1 /*
2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org
3 *
4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California.
5 * All Rights Reserved.
6 *
7 * Author Rickard E. (Rik) Faith <faith@valinux.com>
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the next
17 * paragraph) shall be included in all copies or substantial portions of the
18 * Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
26 * DEALINGS IN THE SOFTWARE.
27 */
28
29 #include <linux/debugfs.h>
30 #include <linux/fs.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/mount.h>
34 #include <linux/pseudo_fs.h>
35 #include <linux/slab.h>
36 #include <linux/srcu.h>
37
38 #include <drm/drm_cache.h>
39 #include <drm/drm_client.h>
40 #include <drm/drm_color_mgmt.h>
41 #include <drm/drm_drv.h>
42 #include <drm/drm_file.h>
43 #include <drm/drm_managed.h>
44 #include <drm/drm_mode_object.h>
45 #include <drm/drm_print.h>
46 #include <drm/drm_privacy_screen_machine.h>
47
48 #include "drm_crtc_internal.h"
49 #include "drm_internal.h"
50 #include "drm_legacy.h"
51
52 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl");
53 MODULE_DESCRIPTION("DRM shared core routines");
54 MODULE_LICENSE("GPL and additional rights");
55
56 static DEFINE_SPINLOCK(drm_minor_lock);
57 static struct idr drm_minors_idr;
58
59 /*
60 * If the drm core fails to init for whatever reason,
61 * we should prevent any drivers from registering with it.
62 * It's best to check this at drm_dev_init(), as some drivers
63 * prefer to embed struct drm_device into their own device
64 * structure and call drm_dev_init() themselves.
65 */
66 static bool drm_core_init_complete;
67
68 static struct dentry *drm_debugfs_root;
69
70 DEFINE_STATIC_SRCU(drm_unplug_srcu);
71
72 /*
73 * DRM Minors
74 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each
75 * of them is represented by a drm_minor object. Depending on the capabilities
76 * of the device-driver, different interfaces are registered.
77 *
78 * Minors can be accessed via dev->$minor_name. This pointer is either
79 * NULL or a valid drm_minor pointer and stays valid as long as the device is
80 * valid. This means, DRM minors have the same life-time as the underlying
81 * device. However, this doesn't mean that the minor is active. Minors are
82 * registered and unregistered dynamically according to device-state.
83 */
84
drm_minor_get_slot(struct drm_device * dev,unsigned int type)85 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev,
86 unsigned int type)
87 {
88 switch (type) {
89 case DRM_MINOR_PRIMARY:
90 return &dev->primary;
91 case DRM_MINOR_RENDER:
92 return &dev->render;
93 default:
94 BUG();
95 }
96 }
97
drm_minor_alloc_release(struct drm_device * dev,void * data)98 static void drm_minor_alloc_release(struct drm_device *dev, void *data)
99 {
100 struct drm_minor *minor = data;
101 unsigned long flags;
102
103 WARN_ON(dev != minor->dev);
104
105 put_device(minor->kdev);
106
107 spin_lock_irqsave(&drm_minor_lock, flags);
108 idr_remove(&drm_minors_idr, minor->index);
109 spin_unlock_irqrestore(&drm_minor_lock, flags);
110 }
111
drm_minor_alloc(struct drm_device * dev,unsigned int type)112 static int drm_minor_alloc(struct drm_device *dev, unsigned int type)
113 {
114 struct drm_minor *minor;
115 unsigned long flags;
116 int r;
117
118 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL);
119 if (!minor)
120 return -ENOMEM;
121
122 minor->type = type;
123 minor->dev = dev;
124
125 idr_preload(GFP_KERNEL);
126 spin_lock_irqsave(&drm_minor_lock, flags);
127 r = idr_alloc(&drm_minors_idr,
128 NULL,
129 64 * type,
130 64 * (type + 1),
131 GFP_NOWAIT);
132 spin_unlock_irqrestore(&drm_minor_lock, flags);
133 idr_preload_end();
134
135 if (r < 0)
136 return r;
137
138 minor->index = r;
139
140 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor);
141 if (r)
142 return r;
143
144 minor->kdev = drm_sysfs_minor_alloc(minor);
145 if (IS_ERR(minor->kdev))
146 return PTR_ERR(minor->kdev);
147
148 *drm_minor_get_slot(dev, type) = minor;
149 return 0;
150 }
151
drm_minor_register(struct drm_device * dev,unsigned int type)152 static int drm_minor_register(struct drm_device *dev, unsigned int type)
153 {
154 struct drm_minor *minor;
155 unsigned long flags;
156 int ret;
