1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2018 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11 #include "net_driver.h"
12 #include <linux/filter.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <net/gre.h>
16 #include "efx_common.h"
17 #include "efx_channels.h"
18 #include "efx.h"
19 #include "mcdi.h"
20 #include "selftest.h"
21 #include "rx_common.h"
22 #include "tx_common.h"
23 #include "nic.h"
24 #include "mcdi_port_common.h"
25 #include "io.h"
26 #include "mcdi_pcol.h"
27 #include "ef100_rep.h"
28
29 static unsigned int debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
30 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
31 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
32 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
33 module_param(debug, uint, 0);
34 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
35
36 /* This is the time (in jiffies) between invocations of the hardware
37 * monitor.
38 * On Falcon-based NICs, this will:
39 * - Check the on-board hardware monitor;
40 * - Poll the link state and reconfigure the hardware as necessary.
41 * On Siena-based NICs for power systems with EEH support, this will give EEH a
42 * chance to start.
43 */
44 static unsigned int efx_monitor_interval = 1 * HZ;
45
46 /* How often and how many times to poll for a reset while waiting for a
47 * BIST that another function started to complete.
48 */
49 #define BIST_WAIT_DELAY_MS 100
50 #define BIST_WAIT_DELAY_COUNT 100
51
52 /* Default stats update time */
53 #define STATS_PERIOD_MS_DEFAULT 1000
54
55 static const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
56 static const char *const efx_reset_type_names[] = {
57 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
58 [RESET_TYPE_ALL] = "ALL",
59 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
60 [RESET_TYPE_WORLD] = "WORLD",
61 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
62 [RESET_TYPE_DATAPATH] = "DATAPATH",
63 [RESET_TYPE_MC_BIST] = "MC_BIST",
64 [RESET_TYPE_DISABLE] = "DISABLE",
65 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
66 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
67 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
68 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
69 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
70 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)",
71 };
72
73 #define RESET_TYPE(type) \
74 STRING_TABLE_LOOKUP(type, efx_reset_type)
75
76 /* Loopback mode names (see LOOPBACK_MODE()) */
77 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
78 const char *const efx_loopback_mode_names[] = {
79 [LOOPBACK_NONE] = "NONE",
80 [LOOPBACK_DATA] = "DATAPATH",
81 [LOOPBACK_GMAC] = "GMAC",
82 [LOOPBACK_XGMII] = "XGMII",
83 [LOOPBACK_XGXS] = "XGXS",
84 [LOOPBACK_XAUI] = "XAUI",
85 [LOOPBACK_GMII] = "GMII",
86 [LOOPBACK_SGMII] = "SGMII",
87 [LOOPBACK_XGBR] = "XGBR",
88 [LOOPBACK_XFI] = "XFI",
89 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
90 [LOOPBACK_GMII_FAR] = "GMII_FAR",
91 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
92 [LOOPBACK_XFI_FAR] = "XFI_FAR",
93 [LOOPBACK_GPHY] = "GPHY",
94 [LOOPBACK_PHYXS] = "PHYXS",
95 [LOOPBACK_PCS] = "PCS",
96 [LOOPBACK_PMAPMD] = "PMA/PMD",
97 [LOOPBACK_XPORT] = "XPORT",
98 [LOOPBACK_XGMII_WS] = "XGMII_WS",
99 [LOOPBACK_XAUI_WS] = "XAUI_WS",
100 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
101 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
102 [LOOPBACK_GMII_WS] = "GMII_WS",
103 [LOOPBACK_XFI_WS] = "XFI_WS",
104 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
105 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
106 };
107
108 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
109 * queued onto this work queue. This is not a per-nic work queue, because
110 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
111 */
112 static struct workqueue_struct *reset_workqueue;
113
efx_create_reset_workqueue(void)114 int efx_create_reset_workqueue(void)
115 {
116 reset_workqueue = create_singlethread_workqueue("sfc_reset");
117 if (!reset_workqueue) {
118 printk(KERN_ERR "Failed to create reset workqueue\n");
119 return -ENOMEM;
120 }
121
122 return 0;
123 }
124
efx_queue_reset_work(struct efx_nic * efx)125 void efx_queue_reset_work(struct efx_nic *efx)
126 {
127 queue_work(reset_workqueue, &efx->reset_work);
128 }
129
efx_flush_reset_workqueue(struct efx_nic * efx)130 void efx_flush_reset_workqueue(struct efx_nic *efx)
131 {
132 cancel_work_sync(&efx->reset_work);
133 }
134
efx_destroy_reset_workqueue(void)135 void efx_destroy_reset_workqueue(void)
136 {
137 if (reset_workqueue) {
138 destroy_workqueue(reset_workqueue);
139 reset_workqueue = NULL;
140 }
141 }
142
143 /* We assume that efx->type->reconfigure_mac will always try to sync RX
144 * filters and therefore needs to read-lock the filter table against freeing
145 */
efx_mac_reconfigure(struct efx_nic * efx,bool mtu_only)146 void efx_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
147 {
148 if (efx->type->reconfigure_mac) {
149 down_read(&efx->filter_sem);
150 efx->type->reconfigure_mac(efx, mtu_only);
151 up_read(&efx->filter_sem);
152 }
153 }
154
155 /* Asynchronous work item for changing MAC promiscuity and multicast
156 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
157 * MAC directly.
