONCE(tp->tcp_tx_delay);
4284 break;
4285
4286 case TCP_TIMESTAMP:
4287 val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4288 break;
4289 case TCP_NOTSENT_LOWAT:
4290 val = READ_ONCE(tp->notsent_lowat);
4291 break;
4292 case TCP_INQ:
4293 val = tp->recvmsg_inq;
4294 break;
4295 case TCP_SAVE_SYN:
4296 val = tp->save_syn;
4297 break;
4298 case TCP_SAVED_SYN: {
4299 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4300 return -EFAULT;
4301
4302 sockopt_lock_sock(sk);
4303 if (tp->saved_syn) {
4304 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4305 len = tcp_saved_syn_len(tp->saved_syn);
4306 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4307 sockopt_release_sock(sk);
4308 return -EFAULT;
4309 }
4310 sockopt_release_sock(sk);
4311 return -EINVAL;
4312 }
4313 len = tcp_saved_syn_len(tp->saved_syn);
4314 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4315 sockopt_release_sock(sk);
4316 return -EFAULT;
4317 }
4318 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4319 sockopt_release_sock(sk);
4320 return -EFAULT;
4321 }
4322 tcp_saved_syn_free(tp);
4323 sockopt_release_sock(sk);
4324 } else {
4325 sockopt_release_sock(sk);
4326 len = 0;
4327 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4328 return -EFAULT;
4329 }
4330 return 0;
4331 }
4332 #ifdef CONFIG_MMU
4333 case TCP_ZEROCOPY_RECEIVE: {
4334 struct scm_timestamping_internal tss;
4335 struct tcp_zerocopy_receive zc = {};
4336 int err;
4337
4338 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4339 return -EFAULT;
4340 if (len < 0 ||
4341 len < offsetofend(struct tcp_zerocopy_receive, length))
4342 return -EINVAL;
4343 if (unlikely(len > sizeof(zc))) {
4344 err = check_zeroed_sockptr(optval, sizeof(zc),
4345 len - sizeof(zc));
4346 if (err < 1)
4347 return err == 0 ? -EINVAL : err;
4348 len = sizeof(zc);
4349 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4350 return -EFAULT;
4351 }
4352 if (copy_from_sockptr(&zc, optval, len))
4353 return -EFAULT;
4354 if (zc.reserved)
4355 return -EINVAL;
4356 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4357 return -EINVAL;
4358 sockopt_lock_sock(sk);
4359 err = tcp_zerocopy_receive(sk, &zc, &tss);
4360 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4361 &zc, &len, err);
4362 sockopt_release_sock(sk);
4363 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4364 goto zerocopy_rcv_cmsg;
4365 switch (len) {
4366 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4367 goto zerocopy_rcv_cmsg;
4368 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4369 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4370 case offsetofend(struct tcp_zerocopy_receive, flags):
4371 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4372 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4373 case offsetofend(struct tcp_zerocopy_receive, err):
4374 goto zerocopy_rcv_sk_err;
4375 case offsetofend(struct tcp_zerocopy_receive, inq):
4376 goto zerocopy_rcv_inq;
4377 case offsetofend(struct tcp_zerocopy_receive, length):
4378 default:
4379 goto zerocopy_rcv_out;
4380 }
4381 zerocopy_rcv_cmsg:
4382 if (zc.msg_flags & TCP_CMSG_TS)
4383 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4384 else
4385 zc.msg_flags = 0;
4386 zerocopy_rcv_sk_err:
4387 if (!err)
4388 zc.err = sock_error(sk);
4389 zerocopy_rcv_inq:
4390 zc.inq = tcp_inq_hint(sk);
4391 zerocopy_rcv_out:
4392 if (!err && copy_to_sockptr(optval, &zc, len))
4393 err = -EFAULT;
4394 return err;
4395 }
4396 #endif
4397 default:
4398 return -ENOPROTOOPT;
4399 }
4400
4401 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4402 return -EFAULT;
4403 if (copy_to_sockptr(optval, &val, len))
4404 return -EFAULT;
4405 return 0;
4406 }
4407
tcp_bpf_bypass_getsockopt(int level,int optname)4408 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4409 {
4410 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4411 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4412 */
4413 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4414 return true;
4415
4416 return false;
4417 }
4418 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4419
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4420 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4421 int __user *optlen)
4422 {
4423 struct inet_connection_sock *icsk = inet_csk(sk);
4424
4425 if (level != SOL_TCP)
4426 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4427 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4428 optval, optlen);
4429 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4430 USER_SOCKPTR(optlen));
4431 }
4432 EXPORT_SYMBOL(tcp_getsockopt);
4433
4434 #ifdef CONFIG_TCP_MD5SIG
4435 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4436 static DEFINE_MUTEX(tcp_md5sig_mutex);