157
158 DRM_DEBUG("\n");
159
160 minor = *drm_minor_get_slot(dev, type);
161 if (!minor)
162 return 0;
163
164 ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root);
165 if (ret) {
166 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n");
167 goto err_debugfs;
168 }
169
170 ret = device_add(minor->kdev);
171 if (ret)
172 goto err_debugfs;
173
174 /* replace NULL with @minor so lookups will succeed from now on */
175 spin_lock_irqsave(&drm_minor_lock, flags);
176 idr_replace(&drm_minors_idr, minor, minor->index);
177 spin_unlock_irqrestore(&drm_minor_lock, flags);
178
179 DRM_DEBUG("new minor registered %d\n", minor->index);
180 return 0;
181
182 err_debugfs:
183 drm_debugfs_cleanup(minor);
184 return ret;
185 }
186
drm_minor_unregister(struct drm_device * dev,unsigned int type)187 static void drm_minor_unregister(struct drm_device *dev, unsigned int type)
188 {
189 struct drm_minor *minor;
190 unsigned long flags;
191
192 minor = *drm_minor_get_slot(dev, type);
193 if (!minor || !device_is_registered(minor->kdev))
194 return;
195
196 /* replace @minor with NULL so lookups will fail from now on */
197 spin_lock_irqsave(&drm_minor_lock, flags);
198 idr_replace(&drm_minors_idr, NULL, minor->index);
199 spin_unlock_irqrestore(&drm_minor_lock, flags);
200
201 device_del(minor->kdev);
202 dev_set_drvdata(minor->kdev, NULL); /* safety belt */
203 drm_debugfs_cleanup(minor);
204 }
205
206 /*
207 * Looks up the given minor-ID and returns the respective DRM-minor object. The
208 * refence-count of the underlying device is increased so you must release this
209 * object with drm_minor_release().
210 *
211 * As long as you hold this minor, it is guaranteed that the object and the
212 * minor->dev pointer will stay valid! However, the device may get unplugged and
213 * unregistered while you hold the minor.
214 */
drm_minor_acquire(unsigned int minor_id)215 struct drm_minor *drm_minor_acquire(unsigned int minor_id)
216 {
217 struct drm_minor *minor;
218 unsigned long flags;
219
220 spin_lock_irqsave(&drm_minor_lock, flags);
221 minor = idr_find(&drm_minors_idr, minor_id);
222 if (minor)
223 drm_dev_get(minor->dev);
224 spin_unlock_irqrestore(&drm_minor_lock, flags);
225
226 if (!minor) {
227 return ERR_PTR(-ENODEV);
228 } else if (drm_dev_is_unplugged(minor->dev)) {
229 drm_dev_put(minor->dev);
230 return ERR_PTR(-ENODEV);
231 }
232
233 return minor;
234 }
235
drm_minor_release(struct drm_minor * minor)236 void drm_minor_release(struct drm_minor *minor)
237 {
238 drm_dev_put(minor->dev);
239 }
240
241 /**
242 * DOC: driver instance overview
243 *
244 * A device instance for a drm driver is represented by &struct drm_device. This
245 * is allocated and initialized with devm_drm_dev_alloc(), usually from
246 * bus-specific ->probe() callbacks implemented by the driver. The driver then
247 * needs to initialize all the various subsystems for the drm device like memory
248 * management, vblank handling, modesetting support and initial output
249 * configuration plus obviously initialize all the corresponding hardware bits.
250 * Finally when everything is up and running and ready for userspace the device
251 * instance can be published using drm_dev_register().
252 *
253 * There is also deprecated support for initializing device instances using
254 * bus-specific helpers and the &drm_driver.load callback. But due to
255 * backwards-compatibility needs the device instance have to be published too
256 * early, which requires unpretty global locking to make safe and is therefore
257 * only support for existing drivers not yet converted to the new scheme.
258 *
259 * When cleaning up a device instance everything needs to be done in reverse:
260 * First unpublish the device instance with drm_dev_unregister(). Then clean up
261 * any other resources allocated at device initialization and drop the driver's
262 * reference to &drm_device using drm_dev_put().
263 *
264 * Note that any allocation or resource which is visible to userspace must be
265 * released only when the final drm_dev_put() is called, and not when the
266 * driver is unbound from the underlying physical struct &device. Best to use
267 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and
268 * related functions.