158 */
efx_mac_work(struct work_struct * data)159 static void efx_mac_work(struct work_struct *data)
160 {
161 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
162
163 mutex_lock(&efx->mac_lock);
164 if (efx->port_enabled)
165 efx_mac_reconfigure(efx, false);
166 mutex_unlock(&efx->mac_lock);
167 }
168
efx_set_mac_address(struct net_device * net_dev,void * data)169 int efx_set_mac_address(struct net_device *net_dev, void *data)
170 {
171 struct efx_nic *efx = efx_netdev_priv(net_dev);
172 struct sockaddr *addr = data;
173 u8 *new_addr = addr->sa_data;
174 u8 old_addr[6];
175 int rc;
176
177 if (!is_valid_ether_addr(new_addr)) {
178 netif_err(efx, drv, efx->net_dev,
179 "invalid ethernet MAC address requested: %pM\n",
180 new_addr);
181 return -EADDRNOTAVAIL;
182 }
183
184 /* save old address */
185 ether_addr_copy(old_addr, net_dev->dev_addr);
186 eth_hw_addr_set(net_dev, new_addr);
187 if (efx->type->set_mac_address) {
188 rc = efx->type->set_mac_address(efx);
189 if (rc) {
190 eth_hw_addr_set(net_dev, old_addr);
191 return rc;
192 }
193 }
194
195 /* Reconfigure the MAC */
196 mutex_lock(&efx->mac_lock);
197 efx_mac_reconfigure(efx, false);
198 mutex_unlock(&efx->mac_lock);
199
200 return 0;
201 }
202
203 /* Context: netif_addr_lock held, BHs disabled. */
efx_set_rx_mode(struct net_device * net_dev)204 void efx_set_rx_mode(struct net_device *net_dev)
205 {
206 struct efx_nic *efx = efx_netdev_priv(net_dev);
207
208 if (efx->port_enabled)
209 queue_work(efx->workqueue, &efx->mac_work);
210 /* Otherwise efx_start_port() will do this */
211 }
212
efx_set_features(struct net_device * net_dev,netdev_features_t data)213 int efx_set_features(struct net_device *net_dev, netdev_features_t data)
214 {
215 struct efx_nic *efx = efx_netdev_priv(net_dev);
216 int rc;
217
218 /* If disabling RX n-tuple filtering, clear existing filters */
219 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
220 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
221 if (rc)
222 return rc;
223 }
224
225 /* If Rx VLAN filter is changed, update filters via mac_reconfigure.
226 * If rx-fcs is changed, mac_reconfigure updates that too.
227 */
228 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER |
229 NETIF_F_RXFCS)) {
230 /* efx_set_rx_mode() will schedule MAC work to update filters
231 * when a new features are finally set in net_dev.
232 */
233 efx_set_rx_mode(net_dev);
234 }
235
236 return 0;
237 }
238
239 /* This ensures that the kernel is kept informed (via
240 * netif_carrier_on/off) of the link status, and also maintains the
241 * link status's stop on the port's TX queue.
242 */
efx_link_status_changed(struct efx_nic * efx)243 void efx_link_status_changed(struct efx_nic *efx)
244 {
245 struct efx_link_state *link_state = &efx->link_state;
246
247 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
248 * that no events are triggered between unregister_netdev() and the
249 * driver unloading. A more general condition is that NETDEV_CHANGE
250 * can only be generated between NETDEV_UP and NETDEV_DOWN
251 */
252 if (!netif_running(efx->net_dev))
253 return;
254
255 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
256 efx->n_link_state_changes++;
257
258 if (link_state->up)
259 netif_carrier_on(efx->net_dev);
260 else
261 netif_carrier_off(efx->net_dev);
262 }
263
264 /* Status message for kernel log */
265 if (link_state->up)
266 netif_info(efx, link, efx->net_dev,
267 "link up at %uMbps %s-duplex (MTU %d)\n",
268 link_state->speed, link_state->fd ? "full" : "half",
269 efx->net_dev->mtu);
270 else
271 netif_info(efx, link, efx->net_dev, "link down\n");
272 }
273
efx_xdp_max_mtu(struct efx_nic * efx)274 unsigned int efx_xdp_max_mtu(struct efx_nic *efx)
275 {
276 /* The maximum MTU that we can fit in a single page, allowing for
277 * framing, overhead and XDP headroom + tailroom.
278 */
279 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) +
280 efx->rx_prefix_size + efx->type->rx_buffer_padding +
281 efx->rx_ip_align + EFX_XDP_HEADROOM + EFX_XDP_TAILROOM;
282
283 return PAGE_SIZE - overhead;
284 }
285
286 /* Context: process, rtnl_lock() held. */
efx_change_mtu(struct net_device * net_dev,int new_mtu)287 int efx_change_mtu(struct net_device *net_dev, int new_mtu)
288 {
289 struct efx_nic *efx = efx_netdev_priv(net_dev);
290 int rc;
291
292 rc = efx_check_disabled(efx);
293 if (rc)
294 return rc;
295
296 if (rtnl_dereference(efx->xdp_prog) &&
297 new_mtu > efx_xdp_max_mtu(efx)) {
298 netif_err(efx, drv, efx->net_dev,
299 "Requested MTU of %d too big for XDP (max: %d)\n",
300 new_mtu, efx_xdp_max_mtu(efx));
301 return -EINVAL;
302 }
303
304 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
305
306 efx_device_detach_sync(efx);
307 efx_stop_all(efx);
308
309 mutex_lock(&efx->mac_lock);
310 net_dev->mtu = new_mtu;
311 efx_mac_reconfigure(efx, true);
312 mutex_unlock(&efx->mac_lock);
313
314 efx_start_all(efx);
315 efx_device_attach_if_not_resetting(efx);
316 return 0;
317 }
318
319 /**************************************************************************
320 *
321 * Hardware monitor
322 *
323 **************************************************************************/
324
325 /* Run periodically off the general workqueue */
efx_monitor(struct work_struct * data)326 static void efx_monitor(struct work_struct *data)
327 {
328 struct efx_nic *efx = container_of(data, struct efx_nic,
329 monitor_work.work);
330
331 netif_vdbg(efx, timer, efx->net_dev,
332 "hardware monitor executing on CPU %d\n",
333 raw_smp_processor_id());
334 BUG_ON(efx->type->monitor == NULL);
335
336 /* If the mac_lock is already held then it is likely a port
337 * reconfiguration is already in place, which will likely do
338 * most of the work of monitor() anyway.
339 */
340 if (mutex_trylock(&efx->mac_lock)) {
341 if (efx->port_enabled && efx->type->monitor)
342 efx->type->monitor(efx);
343 mutex_unlock(&efx->mac_lock);
344 }
345
346 efx_start_monitor(efx);
347 }
348
efx_start_monitor(struct efx_nic * efx)349 void efx_start_monitor(struct efx_nic *efx)
350 {
351 if (efx->type->monitor)
352 queue_delayed_work(efx->workqueue, &efx->monitor_work,
353 efx_monitor_interval);
354 }
355
356 /**************************************************************************
357 *
358 * Event queue processing
359 *
360 *************************************************************************/
361
362 /* Channels are shutdown and reinitialised whilst the NIC is running
363 * to propagate configuration changes (mtu, checksum offload), or
364 * to clear hardware error conditions
365 */
efx_start_datapath(struct efx_nic * efx)366 static void efx_start_datapath(struct efx_nic *efx)
367 {
368 netdev_features_t old_features = efx->net_dev->features;
369 bool old_rx_scatter = efx->rx_scatter;
370 size_t rx_buf_len;
371
372 /* Calculate the rx buffer allocation parameters required to
373 * support the current MTU, including padding for header
374 * alignment and overruns.
