1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ec.c - ACPI Embedded Controller Driver (v3)
4 *
5 * Copyright (C) 2001-2015 Intel Corporation
6 * Author: 2014, 2015 Lv Zheng <lv.zheng@intel.com>
7 * 2006, 2007 Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>
8 * 2006 Denis Sadykov <denis.m.sadykov@intel.com>
9 * 2004 Luming Yu <luming.yu@intel.com>
10 * 2001, 2002 Andy Grover <andrew.grover@intel.com>
11 * 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
12 * Copyright (C) 2008 Alexey Starikovskiy <astarikovskiy@suse.de>
13 */
14
15 /* Uncomment next line to get verbose printout */
16 /* #define DEBUG */
17 #define pr_fmt(fmt) "ACPI: EC: " fmt
18
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/init.h>
22 #include <linux/types.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <asm/io.h>
32
33 #include "internal.h"
34
35 #define ACPI_EC_CLASS "embedded_controller"
36 #define ACPI_EC_DEVICE_NAME "Embedded Controller"
37
38 /* EC status register */
39 #define ACPI_EC_FLAG_OBF 0x01 /* Output buffer full */
40 #define ACPI_EC_FLAG_IBF 0x02 /* Input buffer full */
41 #define ACPI_EC_FLAG_CMD 0x08 /* Input buffer contains a command */
42 #define ACPI_EC_FLAG_BURST 0x10 /* burst mode */
43 #define ACPI_EC_FLAG_SCI 0x20 /* EC-SCI occurred */
44
45 /*
46 * The SCI_EVT clearing timing is not defined by the ACPI specification.
47 * This leads to lots of practical timing issues for the host EC driver.
48 * The following variations are defined (from the target EC firmware's
49 * perspective):
50 * STATUS: After indicating SCI_EVT edge triggered IRQ to the host, the
51 * target can clear SCI_EVT at any time so long as the host can see
52 * the indication by reading the status register (EC_SC). So the
53 * host should re-check SCI_EVT after the first time the SCI_EVT
54 * indication is seen, which is the same time the query request
55 * (QR_EC) is written to the command register (EC_CMD). SCI_EVT set
56 * at any later time could indicate another event. Normally such
57 * kind of EC firmware has implemented an event queue and will
58 * return 0x00 to indicate "no outstanding event".
59 * QUERY: After seeing the query request (QR_EC) written to the command
60 * register (EC_CMD) by the host and having prepared the responding
61 * event value in the data register (EC_DATA), the target can safely
62 * clear SCI_EVT because the target can confirm that the current
63 * event is being handled by the host. The host then should check
64 * SCI_EVT right after reading the event response from the data
65 * register (EC_DATA).
66 * EVENT: After seeing the event response read from the data register
67 * (EC_DATA) by the host, the target can clear SCI_EVT. As the
68 * target requires time to notice the change in the data register
69 * (EC_DATA), the host may be required to wait additional guarding
70 * time before checking the SCI_EVT again. Such guarding may not be
71 * necessary if the host is notified via another IRQ.
72 */
73 #define ACPI_EC_EVT_TIMING_STATUS 0x00
74 #define ACPI_EC_EVT_TIMING_QUERY 0x01
75 #define ACPI_EC_EVT_TIMING_EVENT 0x02
76
77 /* EC commands */
78 enum ec_command {
79 ACPI_EC_COMMAND_READ = 0x80,
80 ACPI_EC_COMMAND_WRITE = 0x81,
81 ACPI_EC_BURST_ENABLE = 0x82,
82 ACPI_EC_BURST_DISABLE = 0x83,
83 ACPI_EC_COMMAND_QUERY = 0x84,
84 };
85
86 #define ACPI_EC_DELAY 500 /* Wait 500ms max. during EC ops */
87 #define ACPI_EC_UDELAY_GLK 1000 /* Wait 1ms max. to get global lock */
88 #define ACPI_EC_UDELAY_POLL 550 /* Wait 1ms for EC transaction polling */
89 #define ACPI_EC_CLEAR_MAX 100 /* Maximum number of events to query
90 * when trying to clear the EC */
91 #define ACPI_EC_MAX_QUERIES 16 /* Maximum number of parallel queries */
92
93 enum {
94 EC_FLAGS_QUERY_ENABLED, /* Query is enabled */
95 EC_FLAGS_EVENT_HANDLER_INSTALLED, /* Event handler installed */
96 EC_FLAGS_EC_HANDLER_INSTALLED, /* OpReg handler installed */
97 EC_FLAGS_QUERY_METHODS_INSTALLED, /* _Qxx handlers installed */
98 EC_FLAGS_STARTED, /* Driver is started */
99 EC_FLAGS_STOPPED, /* Driver is stopped */
100 EC_FLAGS_EVENTS_MASKED, /* Events masked */
101 };
102
103 #define ACPI_EC_COMMAND_POLL 0x01 /* Available for command byte */
104 #define ACPI_EC_COMMAND_COMPLETE 0x02 /* Completed last byte */
105
106 /* ec.c is compiled in acpi namespace so this shows up as acpi.ec_delay param */
107 static unsigned int ec_delay __read_mostly = ACPI_EC_DELAY;
108 module_param(ec_delay, uint, 0644);
109 MODULE_PARM_DESC(ec_delay, "Timeout(ms) waited until an EC command completes");
110
111 static unsigned int ec_max_queries __read_mostly = ACPI_EC_MAX_QUERIES;
112 module_param(ec_max_queries, uint, 0644);
113 MODULE_PARM_DESC(ec_max_queries, "Maximum parallel _Qxx evaluations");
114
115 static bool ec_busy_polling __read_mostly;
116 module_param(ec_busy_polling, bool, 0644);
117 MODULE_PARM_DESC(ec_busy_polling, "Use busy polling to advance EC transaction");
118
119 static unsigned int ec_polling_guard __read_mostly = ACPI_EC_UDELAY_POLL;
120 module_param(ec_polling_guard, uint, 0644);
121 MODULE_PARM_DESC(ec_polling_guard, "Guard time(us) between EC accesses in polling modes");
122
123 static unsigned int ec_event_clearing __read_mostly = ACPI_EC_EVT_TIMING_QUERY;
124
125 /*
126 * If the number of false interrupts per one transaction exceeds
127 * this threshold, will think there is a GPE storm happened and
128 * will disable the GPE for normal transaction.
129 */
130 static unsigned int ec_storm_threshold __read_mostly = 8;
131 module_param(ec_storm_threshold, uint, 0644);
132 MODULE_PARM_DESC(ec_storm_threshold, "Maxim false GPE numbers not considered as GPE storm");
133
134 static bool ec_freeze_events __read_mostly;
135 module_param(ec_freeze_events, bool, 0644);
136 MODULE_PARM_DESC(ec_freeze_events, "Disabling event handling during suspend/resume");
137
138 static bool ec_no_wakeup __read_mostly;
139 module_param(ec_no_wakeup, bool, 0644);
140 MODULE_PARM_DESC(ec_no_wakeup, "Do not wake up from suspend-to-idle");
141
142 struct acpi_ec_query_handler {
143 struct list_head node;
144 acpi_ec_query_func func;
145 acpi_handle handle;
146 void *data;
147 u8 query_bit;
148 struct kref kref;
149 };
150
151 struct transaction {
152 const u8 *wdata;
153 u8 *rdata;
154 unsigned short irq_count;
155 u8 command;
156 u8 wi;
157 u8 ri;
158 u8 wlen;
159 u8 rlen;
160 u8 flags;
161 };
162
163 struct acpi_ec_query {
164 struct transaction transaction;
165 struct work_struct work;
166 struct acpi_ec_query_handler *handler;
167 struct acpi_ec *ec;
168 };
169
170 static int acpi_ec_submit_query(struct acpi_ec *ec);
171 static void advance_transaction(struct acpi_ec *ec, bool interrupt);
172 static void acpi_ec_event_handler(struct work_struct *work);
173
174 struct acpi_ec *first_ec;
175 EXPORT_SYMBOL(first_ec);
176
177 static struct acpi_ec *boot_ec;
178 static bool boot_ec_is_ecdt;
179 static struct workqueue_struct *ec_wq;
180 static struct workqueue_struct *ec_query_wq;
181
182 static int EC_FLAGS_CORRECT_ECDT; /* Needs ECDT port address correction */
183 static int EC_FLAGS_TRUST_DSDT_GPE; /* Needs DSDT GPE as correction setting */
184 static int EC_FLAGS_CLEAR_ON_RESUME; /* Needs acpi_ec_clear() on boot/resume */
185
186 /* --------------------------------------------------------------------------
187 * Logging/Debugging
188 * -------------------------------------------------------------------------- */
189
190 /*
191 * Splitters used by the developers to track the boundary of the EC
192 * handling processes.
193 */
194 #ifdef DEBUG
195 #define EC_DBG_SEP " "
196 #define EC_DBG_DRV "+++++"
197 #define EC_DBG_STM "====="
198 #define EC_DBG_REQ "*****"
199 #define EC_DBG_EVT "#####"
200 #else
201 #define EC_DBG_SEP ""
202 #define EC_DBG_DRV
203 #define EC_DBG_STM
204 #define EC_DBG_REQ
205 #define EC_DBG_EVT
206 #endif
207
208 #define ec_log_raw(fmt, ...) \
209 pr_info(fmt "\n", ##__VA_ARGS__)
210 #define ec_dbg_raw(fmt, ...) \
211 pr_debug(fmt "\n", ##__VA_ARGS__)
212 #define ec_log(filter, fmt, ...) \
213 ec_log_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
214 #define ec_dbg(filter, fmt, ...) \
215 ec_dbg_raw(filter EC_DBG_SEP fmt EC_DBG_SEP filter, ##__VA_ARGS__)
216
217 #define ec_log_drv(fmt, ...) \
218 ec_log(EC_DBG_DRV, fmt, ##__VA_ARGS__)
219 #define ec_dbg_drv(fmt, ...) \
220 ec_dbg(EC_DBG_DRV, fmt, ##__VA_ARGS__)
221 #define ec_dbg_stm(fmt, ...) \
222 ec_dbg(EC_DBG_STM, fmt, ##__VA_ARGS__)
223 #define ec_dbg_req(fmt, ...) \
224 ec_dbg(EC_DBG_REQ, fmt, ##__VA_ARGS__)
225 #define ec_dbg_evt(fmt, ...) \
226 ec_dbg(EC_DBG_EVT, fmt, ##__VA_ARGS__)
227 #define ec_dbg_ref(ec, fmt, ...) \
228 ec_dbg_raw("%lu: " fmt, ec->reference_count, ## __VA_ARGS__)
229
230 /* --------------------------------------------------------------------------
231 * Device Flags
232 * -------------------------------------------------------------------------- */
233
acpi_ec_started(struct acpi_ec * ec)234 static bool acpi_ec_started(struct acpi_ec *ec)
235 {
236 return test_bit(EC_FLAGS_STARTED, &ec->flags) &&
237 !test_bit(EC_FLAGS_STOPPED, &ec->flags);
238 }
239
acpi_ec_event_enabled(struct acpi_ec * ec)240 static bool acpi_ec_event_enabled(struct acpi_ec *ec)
241 {
242 /*
243 * There is an OSPM early stage logic. During the early stages
244 * (boot/resume), OSPMs shouldn't enable the event handling, only
245 * the EC transactions are allowed to be performed.