269 *
270 * devres managed resources like devm_kmalloc() can only be used for resources
271 * directly related to the underlying hardware device, and only used in code
272 * paths fully protected by drm_dev_enter() and drm_dev_exit().
273 *
274 * Display driver example
275 * ~~~~~~~~~~~~~~~~~~~~~~
276 *
277 * The following example shows a typical structure of a DRM display driver.
278 * The example focus on the probe() function and the other functions that is
279 * almost always present and serves as a demonstration of devm_drm_dev_alloc().
280 *
281 * .. code-block:: c
282 *
283 * struct driver_device {
284 * struct drm_device drm;
285 * void *userspace_facing;
286 * struct clk *pclk;
287 * };
288 *
289 * static const struct drm_driver driver_drm_driver = {
290 * [...]
291 * };
292 *
293 * static int driver_probe(struct platform_device *pdev)
294 * {
295 * struct driver_device *priv;
296 * struct drm_device *drm;
297 * int ret;
298 *
299 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver,
300 * struct driver_device, drm);
301 * if (IS_ERR(priv))
302 * return PTR_ERR(priv);
303 * drm = &priv->drm;
304 *
305 * ret = drmm_mode_config_init(drm);
306 * if (ret)
307 * return ret;
308 *
309 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL);
310 * if (!priv->userspace_facing)
311 * return -ENOMEM;
312 *
313 * priv->pclk = devm_clk_get(dev, "PCLK");
314 * if (IS_ERR(priv->pclk))
315 * return PTR_ERR(priv->pclk);
316 *
317 * // Further setup, display pipeline etc
318 *
319 * platform_set_drvdata(pdev, drm);
320 *
321 * drm_mode_config_reset(drm);
322 *
323 * ret = drm_dev_register(drm);
324 * if (ret)
325 * return ret;
326 *
327 * drm_fbdev_generic_setup(drm, 32);
328 *
329 * return 0;
330 * }
331 *
332 * // This function is called before the devm_ resources are released
333 * static int driver_remove(struct platform_device *pdev)
334 * {
335 * struct drm_device *drm = platform_get_drvdata(pdev);
336 *
337 * drm_dev_unregister(drm);
338 * drm_atomic_helper_shutdown(drm)
339 *
340 * return 0;
341 * }
342 *
343 * // This function is called on kernel restart and shutdown
344 * static void driver_shutdown(struct platform_device *pdev)
345 * {
346 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev));
347 * }
348 *
349 * static int __maybe_unused driver_pm_suspend(struct device *dev)
350 * {
351 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev));
352 * }
353 *
354 * static int __maybe_unused driver_pm_resume(struct device *dev)
355 * {
356 * drm_mode_config_helper_resume(dev_get_drvdata(dev));
357 *
358 * return 0;
359 * }
360 *
361 * static const struct dev_pm_ops driver_pm_ops = {
362 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume)
363 * };
364 *
365 * static struct platform_driver driver_driver = {
366 * .driver = {
367 * [...]
368 * .pm = &driver_pm_ops,
369 * },
370 * .probe = driver_probe,
371 * .remove = driver_remove,
372 * .shutdown = driver_shutdown,
373 * };
374 * module_platform_driver(driver_driver);
375 *
376 * Drivers that want to support device unplugging (USB, DT overlay unload) should
377 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect
378 * regions that is accessing device resources to prevent use after they're
379 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one
380 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before
381 * drm_atomic_helper_shutdown() is called. This means that if the disable code
382 * paths are protected, they will not run on regular driver module unload,
383 * possibly leaving the hardware enabled.
384 */
385
386 /**
387 * drm_put_dev - Unregister and release a DRM device
388 * @dev: DRM device
389 *
390 * Called at module unload time or when a PCI device is unplugged.
391 *
392 * Cleans up all DRM device, calling drm_lastclose().
393 *
394 * Note: Use of this function is deprecated. It will eventually go away
395 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly
396 * instead to make sure that the device isn't userspace accessible any more
397 * while teardown is in progress, ensuring that userspace can't access an
398 * inconsistent state.
