• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2018 Solarflare Communications Inc.
5  * Copyright 2019-2022 Xilinx Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published
9  * by the Free Software Foundation, incorporated herein by reference.
10  */
11 
12 #include "ef100_nic.h"
13 #include "efx_common.h"
14 #include "efx_channels.h"
15 #include "io.h"
16 #include "selftest.h"
17 #include "ef100_regs.h"
18 #include "mcdi.h"
19 #include "mcdi_pcol.h"
20 #include "mcdi_port_common.h"
21 #include "mcdi_functions.h"
22 #include "mcdi_filters.h"
23 #include "ef100_rx.h"
24 #include "ef100_tx.h"
25 #include "ef100_sriov.h"
26 #include "ef100_netdev.h"
27 #include "tc.h"
28 #include "mae.h"
29 #include "rx_common.h"
30 
31 #define EF100_MAX_VIS 4096
32 #define EF100_NUM_MCDI_BUFFERS	1
33 #define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
34 
35 #define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
36 
37 /*	MCDI
38  */
ef100_mcdi_buf(struct efx_nic * efx,u8 bufid,dma_addr_t * dma_addr)39 static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
40 {
41 	struct ef100_nic_data *nic_data = efx->nic_data;
42 
43 	if (dma_addr)
44 		*dma_addr = nic_data->mcdi_buf.dma_addr +
45 			    bufid * ALIGN(MCDI_BUF_LEN, 256);
46 	return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
47 }
48 
ef100_get_warm_boot_count(struct efx_nic * efx)49 static int ef100_get_warm_boot_count(struct efx_nic *efx)
50 {
51 	efx_dword_t reg;
52 
53 	efx_readd(efx, &reg, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
54 
55 	if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
56 		netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
57 		efx->state = STATE_DISABLED;
58 		return -ENETDOWN;
59 	} else {
60 		return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
61 			EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
62 	}
63 }
64 
ef100_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)65 static void ef100_mcdi_request(struct efx_nic *efx,
66 			       const efx_dword_t *hdr, size_t hdr_len,
67 			       const efx_dword_t *sdu, size_t sdu_len)
68 {
69 	dma_addr_t dma_addr;
70 	u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
71 
72 	memcpy(pdu, hdr, hdr_len);
73 	memcpy(pdu + hdr_len, sdu, sdu_len);
74 	wmb();
75 
76 	/* The hardware provides 'low' and 'high' (doorbell) registers
77 	 * for passing the 64-bit address of an MCDI request to
78 	 * firmware.  However the dwords are swapped by firmware.  The
79 	 * least significant bits of the doorbell are then 0 for all
80 	 * MCDI requests due to alignment.
81 	 */
82 	_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32),  efx_reg(efx, ER_GZ_MC_DB_LWRD));
83 	_efx_writed(efx, cpu_to_le32((u32)dma_addr),  efx_reg(efx, ER_GZ_MC_DB_HWRD));
84 }
85 
ef100_mcdi_poll_response(struct efx_nic * efx)86 static bool ef100_mcdi_poll_response(struct efx_nic *efx)
87 {
88 	const efx_dword_t hdr =
89 		*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
90 
91 	rmb();
92 	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
93 }
94 
ef100_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)95 static void ef100_mcdi_read_response(struct efx_nic *efx,
96 				     efx_dword_t *outbuf, size_t offset,
97 				     size_t outlen)
98 {
99 	const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
100 
101 	memcpy(outbuf, pdu + offset, outlen);
102 }
103 
ef100_mcdi_poll_reboot(struct efx_nic * efx)104 static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
105 {
106 	struct ef100_nic_data *nic_data = efx->nic_data;
107 	int rc;
108 
109 	rc = ef100_get_warm_boot_count(efx);
110 	if (rc < 0) {
111 		/* The firmware is presumably in the process of
112 		 * rebooting.  However, we are supposed to report each
113 		 * reboot just once, so we must only do that once we
114 		 * can read and store the updated warm boot count.
115 		 */
116 		return 0;
117 	}
118 
119 	if (rc == nic_data->warm_boot_count)
120 		return 0;
121 
122 	nic_data->warm_boot_count = rc;
123 
124 	return -EIO;
125 }
126 
ef100_mcdi_reboot_detected(struct efx_nic * efx)127 static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
128 {
129 }
130 
131 /*	MCDI calls
132  */
ef100_get_mac_address(struct efx_nic * efx,u8 * mac_address)133 static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
134 {
135 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
136 	size_t outlen;
137 	int rc;
138 
139 	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
140 
141 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
142 			  outbuf, sizeof(outbuf), &outlen);
143 	if (rc)
144 		return rc;
145 	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
146 		return -EIO;
147 
148 	ether_addr_copy(mac_address,
149 			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
150 	return 0;
151 }
152 
efx_ef100_init_datapath_caps(struct efx_nic * efx)153 int efx_ef100_init_datapath_caps(struct efx_nic *efx)
154 {
155 	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
156 	struct ef100_nic_data *nic_data = efx->nic_data;
157 	u8 vi_window_mode;
158 	size_t outlen;
159 	int rc;
160 
161 	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
162 
163 	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
164 			  outbuf, sizeof(outbuf), &outlen);
165 	if (rc)
166 		return rc;
167 	if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 		netif_err(efx, drv, efx->net_dev,
169 			  "unable to read datapath firmware capabilities\n");
170 		return -EIO;
171 	}
172 
173 	nic_data->datapath_caps = MCDI_DWORD(outbuf,
174 					     GET_CAPABILITIES_OUT_FLAGS1);
175 	nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
176 					      GET_CAPABILITIES_V2_OUT_FLAGS2);
177 	if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
178 		nic_data->datapath_caps3 = 0;
179 	else
180 		nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
181 						      GET_CAPABILITIES_V7_OUT_FLAGS3);
182 
183 	vi_window_mode = MCDI_BYTE(outbuf,
184 				   GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
185 	rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
186 	if (rc)
187 		return rc;
188 
189 	if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3)) {
190 		struct net_device *net_dev = efx->net_dev;
191 		netdev_features_t tso = NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_PARTIAL |
192 					NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_UDP_TUNNEL_CSUM |
193 					NETIF_F_GSO_GRE | NETIF_F_GSO_GRE_CSUM;
194 
195 		net_dev->features |= tso;
196 		net_dev->hw_features |= tso;
197 		net_dev->hw_enc_features |= tso;
198 		/* EF100 HW can only offload outer checksums if they are UDP,
199 		 * so for GRE_CSUM we have to use GSO_PARTIAL.
