1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/sched/mm.h>
10 #include <linux/spinlock.h>
11 #include <linux/blkdev.h>
12 #include <linux/swap.h>
13 #include <linux/writeback.h>
14 #include <linux/pagevec.h>
15 #include <linux/prefetch.h>
16 #include <linux/cleancache.h>
17 #include <linux/fsverity.h>
18 #include "misc.h"
19 #include "extent_io.h"
20 #include "extent-io-tree.h"
21 #include "extent_map.h"
22 #include "ctree.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "check-integrity.h"
26 #include "locking.h"
27 #include "rcu-string.h"
28 #include "backref.h"
29 #include "disk-io.h"
30 #include "subpage.h"
31 #include "zoned.h"
32 #include "block-group.h"
33 #include "compression.h"
34
35 static struct kmem_cache *extent_buffer_cache;
36
37 #ifdef CONFIG_BTRFS_DEBUG
btrfs_leak_debug_add_eb(struct extent_buffer * eb)38 static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
39 {
40 struct btrfs_fs_info *fs_info = eb->fs_info;
41 unsigned long flags;
42
43 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
44 list_add(&eb->leak_list, &fs_info->allocated_ebs);
45 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
46 }
47
btrfs_leak_debug_del_eb(struct extent_buffer * eb)48 static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
49 {
50 struct btrfs_fs_info *fs_info = eb->fs_info;
51 unsigned long flags;
52
53 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
54 list_del(&eb->leak_list);
55 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
56 }
57
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)58 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
59 {
60 struct extent_buffer *eb;
61 unsigned long flags;
62
63 /*
64 * If we didn't get into open_ctree our allocated_ebs will not be
65 * initialized, so just skip this.
66 */
67 if (!fs_info->allocated_ebs.next)
68 return;
69
70 WARN_ON(!list_empty(&fs_info->allocated_ebs));
71 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
72 while (!list_empty(&fs_info->allocated_ebs)) {
73 eb = list_first_entry(&fs_info->allocated_ebs,
74 struct extent_buffer, leak_list);
75 pr_err(
76 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
77 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
78 btrfs_header_owner(eb));
79 list_del(&eb->leak_list);
80 kmem_cache_free(extent_buffer_cache, eb);
81 }
82 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
83 }
84 #else
85 #define btrfs_leak_debug_add_eb(eb) do {} while (0)
86 #define btrfs_leak_debug_del_eb(eb) do {} while (0)
87 #endif
88
89 /*
90 * Structure to record info about the bio being assembled, and other info like
91 * how many bytes are there before stripe/ordered extent boundary.
92 */
93 struct btrfs_bio_ctrl {
94 struct bio *bio;
95 int mirror_num;
96 enum btrfs_compression_type compress_type;
97 u32 len_to_stripe_boundary;
98 u32 len_to_oe_boundary;
99 btrfs_bio_end_io_t end_io_func;
100 };
101
102 struct extent_page_data {
103 struct btrfs_bio_ctrl bio_ctrl;
104 /* tells writepage not to lock the state bits for this range
105 * it still does the unlocking
106 */
107 unsigned int extent_locked:1;
108
109 /* tells the submit_bio code to use REQ_SYNC */
110 unsigned int sync_io:1;
111 };
112
submit_one_bio(struct btrfs_bio_ctrl * bio_ctrl)113 static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114 {
115 struct bio *bio;
116 struct bio_vec *bv;
117 struct inode *inode;
118 int mirror_num;
119
120 if (!bio_ctrl->bio)
121 return;
122
123 bio = bio_ctrl->bio;
124 bv = bio_first_bvec_all(bio);
125 inode = bv->bv_page->mapping->host;
126 mirror_num = bio_ctrl->mirror_num;
127
128 /* Caller should ensure the bio has at least some range added */
129 ASSERT(bio->bi_iter.bi_size);
130
131 btrfs_bio(bio)->file_offset = page_offset(bv->bv_page) + bv->bv_offset;
132
133 if (!is_data_inode(inode))
134 btrfs_submit_metadata_bio(inode, bio, mirror_num);
135 else if (btrfs_op(bio) == BTRFS_MAP_WRITE)
136 btrfs_submit_data_write_bio(inode, bio, mirror_num);
137 else
138 btrfs_submit_data_read_bio(inode, bio, mirror_num,
139 bio_ctrl->compress_type);
140
141 /* The bio is owned by the end_io handler now */
142 bio_ctrl->bio = NULL;
143 }
144
145 /*
146 * Submit or fail the current bio in an extent_page_data structure.
147 */
submit_write_bio(struct extent_page_data * epd,int ret)148 static void submit_write_bio(struct extent_page_data *epd, int ret)
149 {
150 struct bio *bio = epd->bio_ctrl.bio;
151
152 if (!bio)
153 return;
154
155 if (ret) {
156 ASSERT(ret < 0);
157 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
158 /* The bio is owned by the end_io handler now */
159 epd->bio_ctrl.bio = NULL;
160 } else {
161 submit_one_bio(&epd->bio_ctrl);
162 }
163 }
164
extent_buffer_init_cachep(void)165 int __init extent_buffer_init_cachep(void)
166 {
167 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
168 sizeof(struct extent_buffer), 0,
169 SLAB_MEM_SPREAD, NULL);
170 if (!extent_buffer_cache)
171 return -ENOMEM;
172
173 return 0;
174 }
175
extent_buffer_free_cachep(void)176 void __cold extent_buffer_free_cachep(void)
177 {
178 /*
179 * Make sure all delayed rcu free are flushed before we
180 * destroy caches.
181 */
182 rcu_barrier();
183 kmem_cache_destroy(extent_buffer_cache);
184 }
185
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)186 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
187 {
188 unsigned long index = start >> PAGE_SHIFT;
189 unsigned long end_index = end >> PAGE_SHIFT;
190 struct page *page;
191
192 while (index <= end_index) {
193 page = find_get_page(inode->i_mapping, index);
194 BUG_ON(!page); /* Pages should be in the extent_io_tree */
195 clear_page_dirty_for_io(page);
196 put_page(page);
197 index++;
198 }
199 }
200
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)201 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
202 {
203 struct address_space *mapping = inode->i_mapping;
204 unsigned long index = start >> PAGE_SHIFT;
205 unsigned long end_index = end >> PAGE_SHIFT;
206 struct folio *folio;
207
208 while (index <= end_index) {
209 folio = filemap_get_folio(mapping, index);
210 filemap_dirty_folio(mapping, folio);
211 folio_account_redirty(folio);
212 index += folio_nr_pages(folio);
213 folio_put(folio);
214 }
215 }
216
217 /*
218 * Process one page for __process_pages_contig().
219 *
220 * Return >0 if we hit @page == @locked_page.
221 * Return 0 if we updated the page status.
222 * Return -EGAIN if the we need to try again.
223 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
224 */
process_one_page(struct btrfs_fs_info * fs_info,struct address_space * mapping,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)225 static int process_one_page(struct btrfs_fs_info *fs_info,
226 struct address_space *mapping,
227 struct page *page, struct page *locked_page,
228 unsigned long page_ops, u64 start, u64 end)
229 {
230 u32 len;
231
232 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
233 len = end + 1 - start;
234
235 if (page_ops & PAGE_SET_ORDERED)
236 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
237 if (page_ops & PAGE_SET_ERROR)
238 btrfs_page_clamp_set_error(fs_info, page, start, len);
239 if (page_ops & PAGE_START_WRITEBACK) {
240 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
241 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
242 }
243 if (page_ops & PAGE_END_WRITEBACK)
244 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
245
246 if (page == locked_page)
247 return 1;
248
249 if (page_ops & PAGE_LOCK) {
250 int ret;
251
252 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
253 if (ret)
254 return ret;
255 if (!PageDirty(page) || page->mapping != mapping) {
256 btrfs_page_end_writer_lock(fs_info, page, start, len);
257 return -EAGAIN;
258 }
259 }
260 if (page_ops & PAGE_UNLOCK)
261 btrfs_page_end_writer_lock(fs_info, page, start, len);
262 return 0;
263 }
264
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops,u64 * processed_end)265 static int __process_pages_contig(struct address_space *mapping,
266 struct page *locked_page,
267 u64 start, u64 end, unsigned long page_ops,
268 u64 *processed_end)
269 {
270 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
271 pgoff_t start_index = start >> PAGE_SHIFT;
272 pgoff_t end_index = end >> PAGE_SHIFT;
273 pgoff_t index = start_index;
274 unsigned long pages_processed = 0;
275 struct folio_batch fbatch;
276 int err = 0;
277 int i;
278
279 if (page_ops & PAGE_LOCK) {
280 ASSERT(page_ops == PAGE_LOCK);
281 ASSERT(processed_end && *processed_end == start);
282 }
283
284 if ((page_ops & PAGE_SET_ERROR) && start_index <= end_index)
285 mapping_set_error(mapping, -EIO);
286
287 folio_batch_init(&fbatch);
288 while (index <= end_index) {
289 int found_folios;
290
291 found_folios = filemap_get_folios_contig(mapping, &index,
292 end_index, &fbatch);
293
294 if (found_folios == 0) {
295 /*
296 * Only if we're going to lock these pages, we can find
297 * nothing at @index.
298 */
299 ASSERT(page_ops & PAGE_LOCK);
300 err = -EAGAIN;
301 goto out;
302 }
303
304 for (i = 0; i < found_folios; i++) {
305 int process_ret;
306 struct folio *folio = fbatch.folios[i];
307 process_ret = process_one_page(fs_info, mapping,
308 &folio->page, locked_page, page_ops,
309 start, end);
310 if (process_ret < 0) {
311 err = -EAGAIN;
312 folio_batch_release(&fbatch);
313 goto out;
314 }
315 pages_processed += folio_nr_pages(folio);
316 }
317 folio_batch_release(&fbatch);
318 cond_resched();
319 }
320 out:
321 if (err && processed_end) {
322 /*
323 * Update @processed_end. I know this is awful since it has
324 * two different return value patterns (inclusive vs exclusive).
325 *
326 * But the exclusive pattern is necessary if @start is 0, or we
327 * underflow and check against processed_end won't work as
328 * expected.
329 */
330 if (pages_processed)
331 *processed_end = min(end,
332 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
333 else
334 *processed_end = start;
335 }
336 return err;
337 }
338
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)339 static noinline void __unlock_for_delalloc(struct inode *inode,
340 struct page *locked_page,
341 u64 start, u64 end)
342 {
343 unsigned long index = start >> PAGE_SHIFT;
344 unsigned long end_index = end >> PAGE_SHIFT;
345
346 ASSERT(locked_page);
347 if (index == locked_page->index && end_index == index)
348 return;
349
350 __process_pages_contig(inode->i_mapping, locked_page, start, end,
351 PAGE_UNLOCK, NULL);
352 }
353
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)354 static noinline int lock_delalloc_pages(struct inode *inode,
355 struct page *locked_page,
356 u64 delalloc_start,
357 u64 delalloc_end)
358 {
359 unsigned long index = delalloc_start >> PAGE_SHIFT;
360 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
361 u64 processed_end = delalloc_start;
362 int ret;
363
364 ASSERT(locked_page);
365 if (index == locked_page->index && index == end_index)
366 return 0;
367
368 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
369 delalloc_end, PAGE_LOCK, &processed_end);
370 if (ret == -EAGAIN && processed_end > delalloc_start)
371 __unlock_for_delalloc(inode, locked_page, delalloc_start,
372 processed_end);
373 return ret;
374 }
375
376 /*
377 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
378 * more than @max_bytes.
379 *
380 * @start: The original start bytenr to search.
381 * Will store the extent range start bytenr.
382 * @end: The original end bytenr of the search range
383 * Will store the extent range end bytenr.
384 *
385 * Return true if we find a delalloc range which starts inside the original
386 * range, and @start/@end will store the delalloc range start/end.
387 *
388 * Return false if we can't find any delalloc range which starts inside the
389 * original range, and @start/@end will be the non-delalloc range start/end.
390 */
391 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)392 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
393 struct page *locked_page, u64 *start,
394 u64 *end)
395 {
396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
397 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
398 const u64 orig_start = *start;
399 const u64 orig_end = *end;
400 /* The sanity tests may not set a valid fs_info. */
401 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
402 u64 delalloc_start;
403 u64 delalloc_end;
404 bool found;
405 struct extent_state *cached_state = NULL;
406 int ret;
407 int loops = 0;
408
409 /* Caller should pass a valid @end to indicate the search range end */
410 ASSERT(orig_end > orig_start);
411
412 /* The range should at least cover part of the page */
413 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
414 orig_end <= page_offset(locked_page)));
415 again:
416 /* step one, find a bunch of delalloc bytes starting at start */
417 delalloc_start = *start;
418 delalloc_end = 0;
419 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
420 max_bytes, &cached_state);
421 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
422 *start = delalloc_start;
423
424 /* @delalloc_end can be -1, never go beyond @orig_end */
425 *end = min(delalloc_end, orig_end);
426 free_extent_state(cached_state);
427 return false;
428 }
429
430 /*
431 * start comes from the offset of locked_page. We have to lock
432 * pages in order, so we can't process delalloc bytes before
433 * locked_page
434 */
435 if (delalloc_start < *start)
436 delalloc_start = *start;
437
438 /*
439 * make sure to limit the number of pages we try to lock down
440 */
441 if (delalloc_end + 1 - delalloc_start > max_bytes)
442 delalloc_end = delalloc_start + max_bytes - 1;
443
444 /* step two, lock all the pages after the page that has start */
445 ret = lock_delalloc_pages(inode, locked_page,
446 delalloc_start, delalloc_end);
447 ASSERT(!ret || ret == -EAGAIN);
448 if (ret == -EAGAIN) {
449 /* some of the pages are gone, lets avoid looping by
450 * shortening the size of the delalloc range we're searching
451 */
452 free_extent_state(cached_state);
453 cached_state = NULL;
454 if (!loops) {
455 max_bytes = PAGE_SIZE;
456 loops = 1;
457 goto again;
458 } else {
459 found = false;
460 goto out_failed;
461 }
462 }
463
464 /* step three, lock the state bits for the whole range */
465 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
466
467 /* then test to make sure it is all still delalloc */
468 ret = test_range_bit(tree, delalloc_start, delalloc_end,
469 EXTENT_DELALLOC, 1, cached_state);
470 if (!ret) {
471 unlock_extent(tree, delalloc_start, delalloc_end,
472 &cached_state);
473 __unlock_for_delalloc(inode, locked_page,
474 delalloc_start, delalloc_end);
475 cond_resched();
476 goto again;
477 }
478 free_extent_state(cached_state);
479 *start = delalloc_start;
480 *end = delalloc_end;
481 out_failed:
482 return found;
483 }
484
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)485 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
486 struct page *locked_page,
487 u32 clear_bits, unsigned long page_ops)
488 {
489 clear_extent_bit(&inode->io_tree, start, end, clear_bits, NULL);
490
491 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
492 start, end, page_ops, NULL);
493 }
494
insert_failrec(struct btrfs_inode * inode,struct io_failure_record * failrec)495 static int insert_failrec(struct btrfs_inode *inode,
496 struct io_failure_record *failrec)
497 {
498 struct rb_node *exist;
499
500 spin_lock(&inode->io_failure_lock);
501 exist = rb_simple_insert(&inode->io_failure_tree, failrec->bytenr,
502 &failrec->rb_node);
503 spin_unlock(&inode->io_failure_lock);
504
505 return (exist == NULL) ? 0 : -EEXIST;
506 }
507
get_failrec(struct btrfs_inode * inode,u64 start)508 static struct io_failure_record *get_failrec(struct btrfs_inode *inode, u64 start)
509 {
510 struct rb_node *node;
511 struct io_failure_record *failrec = ERR_PTR(-ENOENT);
512
513 spin_lock(&inode->io_failure_lock);
514 node = rb_simple_search(&inode->io_failure_tree, start);
515 if (node)
516 failrec = rb_entry(node, struct io_failure_record, rb_node);
517 spin_unlock(&inode->io_failure_lock);
518 return failrec;
519 }
520
free_io_failure(struct btrfs_inode * inode,struct io_failure_record * rec)521 static void free_io_failure(struct btrfs_inode *inode,
522 struct io_failure_record *rec)
523 {
524 spin_lock(&inode->io_failure_lock);
525 rb_erase(&rec->rb_node, &inode->io_failure_tree);
526 spin_unlock(&inode->io_failure_lock);
527
528 kfree(rec);
529 }
530
531 /*
532 * this bypasses the standard btrfs submit functions deliberately, as
533 * the standard behavior is to write all copies in a raid setup. here we only
534 * want to write the one bad copy. so we do the mapping for ourselves and issue
535 * submit_bio directly.
536 * to avoid any synchronization issues, wait for the data after writing, which
537 * actually prevents the read that triggered the error from finishing.
538 * currently, there can be no more than two copies of every data bit. thus,
539 * exactly one rewrite is required.
540 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)541 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
542 u64 length, u64 logical, struct page *page,
543 unsigned int pg_offset, int mirror_num)
544 {
545 struct btrfs_device *dev;
546 struct bio_vec bvec;
547 struct bio bio;
548 u64 map_length = 0;
549 u64 sector;
550 struct btrfs_io_context *bioc = NULL;
551 int ret = 0;
552
553 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
554 BUG_ON(!mirror_num);
555
556 if (btrfs_repair_one_zone(fs_info, logical))
557 return 0;
558
559 map_length = length;
560
561 /*
562 * Avoid races with device replace and make sure our bioc has devices
563 * associated to its stripes that don't go away while we are doing the
564 * read repair operation.
565 */
566 btrfs_bio_counter_inc_blocked(fs_info);
567 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
568 /*
569 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
570 * to update all raid stripes, but here we just want to correct
571 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
572 * stripe's dev and sector.
573 */
574 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
575 &map_length, &bioc, 0);
576 if (ret)
577 goto out_counter_dec;
578 ASSERT(bioc->mirror_num == 1);
579 } else {
580 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
581 &map_length, &bioc, mirror_num);
582 if (ret)
583 goto out_counter_dec;
584 /*
585 * This happens when dev-replace is also running, and the
586 * mirror_num indicates the dev-replace target.
587 *
588 * In this case, we don't need to do anything, as the read
589 * error just means the replace progress hasn't reached our
590 * read range, and later replace routine would handle it well.
591 */
592 if (mirror_num != bioc->mirror_num)
593 goto out_counter_dec;
594 }
595
596 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
597 dev = bioc->stripes[bioc->mirror_num - 1].dev;
598 btrfs_put_bioc(bioc);
599
600 if (!dev || !dev->bdev ||
601 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
602 ret = -EIO;
603 goto out_counter_dec;
604 }
605
606 bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
607 bio.bi_iter.bi_sector = sector;
608 __bio_add_page(&bio, page, length, pg_offset);
609
610 btrfsic_check_bio(&bio);
611 ret = submit_bio_wait(&bio);
612 if (ret) {
613 /* try to remap that extent elsewhere? */
614 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
615 goto out_bio_uninit;
616 }
617
618 btrfs_info_rl_in_rcu(fs_info,
619 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
620 ino, start,
621 rcu_str_deref(dev->name), sector);
622 ret = 0;
623
624 out_bio_uninit:
625 bio_uninit(&bio);
626 out_counter_dec:
627 btrfs_bio_counter_dec(fs_info);
628 return ret;
629 }
630
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)631 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
632 {
633 struct btrfs_fs_info *fs_info = eb->fs_info;
634 u64 start = eb->start;
635 int i, num_pages = num_extent_pages(eb);
636 int ret = 0;
637
638 if (sb_rdonly(fs_info->sb))
639 return -EROFS;
640
641 for (i = 0; i < num_pages; i++) {
642 struct page *p = eb->pages[i];
643
644 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
645 start - page_offset(p), mirror_num);
646 if (ret)
647 break;
648 start += PAGE_SIZE;
649 }
650
651 return ret;
652 }
653
next_mirror(const struct io_failure_record * failrec,int cur_mirror)654 static int next_mirror(const struct io_failure_record *failrec, int cur_mirror)
655 {
656 if (cur_mirror == failrec->num_copies)
657 return cur_mirror + 1 - failrec->num_copies;
658 return cur_mirror + 1;
659 }
660
prev_mirror(const struct io_failure_record * failrec,int cur_mirror)661 static int prev_mirror(const struct io_failure_record *failrec, int cur_mirror)
662 {
663 if (cur_mirror == 1)
664 return failrec->num_copies;
665 return cur_mirror - 1;
666 }
667
668 /*
669 * each time an IO finishes, we do a fast check in the IO failure tree
670 * to see if we need to process or clean up an io_failure_record
671 */
btrfs_clean_io_failure(struct btrfs_inode * inode,u64 start,struct page * page,unsigned int pg_offset)672 int btrfs_clean_io_failure(struct btrfs_inode *inode, u64 start,
673 struct page *page, unsigned int pg_offset)
674 {
675 struct btrfs_fs_info *fs_info = inode->root->fs_info;
676 struct extent_io_tree *io_tree = &inode->io_tree;
677 u64 ino = btrfs_ino(inode);
678 u64 locked_start, locked_end;
679 struct io_failure_record *failrec;
680 int mirror;
681 int ret;
682
683 failrec = get_failrec(inode, start);
684 if (IS_ERR(failrec))
685 return 0;
686
687 BUG_ON(!failrec->this_mirror);
688
689 if (sb_rdonly(fs_info->sb))
690 goto out;
691
692 ret = find_first_extent_bit(io_tree, failrec->bytenr, &locked_start,
693 &locked_end, EXTENT_LOCKED, NULL);
694 if (ret || locked_start > failrec->bytenr ||
695 locked_end < failrec->bytenr + failrec->len - 1)
696 goto out;
697
698 mirror = failrec->this_mirror;
699 do {
700 mirror = prev_mirror(failrec, mirror);
701 repair_io_failure(fs_info, ino, start, failrec->len,
702 failrec->logical, page, pg_offset, mirror);
703 } while (mirror != failrec->failed_mirror);
704
705 out:
706 free_io_failure(inode, failrec);
707 return 0;
708 }
709
710 /*
711 * Can be called when
712 * - hold extent lock
713 * - under ordered extent
714 * - the inode is freeing
715 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)716 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
717 {
718 struct io_failure_record *failrec;
719 struct rb_node *node, *next;
720
721 if (RB_EMPTY_ROOT(&inode->io_failure_tree))
722 return;
723
724 spin_lock(&inode->io_failure_lock);
725 node = rb_simple_search_first(&inode->io_failure_tree, start);
726 while (node) {
727 failrec = rb_entry(node, struct io_failure_record, rb_node);
728 if (failrec->bytenr > end)
729 break;
730
731 next = rb_next(node);
732 rb_erase(&failrec->rb_node, &inode->io_failure_tree);
733 kfree(failrec);
734
735 node = next;
736 }
737 spin_unlock(&inode->io_failure_lock);
738 }
739
btrfs_get_io_failure_record(struct inode * inode,struct btrfs_bio * bbio,unsigned int bio_offset)740 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
741 struct btrfs_bio *bbio,
742 unsigned int bio_offset)
743 {
744 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
745 u64 start = bbio->file_offset + bio_offset;
746 struct io_failure_record *failrec;
747 const u32 sectorsize = fs_info->sectorsize;
748 int ret;
749
750 failrec = get_failrec(BTRFS_I(inode), start);
751 if (!IS_ERR(failrec)) {
752 btrfs_debug(fs_info,
753 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
754 failrec->logical, failrec->bytenr, failrec->len);
755 /*
756 * when data can be on disk more than twice, add to failrec here
757 * (e.g. with a list for failed_mirror) to make
758 * clean_io_failure() clean all those errors at once.