4437 static bool tcp_md5sig_pool_populated = false;
4438
__tcp_alloc_md5sig_pool(void)4439 static void __tcp_alloc_md5sig_pool(void)
4440 {
4441 struct crypto_ahash *hash;
4442 int cpu;
4443
4444 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4445 if (IS_ERR(hash))
4446 return;
4447
4448 for_each_possible_cpu(cpu) {
4449 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4450 struct ahash_request *req;
4451
4452 if (!scratch) {
4453 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4454 sizeof(struct tcphdr),
4455 GFP_KERNEL,
4456 cpu_to_node(cpu));
4457 if (!scratch)
4458 return;
4459 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4460 }
4461 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4462 continue;
4463
4464 req = ahash_request_alloc(hash, GFP_KERNEL);
4465 if (!req)
4466 return;
4467
4468 ahash_request_set_callback(req, 0, NULL, NULL);
4469
4470 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4471 }
4472 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4473 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4474 */
4475 smp_wmb();
4476 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4477 * and tcp_get_md5sig_pool().
4478 */
4479 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4480 }
4481
tcp_alloc_md5sig_pool(void)4482 bool tcp_alloc_md5sig_pool(void)
4483 {
4484 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4485 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4486 mutex_lock(&tcp_md5sig_mutex);
4487
4488 if (!tcp_md5sig_pool_populated) {
4489 __tcp_alloc_md5sig_pool();
4490 if (tcp_md5sig_pool_populated)
4491 static_branch_inc(&tcp_md5_needed);
4492 }
4493
4494 mutex_unlock(&tcp_md5sig_mutex);
4495 }
4496 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4497 return READ_ONCE(tcp_md5sig_pool_populated);
4498 }
4499 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4500
4501
4502 /**
4503 * tcp_get_md5sig_pool - get md5sig_pool for this user
4504 *
4505 * We use percpu structure, so if we succeed, we exit with preemption
4506 * and BH disabled, to make sure another thread or softirq handling
4507 * wont try to get same context.
4508 */
tcp_get_md5sig_pool(void)4509 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4510 {
4511 local_bh_disable();
4512
4513 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4514 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4515 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4516 smp_rmb();
4517 return this_cpu_ptr(&tcp_md5sig_pool);
4518 }
4519 local_bh_enable();
4520 return NULL;
4521 }
4522 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4523
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4524 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4525 const struct sk_buff *skb, unsigned int header_len)
4526 {
4527 struct scatterlist sg;
4528 const struct tcphdr *tp = tcp_hdr(skb);
4529 struct ahash_request *req = hp->md5_req;
4530 unsigned int i;
4531 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4532 skb_headlen(skb) - header_len : 0;
4533 const struct skb_shared_info *shi = skb_shinfo(skb);
4534 struct sk_buff *frag_iter;
4535
4536 sg_init_table(&sg, 1);
4537
4538 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4539 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4540 if (crypto_ahash_update(req))
4541 return 1;
4542
4543 for (i = 0; i < shi->nr_frags; ++i) {
4544 const skb_frag_t *f = &shi->frags[i];
4545 unsigned int offset = skb_frag_off(f);
4546 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4547
4548 sg_set_page(&sg, page, skb_frag_size(f),
4549 offset_in_page(offset));
4550 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4551 if (crypto_ahash_update(req))
4552 return 1;
4553 }
4554
4555 skb_walk_frags(skb, frag_iter)
4556 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4557 return 1;
4558
4559 return 0;
4560 }
4561 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4562
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4563 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4564 {
4565 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4566 struct scatterlist sg;
4567
4568 sg_init_one(&sg, key->key, keylen);
4569 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4570
4571 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4572 return data_race(crypto_ahash_update(hp->md5_req));
4573 }
4574 EXPORT_SYMBOL(tcp_md5_hash_key);
4575
4576 /* Called with rcu_read_lock() */
4577 enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4578 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4579 const void *saddr, const void *daddr,
4580 int family, int dif, int sdif)
4581 {
4582 /*
4583 * This gets called for each TCP segment that arrives
4584 * so we want to be efficient.