375 */
376 efx->rx_dma_len = (efx->rx_prefix_size +
377 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
378 efx->type->rx_buffer_padding);
379 rx_buf_len = (sizeof(struct efx_rx_page_state) + EFX_XDP_HEADROOM +
380 efx->rx_ip_align + efx->rx_dma_len + EFX_XDP_TAILROOM);
381
382 if (rx_buf_len <= PAGE_SIZE) {
383 efx->rx_scatter = efx->type->always_rx_scatter;
384 efx->rx_buffer_order = 0;
385 } else if (efx->type->can_rx_scatter) {
386 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
387 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
388 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
389 EFX_RX_BUF_ALIGNMENT) >
390 PAGE_SIZE);
391 efx->rx_scatter = true;
392 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
393 efx->rx_buffer_order = 0;
394 } else {
395 efx->rx_scatter = false;
396 efx->rx_buffer_order = get_order(rx_buf_len);
397 }
398
399 efx_rx_config_page_split(efx);
400 if (efx->rx_buffer_order)
401 netif_dbg(efx, drv, efx->net_dev,
402 "RX buf len=%u; page order=%u batch=%u\n",
403 efx->rx_dma_len, efx->rx_buffer_order,
404 efx->rx_pages_per_batch);
405 else
406 netif_dbg(efx, drv, efx->net_dev,
407 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
408 efx->rx_dma_len, efx->rx_page_buf_step,
409 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
410
411 /* Restore previously fixed features in hw_features and remove
412 * features which are fixed now
413 */
414 efx->net_dev->hw_features |= efx->net_dev->features;
415 efx->net_dev->hw_features &= ~efx->fixed_features;
416 efx->net_dev->features |= efx->fixed_features;
417 if (efx->net_dev->features != old_features)
418 netdev_features_change(efx->net_dev);
419
420 /* RX filters may also have scatter-enabled flags */
421 if ((efx->rx_scatter != old_rx_scatter) &&
422 efx->type->filter_update_rx_scatter)
423 efx->type->filter_update_rx_scatter(efx);
424
425 /* We must keep at least one descriptor in a TX ring empty.
426 * We could avoid this when the queue size does not exactly
427 * match the hardware ring size, but it's not that important.
428 * Therefore we stop the queue when one more skb might fill
429 * the ring completely. We wake it when half way back to
430 * empty.
431 */
432 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
433 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
434
435 /* Initialise the channels */
436 efx_start_channels(efx);
437
438 efx_ptp_start_datapath(efx);
439
440 if (netif_device_present(efx->net_dev))
441 netif_tx_wake_all_queues(efx->net_dev);
442 }
443
efx_stop_datapath(struct efx_nic * efx)444 static void efx_stop_datapath(struct efx_nic *efx)
445 {
446 EFX_ASSERT_RESET_SERIALISED(efx);
447 BUG_ON(efx->port_enabled);
448
449 efx_ptp_stop_datapath(efx);
450
451 efx_stop_channels(efx);
452 }
453
454 /**************************************************************************
455 *
456 * Port handling
457 *
458 **************************************************************************/
459
460 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not
461 * force the Autoneg bit on.
462 */
efx_link_clear_advertising(struct efx_nic * efx)463 void efx_link_clear_advertising(struct efx_nic *efx)
464 {
465 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS);
466 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
467 }
468
efx_link_set_wanted_fc(struct efx_nic * efx,u8 wanted_fc)469 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
470 {
471 efx->wanted_fc = wanted_fc;
472 if (efx->link_advertising[0]) {
473 if (wanted_fc & EFX_FC_RX)
474 efx->link_advertising[0] |= (ADVERTISED_Pause |
475 ADVERTISED_Asym_Pause);
476 else
477 efx->link_advertising[0] &= ~(ADVERTISED_Pause |
478 ADVERTISED_Asym_Pause);
479 if (wanted_fc & EFX_FC_TX)
480 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause;
481 }
482 }
483
efx_start_port(struct efx_nic * efx)484 static void efx_start_port(struct efx_nic *efx)
485 {
486 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
487 BUG_ON(efx->port_enabled);
488
489 mutex_lock(&efx->mac_lock);
490 efx->port_enabled = true;
491
492 /* Ensure MAC ingress/egress is enabled */
493 efx_mac_reconfigure(efx, false);
494
495 mutex_unlock(&efx->mac_lock);
496 }
497
498 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
499 * and the async self-test, wait for them to finish and prevent them
500 * being scheduled again. This doesn't cover online resets, which
501 * should only be cancelled when removing the device.
502 */
efx_stop_port(struct efx_nic * efx)503 static void efx_stop_port(struct efx_nic *efx)
504 {
505 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
506
507 EFX_ASSERT_RESET_SERIALISED(efx);
508
509 mutex_lock(&efx->mac_lock);
510 efx->port_enabled = false;
511 mutex_unlock(&efx->mac_lock);
512
513 /* Serialise against efx_set_multicast_list() */
514 netif_addr_lock_bh(efx->net_dev);
515 netif_addr_unlock_bh(efx->net_dev);
516
517 cancel_delayed_work_sync(&efx->monitor_work);
518 efx_selftest_async_cancel(efx);
519 cancel_work_sync(&efx->mac_work);
520 }
521
522 /* If the interface is supposed to be running but is not, start
523 * the hardware and software data path, regular activity for the port
524 * (MAC statistics, link polling, etc.) and schedule the port to be
525 * reconfigured. Interrupts must already be enabled. This function
526 * is safe to call multiple times, so long as the NIC is not disabled.
527 * Requires the RTNL lock.