759 */
760 ASSERT(failrec->this_mirror == bbio->mirror_num);
761 ASSERT(failrec->len == fs_info->sectorsize);
762 return failrec;
763 }
764
765 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
766 if (!failrec)
767 return ERR_PTR(-ENOMEM);
768
769 RB_CLEAR_NODE(&failrec->rb_node);
770 failrec->bytenr = start;
771 failrec->len = sectorsize;
772 failrec->failed_mirror = bbio->mirror_num;
773 failrec->this_mirror = bbio->mirror_num;
774 failrec->logical = (bbio->iter.bi_sector << SECTOR_SHIFT) + bio_offset;
775
776 btrfs_debug(fs_info,
777 "new io failure record logical %llu start %llu",
778 failrec->logical, start);
779
780 failrec->num_copies = btrfs_num_copies(fs_info, failrec->logical, sectorsize);
781 if (failrec->num_copies == 1) {
782 /*
783 * We only have a single copy of the data, so don't bother with
784 * all the retry and error correction code that follows. No
785 * matter what the error is, it is very likely to persist.
786 */
787 btrfs_debug(fs_info,
788 "cannot repair logical %llu num_copies %d",
789 failrec->logical, failrec->num_copies);
790 kfree(failrec);
791 return ERR_PTR(-EIO);
792 }
793
794 /* Set the bits in the private failure tree */
795 ret = insert_failrec(BTRFS_I(inode), failrec);
796 if (ret) {
797 kfree(failrec);
798 return ERR_PTR(ret);
799 }
800
801 return failrec;
802 }
803
btrfs_repair_one_sector(struct inode * inode,struct btrfs_bio * failed_bbio,u32 bio_offset,struct page * page,unsigned int pgoff,submit_bio_hook_t * submit_bio_hook)804 int btrfs_repair_one_sector(struct inode *inode, struct btrfs_bio *failed_bbio,
805 u32 bio_offset, struct page *page, unsigned int pgoff,
806 submit_bio_hook_t *submit_bio_hook)
807 {
808 u64 start = failed_bbio->file_offset + bio_offset;
809 struct io_failure_record *failrec;
810 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
811 struct bio *failed_bio = &failed_bbio->bio;
812 const int icsum = bio_offset >> fs_info->sectorsize_bits;
813 struct bio *repair_bio;
814 struct btrfs_bio *repair_bbio;
815
816 btrfs_debug(fs_info,
817 "repair read error: read error at %llu", start);
818
819 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
820
821 failrec = btrfs_get_io_failure_record(inode, failed_bbio, bio_offset);
822 if (IS_ERR(failrec))
823 return PTR_ERR(failrec);
824
825 /*
826 * There are two premises:
827 * a) deliver good data to the caller
828 * b) correct the bad sectors on disk
829 *
830 * Since we're only doing repair for one sector, we only need to get
831 * a good copy of the failed sector and if we succeed, we have setup
832 * everything for repair_io_failure to do the rest for us.
833 */
834 failrec->this_mirror = next_mirror(failrec, failrec->this_mirror);
835 if (failrec->this_mirror == failrec->failed_mirror) {
836 btrfs_debug(fs_info,
837 "failed to repair num_copies %d this_mirror %d failed_mirror %d",
838 failrec->num_copies, failrec->this_mirror, failrec->failed_mirror);
839 free_io_failure(BTRFS_I(inode), failrec);
840 return -EIO;
841 }
842
843 repair_bio = btrfs_bio_alloc(1, REQ_OP_READ, failed_bbio->end_io,
844 failed_bbio->private);
845 repair_bbio = btrfs_bio(repair_bio);
846 repair_bbio->file_offset = start;
847 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
848
849 if (failed_bbio->csum) {
850 const u32 csum_size = fs_info->csum_size;
851
852 repair_bbio->csum = repair_bbio->csum_inline;
853 memcpy(repair_bbio->csum,
854 failed_bbio->csum + csum_size * icsum, csum_size);
855 }
856
857 bio_add_page(repair_bio, page, failrec->len, pgoff);
858 repair_bbio->iter = repair_bio->bi_iter;
859
860 btrfs_debug(btrfs_sb(inode->i_sb),
861 "repair read error: submitting new read to mirror %d",
862 failrec->this_mirror);
863
864 /*
865 * At this point we have a bio, so any errors from submit_bio_hook()
866 * will be handled by the endio on the repair_bio, so we can't return an
867 * error here.
868 */
869 submit_bio_hook(inode, repair_bio, failrec->this_mirror, 0);
870 return BLK_STS_OK;
871 }
872
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)873 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
874 {
875 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
876
877 ASSERT(page_offset(page) <= start &&
878 start + len <= page_offset(page) + PAGE_SIZE);
879
880 if (uptodate) {
881 if (fsverity_active(page->mapping->host) &&
882 !PageError(page) &&
883 !PageUptodate(page) &&
884 start < i_size_read(page->mapping->host) &&
885 !fsverity_verify_page(page)) {
886 btrfs_page_set_error(fs_info, page, start, len);
887 } else {
888 btrfs_page_set_uptodate(fs_info, page, start, len);
889 }
890 } else {
891 btrfs_page_clear_uptodate(fs_info, page, start, len);
892 btrfs_page_set_error(fs_info, page, start, len);
893 }
894
895 if (!btrfs_is_subpage(fs_info, page))
896 unlock_page(page);
897 else
898 btrfs_subpage_end_reader(fs_info, page, start, len);
899 }
900
end_sector_io(struct page * page,u64 offset,bool uptodate)901 static void end_sector_io(struct page *page, u64 offset, bool uptodate)
902 {
903 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
904 const u32 sectorsize = inode->root->fs_info->sectorsize;
905 struct extent_state *cached = NULL;
906
907 end_page_read(page, uptodate, offset, sectorsize);
908 if (uptodate)
909 set_extent_uptodate(&inode->io_tree, offset,
910 offset + sectorsize - 1, &cached, GFP_ATOMIC);
911 unlock_extent_atomic(&inode->io_tree, offset, offset + sectorsize - 1,
912 &cached);
913 }
914
submit_data_read_repair(struct inode * inode,struct btrfs_bio * failed_bbio,u32 bio_offset,const struct bio_vec * bvec,unsigned int error_bitmap)915 static void submit_data_read_repair(struct inode *inode,
916 struct btrfs_bio *failed_bbio,
917 u32 bio_offset, const struct bio_vec *bvec,
918 unsigned int error_bitmap)
919 {
920 const unsigned int pgoff = bvec->bv_offset;
921 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
922 struct page *page = bvec->bv_page;
923 const u64 start = page_offset(bvec->bv_page) + bvec->bv_offset;
924 const u64 end = start + bvec->bv_len - 1;
925 const u32 sectorsize = fs_info->sectorsize;
926 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
927 int i;
928
929 BUG_ON(bio_op(&failed_bbio->bio) == REQ_OP_WRITE);
930
931 /* This repair is only for data */
932 ASSERT(is_data_inode(inode));
933
934 /* We're here because we had some read errors or csum mismatch */
935 ASSERT(error_bitmap);
936
937 /*
938 * We only get called on buffered IO, thus page must be mapped and bio
939 * must not be cloned.
940 */
941 ASSERT(page->mapping && !bio_flagged(&failed_bbio->bio, BIO_CLONED));
942
943 /* Iterate through all the sectors in the range */
944 for (i = 0; i < nr_bits; i++) {
945 const unsigned int offset = i * sectorsize;
946 bool uptodate = false;
947 int ret;
948
949 if (!(error_bitmap & (1U << i))) {
950 /*
951 * This sector has no error, just end the page read
952 * and unlock the range.
953 */
954 uptodate = true;
955 goto next;
956 }
957
958 ret = btrfs_repair_one_sector(inode, failed_bbio,
959 bio_offset + offset, page, pgoff + offset,
960 btrfs_submit_data_read_bio);
961 if (!ret) {
962 /*
963 * We have submitted the read repair, the page release
964 * will be handled by the endio function of the
965 * submitted repair bio.
966 * Thus we don't need to do any thing here.
967 */
968 continue;
969 }
970 /*
971 * Continue on failed repair, otherwise the remaining sectors
972 * will not be properly unlocked.
973 */
974 next:
975 end_sector_io(page, start + offset, uptodate);
976 }
977 }
978
979 /* lots and lots of room for performance fixes in the end_bio funcs */
980
end_extent_writepage(struct page * page,int err,u64 start,u64 end)981 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
982 {
983 struct btrfs_inode *inode;
984 const bool uptodate = (err == 0);
985 int ret = 0;
986
987 ASSERT(page && page->mapping);
988 inode = BTRFS_I(page->mapping->host);
989 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
990
991 if (!uptodate) {
992 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
993 u32 len;
994
995 ASSERT(end + 1 - start <= U32_MAX);
996 len = end + 1 - start;
997
998 btrfs_page_clear_uptodate(fs_info, page, start, len);
999 btrfs_page_set_error(fs_info, page, start, len);
1000 ret = err < 0 ? err : -EIO;
1001 mapping_set_error(page->mapping, ret);
1002 }
1003 }
1004
1005 /*
1006 * after a writepage IO is done, we need to:
1007 * clear the uptodate bits on error
1008 * clear the writeback bits in the extent tree for this IO
1009 * end_page_writeback if the page has no more pending IO
1010 *
1011 * Scheduling is not allowed, so the extent state tree is expected
1012 * to have one and only one object corresponding to this IO.
1013 */
end_bio_extent_writepage(struct btrfs_bio * bbio)1014 static void end_bio_extent_writepage(struct btrfs_bio *bbio)
1015 {
1016 struct bio *bio = &bbio->bio;
1017 int error = blk_status_to_errno(bio->bi_status);
1018 struct bio_vec *bvec;
1019 u64 start;
1020 u64 end;
1021 struct bvec_iter_all iter_all;
1022 bool first_bvec = true;
1023
1024 ASSERT(!bio_flagged(bio, BIO_CLONED));
1025 bio_for_each_segment_all(bvec, bio, iter_all) {
1026 struct page *page = bvec->bv_page;
1027 struct inode *inode = page->mapping->host;
1028 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1029 const u32 sectorsize = fs_info->sectorsize;
1030
1031 /* Our read/write should always be sector aligned. */
1032 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1033 btrfs_err(fs_info,
1034 "partial page write in btrfs with offset %u and length %u",
1035 bvec->bv_offset, bvec->bv_len);
1036 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
1037 btrfs_info(fs_info,
1038 "incomplete page write with offset %u and length %u",
1039 bvec->bv_offset, bvec->bv_len);
1040
1041 start = page_offset(page) + bvec->bv_offset;
1042 end = start + bvec->bv_len - 1;
1043
1044 if (first_bvec) {
1045 btrfs_record_physical_zoned(inode, start, bio);
1046 first_bvec = false;
1047 }
1048
1049 end_extent_writepage(page, error, start, end);
1050
1051 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
1052 }
1053
1054 bio_put(bio);
1055 }
1056
1057 /*
1058 * Record previously processed extent range
1059 *
1060 * For endio_readpage_release_extent() to handle a full extent range, reducing
1061 * the extent io operations.
1062 */
1063 struct processed_extent {
1064 struct btrfs_inode *inode;
1065 /* Start of the range in @inode */
1066 u64 start;
1067 /* End of the range in @inode */
1068 u64 end;
1069 bool uptodate;
1070 };
1071
1072 /*
1073 * Try to release processed extent range
1074 *
1075 * May not release the extent range right now if the current range is
1076 * contiguous to processed extent.
1077 *
1078 * Will release processed extent when any of @inode, @uptodate, the range is
1079 * no longer contiguous to the processed range.
1080 *
1081 * Passing @inode == NULL will force processed extent to be released.
1082 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)1083 static void endio_readpage_release_extent(struct processed_extent *processed,
1084 struct btrfs_inode *inode, u64 start, u64 end,
1085 bool uptodate)
1086 {
1087 struct extent_state *cached = NULL;
1088 struct extent_io_tree *tree;
1089
1090 /* The first extent, initialize @processed */
1091 if (!processed->inode)
1092 goto update;
1093
1094 /*
1095 * Contiguous to processed extent, just uptodate the end.
1096 *
1097 * Several things to notice:
1098 *
1099 * - bio can be merged as long as on-disk bytenr is contiguous
1100 * This means we can have page belonging to other inodes, thus need to
1101 * check if the inode still matches.
1102 * - bvec can contain range beyond current page for multi-page bvec
1103 * Thus we need to do processed->end + 1 >= start check
1104 */
1105 if (processed->inode == inode && processed->uptodate == uptodate &&
1106 processed->end + 1 >= start && end >= processed->end) {
1107 processed->end = end;
1108 return;
1109 }
1110
1111 tree = &processed->inode->io_tree;
1112 /*
1113 * Now we don't have range contiguous to the processed range, release
1114 * the processed range now.
1115 */
1116 unlock_extent_atomic(tree, processed->start, processed->end, &cached);
1117
1118 update:
1119 /* Update processed to current range */
1120 processed->inode = inode;
1121 processed->start = start;
1122 processed->end = end;
1123 processed->uptodate = uptodate;
1124 }
1125
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)1126 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
1127 {
1128 ASSERT(PageLocked(page));
1129 if (!btrfs_is_subpage(fs_info, page))
1130 return;
1131
1132 ASSERT(PagePrivate(page));
1133 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
1134 }
1135
1136 /*
1137 * Find extent buffer for a givne bytenr.
1138 *
1139 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
1140 * in endio context.
1141 */
find_extent_buffer_readpage(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)1142 static struct extent_buffer *find_extent_buffer_readpage(
1143 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
1144 {
1145 struct extent_buffer *eb;
1146
1147 /*
1148 * For regular sectorsize, we can use page->private to grab extent
1149 * buffer
1150 */
1151 if (fs_info->nodesize >= PAGE_SIZE) {
1152 ASSERT(PagePrivate(page) && page->private);
1153 return (struct extent_buffer *)page->private;
1154 }
1155
1156 /* For subpage case, we need to lookup buffer radix tree */
1157 rcu_read_lock();
1158 eb = radix_tree_lookup(&fs_info->buffer_radix,
1159 bytenr >> fs_info->sectorsize_bits);
1160 rcu_read_unlock();
1161 ASSERT(eb);
1162 return eb;
1163 }
1164
1165 /*
1166 * after a readpage IO is done, we need to:
1167 * clear the uptodate bits on error
1168 * set the uptodate bits if things worked
1169 * set the page up to date if all extents in the tree are uptodate
1170 * clear the lock bit in the extent tree
1171 * unlock the page if there are no other extents locked for it
1172 *
1173 * Scheduling is not allowed, so the extent state tree is expected
1174 * to have one and only one object corresponding to this IO.
1175 */
end_bio_extent_readpage(struct btrfs_bio * bbio)1176 static void end_bio_extent_readpage(struct btrfs_bio *bbio)
1177 {
1178 struct bio *bio = &bbio->bio;
1179 struct bio_vec *bvec;
1180 struct processed_extent processed = { 0 };
1181 /*
1182 * The offset to the beginning of a bio, since one bio can never be
1183 * larger than UINT_MAX, u32 here is enough.
1184 */
1185 u32 bio_offset = 0;
1186 int mirror;
1187 struct bvec_iter_all iter_all;
1188
1189 ASSERT(!bio_flagged(bio, BIO_CLONED));
1190 bio_for_each_segment_all(bvec, bio, iter_all) {
1191 bool uptodate = !bio->bi_status;
1192 struct page *page = bvec->bv_page;
1193 struct inode *inode = page->mapping->host;
1194 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1195 const u32 sectorsize = fs_info->sectorsize;
1196 unsigned int error_bitmap = (unsigned int)-1;
1197 bool repair = false;
1198 u64 start;
1199 u64 end;
1200 u32 len;
1201
1202 btrfs_debug(fs_info,
1203 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
1204 bio->bi_iter.bi_sector, bio->bi_status,
1205 bbio->mirror_num);
1206
1207 /*
1208 * We always issue full-sector reads, but if some block in a
1209 * page fails to read, blk_update_request() will advance
1210 * bv_offset and adjust bv_len to compensate. Print a warning
1211 * for unaligned offsets, and an error if they don't add up to
1212 * a full sector.
1213 */
1214 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
1215 btrfs_err(fs_info,
1216 "partial page read in btrfs with offset %u and length %u",
1217 bvec->bv_offset, bvec->bv_len);
1218 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
1219 sectorsize))
1220 btrfs_info(fs_info,
1221 "incomplete page read with offset %u and length %u",
1222 bvec->bv_offset, bvec->bv_len);
1223
1224 start = page_offset(page) + bvec->bv_offset;
1225 end = start + bvec->bv_len - 1;
1226 len = bvec->bv_len;
1227
1228 mirror = bbio->mirror_num;
1229 if (likely(uptodate)) {
1230 if (is_data_inode(inode)) {
1231 error_bitmap = btrfs_verify_data_csum(bbio,
1232 bio_offset, page, start, end);
1233 if (error_bitmap)
1234 uptodate = false;
1235 } else {
1236 if (btrfs_validate_metadata_buffer(bbio,
1237 page, start, end, mirror))
1238 uptodate = false;
1239 }
1240 }
1241
1242 if (likely(uptodate)) {
1243 loff_t i_size = i_size_read(inode);
1244 pgoff_t end_index = i_size >> PAGE_SHIFT;
1245
1246 btrfs_clean_io_failure(BTRFS_I(inode), start, page, 0);
1247
1248 /*
1249 * Zero out the remaining part if this range straddles
1250 * i_size.
1251 *
1252 * Here we should only zero the range inside the bvec,
1253 * not touch anything else.
1254 *
1255 * NOTE: i_size is exclusive while end is inclusive.
1256 */
1257 if (page->index == end_index && i_size <= end) {
1258 u32 zero_start = max(offset_in_page(i_size),
1259 offset_in_page(start));
1260
1261 zero_user_segment(page, zero_start,
1262 offset_in_page(end) + 1);
1263 }
1264 } else if (is_data_inode(inode)) {
1265 /*
1266 * Only try to repair bios that actually made it to a
1267 * device. If the bio failed to be submitted mirror
1268 * is 0 and we need to fail it without retrying.
1269 *
1270 * This also includes the high level bios for compressed
1271 * extents - these never make it to a device and repair
1272 * is already handled on the lower compressed bio.
1273 */
1274 if (mirror > 0)
1275 repair = true;
1276 } else {
1277 struct extent_buffer *eb;
1278
1279 eb = find_extent_buffer_readpage(fs_info, page, start);
1280 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
1281 eb->read_mirror = mirror;
1282 atomic_dec(&eb->io_pages);
1283 }
1284
1285 if (repair) {
1286 /*
1287 * submit_data_read_repair() will handle all the good
1288 * and bad sectors, we just continue to the next bvec.
1289 */
1290 submit_data_read_repair(inode, bbio, bio_offset, bvec,
1291 error_bitmap);
1292 } else {
1293 /* Update page status and unlock */
1294 end_page_read(page, uptodate, start, len);
1295 endio_readpage_release_extent(&processed, BTRFS_I(inode),
1296 start, end, PageUptodate(page));
1297 }
1298
1299 ASSERT(bio_offset + len > bio_offset);
1300 bio_offset += len;
1301
1302 }
1303 /* Release the last extent */
1304 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
1305 btrfs_bio_free_csum(bbio);
1306 bio_put(bio);
1307 }
1308
1309 /**
1310 * Populate every free slot in a provided array with pages.
1311 *
1312 * @nr_pages: number of pages to allocate
1313 * @page_array: the array to fill with pages; any existing non-null entries in
1314 * the array will be skipped
1315 *
1316 * Return: 0 if all pages were able to be allocated;
1317 * -ENOMEM otherwise, and the caller is responsible for freeing all
1318 * non-null page pointers in the array.
1319 */
btrfs_alloc_page_array(unsigned int nr_pages,struct page ** page_array)1320 int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array)
1321 {
1322 unsigned int allocated;
1323
1324 for (allocated = 0; allocated < nr_pages;) {
1325 unsigned int last = allocated;
1326
1327 allocated = alloc_pages_bulk_array(GFP_NOFS, nr_pages, page_array);
1328
1329 if (allocated == nr_pages)
1330 return 0;
1331
1332 /*
1333 * During this iteration, no page could be allocated, even
1334 * though alloc_pages_bulk_array() falls back to alloc_page()
1335 * if it could not bulk-allocate. So we must be out of memory.
1336 */
1337 if (allocated == last)
1338 return -ENOMEM;
1339
1340 memalloc_retry_wait(GFP_NOFS);
1341 }
1342 return 0;
1343 }
1344
1345 /**
1346 * Attempt to add a page to bio
1347 *
1348 * @bio_ctrl: record both the bio, and its bio_flags
1349 * @page: page to add to the bio
1350 * @disk_bytenr: offset of the new bio or to check whether we are adding
1351 * a contiguous page to the previous one
1352 * @size: portion of page that we want to write
1353 * @pg_offset: starting offset in the page
1354 * @compress_type: compression type of the current bio to see if we can merge them
1355 *
1356 * Attempt to add a page to bio considering stripe alignment etc.
1357 *
1358 * Return >= 0 for the number of bytes added to the bio.
1359 * Can return 0 if the current bio is already at stripe/zone boundary.
1360 * Return <0 for error.
1361 */
btrfs_bio_add_page(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int size,unsigned int pg_offset,enum btrfs_compression_type compress_type)1362 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
1363 struct page *page,
1364 u64 disk_bytenr, unsigned int size,
1365 unsigned int pg_offset,
1366 enum btrfs_compression_type compress_type)
1367 {
1368 struct bio *bio = bio_ctrl->bio;
1369 u32 bio_size = bio->bi_iter.bi_size;
1370 u32 real_size;
1371 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
1372 bool contig = false;
1373 int ret;
1374
1375 ASSERT(bio);
1376 /* The limit should be calculated when bio_ctrl->bio is allocated */
1377 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
1378 if (bio_ctrl->compress_type != compress_type)
1379 return 0;
1380
1381
1382 if (bio->bi_iter.bi_size == 0) {
1383 /* We can always add a page into an empty bio. */
1384 contig = true;
1385 } else if (bio_ctrl->compress_type == BTRFS_COMPRESS_NONE) {
1386 struct bio_vec *bvec = bio_last_bvec_all(bio);
1387
1388 /*
1389 * The contig check requires the following conditions to be met:
1390 * 1) The pages are belonging to the same inode
1391 * This is implied by the call chain.
1392 *
1393 * 2) The range has adjacent logical bytenr
1394 *
1395 * 3) The range has adjacent file offset
1396 * This is required for the usage of btrfs_bio->file_offset.
1397 */
1398 if (bio_end_sector(bio) == sector &&
1399 page_offset(bvec->bv_page) + bvec->bv_offset +
1400 bvec->bv_len == page_offset(page) + pg_offset)
1401 contig = true;
1402 } else {
1403 /*
1404 * For compression, all IO should have its logical bytenr
1405 * set to the starting bytenr of the compressed extent.
1406 */
1407 contig = bio->bi_iter.bi_sector == sector;
1408 }
1409
1410 if (!contig)
1411 return 0;
1412
1413 real_size = min(bio_ctrl->len_to_oe_boundary,
1414 bio_ctrl->len_to_stripe_boundary) - bio_size;
1415 real_size = min(real_size, size);
1416
1417 /*
1418 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
1419 * bio will still execute its endio function on the page!
1420 */
1421 if (real_size == 0)
1422 return 0;
1423
1424 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1425 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
1426 else
1427 ret = bio_add_page(bio, page, real_size, pg_offset);
1428
1429 return ret;
1430 }
1431
calc_bio_boundaries(struct btrfs_bio_ctrl * bio_ctrl,struct btrfs_inode * inode,u64 file_offset)1432 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
1433 struct btrfs_inode *inode, u64 file_offset)
1434 {
1435 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1436 struct btrfs_io_geometry geom;
1437 struct btrfs_ordered_extent *ordered;
1438 struct extent_map *em;
1439 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
1440 int ret;
1441
1442 /*
1443 * Pages for compressed extent are never submitted to disk directly,
1444 * thus it has no real boundary, just set them to U32_MAX.
1445 *
1446 * The split happens for real compressed bio, which happens in
1447 * btrfs_submit_compressed_read/write().