246 */
247 if (!test_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
248 return false;
249 /*
250 * However, disabling the event handling is experimental for late
251 * stage (suspend), and is controlled by the boot parameter of
252 * "ec_freeze_events":
253 * 1. true: The EC event handling is disabled before entering
254 * the noirq stage.
255 * 2. false: The EC event handling is automatically disabled as
256 * soon as the EC driver is stopped.
257 */
258 if (ec_freeze_events)
259 return acpi_ec_started(ec);
260 else
261 return test_bit(EC_FLAGS_STARTED, &ec->flags);
262 }
263
acpi_ec_flushed(struct acpi_ec * ec)264 static bool acpi_ec_flushed(struct acpi_ec *ec)
265 {
266 return ec->reference_count == 1;
267 }
268
269 /* --------------------------------------------------------------------------
270 * EC Registers
271 * -------------------------------------------------------------------------- */
272
acpi_ec_read_status(struct acpi_ec * ec)273 static inline u8 acpi_ec_read_status(struct acpi_ec *ec)
274 {
275 u8 x = inb(ec->command_addr);
276
277 ec_dbg_raw("EC_SC(R) = 0x%2.2x "
278 "SCI_EVT=%d BURST=%d CMD=%d IBF=%d OBF=%d",
279 x,
280 !!(x & ACPI_EC_FLAG_SCI),
281 !!(x & ACPI_EC_FLAG_BURST),
282 !!(x & ACPI_EC_FLAG_CMD),
283 !!(x & ACPI_EC_FLAG_IBF),
284 !!(x & ACPI_EC_FLAG_OBF));
285 return x;
286 }
287
acpi_ec_read_data(struct acpi_ec * ec)288 static inline u8 acpi_ec_read_data(struct acpi_ec *ec)
289 {
290 u8 x = inb(ec->data_addr);
291
292 ec->timestamp = jiffies;
293 ec_dbg_raw("EC_DATA(R) = 0x%2.2x", x);
294 return x;
295 }
296
acpi_ec_write_cmd(struct acpi_ec * ec,u8 command)297 static inline void acpi_ec_write_cmd(struct acpi_ec *ec, u8 command)
298 {
299 ec_dbg_raw("EC_SC(W) = 0x%2.2x", command);
300 outb(command, ec->command_addr);
301 ec->timestamp = jiffies;
302 }
303
acpi_ec_write_data(struct acpi_ec * ec,u8 data)304 static inline void acpi_ec_write_data(struct acpi_ec *ec, u8 data)
305 {
306 ec_dbg_raw("EC_DATA(W) = 0x%2.2x", data);
307 outb(data, ec->data_addr);
308 ec->timestamp = jiffies;
309 }
310
311 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
acpi_ec_cmd_string(u8 cmd)312 static const char *acpi_ec_cmd_string(u8 cmd)
313 {
314 switch (cmd) {
315 case 0x80:
316 return "RD_EC";
317 case 0x81:
318 return "WR_EC";
319 case 0x82:
320 return "BE_EC";
321 case 0x83:
322 return "BD_EC";
323 case 0x84:
324 return "QR_EC";
325 }
326 return "UNKNOWN";
327 }
328 #else
329 #define acpi_ec_cmd_string(cmd) "UNDEF"
330 #endif
331
332 /* --------------------------------------------------------------------------
333 * GPE Registers
334 * -------------------------------------------------------------------------- */
335
acpi_ec_gpe_status_set(struct acpi_ec * ec)336 static inline bool acpi_ec_gpe_status_set(struct acpi_ec *ec)
337 {
338 acpi_event_status gpe_status = 0;
339
340 (void)acpi_get_gpe_status(NULL, ec->gpe, &gpe_status);
341 return !!(gpe_status & ACPI_EVENT_FLAG_STATUS_SET);
342 }
343
acpi_ec_enable_gpe(struct acpi_ec * ec,bool open)344 static inline void acpi_ec_enable_gpe(struct acpi_ec *ec, bool open)
345 {
346 if (open)
347 acpi_enable_gpe(NULL, ec->gpe);
348 else {
349 BUG_ON(ec->reference_count < 1);
350 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
351 }
352 if (acpi_ec_gpe_status_set(ec)) {
353 /*
354 * On some platforms, EN=1 writes cannot trigger GPE. So
355 * software need to manually trigger a pseudo GPE event on
356 * EN=1 writes.
357 */
358 ec_dbg_raw("Polling quirk");
359 advance_transaction(ec, false);
360 }
361 }
362
acpi_ec_disable_gpe(struct acpi_ec * ec,bool close)363 static inline void acpi_ec_disable_gpe(struct acpi_ec *ec, bool close)
364 {
365 if (close)
366 acpi_disable_gpe(NULL, ec->gpe);
367 else {
368 BUG_ON(ec->reference_count < 1);
369 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
370 }
371 }
372
373 /* --------------------------------------------------------------------------
374 * Transaction Management
375 * -------------------------------------------------------------------------- */
376
acpi_ec_submit_request(struct acpi_ec * ec)377 static void acpi_ec_submit_request(struct acpi_ec *ec)
378 {
379 ec->reference_count++;
380 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
381 ec->gpe >= 0 && ec->reference_count == 1)
382 acpi_ec_enable_gpe(ec, true);
383 }
384
acpi_ec_complete_request(struct acpi_ec * ec)385 static void acpi_ec_complete_request(struct acpi_ec *ec)
386 {
387 bool flushed = false;
388
389 ec->reference_count--;
390 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags) &&
391 ec->gpe >= 0 && ec->reference_count == 0)
392 acpi_ec_disable_gpe(ec, true);
393 flushed = acpi_ec_flushed(ec);
394 if (flushed)
395 wake_up(&ec->wait);
396 }
397
acpi_ec_mask_events(struct acpi_ec * ec)398 static void acpi_ec_mask_events(struct acpi_ec *ec)
399 {
400 if (!test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
401 if (ec->gpe >= 0)
402 acpi_ec_disable_gpe(ec, false);
403 else
404 disable_irq_nosync(ec->irq);
405
406 ec_dbg_drv("Polling enabled");
407 set_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
408 }
409 }
410
acpi_ec_unmask_events(struct acpi_ec * ec)411 static void acpi_ec_unmask_events(struct acpi_ec *ec)
412 {
413 if (test_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags)) {
414 clear_bit(EC_FLAGS_EVENTS_MASKED, &ec->flags);
415 if (ec->gpe >= 0)
416 acpi_ec_enable_gpe(ec, false);
417 else
418 enable_irq(ec->irq);
419
420 ec_dbg_drv("Polling disabled");
421 }
422 }
423
424 /*
425 * acpi_ec_submit_flushable_request() - Increase the reference count unless
426 * the flush operation is not in
427 * progress
428 * @ec: the EC device
429 *
430 * This function must be used before taking a new action that should hold
431 * the reference count. If this function returns false, then the action
432 * must be discarded or it will prevent the flush operation from being
433 * completed.
434 */
acpi_ec_submit_flushable_request(struct acpi_ec * ec)435 static bool acpi_ec_submit_flushable_request(struct acpi_ec *ec)
436 {
437 if (!acpi_ec_started(ec))
438 return false;
439 acpi_ec_submit_request(ec);
440 return true;
441 }
442
acpi_ec_submit_event(struct acpi_ec * ec)443 static void acpi_ec_submit_event(struct acpi_ec *ec)
444 {
445 /*
446 * It is safe to mask the events here, because acpi_ec_close_event()
447 * will run at least once after this.
448 */
449 acpi_ec_mask_events(ec);
450 if (!acpi_ec_event_enabled(ec))
451 return;
452
453 if (ec->event_state != EC_EVENT_READY)
454 return;
455
456 ec_dbg_evt("Command(%s) submitted/blocked",
457 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
458
459 ec->event_state = EC_EVENT_IN_PROGRESS;
460 /*
461 * If events_to_process is greater than 0 at this point, the while ()
462 * loop in acpi_ec_event_handler() is still running and incrementing
463 * events_to_process will cause it to invoke acpi_ec_submit_query() once
464 * more, so it is not necessary to queue up the event work to start the
465 * same loop again.
466 */
467 if (ec->events_to_process++ > 0)
468 return;
469
470 ec->events_in_progress++;
471 queue_work(ec_wq, &ec->work);
472 }
473
acpi_ec_complete_event(struct acpi_ec * ec)474 static void acpi_ec_complete_event(struct acpi_ec *ec)
475 {
476 if (ec->event_state == EC_EVENT_IN_PROGRESS)
477 ec->event_state = EC_EVENT_COMPLETE;
478 }
479
acpi_ec_close_event(struct acpi_ec * ec)480 static void acpi_ec_close_event(struct acpi_ec *ec)
481 {
482 if (ec->event_state != EC_EVENT_READY)
483 ec_dbg_evt("Command(%s) unblocked",
484 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
485
486 ec->event_state = EC_EVENT_READY;
487 acpi_ec_unmask_events(ec);
488 }
489
__acpi_ec_enable_event(struct acpi_ec * ec)490 static inline void __acpi_ec_enable_event(struct acpi_ec *ec)
491 {
492 if (!test_and_set_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
493 ec_log_drv("event unblocked");
494 /*
495 * Unconditionally invoke this once after enabling the event
496 * handling mechanism to detect the pending events.
497 */
498 advance_transaction(ec, false);
499 }
500
__acpi_ec_disable_event(struct acpi_ec * ec)501 static inline void __acpi_ec_disable_event(struct acpi_ec *ec)
502 {
503 if (test_and_clear_bit(EC_FLAGS_QUERY_ENABLED, &ec->flags))
504 ec_log_drv("event blocked");
505 }
506
507 /*
508 * Process _Q events that might have accumulated in the EC.
509 * Run with locked ec mutex.
