• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  fs/ext4/extents_status.c
4  *
5  * Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
6  * Modified by
7  *	Allison Henderson <achender@linux.vnet.ibm.com>
8  *	Hugh Dickins <hughd@google.com>
9  *	Zheng Liu <wenqing.lz@taobao.com>
10  *
11  * Ext4 extents status tree core functions.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include "ext4.h"
17 
18 #include <trace/events/ext4.h>
19 
20 /*
21  * According to previous discussion in Ext4 Developer Workshop, we
22  * will introduce a new structure called io tree to track all extent
23  * status in order to solve some problems that we have met
24  * (e.g. Reservation space warning), and provide extent-level locking.
25  * Delay extent tree is the first step to achieve this goal.  It is
26  * original built by Yongqiang Yang.  At that time it is called delay
27  * extent tree, whose goal is only track delayed extents in memory to
28  * simplify the implementation of fiemap and bigalloc, and introduce
29  * lseek SEEK_DATA/SEEK_HOLE support.  That is why it is still called
30  * delay extent tree at the first commit.  But for better understand
31  * what it does, it has been rename to extent status tree.
32  *
33  * Step1:
34  * Currently the first step has been done.  All delayed extents are
35  * tracked in the tree.  It maintains the delayed extent when a delayed
36  * allocation is issued, and the delayed extent is written out or
37  * invalidated.  Therefore the implementation of fiemap and bigalloc
38  * are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
39  *
40  * The following comment describes the implemenmtation of extent
41  * status tree and future works.
42  *
43  * Step2:
44  * In this step all extent status are tracked by extent status tree.
45  * Thus, we can first try to lookup a block mapping in this tree before
46  * finding it in extent tree.  Hence, single extent cache can be removed
47  * because extent status tree can do a better job.  Extents in status
48  * tree are loaded on-demand.  Therefore, the extent status tree may not
49  * contain all of the extents in a file.  Meanwhile we define a shrinker
50  * to reclaim memory from extent status tree because fragmented extent
51  * tree will make status tree cost too much memory.  written/unwritten/-
52  * hole extents in the tree will be reclaimed by this shrinker when we
53  * are under high memory pressure.  Delayed extents will not be
54  * reclimed because fiemap, bigalloc, and seek_data/hole need it.
55  */
56 
57 /*
58  * Extent status tree implementation for ext4.
59  *
60  *
61  * ==========================================================================
62  * Extent status tree tracks all extent status.
63  *
64  * 1. Why we need to implement extent status tree?
65  *
66  * Without extent status tree, ext4 identifies a delayed extent by looking
67  * up page cache, this has several deficiencies - complicated, buggy,
68  * and inefficient code.
69  *
70  * FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
71  * block or a range of blocks are belonged to a delayed extent.
72  *
73  * Let us have a look at how they do without extent status tree.
74  *   --	FIEMAP
75  *	FIEMAP looks up page cache to identify delayed allocations from holes.
76  *
77  *   --	SEEK_HOLE/DATA
78  *	SEEK_HOLE/DATA has the same problem as FIEMAP.
79  *
80  *   --	bigalloc
81  *	bigalloc looks up page cache to figure out if a block is
82  *	already under delayed allocation or not to determine whether
83  *	quota reserving is needed for the cluster.
84  *
85  *   --	writeout
86  *	Writeout looks up whole page cache to see if a buffer is
87  *	mapped, If there are not very many delayed buffers, then it is
88  *	time consuming.
89  *
90  * With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
91  * bigalloc and writeout can figure out if a block or a range of
92  * blocks is under delayed allocation(belonged to a delayed extent) or
93  * not by searching the extent tree.
94  *
95  *
96  * ==========================================================================
97  * 2. Ext4 extent status tree impelmentation
98  *
99  *   --	extent
100  *	A extent is a range of blocks which are contiguous logically and
101  *	physically.  Unlike extent in extent tree, this extent in ext4 is
102  *	a in-memory struct, there is no corresponding on-disk data.  There
103  *	is no limit on length of extent, so an extent can contain as many
104  *	blocks as they are contiguous logically and physically.
105  *
106  *   --	extent status tree
107  *	Every inode has an extent status tree and all allocation blocks
108  *	are added to the tree with different status.  The extent in the
109  *	tree are ordered by logical block no.
110  *
111  *   --	operations on a extent status tree
112  *	There are three important operations on a delayed extent tree: find
113  *	next extent, adding a extent(a range of blocks) and removing a extent.
114  *
115  *   --	race on a extent status tree
116  *	Extent status tree is protected by inode->i_es_lock.
117  *
118  *   --	memory consumption
119  *      Fragmented extent tree will make extent status tree cost too much
120  *      memory.  Hence, we will reclaim written/unwritten/hole extents from
121  *      the tree under a heavy memory pressure.
122  *
123  *
124  * ==========================================================================
125  * 3. Performance analysis
126  *
127  *   --	overhead
128  *	1. There is a cache extent for write access, so if writes are
129  *	not very random, adding space operaions are in O(1) time.
130  *
131  *   --	gain
132  *	2. Code is much simpler, more readable, more maintainable and
133  *	more efficient.
134  *
135  *
136  * ==========================================================================
137  * 4. TODO list
138  *
139  *   -- Refactor delayed space reservation
140  *
141  *   -- Extent-level locking
142  */
143 
144 static struct kmem_cache *ext4_es_cachep;
145 static struct kmem_cache *ext4_pending_cachep;
146 
147 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
148 			      struct extent_status *prealloc);
149 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
150 			      ext4_lblk_t end, int *reserved,
151 			      struct extent_status *prealloc);
152 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan);
153 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
154 		       struct ext4_inode_info *locked_ei);
155 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
156 			    ext4_lblk_t len,
157 			    struct pending_reservation **prealloc);
158 
ext4_init_es(void)159 int __init ext4_init_es(void)
160 {
161 	ext4_es_cachep = kmem_cache_create("ext4_extent_status",
162 					   sizeof(struct extent_status),
163 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
164 	if (ext4_es_cachep == NULL)
165 		return -ENOMEM;
166 	return 0;
167 }
168 
ext4_exit_es(void)169 void ext4_exit_es(void)
170 {
171 	kmem_cache_destroy(ext4_es_cachep);
172 }
173 
ext4_es_init_tree(struct ext4_es_tree * tree)174 void ext4_es_init_tree(struct ext4_es_tree *tree)
175 {
176 	tree->root = RB_ROOT;
177 	tree->cache_es = NULL;
178 }
179 
180 #ifdef ES_DEBUG__
ext4_es_print_tree(struct inode * inode)181 static void ext4_es_print_tree(struct inode *inode)
182 {
183 	struct ext4_es_tree *tree;
184 	struct rb_node *node;
185 
186 	printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
187 	tree = &EXT4_I(inode)->i_es_tree;
188 	node = rb_first(&tree->root);
189 	while (node) {
190 		struct extent_status *es;
191 		es = rb_entry(node, struct extent_status, rb_node);
192 		printk(KERN_DEBUG " [%u/%u) %llu %x",
193 		       es->es_lblk, es->es_len,
194 		       ext4_es_pblock(es), ext4_es_status(es));
195 		node = rb_next(node);
196 	}
197 	printk(KERN_DEBUG "\n");
198 }
199 #else
200 #define ext4_es_print_tree(inode)
201 #endif
202 
ext4_es_end(struct extent_status * es)203 static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
204 {
205 	BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
206 	return es->es_lblk + es->es_len - 1;
207 }
208 
209 /*
210  * search through the tree for an delayed extent with a given offset.  If
211  * it can't be found, try to find next extent.
212  */
__es_tree_search(struct rb_root * root,ext4_lblk_t lblk)213 static struct extent_status *__es_tree_search(struct rb_root *root,
214 					      ext4_lblk_t lblk)
215 {
216 	struct rb_node *node = root->rb_node;
217 	struct extent_status *es = NULL;
218 
219 	while (node) {
220 		es = rb_entry(node, struct extent_status, rb_node);
221 		if (lblk < es->es_lblk)
222 			node = node->rb_left;
223 		else if (lblk > ext4_es_end(es))
224 			node = node->rb_right;
225 		else
226 			return es;
227 	}
228 
229 	if (es && lblk < es->es_lblk)
230 		return es;
231 
232 	if (es && lblk > ext4_es_end(es)) {
233 		node = rb_next(&es->rb_node);
234 		return node ? rb_entry(node, struct extent_status, rb_node) :
235 			      NULL;
236 	}
237 
238 	return NULL;
239 }
240 
241 /*
242  * ext4_es_find_extent_range - find extent with specified status within block
243  *                             range or next extent following block range in
244  *                             extents status tree
245  *
246  * @inode - file containing the range
247  * @matching_fn - pointer to function that matches extents with desired status
248  * @lblk - logical block defining start of range
249  * @end - logical block defining end of range
250  * @es - extent found, if any
251  *
252  * Find the first extent within the block range specified by @lblk and @end
253  * in the extents status tree that satisfies @matching_fn.  If a match
254  * is found, it's returned in @es.  If not, and a matching extent is found
255  * beyond the block range, it's returned in @es.  If no match is found, an
256  * extent is returned in @es whose es_lblk, es_len, and es_pblk components
257  * are 0.
258  */
__es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)259 static void __es_find_extent_range(struct inode *inode,
260 				   int (*matching_fn)(struct extent_status *es),
261 				   ext4_lblk_t lblk, ext4_lblk_t end,
262 				   struct extent_status *es)
263 {
264 	struct ext4_es_tree *tree = NULL;
265 	struct extent_status *es1 = NULL;
266 	struct rb_node *node;
267 
268 	WARN_ON(es == NULL);
269 	WARN_ON(end < lblk);
270 
271 	tree = &EXT4_I(inode)->i_es_tree;
272 
273 	/* see if the extent has been cached */
274 	es->es_lblk = es->es_len = es->es_pblk = 0;
275 	es1 = READ_ONCE(tree->cache_es);
276 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
277 		es_debug("%u cached by [%u/%u) %llu %x\n",
278 			 lblk, es1->es_lblk, es1->es_len,
279 			 ext4_es_pblock(es1), ext4_es_status(es1));
280 		goto out;
281 	}
282 
283 	es1 = __es_tree_search(&tree->root, lblk);
284 
285 out:
286 	if (es1 && !matching_fn(es1)) {
287 		while ((node = rb_next(&es1->rb_node)) != NULL) {
288 			es1 = rb_entry(node, struct extent_status, rb_node);
289 			if (es1->es_lblk > end) {
290 				es1 = NULL;
291 				break;
292 			}
293 			if (matching_fn(es1))
294 				break;
295 		}
296 	}
297 
298 	if (es1 && matching_fn(es1)) {
299 		WRITE_ONCE(tree->cache_es, es1);
300 		es->es_lblk = es1->es_lblk;
301 		es->es_len = es1->es_len;
302 		es->es_pblk = es1->es_pblk;
303 	}
304 
305 }
306 
307 /*
308  * Locking for __es_find_extent_range() for external use
309  */
ext4_es_find_extent_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end,struct extent_status * es)310 void ext4_es_find_extent_range(struct inode *inode,
311 			       int (*matching_fn)(struct extent_status *es),
312 			       ext4_lblk_t lblk, ext4_lblk_t end,
313 			       struct extent_status *es)
314 {
315 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
316 		return;
317 
318 	trace_ext4_es_find_extent_range_enter(inode, lblk);
319 
320 	read_lock(&EXT4_I(inode)->i_es_lock);
321 	__es_find_extent_range(inode, matching_fn, lblk, end, es);
322 	read_unlock(&EXT4_I(inode)->i_es_lock);
323 
324 	trace_ext4_es_find_extent_range_exit(inode, es);
325 }
326 
327 /*
328  * __es_scan_range - search block range for block with specified status
329  *                   in extents status tree
330  *
331  * @inode - file containing the range
332  * @matching_fn - pointer to function that matches extents with desired status
333  * @lblk - logical block defining start of range
334  * @end - logical block defining end of range
335  *
336  * Returns true if at least one block in the specified block range satisfies
337  * the criterion specified by @matching_fn, and false if not.  If at least
338  * one extent has the specified status, then there is at least one block
339  * in the cluster with that status.  Should only be called by code that has
340  * taken i_es_lock.