200 		 */
201 		net_dev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
202 	}
203 	efx->num_mac_stats = MCDI_WORD(outbuf,
204 				       GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
205 	netif_dbg(efx, probe, efx->net_dev,
206 		  "firmware reports num_mac_stats = %u\n",
207 		  efx->num_mac_stats);
208 	return 0;
209 }
210 
211 /*	Event handling
212  */
ef100_ev_probe(struct efx_channel * channel)213 static int ef100_ev_probe(struct efx_channel *channel)
214 {
215 	/* Allocate an extra descriptor for the QMDA status completion entry */
216 	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
217 				    (channel->eventq_mask + 2) *
218 				    sizeof(efx_qword_t),
219 				    GFP_KERNEL);
220 }
221 
ef100_ev_init(struct efx_channel * channel)222 static int ef100_ev_init(struct efx_channel *channel)
223 {
224 	struct ef100_nic_data *nic_data = channel->efx->nic_data;
225 
226 	/* initial phase is 0 */
227 	clear_bit(channel->channel, nic_data->evq_phases);
228 
229 	return efx_mcdi_ev_init(channel, false, false);
230 }
231 
ef100_ev_read_ack(struct efx_channel * channel)232 static void ef100_ev_read_ack(struct efx_channel *channel)
233 {
234 	efx_dword_t evq_prime;
235 
236 	EFX_POPULATE_DWORD_2(evq_prime,
237 			     ERF_GZ_EVQ_ID, channel->channel,
238 			     ERF_GZ_IDX, channel->eventq_read_ptr &
239 					 channel->eventq_mask);
240 
241 	efx_writed(channel->efx, &evq_prime,
242 		   efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
243 }
244 
245 #define EFX_NAPI_MAX_TX 512
246 
ef100_ev_process(struct efx_channel * channel,int quota)247 static int ef100_ev_process(struct efx_channel *channel, int quota)
248 {
249 	struct efx_nic *efx = channel->efx;
250 	struct ef100_nic_data *nic_data;
251 	bool evq_phase, old_evq_phase;
252 	unsigned int read_ptr;
253 	efx_qword_t *p_event;
254 	int spent_tx = 0;
255 	int spent = 0;
256 	bool ev_phase;
257 	int ev_type;
258 
259 	if (unlikely(!channel->enabled))
260 		return 0;
261 
262 	nic_data = efx->nic_data;
263 	evq_phase = test_bit(channel->channel, nic_data->evq_phases);
264 	old_evq_phase = evq_phase;
265 	read_ptr = channel->eventq_read_ptr;
266 	BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
267 
268 	while (spent < quota) {
269 		p_event = efx_event(channel, read_ptr);
270 
271 		ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
272 		if (ev_phase != evq_phase)
273 			break;
274 
275 		netif_vdbg(efx, drv, efx->net_dev,
276 			   "processing event on %d " EFX_QWORD_FMT "\n",
277 			   channel->channel, EFX_QWORD_VAL(*p_event));
278 
279 		ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
280 
281 		switch (ev_type) {
282 		case ESE_GZ_EF100_EV_RX_PKTS:
283 			efx_ef100_ev_rx(channel, p_event);
284 			++spent;
285 			break;
286 		case ESE_GZ_EF100_EV_MCDI:
287 			efx_mcdi_process_event(channel, p_event);
288 			break;
289 		case ESE_GZ_EF100_EV_TX_COMPLETION:
290 			spent_tx += ef100_ev_tx(channel, p_event);
291 			if (spent_tx >= EFX_NAPI_MAX_TX)
292 				spent = quota;
293 			break;
294 		case ESE_GZ_EF100_EV_DRIVER:
295 			netif_info(efx, drv, efx->net_dev,
296 				   "Driver initiated event " EFX_QWORD_FMT "\n",
297 				   EFX_QWORD_VAL(*p_event));
298 			break;
299 		default:
300 			netif_info(efx, drv, efx->net_dev,
301 				   "Unhandled event " EFX_QWORD_FMT "\n",
302 				   EFX_QWORD_VAL(*p_event));
303 		}
304 
305 		++read_ptr;
306 		if ((read_ptr & channel->eventq_mask) == 0)
307 			evq_phase = !evq_phase;
308 	}
309 
310 	channel->eventq_read_ptr = read_ptr;
311 	if (evq_phase != old_evq_phase)
312 		change_bit(channel->channel, nic_data->evq_phases);
313 
314 	return spent;
315 }
316 
ef100_msi_interrupt(int irq,void * dev_id)317 static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
318 {
319 	struct efx_msi_context *context = dev_id;
320 	struct efx_nic *efx = context->efx;
321 
322 	netif_vdbg(efx, intr, efx->net_dev,
323 		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
324 
325 	if (likely(READ_ONCE(efx->irq_soft_enabled))) {
326 		/* Note test interrupts */
327 		if (context->index == efx->irq_level)
328 			efx->last_irq_cpu = raw_smp_processor_id();
329 
330 		/* Schedule processing of the channel */
331 		efx_schedule_channel_irq(efx->channel[context->index]);
332 	}
333 
334 	return IRQ_HANDLED;
335 }
336 
ef100_phy_probe(struct efx_nic * efx)337 int ef100_phy_probe(struct efx_nic *efx)
338 {
339 	struct efx_mcdi_phy_data *phy_data;
340 	int rc;
341 
342 	/* Probe for the PHY */
343 	efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
344 	if (!efx->phy_data)
345 		return -ENOMEM;
346 
347 	rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
348 	if (rc)
349 		return rc;
350 
351 	/* Populate driver and ethtool settings */
352 	phy_data = efx->phy_data;
353 	mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
354 				efx->link_advertising);
355 	efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
356 						   false);
357 
358 	/* Default to Autonegotiated flow control if the PHY supports it */
359 	efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
360 	if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
361 		efx->wanted_fc |= EFX_FC_AUTO;
362 	efx_link_set_wanted_fc(efx, efx->wanted_fc);
363 
364 	/* Push settings to the PHY. Failure is not fatal, the user can try to
365 	 * fix it using ethtool.
366 	 */
367 	rc = efx_mcdi_port_reconfigure(efx);
368 	if (rc && rc != -EPERM)
369 		netif_warn(efx, drv, efx->net_dev,
370 			   "could not initialise PHY settings\n");
371 
372 	return 0;
373 }
374 
ef100_filter_table_probe(struct efx_nic * efx)375 int ef100_filter_table_probe(struct efx_nic *efx)
376 {
377 	return efx_mcdi_filter_table_probe(efx, true);
378 }
379 
ef100_filter_table_up(struct efx_nic * efx)380 static int ef100_filter_table_up(struct efx_nic *efx)
381 {
382 	int rc;
383 
384 	down_write(&efx->filter_sem);
385 	rc = efx_mcdi_filter_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
386 	if (rc)
387 		goto fail_unspec;
388 
389 	rc = efx_mcdi_filter_add_vlan(efx, 0);
390 	if (rc)
391 		goto fail_vlan0;
392 	/* Drop the lock: we've finished altering table existence, and
393 	 * filter insertion will need to take the lock for read.