399 */
drm_put_dev(struct drm_device * dev)400 void drm_put_dev(struct drm_device *dev)
401 {
402 DRM_DEBUG("\n");
403
404 if (!dev) {
405 DRM_ERROR("cleanup called no dev\n");
406 return;
407 }
408
409 drm_dev_unregister(dev);
410 drm_dev_put(dev);
411 }
412 EXPORT_SYMBOL(drm_put_dev);
413
414 /**
415 * drm_dev_enter - Enter device critical section
416 * @dev: DRM device
417 * @idx: Pointer to index that will be passed to the matching drm_dev_exit()
418 *
419 * This function marks and protects the beginning of a section that should not
420 * be entered after the device has been unplugged. The section end is marked
421 * with drm_dev_exit(). Calls to this function can be nested.
422 *
423 * Returns:
424 * True if it is OK to enter the section, false otherwise.
425 */
drm_dev_enter(struct drm_device * dev,int * idx)426 bool drm_dev_enter(struct drm_device *dev, int *idx)
427 {
428 *idx = srcu_read_lock(&drm_unplug_srcu);
429
430 if (dev->unplugged) {
431 srcu_read_unlock(&drm_unplug_srcu, *idx);
432 return false;
433 }
434
435 return true;
436 }
437 EXPORT_SYMBOL(drm_dev_enter);
438
439 /**
440 * drm_dev_exit - Exit device critical section
441 * @idx: index returned from drm_dev_enter()
442 *
443 * This function marks the end of a section that should not be entered after
444 * the device has been unplugged.
445 */
drm_dev_exit(int idx)446 void drm_dev_exit(int idx)
447 {
448 srcu_read_unlock(&drm_unplug_srcu, idx);
449 }
450 EXPORT_SYMBOL(drm_dev_exit);
451
452 /**
453 * drm_dev_unplug - unplug a DRM device
454 * @dev: DRM device
455 *
456 * This unplugs a hotpluggable DRM device, which makes it inaccessible to
457 * userspace operations. Entry-points can use drm_dev_enter() and
458 * drm_dev_exit() to protect device resources in a race free manner. This
459 * essentially unregisters the device like drm_dev_unregister(), but can be
460 * called while there are still open users of @dev.
461 */
drm_dev_unplug(struct drm_device * dev)462 void drm_dev_unplug(struct drm_device *dev)
463 {
464 /*
465 * After synchronizing any critical read section is guaranteed to see
466 * the new value of ->unplugged, and any critical section which might
467 * still have seen the old value of ->unplugged is guaranteed to have
468 * finished.
469 */
470 dev->unplugged = true;
471 synchronize_srcu(&drm_unplug_srcu);
472
473 drm_dev_unregister(dev);
474
475 /* Clear all CPU mappings pointing to this device */
476 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1);
477 }
478 EXPORT_SYMBOL(drm_dev_unplug);
479
480 /*
481 * DRM internal mount
482 * We want to be able to allocate our own "struct address_space" to control
483 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow
484 * stand-alone address_space objects, so we need an underlying inode. As there
485 * is no way to allocate an independent inode easily, we need a fake internal
486 * VFS mount-point.
487 *
488 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free()
489 * frees it again. You are allowed to use iget() and iput() to get references to
490 * the inode. But each drm_fs_inode_new() call must be paired with exactly one
491 * drm_fs_inode_free() call (which does not have to be the last iput()).
492 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it
493 * between multiple inode-users. You could, technically, call
494 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an
495 * iput(), but this way you'd end up with a new vfsmount for each inode.
496 */
497
498 static int drm_fs_cnt;
499 static struct vfsmount *drm_fs_mnt;
500
drm_fs_init_fs_context(struct fs_context * fc)501 static int drm_fs_init_fs_context(struct fs_context *fc)
502 {
503 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM;
504 }
505
506 static struct file_system_type drm_fs_type = {
507 .name = "drm",
508 .owner = THIS_MODULE,
509 .init_fs_context = drm_fs_init_fs_context,
510 .kill_sb = kill_anon_super,
511 };
512
drm_fs_inode_new(void)513 static struct inode *drm_fs_inode_new(void)
514 {
515 struct inode *inode;
516 int r;
517
518 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt);
519 if (r < 0) {
520 DRM_ERROR("Cannot mount pseudo fs: %d\n", r);
521 return ERR_PTR(r);
522 }
523
524 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb);
525 if (IS_ERR(inode))
526 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
527
528 return inode;
529 }
530
drm_fs_inode_free(struct inode * inode)531 static void drm_fs_inode_free(struct inode *inode)
532 {
533 if (inode) {
534 iput(inode);
535 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt);
536 }
537 }
538
539 /**
540 * DOC: component helper usage recommendations
541 *
542 * DRM drivers that drive hardware where a logical device consists of a pile of
543 * independent hardware blocks are recommended to use the :ref:`component helper
544 * library<component>`. For consistency and better options for code reuse the
545 * following guidelines apply:
546 *
547 * - The entire device initialization procedure should be run from the
548 * &component_master_ops.master_bind callback, starting with
549 * devm_drm_dev_alloc(), then binding all components with
550 * component_bind_all() and finishing with drm_dev_register().