4585 * We have 3 drop cases:
4586 * o No MD5 hash and one expected.
4587 * o MD5 hash and we're not expecting one.
4588 * o MD5 hash and its wrong.
4589 */
4590 const __u8 *hash_location = NULL;
4591 struct tcp_md5sig_key *hash_expected;
4592 const struct tcphdr *th = tcp_hdr(skb);
4593 struct tcp_sock *tp = tcp_sk(sk);
4594 int genhash, l3index;
4595 u8 newhash[16];
4596
4597 /* sdif set, means packet ingressed via a device
4598 * in an L3 domain and dif is set to the l3mdev
4599 */
4600 l3index = sdif ? dif : 0;
4601
4602 hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4603 hash_location = tcp_parse_md5sig_option(th);
4604
4605 /* We've parsed the options - do we have a hash? */
4606 if (!hash_expected && !hash_location)
4607 return SKB_NOT_DROPPED_YET;
4608
4609 if (hash_expected && !hash_location) {
4610 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4611 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4612 }
4613
4614 if (!hash_expected && hash_location) {
4615 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4616 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4617 }
4618
4619 /* Check the signature.
4620 * To support dual stack listeners, we need to handle
4621 * IPv4-mapped case.
4622 */
4623 if (family == AF_INET)
4624 genhash = tcp_v4_md5_hash_skb(newhash,
4625 hash_expected,
4626 NULL, skb);
4627 else
4628 genhash = tp->af_specific->calc_md5_hash(newhash,
4629 hash_expected,
4630 NULL, skb);
4631
4632 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4633 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4634 if (family == AF_INET) {
4635 net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4636 saddr, ntohs(th->source),
4637 daddr, ntohs(th->dest),
4638 genhash ? " tcp_v4_calc_md5_hash failed"
4639 : "", l3index);
4640 } else {
4641 net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4642 genhash ? "failed" : "mismatch",
4643 saddr, ntohs(th->source),
4644 daddr, ntohs(th->dest), l3index);
4645 }
4646 return SKB_DROP_REASON_TCP_MD5FAILURE;
4647 }
4648 return SKB_NOT_DROPPED_YET;
4649 }
4650 EXPORT_SYMBOL(tcp_inbound_md5_hash);
4651
4652 #endif
4653
tcp_done(struct sock * sk)4654 void tcp_done(struct sock *sk)
4655 {
4656 struct request_sock *req;
4657
4658 /* We might be called with a new socket, after
4659 * inet_csk_prepare_forced_close() has been called
4660 * so we can not use lockdep_sock_is_held(sk)
4661 */
4662 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4663
4664 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4665 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4666
4667 tcp_set_state(sk, TCP_CLOSE);
4668 tcp_clear_xmit_timers(sk);
4669 if (req)
4670 reqsk_fastopen_remove(sk, req, false);
4671
4672 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4673
4674 if (!sock_flag(sk, SOCK_DEAD))
4675 sk->sk_state_change(sk);
4676 else
4677 inet_csk_destroy_sock(sk);
4678 }
4679 EXPORT_SYMBOL_GPL(tcp_done);
4680
tcp_abort(struct sock * sk,int err)4681 int tcp_abort(struct sock *sk, int err)
4682 {
4683 int state = inet_sk_state_load(sk);
4684
4685 if (state == TCP_NEW_SYN_RECV) {
4686 struct request_sock *req = inet_reqsk(sk);
4687
4688 local_bh_disable();
4689 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4690 local_bh_enable();
4691 return 0;
4692 }
4693 if (state == TCP_TIME_WAIT) {
4694 struct inet_timewait_sock *tw = inet_twsk(sk);
4695
4696 refcount_inc(&tw->tw_refcnt);
4697 local_bh_disable();
4698 inet_twsk_deschedule_put(tw);
4699 local_bh_enable();
4700 return 0;
4701 }
4702
4703 /* Don't race with userspace socket closes such as tcp_close. */
4704 lock_sock(sk);
4705
4706 if (sk->sk_state == TCP_LISTEN) {
4707 tcp_set_state(sk, TCP_CLOSE);
4708 inet_csk_listen_stop(sk);
4709 }
4710
4711 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4712 local_bh_disable();
4713 bh_lock_sock(sk);
4714
4715 if (!sock_flag(sk, SOCK_DEAD)) {
4716 sk->sk_err = err;
4717 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4718 smp_wmb();
4719 sk_error_report(sk);
4720 if (tcp_need_reset(sk->sk_state))
4721 tcp_send_active_reset(sk, GFP_ATOMIC);
4722 tcp_done(sk);
4723 }
4724
4725 bh_unlock_sock(sk);
4726 local_bh_enable();
4727 tcp_write_queue_purge(sk);
