• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85 
86 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
93 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104 
105 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109 
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 
113 #define REXMIT_NONE	0 /* no loss recovery to do */
114 #define REXMIT_LOST	1 /* retransmit packets marked lost */
115 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116 
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 			     void (*cad)(struct sock *sk, u32 ack_seq))
122 {
123 	icsk->icsk_clean_acked = cad;
124 	static_branch_deferred_inc(&clean_acked_data_enabled);
125 }
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 
clean_acked_data_disable(struct inet_connection_sock * icsk)128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 {
130 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 	icsk->icsk_clean_acked = NULL;
132 }
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 
clean_acked_data_flush(void)135 void clean_acked_data_flush(void)
136 {
137 	static_key_deferred_flush(&clean_acked_data_enabled);
138 }
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140 #endif
141 
142 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 {
145 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 	struct bpf_sock_ops_kern sock_ops;
151 
152 	if (likely(!unknown_opt && !parse_all_opt))
153 		return;
154 
155 	/* The skb will be handled in the
156 	 * bpf_skops_established() or
157 	 * bpf_skops_write_hdr_opt().
158 	 */
159 	switch (sk->sk_state) {
160 	case TCP_SYN_RECV:
161 	case TCP_SYN_SENT:
162 	case TCP_LISTEN:
163 		return;
164 	}
165 
166 	sock_owned_by_me(sk);
167 
168 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 	sock_ops.is_fullsock = 1;
171 	sock_ops.sk = sk;
172 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 
174 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175 }
176 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)177 static void bpf_skops_established(struct sock *sk, int bpf_op,
178 				  struct sk_buff *skb)
179 {
180 	struct bpf_sock_ops_kern sock_ops;
181 
182 	sock_owned_by_me(sk);
183 
184 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 	sock_ops.op = bpf_op;
186 	sock_ops.is_fullsock = 1;
187 	sock_ops.sk = sk;
188 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 	if (skb)
190 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 
192 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193 }
194 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196 {
197 }
198 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)199 static void bpf_skops_established(struct sock *sk, int bpf_op,
200 				  struct sk_buff *skb)
201 {
202 }
203 #endif
204 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206 			     unsigned int len)
207 {
208 	static bool __once __read_mostly;
209 
210 	if (!__once) {
211 		struct net_device *dev;
212 
213 		__once = true;
214 
215 		rcu_read_lock();
216 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 		if (!dev || len >= dev->mtu)
218 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 				dev ? dev->name : "Unknown driver");
220 		rcu_read_unlock();
221 	}
222 }
223 
224 /* Adapt the MSS value used to make delayed ack decision to the
225  * real world.
226  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 {
229 	struct inet_connection_sock *icsk = inet_csk(sk);
230 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231 	unsigned int len;
232 
233 	icsk->icsk_ack.last_seg_size = 0;
234 
235 	/* skb->len may jitter because of SACKs, even if peer
236 	 * sends good full-sized frames.
237 	 */
238 	len = skb_shinfo(skb)->gso_size ? : skb->len;
239 	if (len >= icsk->icsk_ack.rcv_mss) {
240 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 					       tcp_sk(sk)->advmss);
242 		/* Account for possibly-removed options */
243 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
244 				   MAX_TCP_OPTION_SPACE))
245 			tcp_gro_dev_warn(sk, skb, len);
246 		/* If the skb has a len of exactly 1*MSS and has the PSH bit
247 		 * set then it is likely the end of an application write. So
248 		 * more data may not be arriving soon, and yet the data sender
249 		 * may be waiting for an ACK if cwnd-bound or using TX zero
250 		 * copy. So we set ICSK_ACK_PUSHED here so that
251 		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
252 		 * reads all of the data and is not ping-pong. If len > MSS
253 		 * then this logic does not matter (and does not hurt) because
254 		 * tcp_cleanup_rbuf() will always ACK immediately if the app
255 		 * reads data and there is more than an MSS of unACKed data.
256 		 */
257 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
258 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
259 	} else {
260 		/* Otherwise, we make more careful check taking into account,
261 		 * that SACKs block is variable.
262 		 *
263 		 * "len" is invariant segment length, including TCP header.
264 		 */
265 		len += skb->data - skb_transport_header(skb);
266 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
267 		    /* If PSH is not set, packet should be
268 		     * full sized, provided peer TCP is not badly broken.
269 		     * This observation (if it is correct 8)) allows
270 		     * to handle super-low mtu links fairly.
271 		     */
272 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
273 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
274 			/* Subtract also invariant (if peer is RFC compliant),
275 			 * tcp header plus fixed timestamp option length.
276 			 * Resulting "len" is MSS free of SACK jitter.
277 			 */
278 			len -= tcp_sk(sk)->tcp_header_len;
279 			icsk->icsk_ack.last_seg_size = len;
280 			if (len == lss) {
281 				icsk->icsk_ack.rcv_mss = len;
282 				return;
283 			}
284 		}
285 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
286 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
287 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
288 	}
289 }
290 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)291 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
292 {
293 	struct inet_connection_sock *icsk = inet_csk(sk);
294 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
295 
296 	if (quickacks == 0)
297 		quickacks = 2;
298 	quickacks = min(quickacks, max_quickacks);
299 	if (quickacks > icsk->icsk_ack.quick)
300 		icsk->icsk_ack.quick = quickacks;
301 }
302 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)303 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
304 {
305 	struct inet_connection_sock *icsk = inet_csk(sk);
306 
307 	tcp_incr_quickack(sk, max_quickacks);
308 	inet_csk_exit_pingpong_mode(sk);
309 	icsk->icsk_ack.ato = TCP_ATO_MIN;
310 }
311 
312 /* Send ACKs quickly, if "quick" count is not exhausted
313  * and the session is not interactive.
314  */
315 
tcp_in_quickack_mode(struct sock * sk)316 static bool tcp_in_quickack_mode(struct sock *sk)
317 {
318 	const struct inet_connection_sock *icsk = inet_csk(sk);
319 	const struct dst_entry *dst = __sk_dst_get(sk);
320 
321 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
322 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
323 }
324 
tcp_ecn_queue_cwr(struct tcp_sock * tp)325 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
326 {
327 	if (tp->ecn_flags & TCP_ECN_OK)
328 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
329 }
330 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)331 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
332 {
333 	if (tcp_hdr(skb)->cwr) {
334 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
335 
336 		/* If the sender is telling us it has entered CWR, then its
337 		 * cwnd may be very low (even just 1 packet), so we should ACK
338 		 * immediately.
339 		 */
340 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
341 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
342 	}
343 }
344 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)345 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
346 {
347 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
348 }
349 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)350 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
351 {
352 	struct tcp_sock *tp = tcp_sk(sk);
353 
354 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
355 	case INET_ECN_NOT_ECT:
356 		/* Funny extension: if ECT is not set on a segment,
357 		 * and we already seen ECT on a previous segment,
358 		 * it is probably a retransmit.
359 		 */
360 		if (tp->ecn_flags & TCP_ECN_SEEN)
361 			tcp_enter_quickack_mode(sk, 2);
362 		break;
363 	case INET_ECN_CE:
364 		if (tcp_ca_needs_ecn(sk))
365 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
366 
367 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
368 			/* Better not delay acks, sender can have a very low cwnd */
369 			tcp_enter_quickack_mode(sk, 2);
370 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
371 		}
372 		tp->ecn_flags |= TCP_ECN_SEEN;
373 		break;
374 	default:
375 		if (tcp_ca_needs_ecn(sk))
376 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
377 		tp->ecn_flags |= TCP_ECN_SEEN;
378 		break;
379 	}
380 }
381 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)382 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
383 {
384 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
385 		__tcp_ecn_check_ce(sk, skb);
386 }
387 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)388 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
389 {
390 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
391 		tp->ecn_flags &= ~TCP_ECN_OK;
392 }
393 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)394 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
395 {
396 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
397 		tp->ecn_flags &= ~TCP_ECN_OK;
398 }
399 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)400 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
401 {
402 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
403 		return true;
404 	return false;
405 }
406 
407 /* Buffer size and advertised window tuning.
408  *
409  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
410  */
411 
tcp_sndbuf_expand(struct sock * sk)412 static void tcp_sndbuf_expand(struct sock *sk)
413 {
414 	const struct tcp_sock *tp = tcp_sk(sk);
415 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
416 	int sndmem, per_mss;
417 	u32 nr_segs;
418 
419 	/* Worst case is non GSO/TSO : each frame consumes one skb
420 	 * and skb->head is kmalloced using power of two area of memory
421 	 */
422 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
423 		  MAX_TCP_HEADER +
424 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
425 
426 	per_mss = roundup_pow_of_two(per_mss) +
427 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
428 
429 	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
430 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
431 
432 	/* Fast Recovery (RFC 5681 3.2) :
433 	 * Cubic needs 1.7 factor, rounded to 2 to include
434 	 * extra cushion (application might react slowly to EPOLLOUT)
435 	 */
436 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
437 	sndmem *= nr_segs * per_mss;
438 
439 	if (sk->sk_sndbuf < sndmem)
440 		WRITE_ONCE(sk->sk_sndbuf,
441 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
442 }
443 
444 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
445  *
446  * All tcp_full_space() is split to two parts: "network" buffer, allocated
447  * forward and advertised in receiver window (tp->rcv_wnd) and
448  * "application buffer", required to isolate scheduling/application
449  * latencies from network.
450  * window_clamp is maximal advertised window. It can be less than
451  * tcp_full_space(), in this case tcp_full_space() - window_clamp
452  * is reserved for "application" buffer. The less window_clamp is
453  * the smoother our behaviour from viewpoint of network, but the lower
454  * throughput and the higher sensitivity of the connection to losses. 8)
455  *
456  * rcv_ssthresh is more strict window_clamp used at "slow start"
457  * phase to predict further behaviour of this connection.
458  * It is used for two goals:
459  * - to enforce header prediction at sender, even when application
460  *   requires some significant "application buffer". It is check #1.
461  * - to prevent pruning of receive queue because of misprediction
462  *   of receiver window. Check #2.
463  *
464  * The scheme does not work when sender sends good segments opening
465  * window and then starts to feed us spaghetti. But it should work
466  * in common situations. Otherwise, we have to rely on queue collapsing.
467  */
468 
469 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)470 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
471 			     unsigned int skbtruesize)
472 {
473 	struct tcp_sock *tp = tcp_sk(sk);
474 	/* Optimize this! */
475 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
476 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
477 
478 	while (tp->rcv_ssthresh <= window) {
479 		if (truesize <= skb->len)
480 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
481 
482 		truesize >>= 1;
483 		window >>= 1;
484 	}
485 	return 0;
486 }
487 
488 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
489  * can play nice with us, as sk_buff and skb->head might be either
490  * freed or shared with up to MAX_SKB_FRAGS segments.
491  * Only give a boost to drivers using page frag(s) to hold the frame(s),
492  * and if no payload was pulled in skb->head before reaching us.
493  */
truesize_adjust(bool adjust,const struct sk_buff * skb)494 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
495 {
496 	u32 truesize = skb->truesize;
497 
498 	if (adjust && !skb_headlen(skb)) {
499 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
500 		/* paranoid check, some drivers might be buggy */
501 		if (unlikely((int)truesize < (int)skb->len))
502 			truesize = skb->truesize;
503 	}
504 	return truesize;
505 }
506 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)507 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
508 			    bool adjust)
509 {
510 	struct tcp_sock *tp = tcp_sk(sk);
511 	int room;
512 
513 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
514 
515 	if (room <= 0)
516 		return;
517 
518 	/* Check #1 */
519 	if (!tcp_under_memory_pressure(sk)) {
520 		unsigned int truesize = truesize_adjust(adjust, skb);
521 		int incr;
522 
523 		/* Check #2. Increase window, if skb with such overhead
524 		 * will fit to rcvbuf in future.
525 		 */
526 		if (tcp_win_from_space(sk, truesize) <= skb->len)
527 			incr = 2 * tp->advmss;
528 		else
529 			incr = __tcp_grow_window(sk, skb, truesize);
530 
531 		if (incr) {
532 			incr = max_t(int, incr, 2 * skb->len);
533 			tp->rcv_ssthresh += min(room, incr);
534 			inet_csk(sk)->icsk_ack.quick |= 1;
535 		}
536 	} else {
537 		/* Under pressure:
538 		 * Adjust rcv_ssthresh according to reserved mem
539 		 */
540 		tcp_adjust_rcv_ssthresh(sk);
541 	}
542 }
543 
544 /* 3. Try to fixup all. It is made immediately after connection enters
545  *    established state.
546  */
tcp_init_buffer_space(struct sock * sk)547 static void tcp_init_buffer_space(struct sock *sk)
548 {
549 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
550 	struct tcp_sock *tp = tcp_sk(sk);
551 	int maxwin;
552 
553 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
554 		tcp_sndbuf_expand(sk);
555 
556 	tcp_mstamp_refresh(tp);
557 	tp->rcvq_space.time = tp->tcp_mstamp;
558 	tp->rcvq_space.seq = tp->copied_seq;
559 
560 	maxwin = tcp_full_space(sk);
561 
562 	if (tp->window_clamp >= maxwin) {
563 		tp->window_clamp = maxwin;
564 
565 		if (tcp_app_win && maxwin > 4 * tp->advmss)
566 			tp->window_clamp = max(maxwin -
567 					       (maxwin >> tcp_app_win),
568 					       4 * tp->advmss);
569 	}
570 
571 	/* Force reservation of one segment. */
572 	if (tcp_app_win &&
573 	    tp->window_clamp > 2 * tp->advmss &&
574 	    tp->window_clamp + tp->advmss > maxwin)
575 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
576 
577 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
578 	tp->snd_cwnd_stamp = tcp_jiffies32;
579 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
580 				    (u32)TCP_INIT_CWND * tp->advmss);
581 }
582 
583 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)584 static void tcp_clamp_window(struct sock *sk)
585 {
586 	struct tcp_sock *tp = tcp_sk(sk);
587 	struct inet_connection_sock *icsk = inet_csk(sk);
588 	struct net *net = sock_net(sk);
589 	int rmem2;
590 
591 	icsk->icsk_ack.quick = 0;
592 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
593 
594 	if (sk->sk_rcvbuf < rmem2 &&
595 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
596 	    !tcp_under_memory_pressure(sk) &&
597 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
598 		WRITE_ONCE(sk->sk_rcvbuf,
599 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
600 	}
601 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
602 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
603 }
604 
605 /* Initialize RCV_MSS value.
606  * RCV_MSS is an our guess about MSS used by the peer.
607  * We haven't any direct information about the MSS.
608  * It's better to underestimate the RCV_MSS rather than overestimate.
609  * Overestimations make us ACKing less frequently than needed.
610  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
611  */
tcp_initialize_rcv_mss(struct sock * sk)612 void tcp_initialize_rcv_mss(struct sock *sk)
613 {
614 	const struct tcp_sock *tp = tcp_sk(sk);
615 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
616 
617 	hint = min(hint, tp->rcv_wnd / 2);
618 	hint = min(hint, TCP_MSS_DEFAULT);
619 	hint = max(hint, TCP_MIN_MSS);
620 
621 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
622 }
623 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
624 
625 /* Receiver "autotuning" code.
626  *
627  * The algorithm for RTT estimation w/o timestamps is based on
628  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
629  * <https://public.lanl.gov/radiant/pubs.html#DRS>
630  *
631  * More detail on this code can be found at
632  * <http://staff.psc.edu/jheffner/>,
633  * though this reference is out of date.  A new paper
634  * is pending.
635  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)636 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
637 {
638 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
639 	long m = sample;
640 
641 	if (new_sample != 0) {
642 		/* If we sample in larger samples in the non-timestamp
643 		 * case, we could grossly overestimate the RTT especially
644 		 * with chatty applications or bulk transfer apps which
645 		 * are stalled on filesystem I/O.
646 		 *
647 		 * Also, since we are only going for a minimum in the
648 		 * non-timestamp case, we do not smooth things out
649 		 * else with timestamps disabled convergence takes too
650 		 * long.
651 		 */
652 		if (!win_dep) {
653 			m -= (new_sample >> 3);
654 			new_sample += m;
655 		} else {
656 			m <<= 3;
657 			if (m < new_sample)
658 				new_sample = m;
659 		}
660 	} else {
661 		/* No previous measure. */
662 		new_sample = m << 3;
663 	}
664 
665 	tp->rcv_rtt_est.rtt_us = new_sample;
666 }
667 
tcp_rcv_rtt_measure(struct tcp_sock * tp)668 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
669 {
670 	u32 delta_us;
671 
672 	if (tp->rcv_rtt_est.time == 0)
673 		goto new_measure;
674 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
675 		return;
676 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
677 	if (!delta_us)
678 		delta_us = 1;
679 	tcp_rcv_rtt_update(tp, delta_us, 1);
680 
681 new_measure:
682 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
683 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
684 }
685 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)686 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
687 					  const struct sk_buff *skb)
688 {
689 	struct tcp_sock *tp = tcp_sk(sk);
690 
691 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
692 		return;
693 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
694 
695 	if (TCP_SKB_CB(skb)->end_seq -
696 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
697 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
698 		u32 delta_us;
699 
700 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
701 			if (!delta)
702 				delta = 1;
703 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
704 			tcp_rcv_rtt_update(tp, delta_us, 0);
705 		}
706 	}
707 }
708 
709 /*
710  * This function should be called every time data is copied to user space.
711  * It calculates the appropriate TCP receive buffer space.
712  */
tcp_rcv_space_adjust(struct sock * sk)713 void tcp_rcv_space_adjust(struct sock *sk)
714 {
715 	struct tcp_sock *tp = tcp_sk(sk);
716 	u32 copied;
717 	int time;
718 
719 	trace_tcp_rcv_space_adjust(sk);
720 
721 	tcp_mstamp_refresh(tp);
722 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
723 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
724 		return;
725 
726 	/* Number of bytes copied to user in last RTT */
727 	copied = tp->copied_seq - tp->rcvq_space.seq;
728 	if (copied <= tp->rcvq_space.space)
729 		goto new_measure;
730 
731 	/* A bit of theory :
732 	 * copied = bytes received in previous RTT, our base window
733 	 * To cope with packet losses, we need a 2x factor
734 	 * To cope with slow start, and sender growing its cwin by 100 %
735 	 * every RTT, we need a 4x factor, because the ACK we are sending
736 	 * now is for the next RTT, not the current one :
737 	 * <prev RTT . ><current RTT .. ><next RTT .... >
738 	 */
739 
740 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
741 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
742 		int rcvmem, rcvbuf;
743 		u64 rcvwin, grow;
744 
745 		/* minimal window to cope with packet losses, assuming
746 		 * steady state. Add some cushion because of small variations.
747 		 */
748 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
749 
750 		/* Accommodate for sender rate increase (eg. slow start) */
751 		grow = rcvwin * (copied - tp->rcvq_space.space);
752 		do_div(grow, tp->rcvq_space.space);
753 		rcvwin += (grow << 1);
754 
755 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
756 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
757 			rcvmem += 128;
758 
759 		do_div(rcvwin, tp->advmss);
760 		rcvbuf = min_t(u64, rcvwin * rcvmem,
761 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
762 		if (rcvbuf > sk->sk_rcvbuf) {
763 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
764 
765 			/* Make the window clamp follow along.  */
766 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
767 		}
768 	}
769 	tp->rcvq_space.space = copied;
770 
771 new_measure:
772 	tp->rcvq_space.seq = tp->copied_seq;
773 	tp->rcvq_space.time = tp->tcp_mstamp;
774 }
775 
776 /* There is something which you must keep in mind when you analyze the
777  * behavior of the tp->ato delayed ack timeout interval.  When a
778  * connection starts up, we want to ack as quickly as possible.  The
779  * problem is that "good" TCP's do slow start at the beginning of data
780  * transmission.  The means that until we send the first few ACK's the
781  * sender will sit on his end and only queue most of his data, because
782  * he can only send snd_cwnd unacked packets at any given time.  For
783  * each ACK we send, he increments snd_cwnd and transmits more of his
784  * queue.  -DaveM
785  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)786 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
787 {
788 	struct tcp_sock *tp = tcp_sk(sk);
789 	struct inet_connection_sock *icsk = inet_csk(sk);
790 	u32 now;
791 
792 	inet_csk_schedule_ack(sk);
793 
794 	tcp_measure_rcv_mss(sk, skb);
795 
796 	tcp_rcv_rtt_measure(tp);
797 
798 	now = tcp_jiffies32;
799 
800 	if (!icsk->icsk_ack.ato) {
801 		/* The _first_ data packet received, initialize
802 		 * delayed ACK engine.
803 		 */
804 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
805 		icsk->icsk_ack.ato = TCP_ATO_MIN;
806 	} else {
807 		int m = now - icsk->icsk_ack.lrcvtime;
808 
809 		if (m <= TCP_ATO_MIN / 2) {
810 			/* The fastest case is the first. */
811 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
812 		} else if (m < icsk->icsk_ack.ato) {
813 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
814 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
815 				icsk->icsk_ack.ato = icsk->icsk_rto;
816 		} else if (m > icsk->icsk_rto) {
817 			/* Too long gap. Apparently sender failed to
818 			 * restart window, so that we send ACKs quickly.
819 			 */
820 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
821 		}
822 	}
823 	icsk->icsk_ack.lrcvtime = now;
824 
825 	tcp_ecn_check_ce(sk, skb);
826 
827 	if (skb->len >= 128)
828 		tcp_grow_window(sk, skb, true);
829 }
830 
831 /* Called to compute a smoothed rtt estimate. The data fed to this
832  * routine either comes from timestamps, or from segments that were
833  * known _not_ to have been retransmitted [see Karn/Partridge
834  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
835  * piece by Van Jacobson.
836  * NOTE: the next three routines used to be one big routine.
837  * To save cycles in the RFC 1323 implementation it was better to break
838  * it up into three procedures. -- erics
839  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)840 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
841 {
842 	struct tcp_sock *tp = tcp_sk(sk);
843 	long m = mrtt_us; /* RTT */
844 	u32 srtt = tp->srtt_us;
845 
846 	/*	The following amusing code comes from Jacobson's
847 	 *	article in SIGCOMM '88.  Note that rtt and mdev
848 	 *	are scaled versions of rtt and mean deviation.
849 	 *	This is designed to be as fast as possible
850 	 *	m stands for "measurement".
851 	 *
852 	 *	On a 1990 paper the rto value is changed to:
853 	 *	RTO = rtt + 4 * mdev
854 	 *
855 	 * Funny. This algorithm seems to be very broken.
856 	 * These formulae increase RTO, when it should be decreased, increase
857 	 * too slowly, when it should be increased quickly, decrease too quickly
858 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
859 	 * does not matter how to _calculate_ it. Seems, it was trap
860 	 * that VJ failed to avoid. 8)
861 	 */
862 	if (srtt != 0) {
863 		m -= (srtt >> 3);	/* m is now error in rtt est */
864 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
865 		if (m < 0) {
866 			m = -m;		/* m is now abs(error) */
867 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
868 			/* This is similar to one of Eifel findings.
869 			 * Eifel blocks mdev updates when rtt decreases.
870 			 * This solution is a bit different: we use finer gain
871 			 * for mdev in this case (alpha*beta).
872 			 * Like Eifel it also prevents growth of rto,
873 			 * but also it limits too fast rto decreases,
874 			 * happening in pure Eifel.
875 			 */
876 			if (m > 0)
877 				m >>= 3;
878 		} else {
879 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
880 		}
881 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
882 		if (tp->mdev_us > tp->mdev_max_us) {
883 			tp->mdev_max_us = tp->mdev_us;
884 			if (tp->mdev_max_us > tp->rttvar_us)
885 				tp->rttvar_us = tp->mdev_max_us;
886 		}
887 		if (after(tp->snd_una, tp->rtt_seq)) {
888 			if (tp->mdev_max_us < tp->rttvar_us)
889 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
890 			tp->rtt_seq = tp->snd_nxt;
891 			tp->mdev_max_us = tcp_rto_min_us(sk);
892 
893 			tcp_bpf_rtt(sk);
894 		}
895 	} else {
896 		/* no previous measure. */
897 		srtt = m << 3;		/* take the measured time to be rtt */
898 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
899 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
900 		tp->mdev_max_us = tp->rttvar_us;
901 		tp->rtt_seq = tp->snd_nxt;
902 
903 		tcp_bpf_rtt(sk);
904 	}
905 	tp->srtt_us = max(1U, srtt);
906 }
907 
tcp_update_pacing_rate(struct sock * sk)908 static void tcp_update_pacing_rate(struct sock *sk)
909 {
910 	const struct tcp_sock *tp = tcp_sk(sk);
911 	u64 rate;
912 
913 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
914 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
915 
916 	/* current rate is (cwnd * mss) / srtt
917 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
918 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
919 	 *
920 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
921 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
922 	 *	 end of slow start and should slow down.
923 	 */
924 	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
925 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
926 	else
927 		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
928 
929 	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
930 
931 	if (likely(tp->srtt_us))
932 		do_div(rate, tp->srtt_us);
933 
934 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
935 	 * without any lock. We want to make sure compiler wont store
936 	 * intermediate values in this location.
937 	 */
938 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
939 					     sk->sk_max_pacing_rate));
940 }
941 
942 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
943  * routine referred to above.
944  */
tcp_set_rto(struct sock * sk)945 static void tcp_set_rto(struct sock *sk)
946 {
947 	const struct tcp_sock *tp = tcp_sk(sk);
948 	/* Old crap is replaced with new one. 8)
949 	 *
950 	 * More seriously:
951 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
952 	 *    It cannot be less due to utterly erratic ACK generation made
953 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
954 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
955 	 *    is invisible. Actually, Linux-2.4 also generates erratic
956 	 *    ACKs in some circumstances.
957 	 */
958 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
959 
960 	/* 2. Fixups made earlier cannot be right.
961 	 *    If we do not estimate RTO correctly without them,
962 	 *    all the algo is pure shit and should be replaced
963 	 *    with correct one. It is exactly, which we pretend to do.
964 	 */
965 
966 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
967 	 * guarantees that rto is higher.
968 	 */
969 	tcp_bound_rto(sk);
970 }
971 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)972 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
973 {
974 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
975 
976 	if (!cwnd)
977 		cwnd = TCP_INIT_CWND;
978 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
979 }
980 
981 struct tcp_sacktag_state {
982 	/* Timestamps for earliest and latest never-retransmitted segment
983 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
984 	 * but congestion control should still get an accurate delay signal.
985 	 */
986 	u64	first_sackt;
987 	u64	last_sackt;
988 	u32	reord;
989 	u32	sack_delivered;
990 	int	flag;
991 	unsigned int mss_now;
992 	struct rate_sample *rate;
993 };
994 
995 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
996  * and spurious retransmission information if this DSACK is unlikely caused by
997  * sender's action:
998  * - DSACKed sequence range is larger than maximum receiver's window.