528 */
efx_start_all(struct efx_nic * efx)529 void efx_start_all(struct efx_nic *efx)
530 {
531 EFX_ASSERT_RESET_SERIALISED(efx);
532 BUG_ON(efx->state == STATE_DISABLED);
533
534 /* Check that it is appropriate to restart the interface. All
535 * of these flags are safe to read under just the rtnl lock
536 */
537 if (efx->port_enabled || !netif_running(efx->net_dev) ||
538 efx->reset_pending)
539 return;
540
541 efx_start_port(efx);
542 efx_start_datapath(efx);
543
544 /* Start the hardware monitor if there is one */
545 efx_start_monitor(efx);
546
547 efx_selftest_async_start(efx);
548
549 /* Link state detection is normally event-driven; we have
550 * to poll now because we could have missed a change
551 */
552 mutex_lock(&efx->mac_lock);
553 if (efx_mcdi_phy_poll(efx))
554 efx_link_status_changed(efx);
555 mutex_unlock(&efx->mac_lock);
556
557 if (efx->type->start_stats) {
558 efx->type->start_stats(efx);
559 efx->type->pull_stats(efx);
560 spin_lock_bh(&efx->stats_lock);
561 efx->type->update_stats(efx, NULL, NULL);
562 spin_unlock_bh(&efx->stats_lock);
563 }
564 }
565
566 /* Quiesce the hardware and software data path, and regular activity
567 * for the port without bringing the link down. Safe to call multiple
568 * times with the NIC in almost any state, but interrupts should be
569 * enabled. Requires the RTNL lock.
570 */
efx_stop_all(struct efx_nic * efx)571 void efx_stop_all(struct efx_nic *efx)
572 {
573 EFX_ASSERT_RESET_SERIALISED(efx);
574
575 /* port_enabled can be read safely under the rtnl lock */
576 if (!efx->port_enabled)
577 return;
578
579 if (efx->type->update_stats) {
580 /* update stats before we go down so we can accurately count
581 * rx_nodesc_drops
582 */
583 efx->type->pull_stats(efx);
584 spin_lock_bh(&efx->stats_lock);
585 efx->type->update_stats(efx, NULL, NULL);
586 spin_unlock_bh(&efx->stats_lock);
587 efx->type->stop_stats(efx);
588 }
589
590 efx_stop_port(efx);
591
592 /* Stop the kernel transmit interface. This is only valid if
593 * the device is stopped or detached; otherwise the watchdog
594 * may fire immediately.
595 */
596 WARN_ON(netif_running(efx->net_dev) &&
597 netif_device_present(efx->net_dev));
598 netif_tx_disable(efx->net_dev);
599
600 efx_stop_datapath(efx);
601 }
602
603 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
efx_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)604 void efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
605 {
606 struct efx_nic *efx = efx_netdev_priv(net_dev);
607
608 spin_lock_bh(&efx->stats_lock);
609 efx_nic_update_stats_atomic(efx, NULL, stats);
610 spin_unlock_bh(&efx->stats_lock);
611 }
612
613 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
614 * the MAC appropriately. All other PHY configuration changes are pushed
615 * through phy_op->set_settings(), and pushed asynchronously to the MAC
616 * through efx_monitor().
617 *
618 * Callers must hold the mac_lock
619 */
__efx_reconfigure_port(struct efx_nic * efx)620 int __efx_reconfigure_port(struct efx_nic *efx)
621 {
622 enum efx_phy_mode phy_mode;
623 int rc = 0;
624
625 WARN_ON(!mutex_is_locked(&efx->mac_lock));
626
627 /* Disable PHY transmit in mac level loopbacks */
628 phy_mode = efx->phy_mode;
629 if (LOOPBACK_INTERNAL(efx))
630 efx->phy_mode |= PHY_MODE_TX_DISABLED;
631 else
632 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
633
634 if (efx->type->reconfigure_port)
635 rc = efx->type->reconfigure_port(efx);
636
637 if (rc)
638 efx->phy_mode = phy_mode;
639
640 return rc;
641 }
642
643 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
644 * disabled.
645 */
efx_reconfigure_port(struct efx_nic * efx)646 int efx_reconfigure_port(struct efx_nic *efx)
647 {
648 int rc;
649
650 EFX_ASSERT_RESET_SERIALISED(efx);
651
652 mutex_lock(&efx->mac_lock);
653 rc = __efx_reconfigure_port(efx);
654 mutex_unlock(&efx->mac_lock);
655
656 return rc;
657 }
658
659 /**************************************************************************
660 *
661 * Device reset and suspend
662 *
663 **************************************************************************/
664
efx_wait_for_bist_end(struct efx_nic * efx)665 static void efx_wait_for_bist_end(struct efx_nic *efx)
666 {
667 int i;
668
669 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) {
670 if (efx_mcdi_poll_reboot(efx))
671 goto out;
672 msleep(BIST_WAIT_DELAY_MS);
673 }
674
675 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n");
676 out:
677 /* Either way unset the BIST flag. If we found no reboot we probably
678 * won't recover, but we should try.
679 */
680 efx->mc_bist_for_other_fn = false;
681 }
682
683 /* Try recovery mechanisms.
684 * For now only EEH is supported.
685 * Returns 0 if the recovery mechanisms are unsuccessful.
686 * Returns a non-zero value otherwise.
687 */
efx_try_recovery(struct efx_nic * efx)688 int efx_try_recovery(struct efx_nic *efx)
689 {
690 #ifdef CONFIG_EEH
691 /* A PCI error can occur and not be seen by EEH because nothing
692 * happens on the PCI bus. In this case the driver may fail and
693 * schedule a 'recover or reset', leading to this recovery handler.
694 * Manually call the eeh failure check function.
695 */
696 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
697 if (eeh_dev_check_failure(eehdev)) {
698 /* The EEH mechanisms will handle the error and reset the
699 * device if necessary.
700 */
701 return 1;
702 }
703 #endif
704 return 0;
705 }
706
707 /* Tears down the entire software state and most of the hardware state
708 * before reset.
709 */
efx_reset_down(struct efx_nic * efx,enum reset_type method)710 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
711 {
712 EFX_ASSERT_RESET_SERIALISED(efx);
713
714 if (method == RESET_TYPE_MCDI_TIMEOUT)
715 efx->type->prepare_flr(efx);
716
717 efx_stop_all(efx);
718 efx_disable_interrupts(efx);
719
720 mutex_lock(&efx->mac_lock);
721 down_write(&efx->filter_sem);
722 mutex_lock(&efx->rss_lock);
723 efx->type->fini(efx);
724 }
725
726 /* Context: netif_tx_lock held, BHs disabled. */
efx_watchdog(struct net_device * net_dev,unsigned int txqueue)727 void efx_watchdog(struct net_device *net_dev, unsigned int txqueue)
728 {
729 struct efx_nic *efx = efx_netdev_priv(net_dev);
730
731 netif_err(efx, tx_err, efx->net_dev,
732 "TX stuck with port_enabled=%d: resetting channels\n",
733 efx->port_enabled);
734
735 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
736 }
737
738 /* This function will always ensure that the locks acquired in
739 * efx_reset_down() are released. A failure return code indicates
740 * that we were unable to reinitialise the hardware, and the
741 * driver should be disabled. If ok is false, then the rx and tx
742 * engines are not restarted, pending a RESET_DISABLE.