4728 release_sock(sk);
4729 return 0;
4730 }
4731 EXPORT_SYMBOL_GPL(tcp_abort);
4732
4733 extern struct tcp_congestion_ops tcp_reno;
4734
4735 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4736 static int __init set_thash_entries(char *str)
4737 {
4738 ssize_t ret;
4739
4740 if (!str)
4741 return 0;
4742
4743 ret = kstrtoul(str, 0, &thash_entries);
4744 if (ret)
4745 return 0;
4746
4747 return 1;
4748 }
4749 __setup("thash_entries=", set_thash_entries);
4750
tcp_init_mem(void)4751 static void __init tcp_init_mem(void)
4752 {
4753 unsigned long limit = nr_free_buffer_pages() / 16;
4754
4755 limit = max(limit, 128UL);
4756 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4757 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4758 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4759 }
4760
tcp_init(void)4761 void __init tcp_init(void)
4762 {
4763 int max_rshare, max_wshare, cnt;
4764 unsigned long limit;
4765 unsigned int i;
4766
4767 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4768 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4769 sizeof_field(struct sk_buff, cb));
4770
4771 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4772
4773 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4774 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4775
4776 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4777 thash_entries, 21, /* one slot per 2 MB*/
4778 0, 64 * 1024);
4779 tcp_hashinfo.bind_bucket_cachep =
4780 kmem_cache_create("tcp_bind_bucket",
4781 sizeof(struct inet_bind_bucket), 0,
4782 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4783 SLAB_ACCOUNT,
4784 NULL);
4785 tcp_hashinfo.bind2_bucket_cachep =
4786 kmem_cache_create("tcp_bind2_bucket",
4787 sizeof(struct inet_bind2_bucket), 0,
4788 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4789 SLAB_ACCOUNT,
4790 NULL);
4791
4792 /* Size and allocate the main established and bind bucket
4793 * hash tables.
4794 *
4795 * The methodology is similar to that of the buffer cache.
4796 */
4797 tcp_hashinfo.ehash =
4798 alloc_large_system_hash("TCP established",
4799 sizeof(struct inet_ehash_bucket),
4800 thash_entries,
4801 17, /* one slot per 128 KB of memory */
4802 0,
4803 NULL,
4804 &tcp_hashinfo.ehash_mask,
4805 0,
4806 thash_entries ? 0 : 512 * 1024);
4807 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4808 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4809
4810 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4811 panic("TCP: failed to alloc ehash_locks");
4812 tcp_hashinfo.bhash =
4813 alloc_large_system_hash("TCP bind",
4814 2 * sizeof(struct inet_bind_hashbucket),
4815 tcp_hashinfo.ehash_mask + 1,
4816 17, /* one slot per 128 KB of memory */
4817 0,
4818 &tcp_hashinfo.bhash_size,
4819 NULL,
4820 0,
4821 64 * 1024);
4822 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4823 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4824 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4825 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4826 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4827 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4828 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4829 }
4830
4831 tcp_hashinfo.pernet = false;
4832
4833 cnt = tcp_hashinfo.ehash_mask + 1;
4834 sysctl_tcp_max_orphans = cnt / 2;
4835
4836 tcp_init_mem();
4837 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4838 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4839 max_wshare = min(4UL*1024*1024, limit);
4840 max_rshare = min(6UL*1024*1024, limit);
4841
4842 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4843 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4844 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4845
4846 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4847 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4848 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4849
4850 pr_info("Hash tables configured (established %u bind %u)\n",
4851 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4852
4853 tcp_v4_init();
4854 tcp_metrics_init();
4855 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4856 tcp_tasklet_init();
4857 mptcp_init();
4858 }
4859