394 	 */
395 	up_write(&efx->filter_sem);
396 #ifdef CONFIG_SFC_SRIOV
397 	rc = efx_tc_insert_rep_filters(efx);
398 	/* Rep filter failure is nonfatal */
399 	if (rc)
400 		netif_warn(efx, drv, efx->net_dev,
401 			   "Failed to insert representor filters, rc %d\n",
402 			   rc);
403 #endif
404 	return 0;
405 
406 fail_vlan0:
407 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
408 fail_unspec:
409 	efx_mcdi_filter_table_down(efx);
410 	up_write(&efx->filter_sem);
411 	return rc;
412 }
413 
ef100_filter_table_down(struct efx_nic * efx)414 static void ef100_filter_table_down(struct efx_nic *efx)
415 {
416 #ifdef CONFIG_SFC_SRIOV
417 	efx_tc_remove_rep_filters(efx);
418 #endif
419 	down_write(&efx->filter_sem);
420 	efx_mcdi_filter_del_vlan(efx, 0);
421 	efx_mcdi_filter_del_vlan(efx, EFX_FILTER_VID_UNSPEC);
422 	efx_mcdi_filter_table_down(efx);
423 	up_write(&efx->filter_sem);
424 }
425 
426 /*	Other
427  */
ef100_reconfigure_mac(struct efx_nic * efx,bool mtu_only)428 static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
429 {
430 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
431 
432 	efx_mcdi_filter_sync_rx_mode(efx);
433 
434 	if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
435 		return efx_mcdi_set_mtu(efx);
436 	return efx_mcdi_set_mac(efx);
437 }
438 
ef100_map_reset_reason(enum reset_type reason)439 static enum reset_type ef100_map_reset_reason(enum reset_type reason)
440 {
441 	if (reason == RESET_TYPE_TX_WATCHDOG)
442 		return reason;
443 	return RESET_TYPE_DISABLE;
444 }
445 
ef100_map_reset_flags(u32 * flags)446 static int ef100_map_reset_flags(u32 *flags)
447 {
448 	/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
449 	if ((*flags & EF100_RESET_PORT)) {
450 		*flags &= ~EF100_RESET_PORT;
451 		return RESET_TYPE_ALL;
452 	}
453 	if (*flags & ETH_RESET_MGMT) {
454 		*flags &= ~ETH_RESET_MGMT;
455 		return RESET_TYPE_DISABLE;
456 	}
457 
458 	return -EINVAL;
459 }
460 
ef100_reset(struct efx_nic * efx,enum reset_type reset_type)461 static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
462 {
463 	int rc;
464 
465 	dev_close(efx->net_dev);
466 
467 	if (reset_type == RESET_TYPE_TX_WATCHDOG) {
468 		netif_device_attach(efx->net_dev);
469 		__clear_bit(reset_type, &efx->reset_pending);
470 		rc = dev_open(efx->net_dev, NULL);
471 	} else if (reset_type == RESET_TYPE_ALL) {
472 		rc = efx_mcdi_reset(efx, reset_type);
473 		if (rc)
474 			return rc;
475 
476 		netif_device_attach(efx->net_dev);
477 
478 		rc = dev_open(efx->net_dev, NULL);
479 	} else {
480 		rc = 1;	/* Leave the device closed */
481 	}
482 	return rc;
483 }
484 
ef100_common_stat_mask(unsigned long * mask)485 static void ef100_common_stat_mask(unsigned long *mask)
486 {
487 	__set_bit(EF100_STAT_port_rx_packets, mask);
488 	__set_bit(EF100_STAT_port_tx_packets, mask);
489 	__set_bit(EF100_STAT_port_rx_bytes, mask);
490 	__set_bit(EF100_STAT_port_tx_bytes, mask);
491 	__set_bit(EF100_STAT_port_rx_multicast, mask);
492 	__set_bit(EF100_STAT_port_rx_bad, mask);
493 	__set_bit(EF100_STAT_port_rx_align_error, mask);
494 	__set_bit(EF100_STAT_port_rx_overflow, mask);
495 }
496 
ef100_ethtool_stat_mask(unsigned long * mask)497 static void ef100_ethtool_stat_mask(unsigned long *mask)
498 {
499 	__set_bit(EF100_STAT_port_tx_pause, mask);
500 	__set_bit(EF100_STAT_port_tx_unicast, mask);
501 	__set_bit(EF100_STAT_port_tx_multicast, mask);
502 	__set_bit(EF100_STAT_port_tx_broadcast, mask);
503 	__set_bit(EF100_STAT_port_tx_lt64, mask);
504 	__set_bit(EF100_STAT_port_tx_64, mask);
505 	__set_bit(EF100_STAT_port_tx_65_to_127, mask);
506 	__set_bit(EF100_STAT_port_tx_128_to_255, mask);
507 	__set_bit(EF100_STAT_port_tx_256_to_511, mask);
508 	__set_bit(EF100_STAT_port_tx_512_to_1023, mask);
509 	__set_bit(EF100_STAT_port_tx_1024_to_15xx, mask);
510 	__set_bit(EF100_STAT_port_tx_15xx_to_jumbo, mask);
511 	__set_bit(EF100_STAT_port_rx_good, mask);
512 	__set_bit(EF100_STAT_port_rx_pause, mask);
513 	__set_bit(EF100_STAT_port_rx_unicast, mask);
514 	__set_bit(EF100_STAT_port_rx_broadcast, mask);
515 	__set_bit(EF100_STAT_port_rx_lt64, mask);
516 	__set_bit(EF100_STAT_port_rx_64, mask);
517 	__set_bit(EF100_STAT_port_rx_65_to_127, mask);
518 	__set_bit(EF100_STAT_port_rx_128_to_255, mask);
519 	__set_bit(EF100_STAT_port_rx_256_to_511, mask);
520 	__set_bit(EF100_STAT_port_rx_512_to_1023, mask);
521 	__set_bit(EF100_STAT_port_rx_1024_to_15xx, mask);
522 	__set_bit(EF100_STAT_port_rx_15xx_to_jumbo, mask);
523 	__set_bit(EF100_STAT_port_rx_gtjumbo, mask);
524 	__set_bit(EF100_STAT_port_rx_bad_gtjumbo, mask);
525 	__set_bit(EF100_STAT_port_rx_length_error, mask);
526 	__set_bit(EF100_STAT_port_rx_nodesc_drops, mask);
527 	__set_bit(GENERIC_STAT_rx_nodesc_trunc, mask);
528 	__set_bit(GENERIC_STAT_rx_noskb_drops, mask);
529 }
530 
531 #define EF100_DMA_STAT(ext_name, mcdi_name)			\
532 	[EF100_STAT_ ## ext_name] =				\
533 	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
534 
535 static const struct efx_hw_stat_desc ef100_stat_desc[EF100_STAT_COUNT] = {
536 	EF100_DMA_STAT(port_tx_bytes, TX_BYTES),
537 	EF100_DMA_STAT(port_tx_packets, TX_PKTS),
538 	EF100_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
539 	EF100_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
540 	EF100_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
541 	EF100_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
542 	EF100_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
543 	EF100_DMA_STAT(port_tx_64, TX_64_PKTS),
544 	EF100_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
545 	EF100_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
546 	EF100_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
547 	EF100_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
548 	EF100_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
549 	EF100_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