1448 */
1449 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
1450 bio_ctrl->len_to_oe_boundary = U32_MAX;
1451 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1452 return 0;
1453 }
1454 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
1455 if (IS_ERR(em))
1456 return PTR_ERR(em);
1457 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
1458 logical, &geom);
1459 free_extent_map(em);
1460 if (ret < 0) {
1461 return ret;
1462 }
1463 if (geom.len > U32_MAX)
1464 bio_ctrl->len_to_stripe_boundary = U32_MAX;
1465 else
1466 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
1467
1468 if (bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
1469 bio_ctrl->len_to_oe_boundary = U32_MAX;
1470 return 0;
1471 }
1472
1473 /* Ordered extent not yet created, so we're good */
1474 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
1475 if (!ordered) {
1476 bio_ctrl->len_to_oe_boundary = U32_MAX;
1477 return 0;
1478 }
1479
1480 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
1481 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
1482 btrfs_put_ordered_extent(ordered);
1483 return 0;
1484 }
1485
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,struct writeback_control * wbc,blk_opf_t opf,u64 disk_bytenr,u32 offset,u64 file_offset,enum btrfs_compression_type compress_type)1486 static int alloc_new_bio(struct btrfs_inode *inode,
1487 struct btrfs_bio_ctrl *bio_ctrl,
1488 struct writeback_control *wbc,
1489 blk_opf_t opf,
1490 u64 disk_bytenr, u32 offset, u64 file_offset,
1491 enum btrfs_compression_type compress_type)
1492 {
1493 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1494 struct bio *bio;
1495 int ret;
1496
1497 ASSERT(bio_ctrl->end_io_func);
1498
1499 bio = btrfs_bio_alloc(BIO_MAX_VECS, opf, bio_ctrl->end_io_func, NULL);
1500 /*
1501 * For compressed page range, its disk_bytenr is always @disk_bytenr
1502 * passed in, no matter if we have added any range into previous bio.
1503 */
1504 if (compress_type != BTRFS_COMPRESS_NONE)
1505 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
1506 else
1507 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
1508 bio_ctrl->bio = bio;
1509 bio_ctrl->compress_type = compress_type;
1510 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
1511 if (ret < 0)
1512 goto error;
1513
1514 if (wbc) {
1515 /*
1516 * For Zone append we need the correct block_device that we are
1517 * going to write to set in the bio to be able to respect the
1518 * hardware limitation. Look it up here:
1519 */
1520 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1521 struct btrfs_device *dev;
1522
1523 dev = btrfs_zoned_get_device(fs_info, disk_bytenr,
1524 fs_info->sectorsize);
1525 if (IS_ERR(dev)) {
1526 ret = PTR_ERR(dev);
1527 goto error;
1528 }
1529
1530 bio_set_dev(bio, dev->bdev);
1531 } else {
1532 /*
1533 * Otherwise pick the last added device to support
1534 * cgroup writeback. For multi-device file systems this
1535 * means blk-cgroup policies have to always be set on the
1536 * last added/replaced device. This is a bit odd but has
1537 * been like that for a long time.
1538 */
1539 bio_set_dev(bio, fs_info->fs_devices->latest_dev->bdev);
1540 }
1541 wbc_init_bio(wbc, bio);
1542 } else {
1543 ASSERT(bio_op(bio) != REQ_OP_ZONE_APPEND);
1544 }
1545 return 0;
1546 error:
1547 bio_ctrl->bio = NULL;
1548 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret));
1549 return ret;
1550 }
1551
1552 /*
1553 * @opf: bio REQ_OP_* and REQ_* flags as one value
1554 * @wbc: optional writeback control for io accounting
1555 * @disk_bytenr: logical bytenr where the write will be
1556 * @page: page to add to the bio
1557 * @size: portion of page that we want to write to
1558 * @pg_offset: offset of the new bio or to check whether we are adding
1559 * a contiguous page to the previous one
1560 * @compress_type: compress type for current bio
1561 *
1562 * The will either add the page into the existing @bio_ctrl->bio, or allocate a
1563 * new one in @bio_ctrl->bio.
1564 * The mirror number for this IO should already be initizlied in
1565 * @bio_ctrl->mirror_num.
1566 */
submit_extent_page(blk_opf_t opf,struct writeback_control * wbc,struct btrfs_bio_ctrl * bio_ctrl,u64 disk_bytenr,struct page * page,size_t size,unsigned long pg_offset,enum btrfs_compression_type compress_type,bool force_bio_submit)1567 static int submit_extent_page(blk_opf_t opf,
1568 struct writeback_control *wbc,
1569 struct btrfs_bio_ctrl *bio_ctrl,
1570 u64 disk_bytenr, struct page *page,
1571 size_t size, unsigned long pg_offset,
1572 enum btrfs_compression_type compress_type,
1573 bool force_bio_submit)
1574 {
1575 int ret = 0;
1576 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1577 unsigned int cur = pg_offset;
1578
1579 ASSERT(bio_ctrl);
1580
1581 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
1582 pg_offset + size <= PAGE_SIZE);
1583
1584 ASSERT(bio_ctrl->end_io_func);
1585
1586 if (force_bio_submit)
1587 submit_one_bio(bio_ctrl);
1588
1589 while (cur < pg_offset + size) {
1590 u32 offset = cur - pg_offset;
1591 int added;
1592
1593 /* Allocate new bio if needed */
1594 if (!bio_ctrl->bio) {
1595 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
1596 disk_bytenr, offset,
1597 page_offset(page) + cur,
1598 compress_type);
1599 if (ret < 0)
1600 return ret;
1601 }
1602 /*
1603 * We must go through btrfs_bio_add_page() to ensure each
1604 * page range won't cross various boundaries.
1605 */
1606 if (compress_type != BTRFS_COMPRESS_NONE)
1607 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
1608 size - offset, pg_offset + offset,
1609 compress_type);
1610 else
1611 added = btrfs_bio_add_page(bio_ctrl, page,
1612 disk_bytenr + offset, size - offset,
1613 pg_offset + offset, compress_type);
1614
1615 /* Metadata page range should never be split */
1616 if (!is_data_inode(&inode->vfs_inode))
1617 ASSERT(added == 0 || added == size - offset);
1618
1619 /* At least we added some page, update the account */
1620 if (wbc && added)
1621 wbc_account_cgroup_owner(wbc, page, added);
1622
1623 /* We have reached boundary, submit right now */
1624 if (added < size - offset) {
1625 /* The bio should contain some page(s) */
1626 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
1627 submit_one_bio(bio_ctrl);
1628 }
1629 cur += added;
1630 }
1631 return 0;
1632 }
1633
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)1634 static int attach_extent_buffer_page(struct extent_buffer *eb,
1635 struct page *page,
1636 struct btrfs_subpage *prealloc)
1637 {
1638 struct btrfs_fs_info *fs_info = eb->fs_info;
1639 int ret = 0;
1640
1641 /*
1642 * If the page is mapped to btree inode, we should hold the private
1643 * lock to prevent race.
1644 * For cloned or dummy extent buffers, their pages are not mapped and
1645 * will not race with any other ebs.
1646 */
1647 if (page->mapping)
1648 lockdep_assert_held(&page->mapping->private_lock);
1649
1650 if (fs_info->nodesize >= PAGE_SIZE) {
1651 if (!PagePrivate(page))
1652 attach_page_private(page, eb);
1653 else
1654 WARN_ON(page->private != (unsigned long)eb);
1655 return 0;
1656 }
1657
1658 /* Already mapped, just free prealloc */
1659 if (PagePrivate(page)) {
1660 btrfs_free_subpage(prealloc);
1661 return 0;
1662 }
1663
1664 if (prealloc)
1665 /* Has preallocated memory for subpage */
1666 attach_page_private(page, prealloc);
1667 else
1668 /* Do new allocation to attach subpage */
1669 ret = btrfs_attach_subpage(fs_info, page,
1670 BTRFS_SUBPAGE_METADATA);
1671 return ret;
1672 }
1673
set_page_extent_mapped(struct page * page)1674 int set_page_extent_mapped(struct page *page)
1675 {
1676 struct btrfs_fs_info *fs_info;
1677
1678 ASSERT(page->mapping);
1679
1680 if (PagePrivate(page))
1681 return 0;
1682
1683 fs_info = btrfs_sb(page->mapping->host->i_sb);
1684
1685 if (btrfs_is_subpage(fs_info, page))
1686 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
1687
1688 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
1689 return 0;
1690 }
1691
clear_page_extent_mapped(struct page * page)1692 void clear_page_extent_mapped(struct page *page)
1693 {
1694 struct btrfs_fs_info *fs_info;
1695
1696 ASSERT(page->mapping);
1697
1698 if (!PagePrivate(page))
1699 return;
1700
1701 fs_info = btrfs_sb(page->mapping->host->i_sb);
1702 if (btrfs_is_subpage(fs_info, page))
1703 return btrfs_detach_subpage(fs_info, page);
1704
1705 detach_page_private(page);
1706 }
1707
1708 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)1709 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
1710 u64 start, u64 len, struct extent_map **em_cached)
1711 {
1712 struct extent_map *em;
1713
1714 if (em_cached && *em_cached) {
1715 em = *em_cached;
1716 if (extent_map_in_tree(em) && start >= em->start &&
1717 start < extent_map_end(em)) {
1718 refcount_inc(&em->refs);
1719 return em;
1720 }
1721
1722 free_extent_map(em);
1723 *em_cached = NULL;
1724 }
1725
1726 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
1727 if (em_cached && !IS_ERR(em)) {
1728 BUG_ON(*em_cached);
1729 refcount_inc(&em->refs);
1730 *em_cached = em;
1731 }
1732 return em;
1733 }
1734 /*
1735 * basic readpage implementation. Locked extent state structs are inserted
1736 * into the tree that are removed when the IO is done (by the end_io
1737 * handlers)
1738 * XXX JDM: This needs looking at to ensure proper page locking
1739 * return 0 on success, otherwise return error
1740 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,blk_opf_t read_flags,u64 * prev_em_start)1741 static int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
1742 struct btrfs_bio_ctrl *bio_ctrl,
1743 blk_opf_t read_flags, u64 *prev_em_start)
1744 {
1745 struct inode *inode = page->mapping->host;
1746 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1747 u64 start = page_offset(page);
1748 const u64 end = start + PAGE_SIZE - 1;
1749 u64 cur = start;
1750 u64 extent_offset;
1751 u64 last_byte = i_size_read(inode);
1752 u64 block_start;
1753 struct extent_map *em;
1754 int ret = 0;
1755 size_t pg_offset = 0;
1756 size_t iosize;
1757 size_t blocksize = inode->i_sb->s_blocksize;
1758 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1759
1760 ret = set_page_extent_mapped(page);
1761 if (ret < 0) {
1762 unlock_extent(tree, start, end, NULL);
1763 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
1764 unlock_page(page);
1765 goto out;
1766 }
1767
1768 if (!PageUptodate(page)) {
1769 if (cleancache_get_page(page) == 0) {
1770 BUG_ON(blocksize != PAGE_SIZE);
1771 unlock_extent(tree, start, end, NULL);
1772 unlock_page(page);
1773 goto out;
1774 }
1775 }
1776
1777 if (page->index == last_byte >> PAGE_SHIFT) {
1778 size_t zero_offset = offset_in_page(last_byte);
1779
1780 if (zero_offset) {
1781 iosize = PAGE_SIZE - zero_offset;
1782 memzero_page(page, zero_offset, iosize);
1783 }
1784 }
1785 bio_ctrl->end_io_func = end_bio_extent_readpage;
1786 begin_page_read(fs_info, page);
1787 while (cur <= end) {
1788 unsigned long this_bio_flag = 0;
1789 bool force_bio_submit = false;
1790 u64 disk_bytenr;
1791
1792 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
1793 if (cur >= last_byte) {
1794 struct extent_state *cached = NULL;
1795
1796 iosize = PAGE_SIZE - pg_offset;
1797 memzero_page(page, pg_offset, iosize);
1798 set_extent_uptodate(tree, cur, cur + iosize - 1,
1799 &cached, GFP_NOFS);
1800 unlock_extent(tree, cur, cur + iosize - 1, &cached);
1801 end_page_read(page, true, cur, iosize);
1802 break;
1803 }
1804 em = __get_extent_map(inode, page, pg_offset, cur,
1805 end - cur + 1, em_cached);
1806 if (IS_ERR(em)) {
1807 unlock_extent(tree, cur, end, NULL);
1808 end_page_read(page, false, cur, end + 1 - cur);
1809 ret = PTR_ERR(em);
1810 break;
1811 }
1812 extent_offset = cur - em->start;
1813 BUG_ON(extent_map_end(em) <= cur);
1814 BUG_ON(end < cur);
1815
1816 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1817 this_bio_flag = em->compress_type;
1818
1819 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1820 iosize = ALIGN(iosize, blocksize);
1821 if (this_bio_flag != BTRFS_COMPRESS_NONE)
1822 disk_bytenr = em->block_start;
1823 else
1824 disk_bytenr = em->block_start + extent_offset;
1825 block_start = em->block_start;
1826 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
1827 block_start = EXTENT_MAP_HOLE;
1828
1829 /*
1830 * If we have a file range that points to a compressed extent
1831 * and it's followed by a consecutive file range that points
1832 * to the same compressed extent (possibly with a different
1833 * offset and/or length, so it either points to the whole extent
1834 * or only part of it), we must make sure we do not submit a
1835 * single bio to populate the pages for the 2 ranges because
1836 * this makes the compressed extent read zero out the pages
1837 * belonging to the 2nd range. Imagine the following scenario:
1838 *
1839 * File layout
1840 * [0 - 8K] [8K - 24K]
1841 * | |
1842 * | |
1843 * points to extent X, points to extent X,
1844 * offset 4K, length of 8K offset 0, length 16K
1845 *
1846 * [extent X, compressed length = 4K uncompressed length = 16K]
1847 *
1848 * If the bio to read the compressed extent covers both ranges,
1849 * it will decompress extent X into the pages belonging to the
1850 * first range and then it will stop, zeroing out the remaining
1851 * pages that belong to the other range that points to extent X.
1852 * So here we make sure we submit 2 bios, one for the first
1853 * range and another one for the third range. Both will target
1854 * the same physical extent from disk, but we can't currently
1855 * make the compressed bio endio callback populate the pages
1856 * for both ranges because each compressed bio is tightly
1857 * coupled with a single extent map, and each range can have
1858 * an extent map with a different offset value relative to the
1859 * uncompressed data of our extent and different lengths. This
1860 * is a corner case so we prioritize correctness over
1861 * non-optimal behavior (submitting 2 bios for the same extent).
1862 */
1863 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
1864 prev_em_start && *prev_em_start != (u64)-1 &&
1865 *prev_em_start != em->start)
1866 force_bio_submit = true;
1867
1868 if (prev_em_start)
1869 *prev_em_start = em->start;
1870
1871 free_extent_map(em);
1872 em = NULL;
1873
1874 /* we've found a hole, just zero and go on */
1875 if (block_start == EXTENT_MAP_HOLE) {
1876 struct extent_state *cached = NULL;
1877
1878 memzero_page(page, pg_offset, iosize);
1879
1880 set_extent_uptodate(tree, cur, cur + iosize - 1,
1881 &cached, GFP_NOFS);
1882 unlock_extent(tree, cur, cur + iosize - 1, &cached);
1883 end_page_read(page, true, cur, iosize);
1884 cur = cur + iosize;
1885 pg_offset += iosize;
1886 continue;
1887 }
1888 /* the get_extent function already copied into the page */
1889 if (block_start == EXTENT_MAP_INLINE) {
1890 unlock_extent(tree, cur, cur + iosize - 1, NULL);
1891 end_page_read(page, true, cur, iosize);
1892 cur = cur + iosize;
1893 pg_offset += iosize;
1894 continue;
1895 }
1896
1897 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
1898 bio_ctrl, disk_bytenr, page, iosize,
1899 pg_offset, this_bio_flag,
1900 force_bio_submit);
1901 if (ret) {
1902 /*
1903 * We have to unlock the remaining range, or the page
1904 * will never be unlocked.
1905 */
1906 unlock_extent(tree, cur, end, NULL);
1907 end_page_read(page, false, cur, end + 1 - cur);
1908 goto out;
1909 }
1910 cur = cur + iosize;
1911 pg_offset += iosize;
1912 }
1913 out:
1914 return ret;
1915 }
1916
btrfs_read_folio(struct file * file,struct folio * folio)1917 int btrfs_read_folio(struct file *file, struct folio *folio)
1918 {
1919 struct page *page = &folio->page;
1920 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
1921 u64 start = page_offset(page);
1922 u64 end = start + PAGE_SIZE - 1;
1923 struct btrfs_bio_ctrl bio_ctrl = { 0 };
1924 int ret;
1925
1926 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1927
1928 ret = btrfs_do_readpage(page, NULL, &bio_ctrl, 0, NULL);
1929 /*
1930 * If btrfs_do_readpage() failed we will want to submit the assembled
1931 * bio to do the cleanup.
1932 */
1933 submit_one_bio(&bio_ctrl);
1934 return ret;
1935 }
1936
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)1937 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
1938 u64 start, u64 end,
1939 struct extent_map **em_cached,
1940 struct btrfs_bio_ctrl *bio_ctrl,
1941 u64 *prev_em_start)
1942 {
1943 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
1944 int index;
1945
1946 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
1947
1948 for (index = 0; index < nr_pages; index++) {
1949 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
1950 REQ_RAHEAD, prev_em_start);
1951 put_page(pages[index]);
1952 }
1953 }
1954
1955 /*
1956 * helper for __extent_writepage, doing all of the delayed allocation setup.
1957 *
1958 * This returns 1 if btrfs_run_delalloc_range function did all the work required
1959 * to write the page (copy into inline extent). In this case the IO has
1960 * been started and the page is already unlocked.
1961 *
1962 * This returns 0 if all went well (page still locked)
1963 * This returns < 0 if there were errors (page still locked)
1964 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc)1965 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1966 struct page *page, struct writeback_control *wbc)
1967 {
1968 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
1969 u64 delalloc_start = page_offset(page);
1970 u64 delalloc_to_write = 0;
1971 /* How many pages are started by btrfs_run_delalloc_range() */
1972 unsigned long nr_written = 0;
1973 int ret;
1974 int page_started = 0;
1975
1976 while (delalloc_start < page_end) {
1977 u64 delalloc_end = page_end;
1978 bool found;
1979
1980 found = find_lock_delalloc_range(&inode->vfs_inode, page,
1981 &delalloc_start,
1982 &delalloc_end);
1983 if (!found) {
1984 delalloc_start = delalloc_end + 1;
1985 continue;
1986 }
1987 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
1988 delalloc_end, &page_started, &nr_written, wbc);
1989 if (ret) {
1990 btrfs_page_set_error(inode->root->fs_info, page,
1991 page_offset(page), PAGE_SIZE);
1992 return ret;
1993 }
1994 /*
1995 * delalloc_end is already one less than the total length, so
1996 * we don't subtract one from PAGE_SIZE
1997 */
1998 delalloc_to_write += (delalloc_end - delalloc_start +
1999 PAGE_SIZE) >> PAGE_SHIFT;
2000 delalloc_start = delalloc_end + 1;
2001 }
2002 if (wbc->nr_to_write < delalloc_to_write) {
2003 int thresh = 8192;
2004
2005 if (delalloc_to_write < thresh * 2)
2006 thresh = delalloc_to_write;
2007 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2008 thresh);
2009 }
2010
2011 /* Did btrfs_run_dealloc_range() already unlock and start the IO? */
2012 if (page_started) {
2013 /*
2014 * We've unlocked the page, so we can't update the mapping's
2015 * writeback index, just update nr_to_write.
2016 */
2017 wbc->nr_to_write -= nr_written;
2018 return 1;
2019 }
2020
2021 return 0;
2022 }
2023
2024 /*
2025 * Find the first byte we need to write.
2026 *
2027 * For subpage, one page can contain several sectors, and
2028 * __extent_writepage_io() will just grab all extent maps in the page
2029 * range and try to submit all non-inline/non-compressed extents.
2030 *
2031 * This is a big problem for subpage, we shouldn't re-submit already written
2032 * data at all.
2033 * This function will lookup subpage dirty bit to find which range we really
2034 * need to submit.
2035 *
2036 * Return the next dirty range in [@start, @end).
2037 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
2038 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)2039 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
2040 struct page *page, u64 *start, u64 *end)
2041 {
2042 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2043 struct btrfs_subpage_info *spi = fs_info->subpage_info;
2044 u64 orig_start = *start;
2045 /* Declare as unsigned long so we can use bitmap ops */
2046 unsigned long flags;
2047 int range_start_bit;
2048 int range_end_bit;
2049
2050 /*
2051 * For regular sector size == page size case, since one page only
2052 * contains one sector, we return the page offset directly.
2053 */
2054 if (!btrfs_is_subpage(fs_info, page)) {
2055 *start = page_offset(page);
2056 *end = page_offset(page) + PAGE_SIZE;
2057 return;
2058 }
2059
2060 range_start_bit = spi->dirty_offset +
2061 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
2062
2063 /* We should have the page locked, but just in case */
2064 spin_lock_irqsave(&subpage->lock, flags);
2065 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
2066 spi->dirty_offset + spi->bitmap_nr_bits);
2067 spin_unlock_irqrestore(&subpage->lock, flags);
2068
2069 range_start_bit -= spi->dirty_offset;
2070 range_end_bit -= spi->dirty_offset;
2071
2072 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
2073 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
2074 }
2075
2076 /*
2077 * helper for __extent_writepage. This calls the writepage start hooks,
2078 * and does the loop to map the page into extents and bios.
2079 *
2080 * We return 1 if the IO is started and the page is unlocked,
2081 * 0 if all went well (page still locked)
2082 * < 0 if there were errors (page still locked)
2083 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,int * nr_ret)2084 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
2085 struct page *page,
2086 struct writeback_control *wbc,
2087 struct extent_page_data *epd,
2088 loff_t i_size,
2089 int *nr_ret)
2090 {
2091 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2092 u64 cur = page_offset(page);
2093 u64 end = cur + PAGE_SIZE - 1;
2094 u64 extent_offset;
2095 u64 block_start;
2096 struct extent_map *em;
2097 int saved_ret = 0;
2098 int ret = 0;
2099 int nr = 0;
2100 enum req_op op = REQ_OP_WRITE;
2101 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
2102 bool has_error = false;
2103 bool compressed;
2104
2105 ret = btrfs_writepage_cow_fixup(page);
2106 if (ret) {
2107 /* Fixup worker will requeue */
2108 redirty_page_for_writepage(wbc, page);
2109 unlock_page(page);
2110 return 1;
2111 }
2112
2113 /*
2114 * we don't want to touch the inode after unlocking the page,
2115 * so we update the mapping writeback index now
2116 */
2117 wbc->nr_to_write--;
2118
2119 epd->bio_ctrl.end_io_func = end_bio_extent_writepage;
2120 while (cur <= end) {
2121 u64 disk_bytenr;
2122 u64 em_end;
2123 u64 dirty_range_start = cur;
2124 u64 dirty_range_end;
2125 u32 iosize;
2126
2127 if (cur >= i_size) {
2128 btrfs_writepage_endio_finish_ordered(inode, page, cur,
2129 end, true);
2130 /*
2131 * This range is beyond i_size, thus we don't need to
2132 * bother writing back.
2133 * But we still need to clear the dirty subpage bit, or
2134 * the next time the page gets dirtied, we will try to
2135 * writeback the sectors with subpage dirty bits,
2136 * causing writeback without ordered extent.