341  */
__es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t start,ext4_lblk_t end)342 static bool __es_scan_range(struct inode *inode,
343 			    int (*matching_fn)(struct extent_status *es),
344 			    ext4_lblk_t start, ext4_lblk_t end)
345 {
346 	struct extent_status es;
347 
348 	__es_find_extent_range(inode, matching_fn, start, end, &es);
349 	if (es.es_len == 0)
350 		return false;   /* no matching extent in the tree */
351 	else if (es.es_lblk <= start &&
352 		 start < es.es_lblk + es.es_len)
353 		return true;
354 	else if (start <= es.es_lblk && es.es_lblk <= end)
355 		return true;
356 	else
357 		return false;
358 }
359 /*
360  * Locking for __es_scan_range() for external use
361  */
ext4_es_scan_range(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk,ext4_lblk_t end)362 bool ext4_es_scan_range(struct inode *inode,
363 			int (*matching_fn)(struct extent_status *es),
364 			ext4_lblk_t lblk, ext4_lblk_t end)
365 {
366 	bool ret;
367 
368 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
369 		return false;
370 
371 	read_lock(&EXT4_I(inode)->i_es_lock);
372 	ret = __es_scan_range(inode, matching_fn, lblk, end);
373 	read_unlock(&EXT4_I(inode)->i_es_lock);
374 
375 	return ret;
376 }
377 
378 /*
379  * __es_scan_clu - search cluster for block with specified status in
380  *                 extents status tree
381  *
382  * @inode - file containing the cluster
383  * @matching_fn - pointer to function that matches extents with desired status
384  * @lblk - logical block in cluster to be searched
385  *
386  * Returns true if at least one extent in the cluster containing @lblk
387  * satisfies the criterion specified by @matching_fn, and false if not.  If at
388  * least one extent has the specified status, then there is at least one block
389  * in the cluster with that status.  Should only be called by code that has
390  * taken i_es_lock.
391  */
__es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)392 static bool __es_scan_clu(struct inode *inode,
393 			  int (*matching_fn)(struct extent_status *es),
394 			  ext4_lblk_t lblk)
395 {
396 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
397 	ext4_lblk_t lblk_start, lblk_end;
398 
399 	lblk_start = EXT4_LBLK_CMASK(sbi, lblk);
400 	lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
401 
402 	return __es_scan_range(inode, matching_fn, lblk_start, lblk_end);
403 }
404 
405 /*
406  * Locking for __es_scan_clu() for external use
407  */
ext4_es_scan_clu(struct inode * inode,int (* matching_fn)(struct extent_status * es),ext4_lblk_t lblk)408 bool ext4_es_scan_clu(struct inode *inode,
409 		      int (*matching_fn)(struct extent_status *es),
410 		      ext4_lblk_t lblk)
411 {
412 	bool ret;
413 
414 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
415 		return false;
416 
417 	read_lock(&EXT4_I(inode)->i_es_lock);
418 	ret = __es_scan_clu(inode, matching_fn, lblk);
419 	read_unlock(&EXT4_I(inode)->i_es_lock);
420 
421 	return ret;
422 }
423 
ext4_es_list_add(struct inode * inode)424 static void ext4_es_list_add(struct inode *inode)
425 {
426 	struct ext4_inode_info *ei = EXT4_I(inode);
427 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
428 
429 	if (!list_empty(&ei->i_es_list))
430 		return;
431 
432 	spin_lock(&sbi->s_es_lock);
433 	if (list_empty(&ei->i_es_list)) {
434 		list_add_tail(&ei->i_es_list, &sbi->s_es_list);
435 		sbi->s_es_nr_inode++;
436 	}
437 	spin_unlock(&sbi->s_es_lock);
438 }
439 
ext4_es_list_del(struct inode * inode)440 static void ext4_es_list_del(struct inode *inode)
441 {
442 	struct ext4_inode_info *ei = EXT4_I(inode);
443 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
444 
445 	spin_lock(&sbi->s_es_lock);
446 	if (!list_empty(&ei->i_es_list)) {
447 		list_del_init(&ei->i_es_list);
448 		sbi->s_es_nr_inode--;
449 		WARN_ON_ONCE(sbi->s_es_nr_inode < 0);
450 	}
451 	spin_unlock(&sbi->s_es_lock);
452 }
453 
__alloc_pending(bool nofail)454 static inline struct pending_reservation *__alloc_pending(bool nofail)
455 {
456 	if (!nofail)
457 		return kmem_cache_alloc(ext4_pending_cachep, GFP_ATOMIC);
458 
459 	return kmem_cache_zalloc(ext4_pending_cachep, GFP_KERNEL | __GFP_NOFAIL);
460 }
461 
__free_pending(struct pending_reservation * pr)462 static inline void __free_pending(struct pending_reservation *pr)
463 {
464 	kmem_cache_free(ext4_pending_cachep, pr);
465 }
466 
467 /*
468  * Returns true if we cannot fail to allocate memory for this extent_status
469  * entry and cannot reclaim it until its status changes.
470  */
ext4_es_must_keep(struct extent_status * es)471 static inline bool ext4_es_must_keep(struct extent_status *es)
472 {
473 	/* fiemap, bigalloc, and seek_data/hole need to use it. */
474 	if (ext4_es_is_delayed(es))
475 		return true;
476 
477 	return false;
478 }
479 
__es_alloc_extent(bool nofail)480 static inline struct extent_status *__es_alloc_extent(bool nofail)
481 {
482 	if (!nofail)
483 		return kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
484 
485 	return kmem_cache_zalloc(ext4_es_cachep, GFP_KERNEL | __GFP_NOFAIL);
486 }
487 
ext4_es_init_extent(struct inode * inode,struct extent_status * es,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk)488 static void ext4_es_init_extent(struct inode *inode, struct extent_status *es,
489 		ext4_lblk_t lblk, ext4_lblk_t len, ext4_fsblk_t pblk)
490 {
491 	es->es_lblk = lblk;
492 	es->es_len = len;
493 	es->es_pblk = pblk;
494 
495 	/* We never try to reclaim a must kept extent, so we don't count it. */
496 	if (!ext4_es_must_keep(es)) {
497 		if (!EXT4_I(inode)->i_es_shk_nr++)
498 			ext4_es_list_add(inode);
499 		percpu_counter_inc(&EXT4_SB(inode->i_sb)->
500 					s_es_stats.es_stats_shk_cnt);
501 	}
502 
503 	EXT4_I(inode)->i_es_all_nr++;
504 	percpu_counter_inc(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
505 }
506 
__es_free_extent(struct extent_status * es)507 static inline void __es_free_extent(struct extent_status *es)
508 {
509 	kmem_cache_free(ext4_es_cachep, es);
510 }
511 
ext4_es_free_extent(struct inode * inode,struct extent_status * es)512 static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
513 {
514 	EXT4_I(inode)->i_es_all_nr--;
515 	percpu_counter_dec(&EXT4_SB(inode->i_sb)->s_es_stats.es_stats_all_cnt);
516 
517 	/* Decrease the shrink counter when we can reclaim the extent. */
518 	if (!ext4_es_must_keep(es)) {
519 		BUG_ON(EXT4_I(inode)->i_es_shk_nr == 0);
520 		if (!--EXT4_I(inode)->i_es_shk_nr)
521 			ext4_es_list_del(inode);
522 		percpu_counter_dec(&EXT4_SB(inode->i_sb)->
523 					s_es_stats.es_stats_shk_cnt);
524 	}
525 
526 	__es_free_extent(es);
527 }
528 
529 /*
530  * Check whether or not two extents can be merged
531  * Condition:
532  *  - logical block number is contiguous
533  *  - physical block number is contiguous
534  *  - status is equal
535  */
ext4_es_can_be_merged(struct extent_status * es1,struct extent_status * es2)536 static int ext4_es_can_be_merged(struct extent_status *es1,
537 				 struct extent_status *es2)
538 {
539 	if (ext4_es_type(es1) != ext4_es_type(es2))
540 		return 0;
541 
542 	if (((__u64) es1->es_len) + es2->es_len > EXT_MAX_BLOCKS) {
543 		pr_warn("ES assertion failed when merging extents. "
544 			"The sum of lengths of es1 (%d) and es2 (%d) "
545 			"is bigger than allowed file size (%d)\n",
546 			es1->es_len, es2->es_len, EXT_MAX_BLOCKS);
547 		WARN_ON(1);
548 		return 0;
549 	}
550 
551 	if (((__u64) es1->es_lblk) + es1->es_len != es2->es_lblk)
552 		return 0;
553 
554 	if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
555 	    (ext4_es_pblock(es1) + es1->es_len == ext4_es_pblock(es2)))
556 		return 1;
557 
558 	if (ext4_es_is_hole(es1))
559 		return 1;
560 
561 	/* we need to check delayed extent is without unwritten status */
562 	if (ext4_es_is_delayed(es1) && !ext4_es_is_unwritten(es1))
563 		return 1;
564 
565 	return 0;
566 }
567 
568 static struct extent_status *
ext4_es_try_to_merge_left(struct inode * inode,struct extent_status * es)569 ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
570 {
571 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
572 	struct extent_status *es1;
573 	struct rb_node *node;
574 
575 	node = rb_prev(&es->rb_node);
576 	if (!node)
577 		return es;
578 
579 	es1 = rb_entry(node, struct extent_status, rb_node);
580 	if (ext4_es_can_be_merged(es1, es)) {
581 		es1->es_len += es->es_len;
582 		if (ext4_es_is_referenced(es))
583 			ext4_es_set_referenced(es1);
584 		rb_erase(&es->rb_node, &tree->root);
585 		ext4_es_free_extent(inode, es);
586 		es = es1;
587 	}
588 
589 	return es;
590 }
591 
592 static struct extent_status *
ext4_es_try_to_merge_right(struct inode * inode,struct extent_status * es)593 ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
594 {
595 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
596 	struct extent_status *es1;
597 	struct rb_node *node;
598 
599 	node = rb_next(&es->rb_node);
600 	if (!node)
601 		return es;
602 
603 	es1 = rb_entry(node, struct extent_status, rb_node);
604 	if (ext4_es_can_be_merged(es, es1)) {
605 		es->es_len += es1->es_len;
606 		if (ext4_es_is_referenced(es1))
607 			ext4_es_set_referenced(es);
608 		rb_erase(node, &tree->root);
609 		ext4_es_free_extent(inode, es1);
610 	}
611 
612 	return es;
613 }
614 
615 #ifdef ES_AGGRESSIVE_TEST
616 #include "ext4_extents.h"	/* Needed when ES_AGGRESSIVE_TEST is defined */
617 
ext4_es_insert_extent_ext_check(struct inode * inode,struct extent_status * es)618 static void ext4_es_insert_extent_ext_check(struct inode *inode,
619 					    struct extent_status *es)
620 {
621 	struct ext4_ext_path *path = NULL;
622 	struct ext4_extent *ex;
623 	ext4_lblk_t ee_block;
624 	ext4_fsblk_t ee_start;
625 	unsigned short ee_len;
626 	int depth, ee_status, es_status;
627 
628 	path = ext4_find_extent(inode, es->es_lblk, NULL, EXT4_EX_NOCACHE);
629 	if (IS_ERR(path))
630 		return;
631 
632 	depth = ext_depth(inode);
633 	ex = path[depth].p_ext;
634 
635 	if (ex) {
636 
637 		ee_block = le32_to_cpu(ex->ee_block);
638 		ee_start = ext4_ext_pblock(ex);
639 		ee_len = ext4_ext_get_actual_len(ex);
640 
641 		ee_status = ext4_ext_is_unwritten(ex) ? 1 : 0;
642 		es_status = ext4_es_is_unwritten(es) ? 1 : 0;
643 
644 		/*
645 		 * Make sure ex and es are not overlap when we try to insert
646 		 * a delayed/hole extent.