550 	EF100_DMA_STAT(port_rx_bytes, RX_BYTES),
551 	EF100_DMA_STAT(port_rx_packets, RX_PKTS),
552 	EF100_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
553 	EF100_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
554 	EF100_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
555 	EF100_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
556 	EF100_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
557 	EF100_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
558 	EF100_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
559 	EF100_DMA_STAT(port_rx_64, RX_64_PKTS),
560 	EF100_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
561 	EF100_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
562 	EF100_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
563 	EF100_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
564 	EF100_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
565 	EF100_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
566 	EF100_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
567 	EF100_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
568 	EF100_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
569 	EF100_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
570 	EF100_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
571 	EF100_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
572 	EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
573 	EFX_GENERIC_SW_STAT(rx_noskb_drops),
574 };
575 
ef100_describe_stats(struct efx_nic * efx,u8 * names)576 static size_t ef100_describe_stats(struct efx_nic *efx, u8 *names)
577 {
578 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
579 
580 	ef100_ethtool_stat_mask(mask);
581 	return efx_nic_describe_stats(ef100_stat_desc, EF100_STAT_COUNT,
582 				      mask, names);
583 }
584 
ef100_update_stats_common(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)585 static size_t ef100_update_stats_common(struct efx_nic *efx, u64 *full_stats,
586 					struct rtnl_link_stats64 *core_stats)
587 {
588 	struct ef100_nic_data *nic_data = efx->nic_data;
589 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
590 	size_t stats_count = 0, index;
591 	u64 *stats = nic_data->stats;
592 
593 	ef100_ethtool_stat_mask(mask);
594 
595 	if (full_stats) {
596 		for_each_set_bit(index, mask, EF100_STAT_COUNT) {
597 			if (ef100_stat_desc[index].name) {
598 				*full_stats++ = stats[index];
599 				++stats_count;
600 			}
601 		}
602 	}
603 
604 	if (!core_stats)
605 		return stats_count;
606 
607 	core_stats->rx_packets = stats[EF100_STAT_port_rx_packets];
608 	core_stats->tx_packets = stats[EF100_STAT_port_tx_packets];
609 	core_stats->rx_bytes = stats[EF100_STAT_port_rx_bytes];
610 	core_stats->tx_bytes = stats[EF100_STAT_port_tx_bytes];
611 	core_stats->rx_dropped = stats[EF100_STAT_port_rx_nodesc_drops] +
612 				 stats[GENERIC_STAT_rx_nodesc_trunc] +
613 				 stats[GENERIC_STAT_rx_noskb_drops];
614 	core_stats->multicast = stats[EF100_STAT_port_rx_multicast];
615 	core_stats->rx_length_errors =
616 			stats[EF100_STAT_port_rx_gtjumbo] +
617 			stats[EF100_STAT_port_rx_length_error];
618 	core_stats->rx_crc_errors = stats[EF100_STAT_port_rx_bad];
619 	core_stats->rx_frame_errors =
620 			stats[EF100_STAT_port_rx_align_error];
621 	core_stats->rx_fifo_errors = stats[EF100_STAT_port_rx_overflow];
622 	core_stats->rx_errors = (core_stats->rx_length_errors +
623 				 core_stats->rx_crc_errors +
624 				 core_stats->rx_frame_errors);
625 
626 	return stats_count;
627 }
628 
ef100_update_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)629 static size_t ef100_update_stats(struct efx_nic *efx,
630 				 u64 *full_stats,
631 				 struct rtnl_link_stats64 *core_stats)
632 {
633 	__le64 *mc_stats = kmalloc(array_size(efx->num_mac_stats, sizeof(__le64)), GFP_ATOMIC);
634 	struct ef100_nic_data *nic_data = efx->nic_data;
635 	DECLARE_BITMAP(mask, EF100_STAT_COUNT) = {};
636 	u64 *stats = nic_data->stats;
637 
638 	ef100_common_stat_mask(mask);
639 	ef100_ethtool_stat_mask(mask);
640 
641 	if (!mc_stats)
642 		return 0;
643 
644 	efx_nic_copy_stats(efx, mc_stats);
645 	efx_nic_update_stats(ef100_stat_desc, EF100_STAT_COUNT, mask,
646 			     stats, mc_stats, false);
647 
648 	kfree(mc_stats);
649 
650 	return ef100_update_stats_common(efx, full_stats, core_stats);
651 }
652 
efx_ef100_get_phys_port_id(struct efx_nic * efx,struct netdev_phys_item_id * ppid)653 static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
654 				      struct netdev_phys_item_id *ppid)
655 {
656 	struct ef100_nic_data *nic_data = efx->nic_data;
657 
658 	if (!is_valid_ether_addr(nic_data->port_id))
659 		return -EOPNOTSUPP;
660 
661 	ppid->id_len = ETH_ALEN;
662 	memcpy(ppid->id, nic_data->port_id, ppid->id_len);
663 
664 	return 0;
665 }
666 
efx_ef100_irq_test_generate(struct efx_nic * efx)667 static int efx_ef100_irq_test_generate(struct efx_nic *efx)
668 {
669 	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
670 
671 	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
672 
673 	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
674 	return efx_mcdi_rpc_quiet(efx, MC_CMD_TRIGGER_INTERRUPT,
675 				  inbuf, sizeof(inbuf), NULL, 0, NULL);
676 }
677 
678 #define EFX_EF100_TEST 1
679 
efx_ef100_ev_test_generate(struct efx_channel * channel)680 static void efx_ef100_ev_test_generate(struct efx_channel *channel)
681 {
682 	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
683 	struct efx_nic *efx = channel->efx;
684 	efx_qword_t event;
685 	int rc;
686 
687 	EFX_POPULATE_QWORD_2(event,
688 			     ESF_GZ_E_TYPE, ESE_GZ_EF100_EV_DRIVER,
689 			     ESF_GZ_DRIVER_DATA, EFX_EF100_TEST);
690 
691 	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
692 
693 	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
694 	 * already swapped the data to little-endian order.