2137 */
2138 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
2139 break;
2140 }
2141
2142 find_next_dirty_byte(fs_info, page, &dirty_range_start,
2143 &dirty_range_end);
2144 if (cur < dirty_range_start) {
2145 cur = dirty_range_start;
2146 continue;
2147 }
2148
2149 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
2150 if (IS_ERR(em)) {
2151 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
2152 ret = PTR_ERR_OR_ZERO(em);
2153 has_error = true;
2154 if (!saved_ret)
2155 saved_ret = ret;
2156 break;
2157 }
2158
2159 extent_offset = cur - em->start;
2160 em_end = extent_map_end(em);
2161 ASSERT(cur <= em_end);
2162 ASSERT(cur < end);
2163 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
2164 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
2165 block_start = em->block_start;
2166 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2167 disk_bytenr = em->block_start + extent_offset;
2168
2169 /*
2170 * Note that em_end from extent_map_end() and dirty_range_end from
2171 * find_next_dirty_byte() are all exclusive
2172 */
2173 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
2174
2175 if (btrfs_use_zone_append(inode, em->block_start))
2176 op = REQ_OP_ZONE_APPEND;
2177
2178 free_extent_map(em);
2179 em = NULL;
2180
2181 /*
2182 * compressed and inline extents are written through other
2183 * paths in the FS
2184 */
2185 if (compressed || block_start == EXTENT_MAP_HOLE ||
2186 block_start == EXTENT_MAP_INLINE) {
2187 if (compressed)
2188 nr++;
2189 else
2190 btrfs_writepage_endio_finish_ordered(inode,
2191 page, cur, cur + iosize - 1, true);
2192 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2193 cur += iosize;
2194 continue;
2195 }
2196
2197 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
2198 if (!PageWriteback(page)) {
2199 btrfs_err(inode->root->fs_info,
2200 "page %lu not writeback, cur %llu end %llu",
2201 page->index, cur, end);
2202 }
2203
2204 /*
2205 * Although the PageDirty bit is cleared before entering this
2206 * function, subpage dirty bit is not cleared.
2207 * So clear subpage dirty bit here so next time we won't submit
2208 * page for range already written to disk.
2209 */
2210 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
2211
2212 ret = submit_extent_page(op | write_flags, wbc,
2213 &epd->bio_ctrl, disk_bytenr,
2214 page, iosize,
2215 cur - page_offset(page),
2216 0, false);
2217 if (ret) {
2218 has_error = true;
2219 if (!saved_ret)
2220 saved_ret = ret;
2221
2222 btrfs_page_set_error(fs_info, page, cur, iosize);
2223 if (PageWriteback(page))
2224 btrfs_page_clear_writeback(fs_info, page, cur,
2225 iosize);
2226 }
2227
2228 cur += iosize;
2229 nr++;
2230 }
2231 /*
2232 * If we finish without problem, we should not only clear page dirty,
2233 * but also empty subpage dirty bits
2234 */
2235 if (!has_error)
2236 btrfs_page_assert_not_dirty(fs_info, page);
2237 else
2238 ret = saved_ret;
2239 *nr_ret = nr;
2240 return ret;
2241 }
2242
2243 /*
2244 * the writepage semantics are similar to regular writepage. extent
2245 * records are inserted to lock ranges in the tree, and as dirty areas
2246 * are found, they are marked writeback. Then the lock bits are removed
2247 * and the end_io handler clears the writeback ranges
2248 *
2249 * Return 0 if everything goes well.
2250 * Return <0 for error.
2251 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)2252 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2253 struct extent_page_data *epd)
2254 {
2255 struct folio *folio = page_folio(page);
2256 struct inode *inode = page->mapping->host;
2257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2258 const u64 page_start = page_offset(page);
2259 const u64 page_end = page_start + PAGE_SIZE - 1;
2260 int ret;
2261 int nr = 0;
2262 size_t pg_offset;
2263 loff_t i_size = i_size_read(inode);
2264 unsigned long end_index = i_size >> PAGE_SHIFT;
2265
2266 trace___extent_writepage(page, inode, wbc);
2267
2268 WARN_ON(!PageLocked(page));
2269
2270 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
2271 page_offset(page), PAGE_SIZE);
2272
2273 pg_offset = offset_in_page(i_size);
2274 if (page->index > end_index ||
2275 (page->index == end_index && !pg_offset)) {
2276 folio_invalidate(folio, 0, folio_size(folio));
2277 folio_unlock(folio);
2278 return 0;
2279 }
2280
2281 if (page->index == end_index)
2282 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
2283
2284 ret = set_page_extent_mapped(page);
2285 if (ret < 0) {
2286 SetPageError(page);
2287 goto done;
2288 }
2289
2290 if (!epd->extent_locked) {
2291 ret = writepage_delalloc(BTRFS_I(inode), page, wbc);
2292 if (ret == 1)
2293 return 0;
2294 if (ret)
2295 goto done;
2296 }
2297
2298 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
2299 &nr);
2300 if (ret == 1)
2301 return 0;
2302
2303 done:
2304 if (nr == 0) {
2305 /* make sure the mapping tag for page dirty gets cleared */
2306 set_page_writeback(page);
2307 end_page_writeback(page);
2308 }
2309 /*
2310 * Here we used to have a check for PageError() and then set @ret and
2311 * call end_extent_writepage().
2312 *
2313 * But in fact setting @ret here will cause different error paths
2314 * between subpage and regular sectorsize.
2315 *
2316 * For regular page size, we never submit current page, but only add
2317 * current page to current bio.
2318 * The bio submission can only happen in next page.
2319 * Thus if we hit the PageError() branch, @ret is already set to
2320 * non-zero value and will not get updated for regular sectorsize.
2321 *
2322 * But for subpage case, it's possible we submit part of current page,
2323 * thus can get PageError() set by submitted bio of the same page,
2324 * while our @ret is still 0.
2325 *
2326 * So here we unify the behavior and don't set @ret.
2327 * Error can still be properly passed to higher layer as page will
2328 * be set error, here we just don't handle the IO failure.
2329 *
2330 * NOTE: This is just a hotfix for subpage.
2331 * The root fix will be properly ending ordered extent when we hit
2332 * an error during writeback.
2333 *
2334 * But that needs a bigger refactoring, as we not only need to grab the
2335 * submitted OE, but also need to know exactly at which bytenr we hit
2336 * the error.
2337 * Currently the full page based __extent_writepage_io() is not
2338 * capable of that.
2339 */
2340 if (PageError(page))
2341 end_extent_writepage(page, ret, page_start, page_end);
2342 if (epd->extent_locked) {
2343 /*
2344 * If epd->extent_locked, it's from extent_write_locked_range(),
2345 * the page can either be locked by lock_page() or
2346 * process_one_page().
2347 * Let btrfs_page_unlock_writer() handle both cases.
2348 */
2349 ASSERT(wbc);
2350 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
2351 wbc->range_end + 1 - wbc->range_start);
2352 } else {
2353 unlock_page(page);
2354 }
2355 ASSERT(ret <= 0);
2356 return ret;
2357 }
2358
wait_on_extent_buffer_writeback(struct extent_buffer * eb)2359 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
2360 {
2361 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
2362 TASK_UNINTERRUPTIBLE);
2363 }
2364
end_extent_buffer_writeback(struct extent_buffer * eb)2365 static void end_extent_buffer_writeback(struct extent_buffer *eb)
2366 {
2367 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2368 smp_mb__after_atomic();
2369 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
2370 }
2371
2372 /*
2373 * Lock extent buffer status and pages for writeback.
2374 *
2375 * May try to flush write bio if we can't get the lock.
2376 *
2377 * Return 0 if the extent buffer doesn't need to be submitted.
2378 * (E.g. the extent buffer is not dirty)
2379 * Return >0 is the extent buffer is submitted to bio.
2380 * Return <0 if something went wrong, no page is locked.
2381 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)2382 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
2383 struct extent_page_data *epd)
2384 {
2385 struct btrfs_fs_info *fs_info = eb->fs_info;
2386 int i, num_pages;
2387 int flush = 0;
2388 int ret = 0;
2389
2390 if (!btrfs_try_tree_write_lock(eb)) {
2391 submit_write_bio(epd, 0);
2392 flush = 1;
2393 btrfs_tree_lock(eb);
2394 }
2395
2396 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
2397 btrfs_tree_unlock(eb);
2398 if (!epd->sync_io)
2399 return 0;
2400 if (!flush) {
2401 submit_write_bio(epd, 0);
2402 flush = 1;
2403 }
2404 while (1) {
2405 wait_on_extent_buffer_writeback(eb);
2406 btrfs_tree_lock(eb);
2407 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
2408 break;
2409 btrfs_tree_unlock(eb);
2410 }
2411 }
2412
2413 /*
2414 * We need to do this to prevent races in people who check if the eb is
2415 * under IO since we can end up having no IO bits set for a short period
2416 * of time.
2417 */
2418 spin_lock(&eb->refs_lock);
2419 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2420 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
2421 spin_unlock(&eb->refs_lock);
2422 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2423 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2424 -eb->len,
2425 fs_info->dirty_metadata_batch);
2426 ret = 1;
2427 } else {
2428 spin_unlock(&eb->refs_lock);
2429 }
2430
2431 btrfs_tree_unlock(eb);
2432
2433 /*
2434 * Either we don't need to submit any tree block, or we're submitting
2435 * subpage eb.
2436 * Subpage metadata doesn't use page locking at all, so we can skip
2437 * the page locking.
2438 */
2439 if (!ret || fs_info->nodesize < PAGE_SIZE)
2440 return ret;
2441
2442 num_pages = num_extent_pages(eb);
2443 for (i = 0; i < num_pages; i++) {
2444 struct page *p = eb->pages[i];
2445
2446 if (!trylock_page(p)) {
2447 if (!flush) {
2448 submit_write_bio(epd, 0);
2449 flush = 1;
2450 }
2451 lock_page(p);
2452 }
2453 }
2454
2455 return ret;
2456 }
2457
set_btree_ioerr(struct page * page,struct extent_buffer * eb)2458 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
2459 {
2460 struct btrfs_fs_info *fs_info = eb->fs_info;
2461
2462 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
2463 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
2464 return;
2465
2466 /*
2467 * A read may stumble upon this buffer later, make sure that it gets an
2468 * error and knows there was an error.
2469 */
2470 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
2471
2472 /*
2473 * We need to set the mapping with the io error as well because a write
2474 * error will flip the file system readonly, and then syncfs() will
2475 * return a 0 because we are readonly if we don't modify the err seq for
2476 * the superblock.
2477 */
2478 mapping_set_error(page->mapping, -EIO);
2479
2480 /*
2481 * If we error out, we should add back the dirty_metadata_bytes
2482 * to make it consistent.
2483 */
2484 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
2485 eb->len, fs_info->dirty_metadata_batch);
2486
2487 /*
2488 * If writeback for a btree extent that doesn't belong to a log tree
2489 * failed, increment the counter transaction->eb_write_errors.
2490 * We do this because while the transaction is running and before it's
2491 * committing (when we call filemap_fdata[write|wait]_range against
2492 * the btree inode), we might have
2493 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
2494 * returns an error or an error happens during writeback, when we're
2495 * committing the transaction we wouldn't know about it, since the pages
2496 * can be no longer dirty nor marked anymore for writeback (if a
2497 * subsequent modification to the extent buffer didn't happen before the
2498 * transaction commit), which makes filemap_fdata[write|wait]_range not
2499 * able to find the pages tagged with SetPageError at transaction
2500 * commit time. So if this happens we must abort the transaction,
2501 * otherwise we commit a super block with btree roots that point to
2502 * btree nodes/leafs whose content on disk is invalid - either garbage
2503 * or the content of some node/leaf from a past generation that got
2504 * cowed or deleted and is no longer valid.
2505 *
2506 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
2507 * not be enough - we need to distinguish between log tree extents vs
2508 * non-log tree extents, and the next filemap_fdatawait_range() call
2509 * will catch and clear such errors in the mapping - and that call might
2510 * be from a log sync and not from a transaction commit. Also, checking
2511 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
2512 * not done and would not be reliable - the eb might have been released
2513 * from memory and reading it back again means that flag would not be
2514 * set (since it's a runtime flag, not persisted on disk).
2515 *
2516 * Using the flags below in the btree inode also makes us achieve the
2517 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
2518 * writeback for all dirty pages and before filemap_fdatawait_range()
2519 * is called, the writeback for all dirty pages had already finished
2520 * with errors - because we were not using AS_EIO/AS_ENOSPC,
2521 * filemap_fdatawait_range() would return success, as it could not know
2522 * that writeback errors happened (the pages were no longer tagged for
2523 * writeback).
2524 */
2525 switch (eb->log_index) {
2526 case -1:
2527 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
2528 break;
2529 case 0:
2530 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2531 break;
2532 case 1:
2533 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2534 break;
2535 default:
2536 BUG(); /* unexpected, logic error */
2537 }
2538 }
2539
2540 /*
2541 * The endio specific version which won't touch any unsafe spinlock in endio
2542 * context.
2543 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)2544 static struct extent_buffer *find_extent_buffer_nolock(
2545 struct btrfs_fs_info *fs_info, u64 start)
2546 {
2547 struct extent_buffer *eb;
2548
2549 rcu_read_lock();
2550 eb = radix_tree_lookup(&fs_info->buffer_radix,
2551 start >> fs_info->sectorsize_bits);
2552 if (eb && atomic_inc_not_zero(&eb->refs)) {
2553 rcu_read_unlock();
2554 return eb;
2555 }
2556 rcu_read_unlock();
2557 return NULL;
2558 }
2559
2560 /*
2561 * The endio function for subpage extent buffer write.
2562 *
2563 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
2564 * after all extent buffers in the page has finished their writeback.
2565 */
end_bio_subpage_eb_writepage(struct btrfs_bio * bbio)2566 static void end_bio_subpage_eb_writepage(struct btrfs_bio *bbio)
2567 {
2568 struct bio *bio = &bbio->bio;
2569 struct btrfs_fs_info *fs_info;
2570 struct bio_vec *bvec;
2571 struct bvec_iter_all iter_all;
2572
2573 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
2574 ASSERT(fs_info->nodesize < PAGE_SIZE);
2575
2576 ASSERT(!bio_flagged(bio, BIO_CLONED));
2577 bio_for_each_segment_all(bvec, bio, iter_all) {
2578 struct page *page = bvec->bv_page;
2579 u64 bvec_start = page_offset(page) + bvec->bv_offset;
2580 u64 bvec_end = bvec_start + bvec->bv_len - 1;
2581 u64 cur_bytenr = bvec_start;
2582
2583 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
2584
2585 /* Iterate through all extent buffers in the range */
2586 while (cur_bytenr <= bvec_end) {
2587 struct extent_buffer *eb;
2588 int done;
2589
2590 /*
2591 * Here we can't use find_extent_buffer(), as it may
2592 * try to lock eb->refs_lock, which is not safe in endio
2593 * context.
2594 */
2595 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
2596 ASSERT(eb);
2597
2598 cur_bytenr = eb->start + eb->len;
2599
2600 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
2601 done = atomic_dec_and_test(&eb->io_pages);
2602 ASSERT(done);
2603
2604 if (bio->bi_status ||
2605 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2606 ClearPageUptodate(page);
2607 set_btree_ioerr(page, eb);
2608 }
2609
2610 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
2611 eb->len);
2612 end_extent_buffer_writeback(eb);
2613 /*
2614 * free_extent_buffer() will grab spinlock which is not
2615 * safe in endio context. Thus here we manually dec
2616 * the ref.
2617 */
2618 atomic_dec(&eb->refs);
2619 }
2620 }
2621 bio_put(bio);
2622 }
2623
end_bio_extent_buffer_writepage(struct btrfs_bio * bbio)2624 static void end_bio_extent_buffer_writepage(struct btrfs_bio *bbio)
2625 {
2626 struct bio *bio = &bbio->bio;
2627 struct bio_vec *bvec;
2628 struct extent_buffer *eb;
2629 int done;
2630 struct bvec_iter_all iter_all;
2631
2632 ASSERT(!bio_flagged(bio, BIO_CLONED));
2633 bio_for_each_segment_all(bvec, bio, iter_all) {
2634 struct page *page = bvec->bv_page;
2635
2636 eb = (struct extent_buffer *)page->private;
2637 BUG_ON(!eb);
2638 done = atomic_dec_and_test(&eb->io_pages);
2639
2640 if (bio->bi_status ||
2641 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
2642 ClearPageUptodate(page);
2643 set_btree_ioerr(page, eb);
2644 }
2645
2646 end_page_writeback(page);
2647
2648 if (!done)
2649 continue;
2650
2651 end_extent_buffer_writeback(eb);
2652 }
2653
2654 bio_put(bio);
2655 }
2656
prepare_eb_write(struct extent_buffer * eb)2657 static void prepare_eb_write(struct extent_buffer *eb)
2658 {
2659 u32 nritems;
2660 unsigned long start;
2661 unsigned long end;
2662
2663 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
2664 atomic_set(&eb->io_pages, num_extent_pages(eb));
2665
2666 /* Set btree blocks beyond nritems with 0 to avoid stale content */
2667 nritems = btrfs_header_nritems(eb);
2668 if (btrfs_header_level(eb) > 0) {
2669 end = btrfs_node_key_ptr_offset(nritems);
2670 memzero_extent_buffer(eb, end, eb->len - end);
2671 } else {
2672 /*
2673 * Leaf:
2674 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
2675 */
2676 start = btrfs_item_nr_offset(nritems);
2677 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
2678 memzero_extent_buffer(eb, start, end - start);
2679 }
2680 }
2681
2682 /*
2683 * Unlike the work in write_one_eb(), we rely completely on extent locking.
2684 * Page locking is only utilized at minimum to keep the VMM code happy.
2685 */
write_one_subpage_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)2686 static int write_one_subpage_eb(struct extent_buffer *eb,
2687 struct writeback_control *wbc,
2688 struct extent_page_data *epd)
2689 {
2690 struct btrfs_fs_info *fs_info = eb->fs_info;
2691 struct page *page = eb->pages[0];
2692 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2693 bool no_dirty_ebs = false;
2694 int ret;
2695
2696 prepare_eb_write(eb);
2697
2698 /* clear_page_dirty_for_io() in subpage helper needs page locked */
2699 lock_page(page);
2700 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
2701
2702 /* Check if this is the last dirty bit to update nr_written */
2703 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
2704 eb->start, eb->len);
2705 if (no_dirty_ebs)
2706 clear_page_dirty_for_io(page);
2707
2708 epd->bio_ctrl.end_io_func = end_bio_subpage_eb_writepage;
2709
2710 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2711 &epd->bio_ctrl, eb->start, page, eb->len,
2712 eb->start - page_offset(page), 0, false);
2713 if (ret) {
2714 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
2715 set_btree_ioerr(page, eb);
2716 unlock_page(page);
2717
2718 if (atomic_dec_and_test(&eb->io_pages))
2719 end_extent_buffer_writeback(eb);
2720 return -EIO;
2721 }
2722 unlock_page(page);
2723 /*
2724 * Submission finished without problem, if no range of the page is
2725 * dirty anymore, we have submitted a page. Update nr_written in wbc.
2726 */
2727 if (no_dirty_ebs)
2728 wbc->nr_to_write--;
2729 return ret;
2730 }
2731
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)2732 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
2733 struct writeback_control *wbc,
2734 struct extent_page_data *epd)
2735 {
2736 u64 disk_bytenr = eb->start;
2737 int i, num_pages;
2738 blk_opf_t write_flags = wbc_to_write_flags(wbc);
2739 int ret = 0;
2740
2741 prepare_eb_write(eb);
2742
2743 epd->bio_ctrl.end_io_func = end_bio_extent_buffer_writepage;
2744
2745 num_pages = num_extent_pages(eb);
2746 for (i = 0; i < num_pages; i++) {
2747 struct page *p = eb->pages[i];
2748
2749 clear_page_dirty_for_io(p);
2750 set_page_writeback(p);
2751 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
2752 &epd->bio_ctrl, disk_bytenr, p,
2753 PAGE_SIZE, 0, 0, false);
2754 if (ret) {
2755 set_btree_ioerr(p, eb);
2756 if (PageWriteback(p))
2757 end_page_writeback(p);
2758 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
2759 end_extent_buffer_writeback(eb);
2760 ret = -EIO;
2761 break;
2762 }
2763 disk_bytenr += PAGE_SIZE;
2764 wbc->nr_to_write--;
2765 unlock_page(p);
2766 }
2767
2768 if (unlikely(ret)) {
2769 for (; i < num_pages; i++) {
2770 struct page *p = eb->pages[i];
2771 clear_page_dirty_for_io(p);
2772 unlock_page(p);
2773 }
2774 }
2775
2776 return ret;
2777 }
2778
2779 /*
2780 * Submit one subpage btree page.
2781 *
2782 * The main difference to submit_eb_page() is:
2783 * - Page locking
2784 * For subpage, we don't rely on page locking at all.
2785 *
2786 * - Flush write bio
2787 * We only flush bio if we may be unable to fit current extent buffers into
2788 * current bio.
2789 *
2790 * Return >=0 for the number of submitted extent buffers.
2791 * Return <0 for fatal error.
2792 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)2793 static int submit_eb_subpage(struct page *page,
2794 struct writeback_control *wbc,
2795 struct extent_page_data *epd)
2796 {
2797 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2798 int submitted = 0;
2799 u64 page_start = page_offset(page);
2800 int bit_start = 0;
2801 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
2802 int ret;
2803
2804 /* Lock and write each dirty extent buffers in the range */
2805 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
2806 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
2807 struct extent_buffer *eb;
2808 unsigned long flags;
2809 u64 start;
2810
2811 /*
2812 * Take private lock to ensure the subpage won't be detached
2813 * in the meantime.
2814 */
2815 spin_lock(&page->mapping->private_lock);
2816 if (!PagePrivate(page)) {
2817 spin_unlock(&page->mapping->private_lock);
2818 break;
2819 }
2820 spin_lock_irqsave(&subpage->lock, flags);
2821 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
2822 subpage->bitmaps)) {
2823 spin_unlock_irqrestore(&subpage->lock, flags);
2824 spin_unlock(&page->mapping->private_lock);
2825 bit_start++;
2826 continue;
2827 }
2828
2829 start = page_start + bit_start * fs_info->sectorsize;
2830 bit_start += sectors_per_node;
2831
2832 /*
2833 * Here we just want to grab the eb without touching extra
2834 * spin locks, so call find_extent_buffer_nolock().
2835 */
2836 eb = find_extent_buffer_nolock(fs_info, start);
2837 spin_unlock_irqrestore(&subpage->lock, flags);
2838 spin_unlock(&page->mapping->private_lock);
2839
2840 /*
2841 * The eb has already reached 0 refs thus find_extent_buffer()
2842 * doesn't return it. We don't need to write back such eb
2843 * anyway.
2844 */
2845 if (!eb)
2846 continue;
2847
2848 ret = lock_extent_buffer_for_io(eb, epd);
2849 if (ret == 0) {
2850 free_extent_buffer(eb);
2851 continue;
2852 }
2853 if (ret < 0) {
2854 free_extent_buffer(eb);
2855 goto cleanup;
2856 }
2857 ret = write_one_subpage_eb(eb, wbc, epd);
2858 free_extent_buffer(eb);
2859 if (ret < 0)
2860 goto cleanup;
2861 submitted++;
2862 }
2863 return submitted;
2864
2865 cleanup:
2866 /* We hit error, end bio for the submitted extent buffers */
2867 submit_write_bio(epd, ret);
2868 return ret;
2869 }
2870
2871 /*
2872 * Submit all page(s) of one extent buffer.
2873 *
2874 * @page: the page of one extent buffer
2875 * @eb_context: to determine if we need to submit this page, if current page
2876 * belongs to this eb, we don't need to submit
2877 *
2878 * The caller should pass each page in their bytenr order, and here we use
2879 * @eb_context to determine if we have submitted pages of one extent buffer.
2880 *
2881 * If we have, we just skip until we hit a new page that doesn't belong to
2882 * current @eb_context.
2883 *
2884 * If not, we submit all the page(s) of the extent buffer.
2885 *
2886 * Return >0 if we have submitted the extent buffer successfully.