647 		 */
648 		if (!ext4_es_is_written(es) && !ext4_es_is_unwritten(es)) {
649 			if (in_range(es->es_lblk, ee_block, ee_len)) {
650 				pr_warn("ES insert assertion failed for "
651 					"inode: %lu we can find an extent "
652 					"at block [%d/%d/%llu/%c], but we "
653 					"want to add a delayed/hole extent "
654 					"[%d/%d/%llu/%x]\n",
655 					inode->i_ino, ee_block, ee_len,
656 					ee_start, ee_status ? 'u' : 'w',
657 					es->es_lblk, es->es_len,
658 					ext4_es_pblock(es), ext4_es_status(es));
659 			}
660 			goto out;
661 		}
662 
663 		/*
664 		 * We don't check ee_block == es->es_lblk, etc. because es
665 		 * might be a part of whole extent, vice versa.
666 		 */
667 		if (es->es_lblk < ee_block ||
668 		    ext4_es_pblock(es) != ee_start + es->es_lblk - ee_block) {
669 			pr_warn("ES insert assertion failed for inode: %lu "
670 				"ex_status [%d/%d/%llu/%c] != "
671 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
672 				ee_block, ee_len, ee_start,
673 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
674 				ext4_es_pblock(es), es_status ? 'u' : 'w');
675 			goto out;
676 		}
677 
678 		if (ee_status ^ es_status) {
679 			pr_warn("ES insert assertion failed for inode: %lu "
680 				"ex_status [%d/%d/%llu/%c] != "
681 				"es_status [%d/%d/%llu/%c]\n", inode->i_ino,
682 				ee_block, ee_len, ee_start,
683 				ee_status ? 'u' : 'w', es->es_lblk, es->es_len,
684 				ext4_es_pblock(es), es_status ? 'u' : 'w');
685 		}
686 	} else {
687 		/*
688 		 * We can't find an extent on disk.  So we need to make sure
689 		 * that we don't want to add an written/unwritten extent.
690 		 */
691 		if (!ext4_es_is_delayed(es) && !ext4_es_is_hole(es)) {
692 			pr_warn("ES insert assertion failed for inode: %lu "
693 				"can't find an extent at block %d but we want "
694 				"to add a written/unwritten extent "
695 				"[%d/%d/%llu/%x]\n", inode->i_ino,
696 				es->es_lblk, es->es_lblk, es->es_len,
697 				ext4_es_pblock(es), ext4_es_status(es));
698 		}
699 	}
700 out:
701 	ext4_free_ext_path(path);
702 }
703 
ext4_es_insert_extent_ind_check(struct inode * inode,struct extent_status * es)704 static void ext4_es_insert_extent_ind_check(struct inode *inode,
705 					    struct extent_status *es)
706 {
707 	struct ext4_map_blocks map;
708 	int retval;
709 
710 	/*
711 	 * Here we call ext4_ind_map_blocks to lookup a block mapping because
712 	 * 'Indirect' structure is defined in indirect.c.  So we couldn't
713 	 * access direct/indirect tree from outside.  It is too dirty to define
714 	 * this function in indirect.c file.
715 	 */
716 
717 	map.m_lblk = es->es_lblk;
718 	map.m_len = es->es_len;
719 
720 	retval = ext4_ind_map_blocks(NULL, inode, &map, 0);
721 	if (retval > 0) {
722 		if (ext4_es_is_delayed(es) || ext4_es_is_hole(es)) {
723 			/*
724 			 * We want to add a delayed/hole extent but this
725 			 * block has been allocated.
726 			 */
727 			pr_warn("ES insert assertion failed for inode: %lu "
728 				"We can find blocks but we want to add a "
729 				"delayed/hole extent [%d/%d/%llu/%x]\n",
730 				inode->i_ino, es->es_lblk, es->es_len,
731 				ext4_es_pblock(es), ext4_es_status(es));
732 			return;
733 		} else if (ext4_es_is_written(es)) {
734 			if (retval != es->es_len) {
735 				pr_warn("ES insert assertion failed for "
736 					"inode: %lu retval %d != es_len %d\n",
737 					inode->i_ino, retval, es->es_len);
738 				return;
739 			}
740 			if (map.m_pblk != ext4_es_pblock(es)) {
741 				pr_warn("ES insert assertion failed for "
742 					"inode: %lu m_pblk %llu != "
743 					"es_pblk %llu\n",
744 					inode->i_ino, map.m_pblk,
745 					ext4_es_pblock(es));
746 				return;
747 			}
748 		} else {
749 			/*
750 			 * We don't need to check unwritten extent because
751 			 * indirect-based file doesn't have it.
752 			 */
753 			BUG();
754 		}
755 	} else if (retval == 0) {
756 		if (ext4_es_is_written(es)) {
757 			pr_warn("ES insert assertion failed for inode: %lu "
758 				"We can't find the block but we want to add "
759 				"a written extent [%d/%d/%llu/%x]\n",
760 				inode->i_ino, es->es_lblk, es->es_len,
761 				ext4_es_pblock(es), ext4_es_status(es));
762 			return;
763 		}
764 	}
765 }
766 
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)767 static inline void ext4_es_insert_extent_check(struct inode *inode,
768 					       struct extent_status *es)
769 {
770 	/*
771 	 * We don't need to worry about the race condition because
772 	 * caller takes i_data_sem locking.
773 	 */
774 	BUG_ON(!rwsem_is_locked(&EXT4_I(inode)->i_data_sem));
775 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
776 		ext4_es_insert_extent_ext_check(inode, es);
777 	else
778 		ext4_es_insert_extent_ind_check(inode, es);
779 }
780 #else
ext4_es_insert_extent_check(struct inode * inode,struct extent_status * es)781 static inline void ext4_es_insert_extent_check(struct inode *inode,
782 					       struct extent_status *es)
783 {
784 }
785 #endif
786 
__es_insert_extent(struct inode * inode,struct extent_status * newes,struct extent_status * prealloc)787 static int __es_insert_extent(struct inode *inode, struct extent_status *newes,
788 			      struct extent_status *prealloc)
789 {
790 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
791 	struct rb_node **p = &tree->root.rb_node;
792 	struct rb_node *parent = NULL;
793 	struct extent_status *es;
794 
795 	while (*p) {
796 		parent = *p;
797 		es = rb_entry(parent, struct extent_status, rb_node);
798 
799 		if (newes->es_lblk < es->es_lblk) {
800 			if (ext4_es_can_be_merged(newes, es)) {
801 				/*
802 				 * Here we can modify es_lblk directly
803 				 * because it isn't overlapped.
804 				 */
805 				es->es_lblk = newes->es_lblk;
806 				es->es_len += newes->es_len;
807 				if (ext4_es_is_written(es) ||
808 				    ext4_es_is_unwritten(es))
809 					ext4_es_store_pblock(es,
810 							     newes->es_pblk);
811 				es = ext4_es_try_to_merge_left(inode, es);
812 				goto out;
813 			}
814 			p = &(*p)->rb_left;
815 		} else if (newes->es_lblk > ext4_es_end(es)) {
816 			if (ext4_es_can_be_merged(es, newes)) {
817 				es->es_len += newes->es_len;
818 				es = ext4_es_try_to_merge_right(inode, es);
819 				goto out;
820 			}
821 			p = &(*p)->rb_right;
822 		} else {
823 			BUG();
824 			return -EINVAL;
825 		}
826 	}
827 
828 	if (prealloc)
829 		es = prealloc;
830 	else
831 		es = __es_alloc_extent(false);
832 	if (!es)
833 		return -ENOMEM;
834 	ext4_es_init_extent(inode, es, newes->es_lblk, newes->es_len,
835 			    newes->es_pblk);
836 
837 	rb_link_node(&es->rb_node, parent, p);
838 	rb_insert_color(&es->rb_node, &tree->root);
839 
840 out:
841 	tree->cache_es = es;
842 	return 0;
843 }
844 
845 /*
846  * ext4_es_insert_extent() adds information to an inode's extent
847  * status tree.
848  *
849  * Return 0 on success, error code on failure.