999  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1000  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1001 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1002 			  u32 end_seq, struct tcp_sacktag_state *state)
1003 {
1004 	u32 seq_len, dup_segs = 1;
1005 
1006 	if (!before(start_seq, end_seq))
1007 		return 0;
1008 
1009 	seq_len = end_seq - start_seq;
1010 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1011 	if (seq_len > tp->max_window)
1012 		return 0;
1013 	if (seq_len > tp->mss_cache)
1014 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1015 	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1016 		state->flag |= FLAG_DSACK_TLP;
1017 
1018 	tp->dsack_dups += dup_segs;
1019 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1020 	if (tp->dsack_dups > tp->total_retrans)
1021 		return 0;
1022 
1023 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1024 	/* We increase the RACK ordering window in rounds where we receive
1025 	 * DSACKs that may have been due to reordering causing RACK to trigger
1026 	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1027 	 * without having seen reordering, or that match TLP probes (TLP
1028 	 * is timer-driven, not triggered by RACK).
1029 	 */
1030 	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1031 		tp->rack.dsack_seen = 1;
1032 
1033 	state->flag |= FLAG_DSACKING_ACK;
1034 	/* A spurious retransmission is delivered */
1035 	state->sack_delivered += dup_segs;
1036 
1037 	return dup_segs;
1038 }
1039 
1040 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1041  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1042  * distance is approximated in full-mss packet distance ("reordering").
1043  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1044 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1045 				      const int ts)
1046 {
1047 	struct tcp_sock *tp = tcp_sk(sk);
1048 	const u32 mss = tp->mss_cache;
1049 	u32 fack, metric;
1050 
1051 	fack = tcp_highest_sack_seq(tp);
1052 	if (!before(low_seq, fack))
1053 		return;
1054 
1055 	metric = fack - low_seq;
1056 	if ((metric > tp->reordering * mss) && mss) {
1057 #if FASTRETRANS_DEBUG > 1
1058 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1059 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1060 			 tp->reordering,
1061 			 0,
1062 			 tp->sacked_out,
1063 			 tp->undo_marker ? tp->undo_retrans : 0);
1064 #endif
1065 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1066 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1067 	}
1068 
1069 	/* This exciting event is worth to be remembered. 8) */
1070 	tp->reord_seen++;
1071 	NET_INC_STATS(sock_net(sk),
1072 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1073 }
1074 
1075  /* This must be called before lost_out or retrans_out are updated
1076   * on a new loss, because we want to know if all skbs previously
1077   * known to be lost have already been retransmitted, indicating
1078   * that this newly lost skb is our next skb to retransmit.
1079   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1080 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1081 {
1082 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1083 	    (tp->retransmit_skb_hint &&
1084 	     before(TCP_SKB_CB(skb)->seq,
1085 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1086 		tp->retransmit_skb_hint = skb;
1087 }
1088 
1089 /* Sum the number of packets on the wire we have marked as lost, and
1090  * notify the congestion control module that the given skb was marked lost.
1091  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1092 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1093 {
1094 	tp->lost += tcp_skb_pcount(skb);
1095 }
1096 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1097 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1098 {
1099 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1100 	struct tcp_sock *tp = tcp_sk(sk);
1101 
1102 	if (sacked & TCPCB_SACKED_ACKED)
1103 		return;
1104 
1105 	tcp_verify_retransmit_hint(tp, skb);
1106 	if (sacked & TCPCB_LOST) {
1107 		if (sacked & TCPCB_SACKED_RETRANS) {
1108 			/* Account for retransmits that are lost again */
1109 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1110 			tp->retrans_out -= tcp_skb_pcount(skb);
1111 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1112 				      tcp_skb_pcount(skb));
1113 			tcp_notify_skb_loss_event(tp, skb);
1114 		}
1115 	} else {
1116 		tp->lost_out += tcp_skb_pcount(skb);
1117 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1118 		tcp_notify_skb_loss_event(tp, skb);
1119 	}
1120 }
1121 
1122 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1123 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1124 				bool ece_ack)
1125 {
1126 	tp->delivered += delivered;
1127 	if (ece_ack)
1128 		tp->delivered_ce += delivered;
1129 }
1130 
1131 /* This procedure tags the retransmission queue when SACKs arrive.
1132  *
1133  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1134  * Packets in queue with these bits set are counted in variables
1135  * sacked_out, retrans_out and lost_out, correspondingly.
1136  *
1137  * Valid combinations are:
1138  * Tag  InFlight	Description
1139  * 0	1		- orig segment is in flight.
1140  * S	0		- nothing flies, orig reached receiver.
1141  * L	0		- nothing flies, orig lost by net.
1142  * R	2		- both orig and retransmit are in flight.
1143  * L|R	1		- orig is lost, retransmit is in flight.
1144  * S|R  1		- orig reached receiver, retrans is still in flight.
1145  * (L|S|R is logically valid, it could occur when L|R is sacked,
1146  *  but it is equivalent to plain S and code short-curcuits it to S.
1147  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1148  *
1149  * These 6 states form finite state machine, controlled by the following events:
1150  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1151  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1152  * 3. Loss detection event of two flavors:
1153  *	A. Scoreboard estimator decided the packet is lost.
1154  *	   A'. Reno "three dupacks" marks head of queue lost.
1155  *	B. SACK arrives sacking SND.NXT at the moment, when the
1156  *	   segment was retransmitted.
1157  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1158  *
1159  * It is pleasant to note, that state diagram turns out to be commutative,
1160  * so that we are allowed not to be bothered by order of our actions,
1161  * when multiple events arrive simultaneously. (see the function below).
1162  *
1163  * Reordering detection.
1164  * --------------------
1165  * Reordering metric is maximal distance, which a packet can be displaced
1166  * in packet stream. With SACKs we can estimate it:
1167  *
1168  * 1. SACK fills old hole and the corresponding segment was not
1169  *    ever retransmitted -> reordering. Alas, we cannot use it
1170  *    when segment was retransmitted.
1171  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1172  *    for retransmitted and already SACKed segment -> reordering..
1173  * Both of these heuristics are not used in Loss state, when we cannot
1174  * account for retransmits accurately.
1175  *
1176  * SACK block validation.
1177  * ----------------------
1178  *
1179  * SACK block range validation checks that the received SACK block fits to
1180  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1181  * Note that SND.UNA is not included to the range though being valid because
1182  * it means that the receiver is rather inconsistent with itself reporting
1183  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1184  * perfectly valid, however, in light of RFC2018 which explicitly states
1185  * that "SACK block MUST reflect the newest segment.  Even if the newest
1186  * segment is going to be discarded ...", not that it looks very clever
1187  * in case of head skb. Due to potentional receiver driven attacks, we
1188  * choose to avoid immediate execution of a walk in write queue due to
1189  * reneging and defer head skb's loss recovery to standard loss recovery
1190  * procedure that will eventually trigger (nothing forbids us doing this).
1191  *
1192  * Implements also blockage to start_seq wrap-around. Problem lies in the
1193  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1194  * there's no guarantee that it will be before snd_nxt (n). The problem
1195  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1196  * wrap (s_w):
1197  *
1198  *         <- outs wnd ->                          <- wrapzone ->
1199  *         u     e      n                         u_w   e_w  s n_w
1200  *         |     |      |                          |     |   |  |
1201  * |<------------+------+----- TCP seqno space --------------+---------->|
1202  * ...-- <2^31 ->|                                           |<--------...
1203  * ...---- >2^31 ------>|                                    |<--------...
1204  *
1205  * Current code wouldn't be vulnerable but it's better still to discard such
1206  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1207  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1208  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1209  * equal to the ideal case (infinite seqno space without wrap caused issues).
1210  *
1211  * With D-SACK the lower bound is extended to cover sequence space below
1212  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1213  * again, D-SACK block must not to go across snd_una (for the same reason as
1214  * for the normal SACK blocks, explained above). But there all simplicity
1215  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1216  * fully below undo_marker they do not affect behavior in anyway and can
1217  * therefore be safely ignored. In rare cases (which are more or less
1218  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1219  * fragmentation and packet reordering past skb's retransmission. To consider
1220  * them correctly, the acceptable range must be extended even more though
1221  * the exact amount is rather hard to quantify. However, tp->max_window can
1222  * be used as an exaggerated estimate.
1223  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1224 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1225 				   u32 start_seq, u32 end_seq)
1226 {
1227 	/* Too far in future, or reversed (interpretation is ambiguous) */
1228 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1229 		return false;
1230 
1231 	/* Nasty start_seq wrap-around check (see comments above) */
1232 	if (!before(start_seq, tp->snd_nxt))
1233 		return false;
1234 
1235 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1236 	 * start_seq == snd_una is non-sensical (see comments above)
1237 	 */
1238 	if (after(start_seq, tp->snd_una))
1239 		return true;
1240 
1241 	if (!is_dsack || !tp->undo_marker)
1242 		return false;
1243 
1244 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1245 	if (after(end_seq, tp->snd_una))
1246 		return false;
1247 
1248 	if (!before(start_seq, tp->undo_marker))
1249 		return true;
1250 
1251 	/* Too old */
1252 	if (!after(end_seq, tp->undo_marker))
1253 		return false;
1254 
1255 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1256 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1257 	 */
1258 	return !before(start_seq, end_seq - tp->max_window);
1259 }
1260 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1261 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1262 			    struct tcp_sack_block_wire *sp, int num_sacks,
1263 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1264 {
1265 	struct tcp_sock *tp = tcp_sk(sk);
1266 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1267 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1268 	u32 dup_segs;
1269 
1270 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1271 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1272 	} else if (num_sacks > 1) {
1273 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1274 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1275 
1276 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1277 			return false;
1278 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1279 	} else {
1280 		return false;
1281 	}
1282 
1283 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1284 	if (!dup_segs) {	/* Skip dubious DSACK */
1285 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1286 		return false;
1287 	}
1288 
1289 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1290 
1291 	/* D-SACK for already forgotten data... Do dumb counting. */
1292 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1293 	    !after(end_seq_0, prior_snd_una) &&
1294 	    after(end_seq_0, tp->undo_marker))
1295 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1296 
1297 	return true;
1298 }
1299 
1300 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1301  * the incoming SACK may not exactly match but we can find smaller MSS
1302  * aligned portion of it that matches. Therefore we might need to fragment
1303  * which may fail and creates some hassle (caller must handle error case
1304  * returns).
1305  *
1306  * FIXME: this could be merged to shift decision code
1307  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1308 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1309 				  u32 start_seq, u32 end_seq)
1310 {
1311 	int err;
1312 	bool in_sack;
1313 	unsigned int pkt_len;
1314 	unsigned int mss;
1315 
1316 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1317 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1318 
1319 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1320 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1321 		mss = tcp_skb_mss(skb);
1322 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1323 
1324 		if (!in_sack) {
1325 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1326 			if (pkt_len < mss)
1327 				pkt_len = mss;
1328 		} else {
1329 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1330 			if (pkt_len < mss)
1331 				return -EINVAL;
1332 		}
1333 
1334 		/* Round if necessary so that SACKs cover only full MSSes
1335 		 * and/or the remaining small portion (if present)
1336 		 */
1337 		if (pkt_len > mss) {
1338 			unsigned int new_len = (pkt_len / mss) * mss;
1339 			if (!in_sack && new_len < pkt_len)
1340 				new_len += mss;
1341 			pkt_len = new_len;
1342 		}
1343 
1344 		if (pkt_len >= skb->len && !in_sack)
1345 			return 0;
1346 
1347 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1348 				   pkt_len, mss, GFP_ATOMIC);
1349 		if (err < 0)
1350 			return err;
1351 	}
1352 
1353 	return in_sack;
1354 }
1355 
1356 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1357 static u8 tcp_sacktag_one(struct sock *sk,
1358 			  struct tcp_sacktag_state *state, u8 sacked,
1359 			  u32 start_seq, u32 end_seq,
1360 			  int dup_sack, int pcount,
1361 			  u64 xmit_time)
1362 {
1363 	struct tcp_sock *tp = tcp_sk(sk);
1364 
1365 	/* Account D-SACK for retransmitted packet. */
1366 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1367 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1368 		    after(end_seq, tp->undo_marker))
1369 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1370 		if ((sacked & TCPCB_SACKED_ACKED) &&
1371 		    before(start_seq, state->reord))
1372 				state->reord = start_seq;
1373 	}
1374 
1375 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1376 	if (!after(end_seq, tp->snd_una))
1377 		return sacked;
1378 
1379 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1380 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1381 
1382 		if (sacked & TCPCB_SACKED_RETRANS) {
1383 			/* If the segment is not tagged as lost,
1384 			 * we do not clear RETRANS, believing
1385 			 * that retransmission is still in flight.
1386 			 */
1387 			if (sacked & TCPCB_LOST) {
1388 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1389 				tp->lost_out -= pcount;
1390 				tp->retrans_out -= pcount;
1391 			}
1392 		} else {
1393 			if (!(sacked & TCPCB_RETRANS)) {
1394 				/* New sack for not retransmitted frame,
1395 				 * which was in hole. It is reordering.
1396 				 */
1397 				if (before(start_seq,
1398 					   tcp_highest_sack_seq(tp)) &&
1399 				    before(start_seq, state->reord))
1400 					state->reord = start_seq;
1401 
1402 				if (!after(end_seq, tp->high_seq))
1403 					state->flag |= FLAG_ORIG_SACK_ACKED;
1404 				if (state->first_sackt == 0)
1405 					state->first_sackt = xmit_time;
1406 				state->last_sackt = xmit_time;
1407 			}
1408 
1409 			if (sacked & TCPCB_LOST) {
1410 				sacked &= ~TCPCB_LOST;
1411 				tp->lost_out -= pcount;
1412 			}
1413 		}
1414 
1415 		sacked |= TCPCB_SACKED_ACKED;
1416 		state->flag |= FLAG_DATA_SACKED;
1417 		tp->sacked_out += pcount;
1418 		/* Out-of-order packets delivered */
1419 		state->sack_delivered += pcount;
1420 
1421 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1422 		if (tp->lost_skb_hint &&
1423 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1424 			tp->lost_cnt_hint += pcount;
1425 	}
1426 
1427 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1428 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1429 	 * are accounted above as well.
1430 	 */
1431 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1432 		sacked &= ~TCPCB_SACKED_RETRANS;
1433 		tp->retrans_out -= pcount;
1434 	}
1435 
1436 	return sacked;
1437 }
1438 
1439 /* Shift newly-SACKed bytes from this skb to the immediately previous
1440  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1441  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1442 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1443 			    struct sk_buff *skb,
1444 			    struct tcp_sacktag_state *state,
1445 			    unsigned int pcount, int shifted, int mss,
1446 			    bool dup_sack)
1447 {
1448 	struct tcp_sock *tp = tcp_sk(sk);
1449 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1450 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1451 
1452 	BUG_ON(!pcount);
1453 
1454 	/* Adjust counters and hints for the newly sacked sequence
1455 	 * range but discard the return value since prev is already
1456 	 * marked. We must tag the range first because the seq
1457 	 * advancement below implicitly advances
1458 	 * tcp_highest_sack_seq() when skb is highest_sack.
1459 	 */
1460 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1461 			start_seq, end_seq, dup_sack, pcount,
1462 			tcp_skb_timestamp_us(skb));
1463 	tcp_rate_skb_delivered(sk, skb, state->rate);
1464 
1465 	if (skb == tp->lost_skb_hint)
1466 		tp->lost_cnt_hint += pcount;
1467 
1468 	TCP_SKB_CB(prev)->end_seq += shifted;
1469 	TCP_SKB_CB(skb)->seq += shifted;
1470 
1471 	tcp_skb_pcount_add(prev, pcount);
1472 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1473 	tcp_skb_pcount_add(skb, -pcount);
1474 
1475 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1476 	 * in theory this shouldn't be necessary but as long as DSACK
1477 	 * code can come after this skb later on it's better to keep
1478 	 * setting gso_size to something.
1479 	 */
1480 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1481 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1482 
1483 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1484 	if (tcp_skb_pcount(skb) <= 1)
1485 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1486 
1487 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1488 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1489 
1490 	if (skb->len > 0) {
1491 		BUG_ON(!tcp_skb_pcount(skb));
1492 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1493 		return false;
1494 	}
1495 
1496 	/* Whole SKB was eaten :-) */
1497 
1498 	if (skb == tp->retransmit_skb_hint)
1499 		tp->retransmit_skb_hint = prev;
1500 	if (skb == tp->lost_skb_hint) {
1501 		tp->lost_skb_hint = prev;
1502 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1503 	}
1504 
1505 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1506 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1507 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1508 		TCP_SKB_CB(prev)->end_seq++;
1509 
1510 	if (skb == tcp_highest_sack(sk))
1511 		tcp_advance_highest_sack(sk, skb);
1512 
1513 	tcp_skb_collapse_tstamp(prev, skb);
1514 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1515 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1516 
1517 	tcp_rtx_queue_unlink_and_free(skb, sk);
1518 
1519 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1520 
1521 	return true;
1522 }
1523 
1524 /* I wish gso_size would have a bit more sane initialization than
1525  * something-or-zero which complicates things
1526  */
tcp_skb_seglen(const struct sk_buff * skb)1527 static int tcp_skb_seglen(const struct sk_buff *skb)
1528 {
1529 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1530 }
1531 
1532 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1533 static int skb_can_shift(const struct sk_buff *skb)
1534 {
1535 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1536 }
1537 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1538 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1539 		  int pcount, int shiftlen)
1540 {
1541 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1542 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1543 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1544 	 * even if current MSS is bigger.
1545 	 */
1546 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1547 		return 0;
1548 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1549 		return 0;
1550 	return skb_shift(to, from, shiftlen);
1551 }
1552 
1553 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1554  * skb.
1555  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1556 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1557 					  struct tcp_sacktag_state *state,
1558 					  u32 start_seq, u32 end_seq,
1559 					  bool dup_sack)
1560 {
1561 	struct tcp_sock *tp = tcp_sk(sk);
1562 	struct sk_buff *prev;
1563 	int mss;
1564 	int pcount = 0;
1565 	int len;
1566 	int in_sack;
1567 
1568 	/* Normally R but no L won't result in plain S */
1569 	if (!dup_sack &&
1570 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1571 		goto fallback;
1572 	if (!skb_can_shift(skb))
1573 		goto fallback;
1574 	/* This frame is about to be dropped (was ACKed). */
1575 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1576 		goto fallback;
1577 
1578 	/* Can only happen with delayed DSACK + discard craziness */
1579 	prev = skb_rb_prev(skb);
1580 	if (!prev)
1581 		goto fallback;
1582 
1583 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1584 		goto fallback;
1585 
1586 	if (!tcp_skb_can_collapse(prev, skb))
1587 		goto fallback;
1588 
1589 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1590 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1591 
1592 	if (in_sack) {
1593 		len = skb->len;
1594 		pcount = tcp_skb_pcount(skb);
1595 		mss = tcp_skb_seglen(skb);
1596 
1597 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1598 		 * drop this restriction as unnecessary
1599 		 */
1600 		if (mss != tcp_skb_seglen(prev))
1601 			goto fallback;
1602 	} else {
1603 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1604 			goto noop;
1605 		/* CHECKME: This is non-MSS split case only?, this will
1606 		 * cause skipped skbs due to advancing loop btw, original
1607 		 * has that feature too
1608 		 */
1609 		if (tcp_skb_pcount(skb) <= 1)
1610 			goto noop;
1611 
1612 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1613 		if (!in_sack) {
1614 			/* TODO: head merge to next could be attempted here
1615 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1616 			 * though it might not be worth of the additional hassle
1617 			 *
1618 			 * ...we can probably just fallback to what was done
1619 			 * previously. We could try merging non-SACKed ones
1620 			 * as well but it probably isn't going to buy off
1621 			 * because later SACKs might again split them, and
1622 			 * it would make skb timestamp tracking considerably
1623 			 * harder problem.
1624 			 */
1625 			goto fallback;
1626 		}
1627 
1628 		len = end_seq - TCP_SKB_CB(skb)->seq;
1629 		BUG_ON(len < 0);
1630 		BUG_ON(len > skb->len);
1631 
1632 		/* MSS boundaries should be honoured or else pcount will
1633 		 * severely break even though it makes things bit trickier.
1634 		 * Optimize common case to avoid most of the divides
1635 		 */
1636 		mss = tcp_skb_mss(skb);
1637 
1638 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1639 		 * drop this restriction as unnecessary
1640 		 */
1641 		if (mss != tcp_skb_seglen(prev))
1642 			goto fallback;
1643 
1644 		if (len == mss) {
1645 			pcount = 1;
1646 		} else if (len < mss) {
1647 			goto noop;
1648 		} else {
1649 			pcount = len / mss;
1650 			len = pcount * mss;
1651 		}
1652 	}
1653 
1654 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1655 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1656 		goto fallback;
1657 
1658 	if (!tcp_skb_shift(prev, skb, pcount, len))
1659 		goto fallback;
1660 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1661 		goto out;
1662 
1663 	/* Hole filled allows collapsing with the next as well, this is very
1664 	 * useful when hole on every nth skb pattern happens
1665 	 */
1666 	skb = skb_rb_next(prev);
1667 	if (!skb)
1668 		goto out;
1669 
1670 	if (!skb_can_shift(skb) ||
1671 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1672 	    (mss != tcp_skb_seglen(skb)))
1673 		goto out;
1674 
1675 	if (!tcp_skb_can_collapse(prev, skb))
1676 		goto out;
1677 	len = skb->len;
1678 	pcount = tcp_skb_pcount(skb);
1679 	if (tcp_skb_shift(prev, skb, pcount, len))
1680 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1681 				len, mss, 0);
1682 
1683 out:
1684 	return prev;
1685 
1686 noop:
1687 	return skb;
1688 
1689 fallback:
1690 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1691 	return NULL;
1692 }
1693 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1694 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1695 					struct tcp_sack_block *next_dup,
1696 					struct tcp_sacktag_state *state,
1697 					u32 start_seq, u32 end_seq,
1698 					bool dup_sack_in)
1699 {
1700 	struct tcp_sock *tp = tcp_sk(sk);
1701 	struct sk_buff *tmp;
1702 
1703 	skb_rbtree_walk_from(skb) {
1704 		int in_sack = 0;
1705 		bool dup_sack = dup_sack_in;
1706 
1707 		/* queue is in-order => we can short-circuit the walk early */
1708 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1709 			break;
1710 
1711 		if (next_dup  &&
1712 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1713 			in_sack = tcp_match_skb_to_sack(sk, skb,
1714 							next_dup->start_seq,
1715 							next_dup->end_seq);
1716 			if (in_sack > 0)
1717 				dup_sack = true;
1718 		}
1719 
1720 		/* skb reference here is a bit tricky to get right, since
1721 		 * shifting can eat and free both this skb and the next,
1722 		 * so not even _safe variant of the loop is enough.
1723 		 */
1724 		if (in_sack <= 0) {
1725 			tmp = tcp_shift_skb_data(sk, skb, state,
1726 						 start_seq, end_seq, dup_sack);
1727 			if (tmp) {
1728 				if (tmp != skb) {
1729 					skb = tmp;
1730 					continue;
1731 				}
1732 
1733 				in_sack = 0;
1734 			} else {
1735 				in_sack = tcp_match_skb_to_sack(sk, skb,
1736 								start_seq,
1737 								end_seq);
1738 			}
1739 		}
1740 
1741 		if (unlikely(in_sack < 0))
1742 			break;
1743 
1744 		if (in_sack) {
1745 			TCP_SKB_CB(skb)->sacked =
1746 				tcp_sacktag_one(sk,
1747 						state,
1748 						TCP_SKB_CB(skb)->sacked,
1749 						TCP_SKB_CB(skb)->seq,
1750 						TCP_SKB_CB(skb)->end_seq,
1751 						dup_sack,
1752 						tcp_skb_pcount(skb),
1753 						tcp_skb_timestamp_us(skb));
1754 			tcp_rate_skb_delivered(sk, skb, state->rate);
1755 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1756 				list_del_init(&skb->tcp_tsorted_anchor);
1757 
1758 			if (!before(TCP_SKB_CB(skb)->seq,
1759 				    tcp_highest_sack_seq(tp)))
1760 				tcp_advance_highest_sack(sk, skb);
1761 		}
1762 	}
1763 	return skb;
1764 }
1765 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1766 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1767 {
1768 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1769 	struct sk_buff *skb;
1770 
1771 	while (*p) {
1772 		parent = *p;
1773 		skb = rb_to_skb(parent);
1774 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1775 			p = &parent->rb_left;
1776 			continue;
1777 		}
1778 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1779 			p = &parent->rb_right;
1780 			continue;
1781 		}
1782 		return skb;
1783 	}
1784 	return NULL;
1785 }
1786 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1787 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1788 					u32 skip_to_seq)
1789 {
1790 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1791 		return skb;
1792 
1793 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1794 }
1795 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1796 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1797 						struct sock *sk,
1798 						struct tcp_sack_block *next_dup,
1799 						struct tcp_sacktag_state *state,
1800 						u32 skip_to_seq)
1801 {
1802 	if (!next_dup)
1803 		return skb;
1804 
1805 	if (before(next_dup->start_seq, skip_to_seq)) {
1806 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1807 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1808 				       next_dup->start_seq, next_dup->end_seq,
1809 				       1);
1810 	}
1811 
1812 	return skb;
1813 }
1814 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1815 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1816 {
1817 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1818 }
1819 
1820 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1821 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1822 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1823 {
1824 	struct tcp_sock *tp = tcp_sk(sk);
1825 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1826 				    TCP_SKB_CB(ack_skb)->sacked);
1827 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1828 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1829 	struct tcp_sack_block *cache;
1830 	struct sk_buff *skb;
1831 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1832 	int used_sacks;
1833 	bool found_dup_sack = false;
1834 	int i, j;
1835 	int first_sack_index;
1836 
1837 	state->flag = 0;
1838 	state->reord = tp->snd_nxt;
1839 
1840 	if (!tp->sacked_out)
1841 		tcp_highest_sack_reset(sk);
1842 
1843 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1844 					 num_sacks, prior_snd_una, state);
1845 
1846 	/* Eliminate too old ACKs, but take into
1847 	 * account more or less fresh ones, they can
1848 	 * contain valid SACK info.