2887 * Return 0 if we don't need to submit the page, as it's already submitted by
2888 * previous call.
2889 * Return <0 for fatal error.
2890 */
submit_eb_page(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,struct extent_buffer ** eb_context)2891 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
2892 struct extent_page_data *epd,
2893 struct extent_buffer **eb_context)
2894 {
2895 struct address_space *mapping = page->mapping;
2896 struct btrfs_block_group *cache = NULL;
2897 struct extent_buffer *eb;
2898 int ret;
2899
2900 if (!PagePrivate(page))
2901 return 0;
2902
2903 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
2904 return submit_eb_subpage(page, wbc, epd);
2905
2906 spin_lock(&mapping->private_lock);
2907 if (!PagePrivate(page)) {
2908 spin_unlock(&mapping->private_lock);
2909 return 0;
2910 }
2911
2912 eb = (struct extent_buffer *)page->private;
2913
2914 /*
2915 * Shouldn't happen and normally this would be a BUG_ON but no point
2916 * crashing the machine for something we can survive anyway.
2917 */
2918 if (WARN_ON(!eb)) {
2919 spin_unlock(&mapping->private_lock);
2920 return 0;
2921 }
2922
2923 if (eb == *eb_context) {
2924 spin_unlock(&mapping->private_lock);
2925 return 0;
2926 }
2927 ret = atomic_inc_not_zero(&eb->refs);
2928 spin_unlock(&mapping->private_lock);
2929 if (!ret)
2930 return 0;
2931
2932 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
2933 /*
2934 * If for_sync, this hole will be filled with
2935 * trasnsaction commit.
2936 */
2937 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
2938 ret = -EAGAIN;
2939 else
2940 ret = 0;
2941 free_extent_buffer(eb);
2942 return ret;
2943 }
2944
2945 *eb_context = eb;
2946
2947 ret = lock_extent_buffer_for_io(eb, epd);
2948 if (ret <= 0) {
2949 btrfs_revert_meta_write_pointer(cache, eb);
2950 if (cache)
2951 btrfs_put_block_group(cache);
2952 free_extent_buffer(eb);
2953 return ret;
2954 }
2955 if (cache) {
2956 /*
2957 * Implies write in zoned mode. Mark the last eb in a block group.
2958 */
2959 btrfs_schedule_zone_finish_bg(cache, eb);
2960 btrfs_put_block_group(cache);
2961 }
2962 ret = write_one_eb(eb, wbc, epd);
2963 free_extent_buffer(eb);
2964 if (ret < 0)
2965 return ret;
2966 return 1;
2967 }
2968
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)2969 int btree_write_cache_pages(struct address_space *mapping,
2970 struct writeback_control *wbc)
2971 {
2972 struct extent_buffer *eb_context = NULL;
2973 struct extent_page_data epd = {
2974 .bio_ctrl = { 0 },
2975 .extent_locked = 0,
2976 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
2977 };
2978 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
2979 int ret = 0;
2980 int done = 0;
2981 int nr_to_write_done = 0;
2982 struct pagevec pvec;
2983 int nr_pages;
2984 pgoff_t index;
2985 pgoff_t end; /* Inclusive */
2986 int scanned = 0;
2987 xa_mark_t tag;
2988
2989 pagevec_init(&pvec);
2990 if (wbc->range_cyclic) {
2991 index = mapping->writeback_index; /* Start from prev offset */
2992 end = -1;
2993 /*
2994 * Start from the beginning does not need to cycle over the
2995 * range, mark it as scanned.
2996 */
2997 scanned = (index == 0);
2998 } else {
2999 index = wbc->range_start >> PAGE_SHIFT;
3000 end = wbc->range_end >> PAGE_SHIFT;
3001 scanned = 1;
3002 }
3003 if (wbc->sync_mode == WB_SYNC_ALL)
3004 tag = PAGECACHE_TAG_TOWRITE;
3005 else
3006 tag = PAGECACHE_TAG_DIRTY;
3007 btrfs_zoned_meta_io_lock(fs_info);
3008 retry:
3009 if (wbc->sync_mode == WB_SYNC_ALL)
3010 tag_pages_for_writeback(mapping, index, end);
3011 while (!done && !nr_to_write_done && (index <= end) &&
3012 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3013 tag))) {
3014 unsigned i;
3015
3016 for (i = 0; i < nr_pages; i++) {
3017 struct page *page = pvec.pages[i];
3018
3019 ret = submit_eb_page(page, wbc, &epd, &eb_context);
3020 if (ret == 0)
3021 continue;
3022 if (ret < 0) {
3023 done = 1;
3024 break;
3025 }
3026
3027 /*
3028 * The filesystem may choose to bump up nr_to_write.
3029 * We have to make sure to honor the new nr_to_write
3030 * at any time.
3031 */
3032 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
3033 wbc->nr_to_write <= 0);
3034 }
3035 pagevec_release(&pvec);
3036 cond_resched();
3037 }
3038 if (!scanned && !done) {
3039 /*
3040 * We hit the last page and there is more work to be done: wrap
3041 * back to the start of the file
3042 */
3043 scanned = 1;
3044 index = 0;
3045 goto retry;
3046 }
3047 /*
3048 * If something went wrong, don't allow any metadata write bio to be
3049 * submitted.
3050 *
3051 * This would prevent use-after-free if we had dirty pages not
3052 * cleaned up, which can still happen by fuzzed images.
3053 *
3054 * - Bad extent tree
3055 * Allowing existing tree block to be allocated for other trees.
3056 *
3057 * - Log tree operations
3058 * Exiting tree blocks get allocated to log tree, bumps its
3059 * generation, then get cleaned in tree re-balance.
3060 * Such tree block will not be written back, since it's clean,
3061 * thus no WRITTEN flag set.
3062 * And after log writes back, this tree block is not traced by
3063 * any dirty extent_io_tree.
3064 *
3065 * - Offending tree block gets re-dirtied from its original owner
3066 * Since it has bumped generation, no WRITTEN flag, it can be
3067 * reused without COWing. This tree block will not be traced
3068 * by btrfs_transaction::dirty_pages.
3069 *
3070 * Now such dirty tree block will not be cleaned by any dirty
3071 * extent io tree. Thus we don't want to submit such wild eb
3072 * if the fs already has error.
3073 *
3074 * We can get ret > 0 from submit_extent_page() indicating how many ebs
3075 * were submitted. Reset it to 0 to avoid false alerts for the caller.
3076 */
3077 if (ret > 0)
3078 ret = 0;
3079 if (!ret && BTRFS_FS_ERROR(fs_info))
3080 ret = -EROFS;
3081 submit_write_bio(&epd, ret);
3082
3083 btrfs_zoned_meta_io_unlock(fs_info);
3084 return ret;
3085 }
3086
3087 /**
3088 * Walk the list of dirty pages of the given address space and write all of them.
3089 *
3090 * @mapping: address space structure to write
3091 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3092 * @epd: holds context for the write, namely the bio
3093 *
3094 * If a page is already under I/O, write_cache_pages() skips it, even
3095 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3096 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3097 * and msync() need to guarantee that all the data which was dirty at the time
3098 * the call was made get new I/O started against them. If wbc->sync_mode is
3099 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3100 * existing IO to complete.
3101 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)3102 static int extent_write_cache_pages(struct address_space *mapping,
3103 struct writeback_control *wbc,
3104 struct extent_page_data *epd)
3105 {
3106 struct inode *inode = mapping->host;
3107 int ret = 0;
3108 int done = 0;
3109 int nr_to_write_done = 0;
3110 struct pagevec pvec;
3111 int nr_pages;
3112 pgoff_t index;
3113 pgoff_t end; /* Inclusive */
3114 pgoff_t done_index;
3115 int range_whole = 0;
3116 int scanned = 0;
3117 xa_mark_t tag;
3118
3119 /*
3120 * We have to hold onto the inode so that ordered extents can do their
3121 * work when the IO finishes. The alternative to this is failing to add
3122 * an ordered extent if the igrab() fails there and that is a huge pain
3123 * to deal with, so instead just hold onto the inode throughout the
3124 * writepages operation. If it fails here we are freeing up the inode
3125 * anyway and we'd rather not waste our time writing out stuff that is
3126 * going to be truncated anyway.
3127 */
3128 if (!igrab(inode))
3129 return 0;
3130
3131 pagevec_init(&pvec);
3132 if (wbc->range_cyclic) {
3133 index = mapping->writeback_index; /* Start from prev offset */
3134 end = -1;
3135 /*
3136 * Start from the beginning does not need to cycle over the
3137 * range, mark it as scanned.
3138 */
3139 scanned = (index == 0);
3140 } else {
3141 index = wbc->range_start >> PAGE_SHIFT;
3142 end = wbc->range_end >> PAGE_SHIFT;
3143 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3144 range_whole = 1;
3145 scanned = 1;
3146 }
3147
3148 /*
3149 * We do the tagged writepage as long as the snapshot flush bit is set
3150 * and we are the first one who do the filemap_flush() on this inode.
3151 *
3152 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3153 * not race in and drop the bit.
3154 */
3155 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3156 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3157 &BTRFS_I(inode)->runtime_flags))
3158 wbc->tagged_writepages = 1;
3159
3160 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3161 tag = PAGECACHE_TAG_TOWRITE;
3162 else
3163 tag = PAGECACHE_TAG_DIRTY;
3164 retry:
3165 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3166 tag_pages_for_writeback(mapping, index, end);
3167 done_index = index;
3168 while (!done && !nr_to_write_done && (index <= end) &&
3169 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3170 &index, end, tag))) {
3171 unsigned i;
3172
3173 for (i = 0; i < nr_pages; i++) {
3174 struct page *page = pvec.pages[i];
3175
3176 done_index = page->index + 1;
3177 /*
3178 * At this point we hold neither the i_pages lock nor
3179 * the page lock: the page may be truncated or
3180 * invalidated (changing page->mapping to NULL),
3181 * or even swizzled back from swapper_space to
3182 * tmpfs file mapping
3183 */
3184 if (!trylock_page(page)) {
3185 submit_write_bio(epd, 0);
3186 lock_page(page);
3187 }
3188
3189 if (unlikely(page->mapping != mapping)) {
3190 unlock_page(page);
3191 continue;
3192 }
3193
3194 if (wbc->sync_mode != WB_SYNC_NONE) {
3195 if (PageWriteback(page))
3196 submit_write_bio(epd, 0);
3197 wait_on_page_writeback(page);
3198 }
3199
3200 if (PageWriteback(page) ||
3201 !clear_page_dirty_for_io(page)) {
3202 unlock_page(page);
3203 continue;
3204 }
3205
3206 ret = __extent_writepage(page, wbc, epd);
3207 if (ret < 0) {
3208 done = 1;
3209 break;
3210 }
3211
3212 /*
3213 * the filesystem may choose to bump up nr_to_write.
3214 * We have to make sure to honor the new nr_to_write
3215 * at any time
3216 */
3217 nr_to_write_done = wbc->nr_to_write <= 0;
3218 }
3219 pagevec_release(&pvec);
3220 cond_resched();
3221 }
3222 if (!scanned && !done) {
3223 /*
3224 * We hit the last page and there is more work to be done: wrap
3225 * back to the start of the file
3226 */
3227 scanned = 1;
3228 index = 0;
3229
3230 /*
3231 * If we're looping we could run into a page that is locked by a
3232 * writer and that writer could be waiting on writeback for a
3233 * page in our current bio, and thus deadlock, so flush the
3234 * write bio here.
3235 */
3236 submit_write_bio(epd, 0);
3237 goto retry;
3238 }
3239
3240 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
3241 mapping->writeback_index = done_index;
3242
3243 btrfs_add_delayed_iput(inode);
3244 return ret;
3245 }
3246
3247 /*
3248 * Submit the pages in the range to bio for call sites which delalloc range has
3249 * already been ran (aka, ordered extent inserted) and all pages are still
3250 * locked.
3251 */
extent_write_locked_range(struct inode * inode,u64 start,u64 end)3252 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
3253 {
3254 bool found_error = false;
3255 int first_error = 0;
3256 int ret = 0;
3257 struct address_space *mapping = inode->i_mapping;
3258 struct page *page;
3259 u64 cur = start;
3260 unsigned long nr_pages;
3261 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
3262 struct extent_page_data epd = {
3263 .bio_ctrl = { 0 },
3264 .extent_locked = 1,
3265 .sync_io = 1,
3266 };
3267 struct writeback_control wbc_writepages = {
3268 .sync_mode = WB_SYNC_ALL,
3269 .range_start = start,
3270 .range_end = end + 1,
3271 /* We're called from an async helper function */
3272 .punt_to_cgroup = 1,
3273 .no_cgroup_owner = 1,
3274 };
3275
3276 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
3277 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
3278 PAGE_SHIFT;
3279 wbc_writepages.nr_to_write = nr_pages * 2;
3280
3281 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
3282 while (cur <= end) {
3283 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
3284
3285 page = find_get_page(mapping, cur >> PAGE_SHIFT);
3286 /*
3287 * All pages in the range are locked since
3288 * btrfs_run_delalloc_range(), thus there is no way to clear
3289 * the page dirty flag.
3290 */
3291 ASSERT(PageLocked(page));
3292 ASSERT(PageDirty(page));
3293 clear_page_dirty_for_io(page);
3294 ret = __extent_writepage(page, &wbc_writepages, &epd);
3295 ASSERT(ret <= 0);
3296 if (ret < 0) {
3297 found_error = true;
3298 first_error = ret;
3299 }
3300 put_page(page);
3301 cur = cur_end + 1;
3302 }
3303
3304 submit_write_bio(&epd, found_error ? ret : 0);
3305
3306 wbc_detach_inode(&wbc_writepages);
3307 if (found_error)
3308 return first_error;
3309 return ret;
3310 }
3311
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)3312 int extent_writepages(struct address_space *mapping,
3313 struct writeback_control *wbc)
3314 {
3315 struct inode *inode = mapping->host;
3316 int ret = 0;
3317 struct extent_page_data epd = {
3318 .bio_ctrl = { 0 },
3319 .extent_locked = 0,
3320 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3321 };
3322
3323 /*
3324 * Allow only a single thread to do the reloc work in zoned mode to
3325 * protect the write pointer updates.
3326 */
3327 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
3328 ret = extent_write_cache_pages(mapping, wbc, &epd);
3329 submit_write_bio(&epd, ret);
3330 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
3331 return ret;
3332 }
3333
extent_readahead(struct readahead_control * rac)3334 void extent_readahead(struct readahead_control *rac)
3335 {
3336 struct btrfs_bio_ctrl bio_ctrl = { 0 };
3337 struct page *pagepool[16];
3338 struct extent_map *em_cached = NULL;
3339 u64 prev_em_start = (u64)-1;
3340 int nr;
3341
3342 while ((nr = readahead_page_batch(rac, pagepool))) {
3343 u64 contig_start = readahead_pos(rac);
3344 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
3345
3346 contiguous_readpages(pagepool, nr, contig_start, contig_end,
3347 &em_cached, &bio_ctrl, &prev_em_start);
3348 }
3349
3350 if (em_cached)
3351 free_extent_map(em_cached);
3352 submit_one_bio(&bio_ctrl);
3353 }
3354
3355 /*
3356 * basic invalidate_folio code, this waits on any locked or writeback
3357 * ranges corresponding to the folio, and then deletes any extent state
3358 * records from the tree
3359 */
extent_invalidate_folio(struct extent_io_tree * tree,struct folio * folio,size_t offset)3360 int extent_invalidate_folio(struct extent_io_tree *tree,
3361 struct folio *folio, size_t offset)
3362 {
3363 struct extent_state *cached_state = NULL;
3364 u64 start = folio_pos(folio);
3365 u64 end = start + folio_size(folio) - 1;
3366 size_t blocksize = folio->mapping->host->i_sb->s_blocksize;
3367
3368 /* This function is only called for the btree inode */
3369 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
3370
3371 start += ALIGN(offset, blocksize);
3372 if (start > end)
3373 return 0;
3374
3375 lock_extent(tree, start, end, &cached_state);
3376 folio_wait_writeback(folio);
3377
3378 /*
3379 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
3380 * so here we only need to unlock the extent range to free any
3381 * existing extent state.
3382 */
3383 unlock_extent(tree, start, end, &cached_state);
3384 return 0;
3385 }
3386
3387 /*
3388 * a helper for release_folio, this tests for areas of the page that
3389 * are locked or under IO and drops the related state bits if it is safe
3390 * to drop the page.
3391 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)3392 static int try_release_extent_state(struct extent_io_tree *tree,
3393 struct page *page, gfp_t mask)
3394 {
3395 u64 start = page_offset(page);
3396 u64 end = start + PAGE_SIZE - 1;
3397 int ret = 1;
3398
3399 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
3400 ret = 0;
3401 } else {
3402 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
3403 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
3404 EXTENT_QGROUP_RESERVED);
3405
3406 /*
3407 * At this point we can safely clear everything except the
3408 * locked bit, the nodatasum bit and the delalloc new bit.
3409 * The delalloc new bit will be cleared by ordered extent
3410 * completion.
3411 */
3412 ret = __clear_extent_bit(tree, start, end, clear_bits, NULL,
3413 mask, NULL);
3414
3415 /* if clear_extent_bit failed for enomem reasons,
3416 * we can't allow the release to continue.
3417 */
3418 if (ret < 0)
3419 ret = 0;
3420 else
3421 ret = 1;
3422 }
3423 return ret;
3424 }
3425
3426 /*
3427 * a helper for release_folio. As long as there are no locked extents
3428 * in the range corresponding to the page, both state records and extent
3429 * map records are removed
3430 */
try_release_extent_mapping(struct page * page,gfp_t mask)3431 int try_release_extent_mapping(struct page *page, gfp_t mask)
3432 {
3433 struct extent_map *em;
3434 u64 start = page_offset(page);
3435 u64 end = start + PAGE_SIZE - 1;
3436 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
3437 struct extent_io_tree *tree = &btrfs_inode->io_tree;
3438 struct extent_map_tree *map = &btrfs_inode->extent_tree;
3439
3440 if (gfpflags_allow_blocking(mask) &&
3441 page->mapping->host->i_size > SZ_16M) {
3442 u64 len;
3443 while (start <= end) {
3444 struct btrfs_fs_info *fs_info;
3445 u64 cur_gen;
3446
3447 len = end - start + 1;
3448 write_lock(&map->lock);
3449 em = lookup_extent_mapping(map, start, len);
3450 if (!em) {
3451 write_unlock(&map->lock);
3452 break;
3453 }
3454 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3455 em->start != start) {
3456 write_unlock(&map->lock);
3457 free_extent_map(em);
3458 break;
3459 }
3460 if (test_range_bit(tree, em->start,
3461 extent_map_end(em) - 1,
3462 EXTENT_LOCKED, 0, NULL))
3463 goto next;
3464 /*
3465 * If it's not in the list of modified extents, used
3466 * by a fast fsync, we can remove it. If it's being
3467 * logged we can safely remove it since fsync took an
3468 * extra reference on the em.
3469 */
3470 if (list_empty(&em->list) ||
3471 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
3472 goto remove_em;
3473 /*
3474 * If it's in the list of modified extents, remove it
3475 * only if its generation is older then the current one,
3476 * in which case we don't need it for a fast fsync.
3477 * Otherwise don't remove it, we could be racing with an
3478 * ongoing fast fsync that could miss the new extent.
3479 */
3480 fs_info = btrfs_inode->root->fs_info;
3481 spin_lock(&fs_info->trans_lock);
3482 cur_gen = fs_info->generation;
3483 spin_unlock(&fs_info->trans_lock);
3484 if (em->generation >= cur_gen)
3485 goto next;
3486 remove_em:
3487 /*
3488 * We only remove extent maps that are not in the list of
3489 * modified extents or that are in the list but with a
3490 * generation lower then the current generation, so there
3491 * is no need to set the full fsync flag on the inode (it
3492 * hurts the fsync performance for workloads with a data
3493 * size that exceeds or is close to the system's memory).
3494 */
3495 remove_extent_mapping(map, em);
3496 /* once for the rb tree */
3497 free_extent_map(em);
3498 next:
3499 start = extent_map_end(em);
3500 write_unlock(&map->lock);
3501
3502 /* once for us */
3503 free_extent_map(em);
3504
3505 cond_resched(); /* Allow large-extent preemption. */
3506 }
3507 }
3508 return try_release_extent_state(tree, page, mask);
3509 }
3510
3511 /*
3512 * To cache previous fiemap extent
3513 *
3514 * Will be used for merging fiemap extent
3515 */
3516 struct fiemap_cache {
3517 u64 offset;
3518 u64 phys;
3519 u64 len;
3520 u32 flags;
3521 bool cached;
3522 };
3523
3524 /*
3525 * Helper to submit fiemap extent.
3526 *
3527 * Will try to merge current fiemap extent specified by @offset, @phys,
3528 * @len and @flags with cached one.
3529 * And only when we fails to merge, cached one will be submitted as
3530 * fiemap extent.
3531 *
3532 * Return value is the same as fiemap_fill_next_extent().
3533 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)3534 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
3535 struct fiemap_cache *cache,
3536 u64 offset, u64 phys, u64 len, u32 flags)
3537 {
3538 int ret = 0;
3539
3540 /* Set at the end of extent_fiemap(). */
3541 ASSERT((flags & FIEMAP_EXTENT_LAST) == 0);
3542
3543 if (!cache->cached)
3544 goto assign;
3545
3546 /*
3547 * Sanity check, extent_fiemap() should have ensured that new
3548 * fiemap extent won't overlap with cached one.
3549 * Not recoverable.
3550 *
3551 * NOTE: Physical address can overlap, due to compression
3552 */
3553 if (cache->offset + cache->len > offset) {
3554 WARN_ON(1);
3555 return -EINVAL;
3556 }
3557
3558 /*
3559 * Only merges fiemap extents if
3560 * 1) Their logical addresses are continuous
3561 *
3562 * 2) Their physical addresses are continuous
3563 * So truly compressed (physical size smaller than logical size)
3564 * extents won't get merged with each other
3565 *
3566 * 3) Share same flags
3567 */
3568 if (cache->offset + cache->len == offset &&
3569 cache->phys + cache->len == phys &&
3570 cache->flags == flags) {
3571 cache->len += len;
3572 return 0;
3573 }
3574
3575 /* Not mergeable, need to submit cached one */
3576 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3577 cache->len, cache->flags);
3578 cache->cached = false;
3579 if (ret)
3580 return ret;
3581 assign:
3582 cache->cached = true;
3583 cache->offset = offset;
3584 cache->phys = phys;
3585 cache->len = len;
3586 cache->flags = flags;
3587
3588 return 0;
3589 }
3590
3591 /*
3592 * Emit last fiemap cache
3593 *
3594 * The last fiemap cache may still be cached in the following case:
3595 * 0 4k 8k
3596 * |<- Fiemap range ->|
3597 * |<------------ First extent ----------->|
3598 *
3599 * In this case, the first extent range will be cached but not emitted.
3600 * So we must emit it before ending extent_fiemap().
3601 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)3602 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
3603 struct fiemap_cache *cache)
3604 {
3605 int ret;
3606
3607 if (!cache->cached)
3608 return 0;
3609
3610 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
3611 cache->len, cache->flags);
3612 cache->cached = false;
3613 if (ret > 0)
3614 ret = 0;
3615 return ret;
3616 }
3617
fiemap_next_leaf_item(struct btrfs_inode * inode,struct btrfs_path * path)3618 static int fiemap_next_leaf_item(struct btrfs_inode *inode, struct btrfs_path *path)
3619 {
3620 struct extent_buffer *clone;
3621 struct btrfs_key key;
3622 int slot;
3623 int ret;
3624
3625 path->slots[0]++;
3626 if (path->slots[0] < btrfs_header_nritems(path->nodes[0]))
3627 return 0;
3628
3629 ret = btrfs_next_leaf(inode->root, path);
3630 if (ret != 0)
3631 return ret;
3632
3633 /*
3634 * Don't bother with cloning if there are no more file extent items for
3635 * our inode.