850  */
ext4_es_insert_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)851 int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
852 			  ext4_lblk_t len, ext4_fsblk_t pblk,
853 			  unsigned int status)
854 {
855 	struct extent_status newes;
856 	ext4_lblk_t end = lblk + len - 1;
857 	int err1 = 0, err2 = 0, err3 = 0;
858 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
859 	struct extent_status *es1 = NULL;
860 	struct extent_status *es2 = NULL;
861 	struct pending_reservation *pr = NULL;
862 	bool revise_pending = false;
863 
864 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
865 		return 0;
866 
867 	es_debug("add [%u/%u) %llu %x to extent status tree of inode %lu\n",
868 		 lblk, len, pblk, status, inode->i_ino);
869 
870 	if (!len)
871 		return 0;
872 
873 	BUG_ON(end < lblk);
874 
875 	if ((status & EXTENT_STATUS_DELAYED) &&
876 	    (status & EXTENT_STATUS_WRITTEN)) {
877 		ext4_warning(inode->i_sb, "Inserting extent [%u/%u] as "
878 				" delayed and written which can potentially "
879 				" cause data loss.", lblk, len);
880 		WARN_ON(1);
881 	}
882 
883 	newes.es_lblk = lblk;
884 	newes.es_len = len;
885 	ext4_es_store_pblock_status(&newes, pblk, status);
886 	trace_ext4_es_insert_extent(inode, &newes);
887 
888 	ext4_es_insert_extent_check(inode, &newes);
889 
890 	revise_pending = sbi->s_cluster_ratio > 1 &&
891 			 test_opt(inode->i_sb, DELALLOC) &&
892 			 (status & (EXTENT_STATUS_WRITTEN |
893 				    EXTENT_STATUS_UNWRITTEN));
894 retry:
895 	if (err1 && !es1)
896 		es1 = __es_alloc_extent(true);
897 	if ((err1 || err2) && !es2)
898 		es2 = __es_alloc_extent(true);
899 	if ((err1 || err2 || err3) && revise_pending && !pr)
900 		pr = __alloc_pending(true);
901 	write_lock(&EXT4_I(inode)->i_es_lock);
902 
903 	err1 = __es_remove_extent(inode, lblk, end, NULL, es1);
904 	if (err1 != 0)
905 		goto error;
906 	/* Free preallocated extent if it didn't get used. */
907 	if (es1) {
908 		if (!es1->es_len)
909 			__es_free_extent(es1);
910 		es1 = NULL;
911 	}
912 
913 	err2 = __es_insert_extent(inode, &newes, es2);
914 	if (err2 == -ENOMEM && !ext4_es_must_keep(&newes))
915 		err2 = 0;
916 	if (err2 != 0)
917 		goto error;
918 	/* Free preallocated extent if it didn't get used. */
919 	if (es2) {
920 		if (!es2->es_len)
921 			__es_free_extent(es2);
922 		es2 = NULL;
923 	}
924 
925 	if (revise_pending) {
926 		err3 = __revise_pending(inode, lblk, len, &pr);
927 		if (err3 != 0)
928 			goto error;
929 		if (pr) {
930 			__free_pending(pr);
931 			pr = NULL;
932 		}
933 	}
934 error:
935 	write_unlock(&EXT4_I(inode)->i_es_lock);
936 	if (err1 || err2 || err3)
937 		goto retry;
938 
939 	ext4_es_print_tree(inode);
940 	return 0;
941 }
942 
943 /*
944  * ext4_es_cache_extent() inserts information into the extent status
945  * tree if and only if there isn't information about the range in
946  * question already.
947  */
ext4_es_cache_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,ext4_fsblk_t pblk,unsigned int status)948 void ext4_es_cache_extent(struct inode *inode, ext4_lblk_t lblk,
949 			  ext4_lblk_t len, ext4_fsblk_t pblk,
950 			  unsigned int status)
951 {
952 	struct extent_status *es;
953 	struct extent_status newes;
954 	ext4_lblk_t end = lblk + len - 1;
955 
956 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
957 		return;
958 
959 	newes.es_lblk = lblk;
960 	newes.es_len = len;
961 	ext4_es_store_pblock_status(&newes, pblk, status);
962 	trace_ext4_es_cache_extent(inode, &newes);
963 
964 	if (!len)
965 		return;
966 
967 	BUG_ON(end < lblk);
968 
969 	write_lock(&EXT4_I(inode)->i_es_lock);
970 
971 	es = __es_tree_search(&EXT4_I(inode)->i_es_tree.root, lblk);
972 	if (!es || es->es_lblk > end)
973 		__es_insert_extent(inode, &newes, NULL);
974 	write_unlock(&EXT4_I(inode)->i_es_lock);
975 }
976 
977 /*
978  * ext4_es_lookup_extent() looks up an extent in extent status tree.
979  *
980  * ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
981  *
982  * Return: 1 on found, 0 on not
983  */
ext4_es_lookup_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t * next_lblk,struct extent_status * es)984 int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
985 			  ext4_lblk_t *next_lblk,
986 			  struct extent_status *es)
987 {
988 	struct ext4_es_tree *tree;
989 	struct ext4_es_stats *stats;
990 	struct extent_status *es1 = NULL;
991 	struct rb_node *node;
992 	int found = 0;
993 
994 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
995 		return 0;
996 
997 	trace_ext4_es_lookup_extent_enter(inode, lblk);
998 	es_debug("lookup extent in block %u\n", lblk);
999 
1000 	tree = &EXT4_I(inode)->i_es_tree;
1001 	read_lock(&EXT4_I(inode)->i_es_lock);
1002 
1003 	/* find extent in cache firstly */
1004 	es->es_lblk = es->es_len = es->es_pblk = 0;
1005 	es1 = READ_ONCE(tree->cache_es);
1006 	if (es1 && in_range(lblk, es1->es_lblk, es1->es_len)) {
1007 		es_debug("%u cached by [%u/%u)\n",
1008 			 lblk, es1->es_lblk, es1->es_len);
1009 		found = 1;
1010 		goto out;
1011 	}
1012 
1013 	node = tree->root.rb_node;
1014 	while (node) {
1015 		es1 = rb_entry(node, struct extent_status, rb_node);
1016 		if (lblk < es1->es_lblk)
1017 			node = node->rb_left;
1018 		else if (lblk > ext4_es_end(es1))
1019 			node = node->rb_right;
1020 		else {
1021 			found = 1;
1022 			break;
1023 		}
1024 	}
1025 
1026 out:
1027 	stats = &EXT4_SB(inode->i_sb)->s_es_stats;
1028 	if (found) {
1029 		BUG_ON(!es1);
1030 		es->es_lblk = es1->es_lblk;
1031 		es->es_len = es1->es_len;
1032 		es->es_pblk = es1->es_pblk;
1033 		if (!ext4_es_is_referenced(es1))
1034 			ext4_es_set_referenced(es1);
1035 		percpu_counter_inc(&stats->es_stats_cache_hits);
1036 		if (next_lblk) {
1037 			node = rb_next(&es1->rb_node);
1038 			if (node) {
1039 				es1 = rb_entry(node, struct extent_status,
1040 					       rb_node);
1041 				*next_lblk = es1->es_lblk;
1042 			} else
1043 				*next_lblk = 0;
1044 		}
1045 	} else {
1046 		percpu_counter_inc(&stats->es_stats_cache_misses);
1047 	}
1048 
1049 	read_unlock(&EXT4_I(inode)->i_es_lock);
1050 
1051 	trace_ext4_es_lookup_extent_exit(inode, es, found);
1052 	return found;
1053 }
1054 
1055 struct rsvd_count {
1056 	int ndelonly;
1057 	bool first_do_lblk_found;
1058 	ext4_lblk_t first_do_lblk;
1059 	ext4_lblk_t last_do_lblk;
1060 	struct extent_status *left_es;
1061 	bool partial;
1062 	ext4_lblk_t lclu;
1063 };
1064 
1065 /*
1066  * init_rsvd - initialize reserved count data before removing block range
1067  *	       in file from extent status tree
1068  *
1069  * @inode - file containing range
1070  * @lblk - first block in range
1071  * @es - pointer to first extent in range
1072  * @rc - pointer to reserved count data
1073  *
1074  * Assumes es is not NULL
1075  */
init_rsvd(struct inode * inode,ext4_lblk_t lblk,struct extent_status * es,struct rsvd_count * rc)1076 static void init_rsvd(struct inode *inode, ext4_lblk_t lblk,
1077 		      struct extent_status *es, struct rsvd_count *rc)
1078 {
1079 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1080 	struct rb_node *node;
1081 
1082 	rc->ndelonly = 0;
1083 
1084 	/*
1085 	 * for bigalloc, note the first delonly block in the range has not
1086 	 * been found, record the extent containing the block to the left of
1087 	 * the region to be removed, if any, and note that there's no partial
1088 	 * cluster to track
1089 	 */
1090 	if (sbi->s_cluster_ratio > 1) {
1091 		rc->first_do_lblk_found = false;
1092 		if (lblk > es->es_lblk) {
1093 			rc->left_es = es;
1094 		} else {
1095 			node = rb_prev(&es->rb_node);
1096 			rc->left_es = node ? rb_entry(node,
1097 						      struct extent_status,
1098 						      rb_node) : NULL;
1099 		}
1100 		rc->partial = false;
1101 	}
1102 }
1103 
1104 /*
1105  * count_rsvd - count the clusters containing delayed and not unwritten
1106  *		(delonly) blocks in a range within an extent and add to
1107  *	        the running tally in rsvd_count
1108  *
1109  * @inode - file containing extent
1110  * @lblk - first block in range
1111  * @len - length of range in blocks
1112  * @es - pointer to extent containing clusters to be counted
1113  * @rc - pointer to reserved count data
1114  *
1115  * Tracks partial clusters found at the beginning and end of extents so
1116  * they aren't overcounted when they span adjacent extents
1117  */
count_rsvd(struct inode * inode,ext4_lblk_t lblk,long len,struct extent_status * es,struct rsvd_count * rc)1118 static void count_rsvd(struct inode *inode, ext4_lblk_t lblk, long len,
1119 		       struct extent_status *es, struct rsvd_count *rc)
1120 {
1121 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1122 	ext4_lblk_t i, end, nclu;
1123 
1124 	if (!ext4_es_is_delonly(es))
1125 		return;
1126 
1127 	WARN_ON(len <= 0);
1128 
1129 	if (sbi->s_cluster_ratio == 1) {
1130 		rc->ndelonly += (int) len;
1131 		return;
1132 	}
1133 
1134 	/* bigalloc */
1135 
1136 	i = (lblk < es->es_lblk) ? es->es_lblk : lblk;
1137 	end = lblk + (ext4_lblk_t) len - 1;
1138 	end = (end > ext4_es_end(es)) ? ext4_es_end(es) : end;
1139 
1140 	/* record the first block of the first delonly extent seen */
1141 	if (!rc->first_do_lblk_found) {
1142 		rc->first_do_lblk = i;
1143 		rc->first_do_lblk_found = true;
1144 	}
1145 
1146 	/* update the last lblk in the region seen so far */
1147 	rc->last_do_lblk = end;
1148 
1149 	/*
1150 	 * if we're tracking a partial cluster and the current extent
1151 	 * doesn't start with it, count it and stop tracking
1152 	 */
1153 	if (rc->partial && (rc->lclu != EXT4_B2C(sbi, i))) {
1154 		rc->ndelonly++;
1155 		rc->partial = false;
1156 	}
1157 
1158 	/*
1159 	 * if the first cluster doesn't start on a cluster boundary but
1160 	 * ends on one, count it
1161 	 */
1162 	if (EXT4_LBLK_COFF(sbi, i) != 0) {
1163 		if (end >= EXT4_LBLK_CFILL(sbi, i)) {
1164 			rc->ndelonly++;
1165 			rc->partial = false;
1166 			i = EXT4_LBLK_CFILL(sbi, i) + 1;
1167 		}
1168 	}
1169 
1170 	/*
1171 	 * if the current cluster starts on a cluster boundary, count the
1172 	 * number of whole delonly clusters in the extent
1173 	 */
1174 	if ((i + sbi->s_cluster_ratio - 1) <= end) {
1175 		nclu = (end - i + 1) >> sbi->s_cluster_bits;
1176 		rc->ndelonly += nclu;
1177 		i += nclu << sbi->s_cluster_bits;
1178 	}
1179 
1180 	/*
1181 	 * start tracking a partial cluster if there's a partial at the end
1182 	 * of the current extent and we're not already tracking one
1183 	 */
1184 	if (!rc->partial && i <= end) {
1185 		rc->partial = true;
1186 		rc->lclu = EXT4_B2C(sbi, i);
1187 	}
1188 }
1189 
1190 /*
1191  * __pr_tree_search - search for a pending cluster reservation
1192  *
1193  * @root - root of pending reservation tree
1194  * @lclu - logical cluster to search for
1195  *
1196  * Returns the pending reservation for the cluster identified by @lclu
1197  * if found.  If not, returns a reservation for the next cluster if any,
1198  * and if not, returns NULL.