743 */
efx_reset_up(struct efx_nic * efx,enum reset_type method,bool ok)744 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
745 {
746 int rc;
747
748 EFX_ASSERT_RESET_SERIALISED(efx);
749
750 if (method == RESET_TYPE_MCDI_TIMEOUT)
751 efx->type->finish_flr(efx);
752
753 /* Ensure that SRAM is initialised even if we're disabling the device */
754 rc = efx->type->init(efx);
755 if (rc) {
756 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
757 goto fail;
758 }
759
760 if (!ok)
761 goto fail;
762
763 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
764 method != RESET_TYPE_DATAPATH) {
765 rc = efx_mcdi_port_reconfigure(efx);
766 if (rc && rc != -EPERM)
767 netif_err(efx, drv, efx->net_dev,
768 "could not restore PHY settings\n");
769 }
770
771 rc = efx_enable_interrupts(efx);
772 if (rc)
773 goto fail;
774
775 #ifdef CONFIG_SFC_SRIOV
776 rc = efx->type->vswitching_restore(efx);
777 if (rc) /* not fatal; the PF will still work fine */
778 netif_warn(efx, probe, efx->net_dev,
779 "failed to restore vswitching rc=%d;"
780 " VFs may not function\n", rc);
781 #endif
782
783 if (efx->type->rx_restore_rss_contexts)
784 efx->type->rx_restore_rss_contexts(efx);
785 mutex_unlock(&efx->rss_lock);
786 efx->type->filter_table_restore(efx);
787 up_write(&efx->filter_sem);
788 if (efx->type->sriov_reset)
789 efx->type->sriov_reset(efx);
790
791 mutex_unlock(&efx->mac_lock);
792
793 efx_start_all(efx);
794
795 if (efx->type->udp_tnl_push_ports)
796 efx->type->udp_tnl_push_ports(efx);
797
798 return 0;
799
800 fail:
801 efx->port_initialized = false;
802
803 mutex_unlock(&efx->rss_lock);
804 up_write(&efx->filter_sem);
805 mutex_unlock(&efx->mac_lock);
806
807 return rc;
808 }
809
810 /* Reset the NIC using the specified method. Note that the reset may
811 * fail, in which case the card will be left in an unusable state.
812 *
813 * Caller must hold the rtnl_lock.
814 */
efx_reset(struct efx_nic * efx,enum reset_type method)815 int efx_reset(struct efx_nic *efx, enum reset_type method)
816 {
817 int rc, rc2 = 0;
818 bool disabled;
819
820 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
821 RESET_TYPE(method));
822
823 efx_device_detach_sync(efx);
824 /* efx_reset_down() grabs locks that prevent recovery on EF100.
825 * EF100 reset is handled in the efx_nic_type callback below.
826 */
827 if (efx_nic_rev(efx) != EFX_REV_EF100)
828 efx_reset_down(efx, method);
829
830 rc = efx->type->reset(efx, method);
831 if (rc) {
832 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
833 goto out;
834 }
835
836 /* Clear flags for the scopes we covered. We assume the NIC and
837 * driver are now quiescent so that there is no race here.
838 */
839 if (method < RESET_TYPE_MAX_METHOD)
840 efx->reset_pending &= -(1 << (method + 1));
841 else /* it doesn't fit into the well-ordered scope hierarchy */
842 __clear_bit(method, &efx->reset_pending);
843
844 /* Reinitialise bus-mastering, which may have been turned off before
845 * the reset was scheduled. This is still appropriate, even in the
846 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
847 * can respond to requests.
848 */
849 pci_set_master(efx->pci_dev);
850
851 out:
852 /* Leave device stopped if necessary */
853 disabled = rc ||
854 method == RESET_TYPE_DISABLE ||
855 method == RESET_TYPE_RECOVER_OR_DISABLE;
856 if (efx_nic_rev(efx) != EFX_REV_EF100)
857 rc2 = efx_reset_up(efx, method, !disabled);
858 if (rc2) {
859 disabled = true;
860 if (!rc)
861 rc = rc2;
862 }
863
864 if (disabled) {
865 dev_close(efx->net_dev);
866 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
867 efx->state = STATE_DISABLED;
868 } else {
869 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
870 efx_device_attach_if_not_resetting(efx);
871 }
872 return rc;
873 }
874
875 /* The worker thread exists so that code that cannot sleep can
876 * schedule a reset for later.
877 */
efx_reset_work(struct work_struct * data)878 static void efx_reset_work(struct work_struct *data)
879 {
880 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
881 unsigned long pending;
882 enum reset_type method;
883
884 pending = READ_ONCE(efx->reset_pending);
885 method = fls(pending) - 1;
886
887 if (method == RESET_TYPE_MC_BIST)
888 efx_wait_for_bist_end(efx);
889
890 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
891 method == RESET_TYPE_RECOVER_OR_ALL) &&
892 efx_try_recovery(efx))
893 return;
894
895 if (!pending)
896 return;
897
898 rtnl_lock();
899
900 /* We checked the state in efx_schedule_reset() but it may
901 * have changed by now. Now that we have the RTNL lock,
902 * it cannot change again.
903 */
904 if (efx_net_active(efx->state))
905 (void)efx_reset(efx, method);
906
907 rtnl_unlock();
908 }
909
efx_schedule_reset(struct efx_nic * efx,enum reset_type type)910 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
911 {
912 enum reset_type method;
913
914 if (efx_recovering(efx->state)) {
915 netif_dbg(efx, drv, efx->net_dev,
916 "recovering: skip scheduling %s reset\n",
917 RESET_TYPE(type));
918 return;
919 }
920
921 switch (type) {
922 case RESET_TYPE_INVISIBLE:
923 case RESET_TYPE_ALL:
924 case RESET_TYPE_RECOVER_OR_ALL:
925 case RESET_TYPE_WORLD:
926 case RESET_TYPE_DISABLE:
927 case RESET_TYPE_RECOVER_OR_DISABLE:
928 case RESET_TYPE_DATAPATH:
929 case RESET_TYPE_MC_BIST:
930 case RESET_TYPE_MCDI_TIMEOUT:
931 method = type;
932 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
933 RESET_TYPE(method));
934 break;
935 default:
936 method = efx->type->map_reset_reason(type);
937 netif_dbg(efx, drv, efx->net_dev,
938 "scheduling %s reset for %s\n",
939 RESET_TYPE(method), RESET_TYPE(type));
940 break;
941 }
942
943 set_bit(method, &efx->reset_pending);
944 smp_mb(); /* ensure we change reset_pending before checking state */
945
946 /* If we're not READY then just leave the flags set as the cue
947 * to abort probing or reschedule the reset later.