551 *
552 * - The opaque pointer passed to all components through component_bind_all()
553 * should point at &struct drm_device of the device instance, not some driver
554 * specific private structure.
555 *
556 * - The component helper fills the niche where further standardization of
557 * interfaces is not practical. When there already is, or will be, a
558 * standardized interface like &drm_bridge or &drm_panel, providing its own
559 * functions to find such components at driver load time, like
560 * drm_of_find_panel_or_bridge(), then the component helper should not be
561 * used.
562 */
563
drm_dev_init_release(struct drm_device * dev,void * res)564 static void drm_dev_init_release(struct drm_device *dev, void *res)
565 {
566 drm_legacy_ctxbitmap_cleanup(dev);
567 drm_legacy_remove_map_hash(dev);
568 drm_fs_inode_free(dev->anon_inode);
569
570 put_device(dev->dev);
571 /* Prevent use-after-free in drm_managed_release when debugging is
572 * enabled. Slightly awkward, but can't really be helped. */
573 dev->dev = NULL;
574 mutex_destroy(&dev->master_mutex);
575 mutex_destroy(&dev->clientlist_mutex);
576 mutex_destroy(&dev->filelist_mutex);
577 mutex_destroy(&dev->struct_mutex);
578 drm_legacy_destroy_members(dev);
579 }
580
drm_dev_init(struct drm_device * dev,const struct drm_driver * driver,struct device * parent)581 static int drm_dev_init(struct drm_device *dev,
582 const struct drm_driver *driver,
583 struct device *parent)
584 {
585 struct inode *inode;
586 int ret;
587
588 if (!drm_core_init_complete) {
589 DRM_ERROR("DRM core is not initialized\n");
590 return -ENODEV;
591 }
592
593 if (WARN_ON(!parent))
594 return -EINVAL;
595
596 kref_init(&dev->ref);
597 dev->dev = get_device(parent);
598 dev->driver = driver;
599
600 INIT_LIST_HEAD(&dev->managed.resources);
601 spin_lock_init(&dev->managed.lock);
602
603 /* no per-device feature limits by default */
604 dev->driver_features = ~0u;
605
606 drm_legacy_init_members(dev);
607 INIT_LIST_HEAD(&dev->filelist);
608 INIT_LIST_HEAD(&dev->filelist_internal);
609 INIT_LIST_HEAD(&dev->clientlist);
610 INIT_LIST_HEAD(&dev->vblank_event_list);
611
612 spin_lock_init(&dev->event_lock);
613 mutex_init(&dev->struct_mutex);
614 mutex_init(&dev->filelist_mutex);
615 mutex_init(&dev->clientlist_mutex);
616 mutex_init(&dev->master_mutex);
617
618 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL);
619 if (ret)
620 return ret;
621
622 inode = drm_fs_inode_new();
623 if (IS_ERR(inode)) {
624 ret = PTR_ERR(inode);
625 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret);
626 goto err;
627 }
628
629 dev->anon_inode = inode;
630
631 if (drm_core_check_feature(dev, DRIVER_RENDER)) {
632 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER);
633 if (ret)
634 goto err;
635 }
636
637 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY);
638 if (ret)
639 goto err;
640
641 ret = drm_legacy_create_map_hash(dev);
642 if (ret)
643 goto err;
644
645 drm_legacy_ctxbitmap_init(dev);
646
647 if (drm_core_check_feature(dev, DRIVER_GEM)) {
648 ret = drm_gem_init(dev);
649 if (ret) {
650 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n");
651 goto err;
652 }
653 }
654
655 ret = drm_dev_set_unique(dev, dev_name(parent));
656 if (ret)
657 goto err;
658
659 return 0;
660
661 err:
662 drm_managed_release(dev);
663
664 return ret;
665 }
666
devm_drm_dev_init_release(void * data)667 static void devm_drm_dev_init_release(void *data)
668 {
669 drm_dev_put(data);
670 }
671
devm_drm_dev_init(struct device * parent,struct drm_device * dev,const struct drm_driver * driver)672 static int devm_drm_dev_init(struct device *parent,
673 struct drm_device *dev,
674 const struct drm_driver *driver)
675 {
676 int ret;
677
678 ret = drm_dev_init(dev, driver, parent);
679 if (ret)
680 return ret;
681