1199  */
__pr_tree_search(struct rb_root * root,ext4_lblk_t lclu)1200 static struct pending_reservation *__pr_tree_search(struct rb_root *root,
1201 						    ext4_lblk_t lclu)
1202 {
1203 	struct rb_node *node = root->rb_node;
1204 	struct pending_reservation *pr = NULL;
1205 
1206 	while (node) {
1207 		pr = rb_entry(node, struct pending_reservation, rb_node);
1208 		if (lclu < pr->lclu)
1209 			node = node->rb_left;
1210 		else if (lclu > pr->lclu)
1211 			node = node->rb_right;
1212 		else
1213 			return pr;
1214 	}
1215 	if (pr && lclu < pr->lclu)
1216 		return pr;
1217 	if (pr && lclu > pr->lclu) {
1218 		node = rb_next(&pr->rb_node);
1219 		return node ? rb_entry(node, struct pending_reservation,
1220 				       rb_node) : NULL;
1221 	}
1222 	return NULL;
1223 }
1224 
1225 /*
1226  * get_rsvd - calculates and returns the number of cluster reservations to be
1227  *	      released when removing a block range from the extent status tree
1228  *	      and releases any pending reservations within the range
1229  *
1230  * @inode - file containing block range
1231  * @end - last block in range
1232  * @right_es - pointer to extent containing next block beyond end or NULL
1233  * @rc - pointer to reserved count data
1234  *
1235  * The number of reservations to be released is equal to the number of
1236  * clusters containing delayed and not unwritten (delonly) blocks within
1237  * the range, minus the number of clusters still containing delonly blocks
1238  * at the ends of the range, and minus the number of pending reservations
1239  * within the range.
1240  */
get_rsvd(struct inode * inode,ext4_lblk_t end,struct extent_status * right_es,struct rsvd_count * rc)1241 static unsigned int get_rsvd(struct inode *inode, ext4_lblk_t end,
1242 			     struct extent_status *right_es,
1243 			     struct rsvd_count *rc)
1244 {
1245 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1246 	struct pending_reservation *pr;
1247 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1248 	struct rb_node *node;
1249 	ext4_lblk_t first_lclu, last_lclu;
1250 	bool left_delonly, right_delonly, count_pending;
1251 	struct extent_status *es;
1252 
1253 	if (sbi->s_cluster_ratio > 1) {
1254 		/* count any remaining partial cluster */
1255 		if (rc->partial)
1256 			rc->ndelonly++;
1257 
1258 		if (rc->ndelonly == 0)
1259 			return 0;
1260 
1261 		first_lclu = EXT4_B2C(sbi, rc->first_do_lblk);
1262 		last_lclu = EXT4_B2C(sbi, rc->last_do_lblk);
1263 
1264 		/*
1265 		 * decrease the delonly count by the number of clusters at the
1266 		 * ends of the range that still contain delonly blocks -
1267 		 * these clusters still need to be reserved
1268 		 */
1269 		left_delonly = right_delonly = false;
1270 
1271 		es = rc->left_es;
1272 		while (es && ext4_es_end(es) >=
1273 		       EXT4_LBLK_CMASK(sbi, rc->first_do_lblk)) {
1274 			if (ext4_es_is_delonly(es)) {
1275 				rc->ndelonly--;
1276 				left_delonly = true;
1277 				break;
1278 			}
1279 			node = rb_prev(&es->rb_node);
1280 			if (!node)
1281 				break;
1282 			es = rb_entry(node, struct extent_status, rb_node);
1283 		}
1284 		if (right_es && (!left_delonly || first_lclu != last_lclu)) {
1285 			if (end < ext4_es_end(right_es)) {
1286 				es = right_es;
1287 			} else {
1288 				node = rb_next(&right_es->rb_node);
1289 				es = node ? rb_entry(node, struct extent_status,
1290 						     rb_node) : NULL;
1291 			}
1292 			while (es && es->es_lblk <=
1293 			       EXT4_LBLK_CFILL(sbi, rc->last_do_lblk)) {
1294 				if (ext4_es_is_delonly(es)) {
1295 					rc->ndelonly--;
1296 					right_delonly = true;
1297 					break;
1298 				}
1299 				node = rb_next(&es->rb_node);
1300 				if (!node)
1301 					break;
1302 				es = rb_entry(node, struct extent_status,
1303 					      rb_node);
1304 			}
1305 		}
1306 
1307 		/*
1308 		 * Determine the block range that should be searched for
1309 		 * pending reservations, if any.  Clusters on the ends of the
1310 		 * original removed range containing delonly blocks are
1311 		 * excluded.  They've already been accounted for and it's not
1312 		 * possible to determine if an associated pending reservation
1313 		 * should be released with the information available in the
1314 		 * extents status tree.
1315 		 */
1316 		if (first_lclu == last_lclu) {
1317 			if (left_delonly | right_delonly)
1318 				count_pending = false;
1319 			else
1320 				count_pending = true;
1321 		} else {
1322 			if (left_delonly)
1323 				first_lclu++;
1324 			if (right_delonly)
1325 				last_lclu--;
1326 			if (first_lclu <= last_lclu)
1327 				count_pending = true;
1328 			else
1329 				count_pending = false;
1330 		}
1331 
1332 		/*
1333 		 * a pending reservation found between first_lclu and last_lclu
1334 		 * represents an allocated cluster that contained at least one
1335 		 * delonly block, so the delonly total must be reduced by one
1336 		 * for each pending reservation found and released
1337 		 */
1338 		if (count_pending) {
1339 			pr = __pr_tree_search(&tree->root, first_lclu);
1340 			while (pr && pr->lclu <= last_lclu) {
1341 				rc->ndelonly--;
1342 				node = rb_next(&pr->rb_node);
1343 				rb_erase(&pr->rb_node, &tree->root);
1344 				__free_pending(pr);
1345 				if (!node)
1346 					break;
1347 				pr = rb_entry(node, struct pending_reservation,
1348 					      rb_node);
1349 			}
1350 		}
1351 	}
1352 	return rc->ndelonly;
1353 }
1354 
1355 
1356 /*
1357  * __es_remove_extent - removes block range from extent status tree
1358  *
1359  * @inode - file containing range
1360  * @lblk - first block in range
1361  * @end - last block in range
1362  * @reserved - number of cluster reservations released
1363  * @prealloc - pre-allocated es to avoid memory allocation failures
1364  *
1365  * If @reserved is not NULL and delayed allocation is enabled, counts
1366  * block/cluster reservations freed by removing range and if bigalloc
1367  * enabled cancels pending reservations as needed. Returns 0 on success,
1368  * error code on failure.
1369  */
__es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t end,int * reserved,struct extent_status * prealloc)1370 static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1371 			      ext4_lblk_t end, int *reserved,
1372 			      struct extent_status *prealloc)
1373 {
1374 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
1375 	struct rb_node *node;
1376 	struct extent_status *es;
1377 	struct extent_status orig_es;
1378 	ext4_lblk_t len1, len2;
1379 	ext4_fsblk_t block;
1380 	int err = 0;
1381 	bool count_reserved = true;
1382 	struct rsvd_count rc;
1383 
1384 	if (reserved == NULL || !test_opt(inode->i_sb, DELALLOC))
1385 		count_reserved = false;
1386 
1387 	es = __es_tree_search(&tree->root, lblk);
1388 	if (!es)
1389 		goto out;
1390 	if (es->es_lblk > end)
1391 		goto out;
1392 
1393 	/* Simply invalidate cache_es. */
1394 	tree->cache_es = NULL;
1395 	if (count_reserved)
1396 		init_rsvd(inode, lblk, es, &rc);
1397 
1398 	orig_es.es_lblk = es->es_lblk;
1399 	orig_es.es_len = es->es_len;
1400 	orig_es.es_pblk = es->es_pblk;
1401 
1402 	len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
1403 	len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
1404 	if (len1 > 0)
1405 		es->es_len = len1;
1406 	if (len2 > 0) {
1407 		if (len1 > 0) {
1408 			struct extent_status newes;
1409 
1410 			newes.es_lblk = end + 1;
1411 			newes.es_len = len2;
1412 			block = 0x7FDEADBEEFULL;
1413 			if (ext4_es_is_written(&orig_es) ||
1414 			    ext4_es_is_unwritten(&orig_es))
1415 				block = ext4_es_pblock(&orig_es) +
1416 					orig_es.es_len - len2;
1417 			ext4_es_store_pblock_status(&newes, block,
1418 						    ext4_es_status(&orig_es));
1419 			err = __es_insert_extent(inode, &newes, prealloc);
1420 			if (err) {
1421 				if (!ext4_es_must_keep(&newes))
1422 					return 0;
1423 
1424 				es->es_lblk = orig_es.es_lblk;
1425 				es->es_len = orig_es.es_len;
1426 				goto out;
1427 			}
1428 		} else {
1429 			es->es_lblk = end + 1;
1430 			es->es_len = len2;
1431 			if (ext4_es_is_written(es) ||
1432 			    ext4_es_is_unwritten(es)) {
1433 				block = orig_es.es_pblk + orig_es.es_len - len2;
1434 				ext4_es_store_pblock(es, block);
1435 			}
1436 		}
1437 		if (count_reserved)
1438 			count_rsvd(inode, orig_es.es_lblk + len1,
1439 				   orig_es.es_len - len1 - len2, &orig_es, &rc);
1440 		goto out_get_reserved;
1441 	}
1442 
1443 	if (len1 > 0) {
1444 		if (count_reserved)
1445 			count_rsvd(inode, lblk, orig_es.es_len - len1,
1446 				   &orig_es, &rc);
1447 		node = rb_next(&es->rb_node);
1448 		if (node)
1449 			es = rb_entry(node, struct extent_status, rb_node);
1450 		else
1451 			es = NULL;
1452 	}
1453 
1454 	while (es && ext4_es_end(es) <= end) {
1455 		if (count_reserved)
1456 			count_rsvd(inode, es->es_lblk, es->es_len, es, &rc);
1457 		node = rb_next(&es->rb_node);
1458 		rb_erase(&es->rb_node, &tree->root);
1459 		ext4_es_free_extent(inode, es);
1460 		if (!node) {
1461 			es = NULL;
1462 			break;
1463 		}
1464 		es = rb_entry(node, struct extent_status, rb_node);
1465 	}
1466 
1467 	if (es && es->es_lblk < end + 1) {
1468 		ext4_lblk_t orig_len = es->es_len;
1469 
1470 		len1 = ext4_es_end(es) - end;
1471 		if (count_reserved)
1472 			count_rsvd(inode, es->es_lblk, orig_len - len1,
1473 				   es, &rc);
1474 		es->es_lblk = end + 1;
1475 		es->es_len = len1;
1476 		if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
1477 			block = es->es_pblk + orig_len - len1;
1478 			ext4_es_store_pblock(es, block);
1479 		}
1480 	}
1481 
1482 out_get_reserved:
1483 	if (count_reserved)
1484 		*reserved = get_rsvd(inode, end, es, &rc);
1485 out:
1486 	return err;
1487 }
1488 
1489 /*
1490  * ext4_es_remove_extent - removes block range from extent status tree
1491  *
1492  * @inode - file containing range
1493  * @lblk - first block in range
1494  * @len - number of blocks to remove
1495  *
1496  * Reduces block/cluster reservation count and for bigalloc cancels pending
1497  * reservations as needed. Returns 0 on success, error code on failure.