948 */
949 if (!efx_net_active(READ_ONCE(efx->state)))
950 return;
951
952 /* efx_process_channel() will no longer read events once a
953 * reset is scheduled. So switch back to poll'd MCDI completions.
954 */
955 efx_mcdi_mode_poll(efx);
956
957 efx_queue_reset_work(efx);
958 }
959
960 /**************************************************************************
961 *
962 * Dummy NIC operations
963 *
964 * Can be used for some unimplemented operations
965 * Needed so all function pointers are valid and do not have to be tested
966 * before use
967 *
968 **************************************************************************/
efx_port_dummy_op_int(struct efx_nic * efx)969 int efx_port_dummy_op_int(struct efx_nic *efx)
970 {
971 return 0;
972 }
efx_port_dummy_op_void(struct efx_nic * efx)973 void efx_port_dummy_op_void(struct efx_nic *efx) {}
974
975 /**************************************************************************
976 *
977 * Data housekeeping
978 *
979 **************************************************************************/
980
981 /* This zeroes out and then fills in the invariants in a struct
982 * efx_nic (including all sub-structures).
983 */
efx_init_struct(struct efx_nic * efx,struct pci_dev * pci_dev)984 int efx_init_struct(struct efx_nic *efx, struct pci_dev *pci_dev)
985 {
986 int rc = -ENOMEM;
987
988 /* Initialise common structures */
989 INIT_LIST_HEAD(&efx->node);
990 INIT_LIST_HEAD(&efx->secondary_list);
991 spin_lock_init(&efx->biu_lock);
992 #ifdef CONFIG_SFC_MTD
993 INIT_LIST_HEAD(&efx->mtd_list);
994 #endif
995 INIT_WORK(&efx->reset_work, efx_reset_work);
996 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
997 efx_selftest_async_init(efx);
998 efx->pci_dev = pci_dev;
999 efx->msg_enable = debug;
1000 efx->state = STATE_UNINIT;
1001 strscpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1002
1003 efx->rx_prefix_size = efx->type->rx_prefix_size;
1004 efx->rx_ip_align =
1005 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
1006 efx->rx_packet_hash_offset =
1007 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
1008 efx->rx_packet_ts_offset =
1009 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
1010 INIT_LIST_HEAD(&efx->rss_context.list);
1011 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1012 mutex_init(&efx->rss_lock);
1013 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1014 spin_lock_init(&efx->stats_lock);
1015 efx->vi_stride = EFX_DEFAULT_VI_STRIDE;
1016 efx->num_mac_stats = MC_CMD_MAC_NSTATS;
1017 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END);
1018 mutex_init(&efx->mac_lock);
1019 init_rwsem(&efx->filter_sem);
1020 #ifdef CONFIG_RFS_ACCEL
1021 mutex_init(&efx->rps_mutex);
1022 spin_lock_init(&efx->rps_hash_lock);
1023 /* Failure to allocate is not fatal, but may degrade ARFS performance */
1024 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE,
1025 sizeof(*efx->rps_hash_table), GFP_KERNEL);
1026 #endif
1027 spin_lock_init(&efx->vf_reps_lock);
1028 INIT_LIST_HEAD(&efx->vf_reps);
1029 INIT_WORK(&efx->mac_work, efx_mac_work);
1030 init_waitqueue_head(&efx->flush_wq);
1031
1032 efx->tx_queues_per_channel = 1;
1033 efx->rxq_entries = EFX_DEFAULT_DMAQ_SIZE;
1034 efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
1035
1036 efx->mem_bar = UINT_MAX;
1037
1038 rc = efx_init_channels(efx);
1039 if (rc)
1040 goto fail;
1041
1042 /* Would be good to use the net_dev name, but we're too early */
1043 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1044 pci_name(pci_dev));
1045 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1046 if (!efx->workqueue) {
1047 rc = -ENOMEM;
1048 goto fail;
1049 }
1050
1051 return 0;
1052
1053 fail:
1054 efx_fini_struct(efx);
1055 return rc;
1056 }
1057
efx_fini_struct(struct efx_nic * efx)1058 void efx_fini_struct(struct efx_nic *efx)
1059 {
1060 #ifdef CONFIG_RFS_ACCEL
1061 kfree(efx->rps_hash_table);
1062 #endif
1063
1064 efx_fini_channels(efx);
1065
1066 kfree(efx->vpd_sn);
1067
1068 if (efx->workqueue) {
1069 destroy_workqueue(efx->workqueue);
1070 efx->workqueue = NULL;
1071 }
1072 }
1073
1074 /* This configures the PCI device to enable I/O and DMA. */
efx_init_io(struct efx_nic * efx,int bar,dma_addr_t dma_mask,unsigned int mem_map_size)1075 int efx_init_io(struct efx_nic *efx, int bar, dma_addr_t dma_mask,
1076 unsigned int mem_map_size)
1077 {
1078 struct pci_dev *pci_dev = efx->pci_dev;
1079 int rc;
1080
1081 efx->mem_bar = UINT_MAX;
1082 pci_dbg(pci_dev, "initialising I/O bar=%d\n", bar);
1083
1084 rc = pci_enable_device(pci_dev);
1085 if (rc) {
1086 pci_err(pci_dev, "failed to enable PCI device\n");
1087 goto fail1;
1088 }
1089
1090 pci_set_master(pci_dev);
1091
1092 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1093 if (rc) {
1094 pci_err(efx->pci_dev, "could not find a suitable DMA mask\n");
1095 goto fail2;
1096 }
1097 pci_dbg(efx->pci_dev, "using DMA mask %llx\n", (unsigned long long)dma_mask);
1098
1099 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1100 if (!efx->membase_phys) {
1101 pci_err(efx->pci_dev,
1102 "ERROR: No BAR%d mapping from the BIOS. Try pci=realloc on the kernel command line\n",
1103 bar);
1104 rc = -ENODEV;
1105 goto fail3;
1106 }
1107