682 return devm_add_action_or_reset(parent,
683 devm_drm_dev_init_release, dev);
684 }
685
__devm_drm_dev_alloc(struct device * parent,const struct drm_driver * driver,size_t size,size_t offset)686 void *__devm_drm_dev_alloc(struct device *parent,
687 const struct drm_driver *driver,
688 size_t size, size_t offset)
689 {
690 void *container;
691 struct drm_device *drm;
692 int ret;
693
694 container = kzalloc(size, GFP_KERNEL);
695 if (!container)
696 return ERR_PTR(-ENOMEM);
697
698 drm = container + offset;
699 ret = devm_drm_dev_init(parent, drm, driver);
700 if (ret) {
701 kfree(container);
702 return ERR_PTR(ret);
703 }
704 drmm_add_final_kfree(drm, container);
705
706 return container;
707 }
708 EXPORT_SYMBOL(__devm_drm_dev_alloc);
709
710 /**
711 * drm_dev_alloc - Allocate new DRM device
712 * @driver: DRM driver to allocate device for
713 * @parent: Parent device object
714 *
715 * This is the deprecated version of devm_drm_dev_alloc(), which does not support
716 * subclassing through embedding the struct &drm_device in a driver private
717 * structure, and which does not support automatic cleanup through devres.
718 *
719 * RETURNS:
720 * Pointer to new DRM device, or ERR_PTR on failure.
721 */
drm_dev_alloc(const struct drm_driver * driver,struct device * parent)722 struct drm_device *drm_dev_alloc(const struct drm_driver *driver,
723 struct device *parent)
724 {
725 struct drm_device *dev;
726 int ret;
727
728 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
729 if (!dev)
730 return ERR_PTR(-ENOMEM);
731
732 ret = drm_dev_init(dev, driver, parent);
733 if (ret) {
734 kfree(dev);
735 return ERR_PTR(ret);
736 }
737
738 drmm_add_final_kfree(dev, dev);
739
740 return dev;
741 }
742 EXPORT_SYMBOL(drm_dev_alloc);
743
drm_dev_release(struct kref * ref)744 static void drm_dev_release(struct kref *ref)
745 {
746 struct drm_device *dev = container_of(ref, struct drm_device, ref);
747
748 if (dev->driver->release)
749 dev->driver->release(dev);
750
751 drm_managed_release(dev);
752
753 kfree(dev->managed.final_kfree);
754 }
755
756 /**
757 * drm_dev_get - Take reference of a DRM device
758 * @dev: device to take reference of or NULL
759 *
760 * This increases the ref-count of @dev by one. You *must* already own a
761 * reference when calling this. Use drm_dev_put() to drop this reference
762 * again.
763 *
764 * This function never fails. However, this function does not provide *any*
765 * guarantee whether the device is alive or running. It only provides a
766 * reference to the object and the memory associated with it.
767 */
drm_dev_get(struct drm_device * dev)768 void drm_dev_get(struct drm_device *dev)
769 {
770 if (dev)
771 kref_get(&dev->ref);
772 }
773 EXPORT_SYMBOL(drm_dev_get);
774
775 /**
776 * drm_dev_put - Drop reference of a DRM device
777 * @dev: device to drop reference of or NULL
778 *
779 * This decreases the ref-count of @dev by one. The device is destroyed if the
780 * ref-count drops to zero.
781 */
drm_dev_put(struct drm_device * dev)782 void drm_dev_put(struct drm_device *dev)
783 {
784 if (dev)
785 kref_put(&dev->ref, drm_dev_release);
786 }
787 EXPORT_SYMBOL(drm_dev_put);
788
create_compat_control_link(struct drm_device * dev)789 static int create_compat_control_link(struct drm_device *dev)
790 {
791 struct drm_minor *minor;
792 char *name;
793 int ret;
794
795 if (!drm_core_check_feature(dev, DRIVER_MODESET))
796 return 0;
797
798 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
799 if (!minor)
800 return 0;
801
802 /*
803 * Some existing userspace out there uses the existing of the controlD*
804 * sysfs files to figure out whether it's a modeset driver. It only does
805 * readdir, hence a symlink is sufficient (and the least confusing
806 * option). Otherwise controlD* is entirely unused.