510 */
acpi_ec_clear(struct acpi_ec * ec)511 static void acpi_ec_clear(struct acpi_ec *ec)
512 {
513 int i;
514
515 for (i = 0; i < ACPI_EC_CLEAR_MAX; i++) {
516 if (acpi_ec_submit_query(ec))
517 break;
518 }
519 if (unlikely(i == ACPI_EC_CLEAR_MAX))
520 pr_warn("Warning: Maximum of %d stale EC events cleared\n", i);
521 else
522 pr_info("%d stale EC events cleared\n", i);
523 }
524
acpi_ec_enable_event(struct acpi_ec * ec)525 static void acpi_ec_enable_event(struct acpi_ec *ec)
526 {
527 unsigned long flags;
528
529 spin_lock_irqsave(&ec->lock, flags);
530 if (acpi_ec_started(ec))
531 __acpi_ec_enable_event(ec);
532 spin_unlock_irqrestore(&ec->lock, flags);
533
534 /* Drain additional events if hardware requires that */
535 if (EC_FLAGS_CLEAR_ON_RESUME)
536 acpi_ec_clear(ec);
537 }
538
539 #ifdef CONFIG_PM_SLEEP
__acpi_ec_flush_work(void)540 static void __acpi_ec_flush_work(void)
541 {
542 flush_workqueue(ec_wq); /* flush ec->work */
543 flush_workqueue(ec_query_wq); /* flush queries */
544 }
545
acpi_ec_disable_event(struct acpi_ec * ec)546 static void acpi_ec_disable_event(struct acpi_ec *ec)
547 {
548 unsigned long flags;
549
550 spin_lock_irqsave(&ec->lock, flags);
551 __acpi_ec_disable_event(ec);
552 spin_unlock_irqrestore(&ec->lock, flags);
553
554 /*
555 * When ec_freeze_events is true, we need to flush events in
556 * the proper position before entering the noirq stage.
557 */
558 __acpi_ec_flush_work();
559 }
560
acpi_ec_flush_work(void)561 void acpi_ec_flush_work(void)
562 {
563 /* Without ec_wq there is nothing to flush. */
564 if (!ec_wq)
565 return;
566
567 __acpi_ec_flush_work();
568 }
569 #endif /* CONFIG_PM_SLEEP */
570
acpi_ec_guard_event(struct acpi_ec * ec)571 static bool acpi_ec_guard_event(struct acpi_ec *ec)
572 {
573 unsigned long flags;
574 bool guarded;
575
576 spin_lock_irqsave(&ec->lock, flags);
577 /*
578 * If firmware SCI_EVT clearing timing is "event", we actually
579 * don't know when the SCI_EVT will be cleared by firmware after
580 * evaluating _Qxx, so we need to re-check SCI_EVT after waiting an
581 * acceptable period.
582 *
583 * The guarding period is applicable if the event state is not
584 * EC_EVENT_READY, but otherwise if the current transaction is of the
585 * ACPI_EC_COMMAND_QUERY type, the guarding should have elapsed already
586 * and it should not be applied to let the transaction transition into
587 * the ACPI_EC_COMMAND_POLL state immediately.
588 */
589 guarded = ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
590 ec->event_state != EC_EVENT_READY &&
591 (!ec->curr || ec->curr->command != ACPI_EC_COMMAND_QUERY);
592 spin_unlock_irqrestore(&ec->lock, flags);
593 return guarded;
594 }
595
ec_transaction_polled(struct acpi_ec * ec)596 static int ec_transaction_polled(struct acpi_ec *ec)
597 {
598 unsigned long flags;
599 int ret = 0;
600
601 spin_lock_irqsave(&ec->lock, flags);
602 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_POLL))
603 ret = 1;
604 spin_unlock_irqrestore(&ec->lock, flags);
605 return ret;
606 }
607
ec_transaction_completed(struct acpi_ec * ec)608 static int ec_transaction_completed(struct acpi_ec *ec)
609 {
610 unsigned long flags;
611 int ret = 0;
612
613 spin_lock_irqsave(&ec->lock, flags);
614 if (ec->curr && (ec->curr->flags & ACPI_EC_COMMAND_COMPLETE))
615 ret = 1;
616 spin_unlock_irqrestore(&ec->lock, flags);
617 return ret;
618 }
619
ec_transaction_transition(struct acpi_ec * ec,unsigned long flag)620 static inline void ec_transaction_transition(struct acpi_ec *ec, unsigned long flag)
621 {
622 ec->curr->flags |= flag;
623
624 if (ec->curr->command != ACPI_EC_COMMAND_QUERY)
625 return;
626
627 switch (ec_event_clearing) {
628 case ACPI_EC_EVT_TIMING_STATUS:
629 if (flag == ACPI_EC_COMMAND_POLL)
630 acpi_ec_close_event(ec);
631
632 return;
633
634 case ACPI_EC_EVT_TIMING_QUERY:
635 if (flag == ACPI_EC_COMMAND_COMPLETE)
636 acpi_ec_close_event(ec);
637
638 return;
639
640 case ACPI_EC_EVT_TIMING_EVENT:
641 if (flag == ACPI_EC_COMMAND_COMPLETE)
642 acpi_ec_complete_event(ec);
643 }
644 }
645
acpi_ec_spurious_interrupt(struct acpi_ec * ec,struct transaction * t)646 static void acpi_ec_spurious_interrupt(struct acpi_ec *ec, struct transaction *t)
647 {
648 if (t->irq_count < ec_storm_threshold)
649 ++t->irq_count;
650
651 /* Trigger if the threshold is 0 too. */
652 if (t->irq_count == ec_storm_threshold)
653 acpi_ec_mask_events(ec);
654 }
655
advance_transaction(struct acpi_ec * ec,bool interrupt)656 static void advance_transaction(struct acpi_ec *ec, bool interrupt)
657 {
658 struct transaction *t = ec->curr;
659 bool wakeup = false;
660 u8 status;
661
662 ec_dbg_stm("%s (%d)", interrupt ? "IRQ" : "TASK", smp_processor_id());
663
664 /*
665 * Clear GPE_STS upfront to allow subsequent hardware GPE_STS 0->1
666 * changes to always trigger a GPE interrupt.
667 *
668 * GPE STS is a W1C register, which means:
669 *
670 * 1. Software can clear it without worrying about clearing the other
671 * GPEs' STS bits when the hardware sets them in parallel.
672 *
673 * 2. As long as software can ensure only clearing it when it is set,
674 * hardware won't set it in parallel.
675 */
676 if (ec->gpe >= 0 && acpi_ec_gpe_status_set(ec))
677 acpi_clear_gpe(NULL, ec->gpe);
678
679 status = acpi_ec_read_status(ec);
680
681 /*
682 * Another IRQ or a guarded polling mode advancement is detected,
683 * the next QR_EC submission is then allowed.
684 */
685 if (!t || !(t->flags & ACPI_EC_COMMAND_POLL)) {
686 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT &&
687 ec->event_state == EC_EVENT_COMPLETE)
688 acpi_ec_close_event(ec);
689
690 if (!t)
691 goto out;
692 }
693
694 if (t->flags & ACPI_EC_COMMAND_POLL) {
695 if (t->wlen > t->wi) {
696 if (!(status & ACPI_EC_FLAG_IBF))
697 acpi_ec_write_data(ec, t->wdata[t->wi++]);
698 else if (interrupt && !(status & ACPI_EC_FLAG_SCI))
699 acpi_ec_spurious_interrupt(ec, t);
700 } else if (t->rlen > t->ri) {
701 if (status & ACPI_EC_FLAG_OBF) {
702 t->rdata[t->ri++] = acpi_ec_read_data(ec);
703 if (t->rlen == t->ri) {
704 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
705 wakeup = true;
706 if (t->command == ACPI_EC_COMMAND_QUERY)
707 ec_dbg_evt("Command(%s) completed by hardware",
708 acpi_ec_cmd_string(ACPI_EC_COMMAND_QUERY));
709 }
710 } else if (interrupt && !(status & ACPI_EC_FLAG_SCI)) {
711 acpi_ec_spurious_interrupt(ec, t);
712 }
713 } else if (t->wlen == t->wi && !(status & ACPI_EC_FLAG_IBF)) {
714 ec_transaction_transition(ec, ACPI_EC_COMMAND_COMPLETE);
715 wakeup = true;
716 }
717 } else if (!(status & ACPI_EC_FLAG_IBF)) {
718 acpi_ec_write_cmd(ec, t->command);
719 ec_transaction_transition(ec, ACPI_EC_COMMAND_POLL);
720 }
721
722 out:
723 if (status & ACPI_EC_FLAG_SCI)
724 acpi_ec_submit_event(ec);
725
726 if (wakeup && interrupt)
727 wake_up(&ec->wait);
728 }
729
start_transaction(struct acpi_ec * ec)730 static void start_transaction(struct acpi_ec *ec)
731 {
732 ec->curr->irq_count = ec->curr->wi = ec->curr->ri = 0;
733 ec->curr->flags = 0;
734 }
735
ec_guard(struct acpi_ec * ec)736 static int ec_guard(struct acpi_ec *ec)
737 {
738 unsigned long guard = usecs_to_jiffies(ec->polling_guard);
739 unsigned long timeout = ec->timestamp + guard;
740
741 /* Ensure guarding period before polling EC status */
742 do {
743 if (ec->busy_polling) {
744 /* Perform busy polling */
745 if (ec_transaction_completed(ec))
746 return 0;
747 udelay(jiffies_to_usecs(guard));
748 } else {
749 /*
750 * Perform wait polling
751 * 1. Wait the transaction to be completed by the
752 * GPE handler after the transaction enters
753 * ACPI_EC_COMMAND_POLL state.
754 * 2. A special guarding logic is also required
755 * for event clearing mode "event" before the
756 * transaction enters ACPI_EC_COMMAND_POLL
757 * state.