1108 rc = pci_request_region(pci_dev, bar, "sfc");
1109 if (rc) {
1110 pci_err(efx->pci_dev,
1111 "request for memory BAR[%d] failed\n", bar);
1112 rc = -EIO;
1113 goto fail3;
1114 }
1115 efx->mem_bar = bar;
1116 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1117 if (!efx->membase) {
1118 pci_err(efx->pci_dev,
1119 "could not map memory BAR[%d] at %llx+%x\n", bar,
1120 (unsigned long long)efx->membase_phys, mem_map_size);
1121 rc = -ENOMEM;
1122 goto fail4;
1123 }
1124 pci_dbg(efx->pci_dev,
1125 "memory BAR[%d] at %llx+%x (virtual %p)\n", bar,
1126 (unsigned long long)efx->membase_phys, mem_map_size,
1127 efx->membase);
1128
1129 return 0;
1130
1131 fail4:
1132 pci_release_region(efx->pci_dev, bar);
1133 fail3:
1134 efx->membase_phys = 0;
1135 fail2:
1136 pci_disable_device(efx->pci_dev);
1137 fail1:
1138 return rc;
1139 }
1140
efx_fini_io(struct efx_nic * efx)1141 void efx_fini_io(struct efx_nic *efx)
1142 {
1143 pci_dbg(efx->pci_dev, "shutting down I/O\n");
1144
1145 if (efx->membase) {
1146 iounmap(efx->membase);
1147 efx->membase = NULL;
1148 }
1149
1150 if (efx->membase_phys) {
1151 pci_release_region(efx->pci_dev, efx->mem_bar);
1152 efx->membase_phys = 0;
1153 efx->mem_bar = UINT_MAX;
1154 }
1155
1156 /* Don't disable bus-mastering if VFs are assigned */
1157 if (!pci_vfs_assigned(efx->pci_dev))
1158 pci_disable_device(efx->pci_dev);
1159 }
1160
1161 #ifdef CONFIG_SFC_MCDI_LOGGING
mcdi_logging_show(struct device * dev,struct device_attribute * attr,char * buf)1162 static ssize_t mcdi_logging_show(struct device *dev,
1163 struct device_attribute *attr,
1164 char *buf)
1165 {
1166 struct efx_nic *efx = dev_get_drvdata(dev);
1167 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1168
1169 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled);
1170 }
1171
mcdi_logging_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1172 static ssize_t mcdi_logging_store(struct device *dev,
1173 struct device_attribute *attr,
1174 const char *buf, size_t count)
1175 {
1176 struct efx_nic *efx = dev_get_drvdata(dev);
1177 struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1178 bool enable = count > 0 && *buf != '0';
1179
1180 mcdi->logging_enabled = enable;
1181 return count;
1182 }
1183
1184 static DEVICE_ATTR_RW(mcdi_logging);
1185
efx_init_mcdi_logging(struct efx_nic * efx)1186 void efx_init_mcdi_logging(struct efx_nic *efx)
1187 {
1188 int rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1189
1190 if (rc) {
1191 netif_warn(efx, drv, efx->net_dev,
1192 "failed to init net dev attributes\n");
1193 }
1194 }
1195
efx_fini_mcdi_logging(struct efx_nic * efx)1196 void efx_fini_mcdi_logging(struct efx_nic *efx)
1197 {
1198 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging);
1199 }
1200 #endif
1201
1202 /* A PCI error affecting this device was detected.
1203 * At this point MMIO and DMA may be disabled.
1204 * Stop the software path and request a slot reset.
1205 */
efx_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)1206 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
1207 pci_channel_state_t state)
1208 {
1209 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1210 struct efx_nic *efx = pci_get_drvdata(pdev);
1211
1212 if (state == pci_channel_io_perm_failure)
1213 return PCI_ERS_RESULT_DISCONNECT;
1214
1215 rtnl_lock();
1216
1217 if (efx->state != STATE_DISABLED) {
1218 efx->state = efx_recover(efx->state);
1219 efx->reset_pending = 0;
1220
1221 efx_device_detach_sync(efx);
1222
1223 if (efx_net_active(efx->state)) {
1224 efx_stop_all(efx);
1225 efx_disable_interrupts(efx);
1226 }
1227
1228 status = PCI_ERS_RESULT_NEED_RESET;
1229 } else {
1230 /* If the interface is disabled we don't want to do anything
1231 * with it.
1232 */
1233 status = PCI_ERS_RESULT_RECOVERED;
1234 }
1235
1236 rtnl_unlock();
1237
1238 pci_disable_device(pdev);
1239
1240 return status;
1241 }
1242
1243 /* Fake a successful reset, which will be performed later in efx_io_resume. */
efx_io_slot_reset(struct pci_dev * pdev)1244 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
1245 {
1246 struct efx_nic *efx = pci_get_drvdata(pdev);
1247 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
1248
1249 if (pci_enable_device(pdev)) {
1250 netif_err(efx, hw, efx->net_dev,
1251 "Cannot re-enable PCI device after reset.\n");
1252 status = PCI_ERS_RESULT_DISCONNECT;
1253 }
1254
1255 return status;
1256 }
1257
1258 /* Perform the actual reset and resume I/O operations. */
efx_io_resume(struct pci_dev * pdev)1259 static void efx_io_resume(struct pci_dev *pdev)
1260 {
1261 struct efx_nic *efx = pci_get_drvdata(pdev);
1262 int rc;
1263
1264 rtnl_lock();
1265
1266 if (efx->state == STATE_DISABLED)
1267 goto out;
1268
1269 rc = efx_reset(efx, RESET_TYPE_ALL);
1270 if (rc) {
1271 netif_err(efx, hw, efx->net_dev,
1272 "efx_reset failed after PCI error (%d)\n", rc);
1273 } else {
1274 efx->state = efx_recovered(efx->state);
1275 netif_dbg(efx, hw, efx->net_dev,
1276 "Done resetting and resuming IO after PCI error.\n");
1277 }
1278
1279 out:
1280 rtnl_unlock();
1281 }
1282
1283 /* For simplicity and reliability, we always require a slot reset and try to
1284 * reset the hardware when a pci error affecting the device is detected.