3636 */
3637 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3638 if (key.objectid != btrfs_ino(inode) || key.type != BTRFS_EXTENT_DATA_KEY)
3639 return 1;
3640
3641 /* See the comment at fiemap_search_slot() about why we clone. */
3642 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3643 if (!clone)
3644 return -ENOMEM;
3645
3646 slot = path->slots[0];
3647 btrfs_release_path(path);
3648 path->nodes[0] = clone;
3649 path->slots[0] = slot;
3650
3651 return 0;
3652 }
3653
3654 /*
3655 * Search for the first file extent item that starts at a given file offset or
3656 * the one that starts immediately before that offset.
3657 * Returns: 0 on success, < 0 on error, 1 if not found.
3658 */
fiemap_search_slot(struct btrfs_inode * inode,struct btrfs_path * path,u64 file_offset)3659 static int fiemap_search_slot(struct btrfs_inode *inode, struct btrfs_path *path,
3660 u64 file_offset)
3661 {
3662 const u64 ino = btrfs_ino(inode);
3663 struct btrfs_root *root = inode->root;
3664 struct extent_buffer *clone;
3665 struct btrfs_key key;
3666 int slot;
3667 int ret;
3668
3669 key.objectid = ino;
3670 key.type = BTRFS_EXTENT_DATA_KEY;
3671 key.offset = file_offset;
3672
3673 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3674 if (ret < 0)
3675 return ret;
3676
3677 if (ret > 0 && path->slots[0] > 0) {
3678 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3679 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3680 path->slots[0]--;
3681 }
3682
3683 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3684 ret = btrfs_next_leaf(root, path);
3685 if (ret != 0)
3686 return ret;
3687
3688 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3689 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3690 return 1;
3691 }
3692
3693 /*
3694 * We clone the leaf and use it during fiemap. This is because while
3695 * using the leaf we do expensive things like checking if an extent is
3696 * shared, which can take a long time. In order to prevent blocking
3697 * other tasks for too long, we use a clone of the leaf. We have locked
3698 * the file range in the inode's io tree, so we know none of our file
3699 * extent items can change. This way we avoid blocking other tasks that
3700 * want to insert items for other inodes in the same leaf or b+tree
3701 * rebalance operations (triggered for example when someone is trying
3702 * to push items into this leaf when trying to insert an item in a
3703 * neighbour leaf).
3704 * We also need the private clone because holding a read lock on an
3705 * extent buffer of the subvolume's b+tree will make lockdep unhappy
3706 * when we call fiemap_fill_next_extent(), because that may cause a page
3707 * fault when filling the user space buffer with fiemap data.
3708 */
3709 clone = btrfs_clone_extent_buffer(path->nodes[0]);
3710 if (!clone)
3711 return -ENOMEM;
3712
3713 slot = path->slots[0];
3714 btrfs_release_path(path);
3715 path->nodes[0] = clone;
3716 path->slots[0] = slot;
3717
3718 return 0;
3719 }
3720
3721 /*
3722 * Process a range which is a hole or a prealloc extent in the inode's subvolume
3723 * btree. If @disk_bytenr is 0, we are dealing with a hole, otherwise a prealloc
3724 * extent. The end offset (@end) is inclusive.
3725 */
fiemap_process_hole(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,struct btrfs_backref_shared_cache * backref_cache,u64 disk_bytenr,u64 extent_offset,u64 extent_gen,struct ulist * roots,struct ulist * tmp_ulist,u64 start,u64 end)3726 static int fiemap_process_hole(struct btrfs_inode *inode,
3727 struct fiemap_extent_info *fieinfo,
3728 struct fiemap_cache *cache,
3729 struct btrfs_backref_shared_cache *backref_cache,
3730 u64 disk_bytenr, u64 extent_offset,
3731 u64 extent_gen,
3732 struct ulist *roots, struct ulist *tmp_ulist,
3733 u64 start, u64 end)
3734 {
3735 const u64 i_size = i_size_read(&inode->vfs_inode);
3736 const u64 ino = btrfs_ino(inode);
3737 u64 cur_offset = start;
3738 u64 last_delalloc_end = 0;
3739 u32 prealloc_flags = FIEMAP_EXTENT_UNWRITTEN;
3740 bool checked_extent_shared = false;
3741 int ret;
3742
3743 /*
3744 * There can be no delalloc past i_size, so don't waste time looking for
3745 * it beyond i_size.
3746 */
3747 while (cur_offset < end && cur_offset < i_size) {
3748 u64 delalloc_start;
3749 u64 delalloc_end;
3750 u64 prealloc_start;
3751 u64 prealloc_len = 0;
3752 bool delalloc;
3753
3754 delalloc = btrfs_find_delalloc_in_range(inode, cur_offset, end,
3755 &delalloc_start,
3756 &delalloc_end);
3757 if (!delalloc)
3758 break;
3759
3760 /*
3761 * If this is a prealloc extent we have to report every section
3762 * of it that has no delalloc.
3763 */
3764 if (disk_bytenr != 0) {
3765 if (last_delalloc_end == 0) {
3766 prealloc_start = start;
3767 prealloc_len = delalloc_start - start;
3768 } else {
3769 prealloc_start = last_delalloc_end + 1;
3770 prealloc_len = delalloc_start - prealloc_start;
3771 }
3772 }
3773
3774 if (prealloc_len > 0) {
3775 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3776 ret = btrfs_is_data_extent_shared(inode->root,
3777 ino, disk_bytenr,
3778 extent_gen, roots,
3779 tmp_ulist,
3780 backref_cache);
3781 if (ret < 0)
3782 return ret;
3783 else if (ret > 0)
3784 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3785
3786 checked_extent_shared = true;
3787 }
3788 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3789 disk_bytenr + extent_offset,
3790 prealloc_len, prealloc_flags);
3791 if (ret)
3792 return ret;
3793 extent_offset += prealloc_len;
3794 }
3795
3796 ret = emit_fiemap_extent(fieinfo, cache, delalloc_start, 0,
3797 delalloc_end + 1 - delalloc_start,
3798 FIEMAP_EXTENT_DELALLOC |
3799 FIEMAP_EXTENT_UNKNOWN);
3800 if (ret)
3801 return ret;
3802
3803 last_delalloc_end = delalloc_end;
3804 cur_offset = delalloc_end + 1;
3805 extent_offset += cur_offset - delalloc_start;
3806 cond_resched();
3807 }
3808
3809 /*
3810 * Either we found no delalloc for the whole prealloc extent or we have
3811 * a prealloc extent that spans i_size or starts at or after i_size.
3812 */
3813 if (disk_bytenr != 0 && last_delalloc_end < end) {
3814 u64 prealloc_start;
3815 u64 prealloc_len;
3816
3817 if (last_delalloc_end == 0) {
3818 prealloc_start = start;
3819 prealloc_len = end + 1 - start;
3820 } else {
3821 prealloc_start = last_delalloc_end + 1;
3822 prealloc_len = end + 1 - prealloc_start;
3823 }
3824
3825 if (!checked_extent_shared && fieinfo->fi_extents_max) {
3826 ret = btrfs_is_data_extent_shared(inode->root,
3827 ino, disk_bytenr,
3828 extent_gen, roots,
3829 tmp_ulist,
3830 backref_cache);
3831 if (ret < 0)
3832 return ret;
3833 else if (ret > 0)
3834 prealloc_flags |= FIEMAP_EXTENT_SHARED;
3835 }
3836 ret = emit_fiemap_extent(fieinfo, cache, prealloc_start,
3837 disk_bytenr + extent_offset,
3838 prealloc_len, prealloc_flags);
3839 if (ret)
3840 return ret;
3841 }
3842
3843 return 0;
3844 }
3845
fiemap_find_last_extent_offset(struct btrfs_inode * inode,struct btrfs_path * path,u64 * last_extent_end_ret)3846 static int fiemap_find_last_extent_offset(struct btrfs_inode *inode,
3847 struct btrfs_path *path,
3848 u64 *last_extent_end_ret)
3849 {
3850 const u64 ino = btrfs_ino(inode);
3851 struct btrfs_root *root = inode->root;
3852 struct extent_buffer *leaf;
3853 struct btrfs_file_extent_item *ei;
3854 struct btrfs_key key;
3855 u64 disk_bytenr;
3856 int ret;
3857
3858 /*
3859 * Lookup the last file extent. We're not using i_size here because
3860 * there might be preallocation past i_size.
3861 */
3862 ret = btrfs_lookup_file_extent(NULL, root, path, ino, (u64)-1, 0);
3863 /* There can't be a file extent item at offset (u64)-1 */
3864 ASSERT(ret != 0);
3865 if (ret < 0)
3866 return ret;
3867
3868 /*
3869 * For a non-existing key, btrfs_search_slot() always leaves us at a
3870 * slot > 0, except if the btree is empty, which is impossible because
3871 * at least it has the inode item for this inode and all the items for
3872 * the root inode 256.
3873 */
3874 ASSERT(path->slots[0] > 0);
3875 path->slots[0]--;
3876 leaf = path->nodes[0];
3877 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3878 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
3879 /* No file extent items in the subvolume tree. */
3880 *last_extent_end_ret = 0;
3881 return 0;
3882 }
3883
3884 /*
3885 * For an inline extent, the disk_bytenr is where inline data starts at,
3886 * so first check if we have an inline extent item before checking if we
3887 * have an implicit hole (disk_bytenr == 0).
3888 */
3889 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
3890 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_INLINE) {
3891 *last_extent_end_ret = btrfs_file_extent_end(path);
3892 return 0;
3893 }
3894
3895 /*
3896 * Find the last file extent item that is not a hole (when NO_HOLES is
3897 * not enabled). This should take at most 2 iterations in the worst
3898 * case: we have one hole file extent item at slot 0 of a leaf and
3899 * another hole file extent item as the last item in the previous leaf.
3900 * This is because we merge file extent items that represent holes.
3901 */
3902 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3903 while (disk_bytenr == 0) {
3904 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
3905 if (ret < 0) {
3906 return ret;
3907 } else if (ret > 0) {
3908 /* No file extent items that are not holes. */
3909 *last_extent_end_ret = 0;
3910 return 0;
3911 }
3912 leaf = path->nodes[0];
3913 ei = btrfs_item_ptr(leaf, path->slots[0],
3914 struct btrfs_file_extent_item);
3915 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
3916 }
3917
3918 *last_extent_end_ret = btrfs_file_extent_end(path);
3919 return 0;
3920 }
3921
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)3922 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
3923 u64 start, u64 len)
3924 {
3925 const u64 ino = btrfs_ino(inode);
3926 struct extent_state *cached_state = NULL;
3927 struct btrfs_path *path;
3928 struct btrfs_root *root = inode->root;
3929 struct fiemap_cache cache = { 0 };
3930 struct btrfs_backref_shared_cache *backref_cache;
3931 struct ulist *roots;
3932 struct ulist *tmp_ulist;
3933 u64 last_extent_end;
3934 u64 prev_extent_end;
3935 u64 lockstart;
3936 u64 lockend;
3937 bool stopped = false;
3938 int ret;
3939
3940 backref_cache = kzalloc(sizeof(*backref_cache), GFP_KERNEL);
3941 path = btrfs_alloc_path();
3942 roots = ulist_alloc(GFP_KERNEL);
3943 tmp_ulist = ulist_alloc(GFP_KERNEL);
3944 if (!backref_cache || !path || !roots || !tmp_ulist) {
3945 ret = -ENOMEM;
3946 goto out;
3947 }
3948
3949 lockstart = round_down(start, root->fs_info->sectorsize);
3950 lockend = round_up(start + len, root->fs_info->sectorsize);
3951 prev_extent_end = lockstart;
3952
3953 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
3954 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3955
3956 ret = fiemap_find_last_extent_offset(inode, path, &last_extent_end);
3957 if (ret < 0)
3958 goto out_unlock;
3959 btrfs_release_path(path);
3960
3961 path->reada = READA_FORWARD;
3962 ret = fiemap_search_slot(inode, path, lockstart);
3963 if (ret < 0) {
3964 goto out_unlock;
3965 } else if (ret > 0) {
3966 /*
3967 * No file extent item found, but we may have delalloc between
3968 * the current offset and i_size. So check for that.
3969 */
3970 ret = 0;
3971 goto check_eof_delalloc;
3972 }
3973
3974 while (prev_extent_end < lockend) {
3975 struct extent_buffer *leaf = path->nodes[0];
3976 struct btrfs_file_extent_item *ei;
3977 struct btrfs_key key;
3978 u64 extent_end;
3979 u64 extent_len;
3980 u64 extent_offset = 0;
3981 u64 extent_gen;
3982 u64 disk_bytenr = 0;
3983 u64 flags = 0;
3984 int extent_type;
3985 u8 compression;
3986
3987 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3988 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3989 break;
3990
3991 extent_end = btrfs_file_extent_end(path);
3992
3993 /*
3994 * The first iteration can leave us at an extent item that ends
3995 * before our range's start. Move to the next item.
3996 */
3997 if (extent_end <= lockstart)
3998 goto next_item;
3999
4000 /* We have in implicit hole (NO_HOLES feature enabled). */
4001 if (prev_extent_end < key.offset) {
4002 const u64 range_end = min(key.offset, lockend) - 1;
4003
4004 ret = fiemap_process_hole(inode, fieinfo, &cache,
4005 backref_cache, 0, 0, 0,
4006 roots, tmp_ulist,
4007 prev_extent_end, range_end);
4008 if (ret < 0) {
4009 goto out_unlock;
4010 } else if (ret > 0) {
4011 /* fiemap_fill_next_extent() told us to stop. */
4012 stopped = true;
4013 break;
4014 }
4015
4016 /* We've reached the end of the fiemap range, stop. */
4017 if (key.offset >= lockend) {
4018 stopped = true;
4019 break;
4020 }
4021 }
4022
4023 extent_len = extent_end - key.offset;
4024 ei = btrfs_item_ptr(leaf, path->slots[0],
4025 struct btrfs_file_extent_item);
4026 compression = btrfs_file_extent_compression(leaf, ei);
4027 extent_type = btrfs_file_extent_type(leaf, ei);
4028 extent_gen = btrfs_file_extent_generation(leaf, ei);
4029
4030 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4031 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
4032 if (compression == BTRFS_COMPRESS_NONE)
4033 extent_offset = btrfs_file_extent_offset(leaf, ei);
4034 }
4035
4036 if (compression != BTRFS_COMPRESS_NONE)
4037 flags |= FIEMAP_EXTENT_ENCODED;
4038
4039 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4040 flags |= FIEMAP_EXTENT_DATA_INLINE;
4041 flags |= FIEMAP_EXTENT_NOT_ALIGNED;
4042 ret = emit_fiemap_extent(fieinfo, &cache, key.offset, 0,
4043 extent_len, flags);
4044 } else if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
4045 ret = fiemap_process_hole(inode, fieinfo, &cache,
4046 backref_cache,
4047 disk_bytenr, extent_offset,
4048 extent_gen, roots, tmp_ulist,
4049 key.offset, extent_end - 1);
4050 } else if (disk_bytenr == 0) {
4051 /* We have an explicit hole. */
4052 ret = fiemap_process_hole(inode, fieinfo, &cache,
4053 backref_cache, 0, 0, 0,
4054 roots, tmp_ulist,
4055 key.offset, extent_end - 1);
4056 } else {
4057 /* We have a regular extent. */
4058 if (fieinfo->fi_extents_max) {
4059 ret = btrfs_is_data_extent_shared(root, ino,
4060 disk_bytenr,
4061 extent_gen,
4062 roots,
4063 tmp_ulist,
4064 backref_cache);
4065 if (ret < 0)
4066 goto out_unlock;
4067 else if (ret > 0)
4068 flags |= FIEMAP_EXTENT_SHARED;
4069 }
4070
4071 ret = emit_fiemap_extent(fieinfo, &cache, key.offset,
4072 disk_bytenr + extent_offset,
4073 extent_len, flags);
4074 }
4075
4076 if (ret < 0) {
4077 goto out_unlock;
4078 } else if (ret > 0) {
4079 /* fiemap_fill_next_extent() told us to stop. */
4080 stopped = true;
4081 break;
4082 }
4083
4084 prev_extent_end = extent_end;
4085 next_item:
4086 if (fatal_signal_pending(current)) {
4087 ret = -EINTR;
4088 goto out_unlock;
4089 }
4090
4091 ret = fiemap_next_leaf_item(inode, path);
4092 if (ret < 0) {
4093 goto out_unlock;
4094 } else if (ret > 0) {
4095 /* No more file extent items for this inode. */
4096 break;
4097 }
4098 cond_resched();
4099 }
4100
4101 check_eof_delalloc:
4102 /*
4103 * Release (and free) the path before emitting any final entries to
4104 * fiemap_fill_next_extent() to keep lockdep happy. This is because
4105 * once we find no more file extent items exist, we may have a
4106 * non-cloned leaf, and fiemap_fill_next_extent() can trigger page
4107 * faults when copying data to the user space buffer.
4108 */
4109 btrfs_free_path(path);
4110 path = NULL;
4111
4112 if (!stopped && prev_extent_end < lockend) {
4113 ret = fiemap_process_hole(inode, fieinfo, &cache, backref_cache,
4114 0, 0, 0, roots, tmp_ulist,
4115 prev_extent_end, lockend - 1);
4116 if (ret < 0)
4117 goto out_unlock;
4118 prev_extent_end = lockend;
4119 }
4120
4121 if (cache.cached && cache.offset + cache.len >= last_extent_end) {
4122 const u64 i_size = i_size_read(&inode->vfs_inode);
4123
4124 if (prev_extent_end < i_size) {
4125 u64 delalloc_start;
4126 u64 delalloc_end;
4127 bool delalloc;
4128
4129 delalloc = btrfs_find_delalloc_in_range(inode,
4130 prev_extent_end,
4131 i_size - 1,
4132 &delalloc_start,
4133 &delalloc_end);
4134 if (!delalloc)
4135 cache.flags |= FIEMAP_EXTENT_LAST;
4136 } else {
4137 cache.flags |= FIEMAP_EXTENT_LAST;
4138 }
4139 }
4140
4141 ret = emit_last_fiemap_cache(fieinfo, &cache);
4142
4143 out_unlock:
4144 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
4145 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
4146 out:
4147 kfree(backref_cache);
4148 btrfs_free_path(path);
4149 ulist_free(roots);
4150 ulist_free(tmp_ulist);
4151 return ret;
4152 }
4153
__free_extent_buffer(struct extent_buffer * eb)4154 static void __free_extent_buffer(struct extent_buffer *eb)
4155 {
4156 kmem_cache_free(extent_buffer_cache, eb);
4157 }
4158
extent_buffer_under_io(const struct extent_buffer * eb)4159 int extent_buffer_under_io(const struct extent_buffer *eb)
4160 {
4161 return (atomic_read(&eb->io_pages) ||
4162 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4163 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4164 }
4165
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)4166 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
4167 {
4168 struct btrfs_subpage *subpage;
4169
4170 lockdep_assert_held(&page->mapping->private_lock);
4171
4172 if (PagePrivate(page)) {
4173 subpage = (struct btrfs_subpage *)page->private;
4174 if (atomic_read(&subpage->eb_refs))
4175 return true;
4176 /*
4177 * Even there is no eb refs here, we may still have
4178 * end_page_read() call relying on page::private.
4179 */
4180 if (atomic_read(&subpage->readers))
4181 return true;
4182 }
4183 return false;
4184 }
4185
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)4186 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
4187 {
4188 struct btrfs_fs_info *fs_info = eb->fs_info;
4189 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4190
4191 /*
4192 * For mapped eb, we're going to change the page private, which should
4193 * be done under the private_lock.
4194 */
4195 if (mapped)
4196 spin_lock(&page->mapping->private_lock);
4197
4198 if (!PagePrivate(page)) {
4199 if (mapped)
4200 spin_unlock(&page->mapping->private_lock);
4201 return;
4202 }
4203
4204 if (fs_info->nodesize >= PAGE_SIZE) {
4205 /*
4206 * We do this since we'll remove the pages after we've
4207 * removed the eb from the radix tree, so we could race
4208 * and have this page now attached to the new eb. So
4209 * only clear page_private if it's still connected to
4210 * this eb.
4211 */
4212 if (PagePrivate(page) &&
4213 page->private == (unsigned long)eb) {
4214 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4215 BUG_ON(PageDirty(page));
4216 BUG_ON(PageWriteback(page));
4217 /*
4218 * We need to make sure we haven't be attached
4219 * to a new eb.
4220 */
4221 detach_page_private(page);
4222 }
4223 if (mapped)
4224 spin_unlock(&page->mapping->private_lock);
4225 return;
4226 }
4227
4228 /*
4229 * For subpage, we can have dummy eb with page private. In this case,
4230 * we can directly detach the private as such page is only attached to
4231 * one dummy eb, no sharing.
4232 */
4233 if (!mapped) {
4234 btrfs_detach_subpage(fs_info, page);
4235 return;
4236 }
4237
4238 btrfs_page_dec_eb_refs(fs_info, page);
4239
4240 /*
4241 * We can only detach the page private if there are no other ebs in the
4242 * page range and no unfinished IO.
4243 */
4244 if (!page_range_has_eb(fs_info, page))
4245 btrfs_detach_subpage(fs_info, page);
4246
4247 spin_unlock(&page->mapping->private_lock);
4248 }
4249
4250 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)4251 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4252 {
4253 int i;
4254 int num_pages;
4255
4256 ASSERT(!extent_buffer_under_io(eb));
4257
4258 num_pages = num_extent_pages(eb);
4259 for (i = 0; i < num_pages; i++) {
4260 struct page *page = eb->pages[i];
4261
4262 if (!page)
4263 continue;
4264
4265 detach_extent_buffer_page(eb, page);
4266
4267 /* One for when we allocated the page */
4268 put_page(page);
4269 }
4270 }
4271
4272 /*
4273 * Helper for releasing the extent buffer.
4274 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4275 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4276 {
4277 btrfs_release_extent_buffer_pages(eb);
4278 btrfs_leak_debug_del_eb(eb);
4279 __free_extent_buffer(eb);
4280 }
4281
4282 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4283 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4284 unsigned long len)
4285 {
4286 struct extent_buffer *eb = NULL;
4287
4288 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4289 eb->start = start;
4290 eb->len = len;
4291 eb->fs_info = fs_info;
4292 eb->bflags = 0;
4293 init_rwsem(&eb->lock);
4294
4295 btrfs_leak_debug_add_eb(eb);
4296 INIT_LIST_HEAD(&eb->release_list);
4297
4298 spin_lock_init(&eb->refs_lock);
4299 atomic_set(&eb->refs, 1);
4300 atomic_set(&eb->io_pages, 0);
4301
4302 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
4303
4304 return eb;
4305 }
4306
btrfs_clone_extent_buffer(const struct extent_buffer * src)4307 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
4308 {
4309 int i;
4310 struct extent_buffer *new;
4311 int num_pages = num_extent_pages(src);
4312 int ret;
4313
4314 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4315 if (new == NULL)
4316 return NULL;
4317
4318 /*
4319 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
4320 * btrfs_release_extent_buffer() have different behavior for
4321 * UNMAPPED subpage extent buffer.