1849 	 */
1850 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1851 		return 0;
1852 
1853 	if (!tp->packets_out)
1854 		goto out;
1855 
1856 	used_sacks = 0;
1857 	first_sack_index = 0;
1858 	for (i = 0; i < num_sacks; i++) {
1859 		bool dup_sack = !i && found_dup_sack;
1860 
1861 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1862 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1863 
1864 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1865 					    sp[used_sacks].start_seq,
1866 					    sp[used_sacks].end_seq)) {
1867 			int mib_idx;
1868 
1869 			if (dup_sack) {
1870 				if (!tp->undo_marker)
1871 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1872 				else
1873 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1874 			} else {
1875 				/* Don't count olds caused by ACK reordering */
1876 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1877 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1878 					continue;
1879 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1880 			}
1881 
1882 			NET_INC_STATS(sock_net(sk), mib_idx);
1883 			if (i == 0)
1884 				first_sack_index = -1;
1885 			continue;
1886 		}
1887 
1888 		/* Ignore very old stuff early */
1889 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1890 			if (i == 0)
1891 				first_sack_index = -1;
1892 			continue;
1893 		}
1894 
1895 		used_sacks++;
1896 	}
1897 
1898 	/* order SACK blocks to allow in order walk of the retrans queue */
1899 	for (i = used_sacks - 1; i > 0; i--) {
1900 		for (j = 0; j < i; j++) {
1901 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1902 				swap(sp[j], sp[j + 1]);
1903 
1904 				/* Track where the first SACK block goes to */
1905 				if (j == first_sack_index)
1906 					first_sack_index = j + 1;
1907 			}
1908 		}
1909 	}
1910 
1911 	state->mss_now = tcp_current_mss(sk);
1912 	skb = NULL;
1913 	i = 0;
1914 
1915 	if (!tp->sacked_out) {
1916 		/* It's already past, so skip checking against it */
1917 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1918 	} else {
1919 		cache = tp->recv_sack_cache;
1920 		/* Skip empty blocks in at head of the cache */
1921 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1922 		       !cache->end_seq)
1923 			cache++;
1924 	}
1925 
1926 	while (i < used_sacks) {
1927 		u32 start_seq = sp[i].start_seq;
1928 		u32 end_seq = sp[i].end_seq;
1929 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1930 		struct tcp_sack_block *next_dup = NULL;
1931 
1932 		if (found_dup_sack && ((i + 1) == first_sack_index))
1933 			next_dup = &sp[i + 1];
1934 
1935 		/* Skip too early cached blocks */
1936 		while (tcp_sack_cache_ok(tp, cache) &&
1937 		       !before(start_seq, cache->end_seq))
1938 			cache++;
1939 
1940 		/* Can skip some work by looking recv_sack_cache? */
1941 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1942 		    after(end_seq, cache->start_seq)) {
1943 
1944 			/* Head todo? */
1945 			if (before(start_seq, cache->start_seq)) {
1946 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1947 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1948 						       state,
1949 						       start_seq,
1950 						       cache->start_seq,
1951 						       dup_sack);
1952 			}
1953 
1954 			/* Rest of the block already fully processed? */
1955 			if (!after(end_seq, cache->end_seq))
1956 				goto advance_sp;
1957 
1958 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1959 						       state,
1960 						       cache->end_seq);
1961 
1962 			/* ...tail remains todo... */
1963 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1964 				/* ...but better entrypoint exists! */
1965 				skb = tcp_highest_sack(sk);
1966 				if (!skb)
1967 					break;
1968 				cache++;
1969 				goto walk;
1970 			}
1971 
1972 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1973 			/* Check overlap against next cached too (past this one already) */
1974 			cache++;
1975 			continue;
1976 		}
1977 
1978 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1979 			skb = tcp_highest_sack(sk);
1980 			if (!skb)
1981 				break;
1982 		}
1983 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1984 
1985 walk:
1986 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1987 				       start_seq, end_seq, dup_sack);
1988 
1989 advance_sp:
1990 		i++;
1991 	}
1992 
1993 	/* Clear the head of the cache sack blocks so we can skip it next time */
1994 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1995 		tp->recv_sack_cache[i].start_seq = 0;
1996 		tp->recv_sack_cache[i].end_seq = 0;
1997 	}
1998 	for (j = 0; j < used_sacks; j++)
1999 		tp->recv_sack_cache[i++] = sp[j];
2000 
2001 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2002 		tcp_check_sack_reordering(sk, state->reord, 0);
2003 
2004 	tcp_verify_left_out(tp);
2005 out:
2006 
2007 #if FASTRETRANS_DEBUG > 0
2008 	WARN_ON((int)tp->sacked_out < 0);
2009 	WARN_ON((int)tp->lost_out < 0);
2010 	WARN_ON((int)tp->retrans_out < 0);
2011 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2012 #endif
2013 	return state->flag;
2014 }
2015 
2016 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2017  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2018  */
tcp_limit_reno_sacked(struct tcp_sock * tp)2019 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2020 {
2021 	u32 holes;
2022 
2023 	holes = max(tp->lost_out, 1U);
2024 	holes = min(holes, tp->packets_out);
2025 
2026 	if ((tp->sacked_out + holes) > tp->packets_out) {
2027 		tp->sacked_out = tp->packets_out - holes;
2028 		return true;
2029 	}
2030 	return false;
2031 }
2032 
2033 /* If we receive more dupacks than we expected counting segments
2034  * in assumption of absent reordering, interpret this as reordering.
2035  * The only another reason could be bug in receiver TCP.
2036  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2037 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2038 {
2039 	struct tcp_sock *tp = tcp_sk(sk);
2040 
2041 	if (!tcp_limit_reno_sacked(tp))
2042 		return;
2043 
2044 	tp->reordering = min_t(u32, tp->packets_out + addend,
2045 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2046 	tp->reord_seen++;
2047 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2048 }
2049 
2050 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2051 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2052 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2053 {
2054 	if (num_dupack) {
2055 		struct tcp_sock *tp = tcp_sk(sk);
2056 		u32 prior_sacked = tp->sacked_out;
2057 		s32 delivered;
2058 
2059 		tp->sacked_out += num_dupack;
2060 		tcp_check_reno_reordering(sk, 0);
2061 		delivered = tp->sacked_out - prior_sacked;
2062 		if (delivered > 0)
2063 			tcp_count_delivered(tp, delivered, ece_ack);
2064 		tcp_verify_left_out(tp);
2065 	}
2066 }
2067 
2068 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2069 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2070 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2071 {
2072 	struct tcp_sock *tp = tcp_sk(sk);
2073 
2074 	if (acked > 0) {
2075 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2076 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2077 				    ece_ack);
2078 		if (acked - 1 >= tp->sacked_out)
2079 			tp->sacked_out = 0;
2080 		else
2081 			tp->sacked_out -= acked - 1;
2082 	}
2083 	tcp_check_reno_reordering(sk, acked);
2084 	tcp_verify_left_out(tp);
2085 }
2086 
tcp_reset_reno_sack(struct tcp_sock * tp)2087 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2088 {
2089 	tp->sacked_out = 0;
2090 }
2091 
tcp_clear_retrans(struct tcp_sock * tp)2092 void tcp_clear_retrans(struct tcp_sock *tp)
2093 {
2094 	tp->retrans_out = 0;
2095 	tp->lost_out = 0;
2096 	tp->undo_marker = 0;
2097 	tp->undo_retrans = -1;
2098 	tp->sacked_out = 0;
2099 }
2100 
tcp_init_undo(struct tcp_sock * tp)2101 static inline void tcp_init_undo(struct tcp_sock *tp)
2102 {
2103 	tp->undo_marker = tp->snd_una;
2104 	/* Retransmission still in flight may cause DSACKs later. */
2105 	tp->undo_retrans = tp->retrans_out ? : -1;
2106 }
2107 
tcp_is_rack(const struct sock * sk)2108 static bool tcp_is_rack(const struct sock *sk)
2109 {
2110 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2111 		TCP_RACK_LOSS_DETECTION;
2112 }
2113 
2114 /* If we detect SACK reneging, forget all SACK information
2115  * and reset tags completely, otherwise preserve SACKs. If receiver
2116  * dropped its ofo queue, we will know this due to reneging detection.
2117  */
tcp_timeout_mark_lost(struct sock * sk)2118 static void tcp_timeout_mark_lost(struct sock *sk)
2119 {
2120 	struct tcp_sock *tp = tcp_sk(sk);
2121 	struct sk_buff *skb, *head;
2122 	bool is_reneg;			/* is receiver reneging on SACKs? */
2123 
2124 	head = tcp_rtx_queue_head(sk);
2125 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2126 	if (is_reneg) {
2127 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2128 		tp->sacked_out = 0;
2129 		/* Mark SACK reneging until we recover from this loss event. */
2130 		tp->is_sack_reneg = 1;
2131 	} else if (tcp_is_reno(tp)) {
2132 		tcp_reset_reno_sack(tp);
2133 	}
2134 
2135 	skb = head;
2136 	skb_rbtree_walk_from(skb) {
2137 		if (is_reneg)
2138 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2139 		else if (tcp_is_rack(sk) && skb != head &&
2140 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2141 			continue; /* Don't mark recently sent ones lost yet */
2142 		tcp_mark_skb_lost(sk, skb);
2143 	}
2144 	tcp_verify_left_out(tp);
2145 	tcp_clear_all_retrans_hints(tp);
2146 }
2147 
2148 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2149 void tcp_enter_loss(struct sock *sk)
2150 {
2151 	const struct inet_connection_sock *icsk = inet_csk(sk);
2152 	struct tcp_sock *tp = tcp_sk(sk);
2153 	struct net *net = sock_net(sk);
2154 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2155 	u8 reordering;
2156 
2157 	tcp_timeout_mark_lost(sk);
2158 
2159 	/* Reduce ssthresh if it has not yet been made inside this window. */
2160 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2161 	    !after(tp->high_seq, tp->snd_una) ||
2162 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2163 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2164 		tp->prior_cwnd = tcp_snd_cwnd(tp);
2165 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2166 		tcp_ca_event(sk, CA_EVENT_LOSS);
2167 		tcp_init_undo(tp);
2168 	}
2169 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2170 	tp->snd_cwnd_cnt   = 0;
2171 	tp->snd_cwnd_stamp = tcp_jiffies32;
2172 
2173 	/* Timeout in disordered state after receiving substantial DUPACKs
2174 	 * suggests that the degree of reordering is over-estimated.
2175 	 */
2176 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2177 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2178 	    tp->sacked_out >= reordering)
2179 		tp->reordering = min_t(unsigned int, tp->reordering,
2180 				       reordering);
2181 
2182 	tcp_set_ca_state(sk, TCP_CA_Loss);
2183 	tp->high_seq = tp->snd_nxt;
2184 	tcp_ecn_queue_cwr(tp);
2185 
2186 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2187 	 * loss recovery is underway except recurring timeout(s) on
2188 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2189 	 */
2190 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2191 		   (new_recovery || icsk->icsk_retransmits) &&
2192 		   !inet_csk(sk)->icsk_mtup.probe_size;
2193 }
2194 
2195 /* If ACK arrived pointing to a remembered SACK, it means that our
2196  * remembered SACKs do not reflect real state of receiver i.e.
2197  * receiver _host_ is heavily congested (or buggy).
2198  *
2199  * To avoid big spurious retransmission bursts due to transient SACK
2200  * scoreboard oddities that look like reneging, we give the receiver a
2201  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2202  * restore sanity to the SACK scoreboard. If the apparent reneging
2203  * persists until this RTO then we'll clear the SACK scoreboard.
2204  */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2205 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2206 {
2207 	if (*ack_flag & FLAG_SACK_RENEGING &&
2208 	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2209 		struct tcp_sock *tp = tcp_sk(sk);
2210 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2211 					  msecs_to_jiffies(10));
2212 
2213 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2214 					  delay, TCP_RTO_MAX);
2215 		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2216 		return true;
2217 	}
2218 	return false;
2219 }
2220 
2221 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2222  * counter when SACK is enabled (without SACK, sacked_out is used for
2223  * that purpose).
2224  *
2225  * With reordering, holes may still be in flight, so RFC3517 recovery
2226  * uses pure sacked_out (total number of SACKed segments) even though
2227  * it violates the RFC that uses duplicate ACKs, often these are equal
2228  * but when e.g. out-of-window ACKs or packet duplication occurs,
2229  * they differ. Since neither occurs due to loss, TCP should really
2230  * ignore them.
2231  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2232 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2233 {
2234 	return tp->sacked_out + 1;
2235 }
2236 
2237 /* Linux NewReno/SACK/ECN state machine.
2238  * --------------------------------------
2239  *
2240  * "Open"	Normal state, no dubious events, fast path.
2241  * "Disorder"   In all the respects it is "Open",
2242  *		but requires a bit more attention. It is entered when
2243  *		we see some SACKs or dupacks. It is split of "Open"
2244  *		mainly to move some processing from fast path to slow one.
2245  * "CWR"	CWND was reduced due to some Congestion Notification event.
2246  *		It can be ECN, ICMP source quench, local device congestion.
2247  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2248  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2249  *
2250  * tcp_fastretrans_alert() is entered:
2251  * - each incoming ACK, if state is not "Open"
2252  * - when arrived ACK is unusual, namely:
2253  *	* SACK
2254  *	* Duplicate ACK.
2255  *	* ECN ECE.
2256  *
2257  * Counting packets in flight is pretty simple.
2258  *
2259  *	in_flight = packets_out - left_out + retrans_out
2260  *
2261  *	packets_out is SND.NXT-SND.UNA counted in packets.
2262  *
2263  *	retrans_out is number of retransmitted segments.
2264  *
2265  *	left_out is number of segments left network, but not ACKed yet.
2266  *
2267  *		left_out = sacked_out + lost_out
2268  *
2269  *     sacked_out: Packets, which arrived to receiver out of order
2270  *		   and hence not ACKed. With SACKs this number is simply
2271  *		   amount of SACKed data. Even without SACKs
2272  *		   it is easy to give pretty reliable estimate of this number,
2273  *		   counting duplicate ACKs.
2274  *
2275  *       lost_out: Packets lost by network. TCP has no explicit
2276  *		   "loss notification" feedback from network (for now).
2277  *		   It means that this number can be only _guessed_.
2278  *		   Actually, it is the heuristics to predict lossage that
2279  *		   distinguishes different algorithms.
2280  *
2281  *	F.e. after RTO, when all the queue is considered as lost,
2282  *	lost_out = packets_out and in_flight = retrans_out.
2283  *
2284  *		Essentially, we have now a few algorithms detecting
2285  *		lost packets.
2286  *
2287  *		If the receiver supports SACK:
2288  *
2289  *		RFC6675/3517: It is the conventional algorithm. A packet is
2290  *		considered lost if the number of higher sequence packets
2291  *		SACKed is greater than or equal the DUPACK thoreshold
2292  *		(reordering). This is implemented in tcp_mark_head_lost and
2293  *		tcp_update_scoreboard.
2294  *
2295  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2296  *		(2017-) that checks timing instead of counting DUPACKs.
2297  *		Essentially a packet is considered lost if it's not S/ACKed
2298  *		after RTT + reordering_window, where both metrics are
2299  *		dynamically measured and adjusted. This is implemented in
2300  *		tcp_rack_mark_lost.
2301  *
2302  *		If the receiver does not support SACK:
2303  *
2304  *		NewReno (RFC6582): in Recovery we assume that one segment
2305  *		is lost (classic Reno). While we are in Recovery and
2306  *		a partial ACK arrives, we assume that one more packet
2307  *		is lost (NewReno). This heuristics are the same in NewReno
2308  *		and SACK.
2309  *
2310  * Really tricky (and requiring careful tuning) part of algorithm
2311  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2312  * The first determines the moment _when_ we should reduce CWND and,
2313  * hence, slow down forward transmission. In fact, it determines the moment
2314  * when we decide that hole is caused by loss, rather than by a reorder.
2315  *
2316  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2317  * holes, caused by lost packets.
2318  *
2319  * And the most logically complicated part of algorithm is undo
2320  * heuristics. We detect false retransmits due to both too early
2321  * fast retransmit (reordering) and underestimated RTO, analyzing
2322  * timestamps and D-SACKs. When we detect that some segments were
2323  * retransmitted by mistake and CWND reduction was wrong, we undo
2324  * window reduction and abort recovery phase. This logic is hidden
2325  * inside several functions named tcp_try_undo_<something>.
2326  */
2327 
2328 /* This function decides, when we should leave Disordered state
2329  * and enter Recovery phase, reducing congestion window.
2330  *
2331  * Main question: may we further continue forward transmission
2332  * with the same cwnd?
2333  */
tcp_time_to_recover(struct sock * sk,int flag)2334 static bool tcp_time_to_recover(struct sock *sk, int flag)
2335 {
2336 	struct tcp_sock *tp = tcp_sk(sk);
2337 
2338 	/* Trick#1: The loss is proven. */
2339 	if (tp->lost_out)
2340 		return true;
2341 
2342 	/* Not-A-Trick#2 : Classic rule... */
2343 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2344 		return true;
2345 
2346 	return false;
2347 }
2348 
2349 /* Detect loss in event "A" above by marking head of queue up as lost.
2350  * For RFC3517 SACK, a segment is considered lost if it
2351  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2352  * the maximum SACKed segments to pass before reaching this limit.
2353  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2354 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2355 {
2356 	struct tcp_sock *tp = tcp_sk(sk);
2357 	struct sk_buff *skb;
2358 	int cnt;
2359 	/* Use SACK to deduce losses of new sequences sent during recovery */
2360 	const u32 loss_high = tp->snd_nxt;
2361 
2362 	WARN_ON(packets > tp->packets_out);
2363 	skb = tp->lost_skb_hint;
2364 	if (skb) {
2365 		/* Head already handled? */
2366 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2367 			return;
2368 		cnt = tp->lost_cnt_hint;
2369 	} else {
2370 		skb = tcp_rtx_queue_head(sk);
2371 		cnt = 0;
2372 	}
2373 
2374 	skb_rbtree_walk_from(skb) {
2375 		/* TODO: do this better */
2376 		/* this is not the most efficient way to do this... */
2377 		tp->lost_skb_hint = skb;
2378 		tp->lost_cnt_hint = cnt;
2379 
2380 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2381 			break;
2382 
2383 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2384 			cnt += tcp_skb_pcount(skb);
2385 
2386 		if (cnt > packets)
2387 			break;
2388 
2389 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2390 			tcp_mark_skb_lost(sk, skb);
2391 
2392 		if (mark_head)
2393 			break;
2394 	}
2395 	tcp_verify_left_out(tp);
2396 }
2397 
2398 /* Account newly detected lost packet(s) */
2399 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2400 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2401 {
2402 	struct tcp_sock *tp = tcp_sk(sk);
2403 
2404 	if (tcp_is_sack(tp)) {
2405 		int sacked_upto = tp->sacked_out - tp->reordering;
2406 		if (sacked_upto >= 0)
2407 			tcp_mark_head_lost(sk, sacked_upto, 0);
2408 		else if (fast_rexmit)
2409 			tcp_mark_head_lost(sk, 1, 1);
2410 	}
2411 }
2412 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2413 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2414 {
2415 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2416 	       before(tp->rx_opt.rcv_tsecr, when);
2417 }
2418 
2419 /* skb is spurious retransmitted if the returned timestamp echo
2420  * reply is prior to the skb transmission time
2421  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2422 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2423 				     const struct sk_buff *skb)
2424 {
2425 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2426 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2427 }
2428 
2429 /* Nothing was retransmitted or returned timestamp is less
2430  * than timestamp of the first retransmission.
2431  */
tcp_packet_delayed(const struct tcp_sock * tp)2432 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2433 {
2434 	return tp->retrans_stamp &&
2435 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2436 }
2437 
2438 /* Undo procedures. */
2439 
2440 /* We can clear retrans_stamp when there are no retransmissions in the
2441  * window. It would seem that it is trivially available for us in
2442  * tp->retrans_out, however, that kind of assumptions doesn't consider
2443  * what will happen if errors occur when sending retransmission for the
2444  * second time. ...It could the that such segment has only
2445  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2446  * the head skb is enough except for some reneging corner cases that
2447  * are not worth the effort.
2448  *
2449  * Main reason for all this complexity is the fact that connection dying
2450  * time now depends on the validity of the retrans_stamp, in particular,
2451  * that successive retransmissions of a segment must not advance
2452  * retrans_stamp under any conditions.
2453  */
tcp_any_retrans_done(const struct sock * sk)2454 static bool tcp_any_retrans_done(const struct sock *sk)
2455 {
2456 	const struct tcp_sock *tp = tcp_sk(sk);
2457 	struct sk_buff *skb;
2458 
2459 	if (tp->retrans_out)
2460 		return true;
2461 
2462 	skb = tcp_rtx_queue_head(sk);
2463 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2464 		return true;
2465 
2466 	return false;
2467 }
2468 
DBGUNDO(struct sock * sk,const char * msg)2469 static void DBGUNDO(struct sock *sk, const char *msg)
2470 {
2471 #if FASTRETRANS_DEBUG > 1
2472 	struct tcp_sock *tp = tcp_sk(sk);
2473 	struct inet_sock *inet = inet_sk(sk);
2474 
2475 	if (sk->sk_family == AF_INET) {
2476 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2477 			 msg,
2478 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2479 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2480 			 tp->snd_ssthresh, tp->prior_ssthresh,
2481 			 tp->packets_out);
2482 	}
2483 #if IS_ENABLED(CONFIG_IPV6)
2484 	else if (sk->sk_family == AF_INET6) {
2485 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2486 			 msg,
2487 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2488 			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2489 			 tp->snd_ssthresh, tp->prior_ssthresh,
2490 			 tp->packets_out);
2491 	}
2492 #endif
2493 #endif
2494 }
2495 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2496 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2497 {
2498 	struct tcp_sock *tp = tcp_sk(sk);
2499 
2500 	if (unmark_loss) {
2501 		struct sk_buff *skb;
2502 
2503 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2504 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2505 		}
2506 		tp->lost_out = 0;
2507 		tcp_clear_all_retrans_hints(tp);
2508 	}
2509 
2510 	if (tp->prior_ssthresh) {
2511 		const struct inet_connection_sock *icsk = inet_csk(sk);
2512 
2513 		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2514 
2515 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2516 			tp->snd_ssthresh = tp->prior_ssthresh;
2517 			tcp_ecn_withdraw_cwr(tp);
2518 		}
2519 	}
2520 	tp->snd_cwnd_stamp = tcp_jiffies32;
2521 	tp->undo_marker = 0;
2522 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2523 }
2524 
tcp_may_undo(const struct tcp_sock * tp)2525 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2526 {
2527 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2528 }
2529 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2530 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2531 {
2532 	struct tcp_sock *tp = tcp_sk(sk);
2533 
2534 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2535 		/* Hold old state until something *above* high_seq
2536 		 * is ACKed. For Reno it is MUST to prevent false
2537 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2538 		if (!tcp_any_retrans_done(sk))
2539 			tp->retrans_stamp = 0;
2540 		return true;
2541 	}
2542 	return false;
2543 }
2544 
2545 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2546 static bool tcp_try_undo_recovery(struct sock *sk)
2547 {
2548 	struct tcp_sock *tp = tcp_sk(sk);
2549 
2550 	if (tcp_may_undo(tp)) {
2551 		int mib_idx;
2552 
2553 		/* Happy end! We did not retransmit anything
2554 		 * or our original transmission succeeded.
2555 		 */
2556 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2557 		tcp_undo_cwnd_reduction(sk, false);
2558 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2559 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2560 		else
2561 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2562 
2563 		NET_INC_STATS(sock_net(sk), mib_idx);
2564 	} else if (tp->rack.reo_wnd_persist) {
2565 		tp->rack.reo_wnd_persist--;
2566 	}
2567 	if (tcp_is_non_sack_preventing_reopen(sk))
2568 		return true;
2569 	tcp_set_ca_state(sk, TCP_CA_Open);
2570 	tp->is_sack_reneg = 0;
2571 	return false;
2572 }
2573 
2574 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2575 static bool tcp_try_undo_dsack(struct sock *sk)
2576 {
2577 	struct tcp_sock *tp = tcp_sk(sk);
2578 
2579 	if (tp->undo_marker && !tp->undo_retrans) {
2580 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2581 					       tp->rack.reo_wnd_persist + 1);
2582 		DBGUNDO(sk, "D-SACK");
2583 		tcp_undo_cwnd_reduction(sk, false);
2584 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2585 		return true;
2586 	}
2587 	return false;
2588 }
2589 
2590 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2591 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2592 {
2593 	struct tcp_sock *tp = tcp_sk(sk);
2594 
2595 	if (frto_undo || tcp_may_undo(tp)) {
2596 		tcp_undo_cwnd_reduction(sk, true);
2597 
2598 		DBGUNDO(sk, "partial loss");
2599 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2600 		if (frto_undo)
2601 			NET_INC_STATS(sock_net(sk),
2602 					LINUX_MIB_TCPSPURIOUSRTOS);
2603 		inet_csk(sk)->icsk_retransmits = 0;
2604 		if (tcp_is_non_sack_preventing_reopen(sk))
2605 			return true;
2606 		if (frto_undo || tcp_is_sack(tp)) {
2607 			tcp_set_ca_state(sk, TCP_CA_Open);
2608 			tp->is_sack_reneg = 0;
2609 		}
2610 		return true;
2611 	}
2612 	return false;
2613 }
2614 
2615 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2616  * It computes the number of packets to send (sndcnt) based on packets newly
2617  * delivered:
2618  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2619  *	cwnd reductions across a full RTT.
2620  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2621  *      But when SND_UNA is acked without further losses,
2622  *      slow starts cwnd up to ssthresh to speed up the recovery.
2623  */
tcp_init_cwnd_reduction(struct sock * sk)2624 static void tcp_init_cwnd_reduction(struct sock *sk)
2625 {
2626 	struct tcp_sock *tp = tcp_sk(sk);
2627 
2628 	tp->high_seq = tp->snd_nxt;
2629 	tp->tlp_high_seq = 0;
2630 	tp->snd_cwnd_cnt = 0;
2631 	tp->prior_cwnd = tcp_snd_cwnd(tp);
2632 	tp->prr_delivered = 0;
2633 	tp->prr_out = 0;
2634 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2635 	tcp_ecn_queue_cwr(tp);
2636 }
2637 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2638 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2639 {
2640 	struct tcp_sock *tp = tcp_sk(sk);
2641 	int sndcnt = 0;
2642 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2643 
2644 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2645 		return;
2646 
2647 	tp->prr_delivered += newly_acked_sacked;
2648 	if (delta < 0) {
2649 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2650 			       tp->prior_cwnd - 1;
2651 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2652 	} else {
2653 		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2654 			       newly_acked_sacked);
2655 		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2656 			sndcnt++;
2657 		sndcnt = min(delta, sndcnt);
2658 	}
2659 	/* Force a fast retransmit upon entering fast recovery */
2660 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2661 	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2662 }
2663 
tcp_end_cwnd_reduction(struct sock * sk)2664 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2665 {
2666 	struct tcp_sock *tp = tcp_sk(sk);
2667 
2668 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2669 		return;
2670 
2671 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2672 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2673 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2674 		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2675 		tp->snd_cwnd_stamp = tcp_jiffies32;
2676 	}
2677 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2678 }
2679 
2680 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2681 void tcp_enter_cwr(struct sock *sk)
2682 {
2683 	struct tcp_sock *tp = tcp_sk(sk);
2684 
2685 	tp->prior_ssthresh = 0;
2686 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2687 		tp->undo_marker = 0;
2688 		tcp_init_cwnd_reduction(sk);
2689 		tcp_set_ca_state(sk, TCP_CA_CWR);
2690 	}
2691 }
2692 EXPORT_SYMBOL(tcp_enter_cwr);
2693 
tcp_try_keep_open(struct sock * sk)2694 static void tcp_try_keep_open(struct sock *sk)
2695 {
2696 	struct tcp_sock *tp = tcp_sk(sk);
2697 	int state = TCP_CA_Open;
2698 
2699 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2700 		state = TCP_CA_Disorder;
2701 
2702 	if (inet_csk(sk)->icsk_ca_state != state) {
2703 		tcp_set_ca_state(sk, state);
2704 		tp->high_seq = tp->snd_nxt;
2705 	}
2706 }
2707 
tcp_try_to_open(struct sock * sk,int flag)2708 static void tcp_try_to_open(struct sock *sk, int flag)
2709 {
2710 	struct tcp_sock *tp = tcp_sk(sk);
2711 
2712 	tcp_verify_left_out(tp);
2713 
2714 	if (!tcp_any_retrans_done(sk))
2715 		tp->retrans_stamp = 0;
2716 
2717 	if (flag & FLAG_ECE)
2718 		tcp_enter_cwr(sk);
2719 
2720 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2721 		tcp_try_keep_open(sk);
2722 	}
2723 }
2724 
tcp_mtup_probe_failed(struct sock * sk)2725 static void tcp_mtup_probe_failed(struct sock *sk)
2726 {
2727 	struct inet_connection_sock *icsk = inet_csk(sk);
2728 
2729 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2730 	icsk->icsk_mtup.probe_size = 0;
2731 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2732 }
2733 
tcp_mtup_probe_success(struct sock * sk)2734 static void tcp_mtup_probe_success(struct sock *sk)
2735 {
2736 	struct tcp_sock *tp = tcp_sk(sk);
2737 	struct inet_connection_sock *icsk = inet_csk(sk);
2738 	u64 val;
2739 
2740 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2741 
2742 	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2743 	do_div(val, icsk->icsk_mtup.probe_size);
2744 	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2745 	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2746 
2747 	tp->snd_cwnd_cnt = 0;
2748 	tp->snd_cwnd_stamp = tcp_jiffies32;
2749 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2750 
2751 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2752 	icsk->icsk_mtup.probe_size = 0;
2753 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2754 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2755 }
2756 
2757 /* Do a simple retransmit without using the backoff mechanisms in
2758  * tcp_timer. This is used for path mtu discovery.