1285 * We leave both the link_reset and mmio_enabled callback unimplemented:
1286 * with our request for slot reset the mmio_enabled callback will never be
1287 * called, and the link_reset callback is not used by AER or EEH mechanisms.
1288 */
1289 const struct pci_error_handlers efx_err_handlers = {
1290 .error_detected = efx_io_error_detected,
1291 .slot_reset = efx_io_slot_reset,
1292 .resume = efx_io_resume,
1293 };
1294
1295 /* Determine whether the NIC will be able to handle TX offloads for a given
1296 * encapsulated packet.
1297 */
efx_can_encap_offloads(struct efx_nic * efx,struct sk_buff * skb)1298 static bool efx_can_encap_offloads(struct efx_nic *efx, struct sk_buff *skb)
1299 {
1300 struct gre_base_hdr *greh;
1301 __be16 dst_port;
1302 u8 ipproto;
1303
1304 /* Does the NIC support encap offloads?
1305 * If not, we should never get here, because we shouldn't have
1306 * advertised encap offload feature flags in the first place.
1307 */
1308 if (WARN_ON_ONCE(!efx->type->udp_tnl_has_port))
1309 return false;
1310
1311 /* Determine encapsulation protocol in use */
1312 switch (skb->protocol) {
1313 case htons(ETH_P_IP):
1314 ipproto = ip_hdr(skb)->protocol;
1315 break;
1316 case htons(ETH_P_IPV6):
1317 /* If there are extension headers, this will cause us to
1318 * think we can't offload something that we maybe could have.
1319 */
1320 ipproto = ipv6_hdr(skb)->nexthdr;
1321 break;
1322 default:
1323 /* Not IP, so can't offload it */
1324 return false;
1325 }
1326 switch (ipproto) {
1327 case IPPROTO_GRE:
1328 /* We support NVGRE but not IP over GRE or random gretaps.
1329 * Specifically, the NIC will accept GRE as encapsulated if
1330 * the inner protocol is Ethernet, but only handle it
1331 * correctly if the GRE header is 8 bytes long. Moreover,
1332 * it will not update the Checksum or Sequence Number fields
1333 * if they are present. (The Routing Present flag,
1334 * GRE_ROUTING, cannot be set else the header would be more
1335 * than 8 bytes long; so we don't have to worry about it.)
1336 */
1337 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER)
1338 return false;
1339 if (ntohs(skb->inner_protocol) != ETH_P_TEB)
1340 return false;
1341 if (skb_inner_mac_header(skb) - skb_transport_header(skb) != 8)
1342 return false;
1343 greh = (struct gre_base_hdr *)skb_transport_header(skb);
1344 return !(greh->flags & (GRE_CSUM | GRE_SEQ));
1345 case IPPROTO_UDP:
1346 /* If the port is registered for a UDP tunnel, we assume the
1347 * packet is for that tunnel, and the NIC will handle it as
1348 * such. If not, the NIC won't know what to do with it.
1349 */
1350 dst_port = udp_hdr(skb)->dest;
1351 return efx->type->udp_tnl_has_port(efx, dst_port);
1352 default:
1353 return false;
1354 }
1355 }
1356
efx_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)1357 netdev_features_t efx_features_check(struct sk_buff *skb, struct net_device *dev,
1358 netdev_features_t features)
1359 {
1360 struct efx_nic *efx = efx_netdev_priv(dev);
1361
1362 if (skb->encapsulation) {
1363 if (features & NETIF_F_GSO_MASK)
1364 /* Hardware can only do TSO with at most 208 bytes
1365 * of headers.
1366 */
1367 if (skb_inner_transport_offset(skb) >
1368 EFX_TSO2_MAX_HDRLEN)
1369 features &= ~(NETIF_F_GSO_MASK);
1370 if (features & (NETIF_F_GSO_MASK | NETIF_F_CSUM_MASK))
1371 if (!efx_can_encap_offloads(efx, skb))
1372 features &= ~(NETIF_F_GSO_MASK |
1373 NETIF_F_CSUM_MASK);
1374 }
1375 return features;
1376 }
1377
efx_get_phys_port_id(struct net_device * net_dev,struct netdev_phys_item_id * ppid)1378 int efx_get_phys_port_id(struct net_device *net_dev,
1379 struct netdev_phys_item_id *ppid)
1380 {
1381 struct efx_nic *efx = efx_netdev_priv(net_dev);
1382
1383 if (efx->type->get_phys_port_id)
1384 return efx->type->get_phys_port_id(efx, ppid);
1385 else
1386 return -EOPNOTSUPP;
1387 }
1388
efx_get_phys_port_name(struct net_device * net_dev,char * name,size_t len)1389 int efx_get_phys_port_name(struct net_device *net_dev, char *name, size_t len)
1390 {
1391 struct efx_nic *efx = efx_netdev_priv(net_dev);
1392
1393 if (snprintf(name, len, "p%u", efx->port_num) >= len)
1394 return -EINVAL;
1395 return 0;
1396 }
1397
efx_detach_reps(struct efx_nic * efx)1398 void efx_detach_reps(struct efx_nic *efx)
1399 {
1400 struct net_device *rep_dev;
1401 struct efx_rep *efv;
1402
1403 ASSERT_RTNL();
1404 netif_dbg(efx, drv, efx->net_dev, "Detaching VF representors\n");
1405 list_for_each_entry(efv, &efx->vf_reps, list) {
1406 rep_dev = efv->net_dev;
1407 if (!rep_dev)
1408 continue;
1409 netif_carrier_off(rep_dev);
1410 /* See efx_device_detach_sync() */
1411 netif_tx_lock_bh(rep_dev);
1412 netif_tx_stop_all_queues(rep_dev);
1413 netif_tx_unlock_bh(rep_dev);
1414 }
1415 }
1416
efx_attach_reps(struct efx_nic * efx)1417 void efx_attach_reps(struct efx_nic *efx)
1418 {
1419 struct net_device *rep_dev;
1420 struct efx_rep *efv;
1421
1422 ASSERT_RTNL();
1423 netif_dbg(efx, drv, efx->net_dev, "Attaching VF representors\n");
1424 list_for_each_entry(efv, &efx->vf_reps, list) {
1425 rep_dev = efv->net_dev;
1426 if (!rep_dev)
1427 continue;
1428 netif_tx_wake_all_queues(rep_dev);
1429 netif_carrier_on(rep_dev);
1430 }
1431 }
1432