695 	 */
696 	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
697 	       sizeof(efx_qword_t));
698 
699 	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
700 			  NULL, 0, NULL);
701 	if (rc && (rc != -ENETDOWN))
702 		goto fail;
703 
704 	return;
705 
706 fail:
707 	WARN_ON(true);
708 	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
709 }
710 
ef100_check_caps(const struct efx_nic * efx,u8 flag,u32 offset)711 static unsigned int ef100_check_caps(const struct efx_nic *efx,
712 				     u8 flag, u32 offset)
713 {
714 	const struct ef100_nic_data *nic_data = efx->nic_data;
715 
716 	switch (offset) {
717 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
718 		return nic_data->datapath_caps & BIT_ULL(flag);
719 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
720 		return nic_data->datapath_caps2 & BIT_ULL(flag);
721 	case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
722 		return nic_data->datapath_caps3 & BIT_ULL(flag);
723 	default:
724 		return 0;
725 	}
726 }
727 
efx_ef100_recycle_ring_size(const struct efx_nic * efx)728 static unsigned int efx_ef100_recycle_ring_size(const struct efx_nic *efx)
729 {
730 	/* Maximum link speed for Riverhead is 100G */
731 	return 10 * EFX_RECYCLE_RING_SIZE_10G;
732 }
733 
734 #ifdef CONFIG_SFC_SRIOV
efx_ef100_get_base_mport(struct efx_nic * efx)735 static int efx_ef100_get_base_mport(struct efx_nic *efx)
736 {
737 	struct ef100_nic_data *nic_data = efx->nic_data;
738 	u32 selector, id;
739 	int rc;
740 
741 	/* Construct mport selector for "physical network port" */
742 	efx_mae_mport_wire(efx, &selector);
743 	/* Look up actual mport ID */
744 	rc = efx_mae_lookup_mport(efx, selector, &id);
745 	if (rc)
746 		return rc;
747 	/* The ID should always fit in 16 bits, because that's how wide the
748 	 * corresponding fields in the RX prefix & TX override descriptor are
749 	 */
750 	if (id >> 16)
751 		netif_warn(efx, probe, efx->net_dev, "Bad base m-port id %#x\n",
752 			   id);
753 	nic_data->base_mport = id;
754 	nic_data->have_mport = true;
755 	return 0;
756 }
757 #endif
758 
compare_versions(const char * a,const char * b)759 static int compare_versions(const char *a, const char *b)
760 {
761 	int a_major, a_minor, a_point, a_patch;
762 	int b_major, b_minor, b_point, b_patch;
763 	int a_matched, b_matched;
764 
765 	a_matched = sscanf(a, "%d.%d.%d.%d", &a_major, &a_minor, &a_point, &a_patch);
766 	b_matched = sscanf(b, "%d.%d.%d.%d", &b_major, &b_minor, &b_point, &b_patch);
767 
768 	if (a_matched == 4 && b_matched != 4)
769 		return +1;
770 
771 	if (a_matched != 4 && b_matched == 4)
772 		return -1;
773 
774 	if (a_matched != 4 && b_matched != 4)
775 		return 0;
776 
777 	if (a_major != b_major)
778 		return a_major - b_major;
779 
780 	if (a_minor != b_minor)
781 		return a_minor - b_minor;
782 
783 	if (a_point != b_point)
784 		return a_point - b_point;
785 
786 	return a_patch - b_patch;
787 }
788 
789 enum ef100_tlv_state_machine {
790 	EF100_TLV_TYPE,
791 	EF100_TLV_TYPE_CONT,
792 	EF100_TLV_LENGTH,
793 	EF100_TLV_VALUE
794 };
795 
796 struct ef100_tlv_state {
797 	enum ef100_tlv_state_machine state;
798 	u64 value;
799 	u32 value_offset;
800 	u16 type;
801 	u8 len;
802 };
803 
ef100_tlv_feed(struct ef100_tlv_state * state,u8 byte)804 static int ef100_tlv_feed(struct ef100_tlv_state *state, u8 byte)
805 {
806 	switch (state->state) {
807 	case EF100_TLV_TYPE:
808 		state->type = byte & 0x7f;
809 		state->state = (byte & 0x80) ? EF100_TLV_TYPE_CONT
810 					     : EF100_TLV_LENGTH;
811 		/* Clear ready to read in a new entry */
812 		state->value = 0;
813 		state->value_offset = 0;
814 		return 0;
815 	case EF100_TLV_TYPE_CONT:
816 		state->type |= byte << 7;
817 		state->state = EF100_TLV_LENGTH;
818 		return 0;
819 	case EF100_TLV_LENGTH:
820 		state->len = byte;
821 		/* We only handle TLVs that fit in a u64 */
822 		if (state->len > sizeof(state->value))
823 			return -EOPNOTSUPP;
824 		/* len may be zero, implying a value of zero */
825 		state->state = state->len ? EF100_TLV_VALUE : EF100_TLV_TYPE;
826 		return 0;
827 	case EF100_TLV_VALUE:
828 		state->value |= ((u64)byte) << (state->value_offset * 8);
829 		state->value_offset++;
830 		if (state->value_offset >= state->len)
831 			state->state = EF100_TLV_TYPE;
832 		return 0;
833 	default: /* state machine error, can't happen */
834 		WARN_ON_ONCE(1);
835 		return -EIO;
836 	}
837 }
838 
ef100_process_design_param(struct efx_nic * efx,const struct ef100_tlv_state * reader)839 static int ef100_process_design_param(struct efx_nic *efx,
840 				      const struct ef100_tlv_state *reader)
841 {
842 	struct ef100_nic_data *nic_data = efx->nic_data;
843 
844 	switch (reader->type) {
845 	case ESE_EF100_DP_GZ_PAD: /* padding, skip it */
846 		return 0;
847 	case ESE_EF100_DP_GZ_PARTIAL_TSTAMP_SUB_NANO_BITS:
848 		/* Driver doesn't support timestamping yet, so we don't care */
849 		return 0;
850 	case ESE_EF100_DP_GZ_EVQ_UNSOL_CREDIT_SEQ_BITS:
851 		/* Driver doesn't support unsolicited-event credits yet, so
852 		 * we don't care
853 		 */
854 		return 0;
855 	case ESE_EF100_DP_GZ_NMMU_GROUP_SIZE:
856 		/* Driver doesn't manage the NMMU (so we don't care) */
857 		return 0;
858 	case ESE_EF100_DP_GZ_RX_L4_CSUM_PROTOCOLS:
859 		/* Driver uses CHECKSUM_COMPLETE, so we don't care about
860 		 * protocol checksum validation
861 		 */
862 		return 0;
863 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN:
864 		nic_data->tso_max_hdr_len = min_t(u64, reader->value, 0xffff);
865 		return 0;
866 	case ESE_EF100_DP_GZ_TSO_MAX_HDR_NUM_SEGS:
867 		/* We always put HDR_NUM_SEGS=1 in our TSO descriptors */
868 		if (!reader->value) {
869 			netif_err(efx, probe, efx->net_dev,
870 				  "TSO_MAX_HDR_NUM_SEGS < 1\n");
871 			return -EOPNOTSUPP;
872 		}
873 		return 0;
874 	case ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY:
875 	case ESE_EF100_DP_GZ_TXQ_SIZE_GRANULARITY:
876 		/* Our TXQ and RXQ sizes are always power-of-two and thus divisible by
877 		 * EFX_MIN_DMAQ_SIZE, so we just need to check that
878 		 * EFX_MIN_DMAQ_SIZE is divisible by GRANULARITY.
879 		 * This is very unlikely to fail.