2759  * The socket is already locked here.
2760  */
tcp_simple_retransmit(struct sock * sk)2761 void tcp_simple_retransmit(struct sock *sk)
2762 {
2763 	const struct inet_connection_sock *icsk = inet_csk(sk);
2764 	struct tcp_sock *tp = tcp_sk(sk);
2765 	struct sk_buff *skb;
2766 	int mss;
2767 
2768 	/* A fastopen SYN request is stored as two separate packets within
2769 	 * the retransmit queue, this is done by tcp_send_syn_data().
2770 	 * As a result simply checking the MSS of the frames in the queue
2771 	 * will not work for the SYN packet.
2772 	 *
2773 	 * Us being here is an indication of a path MTU issue so we can
2774 	 * assume that the fastopen SYN was lost and just mark all the
2775 	 * frames in the retransmit queue as lost. We will use an MSS of
2776 	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2777 	 */
2778 	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2779 		mss = -1;
2780 	else
2781 		mss = tcp_current_mss(sk);
2782 
2783 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2784 		if (tcp_skb_seglen(skb) > mss)
2785 			tcp_mark_skb_lost(sk, skb);
2786 	}
2787 
2788 	tcp_clear_retrans_hints_partial(tp);
2789 
2790 	if (!tp->lost_out)
2791 		return;
2792 
2793 	if (tcp_is_reno(tp))
2794 		tcp_limit_reno_sacked(tp);
2795 
2796 	tcp_verify_left_out(tp);
2797 
2798 	/* Don't muck with the congestion window here.
2799 	 * Reason is that we do not increase amount of _data_
2800 	 * in network, but units changed and effective
2801 	 * cwnd/ssthresh really reduced now.
2802 	 */
2803 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2804 		tp->high_seq = tp->snd_nxt;
2805 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2806 		tp->prior_ssthresh = 0;
2807 		tp->undo_marker = 0;
2808 		tcp_set_ca_state(sk, TCP_CA_Loss);
2809 	}
2810 	tcp_xmit_retransmit_queue(sk);
2811 }
2812 EXPORT_SYMBOL(tcp_simple_retransmit);
2813 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2814 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2815 {
2816 	struct tcp_sock *tp = tcp_sk(sk);
2817 	int mib_idx;
2818 
2819 	if (tcp_is_reno(tp))
2820 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2821 	else
2822 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2823 
2824 	NET_INC_STATS(sock_net(sk), mib_idx);
2825 
2826 	tp->prior_ssthresh = 0;
2827 	tcp_init_undo(tp);
2828 
2829 	if (!tcp_in_cwnd_reduction(sk)) {
2830 		if (!ece_ack)
2831 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2832 		tcp_init_cwnd_reduction(sk);
2833 	}
2834 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2835 }
2836 
2837 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2838  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2839  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2840 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2841 			     int *rexmit)
2842 {
2843 	struct tcp_sock *tp = tcp_sk(sk);
2844 	bool recovered = !before(tp->snd_una, tp->high_seq);
2845 
2846 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2847 	    tcp_try_undo_loss(sk, false))
2848 		return;
2849 
2850 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2851 		/* Step 3.b. A timeout is spurious if not all data are
2852 		 * lost, i.e., never-retransmitted data are (s)acked.
2853 		 */
2854 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2855 		    tcp_try_undo_loss(sk, true))
2856 			return;
2857 
2858 		if (after(tp->snd_nxt, tp->high_seq)) {
2859 			if (flag & FLAG_DATA_SACKED || num_dupack)
2860 				tp->frto = 0; /* Step 3.a. loss was real */
2861 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2862 			tp->high_seq = tp->snd_nxt;
2863 			/* Step 2.b. Try send new data (but deferred until cwnd
2864 			 * is updated in tcp_ack()). Otherwise fall back to
2865 			 * the conventional recovery.
2866 			 */
2867 			if (!tcp_write_queue_empty(sk) &&
2868 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2869 				*rexmit = REXMIT_NEW;
2870 				return;
2871 			}
2872 			tp->frto = 0;
2873 		}
2874 	}
2875 
2876 	if (recovered) {
2877 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2878 		tcp_try_undo_recovery(sk);
2879 		return;
2880 	}
2881 	if (tcp_is_reno(tp)) {
2882 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2883 		 * delivered. Lower inflight to clock out (re)tranmissions.
2884 		 */
2885 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2886 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2887 		else if (flag & FLAG_SND_UNA_ADVANCED)
2888 			tcp_reset_reno_sack(tp);
2889 	}
2890 	*rexmit = REXMIT_LOST;
2891 }
2892 
tcp_force_fast_retransmit(struct sock * sk)2893 static bool tcp_force_fast_retransmit(struct sock *sk)
2894 {
2895 	struct tcp_sock *tp = tcp_sk(sk);
2896 
2897 	return after(tcp_highest_sack_seq(tp),
2898 		     tp->snd_una + tp->reordering * tp->mss_cache);
2899 }
2900 
2901 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2902 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2903 				 bool *do_lost)
2904 {
2905 	struct tcp_sock *tp = tcp_sk(sk);
2906 
2907 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2908 		/* Plain luck! Hole if filled with delayed
2909 		 * packet, rather than with a retransmit. Check reordering.
2910 		 */
2911 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2912 
2913 		/* We are getting evidence that the reordering degree is higher
2914 		 * than we realized. If there are no retransmits out then we
2915 		 * can undo. Otherwise we clock out new packets but do not
2916 		 * mark more packets lost or retransmit more.
2917 		 */
2918 		if (tp->retrans_out)
2919 			return true;
2920 
2921 		if (!tcp_any_retrans_done(sk))
2922 			tp->retrans_stamp = 0;
2923 
2924 		DBGUNDO(sk, "partial recovery");
2925 		tcp_undo_cwnd_reduction(sk, true);
2926 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2927 		tcp_try_keep_open(sk);
2928 	} else {
2929 		/* Partial ACK arrived. Force fast retransmit. */
2930 		*do_lost = tcp_force_fast_retransmit(sk);
2931 	}
2932 	return false;
2933 }
2934 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2935 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2936 {
2937 	struct tcp_sock *tp = tcp_sk(sk);
2938 
2939 	if (tcp_rtx_queue_empty(sk))
2940 		return;
2941 
2942 	if (unlikely(tcp_is_reno(tp))) {
2943 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2944 	} else if (tcp_is_rack(sk)) {
2945 		u32 prior_retrans = tp->retrans_out;
2946 
2947 		if (tcp_rack_mark_lost(sk))
2948 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2949 		if (prior_retrans > tp->retrans_out)
2950 			*ack_flag |= FLAG_LOST_RETRANS;
2951 	}
2952 }
2953 
2954 /* Process an event, which can update packets-in-flight not trivially.
2955  * Main goal of this function is to calculate new estimate for left_out,
2956  * taking into account both packets sitting in receiver's buffer and
2957  * packets lost by network.
2958  *
2959  * Besides that it updates the congestion state when packet loss or ECN
2960  * is detected. But it does not reduce the cwnd, it is done by the
2961  * congestion control later.
2962  *
2963  * It does _not_ decide what to send, it is made in function
2964  * tcp_xmit_retransmit_queue().
2965  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2966 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2967 				  int num_dupack, int *ack_flag, int *rexmit)
2968 {
2969 	struct inet_connection_sock *icsk = inet_csk(sk);
2970 	struct tcp_sock *tp = tcp_sk(sk);
2971 	int fast_rexmit = 0, flag = *ack_flag;
2972 	bool ece_ack = flag & FLAG_ECE;
2973 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2974 				      tcp_force_fast_retransmit(sk));
2975 
2976 	if (!tp->packets_out && tp->sacked_out)
2977 		tp->sacked_out = 0;
2978 
2979 	/* Now state machine starts.
2980 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2981 	if (ece_ack)
2982 		tp->prior_ssthresh = 0;
2983 
2984 	/* B. In all the states check for reneging SACKs. */
2985 	if (tcp_check_sack_reneging(sk, ack_flag))
2986 		return;
2987 
2988 	/* C. Check consistency of the current state. */
2989 	tcp_verify_left_out(tp);
2990 
2991 	/* D. Check state exit conditions. State can be terminated
2992 	 *    when high_seq is ACKed. */
2993 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2994 		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2995 		tp->retrans_stamp = 0;
2996 	} else if (!before(tp->snd_una, tp->high_seq)) {
2997 		switch (icsk->icsk_ca_state) {
2998 		case TCP_CA_CWR:
2999 			/* CWR is to be held something *above* high_seq
3000 			 * is ACKed for CWR bit to reach receiver. */
3001 			if (tp->snd_una != tp->high_seq) {
3002 				tcp_end_cwnd_reduction(sk);
3003 				tcp_set_ca_state(sk, TCP_CA_Open);
3004 			}
3005 			break;
3006 
3007 		case TCP_CA_Recovery:
3008 			if (tcp_is_reno(tp))
3009 				tcp_reset_reno_sack(tp);
3010 			if (tcp_try_undo_recovery(sk))
3011 				return;
3012 			tcp_end_cwnd_reduction(sk);
3013 			break;
3014 		}
3015 	}
3016 
3017 	/* E. Process state. */
3018 	switch (icsk->icsk_ca_state) {
3019 	case TCP_CA_Recovery:
3020 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3021 			if (tcp_is_reno(tp))
3022 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3023 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3024 			return;
3025 
3026 		if (tcp_try_undo_dsack(sk))
3027 			tcp_try_keep_open(sk);
3028 
3029 		tcp_identify_packet_loss(sk, ack_flag);
3030 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3031 			if (!tcp_time_to_recover(sk, flag))
3032 				return;
3033 			/* Undo reverts the recovery state. If loss is evident,
3034 			 * starts a new recovery (e.g. reordering then loss);
3035 			 */
3036 			tcp_enter_recovery(sk, ece_ack);
3037 		}
3038 		break;
3039 	case TCP_CA_Loss:
3040 		tcp_process_loss(sk, flag, num_dupack, rexmit);
3041 		tcp_identify_packet_loss(sk, ack_flag);
3042 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3043 		      (*ack_flag & FLAG_LOST_RETRANS)))
3044 			return;
3045 		/* Change state if cwnd is undone or retransmits are lost */
3046 		fallthrough;
3047 	default:
3048 		if (tcp_is_reno(tp)) {
3049 			if (flag & FLAG_SND_UNA_ADVANCED)
3050 				tcp_reset_reno_sack(tp);
3051 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3052 		}
3053 
3054 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3055 			tcp_try_undo_dsack(sk);
3056 
3057 		tcp_identify_packet_loss(sk, ack_flag);
3058 		if (!tcp_time_to_recover(sk, flag)) {
3059 			tcp_try_to_open(sk, flag);
3060 			return;
3061 		}
3062 
3063 		/* MTU probe failure: don't reduce cwnd */
3064 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3065 		    icsk->icsk_mtup.probe_size &&
3066 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3067 			tcp_mtup_probe_failed(sk);
3068 			/* Restores the reduction we did in tcp_mtup_probe() */
3069 			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3070 			tcp_simple_retransmit(sk);
3071 			return;
3072 		}
3073 
3074 		/* Otherwise enter Recovery state */
3075 		tcp_enter_recovery(sk, ece_ack);
3076 		fast_rexmit = 1;
3077 	}
3078 
3079 	if (!tcp_is_rack(sk) && do_lost)
3080 		tcp_update_scoreboard(sk, fast_rexmit);
3081 	*rexmit = REXMIT_LOST;
3082 }
3083 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3084 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3085 {
3086 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3087 	struct tcp_sock *tp = tcp_sk(sk);
3088 
3089 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3090 		/* If the remote keeps returning delayed ACKs, eventually
3091 		 * the min filter would pick it up and overestimate the
3092 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3093 		 */
3094 		return;
3095 	}
3096 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3097 			   rtt_us ? : jiffies_to_usecs(1));
3098 }
3099 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3100 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3101 			       long seq_rtt_us, long sack_rtt_us,
3102 			       long ca_rtt_us, struct rate_sample *rs)
3103 {
3104 	const struct tcp_sock *tp = tcp_sk(sk);
3105 
3106 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3107 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3108 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3109 	 * is acked (RFC6298).
3110 	 */
3111 	if (seq_rtt_us < 0)
3112 		seq_rtt_us = sack_rtt_us;
3113 
3114 	/* RTTM Rule: A TSecr value received in a segment is used to
3115 	 * update the averaged RTT measurement only if the segment
3116 	 * acknowledges some new data, i.e., only if it advances the
3117 	 * left edge of the send window.
3118 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3119 	 */
3120 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3121 	    flag & FLAG_ACKED) {
3122 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3123 
3124 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3125 			if (!delta)
3126 				delta = 1;
3127 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3128 			ca_rtt_us = seq_rtt_us;
3129 		}
3130 	}
3131 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3132 	if (seq_rtt_us < 0)
3133 		return false;
3134 
3135 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3136 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3137 	 * values will be skipped with the seq_rtt_us < 0 check above.
3138 	 */
3139 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3140 	tcp_rtt_estimator(sk, seq_rtt_us);
3141 	tcp_set_rto(sk);
3142 
3143 	/* RFC6298: only reset backoff on valid RTT measurement. */
3144 	inet_csk(sk)->icsk_backoff = 0;
3145 	return true;
3146 }
3147 
3148 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3149 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3150 {
3151 	struct rate_sample rs;
3152 	long rtt_us = -1L;
3153 
3154 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3155 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3156 
3157 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3158 }
3159 
3160 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3161 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3162 {
3163 	const struct inet_connection_sock *icsk = inet_csk(sk);
3164 
3165 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3166 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3167 }
3168 
3169 /* Restart timer after forward progress on connection.
3170  * RFC2988 recommends to restart timer to now+rto.
3171  */
tcp_rearm_rto(struct sock * sk)3172 void tcp_rearm_rto(struct sock *sk)
3173 {
3174 	const struct inet_connection_sock *icsk = inet_csk(sk);
3175 	struct tcp_sock *tp = tcp_sk(sk);
3176 
3177 	/* If the retrans timer is currently being used by Fast Open
3178 	 * for SYN-ACK retrans purpose, stay put.
3179 	 */
3180 	if (rcu_access_pointer(tp->fastopen_rsk))
3181 		return;
3182 
3183 	if (!tp->packets_out) {
3184 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3185 	} else {
3186 		u32 rto = inet_csk(sk)->icsk_rto;
3187 		/* Offset the time elapsed after installing regular RTO */
3188 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3189 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3190 			s64 delta_us = tcp_rto_delta_us(sk);
3191 			/* delta_us may not be positive if the socket is locked
3192 			 * when the retrans timer fires and is rescheduled.
3193 			 */
3194 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3195 		}
3196 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3197 				     TCP_RTO_MAX);
3198 	}
3199 }
3200 
3201 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3202 static void tcp_set_xmit_timer(struct sock *sk)
3203 {
3204 	if (!tcp_schedule_loss_probe(sk, true))
3205 		tcp_rearm_rto(sk);
3206 }
3207 
3208 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3209 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3210 {
3211 	struct tcp_sock *tp = tcp_sk(sk);
3212 	u32 packets_acked;
3213 
3214 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3215 
3216 	packets_acked = tcp_skb_pcount(skb);
3217 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3218 		return 0;
3219 	packets_acked -= tcp_skb_pcount(skb);
3220 
3221 	if (packets_acked) {
3222 		BUG_ON(tcp_skb_pcount(skb) == 0);
3223 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3224 	}
3225 
3226 	return packets_acked;
3227 }
3228 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3229 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3230 			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3231 {
3232 	const struct skb_shared_info *shinfo;
3233 
3234 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3235 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3236 		return;
3237 
3238 	shinfo = skb_shinfo(skb);
3239 	if (!before(shinfo->tskey, prior_snd_una) &&
3240 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3241 		tcp_skb_tsorted_save(skb) {
3242 			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3243 		} tcp_skb_tsorted_restore(skb);
3244 	}
3245 }
3246 
3247 /* Remove acknowledged frames from the retransmission queue. If our packet
3248  * is before the ack sequence we can discard it as it's confirmed to have
3249  * arrived at the other end.
3250  */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3251 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3252 			       u32 prior_fack, u32 prior_snd_una,
3253 			       struct tcp_sacktag_state *sack, bool ece_ack)
3254 {
3255 	const struct inet_connection_sock *icsk = inet_csk(sk);
3256 	u64 first_ackt, last_ackt;
3257 	struct tcp_sock *tp = tcp_sk(sk);
3258 	u32 prior_sacked = tp->sacked_out;
3259 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3260 	struct sk_buff *skb, *next;
3261 	bool fully_acked = true;
3262 	long sack_rtt_us = -1L;
3263 	long seq_rtt_us = -1L;
3264 	long ca_rtt_us = -1L;
3265 	u32 pkts_acked = 0;
3266 	bool rtt_update;
3267 	int flag = 0;
3268 
3269 	first_ackt = 0;
3270 
3271 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3272 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3273 		const u32 start_seq = scb->seq;
3274 		u8 sacked = scb->sacked;
3275 		u32 acked_pcount;
3276 
3277 		/* Determine how many packets and what bytes were acked, tso and else */
3278 		if (after(scb->end_seq, tp->snd_una)) {
3279 			if (tcp_skb_pcount(skb) == 1 ||
3280 			    !after(tp->snd_una, scb->seq))
3281 				break;
3282 
3283 			acked_pcount = tcp_tso_acked(sk, skb);
3284 			if (!acked_pcount)
3285 				break;
3286 			fully_acked = false;
3287 		} else {
3288 			acked_pcount = tcp_skb_pcount(skb);
3289 		}
3290 
3291 		if (unlikely(sacked & TCPCB_RETRANS)) {
3292 			if (sacked & TCPCB_SACKED_RETRANS)
3293 				tp->retrans_out -= acked_pcount;
3294 			flag |= FLAG_RETRANS_DATA_ACKED;
3295 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3296 			last_ackt = tcp_skb_timestamp_us(skb);
3297 			WARN_ON_ONCE(last_ackt == 0);
3298 			if (!first_ackt)
3299 				first_ackt = last_ackt;
3300 
3301 			if (before(start_seq, reord))
3302 				reord = start_seq;
3303 			if (!after(scb->end_seq, tp->high_seq))
3304 				flag |= FLAG_ORIG_SACK_ACKED;
3305 		}
3306 
3307 		if (sacked & TCPCB_SACKED_ACKED) {
3308 			tp->sacked_out -= acked_pcount;
3309 		} else if (tcp_is_sack(tp)) {
3310 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3311 			if (!tcp_skb_spurious_retrans(tp, skb))
3312 				tcp_rack_advance(tp, sacked, scb->end_seq,
3313 						 tcp_skb_timestamp_us(skb));
3314 		}
3315 		if (sacked & TCPCB_LOST)
3316 			tp->lost_out -= acked_pcount;
3317 
3318 		tp->packets_out -= acked_pcount;
3319 		pkts_acked += acked_pcount;
3320 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3321 
3322 		/* Initial outgoing SYN's get put onto the write_queue
3323 		 * just like anything else we transmit.  It is not
3324 		 * true data, and if we misinform our callers that
3325 		 * this ACK acks real data, we will erroneously exit
3326 		 * connection startup slow start one packet too
3327 		 * quickly.  This is severely frowned upon behavior.
3328 		 */
3329 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3330 			flag |= FLAG_DATA_ACKED;
3331 		} else {
3332 			flag |= FLAG_SYN_ACKED;
3333 			tp->retrans_stamp = 0;
3334 		}
3335 
3336 		if (!fully_acked)
3337 			break;
3338 
3339 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3340 
3341 		next = skb_rb_next(skb);
3342 		if (unlikely(skb == tp->retransmit_skb_hint))
3343 			tp->retransmit_skb_hint = NULL;
3344 		if (unlikely(skb == tp->lost_skb_hint))
3345 			tp->lost_skb_hint = NULL;
3346 		tcp_highest_sack_replace(sk, skb, next);
3347 		tcp_rtx_queue_unlink_and_free(skb, sk);
3348 	}
3349 
3350 	if (!skb)
3351 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3352 
3353 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3354 		tp->snd_up = tp->snd_una;
3355 
3356 	if (skb) {
3357 		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3358 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3359 			flag |= FLAG_SACK_RENEGING;
3360 	}
3361 
3362 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3363 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3364 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3365 
3366 		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3367 		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3368 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3369 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3370 			/* Conservatively mark a delayed ACK. It's typically
3371 			 * from a lone runt packet over the round trip to
3372 			 * a receiver w/o out-of-order or CE events.
3373 			 */
3374 			flag |= FLAG_ACK_MAYBE_DELAYED;
3375 		}
3376 	}
3377 	if (sack->first_sackt) {
3378 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3379 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3380 	}
3381 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3382 					ca_rtt_us, sack->rate);
3383 
3384 	if (flag & FLAG_ACKED) {
3385 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3386 		if (unlikely(icsk->icsk_mtup.probe_size &&
3387 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3388 			tcp_mtup_probe_success(sk);
3389 		}
3390 
3391 		if (tcp_is_reno(tp)) {
3392 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3393 
3394 			/* If any of the cumulatively ACKed segments was
3395 			 * retransmitted, non-SACK case cannot confirm that
3396 			 * progress was due to original transmission due to
3397 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3398 			 * the packets may have been never retransmitted.
3399 			 */
3400 			if (flag & FLAG_RETRANS_DATA_ACKED)
3401 				flag &= ~FLAG_ORIG_SACK_ACKED;
3402 		} else {
3403 			int delta;
3404 
3405 			/* Non-retransmitted hole got filled? That's reordering */
3406 			if (before(reord, prior_fack))
3407 				tcp_check_sack_reordering(sk, reord, 0);
3408 
3409 			delta = prior_sacked - tp->sacked_out;
3410 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3411 		}
3412 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3413 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3414 						    tcp_skb_timestamp_us(skb))) {
3415 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3416 		 * after when the head was last (re)transmitted. Otherwise the
3417 		 * timeout may continue to extend in loss recovery.
3418 		 */
3419 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3420 	}
3421 
3422 	if (icsk->icsk_ca_ops->pkts_acked) {
3423 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3424 					     .rtt_us = sack->rate->rtt_us };
3425 
3426 		sample.in_flight = tp->mss_cache *
3427 			(tp->delivered - sack->rate->prior_delivered);
3428 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3429 	}
3430 
3431 #if FASTRETRANS_DEBUG > 0
3432 	WARN_ON((int)tp->sacked_out < 0);
3433 	WARN_ON((int)tp->lost_out < 0);
3434 	WARN_ON((int)tp->retrans_out < 0);
3435 	if (!tp->packets_out && tcp_is_sack(tp)) {
3436 		icsk = inet_csk(sk);
3437 		if (tp->lost_out) {
3438 			pr_debug("Leak l=%u %d\n",
3439 				 tp->lost_out, icsk->icsk_ca_state);
3440 			tp->lost_out = 0;
3441 		}
3442 		if (tp->sacked_out) {
3443 			pr_debug("Leak s=%u %d\n",
3444 				 tp->sacked_out, icsk->icsk_ca_state);
3445 			tp->sacked_out = 0;
3446 		}
3447 		if (tp->retrans_out) {
3448 			pr_debug("Leak r=%u %d\n",
3449 				 tp->retrans_out, icsk->icsk_ca_state);
3450 			tp->retrans_out = 0;
3451 		}
3452 	}
3453 #endif
3454 	return flag;
3455 }
3456 
tcp_ack_probe(struct sock * sk)3457 static void tcp_ack_probe(struct sock *sk)
3458 {
3459 	struct inet_connection_sock *icsk = inet_csk(sk);
3460 	struct sk_buff *head = tcp_send_head(sk);
3461 	const struct tcp_sock *tp = tcp_sk(sk);
3462 
3463 	/* Was it a usable window open? */
3464 	if (!head)
3465 		return;
3466 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3467 		icsk->icsk_backoff = 0;
3468 		icsk->icsk_probes_tstamp = 0;
3469 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3470 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3471 		 * This function is not for random using!
3472 		 */
3473 	} else {
3474 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3475 
3476 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3477 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3478 	}
3479 }
3480 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3481 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3482 {
3483 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3484 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3485 }
3486 
3487 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3488 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3489 {
3490 	/* If reordering is high then always grow cwnd whenever data is
3491 	 * delivered regardless of its ordering. Otherwise stay conservative
3492 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3493 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3494 	 * cwnd in tcp_fastretrans_alert() based on more states.
3495 	 */
3496 	if (tcp_sk(sk)->reordering >
3497 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3498 		return flag & FLAG_FORWARD_PROGRESS;
3499 
3500 	return flag & FLAG_DATA_ACKED;
3501 }
3502 
3503 /* The "ultimate" congestion control function that aims to replace the rigid
3504  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3505  * It's called toward the end of processing an ACK with precise rate
3506  * information. All transmission or retransmission are delayed afterwards.
3507  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3508 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3509 			     int flag, const struct rate_sample *rs)
3510 {
3511 	const struct inet_connection_sock *icsk = inet_csk(sk);
3512 
3513 	if (icsk->icsk_ca_ops->cong_control) {
3514 		icsk->icsk_ca_ops->cong_control(sk, rs);
3515 		return;
3516 	}
3517 
3518 	if (tcp_in_cwnd_reduction(sk)) {
3519 		/* Reduce cwnd if state mandates */
3520 		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3521 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3522 		/* Advance cwnd if state allows */
3523 		tcp_cong_avoid(sk, ack, acked_sacked);
3524 	}
3525 	tcp_update_pacing_rate(sk);
3526 }
3527 
3528 /* Check that window update is acceptable.
3529  * The function assumes that snd_una<=ack<=snd_next.
3530  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3531 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3532 					const u32 ack, const u32 ack_seq,
3533 					const u32 nwin)
3534 {
3535 	return	after(ack, tp->snd_una) ||
3536 		after(ack_seq, tp->snd_wl1) ||
3537 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3538 }
3539 
3540 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3541 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3542 {
3543 	u32 delta = ack - tp->snd_una;
3544 
3545 	sock_owned_by_me((struct sock *)tp);
3546 	tp->bytes_acked += delta;
3547 	tp->snd_una = ack;
3548 }
3549 
3550 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3551 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3552 {
3553 	u32 delta = seq - tp->rcv_nxt;
3554 
3555 	sock_owned_by_me((struct sock *)tp);
3556 	tp->bytes_received += delta;
3557 	WRITE_ONCE(tp->rcv_nxt, seq);
3558 }
3559 
3560 /* Update our send window.