4322 */
4323 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4324
4325 memset(new->pages, 0, sizeof(*new->pages) * num_pages);
4326 ret = btrfs_alloc_page_array(num_pages, new->pages);
4327 if (ret) {
4328 btrfs_release_extent_buffer(new);
4329 return NULL;
4330 }
4331
4332 for (i = 0; i < num_pages; i++) {
4333 int ret;
4334 struct page *p = new->pages[i];
4335
4336 ret = attach_extent_buffer_page(new, p, NULL);
4337 if (ret < 0) {
4338 btrfs_release_extent_buffer(new);
4339 return NULL;
4340 }
4341 WARN_ON(PageDirty(p));
4342 copy_page(page_address(p), page_address(src->pages[i]));
4343 }
4344 set_extent_buffer_uptodate(new);
4345
4346 return new;
4347 }
4348
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4349 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4350 u64 start, unsigned long len)
4351 {
4352 struct extent_buffer *eb;
4353 int num_pages;
4354 int i;
4355 int ret;
4356
4357 eb = __alloc_extent_buffer(fs_info, start, len);
4358 if (!eb)
4359 return NULL;
4360
4361 num_pages = num_extent_pages(eb);
4362 ret = btrfs_alloc_page_array(num_pages, eb->pages);
4363 if (ret)
4364 goto err;
4365
4366 for (i = 0; i < num_pages; i++) {
4367 struct page *p = eb->pages[i];
4368
4369 ret = attach_extent_buffer_page(eb, p, NULL);
4370 if (ret < 0)
4371 goto err;
4372 }
4373
4374 set_extent_buffer_uptodate(eb);
4375 btrfs_set_header_nritems(eb, 0);
4376 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4377
4378 return eb;
4379 err:
4380 for (i = 0; i < num_pages; i++) {
4381 if (eb->pages[i]) {
4382 detach_extent_buffer_page(eb, eb->pages[i]);
4383 __free_page(eb->pages[i]);
4384 }
4385 }
4386 __free_extent_buffer(eb);
4387 return NULL;
4388 }
4389
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4390 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4391 u64 start)
4392 {
4393 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4394 }
4395
check_buffer_tree_ref(struct extent_buffer * eb)4396 static void check_buffer_tree_ref(struct extent_buffer *eb)
4397 {
4398 int refs;
4399 /*
4400 * The TREE_REF bit is first set when the extent_buffer is added
4401 * to the radix tree. It is also reset, if unset, when a new reference
4402 * is created by find_extent_buffer.
4403 *
4404 * It is only cleared in two cases: freeing the last non-tree
4405 * reference to the extent_buffer when its STALE bit is set or
4406 * calling release_folio when the tree reference is the only reference.
4407 *
4408 * In both cases, care is taken to ensure that the extent_buffer's
4409 * pages are not under io. However, release_folio can be concurrently
4410 * called with creating new references, which is prone to race
4411 * conditions between the calls to check_buffer_tree_ref in those
4412 * codepaths and clearing TREE_REF in try_release_extent_buffer.
4413 *
4414 * The actual lifetime of the extent_buffer in the radix tree is
4415 * adequately protected by the refcount, but the TREE_REF bit and
4416 * its corresponding reference are not. To protect against this
4417 * class of races, we call check_buffer_tree_ref from the codepaths
4418 * which trigger io after they set eb->io_pages. Note that once io is
4419 * initiated, TREE_REF can no longer be cleared, so that is the
4420 * moment at which any such race is best fixed.
4421 */
4422 refs = atomic_read(&eb->refs);
4423 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4424 return;
4425
4426 spin_lock(&eb->refs_lock);
4427 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4428 atomic_inc(&eb->refs);
4429 spin_unlock(&eb->refs_lock);
4430 }
4431
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4432 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4433 struct page *accessed)
4434 {
4435 int num_pages, i;
4436
4437 check_buffer_tree_ref(eb);
4438
4439 num_pages = num_extent_pages(eb);
4440 for (i = 0; i < num_pages; i++) {
4441 struct page *p = eb->pages[i];
4442
4443 if (p != accessed)
4444 mark_page_accessed(p);
4445 }
4446 }
4447
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4448 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4449 u64 start)
4450 {
4451 struct extent_buffer *eb;
4452
4453 eb = find_extent_buffer_nolock(fs_info, start);
4454 if (!eb)
4455 return NULL;
4456 /*
4457 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
4458 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
4459 * another task running free_extent_buffer() might have seen that flag
4460 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
4461 * writeback flags not set) and it's still in the tree (flag
4462 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
4463 * decrementing the extent buffer's reference count twice. So here we
4464 * could race and increment the eb's reference count, clear its stale
4465 * flag, mark it as dirty and drop our reference before the other task
4466 * finishes executing free_extent_buffer, which would later result in
4467 * an attempt to free an extent buffer that is dirty.
4468 */
4469 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4470 spin_lock(&eb->refs_lock);
4471 spin_unlock(&eb->refs_lock);
4472 }
4473 mark_extent_buffer_accessed(eb, NULL);
4474 return eb;
4475 }
4476
4477 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4478 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4479 u64 start)
4480 {
4481 struct extent_buffer *eb, *exists = NULL;
4482 int ret;
4483
4484 eb = find_extent_buffer(fs_info, start);
4485 if (eb)
4486 return eb;
4487 eb = alloc_dummy_extent_buffer(fs_info, start);
4488 if (!eb)
4489 return ERR_PTR(-ENOMEM);
4490 eb->fs_info = fs_info;
4491 again:
4492 ret = radix_tree_preload(GFP_NOFS);
4493 if (ret) {
4494 exists = ERR_PTR(ret);
4495 goto free_eb;
4496 }
4497 spin_lock(&fs_info->buffer_lock);
4498 ret = radix_tree_insert(&fs_info->buffer_radix,
4499 start >> fs_info->sectorsize_bits, eb);
4500 spin_unlock(&fs_info->buffer_lock);
4501 radix_tree_preload_end();
4502 if (ret == -EEXIST) {
4503 exists = find_extent_buffer(fs_info, start);
4504 if (exists)
4505 goto free_eb;
4506 else
4507 goto again;
4508 }
4509 check_buffer_tree_ref(eb);
4510 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4511
4512 return eb;
4513 free_eb:
4514 btrfs_release_extent_buffer(eb);
4515 return exists;
4516 }
4517 #endif
4518
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)4519 static struct extent_buffer *grab_extent_buffer(
4520 struct btrfs_fs_info *fs_info, struct page *page)
4521 {
4522 struct extent_buffer *exists;
4523
4524 /*
4525 * For subpage case, we completely rely on radix tree to ensure we
4526 * don't try to insert two ebs for the same bytenr. So here we always
4527 * return NULL and just continue.
4528 */
4529 if (fs_info->nodesize < PAGE_SIZE)
4530 return NULL;
4531
4532 /* Page not yet attached to an extent buffer */
4533 if (!PagePrivate(page))
4534 return NULL;
4535
4536 /*
4537 * We could have already allocated an eb for this page and attached one
4538 * so lets see if we can get a ref on the existing eb, and if we can we
4539 * know it's good and we can just return that one, else we know we can
4540 * just overwrite page->private.
4541 */
4542 exists = (struct extent_buffer *)page->private;
4543 if (atomic_inc_not_zero(&exists->refs))
4544 return exists;
4545
4546 WARN_ON(PageDirty(page));
4547 detach_page_private(page);
4548 return NULL;
4549 }
4550
check_eb_alignment(struct btrfs_fs_info * fs_info,u64 start)4551 static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
4552 {
4553 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4554 btrfs_err(fs_info, "bad tree block start %llu", start);
4555 return -EINVAL;
4556 }
4557
4558 if (fs_info->nodesize < PAGE_SIZE &&
4559 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
4560 btrfs_err(fs_info,
4561 "tree block crosses page boundary, start %llu nodesize %u",
4562 start, fs_info->nodesize);
4563 return -EINVAL;
4564 }
4565 if (fs_info->nodesize >= PAGE_SIZE &&
4566 !PAGE_ALIGNED(start)) {
4567 btrfs_err(fs_info,
4568 "tree block is not page aligned, start %llu nodesize %u",
4569 start, fs_info->nodesize);
4570 return -EINVAL;
4571 }
4572 return 0;
4573 }
4574
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)4575 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4576 u64 start, u64 owner_root, int level)
4577 {
4578 unsigned long len = fs_info->nodesize;
4579 int num_pages;
4580 int i;
4581 unsigned long index = start >> PAGE_SHIFT;
4582 struct extent_buffer *eb;
4583 struct extent_buffer *exists = NULL;
4584 struct page *p;
4585 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4586 u64 lockdep_owner = owner_root;
4587 int uptodate = 1;
4588 int ret;
4589
4590 if (check_eb_alignment(fs_info, start))
4591 return ERR_PTR(-EINVAL);
4592
4593 #if BITS_PER_LONG == 32
4594 if (start >= MAX_LFS_FILESIZE) {
4595 btrfs_err_rl(fs_info,
4596 "extent buffer %llu is beyond 32bit page cache limit", start);
4597 btrfs_err_32bit_limit(fs_info);
4598 return ERR_PTR(-EOVERFLOW);
4599 }
4600 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
4601 btrfs_warn_32bit_limit(fs_info);
4602 #endif
4603
4604 eb = find_extent_buffer(fs_info, start);
4605 if (eb)
4606 return eb;
4607
4608 eb = __alloc_extent_buffer(fs_info, start, len);
4609 if (!eb)
4610 return ERR_PTR(-ENOMEM);
4611
4612 /*
4613 * The reloc trees are just snapshots, so we need them to appear to be
4614 * just like any other fs tree WRT lockdep.
4615 */
4616 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
4617 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
4618
4619 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
4620
4621 num_pages = num_extent_pages(eb);
4622 for (i = 0; i < num_pages; i++, index++) {
4623 struct btrfs_subpage *prealloc = NULL;
4624
4625 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4626 if (!p) {
4627 exists = ERR_PTR(-ENOMEM);
4628 goto free_eb;
4629 }
4630
4631 /*
4632 * Preallocate page->private for subpage case, so that we won't
4633 * allocate memory with private_lock hold. The memory will be
4634 * freed by attach_extent_buffer_page() or freed manually if
4635 * we exit earlier.
4636 *
4637 * Although we have ensured one subpage eb can only have one
4638 * page, but it may change in the future for 16K page size
4639 * support, so we still preallocate the memory in the loop.
4640 */
4641 if (fs_info->nodesize < PAGE_SIZE) {
4642 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
4643 if (IS_ERR(prealloc)) {
4644 ret = PTR_ERR(prealloc);
4645 unlock_page(p);
4646 put_page(p);
4647 exists = ERR_PTR(ret);
4648 goto free_eb;
4649 }
4650 }
4651
4652 spin_lock(&mapping->private_lock);
4653 exists = grab_extent_buffer(fs_info, p);
4654 if (exists) {
4655 spin_unlock(&mapping->private_lock);
4656 unlock_page(p);
4657 put_page(p);
4658 mark_extent_buffer_accessed(exists, p);
4659 btrfs_free_subpage(prealloc);
4660 goto free_eb;
4661 }
4662 /* Should not fail, as we have preallocated the memory */
4663 ret = attach_extent_buffer_page(eb, p, prealloc);
4664 ASSERT(!ret);
4665 /*
4666 * To inform we have extra eb under allocation, so that
4667 * detach_extent_buffer_page() won't release the page private
4668 * when the eb hasn't yet been inserted into radix tree.
4669 *
4670 * The ref will be decreased when the eb released the page, in
4671 * detach_extent_buffer_page().
4672 * Thus needs no special handling in error path.
4673 */
4674 btrfs_page_inc_eb_refs(fs_info, p);
4675 spin_unlock(&mapping->private_lock);
4676
4677 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
4678 eb->pages[i] = p;
4679 if (!PageUptodate(p))
4680 uptodate = 0;
4681
4682 /*
4683 * We can't unlock the pages just yet since the extent buffer
4684 * hasn't been properly inserted in the radix tree, this
4685 * opens a race with btree_release_folio which can free a page
4686 * while we are still filling in all pages for the buffer and
4687 * we could crash.
4688 */
4689 }
4690 if (uptodate)
4691 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4692 again:
4693 ret = radix_tree_preload(GFP_NOFS);
4694 if (ret) {
4695 exists = ERR_PTR(ret);
4696 goto free_eb;
4697 }
4698
4699 spin_lock(&fs_info->buffer_lock);
4700 ret = radix_tree_insert(&fs_info->buffer_radix,
4701 start >> fs_info->sectorsize_bits, eb);
4702 spin_unlock(&fs_info->buffer_lock);
4703 radix_tree_preload_end();
4704 if (ret == -EEXIST) {
4705 exists = find_extent_buffer(fs_info, start);
4706 if (exists)
4707 goto free_eb;
4708 else
4709 goto again;
4710 }
4711 /* add one reference for the tree */
4712 check_buffer_tree_ref(eb);
4713 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4714
4715 /*
4716 * Now it's safe to unlock the pages because any calls to
4717 * btree_release_folio will correctly detect that a page belongs to a
4718 * live buffer and won't free them prematurely.
4719 */
4720 for (i = 0; i < num_pages; i++)
4721 unlock_page(eb->pages[i]);
4722 return eb;
4723
4724 free_eb:
4725 WARN_ON(!atomic_dec_and_test(&eb->refs));
4726 for (i = 0; i < num_pages; i++) {
4727 if (eb->pages[i])
4728 unlock_page(eb->pages[i]);
4729 }
4730
4731 btrfs_release_extent_buffer(eb);
4732 return exists;
4733 }
4734
btrfs_release_extent_buffer_rcu(struct rcu_head * head)4735 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4736 {
4737 struct extent_buffer *eb =
4738 container_of(head, struct extent_buffer, rcu_head);
4739
4740 __free_extent_buffer(eb);
4741 }
4742
release_extent_buffer(struct extent_buffer * eb)4743 static int release_extent_buffer(struct extent_buffer *eb)
4744 __releases(&eb->refs_lock)
4745 {
4746 lockdep_assert_held(&eb->refs_lock);
4747
4748 WARN_ON(atomic_read(&eb->refs) == 0);
4749 if (atomic_dec_and_test(&eb->refs)) {
4750 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4751 struct btrfs_fs_info *fs_info = eb->fs_info;
4752
4753 spin_unlock(&eb->refs_lock);
4754
4755 spin_lock(&fs_info->buffer_lock);
4756 radix_tree_delete(&fs_info->buffer_radix,
4757 eb->start >> fs_info->sectorsize_bits);
4758 spin_unlock(&fs_info->buffer_lock);
4759 } else {
4760 spin_unlock(&eb->refs_lock);
4761 }
4762
4763 btrfs_leak_debug_del_eb(eb);
4764 /* Should be safe to release our pages at this point */
4765 btrfs_release_extent_buffer_pages(eb);
4766 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4767 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
4768 __free_extent_buffer(eb);
4769 return 1;
4770 }
4771 #endif
4772 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4773 return 1;
4774 }
4775 spin_unlock(&eb->refs_lock);
4776
4777 return 0;
4778 }
4779
free_extent_buffer(struct extent_buffer * eb)4780 void free_extent_buffer(struct extent_buffer *eb)
4781 {
4782 int refs;
4783 if (!eb)
4784 return;
4785
4786 refs = atomic_read(&eb->refs);
4787 while (1) {
4788 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
4789 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
4790 refs == 1))
4791 break;
4792 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
4793 return;
4794 }
4795
4796 spin_lock(&eb->refs_lock);
4797 if (atomic_read(&eb->refs) == 2 &&
4798 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4799 !extent_buffer_under_io(eb) &&
4800 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4801 atomic_dec(&eb->refs);
4802
4803 /*
4804 * I know this is terrible, but it's temporary until we stop tracking
4805 * the uptodate bits and such for the extent buffers.
4806 */
4807 release_extent_buffer(eb);
4808 }
4809
free_extent_buffer_stale(struct extent_buffer * eb)4810 void free_extent_buffer_stale(struct extent_buffer *eb)
4811 {
4812 if (!eb)
4813 return;
4814
4815 spin_lock(&eb->refs_lock);
4816 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4817
4818 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4819 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4820 atomic_dec(&eb->refs);
4821 release_extent_buffer(eb);
4822 }
4823
btree_clear_page_dirty(struct page * page)4824 static void btree_clear_page_dirty(struct page *page)
4825 {
4826 ASSERT(PageDirty(page));
4827 ASSERT(PageLocked(page));
4828 clear_page_dirty_for_io(page);
4829 xa_lock_irq(&page->mapping->i_pages);
4830 if (!PageDirty(page))
4831 __xa_clear_mark(&page->mapping->i_pages,
4832 page_index(page), PAGECACHE_TAG_DIRTY);
4833 xa_unlock_irq(&page->mapping->i_pages);
4834 }
4835
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)4836 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
4837 {
4838 struct btrfs_fs_info *fs_info = eb->fs_info;
4839 struct page *page = eb->pages[0];
4840 bool last;
4841
4842 /* btree_clear_page_dirty() needs page locked */
4843 lock_page(page);
4844 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
4845 eb->len);
4846 if (last)
4847 btree_clear_page_dirty(page);
4848 unlock_page(page);
4849 WARN_ON(atomic_read(&eb->refs) == 0);
4850 }
4851
clear_extent_buffer_dirty(const struct extent_buffer * eb)4852 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
4853 {
4854 int i;
4855 int num_pages;
4856 struct page *page;
4857
4858 if (eb->fs_info->nodesize < PAGE_SIZE)
4859 return clear_subpage_extent_buffer_dirty(eb);
4860
4861 num_pages = num_extent_pages(eb);
4862
4863 for (i = 0; i < num_pages; i++) {
4864 page = eb->pages[i];
4865 if (!PageDirty(page))
4866 continue;
4867 lock_page(page);
4868 btree_clear_page_dirty(page);
4869 ClearPageError(page);
4870 unlock_page(page);
4871 }
4872 WARN_ON(atomic_read(&eb->refs) == 0);
4873 }
4874
set_extent_buffer_dirty(struct extent_buffer * eb)4875 bool set_extent_buffer_dirty(struct extent_buffer *eb)
4876 {
4877 int i;
4878 int num_pages;
4879 bool was_dirty;
4880
4881 check_buffer_tree_ref(eb);
4882
4883 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4884
4885 num_pages = num_extent_pages(eb);
4886 WARN_ON(atomic_read(&eb->refs) == 0);
4887 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4888
4889 if (!was_dirty) {
4890 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
4891
4892 /*
4893 * For subpage case, we can have other extent buffers in the
4894 * same page, and in clear_subpage_extent_buffer_dirty() we
4895 * have to clear page dirty without subpage lock held.
4896 * This can cause race where our page gets dirty cleared after
4897 * we just set it.
4898 *
4899 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
4900 * its page for other reasons, we can use page lock to prevent
4901 * the above race.
4902 */
4903 if (subpage)
4904 lock_page(eb->pages[0]);
4905 for (i = 0; i < num_pages; i++)
4906 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
4907 eb->start, eb->len);
4908 if (subpage)
4909 unlock_page(eb->pages[0]);
4910 }
4911 #ifdef CONFIG_BTRFS_DEBUG
4912 for (i = 0; i < num_pages; i++)
4913 ASSERT(PageDirty(eb->pages[i]));
4914 #endif
4915
4916 return was_dirty;
4917 }
4918
clear_extent_buffer_uptodate(struct extent_buffer * eb)4919 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
4920 {
4921 struct btrfs_fs_info *fs_info = eb->fs_info;
4922 struct page *page;
4923 int num_pages;
4924 int i;
4925
4926 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4927 num_pages = num_extent_pages(eb);
4928 for (i = 0; i < num_pages; i++) {
4929 page = eb->pages[i];
4930 if (!page)
4931 continue;
4932
4933 /*
4934 * This is special handling for metadata subpage, as regular
4935 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4936 */
4937 if (fs_info->nodesize >= PAGE_SIZE)
4938 ClearPageUptodate(page);
4939 else
4940 btrfs_subpage_clear_uptodate(fs_info, page, eb->start,
4941 eb->len);
4942 }
4943 }
4944
set_extent_buffer_uptodate(struct extent_buffer * eb)4945 void set_extent_buffer_uptodate(struct extent_buffer *eb)
4946 {
4947 struct btrfs_fs_info *fs_info = eb->fs_info;
4948 struct page *page;
4949 int num_pages;
4950 int i;
4951
4952 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4953 num_pages = num_extent_pages(eb);
4954 for (i = 0; i < num_pages; i++) {
4955 page = eb->pages[i];
4956
4957 /*
4958 * This is special handling for metadata subpage, as regular
4959 * btrfs_is_subpage() can not handle cloned/dummy metadata.
4960 */
4961 if (fs_info->nodesize >= PAGE_SIZE)
4962 SetPageUptodate(page);
4963 else
4964 btrfs_subpage_set_uptodate(fs_info, page, eb->start,
4965 eb->len);
4966 }
4967 }
4968
read_extent_buffer_subpage(struct extent_buffer * eb,int wait,int mirror_num)4969 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
4970 int mirror_num)
4971 {
4972 struct btrfs_fs_info *fs_info = eb->fs_info;
4973 struct extent_io_tree *io_tree;
4974 struct page *page = eb->pages[0];
4975 struct btrfs_bio_ctrl bio_ctrl = {
4976 .mirror_num = mirror_num,
4977 };
4978 int ret = 0;
4979
4980 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
4981 ASSERT(PagePrivate(page));
4982 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
4983
4984 if (wait == WAIT_NONE) {
4985 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
4986 return -EAGAIN;
4987 } else {
4988 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL);
4989 if (ret < 0)
4990 return ret;
4991 }
4992
4993 ret = 0;
4994 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
4995 PageUptodate(page) ||
4996 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
4997 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4998 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1, NULL);
4999 return ret;
5000 }
5001
5002 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5003 eb->read_mirror = 0;
5004 atomic_set(&eb->io_pages, 1);
5005 check_buffer_tree_ref(eb);
5006 bio_ctrl.end_io_func = end_bio_extent_readpage;
5007
5008 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
5009
5010 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
5011 ret = submit_extent_page(REQ_OP_READ, NULL, &bio_ctrl,
5012 eb->start, page, eb->len,
5013 eb->start - page_offset(page), 0, true);
5014 if (ret) {
5015 /*
5016 * In the endio function, if we hit something wrong we will
5017 * increase the io_pages, so here we need to decrease it for
5018 * error path.
5019 */
5020 atomic_dec(&eb->io_pages);
5021 }
5022 submit_one_bio(&bio_ctrl);
5023 if (ret || wait != WAIT_COMPLETE)
5024 return ret;
5025
5026 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
5027 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5028 ret = -EIO;
5029 return ret;
5030 }
5031
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)5032 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
5033 {
5034 int i;
5035 struct page *page;
5036 int err;
5037 int ret = 0;
5038 int locked_pages = 0;
5039 int all_uptodate = 1;
5040 int num_pages;
5041 unsigned long num_reads = 0;
5042 struct btrfs_bio_ctrl bio_ctrl = {
5043 .mirror_num = mirror_num,
5044 };
5045
5046 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5047 return 0;
5048
5049 /*
5050 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
5051 * operation, which could potentially still be in flight. In this case
5052 * we simply want to return an error.
5053 */
5054 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
5055 return -EIO;
5056
5057 if (eb->fs_info->nodesize < PAGE_SIZE)
5058 return read_extent_buffer_subpage(eb, wait, mirror_num);
5059
5060 num_pages = num_extent_pages(eb);
5061 for (i = 0; i < num_pages; i++) {
5062 page = eb->pages[i];
5063 if (wait == WAIT_NONE) {
5064 /*
5065 * WAIT_NONE is only utilized by readahead. If we can't
5066 * acquire the lock atomically it means either the eb
5067 * is being read out or under modification.
5068 * Either way the eb will be or has been cached,
5069 * readahead can exit safely.
5070 */
5071 if (!trylock_page(page))
5072 goto unlock_exit;
5073 } else {
5074 lock_page(page);
5075 }
5076 locked_pages++;
5077 }
5078 /*
5079 * We need to firstly lock all pages to make sure that
5080 * the uptodate bit of our pages won't be affected by
5081 * clear_extent_buffer_uptodate().