880 		 */
881 		if (!reader->value || reader->value > EFX_MIN_DMAQ_SIZE ||
882 		    EFX_MIN_DMAQ_SIZE % (u32)reader->value) {
883 			netif_err(efx, probe, efx->net_dev,
884 				  "%s size granularity is %llu, can't guarantee safety\n",
885 				  reader->type == ESE_EF100_DP_GZ_RXQ_SIZE_GRANULARITY ? "RXQ" : "TXQ",
886 				  reader->value);
887 			return -EOPNOTSUPP;
888 		}
889 		return 0;
890 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN:
891 		nic_data->tso_max_payload_len = min_t(u64, reader->value,
892 						      GSO_LEGACY_MAX_SIZE);
893 		netif_set_tso_max_size(efx->net_dev,
894 				       nic_data->tso_max_payload_len);
895 		return 0;
896 	case ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS:
897 		nic_data->tso_max_payload_num_segs = min_t(u64, reader->value, 0xffff);
898 		netif_set_tso_max_segs(efx->net_dev,
899 				       nic_data->tso_max_payload_num_segs);
900 		return 0;
901 	case ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES:
902 		nic_data->tso_max_frames = min_t(u64, reader->value, 0xffff);
903 		return 0;
904 	case ESE_EF100_DP_GZ_COMPAT:
905 		if (reader->value) {
906 			netif_err(efx, probe, efx->net_dev,
907 				  "DP_COMPAT has unknown bits %#llx, driver not compatible with this hw\n",
908 				  reader->value);
909 			return -EOPNOTSUPP;
910 		}
911 		return 0;
912 	case ESE_EF100_DP_GZ_MEM2MEM_MAX_LEN:
913 		/* Driver doesn't use mem2mem transfers */
914 		return 0;
915 	case ESE_EF100_DP_GZ_EVQ_TIMER_TICK_NANOS:
916 		/* Driver doesn't currently use EVQ_TIMER */
917 		return 0;
918 	case ESE_EF100_DP_GZ_NMMU_PAGE_SIZES:
919 		/* Driver doesn't manage the NMMU (so we don't care) */
920 		return 0;
921 	case ESE_EF100_DP_GZ_VI_STRIDES:
922 		/* We never try to set the VI stride, and we don't rely on
923 		 * being able to find VIs past VI 0 until after we've learned
924 		 * the current stride from MC_CMD_GET_CAPABILITIES.
925 		 * So the value of this shouldn't matter.
926 		 */
927 		if (reader->value != ESE_EF100_DP_GZ_VI_STRIDES_DEFAULT)
928 			netif_dbg(efx, probe, efx->net_dev,
929 				  "NIC has other than default VI_STRIDES (mask "
930 				  "%#llx), early probing might use wrong one\n",
931 				  reader->value);
932 		return 0;
933 	case ESE_EF100_DP_GZ_RX_MAX_RUNT:
934 		/* Driver doesn't look at L2_STATUS:LEN_ERR bit, so we don't
935 		 * care whether it indicates runt or overlength for any given
936 		 * packet, so we don't care about this parameter.
937 		 */
938 		return 0;
939 	default:
940 		/* Host interface says "Drivers should ignore design parameters
941 		 * that they do not recognise."
942 		 */
943 		netif_dbg(efx, probe, efx->net_dev,
944 			  "Ignoring unrecognised design parameter %u\n",
945 			  reader->type);
946 		return 0;
947 	}
948 }
949 
ef100_check_design_params(struct efx_nic * efx)950 static int ef100_check_design_params(struct efx_nic *efx)
951 {
952 	struct ef100_tlv_state reader = {};
953 	u32 total_len, offset = 0;
954 	efx_dword_t reg;
955 	int rc = 0, i;
956 	u32 data;
957 
958 	efx_readd(efx, &reg, ER_GZ_PARAMS_TLV_LEN);
959 	total_len = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
960 	pci_dbg(efx->pci_dev, "%u bytes of design parameters\n", total_len);
961 	while (offset < total_len) {
962 		efx_readd(efx, &reg, ER_GZ_PARAMS_TLV + offset);
963 		data = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
964 		for (i = 0; i < sizeof(data); i++) {
965 			rc = ef100_tlv_feed(&reader, data);
966 			/* Got a complete value? */
967 			if (!rc && reader.state == EF100_TLV_TYPE)
968 				rc = ef100_process_design_param(efx, &reader);
969 			if (rc)
970 				goto out;
971 			data >>= 8;
972 			offset++;
973 		}
974 	}
975 	/* Check we didn't end halfway through a TLV entry, which could either
976 	 * mean that the TLV stream is truncated or just that it's corrupted
977 	 * and our state machine is out of sync.
978 	 */
979 	if (reader.state != EF100_TLV_TYPE) {
980 		if (reader.state == EF100_TLV_TYPE_CONT)
981 			netif_err(efx, probe, efx->net_dev,
982 				  "truncated design parameter (incomplete type %u)\n",
983 				  reader.type);
984 		else
985 			netif_err(efx, probe, efx->net_dev,
986 				  "truncated design parameter %u\n",
987 				  reader.type);
988 		rc = -EIO;
989 	}
990 out:
991 	return rc;
992 }
993 
994 /*	NIC probe and remove
995  */
ef100_probe_main(struct efx_nic * efx)996 static int ef100_probe_main(struct efx_nic *efx)
997 {
998 	unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
999 	struct ef100_nic_data *nic_data;
1000 	char fw_version[32];
1001 	u32 priv_mask = 0;
1002 	int i, rc;
1003 
1004 	if (WARN_ON(bar_size == 0))
1005 		return -EIO;
1006 
1007 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1008 	if (!nic_data)
1009 		return -ENOMEM;
1010 	efx->nic_data = nic_data;
1011 	nic_data->efx = efx;
1012 	efx->max_vis = EF100_MAX_VIS;
1013 
1014 	/* Populate design-parameter defaults */
1015 	nic_data->tso_max_hdr_len = ESE_EF100_DP_GZ_TSO_MAX_HDR_LEN_DEFAULT;
1016 	nic_data->tso_max_frames = ESE_EF100_DP_GZ_TSO_MAX_NUM_FRAMES_DEFAULT;
1017 	nic_data->tso_max_payload_num_segs = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_NUM_SEGS_DEFAULT;
1018 	nic_data->tso_max_payload_len = ESE_EF100_DP_GZ_TSO_MAX_PAYLOAD_LEN_DEFAULT;
1019 
1020 	/* Read design parameters */
1021 	rc = ef100_check_design_params(efx);
1022 	if (rc) {
1023 		pci_err(efx->pci_dev, "Unsupported design parameters\n");
1024 		goto fail;
1025 	}
1026 
1027 	/* we assume later that we can copy from this buffer in dwords */
1028 	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
1029 
1030 	/* MCDI buffers must be 256 byte aligned. */
1031 	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
1032 				  GFP_KERNEL);
1033 	if (rc)
1034 		goto fail;
1035 
1036 	/* Get the MC's warm boot count.  In case it's rebooting right
1037 	 * now, be prepared to retry.