3561  *
3562  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3563  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3564  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3565 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3566 				 u32 ack_seq)
3567 {
3568 	struct tcp_sock *tp = tcp_sk(sk);
3569 	int flag = 0;
3570 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3571 
3572 	if (likely(!tcp_hdr(skb)->syn))
3573 		nwin <<= tp->rx_opt.snd_wscale;
3574 
3575 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3576 		flag |= FLAG_WIN_UPDATE;
3577 		tcp_update_wl(tp, ack_seq);
3578 
3579 		if (tp->snd_wnd != nwin) {
3580 			tp->snd_wnd = nwin;
3581 
3582 			/* Note, it is the only place, where
3583 			 * fast path is recovered for sending TCP.
3584 			 */
3585 			tp->pred_flags = 0;
3586 			tcp_fast_path_check(sk);
3587 
3588 			if (!tcp_write_queue_empty(sk))
3589 				tcp_slow_start_after_idle_check(sk);
3590 
3591 			if (nwin > tp->max_window) {
3592 				tp->max_window = nwin;
3593 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3594 			}
3595 		}
3596 	}
3597 
3598 	tcp_snd_una_update(tp, ack);
3599 
3600 	return flag;
3601 }
3602 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3603 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3604 				   u32 *last_oow_ack_time)
3605 {
3606 	/* Paired with the WRITE_ONCE() in this function. */
3607 	u32 val = READ_ONCE(*last_oow_ack_time);
3608 
3609 	if (val) {
3610 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3611 
3612 		if (0 <= elapsed &&
3613 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3614 			NET_INC_STATS(net, mib_idx);
3615 			return true;	/* rate-limited: don't send yet! */
3616 		}
3617 	}
3618 
3619 	/* Paired with the prior READ_ONCE() and with itself,
3620 	 * as we might be lockless.
3621 	 */
3622 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3623 
3624 	return false;	/* not rate-limited: go ahead, send dupack now! */
3625 }
3626 
3627 /* Return true if we're currently rate-limiting out-of-window ACKs and
3628  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3629  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3630  * attacks that send repeated SYNs or ACKs for the same connection. To
3631  * do this, we do not send a duplicate SYNACK or ACK if the remote
3632  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3633  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3634 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3635 			  int mib_idx, u32 *last_oow_ack_time)
3636 {
3637 	/* Data packets without SYNs are not likely part of an ACK loop. */
3638 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3639 	    !tcp_hdr(skb)->syn)
3640 		return false;
3641 
3642 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3643 }
3644 
3645 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3646 static void tcp_send_challenge_ack(struct sock *sk)
3647 {
3648 	struct tcp_sock *tp = tcp_sk(sk);
3649 	struct net *net = sock_net(sk);
3650 	u32 count, now, ack_limit;
3651 
3652 	/* First check our per-socket dupack rate limit. */
3653 	if (__tcp_oow_rate_limited(net,
3654 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3655 				   &tp->last_oow_ack_time))
3656 		return;
3657 
3658 	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3659 	if (ack_limit == INT_MAX)
3660 		goto send_ack;
3661 
3662 	/* Then check host-wide RFC 5961 rate limit. */
3663 	now = jiffies / HZ;
3664 	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3665 		u32 half = (ack_limit + 1) >> 1;
3666 
3667 		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3668 		WRITE_ONCE(net->ipv4.tcp_challenge_count, half + prandom_u32_max(ack_limit));
3669 	}
3670 	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3671 	if (count > 0) {
3672 		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3673 send_ack:
3674 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3675 		tcp_send_ack(sk);
3676 	}
3677 }
3678 
tcp_store_ts_recent(struct tcp_sock * tp)3679 static void tcp_store_ts_recent(struct tcp_sock *tp)
3680 {
3681 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3682 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3683 }
3684 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3685 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3686 {
3687 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3688 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3689 		 * extra check below makes sure this can only happen
3690 		 * for pure ACK frames.  -DaveM
3691 		 *
3692 		 * Not only, also it occurs for expired timestamps.
3693 		 */
3694 
3695 		if (tcp_paws_check(&tp->rx_opt, 0))
3696 			tcp_store_ts_recent(tp);
3697 	}
3698 }
3699 
3700 /* This routine deals with acks during a TLP episode and ends an episode by
3701  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3702  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3703 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3704 {
3705 	struct tcp_sock *tp = tcp_sk(sk);
3706 
3707 	if (before(ack, tp->tlp_high_seq))
3708 		return;
3709 
3710 	if (!tp->tlp_retrans) {
3711 		/* TLP of new data has been acknowledged */
3712 		tp->tlp_high_seq = 0;
3713 	} else if (flag & FLAG_DSACK_TLP) {
3714 		/* This DSACK means original and TLP probe arrived; no loss */
3715 		tp->tlp_high_seq = 0;
3716 	} else if (after(ack, tp->tlp_high_seq)) {
3717 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3718 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3719 		 */
3720 		tcp_init_cwnd_reduction(sk);
3721 		tcp_set_ca_state(sk, TCP_CA_CWR);
3722 		tcp_end_cwnd_reduction(sk);
3723 		tcp_try_keep_open(sk);
3724 		NET_INC_STATS(sock_net(sk),
3725 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3726 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3727 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3728 		/* Pure dupack: original and TLP probe arrived; no loss */
3729 		tp->tlp_high_seq = 0;
3730 	}
3731 }
3732 
tcp_in_ack_event(struct sock * sk,u32 flags)3733 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3734 {
3735 	const struct inet_connection_sock *icsk = inet_csk(sk);
3736 
3737 	if (icsk->icsk_ca_ops->in_ack_event)
3738 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3739 }
3740 
3741 /* Congestion control has updated the cwnd already. So if we're in
3742  * loss recovery then now we do any new sends (for FRTO) or
3743  * retransmits (for CA_Loss or CA_recovery) that make sense.
3744  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3745 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3746 {
3747 	struct tcp_sock *tp = tcp_sk(sk);
3748 
3749 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3750 		return;
3751 
3752 	if (unlikely(rexmit == REXMIT_NEW)) {
3753 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3754 					  TCP_NAGLE_OFF);
3755 		if (after(tp->snd_nxt, tp->high_seq))
3756 			return;
3757 		tp->frto = 0;
3758 	}
3759 	tcp_xmit_retransmit_queue(sk);
3760 }
3761 
3762 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3763 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3764 {
3765 	const struct net *net = sock_net(sk);
3766 	struct tcp_sock *tp = tcp_sk(sk);
3767 	u32 delivered;
3768 
3769 	delivered = tp->delivered - prior_delivered;
3770 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3771 	if (flag & FLAG_ECE)
3772 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3773 
3774 	return delivered;
3775 }
3776 
3777 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3778 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3779 {
3780 	struct inet_connection_sock *icsk = inet_csk(sk);
3781 	struct tcp_sock *tp = tcp_sk(sk);
3782 	struct tcp_sacktag_state sack_state;
3783 	struct rate_sample rs = { .prior_delivered = 0 };
3784 	u32 prior_snd_una = tp->snd_una;
3785 	bool is_sack_reneg = tp->is_sack_reneg;
3786 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3787 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3788 	int num_dupack = 0;
3789 	int prior_packets = tp->packets_out;
3790 	u32 delivered = tp->delivered;
3791 	u32 lost = tp->lost;
3792 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3793 	u32 prior_fack;
3794 
3795 	sack_state.first_sackt = 0;
3796 	sack_state.rate = &rs;
3797 	sack_state.sack_delivered = 0;
3798 
3799 	/* We very likely will need to access rtx queue. */
3800 	prefetch(sk->tcp_rtx_queue.rb_node);
3801 
3802 	/* If the ack is older than previous acks
3803 	 * then we can probably ignore it.
3804 	 */
3805 	if (before(ack, prior_snd_una)) {
3806 		u32 max_window;
3807 
3808 		/* do not accept ACK for bytes we never sent. */
3809 		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3810 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3811 		if (before(ack, prior_snd_una - max_window)) {
3812 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3813 				tcp_send_challenge_ack(sk);
3814 			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3815 		}
3816 		goto old_ack;
3817 	}
3818 
3819 	/* If the ack includes data we haven't sent yet, discard
3820 	 * this segment (RFC793 Section 3.9).
3821 	 */
3822 	if (after(ack, tp->snd_nxt))
3823 		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3824 
3825 	if (after(ack, prior_snd_una)) {
3826 		flag |= FLAG_SND_UNA_ADVANCED;
3827 		icsk->icsk_retransmits = 0;
3828 
3829 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3830 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3831 			if (icsk->icsk_clean_acked)
3832 				icsk->icsk_clean_acked(sk, ack);
3833 #endif
3834 	}
3835 
3836 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3837 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3838 
3839 	/* ts_recent update must be made after we are sure that the packet
3840 	 * is in window.
3841 	 */
3842 	if (flag & FLAG_UPDATE_TS_RECENT)
3843 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3844 
3845 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3846 	    FLAG_SND_UNA_ADVANCED) {
3847 		/* Window is constant, pure forward advance.
3848 		 * No more checks are required.
3849 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3850 		 */
3851 		tcp_update_wl(tp, ack_seq);
3852 		tcp_snd_una_update(tp, ack);
3853 		flag |= FLAG_WIN_UPDATE;
3854 
3855 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3856 
3857 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3858 	} else {
3859 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3860 
3861 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3862 			flag |= FLAG_DATA;
3863 		else
3864 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3865 
3866 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3867 
3868 		if (TCP_SKB_CB(skb)->sacked)
3869 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3870 							&sack_state);
3871 
3872 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3873 			flag |= FLAG_ECE;
3874 			ack_ev_flags |= CA_ACK_ECE;
3875 		}
3876 
3877 		if (sack_state.sack_delivered)
3878 			tcp_count_delivered(tp, sack_state.sack_delivered,
3879 					    flag & FLAG_ECE);
3880 
3881 		if (flag & FLAG_WIN_UPDATE)
3882 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3883 
3884 		tcp_in_ack_event(sk, ack_ev_flags);
3885 	}
3886 
3887 	/* This is a deviation from RFC3168 since it states that:
3888 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3889 	 * the congestion window, it SHOULD set the CWR bit only on the first
3890 	 * new data packet that it transmits."
3891 	 * We accept CWR on pure ACKs to be more robust
3892 	 * with widely-deployed TCP implementations that do this.
3893 	 */
3894 	tcp_ecn_accept_cwr(sk, skb);
3895 
3896 	/* We passed data and got it acked, remove any soft error
3897 	 * log. Something worked...
3898 	 */
3899 	sk->sk_err_soft = 0;
3900 	icsk->icsk_probes_out = 0;
3901 	tp->rcv_tstamp = tcp_jiffies32;
3902 	if (!prior_packets)
3903 		goto no_queue;
3904 
3905 	/* See if we can take anything off of the retransmit queue. */
3906 	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3907 				    &sack_state, flag & FLAG_ECE);
3908 
3909 	tcp_rack_update_reo_wnd(sk, &rs);
3910 
3911 	if (tp->tlp_high_seq)
3912 		tcp_process_tlp_ack(sk, ack, flag);
3913 
3914 	if (tcp_ack_is_dubious(sk, flag)) {
3915 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3916 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3917 			num_dupack = 1;
3918 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3919 			if (!(flag & FLAG_DATA))
3920 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3921 		}
3922 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3923 				      &rexmit);
3924 	}
3925 
3926 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3927 	if (flag & FLAG_SET_XMIT_TIMER)
3928 		tcp_set_xmit_timer(sk);
3929 
3930 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3931 		sk_dst_confirm(sk);
3932 
3933 	delivered = tcp_newly_delivered(sk, delivered, flag);
3934 	lost = tp->lost - lost;			/* freshly marked lost */
3935 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3936 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3937 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3938 	tcp_xmit_recovery(sk, rexmit);
3939 	return 1;
3940 
3941 no_queue:
3942 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3943 	if (flag & FLAG_DSACKING_ACK) {
3944 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3945 				      &rexmit);
3946 		tcp_newly_delivered(sk, delivered, flag);
3947 	}
3948 	/* If this ack opens up a zero window, clear backoff.  It was
3949 	 * being used to time the probes, and is probably far higher than
3950 	 * it needs to be for normal retransmission.
3951 	 */
3952 	tcp_ack_probe(sk);
3953 
3954 	if (tp->tlp_high_seq)
3955 		tcp_process_tlp_ack(sk, ack, flag);
3956 	return 1;
3957 
3958 old_ack:
3959 	/* If data was SACKed, tag it and see if we should send more data.
3960 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3961 	 */
3962 	if (TCP_SKB_CB(skb)->sacked) {
3963 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3964 						&sack_state);
3965 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3966 				      &rexmit);
3967 		tcp_newly_delivered(sk, delivered, flag);
3968 		tcp_xmit_recovery(sk, rexmit);
3969 	}
3970 
3971 	return 0;
3972 }
3973 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3974 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3975 				      bool syn, struct tcp_fastopen_cookie *foc,
3976 				      bool exp_opt)
3977 {
3978 	/* Valid only in SYN or SYN-ACK with an even length.  */
3979 	if (!foc || !syn || len < 0 || (len & 1))
3980 		return;
3981 
3982 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3983 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3984 		memcpy(foc->val, cookie, len);
3985 	else if (len != 0)
3986 		len = -1;
3987 	foc->len = len;
3988 	foc->exp = exp_opt;
3989 }
3990 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3991 static bool smc_parse_options(const struct tcphdr *th,
3992 			      struct tcp_options_received *opt_rx,
3993 			      const unsigned char *ptr,
3994 			      int opsize)
3995 {
3996 #if IS_ENABLED(CONFIG_SMC)
3997 	if (static_branch_unlikely(&tcp_have_smc)) {
3998 		if (th->syn && !(opsize & 1) &&
3999 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4000 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4001 			opt_rx->smc_ok = 1;
4002 			return true;
4003 		}
4004 	}
4005 #endif
4006 	return false;
4007 }
4008 
4009 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4010  * value on success.
4011  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4012 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4013 {
4014 	const unsigned char *ptr = (const unsigned char *)(th + 1);
4015 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4016 	u16 mss = 0;
4017 
4018 	while (length > 0) {
4019 		int opcode = *ptr++;
4020 		int opsize;
4021 
4022 		switch (opcode) {
4023 		case TCPOPT_EOL:
4024 			return mss;
4025 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4026 			length--;
4027 			continue;
4028 		default:
4029 			if (length < 2)
4030 				return mss;
4031 			opsize = *ptr++;
4032 			if (opsize < 2) /* "silly options" */
4033 				return mss;
4034 			if (opsize > length)
4035 				return mss;	/* fail on partial options */
4036 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4037 				u16 in_mss = get_unaligned_be16(ptr);
4038 
4039 				if (in_mss) {
4040 					if (user_mss && user_mss < in_mss)
4041 						in_mss = user_mss;
4042 					mss = in_mss;
4043 				}
4044 			}
4045 			ptr += opsize - 2;
4046 			length -= opsize;
4047 		}
4048 	}
4049 	return mss;
4050 }
4051 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4052 
4053 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4054  * But, this can also be called on packets in the established flow when
4055  * the fast version below fails.
4056  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4057 void tcp_parse_options(const struct net *net,
4058 		       const struct sk_buff *skb,
4059 		       struct tcp_options_received *opt_rx, int estab,
4060 		       struct tcp_fastopen_cookie *foc)
4061 {
4062 	const unsigned char *ptr;
4063 	const struct tcphdr *th = tcp_hdr(skb);
4064 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4065 
4066 	ptr = (const unsigned char *)(th + 1);
4067 	opt_rx->saw_tstamp = 0;
4068 	opt_rx->saw_unknown = 0;
4069 
4070 	while (length > 0) {
4071 		int opcode = *ptr++;
4072 		int opsize;
4073 
4074 		switch (opcode) {
4075 		case TCPOPT_EOL:
4076 			return;
4077 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4078 			length--;
4079 			continue;
4080 		default:
4081 			if (length < 2)
4082 				return;
4083 			opsize = *ptr++;
4084 			if (opsize < 2) /* "silly options" */
4085 				return;
4086 			if (opsize > length)
4087 				return;	/* don't parse partial options */
4088 			switch (opcode) {
4089 			case TCPOPT_MSS:
4090 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4091 					u16 in_mss = get_unaligned_be16(ptr);
4092 					if (in_mss) {
4093 						if (opt_rx->user_mss &&
4094 						    opt_rx->user_mss < in_mss)
4095 							in_mss = opt_rx->user_mss;
4096 						opt_rx->mss_clamp = in_mss;
4097 					}
4098 				}
4099 				break;
4100 			case TCPOPT_WINDOW:
4101 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4102 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4103 					__u8 snd_wscale = *(__u8 *)ptr;
4104 					opt_rx->wscale_ok = 1;
4105 					if (snd_wscale > TCP_MAX_WSCALE) {
4106 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4107 								     __func__,
4108 								     snd_wscale,
4109 								     TCP_MAX_WSCALE);
4110 						snd_wscale = TCP_MAX_WSCALE;
4111 					}
4112 					opt_rx->snd_wscale = snd_wscale;
4113 				}
4114 				break;
4115 			case TCPOPT_TIMESTAMP:
4116 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4117 				    ((estab && opt_rx->tstamp_ok) ||
4118 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4119 					opt_rx->saw_tstamp = 1;
4120 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4121 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4122 				}
4123 				break;
4124 			case TCPOPT_SACK_PERM:
4125 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4126 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4127 					opt_rx->sack_ok = TCP_SACK_SEEN;
4128 					tcp_sack_reset(opt_rx);
4129 				}
4130 				break;
4131 
4132 			case TCPOPT_SACK:
4133 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4134 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4135 				   opt_rx->sack_ok) {
4136 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4137 				}
4138 				break;
4139 #ifdef CONFIG_TCP_MD5SIG
4140 			case TCPOPT_MD5SIG:
4141 				/*
4142 				 * The MD5 Hash has already been
4143 				 * checked (see tcp_v{4,6}_do_rcv()).
4144 				 */
4145 				break;
4146 #endif
4147 			case TCPOPT_FASTOPEN:
4148 				tcp_parse_fastopen_option(
4149 					opsize - TCPOLEN_FASTOPEN_BASE,
4150 					ptr, th->syn, foc, false);
4151 				break;
4152 
4153 			case TCPOPT_EXP:
4154 				/* Fast Open option shares code 254 using a
4155 				 * 16 bits magic number.
4156 				 */
4157 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4158 				    get_unaligned_be16(ptr) ==
4159 				    TCPOPT_FASTOPEN_MAGIC) {
4160 					tcp_parse_fastopen_option(opsize -
4161 						TCPOLEN_EXP_FASTOPEN_BASE,
4162 						ptr + 2, th->syn, foc, true);
4163 					break;
4164 				}
4165 
4166 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4167 					break;
4168 
4169 				opt_rx->saw_unknown = 1;
4170 				break;
4171 
4172 			default:
4173 				opt_rx->saw_unknown = 1;
4174 			}
4175 			ptr += opsize-2;
4176 			length -= opsize;
4177 		}
4178 	}
4179 }
4180 EXPORT_SYMBOL(tcp_parse_options);
4181 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4182 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4183 {
4184 	const __be32 *ptr = (const __be32 *)(th + 1);
4185 
4186 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4187 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4188 		tp->rx_opt.saw_tstamp = 1;
4189 		++ptr;
4190 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4191 		++ptr;
4192 		if (*ptr)
4193 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4194 		else
4195 			tp->rx_opt.rcv_tsecr = 0;
4196 		return true;
4197 	}
4198 	return false;
4199 }
4200 
4201 /* Fast parse options. This hopes to only see timestamps.
4202  * If it is wrong it falls back on tcp_parse_options().
4203  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4204 static bool tcp_fast_parse_options(const struct net *net,
4205 				   const struct sk_buff *skb,
4206 				   const struct tcphdr *th, struct tcp_sock *tp)
4207 {
4208 	/* In the spirit of fast parsing, compare doff directly to constant
4209 	 * values.  Because equality is used, short doff can be ignored here.
4210 	 */
4211 	if (th->doff == (sizeof(*th) / 4)) {
4212 		tp->rx_opt.saw_tstamp = 0;
4213 		return false;
4214 	} else if (tp->rx_opt.tstamp_ok &&
4215 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4216 		if (tcp_parse_aligned_timestamp(tp, th))
4217 			return true;
4218 	}
4219 
4220 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4221 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4222 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4223 
4224 	return true;
4225 }
4226 
4227 #ifdef CONFIG_TCP_MD5SIG
4228 /*
4229  * Parse MD5 Signature option
4230  */
tcp_parse_md5sig_option(const struct tcphdr * th)4231 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4232 {
4233 	int length = (th->doff << 2) - sizeof(*th);
4234 	const u8 *ptr = (const u8 *)(th + 1);
4235 
4236 	/* If not enough data remaining, we can short cut */
4237 	while (length >= TCPOLEN_MD5SIG) {
4238 		int opcode = *ptr++;
4239 		int opsize;
4240 
4241 		switch (opcode) {
4242 		case TCPOPT_EOL:
4243 			return NULL;
4244 		case TCPOPT_NOP:
4245 			length--;
4246 			continue;
4247 		default:
4248 			opsize = *ptr++;
4249 			if (opsize < 2 || opsize > length)
4250 				return NULL;
4251 			if (opcode == TCPOPT_MD5SIG)
4252 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4253 		}
4254 		ptr += opsize - 2;
4255 		length -= opsize;
4256 	}
4257 	return NULL;
4258 }
4259 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4260 #endif
4261 
4262 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4263  *
4264  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4265  * it can pass through stack. So, the following predicate verifies that
4266  * this segment is not used for anything but congestion avoidance or
4267  * fast retransmit. Moreover, we even are able to eliminate most of such
4268  * second order effects, if we apply some small "replay" window (~RTO)
4269  * to timestamp space.
4270  *
4271  * All these measures still do not guarantee that we reject wrapped ACKs
4272  * on networks with high bandwidth, when sequence space is recycled fastly,
4273  * but it guarantees that such events will be very rare and do not affect
4274  * connection seriously. This doesn't look nice, but alas, PAWS is really
4275  * buggy extension.
4276  *
4277  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4278  * states that events when retransmit arrives after original data are rare.
4279  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4280  * the biggest problem on large power networks even with minor reordering.
4281  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4282  * up to bandwidth of 18Gigabit/sec. 8) ]
4283  */
4284 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4285 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4286 {
4287 	const struct tcp_sock *tp = tcp_sk(sk);
4288 	const struct tcphdr *th = tcp_hdr(skb);
4289 	u32 seq = TCP_SKB_CB(skb)->seq;
4290 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4291 
4292 	return (/* 1. Pure ACK with correct sequence number. */
4293 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4294 
4295 		/* 2. ... and duplicate ACK. */
4296 		ack == tp->snd_una &&
4297 
4298 		/* 3. ... and does not update window. */
4299 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4300 
4301 		/* 4. ... and sits in replay window. */
4302 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4303 }
4304 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4305 static inline bool tcp_paws_discard(const struct sock *sk,
4306 				   const struct sk_buff *skb)
4307 {
4308 	const struct tcp_sock *tp = tcp_sk(sk);
4309 
4310 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4311 	       !tcp_disordered_ack(sk, skb);
4312 }
4313 
4314 /* Check segment sequence number for validity.
4315  *
4316  * Segment controls are considered valid, if the segment
4317  * fits to the window after truncation to the window. Acceptability
4318  * of data (and SYN, FIN, of course) is checked separately.
4319  * See tcp_data_queue(), for example.
4320  *
4321  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4322  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4323  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4324  * (borrowed from freebsd)
4325  */
4326 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4327 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4328 {
4329 	return	!before(end_seq, tp->rcv_wup) &&
4330 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4331 }
4332 
4333 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4334 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4335 {
4336 	trace_tcp_receive_reset(sk);
4337 
4338 	/* mptcp can't tell us to ignore reset pkts,
4339 	 * so just ignore the return value of mptcp_incoming_options().
4340 	 */
4341 	if (sk_is_mptcp(sk))
4342 		mptcp_incoming_options(sk, skb);
4343 
4344 	/* We want the right error as BSD sees it (and indeed as we do). */
4345 	switch (sk->sk_state) {
4346 	case TCP_SYN_SENT:
4347 		sk->sk_err = ECONNREFUSED;
4348 		break;
4349 	case TCP_CLOSE_WAIT:
4350 		sk->sk_err = EPIPE;
4351 		break;
4352 	case TCP_CLOSE:
4353 		return;
4354 	default:
4355 		sk->sk_err = ECONNRESET;
4356 	}
4357 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4358 	smp_wmb();
4359 
4360 	tcp_write_queue_purge(sk);
4361 	tcp_done(sk);
4362 
4363 	if (!sock_flag(sk, SOCK_DEAD))
4364 		sk_error_report(sk);
4365 }
4366 
4367 /*
4368  * 	Process the FIN bit. This now behaves as it is supposed to work
4369  *	and the FIN takes effect when it is validly part of sequence
4370  *	space. Not before when we get holes.
4371  *
4372  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4373  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4374  *	TIME-WAIT)
4375  *
4376  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4377  *	close and we go into CLOSING (and later onto TIME-WAIT)
4378  *
4379  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4380  */
tcp_fin(struct sock * sk)4381 void tcp_fin(struct sock *sk)
4382 {
4383 	struct tcp_sock *tp = tcp_sk(sk);
4384 
4385 	inet_csk_schedule_ack(sk);
4386 
4387 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4388 	sock_set_flag(sk, SOCK_DONE);
4389 
4390 	switch (sk->sk_state) {
4391 	case TCP_SYN_RECV:
4392 	case TCP_ESTABLISHED:
4393 		/* Move to CLOSE_WAIT */
4394 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4395 		inet_csk_enter_pingpong_mode(sk);
4396 		break;
4397 
4398 	case TCP_CLOSE_WAIT:
4399 	case TCP_CLOSING:
4400 		/* Received a retransmission of the FIN, do
4401 		 * nothing.
4402 		 */
4403 		break;
4404 	case TCP_LAST_ACK:
4405 		/* RFC793: Remain in the LAST-ACK state. */
4406 		break;
4407 
4408 	case TCP_FIN_WAIT1:
4409 		/* This case occurs when a simultaneous close
4410 		 * happens, we must ack the received FIN and
4411 		 * enter the CLOSING state.
4412 		 */
4413 		tcp_send_ack(sk);
4414 		tcp_set_state(sk, TCP_CLOSING);
4415 		break;
4416 	case TCP_FIN_WAIT2:
4417 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4418 		tcp_send_ack(sk);
4419 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4420 		break;
4421 	default:
4422 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4423 		 * cases we should never reach this piece of code.
4424 		 */
4425 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4426 		       __func__, sk->sk_state);
4427 		break;
4428 	}
4429 
4430 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4431 	 * Probably, we should reset in this case. For now drop them.