1498  */
ext4_es_remove_extent(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1499 int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
1500 			  ext4_lblk_t len)
1501 {
1502 	ext4_lblk_t end;
1503 	int err = 0;
1504 	int reserved = 0;
1505 	struct extent_status *es = NULL;
1506 
1507 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
1508 		return 0;
1509 
1510 	trace_ext4_es_remove_extent(inode, lblk, len);
1511 	es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
1512 		 lblk, len, inode->i_ino);
1513 
1514 	if (!len)
1515 		return err;
1516 
1517 	end = lblk + len - 1;
1518 	BUG_ON(end < lblk);
1519 
1520 retry:
1521 	if (err && !es)
1522 		es = __es_alloc_extent(true);
1523 	/*
1524 	 * ext4_clear_inode() depends on us taking i_es_lock unconditionally
1525 	 * so that we are sure __es_shrink() is done with the inode before it
1526 	 * is reclaimed.
1527 	 */
1528 	write_lock(&EXT4_I(inode)->i_es_lock);
1529 	err = __es_remove_extent(inode, lblk, end, &reserved, es);
1530 	/* Free preallocated extent if it didn't get used. */
1531 	if (es) {
1532 		if (!es->es_len)
1533 			__es_free_extent(es);
1534 		es = NULL;
1535 	}
1536 	write_unlock(&EXT4_I(inode)->i_es_lock);
1537 	if (err)
1538 		goto retry;
1539 
1540 	ext4_es_print_tree(inode);
1541 	ext4_da_release_space(inode, reserved);
1542 	return 0;
1543 }
1544 
__es_shrink(struct ext4_sb_info * sbi,int nr_to_scan,struct ext4_inode_info * locked_ei)1545 static int __es_shrink(struct ext4_sb_info *sbi, int nr_to_scan,
1546 		       struct ext4_inode_info *locked_ei)
1547 {
1548 	struct ext4_inode_info *ei;
1549 	struct ext4_es_stats *es_stats;
1550 	ktime_t start_time;
1551 	u64 scan_time;
1552 	int nr_to_walk;
1553 	int nr_shrunk = 0;
1554 	int retried = 0, nr_skipped = 0;
1555 
1556 	es_stats = &sbi->s_es_stats;
1557 	start_time = ktime_get();
1558 
1559 retry:
1560 	spin_lock(&sbi->s_es_lock);
1561 	nr_to_walk = sbi->s_es_nr_inode;
1562 	while (nr_to_walk-- > 0) {
1563 		if (list_empty(&sbi->s_es_list)) {
1564 			spin_unlock(&sbi->s_es_lock);
1565 			goto out;
1566 		}
1567 		ei = list_first_entry(&sbi->s_es_list, struct ext4_inode_info,
1568 				      i_es_list);
1569 		/* Move the inode to the tail */
1570 		list_move_tail(&ei->i_es_list, &sbi->s_es_list);
1571 
1572 		/*
1573 		 * Normally we try hard to avoid shrinking precached inodes,
1574 		 * but we will as a last resort.
1575 		 */
1576 		if (!retried && ext4_test_inode_state(&ei->vfs_inode,
1577 						EXT4_STATE_EXT_PRECACHED)) {
1578 			nr_skipped++;
1579 			continue;
1580 		}
1581 
1582 		if (ei == locked_ei || !write_trylock(&ei->i_es_lock)) {
1583 			nr_skipped++;
1584 			continue;
1585 		}
1586 		/*
1587 		 * Now we hold i_es_lock which protects us from inode reclaim
1588 		 * freeing inode under us
1589 		 */
1590 		spin_unlock(&sbi->s_es_lock);
1591 
1592 		nr_shrunk += es_reclaim_extents(ei, &nr_to_scan);
1593 		write_unlock(&ei->i_es_lock);
1594 
1595 		if (nr_to_scan <= 0)
1596 			goto out;
1597 		spin_lock(&sbi->s_es_lock);
1598 	}
1599 	spin_unlock(&sbi->s_es_lock);
1600 
1601 	/*
1602 	 * If we skipped any inodes, and we weren't able to make any
1603 	 * forward progress, try again to scan precached inodes.
1604 	 */
1605 	if ((nr_shrunk == 0) && nr_skipped && !retried) {
1606 		retried++;
1607 		goto retry;
1608 	}
1609 
1610 	if (locked_ei && nr_shrunk == 0)
1611 		nr_shrunk = es_reclaim_extents(locked_ei, &nr_to_scan);
1612 
1613 out:
1614 	scan_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1615 	if (likely(es_stats->es_stats_scan_time))
1616 		es_stats->es_stats_scan_time = (scan_time +
1617 				es_stats->es_stats_scan_time*3) / 4;
1618 	else
1619 		es_stats->es_stats_scan_time = scan_time;
1620 	if (scan_time > es_stats->es_stats_max_scan_time)
1621 		es_stats->es_stats_max_scan_time = scan_time;
1622 	if (likely(es_stats->es_stats_shrunk))
1623 		es_stats->es_stats_shrunk = (nr_shrunk +
1624 				es_stats->es_stats_shrunk*3) / 4;
1625 	else
1626 		es_stats->es_stats_shrunk = nr_shrunk;
1627 
1628 	trace_ext4_es_shrink(sbi->s_sb, nr_shrunk, scan_time,
1629 			     nr_skipped, retried);
1630 	return nr_shrunk;
1631 }
1632 
ext4_es_count(struct shrinker * shrink,struct shrink_control * sc)1633 static unsigned long ext4_es_count(struct shrinker *shrink,
1634 				   struct shrink_control *sc)
1635 {
1636 	unsigned long nr;
1637 	struct ext4_sb_info *sbi;
1638 
1639 	sbi = container_of(shrink, struct ext4_sb_info, s_es_shrinker);
1640 	nr = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1641 	trace_ext4_es_shrink_count(sbi->s_sb, sc->nr_to_scan, nr);
1642 	return nr;
1643 }
1644 
ext4_es_scan(struct shrinker * shrink,struct shrink_control * sc)1645 static unsigned long ext4_es_scan(struct shrinker *shrink,
1646 				  struct shrink_control *sc)
1647 {
1648 	struct ext4_sb_info *sbi = container_of(shrink,
1649 					struct ext4_sb_info, s_es_shrinker);
1650 	int nr_to_scan = sc->nr_to_scan;
1651 	int ret, nr_shrunk;
1652 
1653 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1654 	trace_ext4_es_shrink_scan_enter(sbi->s_sb, nr_to_scan, ret);
1655 
1656 	nr_shrunk = __es_shrink(sbi, nr_to_scan, NULL);
1657 
1658 	ret = percpu_counter_read_positive(&sbi->s_es_stats.es_stats_shk_cnt);
1659 	trace_ext4_es_shrink_scan_exit(sbi->s_sb, nr_shrunk, ret);
1660 	return nr_shrunk;
1661 }
1662 
ext4_seq_es_shrinker_info_show(struct seq_file * seq,void * v)1663 int ext4_seq_es_shrinker_info_show(struct seq_file *seq, void *v)
1664 {
1665 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *) seq->private);
1666 	struct ext4_es_stats *es_stats = &sbi->s_es_stats;
1667 	struct ext4_inode_info *ei, *max = NULL;
1668 	unsigned int inode_cnt = 0;
1669 
1670 	if (v != SEQ_START_TOKEN)
1671 		return 0;
1672 
1673 	/* here we just find an inode that has the max nr. of objects */
1674 	spin_lock(&sbi->s_es_lock);
1675 	list_for_each_entry(ei, &sbi->s_es_list, i_es_list) {
1676 		inode_cnt++;
1677 		if (max && max->i_es_all_nr < ei->i_es_all_nr)
1678 			max = ei;
1679 		else if (!max)
1680 			max = ei;
1681 	}
1682 	spin_unlock(&sbi->s_es_lock);
1683 
1684 	seq_printf(seq, "stats:\n  %lld objects\n  %lld reclaimable objects\n",
1685 		   percpu_counter_sum_positive(&es_stats->es_stats_all_cnt),
1686 		   percpu_counter_sum_positive(&es_stats->es_stats_shk_cnt));
1687 	seq_printf(seq, "  %lld/%lld cache hits/misses\n",
1688 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_hits),
1689 		   percpu_counter_sum_positive(&es_stats->es_stats_cache_misses));
1690 	if (inode_cnt)
1691 		seq_printf(seq, "  %d inodes on list\n", inode_cnt);
1692 
1693 	seq_printf(seq, "average:\n  %llu us scan time\n",
1694 	    div_u64(es_stats->es_stats_scan_time, 1000));
1695 	seq_printf(seq, "  %lu shrunk objects\n", es_stats->es_stats_shrunk);
1696 	if (inode_cnt)
1697 		seq_printf(seq,
1698 		    "maximum:\n  %lu inode (%u objects, %u reclaimable)\n"
1699 		    "  %llu us max scan time\n",
1700 		    max->vfs_inode.i_ino, max->i_es_all_nr, max->i_es_shk_nr,
1701 		    div_u64(es_stats->es_stats_max_scan_time, 1000));
1702 
1703 	return 0;
1704 }
1705 
ext4_es_register_shrinker(struct ext4_sb_info * sbi)1706 int ext4_es_register_shrinker(struct ext4_sb_info *sbi)
1707 {
1708 	int err;
1709 
1710 	/* Make sure we have enough bits for physical block number */
1711 	BUILD_BUG_ON(ES_SHIFT < 48);
1712 	INIT_LIST_HEAD(&sbi->s_es_list);
1713 	sbi->s_es_nr_inode = 0;
1714 	spin_lock_init(&sbi->s_es_lock);
1715 	sbi->s_es_stats.es_stats_shrunk = 0;
1716 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_hits, 0,
1717 				  GFP_KERNEL);
1718 	if (err)
1719 		return err;
1720 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_cache_misses, 0,
1721 				  GFP_KERNEL);
1722 	if (err)
1723 		goto err1;
1724 	sbi->s_es_stats.es_stats_scan_time = 0;
1725 	sbi->s_es_stats.es_stats_max_scan_time = 0;
1726 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_all_cnt, 0, GFP_KERNEL);
1727 	if (err)
1728 		goto err2;
1729 	err = percpu_counter_init(&sbi->s_es_stats.es_stats_shk_cnt, 0, GFP_KERNEL);
1730 	if (err)
1731 		goto err3;
1732 
1733 	sbi->s_es_shrinker.scan_objects = ext4_es_scan;
1734 	sbi->s_es_shrinker.count_objects = ext4_es_count;
1735 	sbi->s_es_shrinker.seeks = DEFAULT_SEEKS;
1736 	err = register_shrinker(&sbi->s_es_shrinker, "ext4-es:%s",
1737 				sbi->s_sb->s_id);
1738 	if (err)
1739 		goto err4;
1740 
1741 	return 0;
1742 err4:
1743 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1744 err3:
1745 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1746 err2:
1747 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1748 err1:
1749 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1750 	return err;
1751 }
1752 
ext4_es_unregister_shrinker(struct ext4_sb_info * sbi)1753 void ext4_es_unregister_shrinker(struct ext4_sb_info *sbi)
1754 {
1755 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_hits);
1756 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_cache_misses);
1757 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_all_cnt);
1758 	percpu_counter_destroy(&sbi->s_es_stats.es_stats_shk_cnt);
1759 	unregister_shrinker(&sbi->s_es_shrinker);
1760 }
1761 
1762 /*
1763  * Shrink extents in given inode from ei->i_es_shrink_lblk till end. Scan at
1764  * most *nr_to_scan extents, update *nr_to_scan accordingly.