758 */
759 if (!ec_transaction_polled(ec) &&
760 !acpi_ec_guard_event(ec))
761 break;
762 if (wait_event_timeout(ec->wait,
763 ec_transaction_completed(ec),
764 guard))
765 return 0;
766 }
767 } while (time_before(jiffies, timeout));
768 return -ETIME;
769 }
770
ec_poll(struct acpi_ec * ec)771 static int ec_poll(struct acpi_ec *ec)
772 {
773 unsigned long flags;
774 int repeat = 5; /* number of command restarts */
775
776 while (repeat--) {
777 unsigned long delay = jiffies +
778 msecs_to_jiffies(ec_delay);
779 do {
780 if (!ec_guard(ec))
781 return 0;
782 spin_lock_irqsave(&ec->lock, flags);
783 advance_transaction(ec, false);
784 spin_unlock_irqrestore(&ec->lock, flags);
785 } while (time_before(jiffies, delay));
786 pr_debug("controller reset, restart transaction\n");
787 spin_lock_irqsave(&ec->lock, flags);
788 start_transaction(ec);
789 spin_unlock_irqrestore(&ec->lock, flags);
790 }
791 return -ETIME;
792 }
793
acpi_ec_transaction_unlocked(struct acpi_ec * ec,struct transaction * t)794 static int acpi_ec_transaction_unlocked(struct acpi_ec *ec,
795 struct transaction *t)
796 {
797 unsigned long tmp;
798 int ret = 0;
799
800 /* start transaction */
801 spin_lock_irqsave(&ec->lock, tmp);
802 /* Enable GPE for command processing (IBF=0/OBF=1) */
803 if (!acpi_ec_submit_flushable_request(ec)) {
804 ret = -EINVAL;
805 goto unlock;
806 }
807 ec_dbg_ref(ec, "Increase command");
808 /* following two actions should be kept atomic */
809 ec->curr = t;
810 ec_dbg_req("Command(%s) started", acpi_ec_cmd_string(t->command));
811 start_transaction(ec);
812 spin_unlock_irqrestore(&ec->lock, tmp);
813
814 ret = ec_poll(ec);
815
816 spin_lock_irqsave(&ec->lock, tmp);
817 if (t->irq_count == ec_storm_threshold)
818 acpi_ec_unmask_events(ec);
819 ec_dbg_req("Command(%s) stopped", acpi_ec_cmd_string(t->command));
820 ec->curr = NULL;
821 /* Disable GPE for command processing (IBF=0/OBF=1) */
822 acpi_ec_complete_request(ec);
823 ec_dbg_ref(ec, "Decrease command");
824 unlock:
825 spin_unlock_irqrestore(&ec->lock, tmp);
826 return ret;
827 }
828
acpi_ec_transaction(struct acpi_ec * ec,struct transaction * t)829 static int acpi_ec_transaction(struct acpi_ec *ec, struct transaction *t)
830 {
831 int status;
832 u32 glk;
833
834 if (!ec || (!t) || (t->wlen && !t->wdata) || (t->rlen && !t->rdata))
835 return -EINVAL;
836 if (t->rdata)
837 memset(t->rdata, 0, t->rlen);
838
839 mutex_lock(&ec->mutex);
840 if (ec->global_lock) {
841 status = acpi_acquire_global_lock(ACPI_EC_UDELAY_GLK, &glk);
842 if (ACPI_FAILURE(status)) {
843 status = -ENODEV;
844 goto unlock;
845 }
846 }
847
848 status = acpi_ec_transaction_unlocked(ec, t);
849
850 if (ec->global_lock)
851 acpi_release_global_lock(glk);
852 unlock:
853 mutex_unlock(&ec->mutex);
854 return status;
855 }
856
acpi_ec_burst_enable(struct acpi_ec * ec)857 static int acpi_ec_burst_enable(struct acpi_ec *ec)
858 {
859 u8 d;
860 struct transaction t = {.command = ACPI_EC_BURST_ENABLE,
861 .wdata = NULL, .rdata = &d,
862 .wlen = 0, .rlen = 1};
863
864 return acpi_ec_transaction(ec, &t);
865 }
866
acpi_ec_burst_disable(struct acpi_ec * ec)867 static int acpi_ec_burst_disable(struct acpi_ec *ec)
868 {
869 struct transaction t = {.command = ACPI_EC_BURST_DISABLE,
870 .wdata = NULL, .rdata = NULL,
871 .wlen = 0, .rlen = 0};
872
873 return (acpi_ec_read_status(ec) & ACPI_EC_FLAG_BURST) ?
874 acpi_ec_transaction(ec, &t) : 0;
875 }
876
acpi_ec_read(struct acpi_ec * ec,u8 address,u8 * data)877 static int acpi_ec_read(struct acpi_ec *ec, u8 address, u8 *data)
878 {
879 int result;
880 u8 d;
881 struct transaction t = {.command = ACPI_EC_COMMAND_READ,
882 .wdata = &address, .rdata = &d,
883 .wlen = 1, .rlen = 1};
884
885 result = acpi_ec_transaction(ec, &t);
886 *data = d;
887 return result;
888 }
889
acpi_ec_write(struct acpi_ec * ec,u8 address,u8 data)890 static int acpi_ec_write(struct acpi_ec *ec, u8 address, u8 data)
891 {
892 u8 wdata[2] = { address, data };
893 struct transaction t = {.command = ACPI_EC_COMMAND_WRITE,
894 .wdata = wdata, .rdata = NULL,
895 .wlen = 2, .rlen = 0};
896
897 return acpi_ec_transaction(ec, &t);
898 }
899
ec_read(u8 addr,u8 * val)900 int ec_read(u8 addr, u8 *val)
901 {
902 int err;
903 u8 temp_data;
904
905 if (!first_ec)
906 return -ENODEV;
907
908 err = acpi_ec_read(first_ec, addr, &temp_data);
909
910 if (!err) {
911 *val = temp_data;
912 return 0;
913 }
914 return err;
915 }
916 EXPORT_SYMBOL(ec_read);
917
ec_write(u8 addr,u8 val)918 int ec_write(u8 addr, u8 val)
919 {
920 if (!first_ec)
921 return -ENODEV;
922
923 return acpi_ec_write(first_ec, addr, val);
924 }
925 EXPORT_SYMBOL(ec_write);
926
ec_transaction(u8 command,const u8 * wdata,unsigned wdata_len,u8 * rdata,unsigned rdata_len)927 int ec_transaction(u8 command,
928 const u8 *wdata, unsigned wdata_len,
929 u8 *rdata, unsigned rdata_len)
930 {
931 struct transaction t = {.command = command,
932 .wdata = wdata, .rdata = rdata,
933 .wlen = wdata_len, .rlen = rdata_len};
934
935 if (!first_ec)
936 return -ENODEV;
937
938 return acpi_ec_transaction(first_ec, &t);
939 }
940 EXPORT_SYMBOL(ec_transaction);
941
942 /* Get the handle to the EC device */
ec_get_handle(void)943 acpi_handle ec_get_handle(void)
944 {
945 if (!first_ec)
946 return NULL;
947 return first_ec->handle;
948 }
949 EXPORT_SYMBOL(ec_get_handle);
950
acpi_ec_start(struct acpi_ec * ec,bool resuming)951 static void acpi_ec_start(struct acpi_ec *ec, bool resuming)
952 {
953 unsigned long flags;
954
955 spin_lock_irqsave(&ec->lock, flags);
956 if (!test_and_set_bit(EC_FLAGS_STARTED, &ec->flags)) {
957 ec_dbg_drv("Starting EC");
958 /* Enable GPE for event processing (SCI_EVT=1) */
959 if (!resuming) {
960 acpi_ec_submit_request(ec);
961 ec_dbg_ref(ec, "Increase driver");
962 }
963 ec_log_drv("EC started");
964 }
965 spin_unlock_irqrestore(&ec->lock, flags);
966 }
967
acpi_ec_stopped(struct acpi_ec * ec)968 static bool acpi_ec_stopped(struct acpi_ec *ec)
969 {
970 unsigned long flags;
971 bool flushed;
972
973 spin_lock_irqsave(&ec->lock, flags);
974 flushed = acpi_ec_flushed(ec);
975 spin_unlock_irqrestore(&ec->lock, flags);
976 return flushed;
977 }
978
acpi_ec_stop(struct acpi_ec * ec,bool suspending)979 static void acpi_ec_stop(struct acpi_ec *ec, bool suspending)
980 {
981 unsigned long flags;
982
983 spin_lock_irqsave(&ec->lock, flags);
984 if (acpi_ec_started(ec)) {
985 ec_dbg_drv("Stopping EC");
986 set_bit(EC_FLAGS_STOPPED, &ec->flags);
987 spin_unlock_irqrestore(&ec->lock, flags);
988 wait_event(ec->wait, acpi_ec_stopped(ec));
989 spin_lock_irqsave(&ec->lock, flags);
990 /* Disable GPE for event processing (SCI_EVT=1) */
991 if (!suspending) {
992 acpi_ec_complete_request(ec);
993 ec_dbg_ref(ec, "Decrease driver");
994 } else if (!ec_freeze_events)
995 __acpi_ec_disable_event(ec);
996 clear_bit(EC_FLAGS_STARTED, &ec->flags);
997 clear_bit(EC_FLAGS_STOPPED, &ec->flags);
998 ec_log_drv("EC stopped");
999 }
1000 spin_unlock_irqrestore(&ec->lock, flags);
1001 }
1002
acpi_ec_enter_noirq(struct acpi_ec * ec)1003 static void acpi_ec_enter_noirq(struct acpi_ec *ec)
1004 {
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&ec->lock, flags);
1008 ec->busy_polling = true;
1009 ec->polling_guard = 0;
1010 ec_log_drv("interrupt blocked");
1011 spin_unlock_irqrestore(&ec->lock, flags);
1012 }
1013
acpi_ec_leave_noirq(struct acpi_ec * ec)1014 static void acpi_ec_leave_noirq(struct acpi_ec *ec)
1015 {
1016 unsigned long flags;
1017
1018 spin_lock_irqsave(&ec->lock, flags);
1019 ec->busy_polling = ec_busy_polling;
1020 ec->polling_guard = ec_polling_guard;
1021 ec_log_drv("interrupt unblocked");
1022 spin_unlock_irqrestore(&ec->lock, flags);
1023 }
1024
acpi_ec_block_transactions(void)1025 void acpi_ec_block_transactions(void)
1026 {
1027 struct acpi_ec *ec = first_ec;
1028
1029 if (!ec)
1030 return;
1031
1032 mutex_lock(&ec->mutex);
1033 /* Prevent transactions from being carried out */
1034 acpi_ec_stop(ec, true);
1035 mutex_unlock(&ec->mutex);
1036 }
1037
acpi_ec_unblock_transactions(void)1038 void acpi_ec_unblock_transactions(void)
1039 {
1040 /*
1041 * Allow transactions to happen again (this function is called from
1042 * atomic context during wakeup, so we don't need to acquire the mutex).