4432 	 */
4433 	skb_rbtree_purge(&tp->out_of_order_queue);
4434 	if (tcp_is_sack(tp))
4435 		tcp_sack_reset(&tp->rx_opt);
4436 
4437 	if (!sock_flag(sk, SOCK_DEAD)) {
4438 		sk->sk_state_change(sk);
4439 
4440 		/* Do not send POLL_HUP for half duplex close. */
4441 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4442 		    sk->sk_state == TCP_CLOSE)
4443 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4444 		else
4445 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4446 	}
4447 }
4448 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4449 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4450 				  u32 end_seq)
4451 {
4452 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4453 		if (before(seq, sp->start_seq))
4454 			sp->start_seq = seq;
4455 		if (after(end_seq, sp->end_seq))
4456 			sp->end_seq = end_seq;
4457 		return true;
4458 	}
4459 	return false;
4460 }
4461 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4462 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4463 {
4464 	struct tcp_sock *tp = tcp_sk(sk);
4465 
4466 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4467 		int mib_idx;
4468 
4469 		if (before(seq, tp->rcv_nxt))
4470 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4471 		else
4472 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4473 
4474 		NET_INC_STATS(sock_net(sk), mib_idx);
4475 
4476 		tp->rx_opt.dsack = 1;
4477 		tp->duplicate_sack[0].start_seq = seq;
4478 		tp->duplicate_sack[0].end_seq = end_seq;
4479 	}
4480 }
4481 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4482 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4483 {
4484 	struct tcp_sock *tp = tcp_sk(sk);
4485 
4486 	if (!tp->rx_opt.dsack)
4487 		tcp_dsack_set(sk, seq, end_seq);
4488 	else
4489 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4490 }
4491 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4492 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4493 {
4494 	/* When the ACK path fails or drops most ACKs, the sender would
4495 	 * timeout and spuriously retransmit the same segment repeatedly.
4496 	 * The receiver remembers and reflects via DSACKs. Leverage the
4497 	 * DSACK state and change the txhash to re-route speculatively.
4498 	 */
4499 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4500 	    sk_rethink_txhash(sk))
4501 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4502 }
4503 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4504 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4505 {
4506 	struct tcp_sock *tp = tcp_sk(sk);
4507 
4508 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4509 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4510 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4511 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4512 
4513 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4514 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4515 
4516 			tcp_rcv_spurious_retrans(sk, skb);
4517 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4518 				end_seq = tp->rcv_nxt;
4519 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4520 		}
4521 	}
4522 
4523 	tcp_send_ack(sk);
4524 }
4525 
4526 /* These routines update the SACK block as out-of-order packets arrive or
4527  * in-order packets close up the sequence space.
4528  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4529 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4530 {
4531 	int this_sack;
4532 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4533 	struct tcp_sack_block *swalk = sp + 1;
4534 
4535 	/* See if the recent change to the first SACK eats into
4536 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4537 	 */
4538 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4539 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4540 			int i;
4541 
4542 			/* Zap SWALK, by moving every further SACK up by one slot.
4543 			 * Decrease num_sacks.
4544 			 */
4545 			tp->rx_opt.num_sacks--;
4546 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4547 				sp[i] = sp[i + 1];
4548 			continue;
4549 		}
4550 		this_sack++;
4551 		swalk++;
4552 	}
4553 }
4554 
tcp_sack_compress_send_ack(struct sock * sk)4555 void tcp_sack_compress_send_ack(struct sock *sk)
4556 {
4557 	struct tcp_sock *tp = tcp_sk(sk);
4558 
4559 	if (!tp->compressed_ack)
4560 		return;
4561 
4562 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4563 		__sock_put(sk);
4564 
4565 	/* Since we have to send one ack finally,
4566 	 * substract one from tp->compressed_ack to keep
4567 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4568 	 */
4569 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4570 		      tp->compressed_ack - 1);
4571 
4572 	tp->compressed_ack = 0;
4573 	tcp_send_ack(sk);
4574 }
4575 
4576 /* Reasonable amount of sack blocks included in TCP SACK option
4577  * The max is 4, but this becomes 3 if TCP timestamps are there.
4578  * Given that SACK packets might be lost, be conservative and use 2.
4579  */
4580 #define TCP_SACK_BLOCKS_EXPECTED 2
4581 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4582 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4583 {
4584 	struct tcp_sock *tp = tcp_sk(sk);
4585 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4586 	int cur_sacks = tp->rx_opt.num_sacks;
4587 	int this_sack;
4588 
4589 	if (!cur_sacks)
4590 		goto new_sack;
4591 
4592 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4593 		if (tcp_sack_extend(sp, seq, end_seq)) {
4594 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4595 				tcp_sack_compress_send_ack(sk);
4596 			/* Rotate this_sack to the first one. */
4597 			for (; this_sack > 0; this_sack--, sp--)
4598 				swap(*sp, *(sp - 1));
4599 			if (cur_sacks > 1)
4600 				tcp_sack_maybe_coalesce(tp);
4601 			return;
4602 		}
4603 	}
4604 
4605 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4606 		tcp_sack_compress_send_ack(sk);
4607 
4608 	/* Could not find an adjacent existing SACK, build a new one,
4609 	 * put it at the front, and shift everyone else down.  We
4610 	 * always know there is at least one SACK present already here.
4611 	 *
4612 	 * If the sack array is full, forget about the last one.
4613 	 */
4614 	if (this_sack >= TCP_NUM_SACKS) {
4615 		this_sack--;
4616 		tp->rx_opt.num_sacks--;
4617 		sp--;
4618 	}
4619 	for (; this_sack > 0; this_sack--, sp--)
4620 		*sp = *(sp - 1);
4621 
4622 new_sack:
4623 	/* Build the new head SACK, and we're done. */
4624 	sp->start_seq = seq;
4625 	sp->end_seq = end_seq;
4626 	tp->rx_opt.num_sacks++;
4627 }
4628 
4629 /* RCV.NXT advances, some SACKs should be eaten. */
4630 
tcp_sack_remove(struct tcp_sock * tp)4631 static void tcp_sack_remove(struct tcp_sock *tp)
4632 {
4633 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4634 	int num_sacks = tp->rx_opt.num_sacks;
4635 	int this_sack;
4636 
4637 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4638 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4639 		tp->rx_opt.num_sacks = 0;
4640 		return;
4641 	}
4642 
4643 	for (this_sack = 0; this_sack < num_sacks;) {
4644 		/* Check if the start of the sack is covered by RCV.NXT. */
4645 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4646 			int i;
4647 
4648 			/* RCV.NXT must cover all the block! */
4649 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4650 
4651 			/* Zap this SACK, by moving forward any other SACKS. */
4652 			for (i = this_sack+1; i < num_sacks; i++)
4653 				tp->selective_acks[i-1] = tp->selective_acks[i];
4654 			num_sacks--;
4655 			continue;
4656 		}
4657 		this_sack++;
4658 		sp++;
4659 	}
4660 	tp->rx_opt.num_sacks = num_sacks;
4661 }
4662 
4663 /**
4664  * tcp_try_coalesce - try to merge skb to prior one
4665  * @sk: socket
4666  * @to: prior buffer
4667  * @from: buffer to add in queue
4668  * @fragstolen: pointer to boolean
4669  *
4670  * Before queueing skb @from after @to, try to merge them
4671  * to reduce overall memory use and queue lengths, if cost is small.
4672  * Packets in ofo or receive queues can stay a long time.
4673  * Better try to coalesce them right now to avoid future collapses.
4674  * Returns true if caller should free @from instead of queueing it
4675  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4676 static bool tcp_try_coalesce(struct sock *sk,
4677 			     struct sk_buff *to,
4678 			     struct sk_buff *from,
4679 			     bool *fragstolen)
4680 {
4681 	int delta;
4682 
4683 	*fragstolen = false;
4684 
4685 	/* Its possible this segment overlaps with prior segment in queue */
4686 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4687 		return false;
4688 
4689 	if (!mptcp_skb_can_collapse(to, from))
4690 		return false;
4691 
4692 #ifdef CONFIG_TLS_DEVICE
4693 	if (from->decrypted != to->decrypted)
4694 		return false;
4695 #endif
4696 
4697 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4698 		return false;
4699 
4700 	atomic_add(delta, &sk->sk_rmem_alloc);
4701 	sk_mem_charge(sk, delta);
4702 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4703 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4704 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4705 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4706 
4707 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4708 		TCP_SKB_CB(to)->has_rxtstamp = true;
4709 		to->tstamp = from->tstamp;
4710 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4711 	}
4712 
4713 	return true;
4714 }
4715 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4716 static bool tcp_ooo_try_coalesce(struct sock *sk,
4717 			     struct sk_buff *to,
4718 			     struct sk_buff *from,
4719 			     bool *fragstolen)
4720 {
4721 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4722 
4723 	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4724 	if (res) {
4725 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4726 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4727 
4728 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4729 	}
4730 	return res;
4731 }
4732 
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4733 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4734 			    enum skb_drop_reason reason)
4735 {
4736 	sk_drops_add(sk, skb);
4737 	kfree_skb_reason(skb, reason);
4738 }
4739 
4740 /* This one checks to see if we can put data from the
4741  * out_of_order queue into the receive_queue.
4742  */
tcp_ofo_queue(struct sock * sk)4743 static void tcp_ofo_queue(struct sock *sk)
4744 {
4745 	struct tcp_sock *tp = tcp_sk(sk);
4746 	__u32 dsack_high = tp->rcv_nxt;
4747 	bool fin, fragstolen, eaten;
4748 	struct sk_buff *skb, *tail;
4749 	struct rb_node *p;
4750 
4751 	p = rb_first(&tp->out_of_order_queue);
4752 	while (p) {
4753 		skb = rb_to_skb(p);
4754 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4755 			break;
4756 
4757 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4758 			__u32 dsack = dsack_high;
4759 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4760 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4761 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4762 		}
4763 		p = rb_next(p);
4764 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4765 
4766 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4767 			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4768 			continue;
4769 		}
4770 
4771 		tail = skb_peek_tail(&sk->sk_receive_queue);
4772 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4773 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4774 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4775 		if (!eaten)
4776 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4777 		else
4778 			kfree_skb_partial(skb, fragstolen);
4779 
4780 		if (unlikely(fin)) {
4781 			tcp_fin(sk);
4782 			/* tcp_fin() purges tp->out_of_order_queue,
4783 			 * so we must end this loop right now.
4784 			 */
4785 			break;
4786 		}
4787 	}
4788 }
4789 
4790 static bool tcp_prune_ofo_queue(struct sock *sk);
4791 static int tcp_prune_queue(struct sock *sk);
4792 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4793 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4794 				 unsigned int size)
4795 {
4796 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4797 	    !sk_rmem_schedule(sk, skb, size)) {
4798 
4799 		if (tcp_prune_queue(sk) < 0)
4800 			return -1;
4801 
4802 		while (!sk_rmem_schedule(sk, skb, size)) {
4803 			if (!tcp_prune_ofo_queue(sk))
4804 				return -1;
4805 		}
4806 	}
4807 	return 0;
4808 }
4809 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4810 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4811 {
4812 	struct tcp_sock *tp = tcp_sk(sk);
4813 	struct rb_node **p, *parent;
4814 	struct sk_buff *skb1;
4815 	u32 seq, end_seq;
4816 	bool fragstolen;
4817 
4818 	tcp_ecn_check_ce(sk, skb);
4819 
4820 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4821 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4822 		sk->sk_data_ready(sk);
4823 		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4824 		return;
4825 	}
4826 
4827 	/* Disable header prediction. */
4828 	tp->pred_flags = 0;
4829 	inet_csk_schedule_ack(sk);
4830 
4831 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4832 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4833 	seq = TCP_SKB_CB(skb)->seq;
4834 	end_seq = TCP_SKB_CB(skb)->end_seq;
4835 
4836 	p = &tp->out_of_order_queue.rb_node;
4837 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4838 		/* Initial out of order segment, build 1 SACK. */
4839 		if (tcp_is_sack(tp)) {
4840 			tp->rx_opt.num_sacks = 1;
4841 			tp->selective_acks[0].start_seq = seq;
4842 			tp->selective_acks[0].end_seq = end_seq;
4843 		}
4844 		rb_link_node(&skb->rbnode, NULL, p);
4845 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4846 		tp->ooo_last_skb = skb;
4847 		goto end;
4848 	}
4849 
4850 	/* In the typical case, we are adding an skb to the end of the list.
4851 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4852 	 */
4853 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4854 				 skb, &fragstolen)) {
4855 coalesce_done:
4856 		/* For non sack flows, do not grow window to force DUPACK
4857 		 * and trigger fast retransmit.
4858 		 */
4859 		if (tcp_is_sack(tp))
4860 			tcp_grow_window(sk, skb, true);
4861 		kfree_skb_partial(skb, fragstolen);
4862 		skb = NULL;
4863 		goto add_sack;
4864 	}
4865 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4866 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4867 		parent = &tp->ooo_last_skb->rbnode;
4868 		p = &parent->rb_right;
4869 		goto insert;
4870 	}
4871 
4872 	/* Find place to insert this segment. Handle overlaps on the way. */
4873 	parent = NULL;
4874 	while (*p) {
4875 		parent = *p;
4876 		skb1 = rb_to_skb(parent);
4877 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4878 			p = &parent->rb_left;
4879 			continue;
4880 		}
4881 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4882 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4883 				/* All the bits are present. Drop. */
4884 				NET_INC_STATS(sock_net(sk),
4885 					      LINUX_MIB_TCPOFOMERGE);
4886 				tcp_drop_reason(sk, skb,
4887 						SKB_DROP_REASON_TCP_OFOMERGE);
4888 				skb = NULL;
4889 				tcp_dsack_set(sk, seq, end_seq);
4890 				goto add_sack;
4891 			}
4892 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4893 				/* Partial overlap. */
4894 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4895 			} else {
4896 				/* skb's seq == skb1's seq and skb covers skb1.
4897 				 * Replace skb1 with skb.
4898 				 */
4899 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4900 						&tp->out_of_order_queue);
4901 				tcp_dsack_extend(sk,
4902 						 TCP_SKB_CB(skb1)->seq,
4903 						 TCP_SKB_CB(skb1)->end_seq);
4904 				NET_INC_STATS(sock_net(sk),
4905 					      LINUX_MIB_TCPOFOMERGE);
4906 				tcp_drop_reason(sk, skb1,
4907 						SKB_DROP_REASON_TCP_OFOMERGE);
4908 				goto merge_right;
4909 			}
4910 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4911 						skb, &fragstolen)) {
4912 			goto coalesce_done;
4913 		}
4914 		p = &parent->rb_right;
4915 	}
4916 insert:
4917 	/* Insert segment into RB tree. */
4918 	rb_link_node(&skb->rbnode, parent, p);
4919 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4920 
4921 merge_right:
4922 	/* Remove other segments covered by skb. */
4923 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4924 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4925 			break;
4926 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4927 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4928 					 end_seq);
4929 			break;
4930 		}
4931 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4932 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4933 				 TCP_SKB_CB(skb1)->end_seq);
4934 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4935 		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4936 	}
4937 	/* If there is no skb after us, we are the last_skb ! */
4938 	if (!skb1)
4939 		tp->ooo_last_skb = skb;
4940 
4941 add_sack:
4942 	if (tcp_is_sack(tp))
4943 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4944 end:
4945 	if (skb) {
4946 		/* For non sack flows, do not grow window to force DUPACK
4947 		 * and trigger fast retransmit.
4948 		 */
4949 		if (tcp_is_sack(tp))
4950 			tcp_grow_window(sk, skb, false);
4951 		skb_condense(skb);
4952 		skb_set_owner_r(skb, sk);
4953 	}
4954 }
4955 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4956 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4957 				      bool *fragstolen)
4958 {
4959 	int eaten;
4960 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4961 
4962 	eaten = (tail &&
4963 		 tcp_try_coalesce(sk, tail,
4964 				  skb, fragstolen)) ? 1 : 0;
4965 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4966 	if (!eaten) {
4967 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4968 		skb_set_owner_r(skb, sk);
4969 	}
4970 	return eaten;
4971 }
4972 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4973 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4974 {
4975 	struct sk_buff *skb;
4976 	int err = -ENOMEM;
4977 	int data_len = 0;
4978 	bool fragstolen;
4979 
4980 	if (size == 0)
4981 		return 0;
4982 
4983 	if (size > PAGE_SIZE) {
4984 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4985 
4986 		data_len = npages << PAGE_SHIFT;
4987 		size = data_len + (size & ~PAGE_MASK);
4988 	}
4989 	skb = alloc_skb_with_frags(size - data_len, data_len,
4990 				   PAGE_ALLOC_COSTLY_ORDER,
4991 				   &err, sk->sk_allocation);
4992 	if (!skb)
4993 		goto err;
4994 
4995 	skb_put(skb, size - data_len);
4996 	skb->data_len = data_len;
4997 	skb->len = size;
4998 
4999 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5000 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5001 		goto err_free;
5002 	}
5003 
5004 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5005 	if (err)
5006 		goto err_free;
5007 
5008 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5009 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5010 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5011 
5012 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5013 		WARN_ON_ONCE(fragstolen); /* should not happen */
5014 		__kfree_skb(skb);
5015 	}
5016 	return size;
5017 
5018 err_free:
5019 	kfree_skb(skb);
5020 err:
5021 	return err;
5022 
5023 }
5024 
tcp_data_ready(struct sock * sk)5025 void tcp_data_ready(struct sock *sk)
5026 {
5027 	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5028 		sk->sk_data_ready(sk);
5029 }
5030 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5031 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5032 {
5033 	struct tcp_sock *tp = tcp_sk(sk);
5034 	enum skb_drop_reason reason;
5035 	bool fragstolen;
5036 	int eaten;
5037 
5038 	/* If a subflow has been reset, the packet should not continue
5039 	 * to be processed, drop the packet.
5040 	 */
5041 	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5042 		__kfree_skb(skb);
5043 		return;
5044 	}
5045 
5046 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5047 		__kfree_skb(skb);
5048 		return;
5049 	}
5050 	skb_dst_drop(skb);
5051 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5052 
5053 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5054 	tp->rx_opt.dsack = 0;
5055 
5056 	/*  Queue data for delivery to the user.
5057 	 *  Packets in sequence go to the receive queue.
5058 	 *  Out of sequence packets to the out_of_order_queue.
5059 	 */
5060 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5061 		if (tcp_receive_window(tp) == 0) {
5062 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5063 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5064 			goto out_of_window;
5065 		}
5066 
5067 		/* Ok. In sequence. In window. */
5068 queue_and_out:
5069 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5070 			sk_forced_mem_schedule(sk, skb->truesize);
5071 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5072 			reason = SKB_DROP_REASON_PROTO_MEM;
5073 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5074 			sk->sk_data_ready(sk);
5075 			goto drop;
5076 		}
5077 
5078 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5079 		if (skb->len)
5080 			tcp_event_data_recv(sk, skb);
5081 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5082 			tcp_fin(sk);
5083 
5084 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5085 			tcp_ofo_queue(sk);
5086 
5087 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5088 			 * gap in queue is filled.
5089 			 */
5090 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5091 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5092 		}
5093 
5094 		if (tp->rx_opt.num_sacks)
5095 			tcp_sack_remove(tp);
5096 
5097 		tcp_fast_path_check(sk);
5098 
5099 		if (eaten > 0)
5100 			kfree_skb_partial(skb, fragstolen);
5101 		if (!sock_flag(sk, SOCK_DEAD))
5102 			tcp_data_ready(sk);
5103 		return;
5104 	}
5105 
5106 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5107 		tcp_rcv_spurious_retrans(sk, skb);
5108 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5109 		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5110 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5111 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5112 
5113 out_of_window:
5114 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5115 		inet_csk_schedule_ack(sk);
5116 drop:
5117 		tcp_drop_reason(sk, skb, reason);
5118 		return;
5119 	}
5120 
5121 	/* Out of window. F.e. zero window probe. */
5122 	if (!before(TCP_SKB_CB(skb)->seq,
5123 		    tp->rcv_nxt + tcp_receive_window(tp))) {
5124 		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5125 		goto out_of_window;
5126 	}
5127 
5128 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5129 		/* Partial packet, seq < rcv_next < end_seq */
5130 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5131 
5132 		/* If window is closed, drop tail of packet. But after
5133 		 * remembering D-SACK for its head made in previous line.
5134 		 */
5135 		if (!tcp_receive_window(tp)) {
5136 			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5137 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5138 			goto out_of_window;
5139 		}
5140 		goto queue_and_out;
5141 	}
5142 
5143 	tcp_data_queue_ofo(sk, skb);
5144 }
5145 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5146 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5147 {
5148 	if (list)
5149 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5150 
5151 	return skb_rb_next(skb);
5152 }
5153 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5154 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5155 					struct sk_buff_head *list,
5156 					struct rb_root *root)
5157 {
5158 	struct sk_buff *next = tcp_skb_next(skb, list);
5159 
5160 	if (list)
5161 		__skb_unlink(skb, list);
5162 	else
5163 		rb_erase(&skb->rbnode, root);
5164 
5165 	__kfree_skb(skb);
5166 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5167 
5168 	return next;
5169 }
5170 
5171 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5172 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5173 {
5174 	struct rb_node **p = &root->rb_node;
5175 	struct rb_node *parent = NULL;
5176 	struct sk_buff *skb1;
5177 
5178 	while (*p) {
5179 		parent = *p;
5180 		skb1 = rb_to_skb(parent);
5181 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5182 			p = &parent->rb_left;
5183 		else
5184 			p = &parent->rb_right;
5185 	}
5186 	rb_link_node(&skb->rbnode, parent, p);
5187 	rb_insert_color(&skb->rbnode, root);
5188 }
5189 
5190 /* Collapse contiguous sequence of skbs head..tail with
5191  * sequence numbers start..end.
5192  *
5193  * If tail is NULL, this means until the end of the queue.
5194  *
5195  * Segments with FIN/SYN are not collapsed (only because this
5196  * simplifies code)
5197  */
5198 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5199 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5200 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5201 {
5202 	struct sk_buff *skb = head, *n;
5203 	struct sk_buff_head tmp;
5204 	bool end_of_skbs;
5205 
5206 	/* First, check that queue is collapsible and find
5207 	 * the point where collapsing can be useful.
5208 	 */
5209 restart:
5210 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5211 		n = tcp_skb_next(skb, list);
5212 
5213 		/* No new bits? It is possible on ofo queue. */
5214 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5215 			skb = tcp_collapse_one(sk, skb, list, root);
5216 			if (!skb)
5217 				break;
5218 			goto restart;
5219 		}
5220 
5221 		/* The first skb to collapse is:
5222 		 * - not SYN/FIN and
5223 		 * - bloated or contains data before "start" or
5224 		 *   overlaps to the next one and mptcp allow collapsing.
5225 		 */
5226 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5227 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5228 		     before(TCP_SKB_CB(skb)->seq, start))) {
5229 			end_of_skbs = false;
5230 			break;
5231 		}
5232 
5233 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5234 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5235 			end_of_skbs = false;
5236 			break;
5237 		}
5238 
5239 		/* Decided to skip this, advance start seq. */
5240 		start = TCP_SKB_CB(skb)->end_seq;
5241 	}
5242 	if (end_of_skbs ||
5243 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5244 		return;
5245 
5246 	__skb_queue_head_init(&tmp);
5247 
5248 	while (before(start, end)) {
5249 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5250 		struct sk_buff *nskb;
5251 
5252 		nskb = alloc_skb(copy, GFP_ATOMIC);
5253 		if (!nskb)
5254 			break;
5255 
5256 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5257 #ifdef CONFIG_TLS_DEVICE
5258 		nskb->decrypted = skb->decrypted;
5259 #endif
5260 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5261 		if (list)
5262 			__skb_queue_before(list, skb, nskb);
5263 		else
5264 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5265 		skb_set_owner_r(nskb, sk);
5266 		mptcp_skb_ext_move(nskb, skb);
5267 
5268 		/* Copy data, releasing collapsed skbs. */
5269 		while (copy > 0) {
5270 			int offset = start - TCP_SKB_CB(skb)->seq;
5271 			int size = TCP_SKB_CB(skb)->end_seq - start;
5272 
5273 			BUG_ON(offset < 0);
5274 			if (size > 0) {
5275 				size = min(copy, size);
5276 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5277 					BUG();
5278 				TCP_SKB_CB(nskb)->end_seq += size;
5279 				copy -= size;
5280 				start += size;
5281 			}
5282 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5283 				skb = tcp_collapse_one(sk, skb, list, root);
5284 				if (!skb ||
5285 				    skb == tail ||
5286 				    !mptcp_skb_can_collapse(nskb, skb) ||
5287 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5288 					goto end;
5289 #ifdef CONFIG_TLS_DEVICE
5290 				if (skb->decrypted != nskb->decrypted)
5291 					goto end;
5292 #endif
5293 			}
5294 		}
5295 	}
5296 end:
5297 	skb_queue_walk_safe(&tmp, skb, n)
5298 		tcp_rbtree_insert(root, skb);
5299 }
5300 
5301 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5302  * and tcp_collapse() them until all the queue is collapsed.
5303  */
tcp_collapse_ofo_queue(struct sock * sk)5304 static void tcp_collapse_ofo_queue(struct sock *sk)
5305 {
5306 	struct tcp_sock *tp = tcp_sk(sk);
5307 	u32 range_truesize, sum_tiny = 0;
5308 	struct sk_buff *skb, *head;
5309 	u32 start, end;
5310 
5311 	skb = skb_rb_first(&tp->out_of_order_queue);
5312 new_range:
5313 	if (!skb) {
5314 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5315 		return;
5316 	}
5317 	start = TCP_SKB_CB(skb)->seq;
5318 	end = TCP_SKB_CB(skb)->end_seq;
5319 	range_truesize = skb->truesize;
5320 
5321 	for (head = skb;;) {
5322 		skb = skb_rb_next(skb);
5323 
5324 		/* Range is terminated when we see a gap or when
5325 		 * we are at the queue end.
5326 		 */
5327 		if (!skb ||
5328 		    after(TCP_SKB_CB(skb)->seq, end) ||
5329 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5330 			/* Do not attempt collapsing tiny skbs */
5331 			if (range_truesize != head->truesize ||
5332 			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5333 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5334 					     head, skb, start, end);
5335 			} else {
5336 				sum_tiny += range_truesize;
5337 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5338 					return;
5339 			}
5340 			goto new_range;
5341 		}
5342 
5343 		range_truesize += skb->truesize;
5344 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5345 			start = TCP_SKB_CB(skb)->seq;
5346 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5347 			end = TCP_SKB_CB(skb)->end_seq;
5348 	}
5349 }
5350 
5351 /*
5352  * Clean the out-of-order queue to make room.
5353  * We drop high sequences packets to :
5354  * 1) Let a chance for holes to be filled.
5355  * 2) not add too big latencies if thousands of packets sit there.
5356  *    (But if application shrinks SO_RCVBUF, we could still end up
5357  *     freeing whole queue here)
5358  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5359  *
5360  * Return true if queue has shrunk.