5082 */
5083 for (i = 0; i < num_pages; i++) {
5084 page = eb->pages[i];
5085 if (!PageUptodate(page)) {
5086 num_reads++;
5087 all_uptodate = 0;
5088 }
5089 }
5090
5091 if (all_uptodate) {
5092 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5093 goto unlock_exit;
5094 }
5095
5096 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5097 eb->read_mirror = 0;
5098 atomic_set(&eb->io_pages, num_reads);
5099 /*
5100 * It is possible for release_folio to clear the TREE_REF bit before we
5101 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5102 */
5103 check_buffer_tree_ref(eb);
5104 bio_ctrl.end_io_func = end_bio_extent_readpage;
5105 for (i = 0; i < num_pages; i++) {
5106 page = eb->pages[i];
5107
5108 if (!PageUptodate(page)) {
5109 if (ret) {
5110 atomic_dec(&eb->io_pages);
5111 unlock_page(page);
5112 continue;
5113 }
5114
5115 ClearPageError(page);
5116 err = submit_extent_page(REQ_OP_READ, NULL,
5117 &bio_ctrl, page_offset(page), page,
5118 PAGE_SIZE, 0, 0, false);
5119 if (err) {
5120 /*
5121 * We failed to submit the bio so it's the
5122 * caller's responsibility to perform cleanup
5123 * i.e unlock page/set error bit.
5124 */
5125 ret = err;
5126 SetPageError(page);
5127 unlock_page(page);
5128 atomic_dec(&eb->io_pages);
5129 }
5130 } else {
5131 unlock_page(page);
5132 }
5133 }
5134
5135 submit_one_bio(&bio_ctrl);
5136
5137 if (ret || wait != WAIT_COMPLETE)
5138 return ret;
5139
5140 for (i = 0; i < num_pages; i++) {
5141 page = eb->pages[i];
5142 wait_on_page_locked(page);
5143 if (!PageUptodate(page))
5144 ret = -EIO;
5145 }
5146
5147 return ret;
5148
5149 unlock_exit:
5150 while (locked_pages > 0) {
5151 locked_pages--;
5152 page = eb->pages[locked_pages];
5153 unlock_page(page);
5154 }
5155 return ret;
5156 }
5157
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5158 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
5159 unsigned long len)
5160 {
5161 btrfs_warn(eb->fs_info,
5162 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
5163 eb->start, eb->len, start, len);
5164 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
5165
5166 return true;
5167 }
5168
5169 /*
5170 * Check if the [start, start + len) range is valid before reading/writing
5171 * the eb.
5172 * NOTE: @start and @len are offset inside the eb, not logical address.
5173 *
5174 * Caller should not touch the dst/src memory if this function returns error.
5175 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)5176 static inline int check_eb_range(const struct extent_buffer *eb,
5177 unsigned long start, unsigned long len)
5178 {
5179 unsigned long offset;
5180
5181 /* start, start + len should not go beyond eb->len nor overflow */
5182 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
5183 return report_eb_range(eb, start, len);
5184
5185 return false;
5186 }
5187
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5188 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5189 unsigned long start, unsigned long len)
5190 {
5191 size_t cur;
5192 size_t offset;
5193 struct page *page;
5194 char *kaddr;
5195 char *dst = (char *)dstv;
5196 unsigned long i = get_eb_page_index(start);
5197
5198 if (check_eb_range(eb, start, len)) {
5199 /*
5200 * Invalid range hit, reset the memory, so callers won't get
5201 * some random garbage for their uninitialzed memory.
5202 */
5203 memset(dstv, 0, len);
5204 return;
5205 }
5206
5207 offset = get_eb_offset_in_page(eb, start);
5208
5209 while (len > 0) {
5210 page = eb->pages[i];
5211
5212 cur = min(len, (PAGE_SIZE - offset));
5213 kaddr = page_address(page);
5214 memcpy(dst, kaddr + offset, cur);
5215
5216 dst += cur;
5217 len -= cur;
5218 offset = 0;
5219 i++;
5220 }
5221 }
5222
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5223 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5224 void __user *dstv,
5225 unsigned long start, unsigned long len)
5226 {
5227 size_t cur;
5228 size_t offset;
5229 struct page *page;
5230 char *kaddr;
5231 char __user *dst = (char __user *)dstv;
5232 unsigned long i = get_eb_page_index(start);
5233 int ret = 0;
5234
5235 WARN_ON(start > eb->len);
5236 WARN_ON(start + len > eb->start + eb->len);
5237
5238 offset = get_eb_offset_in_page(eb, start);
5239
5240 while (len > 0) {
5241 page = eb->pages[i];
5242
5243 cur = min(len, (PAGE_SIZE - offset));
5244 kaddr = page_address(page);
5245 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
5246 ret = -EFAULT;
5247 break;
5248 }
5249
5250 dst += cur;
5251 len -= cur;
5252 offset = 0;
5253 i++;
5254 }
5255
5256 return ret;
5257 }
5258
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5259 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5260 unsigned long start, unsigned long len)
5261 {
5262 size_t cur;
5263 size_t offset;
5264 struct page *page;
5265 char *kaddr;
5266 char *ptr = (char *)ptrv;
5267 unsigned long i = get_eb_page_index(start);
5268 int ret = 0;
5269
5270 if (check_eb_range(eb, start, len))
5271 return -EINVAL;
5272
5273 offset = get_eb_offset_in_page(eb, start);
5274
5275 while (len > 0) {
5276 page = eb->pages[i];
5277
5278 cur = min(len, (PAGE_SIZE - offset));
5279
5280 kaddr = page_address(page);
5281 ret = memcmp(ptr, kaddr + offset, cur);
5282 if (ret)
5283 break;
5284
5285 ptr += cur;
5286 len -= cur;
5287 offset = 0;
5288 i++;
5289 }
5290 return ret;
5291 }
5292
5293 /*
5294 * Check that the extent buffer is uptodate.
5295 *
5296 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
5297 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
5298 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)5299 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
5300 struct page *page)
5301 {
5302 struct btrfs_fs_info *fs_info = eb->fs_info;
5303
5304 /*
5305 * If we are using the commit root we could potentially clear a page
5306 * Uptodate while we're using the extent buffer that we've previously
5307 * looked up. We don't want to complain in this case, as the page was
5308 * valid before, we just didn't write it out. Instead we want to catch
5309 * the case where we didn't actually read the block properly, which
5310 * would have !PageUptodate && !PageError, as we clear PageError before
5311 * reading.
5312 */
5313 if (fs_info->nodesize < PAGE_SIZE) {
5314 bool uptodate, error;
5315
5316 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
5317 eb->start, eb->len);
5318 error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
5319 WARN_ON(!uptodate && !error);
5320 } else {
5321 WARN_ON(!PageUptodate(page) && !PageError(page));
5322 }
5323 }
5324
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)5325 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
5326 const void *srcv)
5327 {
5328 char *kaddr;
5329
5330 assert_eb_page_uptodate(eb, eb->pages[0]);
5331 kaddr = page_address(eb->pages[0]) +
5332 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
5333 chunk_tree_uuid));
5334 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5335 }
5336
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)5337 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
5338 {
5339 char *kaddr;
5340
5341 assert_eb_page_uptodate(eb, eb->pages[0]);
5342 kaddr = page_address(eb->pages[0]) +
5343 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
5344 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
5345 }
5346
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5347 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
5348 unsigned long start, unsigned long len)
5349 {
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *src = (char *)srcv;
5355 unsigned long i = get_eb_page_index(start);
5356
5357 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
5358
5359 if (check_eb_range(eb, start, len))
5360 return;
5361
5362 offset = get_eb_offset_in_page(eb, start);
5363
5364 while (len > 0) {
5365 page = eb->pages[i];
5366 assert_eb_page_uptodate(eb, page);
5367
5368 cur = min(len, PAGE_SIZE - offset);
5369 kaddr = page_address(page);
5370 memcpy(kaddr + offset, src, cur);
5371
5372 src += cur;
5373 len -= cur;
5374 offset = 0;
5375 i++;
5376 }
5377 }
5378
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)5379 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
5380 unsigned long len)
5381 {
5382 size_t cur;
5383 size_t offset;
5384 struct page *page;
5385 char *kaddr;
5386 unsigned long i = get_eb_page_index(start);
5387
5388 if (check_eb_range(eb, start, len))
5389 return;
5390
5391 offset = get_eb_offset_in_page(eb, start);
5392
5393 while (len > 0) {
5394 page = eb->pages[i];
5395 assert_eb_page_uptodate(eb, page);
5396
5397 cur = min(len, PAGE_SIZE - offset);
5398 kaddr = page_address(page);
5399 memset(kaddr + offset, 0, cur);
5400
5401 len -= cur;
5402 offset = 0;
5403 i++;
5404 }
5405 }
5406
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)5407 void copy_extent_buffer_full(const struct extent_buffer *dst,
5408 const struct extent_buffer *src)
5409 {
5410 int i;
5411 int num_pages;
5412
5413 ASSERT(dst->len == src->len);
5414
5415 if (dst->fs_info->nodesize >= PAGE_SIZE) {
5416 num_pages = num_extent_pages(dst);
5417 for (i = 0; i < num_pages; i++)
5418 copy_page(page_address(dst->pages[i]),
5419 page_address(src->pages[i]));
5420 } else {
5421 size_t src_offset = get_eb_offset_in_page(src, 0);
5422 size_t dst_offset = get_eb_offset_in_page(dst, 0);
5423
5424 ASSERT(src->fs_info->nodesize < PAGE_SIZE);
5425 memcpy(page_address(dst->pages[0]) + dst_offset,
5426 page_address(src->pages[0]) + src_offset,
5427 src->len);
5428 }
5429 }
5430
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5431 void copy_extent_buffer(const struct extent_buffer *dst,
5432 const struct extent_buffer *src,
5433 unsigned long dst_offset, unsigned long src_offset,
5434 unsigned long len)
5435 {
5436 u64 dst_len = dst->len;
5437 size_t cur;
5438 size_t offset;
5439 struct page *page;
5440 char *kaddr;
5441 unsigned long i = get_eb_page_index(dst_offset);
5442
5443 if (check_eb_range(dst, dst_offset, len) ||
5444 check_eb_range(src, src_offset, len))
5445 return;
5446
5447 WARN_ON(src->len != dst_len);
5448
5449 offset = get_eb_offset_in_page(dst, dst_offset);
5450
5451 while (len > 0) {
5452 page = dst->pages[i];
5453 assert_eb_page_uptodate(dst, page);
5454
5455 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5456
5457 kaddr = page_address(page);
5458 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5459
5460 src_offset += cur;
5461 len -= cur;
5462 offset = 0;
5463 i++;
5464 }
5465 }
5466
5467 /*
5468 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5469 * given bit number
5470 * @eb: the extent buffer
5471 * @start: offset of the bitmap item in the extent buffer
5472 * @nr: bit number
5473 * @page_index: return index of the page in the extent buffer that contains the
5474 * given bit number
5475 * @page_offset: return offset into the page given by page_index
5476 *
5477 * This helper hides the ugliness of finding the byte in an extent buffer which
5478 * contains a given bit.
5479 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5480 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
5481 unsigned long start, unsigned long nr,
5482 unsigned long *page_index,
5483 size_t *page_offset)
5484 {
5485 size_t byte_offset = BIT_BYTE(nr);
5486 size_t offset;
5487
5488 /*
5489 * The byte we want is the offset of the extent buffer + the offset of
5490 * the bitmap item in the extent buffer + the offset of the byte in the
5491 * bitmap item.
5492 */
5493 offset = start + offset_in_page(eb->start) + byte_offset;
5494
5495 *page_index = offset >> PAGE_SHIFT;
5496 *page_offset = offset_in_page(offset);
5497 }
5498
5499 /**
5500 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5501 * @eb: the extent buffer
5502 * @start: offset of the bitmap item in the extent buffer
5503 * @nr: bit number to test
5504 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)5505 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
5506 unsigned long nr)
5507 {
5508 u8 *kaddr;
5509 struct page *page;
5510 unsigned long i;
5511 size_t offset;
5512
5513 eb_bitmap_offset(eb, start, nr, &i, &offset);
5514 page = eb->pages[i];
5515 assert_eb_page_uptodate(eb, page);
5516 kaddr = page_address(page);
5517 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5518 }
5519
5520 /**
5521 * extent_buffer_bitmap_set - set an area of a bitmap
5522 * @eb: the extent buffer
5523 * @start: offset of the bitmap item in the extent buffer
5524 * @pos: bit number of the first bit
5525 * @len: number of bits to set
5526 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5527 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
5528 unsigned long pos, unsigned long len)
5529 {
5530 u8 *kaddr;
5531 struct page *page;
5532 unsigned long i;
5533 size_t offset;
5534 const unsigned int size = pos + len;
5535 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5536 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5537
5538 eb_bitmap_offset(eb, start, pos, &i, &offset);
5539 page = eb->pages[i];
5540 assert_eb_page_uptodate(eb, page);
5541 kaddr = page_address(page);
5542
5543 while (len >= bits_to_set) {
5544 kaddr[offset] |= mask_to_set;
5545 len -= bits_to_set;
5546 bits_to_set = BITS_PER_BYTE;
5547 mask_to_set = ~0;
5548 if (++offset >= PAGE_SIZE && len > 0) {
5549 offset = 0;
5550 page = eb->pages[++i];
5551 assert_eb_page_uptodate(eb, page);
5552 kaddr = page_address(page);
5553 }
5554 }
5555 if (len) {
5556 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5557 kaddr[offset] |= mask_to_set;
5558 }
5559 }
5560
5561
5562 /**
5563 * extent_buffer_bitmap_clear - clear an area of a bitmap
5564 * @eb: the extent buffer
5565 * @start: offset of the bitmap item in the extent buffer
5566 * @pos: bit number of the first bit
5567 * @len: number of bits to clear
5568 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5569 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5570 unsigned long start, unsigned long pos,
5571 unsigned long len)
5572 {
5573 u8 *kaddr;
5574 struct page *page;
5575 unsigned long i;
5576 size_t offset;
5577 const unsigned int size = pos + len;
5578 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5579 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5580
5581 eb_bitmap_offset(eb, start, pos, &i, &offset);
5582 page = eb->pages[i];
5583 assert_eb_page_uptodate(eb, page);
5584 kaddr = page_address(page);
5585
5586 while (len >= bits_to_clear) {
5587 kaddr[offset] &= ~mask_to_clear;
5588 len -= bits_to_clear;
5589 bits_to_clear = BITS_PER_BYTE;
5590 mask_to_clear = ~0;
5591 if (++offset >= PAGE_SIZE && len > 0) {
5592 offset = 0;
5593 page = eb->pages[++i];
5594 assert_eb_page_uptodate(eb, page);
5595 kaddr = page_address(page);
5596 }
5597 }
5598 if (len) {
5599 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5600 kaddr[offset] &= ~mask_to_clear;
5601 }
5602 }
5603
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5604 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5605 {
5606 unsigned long distance = (src > dst) ? src - dst : dst - src;
5607 return distance < len;
5608 }
5609
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5610 static void copy_pages(struct page *dst_page, struct page *src_page,
5611 unsigned long dst_off, unsigned long src_off,
5612 unsigned long len)
5613 {
5614 char *dst_kaddr = page_address(dst_page);
5615 char *src_kaddr;
5616 int must_memmove = 0;
5617
5618 if (dst_page != src_page) {
5619 src_kaddr = page_address(src_page);
5620 } else {
5621 src_kaddr = dst_kaddr;
5622 if (areas_overlap(src_off, dst_off, len))
5623 must_memmove = 1;
5624 }
5625
5626 if (must_memmove)
5627 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5628 else
5629 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5630 }
5631
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5632 void memcpy_extent_buffer(const struct extent_buffer *dst,
5633 unsigned long dst_offset, unsigned long src_offset,
5634 unsigned long len)
5635 {
5636 size_t cur;
5637 size_t dst_off_in_page;
5638 size_t src_off_in_page;
5639 unsigned long dst_i;
5640 unsigned long src_i;
5641
5642 if (check_eb_range(dst, dst_offset, len) ||
5643 check_eb_range(dst, src_offset, len))
5644 return;
5645
5646 while (len > 0) {
5647 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
5648 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
5649
5650 dst_i = get_eb_page_index(dst_offset);
5651 src_i = get_eb_page_index(src_offset);
5652
5653 cur = min(len, (unsigned long)(PAGE_SIZE -
5654 src_off_in_page));
5655 cur = min_t(unsigned long, cur,
5656 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5657
5658 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5659 dst_off_in_page, src_off_in_page, cur);
5660
5661 src_offset += cur;
5662 dst_offset += cur;
5663 len -= cur;
5664 }
5665 }
5666
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5667 void memmove_extent_buffer(const struct extent_buffer *dst,
5668 unsigned long dst_offset, unsigned long src_offset,
5669 unsigned long len)
5670 {
5671 size_t cur;
5672 size_t dst_off_in_page;
5673 size_t src_off_in_page;
5674 unsigned long dst_end = dst_offset + len - 1;
5675 unsigned long src_end = src_offset + len - 1;
5676 unsigned long dst_i;
5677 unsigned long src_i;
5678
5679 if (check_eb_range(dst, dst_offset, len) ||
5680 check_eb_range(dst, src_offset, len))
5681 return;
5682 if (dst_offset < src_offset) {
5683 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5684 return;
5685 }
5686 while (len > 0) {
5687 dst_i = get_eb_page_index(dst_end);
5688 src_i = get_eb_page_index(src_end);
5689
5690 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
5691 src_off_in_page = get_eb_offset_in_page(dst, src_end);
5692
5693 cur = min_t(unsigned long, len, src_off_in_page + 1);
5694 cur = min(cur, dst_off_in_page + 1);
5695 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5696 dst_off_in_page - cur + 1,
5697 src_off_in_page - cur + 1, cur);
5698
5699 dst_end -= cur;
5700 src_end -= cur;
5701 len -= cur;
5702 }
5703 }
5704
5705 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)5706 static struct extent_buffer *get_next_extent_buffer(
5707 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
5708 {
5709 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
5710 struct extent_buffer *found = NULL;
5711 u64 page_start = page_offset(page);
5712 u64 cur = page_start;
5713
5714 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
5715 lockdep_assert_held(&fs_info->buffer_lock);
5716
5717 while (cur < page_start + PAGE_SIZE) {
5718 int ret;
5719 int i;
5720
5721 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
5722 (void **)gang, cur >> fs_info->sectorsize_bits,
5723 min_t(unsigned int, GANG_LOOKUP_SIZE,
5724 PAGE_SIZE / fs_info->nodesize));
5725 if (ret == 0)
5726 goto out;
5727 for (i = 0; i < ret; i++) {
5728 /* Already beyond page end */
5729 if (gang[i]->start >= page_start + PAGE_SIZE)
5730 goto out;
5731 /* Found one */
5732 if (gang[i]->start >= bytenr) {
5733 found = gang[i];
5734 goto out;
5735 }
5736 }
5737 cur = gang[ret - 1]->start + gang[ret - 1]->len;
5738 }
5739 out:
5740 return found;
5741 }
5742
try_release_subpage_extent_buffer(struct page * page)5743 static int try_release_subpage_extent_buffer(struct page *page)
5744 {
5745 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
5746 u64 cur = page_offset(page);
5747 const u64 end = page_offset(page) + PAGE_SIZE;
5748 int ret;
5749
5750 while (cur < end) {
5751 struct extent_buffer *eb = NULL;
5752
5753 /*
5754 * Unlike try_release_extent_buffer() which uses page->private
5755 * to grab buffer, for subpage case we rely on radix tree, thus
5756 * we need to ensure radix tree consistency.
5757 *
5758 * We also want an atomic snapshot of the radix tree, thus go
5759 * with spinlock rather than RCU.
5760 */
5761 spin_lock(&fs_info->buffer_lock);
5762 eb = get_next_extent_buffer(fs_info, page, cur);
5763 if (!eb) {
5764 /* No more eb in the page range after or at cur */
5765 spin_unlock(&fs_info->buffer_lock);
5766 break;
5767 }
5768 cur = eb->start + eb->len;
5769
5770 /*
5771 * The same as try_release_extent_buffer(), to ensure the eb
5772 * won't disappear out from under us.
5773 */
5774 spin_lock(&eb->refs_lock);
5775 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5776 spin_unlock(&eb->refs_lock);
5777 spin_unlock(&fs_info->buffer_lock);
5778 break;
5779 }
5780 spin_unlock(&fs_info->buffer_lock);
5781
5782 /*
5783 * If tree ref isn't set then we know the ref on this eb is a
5784 * real ref, so just return, this eb will likely be freed soon
5785 * anyway.
5786 */
5787 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5788 spin_unlock(&eb->refs_lock);
5789 break;
5790 }
5791
5792 /*
5793 * Here we don't care about the return value, we will always
5794 * check the page private at the end. And
5795 * release_extent_buffer() will release the refs_lock.
5796 */
5797 release_extent_buffer(eb);
5798 }
5799 /*
5800 * Finally to check if we have cleared page private, as if we have
5801 * released all ebs in the page, the page private should be cleared now.
5802 */
5803 spin_lock(&page->mapping->private_lock);
5804 if (!PagePrivate(page))
5805 ret = 1;
5806 else
5807 ret = 0;
5808 spin_unlock(&page->mapping->private_lock);
5809 return ret;
5810
5811 }
5812
try_release_extent_buffer(struct page * page)5813 int try_release_extent_buffer(struct page *page)
5814 {
5815 struct extent_buffer *eb;
5816
5817 if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
5818 return try_release_subpage_extent_buffer(page);
5819
5820 /*
5821 * We need to make sure nobody is changing page->private, as we rely on
5822 * page->private as the pointer to extent buffer.
5823 */
5824 spin_lock(&page->mapping->private_lock);
5825 if (!PagePrivate(page)) {
5826 spin_unlock(&page->mapping->private_lock);
5827 return 1;
5828 }
5829
5830 eb = (struct extent_buffer *)page->private;
5831 BUG_ON(!eb);
5832
5833 /*
5834 * This is a little awful but should be ok, we need to make sure that
5835 * the eb doesn't disappear out from under us while we're looking at
5836 * this page.
5837 */
5838 spin_lock(&eb->refs_lock);
5839 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5840 spin_unlock(&eb->refs_lock);
5841 spin_unlock(&page->mapping->private_lock);
5842 return 0;
5843 }
5844 spin_unlock(&page->mapping->private_lock);
5845
5846 /*
5847 * If tree ref isn't set then we know the ref on this eb is a real ref,
5848 * so just return, this page will likely be freed soon anyway.
5849 */
5850 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5851 spin_unlock(&eb->refs_lock);
5852 return 0;
5853 }
5854
5855 return release_extent_buffer(eb);
5856 }
5857
5858 /*
5859 * btrfs_readahead_tree_block - attempt to readahead a child block
5860 * @fs_info: the fs_info
5861 * @bytenr: bytenr to read
5862 * @owner_root: objectid of the root that owns this eb
5863 * @gen: generation for the uptodate check, can be 0
5864 * @level: level for the eb
5865 *
5866 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
5867 * normal uptodate check of the eb, without checking the generation. If we have
5868 * to read the block we will not block on anything.
5869 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)5870 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
5871 u64 bytenr, u64 owner_root, u64 gen, int level)
5872 {
5873 struct extent_buffer *eb;
5874 int ret;
5875
5876 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
5877 if (IS_ERR(eb))
5878 return;
5879
5880 if (btrfs_buffer_uptodate(eb, gen, 1)) {
5881 free_extent_buffer(eb);
5882 return;
5883 }
5884
5885 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
5886 if (ret < 0)
5887 free_extent_buffer_stale(eb);
5888 else
5889 free_extent_buffer(eb);
5890 }
5891
5892 /*
5893 * btrfs_readahead_node_child - readahead a node's child block
5894 * @node: parent node we're reading from
5895 * @slot: slot in the parent node for the child we want to read
5896 *
5897 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
5898 * the slot in the node provided.
5899 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)5900 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
5901 {
5902 btrfs_readahead_tree_block(node->fs_info,
5903 btrfs_node_blockptr(node, slot),
5904 btrfs_header_owner(node),
5905 btrfs_node_ptr_generation(node, slot),
5906 btrfs_header_level(node) - 1);
5907 }
5908