1765  *
1766  * Return 0 if we hit end of tree / interval, 1 if we exhausted nr_to_scan.
1767  * Increment *nr_shrunk by the number of reclaimed extents. Also update
1768  * ei->i_es_shrink_lblk to where we should continue scanning.
1769  */
es_do_reclaim_extents(struct ext4_inode_info * ei,ext4_lblk_t end,int * nr_to_scan,int * nr_shrunk)1770 static int es_do_reclaim_extents(struct ext4_inode_info *ei, ext4_lblk_t end,
1771 				 int *nr_to_scan, int *nr_shrunk)
1772 {
1773 	struct inode *inode = &ei->vfs_inode;
1774 	struct ext4_es_tree *tree = &ei->i_es_tree;
1775 	struct extent_status *es;
1776 	struct rb_node *node;
1777 
1778 	es = __es_tree_search(&tree->root, ei->i_es_shrink_lblk);
1779 	if (!es)
1780 		goto out_wrap;
1781 
1782 	while (*nr_to_scan > 0) {
1783 		if (es->es_lblk > end) {
1784 			ei->i_es_shrink_lblk = end + 1;
1785 			return 0;
1786 		}
1787 
1788 		(*nr_to_scan)--;
1789 		node = rb_next(&es->rb_node);
1790 
1791 		if (ext4_es_must_keep(es))
1792 			goto next;
1793 		if (ext4_es_is_referenced(es)) {
1794 			ext4_es_clear_referenced(es);
1795 			goto next;
1796 		}
1797 
1798 		rb_erase(&es->rb_node, &tree->root);
1799 		ext4_es_free_extent(inode, es);
1800 		(*nr_shrunk)++;
1801 next:
1802 		if (!node)
1803 			goto out_wrap;
1804 		es = rb_entry(node, struct extent_status, rb_node);
1805 	}
1806 	ei->i_es_shrink_lblk = es->es_lblk;
1807 	return 1;
1808 out_wrap:
1809 	ei->i_es_shrink_lblk = 0;
1810 	return 0;
1811 }
1812 
es_reclaim_extents(struct ext4_inode_info * ei,int * nr_to_scan)1813 static int es_reclaim_extents(struct ext4_inode_info *ei, int *nr_to_scan)
1814 {
1815 	struct inode *inode = &ei->vfs_inode;
1816 	int nr_shrunk = 0;
1817 	ext4_lblk_t start = ei->i_es_shrink_lblk;
1818 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
1819 				      DEFAULT_RATELIMIT_BURST);
1820 
1821 	if (ei->i_es_shk_nr == 0)
1822 		return 0;
1823 
1824 	if (ext4_test_inode_state(inode, EXT4_STATE_EXT_PRECACHED) &&
1825 	    __ratelimit(&_rs))
1826 		ext4_warning(inode->i_sb, "forced shrink of precached extents");
1827 
1828 	if (!es_do_reclaim_extents(ei, EXT_MAX_BLOCKS, nr_to_scan, &nr_shrunk) &&
1829 	    start != 0)
1830 		es_do_reclaim_extents(ei, start - 1, nr_to_scan, &nr_shrunk);
1831 
1832 	ei->i_es_tree.cache_es = NULL;
1833 	return nr_shrunk;
1834 }
1835 
1836 /*
1837  * Called to support EXT4_IOC_CLEAR_ES_CACHE.  We can only remove
1838  * discretionary entries from the extent status cache.  (Some entries
1839  * must be present for proper operations.)
1840  */
ext4_clear_inode_es(struct inode * inode)1841 void ext4_clear_inode_es(struct inode *inode)
1842 {
1843 	struct ext4_inode_info *ei = EXT4_I(inode);
1844 	struct extent_status *es;
1845 	struct ext4_es_tree *tree;
1846 	struct rb_node *node;
1847 
1848 	write_lock(&ei->i_es_lock);
1849 	tree = &EXT4_I(inode)->i_es_tree;
1850 	tree->cache_es = NULL;
1851 	node = rb_first(&tree->root);
1852 	while (node) {
1853 		es = rb_entry(node, struct extent_status, rb_node);
1854 		node = rb_next(node);
1855 		if (!ext4_es_must_keep(es)) {
1856 			rb_erase(&es->rb_node, &tree->root);
1857 			ext4_es_free_extent(inode, es);
1858 		}
1859 	}
1860 	ext4_clear_inode_state(inode, EXT4_STATE_EXT_PRECACHED);
1861 	write_unlock(&ei->i_es_lock);
1862 }
1863 
1864 #ifdef ES_DEBUG__
ext4_print_pending_tree(struct inode * inode)1865 static void ext4_print_pending_tree(struct inode *inode)
1866 {
1867 	struct ext4_pending_tree *tree;
1868 	struct rb_node *node;
1869 	struct pending_reservation *pr;
1870 
1871 	printk(KERN_DEBUG "pending reservations for inode %lu:", inode->i_ino);
1872 	tree = &EXT4_I(inode)->i_pending_tree;
1873 	node = rb_first(&tree->root);
1874 	while (node) {
1875 		pr = rb_entry(node, struct pending_reservation, rb_node);
1876 		printk(KERN_DEBUG " %u", pr->lclu);
1877 		node = rb_next(node);
1878 	}
1879 	printk(KERN_DEBUG "\n");
1880 }
1881 #else
1882 #define ext4_print_pending_tree(inode)
1883 #endif
1884 
ext4_init_pending(void)1885 int __init ext4_init_pending(void)
1886 {
1887 	ext4_pending_cachep = kmem_cache_create("ext4_pending_reservation",
1888 					   sizeof(struct pending_reservation),
1889 					   0, (SLAB_RECLAIM_ACCOUNT), NULL);
1890 	if (ext4_pending_cachep == NULL)
1891 		return -ENOMEM;
1892 	return 0;
1893 }
1894 
ext4_exit_pending(void)1895 void ext4_exit_pending(void)
1896 {
1897 	kmem_cache_destroy(ext4_pending_cachep);
1898 }
1899 
ext4_init_pending_tree(struct ext4_pending_tree * tree)1900 void ext4_init_pending_tree(struct ext4_pending_tree *tree)
1901 {
1902 	tree->root = RB_ROOT;
1903 }
1904 
1905 /*
1906  * __get_pending - retrieve a pointer to a pending reservation
1907  *
1908  * @inode - file containing the pending cluster reservation
1909  * @lclu - logical cluster of interest
1910  *
1911  * Returns a pointer to a pending reservation if it's a member of
1912  * the set, and NULL if not.  Must be called holding i_es_lock.
1913  */
__get_pending(struct inode * inode,ext4_lblk_t lclu)1914 static struct pending_reservation *__get_pending(struct inode *inode,
1915 						 ext4_lblk_t lclu)
1916 {
1917 	struct ext4_pending_tree *tree;
1918 	struct rb_node *node;
1919 	struct pending_reservation *pr = NULL;
1920 
1921 	tree = &EXT4_I(inode)->i_pending_tree;
1922 	node = (&tree->root)->rb_node;
1923 
1924 	while (node) {
1925 		pr = rb_entry(node, struct pending_reservation, rb_node);
1926 		if (lclu < pr->lclu)
1927 			node = node->rb_left;
1928 		else if (lclu > pr->lclu)
1929 			node = node->rb_right;
1930 		else if (lclu == pr->lclu)
1931 			return pr;
1932 	}
1933 	return NULL;
1934 }
1935 
1936 /*
1937  * __insert_pending - adds a pending cluster reservation to the set of
1938  *                    pending reservations
1939  *
1940  * @inode - file containing the cluster
1941  * @lblk - logical block in the cluster to be added
1942  * @prealloc - preallocated pending entry
1943  *
1944  * Returns 0 on successful insertion and -ENOMEM on failure.  If the
1945  * pending reservation is already in the set, returns successfully.
1946  */
__insert_pending(struct inode * inode,ext4_lblk_t lblk,struct pending_reservation ** prealloc)1947 static int __insert_pending(struct inode *inode, ext4_lblk_t lblk,
1948 			    struct pending_reservation **prealloc)
1949 {
1950 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1951 	struct ext4_pending_tree *tree = &EXT4_I(inode)->i_pending_tree;
1952 	struct rb_node **p = &tree->root.rb_node;
1953 	struct rb_node *parent = NULL;
1954 	struct pending_reservation *pr;
1955 	ext4_lblk_t lclu;
1956 	int ret = 0;
1957 
1958 	lclu = EXT4_B2C(sbi, lblk);
1959 	/* search to find parent for insertion */
1960 	while (*p) {
1961 		parent = *p;
1962 		pr = rb_entry(parent, struct pending_reservation, rb_node);
1963 
1964 		if (lclu < pr->lclu) {
1965 			p = &(*p)->rb_left;
1966 		} else if (lclu > pr->lclu) {
1967 			p = &(*p)->rb_right;
1968 		} else {
1969 			/* pending reservation already inserted */
1970 			goto out;
1971 		}
1972 	}
1973 
1974 	if (likely(*prealloc == NULL)) {
1975 		pr = __alloc_pending(false);
1976 		if (!pr) {
1977 			ret = -ENOMEM;
1978 			goto out;
1979 		}
1980 	} else {
1981 		pr = *prealloc;
1982 		*prealloc = NULL;
1983 	}
1984 	pr->lclu = lclu;
1985 
1986 	rb_link_node(&pr->rb_node, parent, p);
1987 	rb_insert_color(&pr->rb_node, &tree->root);
1988 
1989 out:
1990 	return ret;
1991 }
1992 
1993 /*
1994  * __remove_pending - removes a pending cluster reservation from the set
1995  *                    of pending reservations
1996  *
1997  * @inode - file containing the cluster
1998  * @lblk - logical block in the pending cluster reservation to be removed
1999  *
2000  * Returns successfully if pending reservation is not a member of the set.
2001  */
__remove_pending(struct inode * inode,ext4_lblk_t lblk)2002 static void __remove_pending(struct inode *inode, ext4_lblk_t lblk)
2003 {
2004 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2005 	struct pending_reservation *pr;
2006 	struct ext4_pending_tree *tree;
2007 
2008 	pr = __get_pending(inode, EXT4_B2C(sbi, lblk));
2009 	if (pr != NULL) {
2010 		tree = &EXT4_I(inode)->i_pending_tree;
2011 		rb_erase(&pr->rb_node, &tree->root);
2012 		__free_pending(pr);
2013 	}
2014 }
2015 
2016 /*
2017  * ext4_remove_pending - removes a pending cluster reservation from the set
2018  *                       of pending reservations
2019  *
2020  * @inode - file containing the cluster
2021  * @lblk - logical block in the pending cluster reservation to be removed
2022  *
2023  * Locking for external use of __remove_pending.