5361  */
tcp_prune_ofo_queue(struct sock * sk)5362 static bool tcp_prune_ofo_queue(struct sock *sk)
5363 {
5364 	struct tcp_sock *tp = tcp_sk(sk);
5365 	struct rb_node *node, *prev;
5366 	int goal;
5367 
5368 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5369 		return false;
5370 
5371 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5372 	goal = sk->sk_rcvbuf >> 3;
5373 	node = &tp->ooo_last_skb->rbnode;
5374 	do {
5375 		prev = rb_prev(node);
5376 		rb_erase(node, &tp->out_of_order_queue);
5377 		goal -= rb_to_skb(node)->truesize;
5378 		tcp_drop_reason(sk, rb_to_skb(node),
5379 				SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5380 		if (!prev || goal <= 0) {
5381 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5382 			    !tcp_under_memory_pressure(sk))
5383 				break;
5384 			goal = sk->sk_rcvbuf >> 3;
5385 		}
5386 		node = prev;
5387 	} while (node);
5388 	tp->ooo_last_skb = rb_to_skb(prev);
5389 
5390 	/* Reset SACK state.  A conforming SACK implementation will
5391 	 * do the same at a timeout based retransmit.  When a connection
5392 	 * is in a sad state like this, we care only about integrity
5393 	 * of the connection not performance.
5394 	 */
5395 	if (tp->rx_opt.sack_ok)
5396 		tcp_sack_reset(&tp->rx_opt);
5397 	return true;
5398 }
5399 
5400 /* Reduce allocated memory if we can, trying to get
5401  * the socket within its memory limits again.
5402  *
5403  * Return less than zero if we should start dropping frames
5404  * until the socket owning process reads some of the data
5405  * to stabilize the situation.
5406  */
tcp_prune_queue(struct sock * sk)5407 static int tcp_prune_queue(struct sock *sk)
5408 {
5409 	struct tcp_sock *tp = tcp_sk(sk);
5410 
5411 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5412 
5413 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5414 		tcp_clamp_window(sk);
5415 	else if (tcp_under_memory_pressure(sk))
5416 		tcp_adjust_rcv_ssthresh(sk);
5417 
5418 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5419 		return 0;
5420 
5421 	tcp_collapse_ofo_queue(sk);
5422 	if (!skb_queue_empty(&sk->sk_receive_queue))
5423 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5424 			     skb_peek(&sk->sk_receive_queue),
5425 			     NULL,
5426 			     tp->copied_seq, tp->rcv_nxt);
5427 
5428 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5429 		return 0;
5430 
5431 	/* Collapsing did not help, destructive actions follow.
5432 	 * This must not ever occur. */
5433 
5434 	tcp_prune_ofo_queue(sk);
5435 
5436 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5437 		return 0;
5438 
5439 	/* If we are really being abused, tell the caller to silently
5440 	 * drop receive data on the floor.  It will get retransmitted
5441 	 * and hopefully then we'll have sufficient space.
5442 	 */
5443 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5444 
5445 	/* Massive buffer overcommit. */
5446 	tp->pred_flags = 0;
5447 	return -1;
5448 }
5449 
tcp_should_expand_sndbuf(struct sock * sk)5450 static bool tcp_should_expand_sndbuf(struct sock *sk)
5451 {
5452 	const struct tcp_sock *tp = tcp_sk(sk);
5453 
5454 	/* If the user specified a specific send buffer setting, do
5455 	 * not modify it.
5456 	 */
5457 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5458 		return false;
5459 
5460 	/* If we are under global TCP memory pressure, do not expand.  */
5461 	if (tcp_under_memory_pressure(sk)) {
5462 		int unused_mem = sk_unused_reserved_mem(sk);
5463 
5464 		/* Adjust sndbuf according to reserved mem. But make sure
5465 		 * it never goes below SOCK_MIN_SNDBUF.
5466 		 * See sk_stream_moderate_sndbuf() for more details.
5467 		 */
5468 		if (unused_mem > SOCK_MIN_SNDBUF)
5469 			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5470 
5471 		return false;
5472 	}
5473 
5474 	/* If we are under soft global TCP memory pressure, do not expand.  */
5475 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5476 		return false;
5477 
5478 	/* If we filled the congestion window, do not expand.  */
5479 	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5480 		return false;
5481 
5482 	return true;
5483 }
5484 
tcp_new_space(struct sock * sk)5485 static void tcp_new_space(struct sock *sk)
5486 {
5487 	struct tcp_sock *tp = tcp_sk(sk);
5488 
5489 	if (tcp_should_expand_sndbuf(sk)) {
5490 		tcp_sndbuf_expand(sk);
5491 		tp->snd_cwnd_stamp = tcp_jiffies32;
5492 	}
5493 
5494 	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5495 }
5496 
5497 /* Caller made space either from:
5498  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5499  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5500  *
5501  * We might be able to generate EPOLLOUT to the application if:
5502  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5503  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5504  *    small enough that tcp_stream_memory_free() decides it
5505  *    is time to generate EPOLLOUT.
5506  */
tcp_check_space(struct sock * sk)5507 void tcp_check_space(struct sock *sk)
5508 {
5509 	/* pairs with tcp_poll() */
5510 	smp_mb();
5511 	if (sk->sk_socket &&
5512 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5513 		tcp_new_space(sk);
5514 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5515 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5516 	}
5517 }
5518 
tcp_data_snd_check(struct sock * sk)5519 static inline void tcp_data_snd_check(struct sock *sk)
5520 {
5521 	tcp_push_pending_frames(sk);
5522 	tcp_check_space(sk);
5523 }
5524 
5525 /*
5526  * Check if sending an ack is needed.
5527  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5528 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5529 {
5530 	struct tcp_sock *tp = tcp_sk(sk);
5531 	unsigned long rtt, delay;
5532 
5533 	    /* More than one full frame received... */
5534 	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5535 	     /* ... and right edge of window advances far enough.
5536 	      * (tcp_recvmsg() will send ACK otherwise).
5537 	      * If application uses SO_RCVLOWAT, we want send ack now if
5538 	      * we have not received enough bytes to satisfy the condition.
5539 	      */
5540 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5541 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5542 	    /* We ACK each frame or... */
5543 	    tcp_in_quickack_mode(sk) ||
5544 	    /* Protocol state mandates a one-time immediate ACK */
5545 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5546 send_now:
5547 		tcp_send_ack(sk);
5548 		return;
5549 	}
5550 
5551 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5552 		tcp_send_delayed_ack(sk);
5553 		return;
5554 	}
5555 
5556 	if (!tcp_is_sack(tp) ||
5557 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5558 		goto send_now;
5559 
5560 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5561 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5562 		tp->dup_ack_counter = 0;
5563 	}
5564 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5565 		tp->dup_ack_counter++;
5566 		goto send_now;
5567 	}
5568 	tp->compressed_ack++;
5569 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5570 		return;
5571 
5572 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5573 
5574 	rtt = tp->rcv_rtt_est.rtt_us;
5575 	if (tp->srtt_us && tp->srtt_us < rtt)
5576 		rtt = tp->srtt_us;
5577 
5578 	delay = min_t(unsigned long,
5579 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5580 		      rtt * (NSEC_PER_USEC >> 3)/20);
5581 	sock_hold(sk);
5582 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5583 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5584 			       HRTIMER_MODE_REL_PINNED_SOFT);
5585 }
5586 
tcp_ack_snd_check(struct sock * sk)5587 static inline void tcp_ack_snd_check(struct sock *sk)
5588 {
5589 	if (!inet_csk_ack_scheduled(sk)) {
5590 		/* We sent a data segment already. */
5591 		return;
5592 	}
5593 	__tcp_ack_snd_check(sk, 1);
5594 }
5595 
5596 /*
5597  *	This routine is only called when we have urgent data
5598  *	signaled. Its the 'slow' part of tcp_urg. It could be
5599  *	moved inline now as tcp_urg is only called from one
5600  *	place. We handle URGent data wrong. We have to - as
5601  *	BSD still doesn't use the correction from RFC961.
5602  *	For 1003.1g we should support a new option TCP_STDURG to permit
5603  *	either form (or just set the sysctl tcp_stdurg).
5604  */
5605 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5606 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5607 {
5608 	struct tcp_sock *tp = tcp_sk(sk);
5609 	u32 ptr = ntohs(th->urg_ptr);
5610 
5611 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5612 		ptr--;
5613 	ptr += ntohl(th->seq);
5614 
5615 	/* Ignore urgent data that we've already seen and read. */
5616 	if (after(tp->copied_seq, ptr))
5617 		return;
5618 
5619 	/* Do not replay urg ptr.
5620 	 *
5621 	 * NOTE: interesting situation not covered by specs.
5622 	 * Misbehaving sender may send urg ptr, pointing to segment,
5623 	 * which we already have in ofo queue. We are not able to fetch
5624 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5625 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5626 	 * situations. But it is worth to think about possibility of some
5627 	 * DoSes using some hypothetical application level deadlock.
5628 	 */
5629 	if (before(ptr, tp->rcv_nxt))
5630 		return;
5631 
5632 	/* Do we already have a newer (or duplicate) urgent pointer? */
5633 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5634 		return;
5635 
5636 	/* Tell the world about our new urgent pointer. */
5637 	sk_send_sigurg(sk);
5638 
5639 	/* We may be adding urgent data when the last byte read was
5640 	 * urgent. To do this requires some care. We cannot just ignore
5641 	 * tp->copied_seq since we would read the last urgent byte again
5642 	 * as data, nor can we alter copied_seq until this data arrives
5643 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5644 	 *
5645 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5646 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5647 	 * and expect that both A and B disappear from stream. This is _wrong_.
5648 	 * Though this happens in BSD with high probability, this is occasional.
5649 	 * Any application relying on this is buggy. Note also, that fix "works"
5650 	 * only in this artificial test. Insert some normal data between A and B and we will
5651 	 * decline of BSD again. Verdict: it is better to remove to trap
5652 	 * buggy users.
5653 	 */
5654 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5655 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5656 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5657 		tp->copied_seq++;
5658 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5659 			__skb_unlink(skb, &sk->sk_receive_queue);
5660 			__kfree_skb(skb);
5661 		}
5662 	}
5663 
5664 	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5665 	WRITE_ONCE(tp->urg_seq, ptr);
5666 
5667 	/* Disable header prediction. */
5668 	tp->pred_flags = 0;
5669 }
5670 
5671 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5672 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5673 {
5674 	struct tcp_sock *tp = tcp_sk(sk);
5675 
5676 	/* Check if we get a new urgent pointer - normally not. */
5677 	if (unlikely(th->urg))
5678 		tcp_check_urg(sk, th);
5679 
5680 	/* Do we wait for any urgent data? - normally not... */
5681 	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5682 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5683 			  th->syn;
5684 
5685 		/* Is the urgent pointer pointing into this packet? */
5686 		if (ptr < skb->len) {
5687 			u8 tmp;
5688 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5689 				BUG();
5690 			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5691 			if (!sock_flag(sk, SOCK_DEAD))
5692 				sk->sk_data_ready(sk);
5693 		}
5694 	}
5695 }
5696 
5697 /* Accept RST for rcv_nxt - 1 after a FIN.
5698  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5699  * FIN is sent followed by a RST packet. The RST is sent with the same
5700  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5701  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5702  * ACKs on the closed socket. In addition middleboxes can drop either the
5703  * challenge ACK or a subsequent RST.
5704  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5705 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5706 {
5707 	struct tcp_sock *tp = tcp_sk(sk);
5708 
5709 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5710 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5711 					       TCPF_CLOSING));
5712 }
5713 
5714 /* Does PAWS and seqno based validation of an incoming segment, flags will
5715  * play significant role here.
5716  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5717 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5718 				  const struct tcphdr *th, int syn_inerr)
5719 {
5720 	struct tcp_sock *tp = tcp_sk(sk);
5721 	SKB_DR(reason);
5722 
5723 	/* RFC1323: H1. Apply PAWS check first. */
5724 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5725 	    tp->rx_opt.saw_tstamp &&
5726 	    tcp_paws_discard(sk, skb)) {
5727 		if (!th->rst) {
5728 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5729 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5730 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5731 						  &tp->last_oow_ack_time))
5732 				tcp_send_dupack(sk, skb);
5733 			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5734 			goto discard;
5735 		}
5736 		/* Reset is accepted even if it did not pass PAWS. */
5737 	}
5738 
5739 	/* Step 1: check sequence number */
5740 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5741 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5742 		 * (RST) segments are validated by checking their SEQ-fields."
5743 		 * And page 69: "If an incoming segment is not acceptable,
5744 		 * an acknowledgment should be sent in reply (unless the RST
5745 		 * bit is set, if so drop the segment and return)".
5746 		 */
5747 		if (!th->rst) {
5748 			if (th->syn)
5749 				goto syn_challenge;
5750 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5751 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5752 						  &tp->last_oow_ack_time))
5753 				tcp_send_dupack(sk, skb);
5754 		} else if (tcp_reset_check(sk, skb)) {
5755 			goto reset;
5756 		}
5757 		SKB_DR_SET(reason, TCP_INVALID_SEQUENCE);
5758 		goto discard;
5759 	}
5760 
5761 	/* Step 2: check RST bit */
5762 	if (th->rst) {
5763 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5764 		 * FIN and SACK too if available):
5765 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5766 		 * the right-most SACK block,
5767 		 * then
5768 		 *     RESET the connection
5769 		 * else
5770 		 *     Send a challenge ACK
5771 		 */
5772 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5773 		    tcp_reset_check(sk, skb))
5774 			goto reset;
5775 
5776 		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5777 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5778 			int max_sack = sp[0].end_seq;
5779 			int this_sack;
5780 
5781 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5782 			     ++this_sack) {
5783 				max_sack = after(sp[this_sack].end_seq,
5784 						 max_sack) ?
5785 					sp[this_sack].end_seq : max_sack;
5786 			}
5787 
5788 			if (TCP_SKB_CB(skb)->seq == max_sack)
5789 				goto reset;
5790 		}
5791 
5792 		/* Disable TFO if RST is out-of-order
5793 		 * and no data has been received
5794 		 * for current active TFO socket
5795 		 */
5796 		if (tp->syn_fastopen && !tp->data_segs_in &&
5797 		    sk->sk_state == TCP_ESTABLISHED)
5798 			tcp_fastopen_active_disable(sk);
5799 		tcp_send_challenge_ack(sk);
5800 		SKB_DR_SET(reason, TCP_RESET);
5801 		goto discard;
5802 	}
5803 
5804 	/* step 3: check security and precedence [ignored] */
5805 
5806 	/* step 4: Check for a SYN
5807 	 * RFC 5961 4.2 : Send a challenge ack
5808 	 */
5809 	if (th->syn) {
5810 syn_challenge:
5811 		if (syn_inerr)
5812 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5813 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5814 		tcp_send_challenge_ack(sk);
5815 		SKB_DR_SET(reason, TCP_INVALID_SYN);
5816 		goto discard;
5817 	}
5818 
5819 	bpf_skops_parse_hdr(sk, skb);
5820 
5821 	return true;
5822 
5823 discard:
5824 	tcp_drop_reason(sk, skb, reason);
5825 	return false;
5826 
5827 reset:
5828 	tcp_reset(sk, skb);
5829 	__kfree_skb(skb);
5830 	return false;
5831 }
5832 
5833 /*
5834  *	TCP receive function for the ESTABLISHED state.
5835  *
5836  *	It is split into a fast path and a slow path. The fast path is
5837  * 	disabled when:
5838  *	- A zero window was announced from us - zero window probing
5839  *        is only handled properly in the slow path.
5840  *	- Out of order segments arrived.
5841  *	- Urgent data is expected.
5842  *	- There is no buffer space left
5843  *	- Unexpected TCP flags/window values/header lengths are received
5844  *	  (detected by checking the TCP header against pred_flags)
5845  *	- Data is sent in both directions. Fast path only supports pure senders
5846  *	  or pure receivers (this means either the sequence number or the ack
5847  *	  value must stay constant)
5848  *	- Unexpected TCP option.
5849  *
5850  *	When these conditions are not satisfied it drops into a standard
5851  *	receive procedure patterned after RFC793 to handle all cases.
5852  *	The first three cases are guaranteed by proper pred_flags setting,
5853  *	the rest is checked inline. Fast processing is turned on in
5854  *	tcp_data_queue when everything is OK.
5855  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5856 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5857 {
5858 	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5859 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5860 	struct tcp_sock *tp = tcp_sk(sk);
5861 	unsigned int len = skb->len;
5862 
5863 	/* TCP congestion window tracking */
5864 	trace_tcp_probe(sk, skb);
5865 
5866 	tcp_mstamp_refresh(tp);
5867 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5868 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5869 	/*
5870 	 *	Header prediction.
5871 	 *	The code loosely follows the one in the famous
5872 	 *	"30 instruction TCP receive" Van Jacobson mail.
5873 	 *
5874 	 *	Van's trick is to deposit buffers into socket queue
5875 	 *	on a device interrupt, to call tcp_recv function
5876 	 *	on the receive process context and checksum and copy
5877 	 *	the buffer to user space. smart...
5878 	 *
5879 	 *	Our current scheme is not silly either but we take the
5880 	 *	extra cost of the net_bh soft interrupt processing...
5881 	 *	We do checksum and copy also but from device to kernel.
5882 	 */
5883 
5884 	tp->rx_opt.saw_tstamp = 0;
5885 
5886 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5887 	 *	if header_prediction is to be made
5888 	 *	'S' will always be tp->tcp_header_len >> 2
5889 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5890 	 *  turn it off	(when there are holes in the receive
5891 	 *	 space for instance)
5892 	 *	PSH flag is ignored.
5893 	 */
5894 
5895 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5896 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5897 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5898 		int tcp_header_len = tp->tcp_header_len;
5899 
5900 		/* Timestamp header prediction: tcp_header_len
5901 		 * is automatically equal to th->doff*4 due to pred_flags
5902 		 * match.
5903 		 */
5904 
5905 		/* Check timestamp */
5906 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5907 			/* No? Slow path! */
5908 			if (!tcp_parse_aligned_timestamp(tp, th))
5909 				goto slow_path;
5910 
5911 			/* If PAWS failed, check it more carefully in slow path */
5912 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5913 				goto slow_path;
5914 
5915 			/* DO NOT update ts_recent here, if checksum fails
5916 			 * and timestamp was corrupted part, it will result
5917 			 * in a hung connection since we will drop all
5918 			 * future packets due to the PAWS test.
5919 			 */
5920 		}
5921 
5922 		if (len <= tcp_header_len) {
5923 			/* Bulk data transfer: sender */
5924 			if (len == tcp_header_len) {
5925 				/* Predicted packet is in window by definition.
5926 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5927 				 * Hence, check seq<=rcv_wup reduces to:
5928 				 */
5929 				if (tcp_header_len ==
5930 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5931 				    tp->rcv_nxt == tp->rcv_wup)
5932 					tcp_store_ts_recent(tp);
5933 
5934 				/* We know that such packets are checksummed
5935 				 * on entry.
5936 				 */
5937 				tcp_ack(sk, skb, 0);
5938 				__kfree_skb(skb);
5939 				tcp_data_snd_check(sk);
5940 				/* When receiving pure ack in fast path, update
5941 				 * last ts ecr directly instead of calling
5942 				 * tcp_rcv_rtt_measure_ts()
5943 				 */
5944 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5945 				return;
5946 			} else { /* Header too small */
5947 				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5948 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5949 				goto discard;
5950 			}
5951 		} else {
5952 			int eaten = 0;
5953 			bool fragstolen = false;
5954 
5955 			if (tcp_checksum_complete(skb))
5956 				goto csum_error;
5957 
5958 			if ((int)skb->truesize > sk->sk_forward_alloc)
5959 				goto step5;
5960 
5961 			/* Predicted packet is in window by definition.
5962 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5963 			 * Hence, check seq<=rcv_wup reduces to:
5964 			 */
5965 			if (tcp_header_len ==
5966 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5967 			    tp->rcv_nxt == tp->rcv_wup)
5968 				tcp_store_ts_recent(tp);
5969 
5970 			tcp_rcv_rtt_measure_ts(sk, skb);
5971 
5972 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5973 
5974 			/* Bulk data transfer: receiver */
5975 			skb_dst_drop(skb);
5976 			__skb_pull(skb, tcp_header_len);
5977 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5978 
5979 			tcp_event_data_recv(sk, skb);
5980 
5981 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5982 				/* Well, only one small jumplet in fast path... */
5983 				tcp_ack(sk, skb, FLAG_DATA);
5984 				tcp_data_snd_check(sk);
5985 				if (!inet_csk_ack_scheduled(sk))
5986 					goto no_ack;
5987 			} else {
5988 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5989 			}
5990 
5991 			__tcp_ack_snd_check(sk, 0);
5992 no_ack:
5993 			if (eaten)
5994 				kfree_skb_partial(skb, fragstolen);
5995 			tcp_data_ready(sk);
5996 			return;
5997 		}
5998 	}
5999 
6000 slow_path:
6001 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6002 		goto csum_error;
6003 
6004 	if (!th->ack && !th->rst && !th->syn) {
6005 		reason = SKB_DROP_REASON_TCP_FLAGS;
6006 		goto discard;
6007 	}
6008 
6009 	/*
6010 	 *	Standard slow path.
6011 	 */
6012 
6013 	if (!tcp_validate_incoming(sk, skb, th, 1))
6014 		return;
6015 
6016 step5:
6017 	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6018 	if ((int)reason < 0) {
6019 		reason = -reason;
6020 		goto discard;
6021 	}
6022 	tcp_rcv_rtt_measure_ts(sk, skb);
6023 
6024 	/* Process urgent data. */
6025 	tcp_urg(sk, skb, th);
6026 
6027 	/* step 7: process the segment text */
6028 	tcp_data_queue(sk, skb);
6029 
6030 	tcp_data_snd_check(sk);
6031 	tcp_ack_snd_check(sk);
6032 	return;
6033 
6034 csum_error:
6035 	reason = SKB_DROP_REASON_TCP_CSUM;
6036 	trace_tcp_bad_csum(skb);
6037 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6038 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6039 
6040 discard:
6041 	tcp_drop_reason(sk, skb, reason);
6042 }
6043 EXPORT_SYMBOL(tcp_rcv_established);
6044 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6045 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6046 {
6047 	struct inet_connection_sock *icsk = inet_csk(sk);
6048 	struct tcp_sock *tp = tcp_sk(sk);
6049 
6050 	tcp_mtup_init(sk);
6051 	icsk->icsk_af_ops->rebuild_header(sk);
6052 	tcp_init_metrics(sk);
6053 
6054 	/* Initialize the congestion window to start the transfer.
6055 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6056 	 * retransmitted. In light of RFC6298 more aggressive 1sec
6057 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6058 	 * retransmission has occurred.
6059 	 */
6060 	if (tp->total_retrans > 1 && tp->undo_marker)
6061 		tcp_snd_cwnd_set(tp, 1);
6062 	else
6063 		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6064 	tp->snd_cwnd_stamp = tcp_jiffies32;
6065 
6066 	bpf_skops_established(sk, bpf_op, skb);
6067 	/* Initialize congestion control unless BPF initialized it already: */
6068 	if (!icsk->icsk_ca_initialized)
6069 		tcp_init_congestion_control(sk);
6070 	tcp_init_buffer_space(sk);
6071 }
6072 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6073 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6074 {
6075 	struct tcp_sock *tp = tcp_sk(sk);
6076 	struct inet_connection_sock *icsk = inet_csk(sk);
6077 
6078 	tcp_set_state(sk, TCP_ESTABLISHED);
6079 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6080 
6081 	if (skb) {
6082 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6083 		security_inet_conn_established(sk, skb);
6084 		sk_mark_napi_id(sk, skb);
6085 	}
6086 
6087 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6088 
6089 	/* Prevent spurious tcp_cwnd_restart() on first data
6090 	 * packet.
6091 	 */
6092 	tp->lsndtime = tcp_jiffies32;
6093 
6094 	if (sock_flag(sk, SOCK_KEEPOPEN))
6095 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6096 
6097 	if (!tp->rx_opt.snd_wscale)
6098 		__tcp_fast_path_on(tp, tp->snd_wnd);
6099 	else
6100 		tp->pred_flags = 0;
6101 }
6102 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6103 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6104 				    struct tcp_fastopen_cookie *cookie)
6105 {
6106 	struct tcp_sock *tp = tcp_sk(sk);
6107 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6108 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6109 	bool syn_drop = false;
6110 
6111 	if (mss == tp->rx_opt.user_mss) {
6112 		struct tcp_options_received opt;
6113 
6114 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6115 		tcp_clear_options(&opt);
6116 		opt.user_mss = opt.mss_clamp = 0;
6117 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6118 		mss = opt.mss_clamp;
6119 	}
6120 
6121 	if (!tp->syn_fastopen) {
6122 		/* Ignore an unsolicited cookie */
6123 		cookie->len = -1;
6124 	} else if (tp->total_retrans) {
6125 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6126 		 * acknowledges data. Presumably the remote received only
6127 		 * the retransmitted (regular) SYNs: either the original
6128 		 * SYN-data or the corresponding SYN-ACK was dropped.
6129 		 */
6130 		syn_drop = (cookie->len < 0 && data);
6131 	} else if (cookie->len < 0 && !tp->syn_data) {
6132 		/* We requested a cookie but didn't get it. If we did not use
6133 		 * the (old) exp opt format then try so next time (try_exp=1).
6134 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6135 		 */
6136 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6137 	}
6138 
6139 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6140 
6141 	if (data) { /* Retransmit unacked data in SYN */
6142 		if (tp->total_retrans)
6143 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6144 		else
6145 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6146 		skb_rbtree_walk_from(data)
6147 			 tcp_mark_skb_lost(sk, data);
6148 		tcp_xmit_retransmit_queue(sk);
6149 		NET_INC_STATS(sock_net(sk),
6150 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6151 		return true;
6152 	}
6153 	tp->syn_data_acked = tp->syn_data;
6154 	if (tp->syn_data_acked) {
6155 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6156 		/* SYN-data is counted as two separate packets in tcp_ack() */
6157 		if (tp->delivered > 1)
6158 			--tp->delivered;
6159 	}
6160 
6161 	tcp_fastopen_add_skb(sk, synack);
6162 
6163 	return false;
6164 }
6165 
smc_check_reset_syn(struct tcp_sock * tp)6166 static void smc_check_reset_syn(struct tcp_sock *tp)
6167 {
6168 #if IS_ENABLED(CONFIG_SMC)
6169 	if (static_branch_unlikely(&tcp_have_smc)) {
6170 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6171 			tp->syn_smc = 0;
6172 	}
6173 #endif
6174 }
6175 
tcp_try_undo_spurious_syn(struct sock * sk)6176 static void tcp_try_undo_spurious_syn(struct sock *sk)
6177 {
6178 	struct tcp_sock *tp = tcp_sk(sk);
6179 	u32 syn_stamp;
6180 
6181 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6182 	 * spurious if the ACK's timestamp option echo value matches the
6183 	 * original SYN timestamp.
6184 	 */
6185 	syn_stamp = tp->retrans_stamp;
6186 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6187 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6188 		tp->undo_marker = 0;
6189 }
6190 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6191 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6192 					 const struct tcphdr *th)
6193 {
6194 	struct inet_connection_sock *icsk = inet_csk(sk);
6195 	struct tcp_sock *tp = tcp_sk(sk);
6196 	struct tcp_fastopen_cookie foc = { .len = -1 };
6197 	int saved_clamp = tp->rx_opt.mss_clamp;
6198 	bool fastopen_fail;
6199 	SKB_DR(reason);
6200 
6201 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6202 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6203 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6204 
6205 	if (th->ack) {
6206 		/* rfc793:
6207 		 * "If the state is SYN-SENT then
6208 		 *    first check the ACK bit
6209 		 *      If the ACK bit is set
6210 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6211 		 *        a reset (unless the RST bit is set, if so drop
6212 		 *        the segment and return)"
6213 		 */
6214 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6215 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6216 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6217 			if (icsk->icsk_retransmits == 0)
6218 				inet_csk_reset_xmit_timer(sk,
6219 						ICSK_TIME_RETRANS,
6220 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6221 			goto reset_and_undo;
6222 		}
6223 
6224 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6225 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6226 			     tcp_time_stamp(tp))) {
6227 			NET_INC_STATS(sock_net(sk),
6228 					LINUX_MIB_PAWSACTIVEREJECTED);
6229 			goto reset_and_undo;
6230 		}
6231 
6232 		/* Now ACK is acceptable.