807 *
808 * Old controlD chardev have been allocated in the range
809 * 64-127.
810 */
811 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
812 if (!name)
813 return -ENOMEM;
814
815 ret = sysfs_create_link(minor->kdev->kobj.parent,
816 &minor->kdev->kobj,
817 name);
818
819 kfree(name);
820
821 return ret;
822 }
823
remove_compat_control_link(struct drm_device * dev)824 static void remove_compat_control_link(struct drm_device *dev)
825 {
826 struct drm_minor *minor;
827 char *name;
828
829 if (!drm_core_check_feature(dev, DRIVER_MODESET))
830 return;
831
832 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY);
833 if (!minor)
834 return;
835
836 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64);
837 if (!name)
838 return;
839
840 sysfs_remove_link(minor->kdev->kobj.parent, name);
841
842 kfree(name);
843 }
844
845 /**
846 * drm_dev_register - Register DRM device
847 * @dev: Device to register
848 * @flags: Flags passed to the driver's .load() function
849 *
850 * Register the DRM device @dev with the system, advertise device to user-space
851 * and start normal device operation. @dev must be initialized via drm_dev_init()
852 * previously.
853 *
854 * Never call this twice on any device!
855 *
856 * NOTE: To ensure backward compatibility with existing drivers method this
857 * function calls the &drm_driver.load method after registering the device
858 * nodes, creating race conditions. Usage of the &drm_driver.load methods is
859 * therefore deprecated, drivers must perform all initialization before calling
860 * drm_dev_register().
861 *
862 * RETURNS:
863 * 0 on success, negative error code on failure.
864 */
drm_dev_register(struct drm_device * dev,unsigned long flags)865 int drm_dev_register(struct drm_device *dev, unsigned long flags)
866 {
867 const struct drm_driver *driver = dev->driver;
868 int ret;
869
870 if (!driver->load)
871 drm_mode_config_validate(dev);
872
873 WARN_ON(!dev->managed.final_kfree);
874
875 if (drm_dev_needs_global_mutex(dev))
876 mutex_lock(&drm_global_mutex);
877
878 ret = drm_minor_register(dev, DRM_MINOR_RENDER);
879 if (ret)
880 goto err_minors;
881
882 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY);
883 if (ret)
884 goto err_minors;
885
886 ret = create_compat_control_link(dev);
887 if (ret)
888 goto err_minors;
889
890 dev->registered = true;
891
892 if (dev->driver->load) {
893 ret = dev->driver->load(dev, flags);
894 if (ret)
895 goto err_minors;
896 }
897
898 if (drm_core_check_feature(dev, DRIVER_MODESET)) {
899 ret = drm_modeset_register_all(dev);
900 if (ret)
901 goto err_unload;
902 }
903
904 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
905 driver->name, driver->major, driver->minor,
906 driver->patchlevel, driver->date,
907 dev->dev ? dev_name(dev->dev) : "virtual device",
908 dev->primary->index);
909
910 goto out_unlock;
911
912 err_unload:
913 if (dev->driver->unload)
914 dev->driver->unload(dev);
915 err_minors:
916 remove_compat_control_link(dev);
917 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
918 drm_minor_unregister(dev, DRM_MINOR_RENDER);
919 out_unlock:
920 if (drm_dev_needs_global_mutex(dev))
921 mutex_unlock(&drm_global_mutex);
922 return ret;
923 }
924 EXPORT_SYMBOL(drm_dev_register);
925
926 /**
927 * drm_dev_unregister - Unregister DRM device
928 * @dev: Device to unregister
929 *
930 * Unregister the DRM device from the system. This does the reverse of
931 * drm_dev_register() but does not deallocate the device. The caller must call
932 * drm_dev_put() to drop their final reference.
933 *
934 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(),
935 * which can be called while there are still open users of @dev.
936 *
937 * This should be called first in the device teardown code to make sure
938 * userspace can't access the device instance any more.