1043 */
1044 if (first_ec)
1045 acpi_ec_start(first_ec, true);
1046 }
1047
1048 /* --------------------------------------------------------------------------
1049 Event Management
1050 -------------------------------------------------------------------------- */
1051 static struct acpi_ec_query_handler *
acpi_ec_get_query_handler_by_value(struct acpi_ec * ec,u8 value)1052 acpi_ec_get_query_handler_by_value(struct acpi_ec *ec, u8 value)
1053 {
1054 struct acpi_ec_query_handler *handler;
1055
1056 mutex_lock(&ec->mutex);
1057 list_for_each_entry(handler, &ec->list, node) {
1058 if (value == handler->query_bit) {
1059 kref_get(&handler->kref);
1060 mutex_unlock(&ec->mutex);
1061 return handler;
1062 }
1063 }
1064 mutex_unlock(&ec->mutex);
1065 return NULL;
1066 }
1067
acpi_ec_query_handler_release(struct kref * kref)1068 static void acpi_ec_query_handler_release(struct kref *kref)
1069 {
1070 struct acpi_ec_query_handler *handler =
1071 container_of(kref, struct acpi_ec_query_handler, kref);
1072
1073 kfree(handler);
1074 }
1075
acpi_ec_put_query_handler(struct acpi_ec_query_handler * handler)1076 static void acpi_ec_put_query_handler(struct acpi_ec_query_handler *handler)
1077 {
1078 kref_put(&handler->kref, acpi_ec_query_handler_release);
1079 }
1080
acpi_ec_add_query_handler(struct acpi_ec * ec,u8 query_bit,acpi_handle handle,acpi_ec_query_func func,void * data)1081 int acpi_ec_add_query_handler(struct acpi_ec *ec, u8 query_bit,
1082 acpi_handle handle, acpi_ec_query_func func,
1083 void *data)
1084 {
1085 struct acpi_ec_query_handler *handler =
1086 kzalloc(sizeof(struct acpi_ec_query_handler), GFP_KERNEL);
1087
1088 if (!handler)
1089 return -ENOMEM;
1090
1091 handler->query_bit = query_bit;
1092 handler->handle = handle;
1093 handler->func = func;
1094 handler->data = data;
1095 mutex_lock(&ec->mutex);
1096 kref_init(&handler->kref);
1097 list_add(&handler->node, &ec->list);
1098 mutex_unlock(&ec->mutex);
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(acpi_ec_add_query_handler);
1102
acpi_ec_remove_query_handlers(struct acpi_ec * ec,bool remove_all,u8 query_bit)1103 static void acpi_ec_remove_query_handlers(struct acpi_ec *ec,
1104 bool remove_all, u8 query_bit)
1105 {
1106 struct acpi_ec_query_handler *handler, *tmp;
1107 LIST_HEAD(free_list);
1108
1109 mutex_lock(&ec->mutex);
1110 list_for_each_entry_safe(handler, tmp, &ec->list, node) {
1111 if (remove_all || query_bit == handler->query_bit) {
1112 list_del_init(&handler->node);
1113 list_add(&handler->node, &free_list);
1114 }
1115 }
1116 mutex_unlock(&ec->mutex);
1117 list_for_each_entry_safe(handler, tmp, &free_list, node)
1118 acpi_ec_put_query_handler(handler);
1119 }
1120
acpi_ec_remove_query_handler(struct acpi_ec * ec,u8 query_bit)1121 void acpi_ec_remove_query_handler(struct acpi_ec *ec, u8 query_bit)
1122 {
1123 acpi_ec_remove_query_handlers(ec, false, query_bit);
1124 flush_workqueue(ec_query_wq);
1125 }
1126 EXPORT_SYMBOL_GPL(acpi_ec_remove_query_handler);
1127
acpi_ec_event_processor(struct work_struct * work)1128 static void acpi_ec_event_processor(struct work_struct *work)
1129 {
1130 struct acpi_ec_query *q = container_of(work, struct acpi_ec_query, work);
1131 struct acpi_ec_query_handler *handler = q->handler;
1132 struct acpi_ec *ec = q->ec;
1133
1134 ec_dbg_evt("Query(0x%02x) started", handler->query_bit);
1135
1136 if (handler->func)
1137 handler->func(handler->data);
1138 else if (handler->handle)
1139 acpi_evaluate_object(handler->handle, NULL, NULL, NULL);
1140
1141 ec_dbg_evt("Query(0x%02x) stopped", handler->query_bit);
1142
1143 spin_lock_irq(&ec->lock);
1144 ec->queries_in_progress--;
1145 spin_unlock_irq(&ec->lock);
1146
1147 acpi_ec_put_query_handler(handler);
1148 kfree(q);
1149 }
1150
acpi_ec_create_query(struct acpi_ec * ec,u8 * pval)1151 static struct acpi_ec_query *acpi_ec_create_query(struct acpi_ec *ec, u8 *pval)
1152 {
1153 struct acpi_ec_query *q;
1154 struct transaction *t;
1155
1156 q = kzalloc(sizeof (struct acpi_ec_query), GFP_KERNEL);
1157 if (!q)
1158 return NULL;
1159
1160 INIT_WORK(&q->work, acpi_ec_event_processor);
1161 t = &q->transaction;
1162 t->command = ACPI_EC_COMMAND_QUERY;
1163 t->rdata = pval;
1164 t->rlen = 1;
1165 q->ec = ec;
1166 return q;
1167 }
1168
acpi_ec_submit_query(struct acpi_ec * ec)1169 static int acpi_ec_submit_query(struct acpi_ec *ec)
1170 {
1171 struct acpi_ec_query *q;
1172 u8 value = 0;
1173 int result;
1174
1175 q = acpi_ec_create_query(ec, &value);
1176 if (!q)
1177 return -ENOMEM;
1178
1179 /*
1180 * Query the EC to find out which _Qxx method we need to evaluate.
1181 * Note that successful completion of the query causes the ACPI_EC_SCI
1182 * bit to be cleared (and thus clearing the interrupt source).
1183 */
1184 result = acpi_ec_transaction(ec, &q->transaction);
1185 if (result)
1186 goto err_exit;
1187
1188 if (!value) {
1189 result = -ENODATA;
1190 goto err_exit;
1191 }
1192
1193 q->handler = acpi_ec_get_query_handler_by_value(ec, value);
1194 if (!q->handler) {
1195 result = -ENODATA;
1196 goto err_exit;
1197 }
1198
1199 /*
1200 * It is reported that _Qxx are evaluated in a parallel way on Windows:
1201 * https://bugzilla.kernel.org/show_bug.cgi?id=94411
1202 *
1203 * Put this log entry before queue_work() to make it appear in the log
1204 * before any other messages emitted during workqueue handling.
1205 */
1206 ec_dbg_evt("Query(0x%02x) scheduled", value);
1207
1208 spin_lock_irq(&ec->lock);
1209
1210 ec->queries_in_progress++;
1211 queue_work(ec_query_wq, &q->work);
1212
1213 spin_unlock_irq(&ec->lock);
1214
1215 return 0;
1216
1217 err_exit:
1218 kfree(q);
1219
1220 return result;
1221 }
1222
acpi_ec_event_handler(struct work_struct * work)1223 static void acpi_ec_event_handler(struct work_struct *work)
1224 {
1225 struct acpi_ec *ec = container_of(work, struct acpi_ec, work);
1226
1227 ec_dbg_evt("Event started");
1228
1229 spin_lock_irq(&ec->lock);
1230
1231 while (ec->events_to_process) {
1232 spin_unlock_irq(&ec->lock);
1233
1234 acpi_ec_submit_query(ec);
1235
1236 spin_lock_irq(&ec->lock);
1237
1238 ec->events_to_process--;
1239 }
1240
1241 /*
1242 * Before exit, make sure that the it will be possible to queue up the
1243 * event handling work again regardless of whether or not the query
1244 * queued up above is processed successfully.
1245 */
1246 if (ec_event_clearing == ACPI_EC_EVT_TIMING_EVENT) {
1247 bool guard_timeout;
1248
1249 acpi_ec_complete_event(ec);
1250
1251 ec_dbg_evt("Event stopped");
1252
1253 spin_unlock_irq(&ec->lock);
1254
1255 guard_timeout = !!ec_guard(ec);
1256
1257 spin_lock_irq(&ec->lock);
1258
1259 /* Take care of SCI_EVT unless someone else is doing that. */
1260 if (guard_timeout && !ec->curr)
1261 advance_transaction(ec, false);
1262 } else {
1263 acpi_ec_close_event(ec);
1264
1265 ec_dbg_evt("Event stopped");
1266 }
1267
1268 ec->events_in_progress--;
1269
1270 spin_unlock_irq(&ec->lock);
1271 }
1272
acpi_ec_handle_interrupt(struct acpi_ec * ec)1273 static void acpi_ec_handle_interrupt(struct acpi_ec *ec)
1274 {
1275 unsigned long flags;
1276
1277 spin_lock_irqsave(&ec->lock, flags);
1278 advance_transaction(ec, true);
1279 spin_unlock_irqrestore(&ec->lock, flags);
1280 }
1281
acpi_ec_gpe_handler(acpi_handle gpe_device,u32 gpe_number,void * data)1282 static u32 acpi_ec_gpe_handler(acpi_handle gpe_device,
1283 u32 gpe_number, void *data)
1284 {
1285 acpi_ec_handle_interrupt(data);
1286 return ACPI_INTERRUPT_HANDLED;
1287 }
1288
acpi_ec_irq_handler(int irq,void * data)1289 static irqreturn_t acpi_ec_irq_handler(int irq, void *data)
1290 {
1291 acpi_ec_handle_interrupt(data);
1292 return IRQ_HANDLED;
1293 }
1294
1295 /* --------------------------------------------------------------------------
1296 * Address Space Management
1297 * -------------------------------------------------------------------------- */
1298
1299 static acpi_status
acpi_ec_space_handler(u32 function,acpi_physical_address address,u32 bits,u64 * value64,void * handler_context,void * region_context)1300 acpi_ec_space_handler(u32 function, acpi_physical_address address,
1301 u32 bits, u64 *value64,
1302 void *handler_context, void *region_context)
1303 {
1304 struct acpi_ec *ec = handler_context;
1305 int result = 0, i, bytes = bits / 8;
1306 u8 *value = (u8 *)value64;
1307
1308 if ((address > 0xFF) || !value || !handler_context)
1309 return AE_BAD_PARAMETER;
1310
1311 if (function != ACPI_READ && function != ACPI_WRITE)
1312 return AE_BAD_PARAMETER;
1313
1314 if (ec->busy_polling || bits > 8)
1315 acpi_ec_burst_enable(ec);
1316
1317 for (i = 0; i < bytes; ++i, ++address, ++value)
1318 result = (function == ACPI_READ) ?
1319 acpi_ec_read(ec, address, value) :
1320 acpi_ec_write(ec, address, *value);
1321
1322 if (ec->busy_polling || bits > 8)
1323 acpi_ec_burst_disable(ec);
1324
1325 switch (result) {
1326 case -EINVAL:
1327 return AE_BAD_PARAMETER;
1328 case -ENODEV:
1329 return AE_NOT_FOUND;
1330 case -ETIME:
1331 return AE_TIME;
1332 default:
1333 return AE_OK;
1334 }
1335 }
1336
1337 /* --------------------------------------------------------------------------
1338 * Driver Interface
1339 * -------------------------------------------------------------------------- */
1340
1341 static acpi_status
1342 ec_parse_io_ports(struct acpi_resource *resource, void *context);
1343
acpi_ec_free(struct acpi_ec * ec)1344 static void acpi_ec_free(struct acpi_ec *ec)
1345 {
1346 if (first_ec == ec)
1347 first_ec = NULL;
1348 if (boot_ec == ec)
1349 boot_ec = NULL;
1350 kfree(ec);
1351 }
1352
acpi_ec_alloc(void)1353 static struct acpi_ec *acpi_ec_alloc(void)
1354 {
1355 struct acpi_ec *ec = kzalloc(sizeof(struct acpi_ec), GFP_KERNEL);
1356
1357 if (!ec)
1358 return NULL;
1359 mutex_init(&ec->mutex);
1360 init_waitqueue_head(&ec->wait);
1361 INIT_LIST_HEAD(&ec->list);
1362 spin_lock_init(&ec->lock);
1363 INIT_WORK(&ec->work, acpi_ec_event_handler);
1364 ec->timestamp = jiffies;
1365 ec->busy_polling = true;
1366 ec->polling_guard = 0;
1367 ec->gpe = -1;
1368 ec->irq = -1;
1369 return ec;
1370 }
1371
1372 static acpi_status
acpi_ec_register_query_methods(acpi_handle handle,u32 level,void * context,void ** return_value)1373 acpi_ec_register_query_methods(acpi_handle handle, u32 level,
1374 void *context, void **return_value)
1375 {
1376 char node_name[5];
1377 struct acpi_buffer buffer = { sizeof(node_name), node_name };
1378 struct acpi_ec *ec = context;
1379 int value = 0;
1380 acpi_status status;
1381
1382 status = acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer);
1383
1384 if (ACPI_SUCCESS(status) && sscanf(node_name, "_Q%x", &value) == 1)
1385 acpi_ec_add_query_handler(ec, value, handle, NULL, NULL);
1386 return AE_OK;
1387 }
1388
1389 static acpi_status
ec_parse_device(acpi_handle handle,u32 Level,void * context,void ** retval)1390 ec_parse_device(acpi_handle handle, u32 Level, void *context, void **retval)
1391 {
1392 acpi_status status;
1393 unsigned long long tmp = 0;
1394 struct acpi_ec *ec = context;
1395
1396 /* clear addr values, ec_parse_io_ports depend on it */
1397 ec->command_addr = ec->data_addr = 0;
1398
1399 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1400 ec_parse_io_ports, ec);
1401 if (ACPI_FAILURE(status))
1402 return status;
1403 if (ec->data_addr == 0 || ec->command_addr == 0)
1404 return AE_OK;
1405
1406 /* Get GPE bit assignment (EC events). */
1407 /* TODO: Add support for _GPE returning a package */
1408 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
1409 if (ACPI_SUCCESS(status))
1410 ec->gpe = tmp;
1411 /*
1412 * Errors are non-fatal, allowing for ACPI Reduced Hardware
1413 * platforms which use GpioInt instead of GPE.