1038 	 */
1039 	i = 0;
1040 	for (;;) {
1041 		rc = ef100_get_warm_boot_count(efx);
1042 		if (rc >= 0)
1043 			break;
1044 		if (++i == 5)
1045 			goto fail;
1046 		ssleep(1);
1047 	}
1048 	nic_data->warm_boot_count = rc;
1049 
1050 	/* In case we're recovering from a crash (kexec), we want to
1051 	 * cancel any outstanding request by the previous user of this
1052 	 * function.  We send a special message using the least
1053 	 * significant bits of the 'high' (doorbell) register.
1054 	 */
1055 	_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
1056 
1057 	/* Post-IO section. */
1058 
1059 	rc = efx_mcdi_init(efx);
1060 	if (rc)
1061 		goto fail;
1062 	/* Reset (most) configuration for this function */
1063 	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
1064 	if (rc)
1065 		goto fail;
1066 	/* Enable event logging */
1067 	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
1068 	if (rc)
1069 		goto fail;
1070 
1071 	rc = efx_get_pf_index(efx, &nic_data->pf_index);
1072 	if (rc)
1073 		goto fail;
1074 
1075 	rc = efx_mcdi_port_get_number(efx);
1076 	if (rc < 0)
1077 		goto fail;
1078 	efx->port_num = rc;
1079 
1080 	efx_mcdi_print_fwver(efx, fw_version, sizeof(fw_version));
1081 	pci_dbg(efx->pci_dev, "Firmware version %s\n", fw_version);
1082 
1083 	rc = efx_mcdi_get_privilege_mask(efx, &priv_mask);
1084 	if (rc) /* non-fatal, and priv_mask will still be 0 */
1085 		pci_info(efx->pci_dev,
1086 			 "Failed to get privilege mask from FW, rc %d\n", rc);
1087 	nic_data->grp_mae = !!(priv_mask & MC_CMD_PRIVILEGE_MASK_IN_GRP_MAE);
1088 
1089 	if (compare_versions(fw_version, "1.1.0.1000") < 0) {
1090 		pci_info(efx->pci_dev, "Firmware uses old event descriptors\n");
1091 		rc = -EINVAL;
1092 		goto fail;
1093 	}
1094 
1095 	if (efx_has_cap(efx, UNSOL_EV_CREDIT_SUPPORTED)) {
1096 		pci_info(efx->pci_dev, "Firmware uses unsolicited-event credits\n");
1097 		rc = -EINVAL;
1098 		goto fail;
1099 	}
1100 
1101 	return 0;
1102 fail:
1103 	return rc;
1104 }
1105 
ef100_probe_netdev_pf(struct efx_nic * efx)1106 int ef100_probe_netdev_pf(struct efx_nic *efx)
1107 {
1108 	struct ef100_nic_data *nic_data = efx->nic_data;
1109 	struct net_device *net_dev = efx->net_dev;
1110 	int rc;
1111 
1112 	rc = ef100_get_mac_address(efx, net_dev->perm_addr);
1113 	if (rc)
1114 		goto fail;
1115 	/* Assign MAC address */
1116 	eth_hw_addr_set(net_dev, net_dev->perm_addr);
1117 	memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
1118 
1119 	if (!nic_data->grp_mae)
1120 		return 0;
1121 
1122 #ifdef CONFIG_SFC_SRIOV
1123 	rc = efx_init_struct_tc(efx);
1124 	if (rc)
1125 		return rc;
1126 
1127 	rc = efx_ef100_get_base_mport(efx);
1128 	if (rc) {
1129 		netif_warn(efx, probe, net_dev,
1130 			   "Failed to probe base mport rc %d; representors will not function\n",
1131 			   rc);
1132 	}
1133 
1134 	rc = efx_init_tc(efx);
1135 	if (rc) {
1136 		/* Either we don't have an MAE at all (i.e. legacy v-switching),
1137 		 * or we do but we failed to probe it.  In the latter case, we
1138 		 * may not have set up default rules, in which case we won't be
1139 		 * able to pass any traffic.  However, we don't fail the probe,
1140 		 * because the user might need to use the netdevice to apply
1141 		 * configuration changes to fix whatever's wrong with the MAE.
1142 		 */
1143 		netif_warn(efx, probe, net_dev, "Failed to probe MAE rc %d\n",
1144 			   rc);
1145 	} else {
1146 		net_dev->features |= NETIF_F_HW_TC;
1147 		efx->fixed_features |= NETIF_F_HW_TC;
1148 	}
1149 #endif
1150 	return 0;
1151 
1152 fail:
1153 	return rc;
1154 }
1155 
ef100_probe_vf(struct efx_nic * efx)1156 int ef100_probe_vf(struct efx_nic *efx)
1157 {
1158 	return ef100_probe_main(efx);
1159 }
1160 
ef100_remove(struct efx_nic * efx)1161 void ef100_remove(struct efx_nic *efx)
1162 {
1163 	struct ef100_nic_data *nic_data = efx->nic_data;
1164 
1165 	efx_mcdi_detach(efx);
1166 	efx_mcdi_fini(efx);
1167 	if (nic_data)
1168 		efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
1169 	kfree(nic_data);
1170 	efx->nic_data = NULL;
1171 }
1172 
1173 /*	NIC level access functions
1174  */
1175 #define EF100_OFFLOAD_FEATURES	(NETIF_F_HW_CSUM | NETIF_F_RXCSUM |	\
1176 	NETIF_F_HIGHDMA | NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_NTUPLE | \
1177 	NETIF_F_RXHASH | NETIF_F_RXFCS | NETIF_F_TSO_ECN | NETIF_F_RXALL | \
1178 	NETIF_F_HW_VLAN_CTAG_TX)
1179 
1180 const struct efx_nic_type ef100_pf_nic_type = {
1181 	.revision = EFX_REV_EF100,
1182 	.is_vf = false,
1183 	.probe = ef100_probe_main,
1184 	.offload_features = EF100_OFFLOAD_FEATURES,
1185 	.mcdi_max_ver = 2,
1186 	.mcdi_request = ef100_mcdi_request,
1187 	.mcdi_poll_response = ef100_mcdi_poll_response,
1188 	.mcdi_read_response = ef100_mcdi_read_response,
1189 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1190 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1191 	.irq_enable_master = efx_port_dummy_op_void,
1192 	.irq_test_generate = efx_ef100_irq_test_generate,
1193 	.irq_disable_non_ev = efx_port_dummy_op_void,
1194 	.push_irq_moderation = efx_channel_dummy_op_void,
1195 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1196 	.map_reset_reason = ef100_map_reset_reason,
1197 	.map_reset_flags = ef100_map_reset_flags,
1198 	.reset = ef100_reset,
1199 
1200 	.check_caps = ef100_check_caps,
1201 
1202 	.ev_probe = ef100_ev_probe,
1203 	.ev_init = ef100_ev_init,
1204 	.ev_fini = efx_mcdi_ev_fini,
1205 	.ev_remove = efx_mcdi_ev_remove,
1206 	.irq_handle_msi = ef100_msi_interrupt,
1207 	.ev_process = ef100_ev_process,
1208 	.ev_read_ack = ef100_ev_read_ack,
1209 	.ev_test_generate = efx_ef100_ev_test_generate,