939 */
drm_dev_unregister(struct drm_device * dev)940 void drm_dev_unregister(struct drm_device *dev)
941 {
942 if (drm_core_check_feature(dev, DRIVER_LEGACY))
943 drm_lastclose(dev);
944
945 dev->registered = false;
946
947 drm_client_dev_unregister(dev);
948
949 if (drm_core_check_feature(dev, DRIVER_MODESET))
950 drm_modeset_unregister_all(dev);
951
952 if (dev->driver->unload)
953 dev->driver->unload(dev);
954
955 drm_legacy_pci_agp_destroy(dev);
956 drm_legacy_rmmaps(dev);
957
958 remove_compat_control_link(dev);
959 drm_minor_unregister(dev, DRM_MINOR_PRIMARY);
960 drm_minor_unregister(dev, DRM_MINOR_RENDER);
961 }
962 EXPORT_SYMBOL(drm_dev_unregister);
963
964 /**
965 * drm_dev_set_unique - Set the unique name of a DRM device
966 * @dev: device of which to set the unique name
967 * @name: unique name
968 *
969 * Sets the unique name of a DRM device using the specified string. This is
970 * already done by drm_dev_init(), drivers should only override the default
971 * unique name for backwards compatibility reasons.
972 *
973 * Return: 0 on success or a negative error code on failure.
974 */
drm_dev_set_unique(struct drm_device * dev,const char * name)975 int drm_dev_set_unique(struct drm_device *dev, const char *name)
976 {
977 drmm_kfree(dev, dev->unique);
978 dev->unique = drmm_kstrdup(dev, name, GFP_KERNEL);
979
980 return dev->unique ? 0 : -ENOMEM;
981 }
982 EXPORT_SYMBOL(drm_dev_set_unique);
983
984 /*
985 * DRM Core
986 * The DRM core module initializes all global DRM objects and makes them
987 * available to drivers. Once setup, drivers can probe their respective
988 * devices.
989 * Currently, core management includes:
990 * - The "DRM-Global" key/value database
991 * - Global ID management for connectors
992 * - DRM major number allocation
993 * - DRM minor management
994 * - DRM sysfs class
995 * - DRM debugfs root
996 *
997 * Furthermore, the DRM core provides dynamic char-dev lookups. For each
998 * interface registered on a DRM device, you can request minor numbers from DRM
999 * core. DRM core takes care of major-number management and char-dev
1000 * registration. A stub ->open() callback forwards any open() requests to the
1001 * registered minor.
1002 */
1003
drm_stub_open(struct inode * inode,struct file * filp)1004 static int drm_stub_open(struct inode *inode, struct file *filp)
1005 {
1006 const struct file_operations *new_fops;
1007 struct drm_minor *minor;
1008 int err;
1009
1010 DRM_DEBUG("\n");
1011
1012 minor = drm_minor_acquire(iminor(inode));
1013 if (IS_ERR(minor))
1014 return PTR_ERR(minor);
1015
1016 new_fops = fops_get(minor->dev->driver->fops);
1017 if (!new_fops) {
1018 err = -ENODEV;
1019 goto out;
1020 }
1021
1022 replace_fops(filp, new_fops);
1023 if (filp->f_op->open)
1024 err = filp->f_op->open(inode, filp);
1025 else
1026 err = 0;
1027
1028 out:
1029 drm_minor_release(minor);
1030
1031 return err;
1032 }
1033
1034 static const struct file_operations drm_stub_fops = {
1035 .owner = THIS_MODULE,
1036 .open = drm_stub_open,
1037 .llseek = noop_llseek,
1038 };
1039
drm_core_exit(void)1040 static void drm_core_exit(void)
1041 {
1042 drm_privacy_screen_lookup_exit();
1043 unregister_chrdev(DRM_MAJOR, "drm");
1044 debugfs_remove(drm_debugfs_root);
1045 drm_sysfs_destroy();
1046 idr_destroy(&drm_minors_idr);
1047 drm_connector_ida_destroy();
1048 }
1049
drm_core_init(void)1050 static int __init drm_core_init(void)
1051 {
1052 int ret;
1053
1054 drm_connector_ida_init();
1055 idr_init(&drm_minors_idr);
1056 drm_memcpy_init_early();
1057
1058 ret = drm_sysfs_init();
1059 if (ret < 0) {
1060 DRM_ERROR("Cannot create DRM class: %d\n", ret);
1061 goto error;
1062 }
1063
1064 drm_debugfs_root = debugfs_create_dir("dri", NULL);
1065
1066 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops);
1067 if (ret < 0)
1068 goto error;
1069
1070 drm_privacy_screen_lookup_init();
1071
1072 drm_core_init_complete = true;
1073
1074 DRM_DEBUG("Initialized\n");
1075 return 0;
1076
1077 error:
1078 drm_core_exit();
1079 return ret;
1080 }
1081
1082 module_init(drm_core_init);
1083 module_exit(drm_core_exit);
1084