6233 		 *
6234 		 * "If the RST bit is set
6235 		 *    If the ACK was acceptable then signal the user "error:
6236 		 *    connection reset", drop the segment, enter CLOSED state,
6237 		 *    delete TCB, and return."
6238 		 */
6239 
6240 		if (th->rst) {
6241 			tcp_reset(sk, skb);
6242 consume:
6243 			__kfree_skb(skb);
6244 			return 0;
6245 		}
6246 
6247 		/* rfc793:
6248 		 *   "fifth, if neither of the SYN or RST bits is set then
6249 		 *    drop the segment and return."
6250 		 *
6251 		 *    See note below!
6252 		 *                                        --ANK(990513)
6253 		 */
6254 		if (!th->syn) {
6255 			SKB_DR_SET(reason, TCP_FLAGS);
6256 			goto discard_and_undo;
6257 		}
6258 		/* rfc793:
6259 		 *   "If the SYN bit is on ...
6260 		 *    are acceptable then ...
6261 		 *    (our SYN has been ACKed), change the connection
6262 		 *    state to ESTABLISHED..."
6263 		 */
6264 
6265 		tcp_ecn_rcv_synack(tp, th);
6266 
6267 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6268 		tcp_try_undo_spurious_syn(sk);
6269 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6270 
6271 		/* Ok.. it's good. Set up sequence numbers and
6272 		 * move to established.
6273 		 */
6274 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6275 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6276 
6277 		/* RFC1323: The window in SYN & SYN/ACK segments is
6278 		 * never scaled.
6279 		 */
6280 		tp->snd_wnd = ntohs(th->window);
6281 
6282 		if (!tp->rx_opt.wscale_ok) {
6283 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6284 			tp->window_clamp = min(tp->window_clamp, 65535U);
6285 		}
6286 
6287 		if (tp->rx_opt.saw_tstamp) {
6288 			tp->rx_opt.tstamp_ok	   = 1;
6289 			tp->tcp_header_len =
6290 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6291 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6292 			tcp_store_ts_recent(tp);
6293 		} else {
6294 			tp->tcp_header_len = sizeof(struct tcphdr);
6295 		}
6296 
6297 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6298 		tcp_initialize_rcv_mss(sk);
6299 
6300 		/* Remember, tcp_poll() does not lock socket!
6301 		 * Change state from SYN-SENT only after copied_seq
6302 		 * is initialized. */
6303 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6304 
6305 		smc_check_reset_syn(tp);
6306 
6307 		smp_mb();
6308 
6309 		tcp_finish_connect(sk, skb);
6310 
6311 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6312 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6313 
6314 		if (!sock_flag(sk, SOCK_DEAD)) {
6315 			sk->sk_state_change(sk);
6316 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6317 		}
6318 		if (fastopen_fail)
6319 			return -1;
6320 		if (sk->sk_write_pending ||
6321 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6322 		    inet_csk_in_pingpong_mode(sk)) {
6323 			/* Save one ACK. Data will be ready after
6324 			 * several ticks, if write_pending is set.
6325 			 *
6326 			 * It may be deleted, but with this feature tcpdumps
6327 			 * look so _wonderfully_ clever, that I was not able
6328 			 * to stand against the temptation 8)     --ANK
6329 			 */
6330 			inet_csk_schedule_ack(sk);
6331 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6332 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6333 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6334 			goto consume;
6335 		}
6336 		tcp_send_ack(sk);
6337 		return -1;
6338 	}
6339 
6340 	/* No ACK in the segment */
6341 
6342 	if (th->rst) {
6343 		/* rfc793:
6344 		 * "If the RST bit is set
6345 		 *
6346 		 *      Otherwise (no ACK) drop the segment and return."
6347 		 */
6348 		SKB_DR_SET(reason, TCP_RESET);
6349 		goto discard_and_undo;
6350 	}
6351 
6352 	/* PAWS check. */
6353 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6354 	    tcp_paws_reject(&tp->rx_opt, 0)) {
6355 		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6356 		goto discard_and_undo;
6357 	}
6358 	if (th->syn) {
6359 		/* We see SYN without ACK. It is attempt of
6360 		 * simultaneous connect with crossed SYNs.
6361 		 * Particularly, it can be connect to self.
6362 		 */
6363 		tcp_set_state(sk, TCP_SYN_RECV);
6364 
6365 		if (tp->rx_opt.saw_tstamp) {
6366 			tp->rx_opt.tstamp_ok = 1;
6367 			tcp_store_ts_recent(tp);
6368 			tp->tcp_header_len =
6369 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6370 		} else {
6371 			tp->tcp_header_len = sizeof(struct tcphdr);
6372 		}
6373 
6374 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6375 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6376 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6377 
6378 		/* RFC1323: The window in SYN & SYN/ACK segments is
6379 		 * never scaled.
6380 		 */
6381 		tp->snd_wnd    = ntohs(th->window);
6382 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6383 		tp->max_window = tp->snd_wnd;
6384 
6385 		tcp_ecn_rcv_syn(tp, th);
6386 
6387 		tcp_mtup_init(sk);
6388 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6389 		tcp_initialize_rcv_mss(sk);
6390 
6391 		tcp_send_synack(sk);
6392 #if 0
6393 		/* Note, we could accept data and URG from this segment.
6394 		 * There are no obstacles to make this (except that we must
6395 		 * either change tcp_recvmsg() to prevent it from returning data
6396 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6397 		 *
6398 		 * However, if we ignore data in ACKless segments sometimes,
6399 		 * we have no reasons to accept it sometimes.
6400 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6401 		 * is not flawless. So, discard packet for sanity.
6402 		 * Uncomment this return to process the data.
6403 		 */
6404 		return -1;
6405 #else
6406 		goto consume;
6407 #endif
6408 	}
6409 	/* "fifth, if neither of the SYN or RST bits is set then
6410 	 * drop the segment and return."
6411 	 */
6412 
6413 discard_and_undo:
6414 	tcp_clear_options(&tp->rx_opt);
6415 	tp->rx_opt.mss_clamp = saved_clamp;
6416 	tcp_drop_reason(sk, skb, reason);
6417 	return 0;
6418 
6419 reset_and_undo:
6420 	tcp_clear_options(&tp->rx_opt);
6421 	tp->rx_opt.mss_clamp = saved_clamp;
6422 	return 1;
6423 }
6424 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6425 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6426 {
6427 	struct tcp_sock *tp = tcp_sk(sk);
6428 	struct request_sock *req;
6429 
6430 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6431 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6432 	 */
6433 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6434 		tcp_try_undo_recovery(sk);
6435 
6436 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6437 	tp->retrans_stamp = 0;
6438 	inet_csk(sk)->icsk_retransmits = 0;
6439 
6440 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6441 	 * we no longer need req so release it.
6442 	 */
6443 	req = rcu_dereference_protected(tp->fastopen_rsk,
6444 					lockdep_sock_is_held(sk));
6445 	reqsk_fastopen_remove(sk, req, false);
6446 
6447 	/* Re-arm the timer because data may have been sent out.
6448 	 * This is similar to the regular data transmission case
6449 	 * when new data has just been ack'ed.
6450 	 *
6451 	 * (TFO) - we could try to be more aggressive and
6452 	 * retransmitting any data sooner based on when they
6453 	 * are sent out.
6454 	 */
6455 	tcp_rearm_rto(sk);
6456 }
6457 
6458 /*
6459  *	This function implements the receiving procedure of RFC 793 for
6460  *	all states except ESTABLISHED and TIME_WAIT.
6461  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6462  *	address independent.
6463  */
6464 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6465 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6466 {
6467 	struct tcp_sock *tp = tcp_sk(sk);
6468 	struct inet_connection_sock *icsk = inet_csk(sk);
6469 	const struct tcphdr *th = tcp_hdr(skb);
6470 	struct request_sock *req;
6471 	int queued = 0;
6472 	bool acceptable;
6473 	SKB_DR(reason);
6474 
6475 	switch (sk->sk_state) {
6476 	case TCP_CLOSE:
6477 		SKB_DR_SET(reason, TCP_CLOSE);
6478 		goto discard;
6479 
6480 	case TCP_LISTEN:
6481 		if (th->ack)
6482 			return 1;
6483 
6484 		if (th->rst) {
6485 			SKB_DR_SET(reason, TCP_RESET);
6486 			goto discard;
6487 		}
6488 		if (th->syn) {
6489 			if (th->fin) {
6490 				SKB_DR_SET(reason, TCP_FLAGS);
6491 				goto discard;
6492 			}
6493 			/* It is possible that we process SYN packets from backlog,
6494 			 * so we need to make sure to disable BH and RCU right there.
6495 			 */
6496 			rcu_read_lock();
6497 			local_bh_disable();
6498 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6499 			local_bh_enable();
6500 			rcu_read_unlock();
6501 
6502 			if (!acceptable)
6503 				return 1;
6504 			consume_skb(skb);
6505 			return 0;
6506 		}
6507 		SKB_DR_SET(reason, TCP_FLAGS);
6508 		goto discard;
6509 
6510 	case TCP_SYN_SENT:
6511 		tp->rx_opt.saw_tstamp = 0;
6512 		tcp_mstamp_refresh(tp);
6513 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6514 		if (queued >= 0)
6515 			return queued;
6516 
6517 		/* Do step6 onward by hand. */
6518 		tcp_urg(sk, skb, th);
6519 		__kfree_skb(skb);
6520 		tcp_data_snd_check(sk);
6521 		return 0;
6522 	}
6523 
6524 	tcp_mstamp_refresh(tp);
6525 	tp->rx_opt.saw_tstamp = 0;
6526 	req = rcu_dereference_protected(tp->fastopen_rsk,
6527 					lockdep_sock_is_held(sk));
6528 	if (req) {
6529 		bool req_stolen;
6530 
6531 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6532 		    sk->sk_state != TCP_FIN_WAIT1);
6533 
6534 		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6535 			SKB_DR_SET(reason, TCP_FASTOPEN);
6536 			goto discard;
6537 		}
6538 	}
6539 
6540 	if (!th->ack && !th->rst && !th->syn) {
6541 		SKB_DR_SET(reason, TCP_FLAGS);
6542 		goto discard;
6543 	}
6544 	if (!tcp_validate_incoming(sk, skb, th, 0))
6545 		return 0;
6546 
6547 	/* step 5: check the ACK field */
6548 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6549 				      FLAG_UPDATE_TS_RECENT |
6550 				      FLAG_NO_CHALLENGE_ACK) > 0;
6551 
6552 	if (!acceptable) {
6553 		if (sk->sk_state == TCP_SYN_RECV)
6554 			return 1;	/* send one RST */
6555 		tcp_send_challenge_ack(sk);
6556 		SKB_DR_SET(reason, TCP_OLD_ACK);
6557 		goto discard;
6558 	}
6559 	switch (sk->sk_state) {
6560 	case TCP_SYN_RECV:
6561 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6562 		if (!tp->srtt_us)
6563 			tcp_synack_rtt_meas(sk, req);
6564 
6565 		if (req) {
6566 			tcp_rcv_synrecv_state_fastopen(sk);
6567 		} else {
6568 			tcp_try_undo_spurious_syn(sk);
6569 			tp->retrans_stamp = 0;
6570 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6571 					  skb);
6572 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6573 		}
6574 		smp_mb();
6575 		tcp_set_state(sk, TCP_ESTABLISHED);
6576 		sk->sk_state_change(sk);
6577 
6578 		/* Note, that this wakeup is only for marginal crossed SYN case.
6579 		 * Passively open sockets are not waked up, because
6580 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6581 		 */
6582 		if (sk->sk_socket)
6583 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6584 
6585 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6586 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6587 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6588 
6589 		if (tp->rx_opt.tstamp_ok)
6590 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6591 
6592 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6593 			tcp_update_pacing_rate(sk);
6594 
6595 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6596 		tp->lsndtime = tcp_jiffies32;
6597 
6598 		tcp_initialize_rcv_mss(sk);
6599 		tcp_fast_path_on(tp);
6600 		break;
6601 
6602 	case TCP_FIN_WAIT1: {
6603 		int tmo;
6604 
6605 		if (req)
6606 			tcp_rcv_synrecv_state_fastopen(sk);
6607 
6608 		if (tp->snd_una != tp->write_seq)
6609 			break;
6610 
6611 		tcp_set_state(sk, TCP_FIN_WAIT2);
6612 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6613 
6614 		sk_dst_confirm(sk);
6615 
6616 		if (!sock_flag(sk, SOCK_DEAD)) {
6617 			/* Wake up lingering close() */
6618 			sk->sk_state_change(sk);
6619 			break;
6620 		}
6621 
6622 		if (tp->linger2 < 0) {
6623 			tcp_done(sk);
6624 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6625 			return 1;
6626 		}
6627 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6628 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6629 			/* Receive out of order FIN after close() */
6630 			if (tp->syn_fastopen && th->fin)
6631 				tcp_fastopen_active_disable(sk);
6632 			tcp_done(sk);
6633 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6634 			return 1;
6635 		}
6636 
6637 		tmo = tcp_fin_time(sk);
6638 		if (tmo > TCP_TIMEWAIT_LEN) {
6639 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6640 		} else if (th->fin || sock_owned_by_user(sk)) {
6641 			/* Bad case. We could lose such FIN otherwise.
6642 			 * It is not a big problem, but it looks confusing
6643 			 * and not so rare event. We still can lose it now,
6644 			 * if it spins in bh_lock_sock(), but it is really
6645 			 * marginal case.
6646 			 */
6647 			inet_csk_reset_keepalive_timer(sk, tmo);
6648 		} else {
6649 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6650 			goto consume;
6651 		}
6652 		break;
6653 	}
6654 
6655 	case TCP_CLOSING:
6656 		if (tp->snd_una == tp->write_seq) {
6657 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6658 			goto consume;
6659 		}
6660 		break;
6661 
6662 	case TCP_LAST_ACK:
6663 		if (tp->snd_una == tp->write_seq) {
6664 			tcp_update_metrics(sk);
6665 			tcp_done(sk);
6666 			goto consume;
6667 		}
6668 		break;
6669 	}
6670 
6671 	/* step 6: check the URG bit */
6672 	tcp_urg(sk, skb, th);
6673 
6674 	/* step 7: process the segment text */
6675 	switch (sk->sk_state) {
6676 	case TCP_CLOSE_WAIT:
6677 	case TCP_CLOSING:
6678 	case TCP_LAST_ACK:
6679 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6680 			/* If a subflow has been reset, the packet should not
6681 			 * continue to be processed, drop the packet.
6682 			 */
6683 			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6684 				goto discard;
6685 			break;
6686 		}
6687 		fallthrough;
6688 	case TCP_FIN_WAIT1:
6689 	case TCP_FIN_WAIT2:
6690 		/* RFC 793 says to queue data in these states,
6691 		 * RFC 1122 says we MUST send a reset.
6692 		 * BSD 4.4 also does reset.
6693 		 */
6694 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6695 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6696 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6697 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6698 				tcp_reset(sk, skb);
6699 				return 1;
6700 			}
6701 		}
6702 		fallthrough;
6703 	case TCP_ESTABLISHED:
6704 		tcp_data_queue(sk, skb);
6705 		queued = 1;
6706 		break;
6707 	}
6708 
6709 	/* tcp_data could move socket to TIME-WAIT */
6710 	if (sk->sk_state != TCP_CLOSE) {
6711 		tcp_data_snd_check(sk);
6712 		tcp_ack_snd_check(sk);
6713 	}
6714 
6715 	if (!queued) {
6716 discard:
6717 		tcp_drop_reason(sk, skb, reason);
6718 	}
6719 	return 0;
6720 
6721 consume:
6722 	__kfree_skb(skb);
6723 	return 0;
6724 }
6725 EXPORT_SYMBOL(tcp_rcv_state_process);
6726 
pr_drop_req(struct request_sock * req,__u16 port,int family)6727 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6728 {
6729 	struct inet_request_sock *ireq = inet_rsk(req);
6730 
6731 	if (family == AF_INET)
6732 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6733 				    &ireq->ir_rmt_addr, port);
6734 #if IS_ENABLED(CONFIG_IPV6)
6735 	else if (family == AF_INET6)
6736 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6737 				    &ireq->ir_v6_rmt_addr, port);
6738 #endif
6739 }
6740 
6741 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6742  *
6743  * If we receive a SYN packet with these bits set, it means a
6744  * network is playing bad games with TOS bits. In order to
6745  * avoid possible false congestion notifications, we disable
6746  * TCP ECN negotiation.
6747  *
6748  * Exception: tcp_ca wants ECN. This is required for DCTCP
6749  * congestion control: Linux DCTCP asserts ECT on all packets,
6750  * including SYN, which is most optimal solution; however,
6751  * others, such as FreeBSD do not.
6752  *
6753  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6754  * set, indicating the use of a future TCP extension (such as AccECN). See
6755  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6756  * extensions.
6757  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6758 static void tcp_ecn_create_request(struct request_sock *req,
6759 				   const struct sk_buff *skb,
6760 				   const struct sock *listen_sk,
6761 				   const struct dst_entry *dst)
6762 {
6763 	const struct tcphdr *th = tcp_hdr(skb);
6764 	const struct net *net = sock_net(listen_sk);
6765 	bool th_ecn = th->ece && th->cwr;
6766 	bool ect, ecn_ok;
6767 	u32 ecn_ok_dst;
6768 
6769 	if (!th_ecn)
6770 		return;
6771 
6772 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6773 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6774 	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6775 
6776 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6777 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6778 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6779 		inet_rsk(req)->ecn_ok = 1;
6780 }
6781 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6782 static void tcp_openreq_init(struct request_sock *req,
6783 			     const struct tcp_options_received *rx_opt,
6784 			     struct sk_buff *skb, const struct sock *sk)
6785 {
6786 	struct inet_request_sock *ireq = inet_rsk(req);
6787 
6788 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6789 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6790 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6791 	tcp_rsk(req)->snt_synack = 0;
6792 	tcp_rsk(req)->last_oow_ack_time = 0;
6793 	req->mss = rx_opt->mss_clamp;
6794 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6795 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6796 	ireq->sack_ok = rx_opt->sack_ok;
6797 	ireq->snd_wscale = rx_opt->snd_wscale;
6798 	ireq->wscale_ok = rx_opt->wscale_ok;
6799 	ireq->acked = 0;
6800 	ireq->ecn_ok = 0;
6801 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6802 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6803 	ireq->ir_mark = inet_request_mark(sk, skb);
6804 #if IS_ENABLED(CONFIG_SMC)
6805 	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6806 			tcp_sk(sk)->smc_hs_congested(sk));
6807 #endif
6808 }
6809 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6810 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6811 				      struct sock *sk_listener,
6812 				      bool attach_listener)
6813 {
6814 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6815 					       attach_listener);
6816 
6817 	if (req) {
6818 		struct inet_request_sock *ireq = inet_rsk(req);
6819 
6820 		ireq->ireq_opt = NULL;
6821 #if IS_ENABLED(CONFIG_IPV6)
6822 		ireq->pktopts = NULL;
6823 #endif
6824 		atomic64_set(&ireq->ir_cookie, 0);
6825 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6826 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6827 		ireq->ireq_family = sk_listener->sk_family;
6828 		req->timeout = TCP_TIMEOUT_INIT;
6829 	}
6830 
6831 	return req;
6832 }
6833 EXPORT_SYMBOL(inet_reqsk_alloc);
6834 
6835 /*
6836  * Return true if a syncookie should be sent
6837  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6838 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6839 {
6840 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6841 	const char *msg = "Dropping request";
6842 	struct net *net = sock_net(sk);
6843 	bool want_cookie = false;
6844 	u8 syncookies;
6845 
6846 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6847 
6848 #ifdef CONFIG_SYN_COOKIES
6849 	if (syncookies) {
6850 		msg = "Sending cookies";
6851 		want_cookie = true;
6852 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6853 	} else
6854 #endif
6855 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6856 
6857 	if (!queue->synflood_warned && syncookies != 2 &&
6858 	    xchg(&queue->synflood_warned, 1) == 0)
6859 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6860 				     proto, sk->sk_num, msg);
6861 
6862 	return want_cookie;
6863 }
6864 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6865 static void tcp_reqsk_record_syn(const struct sock *sk,
6866 				 struct request_sock *req,
6867 				 const struct sk_buff *skb)
6868 {
6869 	if (tcp_sk(sk)->save_syn) {
6870 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6871 		struct saved_syn *saved_syn;
6872 		u32 mac_hdrlen;
6873 		void *base;
6874 
6875 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6876 			base = skb_mac_header(skb);
6877 			mac_hdrlen = skb_mac_header_len(skb);
6878 			len += mac_hdrlen;
6879 		} else {
6880 			base = skb_network_header(skb);
6881 			mac_hdrlen = 0;
6882 		}
6883 
6884 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6885 				    GFP_ATOMIC);
6886 		if (saved_syn) {
6887 			saved_syn->mac_hdrlen = mac_hdrlen;
6888 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6889 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6890 			memcpy(saved_syn->data, base, len);
6891 			req->saved_syn = saved_syn;
6892 		}
6893 	}
6894 }
6895 
6896 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6897  * used for SYN cookie generation.
6898  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6899 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6900 			  const struct tcp_request_sock_ops *af_ops,
6901 			  struct sock *sk, struct tcphdr *th)
6902 {
6903 	struct tcp_sock *tp = tcp_sk(sk);
6904 	u16 mss;
6905 
6906 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6907 	    !inet_csk_reqsk_queue_is_full(sk))
6908 		return 0;
6909 
6910 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6911 		return 0;
6912 
6913 	if (sk_acceptq_is_full(sk)) {
6914 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6915 		return 0;
6916 	}
6917 
6918 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6919 	if (!mss)
6920 		mss = af_ops->mss_clamp;
6921 
6922 	return mss;
6923 }
6924 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6925 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6926 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6927 		     const struct tcp_request_sock_ops *af_ops,
6928 		     struct sock *sk, struct sk_buff *skb)
6929 {
6930 	struct tcp_fastopen_cookie foc = { .len = -1 };
6931 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6932 	struct tcp_options_received tmp_opt;
6933 	struct tcp_sock *tp = tcp_sk(sk);
6934 	struct net *net = sock_net(sk);
6935 	struct sock *fastopen_sk = NULL;
6936 	struct request_sock *req;
6937 	bool want_cookie = false;
6938 	struct dst_entry *dst;
6939 	struct flowi fl;
6940 	u8 syncookies;
6941 
6942 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6943 
6944 	/* TW buckets are converted to open requests without
6945 	 * limitations, they conserve resources and peer is
6946 	 * evidently real one.
6947 	 */
6948 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6949 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6950 		if (!want_cookie)
6951 			goto drop;
6952 	}
6953 
6954 	if (sk_acceptq_is_full(sk)) {
6955 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6956 		goto drop;
6957 	}
6958 
6959 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6960 	if (!req)
6961 		goto drop;
6962 
6963 	req->syncookie = want_cookie;
6964 	tcp_rsk(req)->af_specific = af_ops;
6965 	tcp_rsk(req)->ts_off = 0;
6966 #if IS_ENABLED(CONFIG_MPTCP)
6967 	tcp_rsk(req)->is_mptcp = 0;
6968 #endif
6969 
6970 	tcp_clear_options(&tmp_opt);
6971 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6972 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6973 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6974 			  want_cookie ? NULL : &foc);
6975 
6976 	if (want_cookie && !tmp_opt.saw_tstamp)
6977 		tcp_clear_options(&tmp_opt);
6978 
6979 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6980 		tmp_opt.smc_ok = 0;
6981 
6982 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6983 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6984 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6985 
6986 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6987 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6988 
6989 	dst = af_ops->route_req(sk, skb, &fl, req);
6990 	if (!dst)
6991 		goto drop_and_free;
6992 
6993 	if (tmp_opt.tstamp_ok)
6994 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6995 
6996 	if (!want_cookie && !isn) {
6997 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6998 
6999 		/* Kill the following clause, if you dislike this way. */
7000 		if (!syncookies &&
7001 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7002 		     (max_syn_backlog >> 2)) &&
7003 		    !tcp_peer_is_proven(req, dst)) {
7004 			/* Without syncookies last quarter of
7005 			 * backlog is filled with destinations,
7006 			 * proven to be alive.
7007 			 * It means that we continue to communicate
7008 			 * to destinations, already remembered
7009 			 * to the moment of synflood.
7010 			 */
7011 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7012 				    rsk_ops->family);
7013 			goto drop_and_release;
7014 		}
7015 
7016 		isn = af_ops->init_seq(skb);
7017 	}
7018 
7019 	tcp_ecn_create_request(req, skb, sk, dst);
7020 
7021 	if (want_cookie) {
7022 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7023 		if (!tmp_opt.tstamp_ok)
7024 			inet_rsk(req)->ecn_ok = 0;
7025 	}
7026 
7027 	tcp_rsk(req)->snt_isn = isn;
7028 	tcp_rsk(req)->txhash = net_tx_rndhash();
7029 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7030 	tcp_openreq_init_rwin(req, sk, dst);
7031 	sk_rx_queue_set(req_to_sk(req), skb);
7032 	if (!want_cookie) {
7033 		tcp_reqsk_record_syn(sk, req, skb);
7034 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7035 	}
7036 	if (fastopen_sk) {
7037 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7038 				    &foc, TCP_SYNACK_FASTOPEN, skb);
7039 		/* Add the child socket directly into the accept queue */
7040 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7041 			reqsk_fastopen_remove(fastopen_sk, req, false);
7042 			bh_unlock_sock(fastopen_sk);
7043 			sock_put(fastopen_sk);
7044 			goto drop_and_free;
7045 		}
7046 		sk->sk_data_ready(sk);
7047 		bh_unlock_sock(fastopen_sk);
7048 		sock_put(fastopen_sk);
7049 	} else {
7050 		tcp_rsk(req)->tfo_listener = false;
7051 		if (!want_cookie) {
7052 			req->timeout = tcp_timeout_init((struct sock *)req);
7053 			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7054 		}
7055 		af_ops->send_synack(sk, dst, &fl, req, &foc,
7056 				    !want_cookie ? TCP_SYNACK_NORMAL :
7057 						   TCP_SYNACK_COOKIE,
7058 				    skb);
7059 		if (want_cookie) {
7060 			reqsk_free(req);
7061 			return 0;
7062 		}
7063 	}
7064 	reqsk_put(req);
7065 	return 0;
7066 
7067 drop_and_release:
7068 	dst_release(dst);
7069 drop_and_free:
7070 	__reqsk_free(req);
7071 drop:
7072 	tcp_listendrop(sk);
7073 	return 0;
7074 }
7075 EXPORT_SYMBOL(tcp_conn_request);
7076