1210 	.tx_probe = ef100_tx_probe,
1211 	.tx_init = ef100_tx_init,
1212 	.tx_write = ef100_tx_write,
1213 	.tx_enqueue = ef100_enqueue_skb,
1214 	.rx_probe = efx_mcdi_rx_probe,
1215 	.rx_init = efx_mcdi_rx_init,
1216 	.rx_remove = efx_mcdi_rx_remove,
1217 	.rx_write = ef100_rx_write,
1218 	.rx_packet = __ef100_rx_packet,
1219 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1220 	.fini_dmaq = efx_fini_dmaq,
1221 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1222 	.filter_table_probe = ef100_filter_table_up,
1223 	.filter_table_restore = efx_mcdi_filter_table_restore,
1224 	.filter_table_remove = ef100_filter_table_down,
1225 	.filter_insert = efx_mcdi_filter_insert,
1226 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1227 	.filter_get_safe = efx_mcdi_filter_get_safe,
1228 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1229 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1230 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1231 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1232 #ifdef CONFIG_RFS_ACCEL
1233 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1234 #endif
1235 
1236 	.get_phys_port_id = efx_ef100_get_phys_port_id,
1237 
1238 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1239 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1240 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1241 	.rx_hash_key_size = 40,
1242 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1243 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1244 	.rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
1245 	.rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
1246 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1247 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1248 
1249 	.reconfigure_mac = ef100_reconfigure_mac,
1250 	.reconfigure_port = efx_mcdi_port_reconfigure,
1251 	.test_nvram = efx_new_mcdi_nvram_test_all,
1252 	.describe_stats = ef100_describe_stats,
1253 	.start_stats = efx_mcdi_mac_start_stats,
1254 	.update_stats = ef100_update_stats,
1255 	.pull_stats = efx_mcdi_mac_pull_stats,
1256 	.stop_stats = efx_mcdi_mac_stop_stats,
1257 #ifdef CONFIG_SFC_SRIOV
1258 	.sriov_configure = efx_ef100_sriov_configure,
1259 #endif
1260 
1261 	/* Per-type bar/size configuration not used on ef100. Location of
1262 	 * registers is defined by extended capabilities.
1263 	 */
1264 	.mem_bar = NULL,
1265 	.mem_map_size = NULL,
1266 
1267 };
1268 
1269 const struct efx_nic_type ef100_vf_nic_type = {
1270 	.revision = EFX_REV_EF100,
1271 	.is_vf = true,
1272 	.probe = ef100_probe_vf,
1273 	.offload_features = EF100_OFFLOAD_FEATURES,
1274 	.mcdi_max_ver = 2,
1275 	.mcdi_request = ef100_mcdi_request,
1276 	.mcdi_poll_response = ef100_mcdi_poll_response,
1277 	.mcdi_read_response = ef100_mcdi_read_response,
1278 	.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
1279 	.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
1280 	.irq_enable_master = efx_port_dummy_op_void,
1281 	.irq_test_generate = efx_ef100_irq_test_generate,
1282 	.irq_disable_non_ev = efx_port_dummy_op_void,
1283 	.push_irq_moderation = efx_channel_dummy_op_void,
1284 	.min_interrupt_mode = EFX_INT_MODE_MSIX,
1285 	.map_reset_reason = ef100_map_reset_reason,
1286 	.map_reset_flags = ef100_map_reset_flags,
1287 	.reset = ef100_reset,
1288 	.check_caps = ef100_check_caps,
1289 	.ev_probe = ef100_ev_probe,
1290 	.ev_init = ef100_ev_init,
1291 	.ev_fini = efx_mcdi_ev_fini,
1292 	.ev_remove = efx_mcdi_ev_remove,
1293 	.irq_handle_msi = ef100_msi_interrupt,
1294 	.ev_process = ef100_ev_process,
1295 	.ev_read_ack = ef100_ev_read_ack,
1296 	.ev_test_generate = efx_ef100_ev_test_generate,
1297 	.tx_probe = ef100_tx_probe,
1298 	.tx_init = ef100_tx_init,
1299 	.tx_write = ef100_tx_write,
1300 	.tx_enqueue = ef100_enqueue_skb,
1301 	.rx_probe = efx_mcdi_rx_probe,
1302 	.rx_init = efx_mcdi_rx_init,
1303 	.rx_remove = efx_mcdi_rx_remove,
1304 	.rx_write = ef100_rx_write,
1305 	.rx_packet = __ef100_rx_packet,
1306 	.rx_buf_hash_valid = ef100_rx_buf_hash_valid,
1307 	.fini_dmaq = efx_fini_dmaq,
1308 	.max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
1309 	.filter_table_probe = ef100_filter_table_up,
1310 	.filter_table_restore = efx_mcdi_filter_table_restore,
1311 	.filter_table_remove = ef100_filter_table_down,
1312 	.filter_insert = efx_mcdi_filter_insert,
1313 	.filter_remove_safe = efx_mcdi_filter_remove_safe,
1314 	.filter_get_safe = efx_mcdi_filter_get_safe,
1315 	.filter_clear_rx = efx_mcdi_filter_clear_rx,
1316 	.filter_count_rx_used = efx_mcdi_filter_count_rx_used,
1317 	.filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
1318 	.filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
1319 #ifdef CONFIG_RFS_ACCEL
1320 	.filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
1321 #endif
1322 
1323 	.rx_prefix_size = ESE_GZ_RX_PKT_PREFIX_LEN,
1324 	.rx_hash_offset = ESF_GZ_RX_PREFIX_RSS_HASH_LBN / 8,
1325 	.rx_ts_offset = ESF_GZ_RX_PREFIX_PARTIAL_TSTAMP_LBN / 8,
1326 	.rx_hash_key_size = 40,
1327 	.rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
1328 	.rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
1329 	.rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
1330 	.rx_recycle_ring_size = efx_ef100_recycle_ring_size,
1331 
1332 	.reconfigure_mac = ef100_reconfigure_mac,
1333 	.test_nvram = efx_new_mcdi_nvram_test_all,
1334 	.describe_stats = ef100_describe_stats,
1335 	.start_stats = efx_mcdi_mac_start_stats,
1336 	.update_stats = ef100_update_stats,
1337 	.pull_stats = efx_mcdi_mac_pull_stats,
1338 	.stop_stats = efx_mcdi_mac_stop_stats,
1339 
1340 	.mem_bar = NULL,
1341 	.mem_map_size = NULL,
1342 
1343 };
1344