1414 */
1415
1416 /* Use the global lock for all EC transactions? */
1417 tmp = 0;
1418 acpi_evaluate_integer(handle, "_GLK", NULL, &tmp);
1419 ec->global_lock = tmp;
1420 ec->handle = handle;
1421 return AE_CTRL_TERMINATE;
1422 }
1423
install_gpe_event_handler(struct acpi_ec * ec)1424 static bool install_gpe_event_handler(struct acpi_ec *ec)
1425 {
1426 acpi_status status;
1427
1428 status = acpi_install_gpe_raw_handler(NULL, ec->gpe,
1429 ACPI_GPE_EDGE_TRIGGERED,
1430 &acpi_ec_gpe_handler, ec);
1431 if (ACPI_FAILURE(status))
1432 return false;
1433
1434 if (test_bit(EC_FLAGS_STARTED, &ec->flags) && ec->reference_count >= 1)
1435 acpi_ec_enable_gpe(ec, true);
1436
1437 return true;
1438 }
1439
install_gpio_irq_event_handler(struct acpi_ec * ec)1440 static bool install_gpio_irq_event_handler(struct acpi_ec *ec)
1441 {
1442 return request_irq(ec->irq, acpi_ec_irq_handler, IRQF_SHARED,
1443 "ACPI EC", ec) >= 0;
1444 }
1445
1446 /**
1447 * ec_install_handlers - Install service callbacks and register query methods.
1448 * @ec: Target EC.
1449 * @device: ACPI device object corresponding to @ec.
1450 *
1451 * Install a handler for the EC address space type unless it has been installed
1452 * already. If @device is not NULL, also look for EC query methods in the
1453 * namespace and register them, and install an event (either GPE or GPIO IRQ)
1454 * handler for the EC, if possible.
1455 *
1456 * Return:
1457 * -ENODEV if the address space handler cannot be installed, which means
1458 * "unable to handle transactions",
1459 * -EPROBE_DEFER if GPIO IRQ acquisition needs to be deferred,
1460 * or 0 (success) otherwise.
1461 */
ec_install_handlers(struct acpi_ec * ec,struct acpi_device * device)1462 static int ec_install_handlers(struct acpi_ec *ec, struct acpi_device *device)
1463 {
1464 acpi_status status;
1465
1466 acpi_ec_start(ec, false);
1467
1468 if (!test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1469 acpi_ec_enter_noirq(ec);
1470 status = acpi_install_address_space_handler(ec->handle,
1471 ACPI_ADR_SPACE_EC,
1472 &acpi_ec_space_handler,
1473 NULL, ec);
1474 if (ACPI_FAILURE(status)) {
1475 acpi_ec_stop(ec, false);
1476 return -ENODEV;
1477 }
1478 set_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1479 }
1480
1481 if (!device)
1482 return 0;
1483
1484 if (ec->gpe < 0) {
1485 /* ACPI reduced hardware platforms use a GpioInt from _CRS. */
1486 int irq = acpi_dev_gpio_irq_get(device, 0);
1487 /*
1488 * Bail out right away for deferred probing or complete the
1489 * initialization regardless of any other errors.
1490 */
1491 if (irq == -EPROBE_DEFER)
1492 return -EPROBE_DEFER;
1493 else if (irq >= 0)
1494 ec->irq = irq;
1495 }
1496
1497 if (!test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1498 /* Find and register all query methods */
1499 acpi_walk_namespace(ACPI_TYPE_METHOD, ec->handle, 1,
1500 acpi_ec_register_query_methods,
1501 NULL, ec, NULL);
1502 set_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1503 }
1504 if (!test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1505 bool ready = false;
1506
1507 if (ec->gpe >= 0)
1508 ready = install_gpe_event_handler(ec);
1509 else if (ec->irq >= 0)
1510 ready = install_gpio_irq_event_handler(ec);
1511
1512 if (ready) {
1513 set_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1514 acpi_ec_leave_noirq(ec);
1515 }
1516 /*
1517 * Failures to install an event handler are not fatal, because
1518 * the EC can be polled for events.
1519 */
1520 }
1521 /* EC is fully operational, allow queries */
1522 acpi_ec_enable_event(ec);
1523
1524 return 0;
1525 }
1526
ec_remove_handlers(struct acpi_ec * ec)1527 static void ec_remove_handlers(struct acpi_ec *ec)
1528 {
1529 if (test_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags)) {
1530 if (ACPI_FAILURE(acpi_remove_address_space_handler(ec->handle,
1531 ACPI_ADR_SPACE_EC, &acpi_ec_space_handler)))
1532 pr_err("failed to remove space handler\n");
1533 clear_bit(EC_FLAGS_EC_HANDLER_INSTALLED, &ec->flags);
1534 }
1535
1536 /*
1537 * Stops handling the EC transactions after removing the operation
1538 * region handler. This is required because _REG(DISCONNECT)
1539 * invoked during the removal can result in new EC transactions.
1540 *
1541 * Flushes the EC requests and thus disables the GPE before
1542 * removing the GPE handler. This is required by the current ACPICA
1543 * GPE core. ACPICA GPE core will automatically disable a GPE when
1544 * it is indicated but there is no way to handle it. So the drivers
1545 * must disable the GPEs prior to removing the GPE handlers.
1546 */
1547 acpi_ec_stop(ec, false);
1548
1549 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1550 if (ec->gpe >= 0 &&
1551 ACPI_FAILURE(acpi_remove_gpe_handler(NULL, ec->gpe,
1552 &acpi_ec_gpe_handler)))
1553 pr_err("failed to remove gpe handler\n");
1554
1555 if (ec->irq >= 0)
1556 free_irq(ec->irq, ec);
1557
1558 clear_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags);
1559 }
1560 if (test_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags)) {
1561 acpi_ec_remove_query_handlers(ec, true, 0);
1562 clear_bit(EC_FLAGS_QUERY_METHODS_INSTALLED, &ec->flags);
1563 }
1564 }
1565
acpi_ec_setup(struct acpi_ec * ec,struct acpi_device * device)1566 static int acpi_ec_setup(struct acpi_ec *ec, struct acpi_device *device)
1567 {
1568 int ret;
1569
1570 ret = ec_install_handlers(ec, device);
1571 if (ret)
1572 return ret;
1573
1574 /* First EC capable of handling transactions */
1575 if (!first_ec)
1576 first_ec = ec;
1577
1578 pr_info("EC_CMD/EC_SC=0x%lx, EC_DATA=0x%lx\n", ec->command_addr,
1579 ec->data_addr);
1580
1581 if (test_bit(EC_FLAGS_EVENT_HANDLER_INSTALLED, &ec->flags)) {
1582 if (ec->gpe >= 0)
1583 pr_info("GPE=0x%x\n", ec->gpe);
1584 else
1585 pr_info("IRQ=%d\n", ec->irq);
1586 }
1587
1588 return ret;
1589 }
1590
acpi_ec_add(struct acpi_device * device)1591 static int acpi_ec_add(struct acpi_device *device)
1592 {
1593 struct acpi_ec *ec;
1594 int ret;
1595
1596 strcpy(acpi_device_name(device), ACPI_EC_DEVICE_NAME);
1597 strcpy(acpi_device_class(device), ACPI_EC_CLASS);
1598
1599 if (boot_ec && (boot_ec->handle == device->handle ||
1600 !strcmp(acpi_device_hid(device), ACPI_ECDT_HID))) {
1601 /* Fast path: this device corresponds to the boot EC. */
1602 ec = boot_ec;
1603 } else {
1604 acpi_status status;
1605
1606 ec = acpi_ec_alloc();
1607 if (!ec)
1608 return -ENOMEM;
1609
1610 status = ec_parse_device(device->handle, 0, ec, NULL);
1611 if (status != AE_CTRL_TERMINATE) {
1612 ret = -EINVAL;
1613 goto err;
1614 }
1615
1616 if (boot_ec && ec->command_addr == boot_ec->command_addr &&
1617 ec->data_addr == boot_ec->data_addr) {
1618 /*
1619 * Trust PNP0C09 namespace location rather than ECDT ID.
1620 * But trust ECDT GPE rather than _GPE because of ASUS
1621 * quirks. So do not change boot_ec->gpe to ec->gpe,
1622 * except when the TRUST_DSDT_GPE quirk is set.
1623 */
1624 boot_ec->handle = ec->handle;
1625
1626 if (EC_FLAGS_TRUST_DSDT_GPE)
1627 boot_ec->gpe = ec->gpe;
1628
1629 acpi_handle_debug(ec->handle, "duplicated.\n");
1630 acpi_ec_free(ec);
1631 ec = boot_ec;
1632 }
1633 }
1634
1635 ret = acpi_ec_setup(ec, device);
1636 if (ret)
1637 goto err;
1638
1639 if (ec == boot_ec)
1640 acpi_handle_info(boot_ec->handle,
1641 "Boot %s EC initialization complete\n",
1642 boot_ec_is_ecdt ? "ECDT" : "DSDT");
1643
1644 acpi_handle_info(ec->handle,
1645 "EC: Used to handle transactions and events\n");
1646
1647 device->driver_data = ec;
1648
1649 ret = !!request_region(ec->data_addr, 1, "EC data");
1650 WARN(!ret, "Could not request EC data io port 0x%lx", ec->data_addr);
1651 ret = !!request_region(ec->command_addr, 1, "EC cmd");
1652 WARN(!ret, "Could not request EC cmd io port 0x%lx", ec->command_addr);
1653
1654 /* Reprobe devices depending on the EC */
1655 acpi_dev_clear_dependencies(device);
1656
1657 acpi_handle_debug(ec->handle, "enumerated.\n");
1658 return 0;
1659
1660 err:
1661 if (ec != boot_ec)
1662 acpi_ec_free(ec);
1663
1664 return ret;
1665 }
1666
acpi_ec_remove(struct acpi_device * device)1667 static int acpi_ec_remove(struct acpi_device *device)
1668 {
1669 struct acpi_ec *ec;
1670
1671 if (!device)
1672 return -EINVAL;
1673
1674 ec = acpi_driver_data(device);
1675 release_region(ec->data_addr, 1);
1676 release_region(ec->command_addr, 1);
1677 device->driver_data = NULL;
1678 if (ec != boot_ec) {
1679 ec_remove_handlers(ec);
1680 acpi_ec_free(ec);
1681 }
1682 return 0;
1683 }
1684
1685 static acpi_status
ec_parse_io_ports(struct acpi_resource * resource,void * context)1686 ec_parse_io_ports(struct acpi_resource *resource, void *context)
1687 {
1688 struct acpi_ec *ec = context;
1689
1690 if (resource->type != ACPI_RESOURCE_TYPE_IO)
1691 return AE_OK;
1692
1693 /*
1694 * The first address region returned is the data port, and
1695 * the second address region returned is the status/command
1696 * port.
1697 */
1698 if (ec->data_addr == 0)
1699 ec->data_addr = resource->data.io.minimum;
1700 else if (ec->command_addr == 0)
1701 ec->command_addr = resource->data.io.minimum;
1702 else
1703 return AE_CTRL_TERMINATE;
1704
1705 return AE_OK;
1706 }
1707
1708 static const struct acpi_device_id ec_device_ids[] = {
1709 {"PNP0C09", 0},
1710 {ACPI_ECDT_HID, 0},
1711 {"", 0},
1712 };
1713
1714 /*
1715 * This function is not Windows-compatible as Windows never enumerates the
1716 * namespace EC before the main ACPI device enumeration process. It is
1717 * retained for historical reason and will be deprecated in the future.
1718 */
acpi_ec_dsdt_probe(void)1719 void __init acpi_ec_dsdt_probe(void)
1720 {
1721 struct acpi_ec *ec;
1722 acpi_status status;
1723 int ret;
1724
1725 /*
1726 * If a platform has ECDT, there is no need to proceed as the
1727 * following probe is not a part of the ACPI device enumeration,
1728 * executing _STA is not safe, and thus this probe may risk of
1729 * picking up an invalid EC device.
1730 */
1731 if (boot_ec)
1732 return;
1733
1734 ec = acpi_ec_alloc();
1735 if (!ec)
1736 return;
1737
1738 /*
1739 * At this point, the namespace is initialized, so start to find
1740 * the namespace objects.
1741 */
1742 status = acpi_get_devices(ec_device_ids[0].id, ec_parse_device, ec, NULL);
1743 if (ACPI_FAILURE(status) || !ec->handle) {
1744 acpi_ec_free(ec);
1745 return;
1746 }
1747
1748 /*
1749 * When the DSDT EC is available, always re-configure boot EC to
1750 * have _REG evaluated. _REG can only be evaluated after the
1751 * namespace initialization.
1752 * At this point, the GPE is not fully initialized, so do not to
1753 * handle the events.
1754 */
1755 ret = acpi_ec_setup(ec, NULL);
1756 if (ret) {
1757 acpi_ec_free(ec);
1758 return;
1759 }
1760
1761 boot_ec = ec;
1762
1763 acpi_handle_info(ec->handle,
1764 "Boot DSDT EC used to handle transactions\n");
1765 }
1766
1767 /*
1768 * acpi_ec_ecdt_start - Finalize the boot ECDT EC initialization.
1769 *
1770 * First, look for an ACPI handle for the boot ECDT EC if acpi_ec_add() has not
1771 * found a matching object in the namespace.
1772 *
1773 * Next, in case the DSDT EC is not functioning, it is still necessary to
1774 * provide a functional ECDT EC to handle events, so add an extra device object
1775 * to represent it (see https://bugzilla.kernel.org/show_bug.cgi?id=115021).
1776 *
1777 * This is useful on platforms with valid ECDT and invalid DSDT EC settings,
1778 * like ASUS X550ZE (see https://bugzilla.kernel.org/show_bug.cgi?id=196847).
1779 */
acpi_ec_ecdt_start(void)1780 static void __init acpi_ec_ecdt_start(void)
1781 {
1782 struct acpi_table_ecdt *ecdt_ptr;
1783 acpi_handle handle;
1784 acpi_status status;
1785
1786 /* Bail out if a matching EC has been found in the namespace. */
1787 if (!boot_ec || boot_ec->handle != ACPI_ROOT_OBJECT)
1788 return;
1789
1790 /* Look up the object pointed to from the ECDT in the namespace. */
1791 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1792 (struct acpi_table_header **)&ecdt_ptr);
1793 if (ACPI_FAILURE(status))
1794 return;
1795
1796 status = acpi_get_handle(NULL, ecdt_ptr->id, &handle);
1797 if (ACPI_SUCCESS(status)) {
1798 boot_ec->handle = handle;
1799
1800 /* Add a special ACPI device object to represent the boot EC. */
1801 acpi_bus_register_early_device(ACPI_BUS_TYPE_ECDT_EC);
1802 }
1803
1804 acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1805 }
1806
1807 /*
1808 * On some hardware it is necessary to clear events accumulated by the EC during
1809 * sleep. These ECs stop reporting GPEs until they are manually polled, if too
1810 * many events are accumulated. (e.g. Samsung Series 5/9 notebooks)
1811 *
1812 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1813 *
1814 * Ideally, the EC should also be instructed NOT to accumulate events during
1815 * sleep (which Windows seems to do somehow), but the interface to control this
1816 * behaviour is not known at this time.
1817 *
1818 * Models known to be affected are Samsung 530Uxx/535Uxx/540Uxx/550Pxx/900Xxx,
1819 * however it is very likely that other Samsung models are affected.
1820 *
1821 * On systems which don't accumulate _Q events during sleep, this extra check
1822 * should be harmless.
1823 */
ec_clear_on_resume(const struct dmi_system_id * id)1824 static int ec_clear_on_resume(const struct dmi_system_id *id)
1825 {
1826 pr_debug("Detected system needing EC poll on resume.\n");
1827 EC_FLAGS_CLEAR_ON_RESUME = 1;
1828 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
1829 return 0;
1830 }
1831
1832 /*
1833 * Some ECDTs contain wrong register addresses.
1834 * MSI MS-171F
1835 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1836 */
ec_correct_ecdt(const struct dmi_system_id * id)1837 static int ec_correct_ecdt(const struct dmi_system_id *id)
1838 {
1839 pr_debug("Detected system needing ECDT address correction.\n");
1840 EC_FLAGS_CORRECT_ECDT = 1;
1841 return 0;
1842 }
1843
1844 /*
1845 * Some ECDTs contain wrong GPE setting, but they share the same port addresses
1846 * with DSDT EC, don't duplicate the DSDT EC with ECDT EC in this case.
1847 * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1848 */
ec_honor_dsdt_gpe(const struct dmi_system_id * id)1849 static int ec_honor_dsdt_gpe(const struct dmi_system_id *id)
1850 {
1851 pr_debug("Detected system needing DSDT GPE setting.\n");
1852 EC_FLAGS_TRUST_DSDT_GPE = 1;
1853 return 0;
1854 }
1855
1856 static const struct dmi_system_id ec_dmi_table[] __initconst = {
1857 {
1858 /*
1859 * MSI MS-171F
1860 * https://bugzilla.kernel.org/show_bug.cgi?id=12461
1861 */
1862 .callback = ec_correct_ecdt,
1863 .matches = {
1864 DMI_MATCH(DMI_SYS_VENDOR, "Micro-Star"),
1865 DMI_MATCH(DMI_PRODUCT_NAME, "MS-171F"),
1866 },
1867 },
1868 {
1869 /*
1870 * HP Pavilion Gaming Laptop 15-cx0xxx
1871 * https://bugzilla.kernel.org/show_bug.cgi?id=209989
1872 */
1873 .callback = ec_honor_dsdt_gpe,
1874 .matches = {
1875 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1876 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-cx0xxx"),
1877 },
1878 },
1879 {
1880 /*
1881 * HP Pavilion Gaming Laptop 15-cx0041ur
1882 */
1883 .callback = ec_honor_dsdt_gpe,
1884 .matches = {
1885 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1886 DMI_MATCH(DMI_PRODUCT_NAME, "HP 15-cx0041ur"),
1887 },
1888 },
1889 {
1890 /*
1891 * HP Pavilion Gaming Laptop 15-dk1xxx
1892 * https://github.com/systemd/systemd/issues/28942
1893 */
1894 .callback = ec_honor_dsdt_gpe,
1895 .matches = {
1896 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1897 DMI_MATCH(DMI_PRODUCT_NAME, "HP Pavilion Gaming Laptop 15-dk1xxx"),
1898 },
1899 },
1900 {
1901 /*
1902 * HP 250 G7 Notebook PC
1903 */
1904 .callback = ec_honor_dsdt_gpe,
1905 .matches = {
1906 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
1907 DMI_MATCH(DMI_PRODUCT_NAME, "HP 250 G7 Notebook PC"),
1908 },
1909 },
1910 {
1911 /*
1912 * Samsung hardware
1913 * https://bugzilla.kernel.org/show_bug.cgi?id=44161
1914 */
1915 .callback = ec_clear_on_resume,
1916 .matches = {
1917 DMI_MATCH(DMI_SYS_VENDOR, "SAMSUNG ELECTRONICS CO., LTD."),
1918 },
1919 },
1920 {}
1921 };
1922
acpi_ec_ecdt_probe(void)1923 void __init acpi_ec_ecdt_probe(void)
1924 {
1925 struct acpi_table_ecdt *ecdt_ptr;
1926 struct acpi_ec *ec;
1927 acpi_status status;
1928 int ret;
1929
1930 /* Generate a boot ec context. */
1931 dmi_check_system(ec_dmi_table);
1932 status = acpi_get_table(ACPI_SIG_ECDT, 1,
1933 (struct acpi_table_header **)&ecdt_ptr);
1934 if (ACPI_FAILURE(status))
1935 return;
1936
1937 if (!ecdt_ptr->control.address || !ecdt_ptr->data.address) {
1938 /*
1939 * Asus X50GL:
1940 * https://bugzilla.kernel.org/show_bug.cgi?id=11880
1941 */
1942 goto out;
1943 }
1944
1945 ec = acpi_ec_alloc();
1946 if (!ec)
1947 goto out;
1948
1949 if (EC_FLAGS_CORRECT_ECDT) {
1950 ec->command_addr = ecdt_ptr->data.address;
1951 ec->data_addr = ecdt_ptr->control.address;
1952 } else {
1953 ec->command_addr = ecdt_ptr->control.address;
1954 ec->data_addr = ecdt_ptr->data.address;
1955 }
1956
1957 /*
1958 * Ignore the GPE value on Reduced Hardware platforms.
1959 * Some products have this set to an erroneous value.
1960 */
1961 if (!acpi_gbl_reduced_hardware)
1962 ec->gpe = ecdt_ptr->gpe;
1963
1964 ec->handle = ACPI_ROOT_OBJECT;
1965
1966 /*
1967 * At this point, the namespace is not initialized, so do not find
1968 * the namespace objects, or handle the events.
1969 */
1970 ret = acpi_ec_setup(ec, NULL);
1971 if (ret) {
1972 acpi_ec_free(ec);
1973 goto out;
1974 }
1975
1976 boot_ec = ec;
1977 boot_ec_is_ecdt = true;
1978
1979 pr_info("Boot ECDT EC used to handle transactions\n");
1980
1981 out:
1982 acpi_put_table((struct acpi_table_header *)ecdt_ptr);
1983 }
1984
1985 #ifdef CONFIG_PM_SLEEP
acpi_ec_suspend(struct device * dev)1986 static int acpi_ec_suspend(struct device *dev)
1987 {
1988 struct acpi_ec *ec =
1989 acpi_driver_data(to_acpi_device(dev));
1990
1991 if (!pm_suspend_no_platform() && ec_freeze_events)
1992 acpi_ec_disable_event(ec);
1993 return 0;
1994 }
1995
acpi_ec_suspend_noirq(struct device * dev)1996 static int acpi_ec_suspend_noirq(struct device *dev)
1997 {
1998 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
1999
2000 /*
2001 * The SCI handler doesn't run at this point, so the GPE can be
2002 * masked at the low level without side effects.
2003 */
2004 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2005 ec->gpe >= 0 && ec->reference_count >= 1)
2006 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_DISABLE);
2007
2008 acpi_ec_enter_noirq(ec);
2009
2010 return 0;
2011 }
2012
acpi_ec_resume_noirq(struct device * dev)2013 static int acpi_ec_resume_noirq(struct device *dev)
2014 {
2015 struct acpi_ec *ec = acpi_driver_data(to_acpi_device(dev));
2016
2017 acpi_ec_leave_noirq(ec);
2018
2019 if (ec_no_wakeup && test_bit(EC_FLAGS_STARTED, &ec->flags) &&
2020 ec->gpe >= 0 && ec->reference_count >= 1)
2021 acpi_set_gpe(NULL, ec->gpe, ACPI_GPE_ENABLE);
2022
2023 return 0;
2024 }
2025
acpi_ec_resume(struct device * dev)2026 static int acpi_ec_resume(struct device *dev)
2027 {
2028 struct acpi_ec *ec =
2029 acpi_driver_data(to_acpi_device(dev));
2030
2031 acpi_ec_enable_event(ec);
2032 return 0;
2033 }
2034
acpi_ec_mark_gpe_for_wake(void)2035 void acpi_ec_mark_gpe_for_wake(void)
2036 {
2037 if (first_ec && !ec_no_wakeup)
2038 acpi_mark_gpe_for_wake(NULL, first_ec->gpe);
2039 }
2040 EXPORT_SYMBOL_GPL(acpi_ec_mark_gpe_for_wake);
2041
acpi_ec_set_gpe_wake_mask(u8 action)2042 void acpi_ec_set_gpe_wake_mask(u8 action)
2043 {
2044 if (pm_suspend_no_platform() && first_ec && !ec_no_wakeup)
2045 acpi_set_gpe_wake_mask(NULL, first_ec->gpe, action);
2046 }
2047
acpi_ec_work_in_progress(struct acpi_ec * ec)2048 static bool acpi_ec_work_in_progress(struct acpi_ec *ec)
2049 {
2050 return ec->events_in_progress + ec->queries_in_progress > 0;
2051 }
2052
acpi_ec_dispatch_gpe(void)2053 bool acpi_ec_dispatch_gpe(void)
2054 {
2055 bool work_in_progress = false;
2056
2057 if (!first_ec)
2058 return acpi_any_gpe_status_set(U32_MAX);
2059
2060 /*
2061 * Report wakeup if the status bit is set for any enabled GPE other
2062 * than the EC one.
2063 */
2064 if (acpi_any_gpe_status_set(first_ec->gpe))
2065 return true;
2066
2067 /*
2068 * Cancel the SCI wakeup and process all pending events in case there
2069 * are any wakeup ones in there.
2070 *
2071 * Note that if any non-EC GPEs are active at this point, the SCI will
2072 * retrigger after the rearming in acpi_s2idle_wake(), so no events
2073 * should be missed by canceling the wakeup here.
2074 */
2075 pm_system_cancel_wakeup();
2076
2077 /*
2078 * Dispatch the EC GPE in-band, but do not report wakeup in any case
2079 * to allow the caller to process events properly after that.
2080 */
2081 spin_lock_irq(&first_ec->lock);
2082
2083 if (acpi_ec_gpe_status_set(first_ec)) {
2084 pm_pr_dbg("ACPI EC GPE status set\n");
2085
2086 advance_transaction(first_ec, false);
2087 work_in_progress = acpi_ec_work_in_progress(first_ec);
2088 }
2089
2090 spin_unlock_irq(&first_ec->lock);
2091
2092 if (!work_in_progress)
2093 return false;
2094
2095 pm_pr_dbg("ACPI EC GPE dispatched\n");
2096
2097 /* Drain EC work. */
2098 do {
2099 acpi_ec_flush_work();
2100
2101 pm_pr_dbg("ACPI EC work flushed\n");
2102
2103 spin_lock_irq(&first_ec->lock);
2104
2105 work_in_progress = acpi_ec_work_in_progress(first_ec);
2106
2107 spin_unlock_irq(&first_ec->lock);
2108 } while (work_in_progress && !pm_wakeup_pending());
2109
2110 return false;
2111 }
2112 #endif /* CONFIG_PM_SLEEP */
2113
2114 static const struct dev_pm_ops acpi_ec_pm = {
2115 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend_noirq, acpi_ec_resume_noirq)
2116 SET_SYSTEM_SLEEP_PM_OPS(acpi_ec_suspend, acpi_ec_resume)
2117 };
2118
param_set_event_clearing(const char * val,const struct kernel_param * kp)2119 static int param_set_event_clearing(const char *val,
2120 const struct kernel_param *kp)
2121 {
2122 int result = 0;
2123
2124 if (!strncmp(val, "status", sizeof("status") - 1)) {
2125 ec_event_clearing = ACPI_EC_EVT_TIMING_STATUS;
2126 pr_info("Assuming SCI_EVT clearing on EC_SC accesses\n");
2127 } else if (!strncmp(val, "query", sizeof("query") - 1)) {
2128 ec_event_clearing = ACPI_EC_EVT_TIMING_QUERY;
2129 pr_info("Assuming SCI_EVT clearing on QR_EC writes\n");
2130 } else if (!strncmp(val, "event", sizeof("event") - 1)) {
2131 ec_event_clearing = ACPI_EC_EVT_TIMING_EVENT;
2132 pr_info("Assuming SCI_EVT clearing on event reads\n");
2133 } else
2134 result = -EINVAL;
2135 return result;
2136 }
2137
param_get_event_clearing(char * buffer,const struct kernel_param * kp)2138 static int param_get_event_clearing(char *buffer,
2139 const struct kernel_param *kp)
2140 {
2141 switch (ec_event_clearing) {
2142 case ACPI_EC_EVT_TIMING_STATUS:
2143 return sprintf(buffer, "status\n");
2144 case ACPI_EC_EVT_TIMING_QUERY:
2145 return sprintf(buffer, "query\n");
2146 case ACPI_EC_EVT_TIMING_EVENT:
2147 return sprintf(buffer, "event\n");
2148 default:
2149 return sprintf(buffer, "invalid\n");
2150 }
2151 return 0;
2152 }
2153
2154 module_param_call(ec_event_clearing, param_set_event_clearing, param_get_event_clearing,
2155 NULL, 0644);
2156 MODULE_PARM_DESC(ec_event_clearing, "Assumed SCI_EVT clearing timing");
2157
2158 static struct acpi_driver acpi_ec_driver = {
2159 .name = "ec",
2160 .class = ACPI_EC_CLASS,
2161 .ids = ec_device_ids,
2162 .ops = {
2163 .add = acpi_ec_add,
2164 .remove = acpi_ec_remove,
2165 },
2166 .drv.pm = &acpi_ec_pm,
2167 };
2168
acpi_ec_destroy_workqueues(void)2169 static void acpi_ec_destroy_workqueues(void)
2170 {
2171 if (ec_wq) {
2172 destroy_workqueue(ec_wq);
2173 ec_wq = NULL;
2174 }
2175 if (ec_query_wq) {
2176 destroy_workqueue(ec_query_wq);
2177 ec_query_wq = NULL;
2178 }
2179 }
2180
acpi_ec_init_workqueues(void)2181 static int acpi_ec_init_workqueues(void)
2182 {
2183 if (!ec_wq)
2184 ec_wq = alloc_ordered_workqueue("kec", 0);
2185
2186 if (!ec_query_wq)
2187 ec_query_wq = alloc_workqueue("kec_query", 0, ec_max_queries);
2188
2189 if (!ec_wq || !ec_query_wq) {
2190 acpi_ec_destroy_workqueues();
2191 return -ENODEV;
2192 }
2193 return 0;
2194 }
2195
2196 static const struct dmi_system_id acpi_ec_no_wakeup[] = {
2197 {
2198 .matches = {
2199 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2200 DMI_MATCH(DMI_PRODUCT_FAMILY, "Thinkpad X1 Carbon 6th"),
2201 },
2202 },
2203 {
2204 .matches = {
2205 DMI_MATCH(DMI_SYS_VENDOR, "LENOVO"),
2206 DMI_MATCH(DMI_PRODUCT_FAMILY, "ThinkPad X1 Yoga 3rd"),
2207 },
2208 },
2209 {
2210 .matches = {
2211 DMI_MATCH(DMI_SYS_VENDOR, "HP"),
2212 DMI_MATCH(DMI_PRODUCT_FAMILY, "103C_5336AN HP ZHAN 66 Pro"),
2213 },
2214 },
2215 { },
2216 };
2217
acpi_ec_init(void)2218 void __init acpi_ec_init(void)
2219 {
2220 int result;
2221
2222 result = acpi_ec_init_workqueues();
2223 if (result)
2224 return;
2225
2226 /*
2227 * Disable EC wakeup on following systems to prevent periodic
2228 * wakeup from EC GPE.
2229 */
2230 if (dmi_check_system(acpi_ec_no_wakeup)) {
2231 ec_no_wakeup = true;
2232 pr_debug("Disabling EC wakeup on suspend-to-idle\n");
2233 }
2234
2235 /* Driver must be registered after acpi_ec_init_workqueues(). */
2236 acpi_bus_register_driver(&acpi_ec_driver);
2237
2238 acpi_ec_ecdt_start();
2239 }
2240
2241 /* EC driver currently not unloadable */
2242 #if 0
2243 static void __exit acpi_ec_exit(void)
2244 {
2245
2246 acpi_bus_unregister_driver(&acpi_ec_driver);
2247 acpi_ec_destroy_workqueues();
2248 }
2249 #endif /* 0 */
2250