2024  */
ext4_remove_pending(struct inode * inode,ext4_lblk_t lblk)2025 void ext4_remove_pending(struct inode *inode, ext4_lblk_t lblk)
2026 {
2027 	struct ext4_inode_info *ei = EXT4_I(inode);
2028 
2029 	write_lock(&ei->i_es_lock);
2030 	__remove_pending(inode, lblk);
2031 	write_unlock(&ei->i_es_lock);
2032 }
2033 
2034 /*
2035  * ext4_is_pending - determine whether a cluster has a pending reservation
2036  *                   on it
2037  *
2038  * @inode - file containing the cluster
2039  * @lblk - logical block in the cluster
2040  *
2041  * Returns true if there's a pending reservation for the cluster in the
2042  * set of pending reservations, and false if not.
2043  */
ext4_is_pending(struct inode * inode,ext4_lblk_t lblk)2044 bool ext4_is_pending(struct inode *inode, ext4_lblk_t lblk)
2045 {
2046 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2047 	struct ext4_inode_info *ei = EXT4_I(inode);
2048 	bool ret;
2049 
2050 	read_lock(&ei->i_es_lock);
2051 	ret = (bool)(__get_pending(inode, EXT4_B2C(sbi, lblk)) != NULL);
2052 	read_unlock(&ei->i_es_lock);
2053 
2054 	return ret;
2055 }
2056 
2057 /*
2058  * ext4_es_insert_delayed_block - adds a delayed block to the extents status
2059  *                                tree, adding a pending reservation where
2060  *                                needed
2061  *
2062  * @inode - file containing the newly added block
2063  * @lblk - logical block to be added
2064  * @allocated - indicates whether a physical cluster has been allocated for
2065  *              the logical cluster that contains the block
2066  *
2067  * Returns 0 on success, negative error code on failure.
2068  */
ext4_es_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk,bool allocated)2069 int ext4_es_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk,
2070 				 bool allocated)
2071 {
2072 	struct extent_status newes;
2073 	int err1 = 0, err2 = 0, err3 = 0;
2074 	struct extent_status *es1 = NULL;
2075 	struct extent_status *es2 = NULL;
2076 	struct pending_reservation *pr = NULL;
2077 
2078 	if (EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
2079 		return 0;
2080 
2081 	es_debug("add [%u/1) delayed to extent status tree of inode %lu\n",
2082 		 lblk, inode->i_ino);
2083 
2084 	newes.es_lblk = lblk;
2085 	newes.es_len = 1;
2086 	ext4_es_store_pblock_status(&newes, ~0, EXTENT_STATUS_DELAYED);
2087 	trace_ext4_es_insert_delayed_block(inode, &newes, allocated);
2088 
2089 	ext4_es_insert_extent_check(inode, &newes);
2090 
2091 retry:
2092 	if (err1 && !es1)
2093 		es1 = __es_alloc_extent(true);
2094 	if ((err1 || err2) && !es2)
2095 		es2 = __es_alloc_extent(true);
2096 	if ((err1 || err2 || err3) && allocated && !pr)
2097 		pr = __alloc_pending(true);
2098 	write_lock(&EXT4_I(inode)->i_es_lock);
2099 
2100 	err1 = __es_remove_extent(inode, lblk, lblk, NULL, es1);
2101 	if (err1 != 0)
2102 		goto error;
2103 	/* Free preallocated extent if it didn't get used. */
2104 	if (es1) {
2105 		if (!es1->es_len)
2106 			__es_free_extent(es1);
2107 		es1 = NULL;
2108 	}
2109 
2110 	err2 = __es_insert_extent(inode, &newes, es2);
2111 	if (err2 != 0)
2112 		goto error;
2113 	/* Free preallocated extent if it didn't get used. */
2114 	if (es2) {
2115 		if (!es2->es_len)
2116 			__es_free_extent(es2);
2117 		es2 = NULL;
2118 	}
2119 
2120 	if (allocated) {
2121 		err3 = __insert_pending(inode, lblk, &pr);
2122 		if (err3 != 0)
2123 			goto error;
2124 		if (pr) {
2125 			__free_pending(pr);
2126 			pr = NULL;
2127 		}
2128 	}
2129 error:
2130 	write_unlock(&EXT4_I(inode)->i_es_lock);
2131 	if (err1 || err2 || err3)
2132 		goto retry;
2133 
2134 	ext4_es_print_tree(inode);
2135 	ext4_print_pending_tree(inode);
2136 	return 0;
2137 }
2138 
2139 /*
2140  * __es_delayed_clu - count number of clusters containing blocks that
2141  *                    are delayed only
2142  *
2143  * @inode - file containing block range
2144  * @start - logical block defining start of range
2145  * @end - logical block defining end of range
2146  *
2147  * Returns the number of clusters containing only delayed (not delayed
2148  * and unwritten) blocks in the range specified by @start and @end.  Any
2149  * cluster or part of a cluster within the range and containing a delayed
2150  * and not unwritten block within the range is counted as a whole cluster.
2151  */
__es_delayed_clu(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2152 static unsigned int __es_delayed_clu(struct inode *inode, ext4_lblk_t start,
2153 				     ext4_lblk_t end)
2154 {
2155 	struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
2156 	struct extent_status *es;
2157 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2158 	struct rb_node *node;
2159 	ext4_lblk_t first_lclu, last_lclu;
2160 	unsigned long long last_counted_lclu;
2161 	unsigned int n = 0;
2162 
2163 	/* guaranteed to be unequal to any ext4_lblk_t value */
2164 	last_counted_lclu = ~0ULL;
2165 
2166 	es = __es_tree_search(&tree->root, start);
2167 
2168 	while (es && (es->es_lblk <= end)) {
2169 		if (ext4_es_is_delonly(es)) {
2170 			if (es->es_lblk <= start)
2171 				first_lclu = EXT4_B2C(sbi, start);
2172 			else
2173 				first_lclu = EXT4_B2C(sbi, es->es_lblk);
2174 
2175 			if (ext4_es_end(es) >= end)
2176 				last_lclu = EXT4_B2C(sbi, end);
2177 			else
2178 				last_lclu = EXT4_B2C(sbi, ext4_es_end(es));
2179 
2180 			if (first_lclu == last_counted_lclu)
2181 				n += last_lclu - first_lclu;
2182 			else
2183 				n += last_lclu - first_lclu + 1;
2184 			last_counted_lclu = last_lclu;
2185 		}
2186 		node = rb_next(&es->rb_node);
2187 		if (!node)
2188 			break;
2189 		es = rb_entry(node, struct extent_status, rb_node);
2190 	}
2191 
2192 	return n;
2193 }
2194 
2195 /*
2196  * ext4_es_delayed_clu - count number of clusters containing blocks that
2197  *                       are both delayed and unwritten
2198  *
2199  * @inode - file containing block range
2200  * @lblk - logical block defining start of range
2201  * @len - number of blocks in range
2202  *
2203  * Locking for external use of __es_delayed_clu().
2204  */
ext4_es_delayed_clu(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)2205 unsigned int ext4_es_delayed_clu(struct inode *inode, ext4_lblk_t lblk,
2206 				 ext4_lblk_t len)
2207 {
2208 	struct ext4_inode_info *ei = EXT4_I(inode);
2209 	ext4_lblk_t end;
2210 	unsigned int n;
2211 
2212 	if (len == 0)
2213 		return 0;
2214 
2215 	end = lblk + len - 1;
2216 	WARN_ON(end < lblk);
2217 
2218 	read_lock(&ei->i_es_lock);
2219 
2220 	n = __es_delayed_clu(inode, lblk, end);
2221 
2222 	read_unlock(&ei->i_es_lock);
2223 
2224 	return n;
2225 }
2226 
2227 /*
2228  * __revise_pending - makes, cancels, or leaves unchanged pending cluster
2229  *                    reservations for a specified block range depending
2230  *                    upon the presence or absence of delayed blocks
2231  *                    outside the range within clusters at the ends of the
2232  *                    range
2233  *
2234  * @inode - file containing the range
2235  * @lblk - logical block defining the start of range
2236  * @len  - length of range in blocks
2237  * @prealloc - preallocated pending entry
2238  *
2239  * Used after a newly allocated extent is added to the extents status tree.
2240  * Requires that the extents in the range have either written or unwritten
2241  * status.  Must be called while holding i_es_lock.
2242  */
__revise_pending(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len,struct pending_reservation ** prealloc)2243 static int __revise_pending(struct inode *inode, ext4_lblk_t lblk,
2244 			    ext4_lblk_t len,
2245 			    struct pending_reservation **prealloc)
2246 {
2247 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2248 	ext4_lblk_t end = lblk + len - 1;
2249 	ext4_lblk_t first, last;
2250 	bool f_del = false, l_del = false;
2251 	int ret = 0;
2252 
2253 	if (len == 0)
2254 		return 0;
2255 
2256 	/*
2257 	 * Two cases - block range within single cluster and block range
2258 	 * spanning two or more clusters.  Note that a cluster belonging
2259 	 * to a range starting and/or ending on a cluster boundary is treated
2260 	 * as if it does not contain a delayed extent.  The new range may
2261 	 * have allocated space for previously delayed blocks out to the
2262 	 * cluster boundary, requiring that any pre-existing pending
2263 	 * reservation be canceled.  Because this code only looks at blocks
2264 	 * outside the range, it should revise pending reservations
2265 	 * correctly even if the extent represented by the range can't be
2266 	 * inserted in the extents status tree due to ENOSPC.
2267 	 */
2268 
2269 	if (EXT4_B2C(sbi, lblk) == EXT4_B2C(sbi, end)) {
2270 		first = EXT4_LBLK_CMASK(sbi, lblk);
2271 		if (first != lblk)
2272 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2273 						first, lblk - 1);
2274 		if (f_del) {
2275 			ret = __insert_pending(inode, first, prealloc);
2276 			if (ret < 0)
2277 				goto out;
2278 		} else {
2279 			last = EXT4_LBLK_CMASK(sbi, end) +
2280 			       sbi->s_cluster_ratio - 1;
2281 			if (last != end)
2282 				l_del = __es_scan_range(inode,
2283 							&ext4_es_is_delonly,
2284 							end + 1, last);
2285 			if (l_del) {
2286 				ret = __insert_pending(inode, last, prealloc);
2287 				if (ret < 0)
2288 					goto out;
2289 			} else
2290 				__remove_pending(inode, last);
2291 		}
2292 	} else {
2293 		first = EXT4_LBLK_CMASK(sbi, lblk);
2294 		if (first != lblk)
2295 			f_del = __es_scan_range(inode, &ext4_es_is_delonly,
2296 						first, lblk - 1);
2297 		if (f_del) {
2298 			ret = __insert_pending(inode, first, prealloc);
2299 			if (ret < 0)
2300 				goto out;
2301 		} else
2302 			__remove_pending(inode, first);
2303 
2304 		last = EXT4_LBLK_CMASK(sbi, end) + sbi->s_cluster_ratio - 1;
2305 		if (last != end)
2306 			l_del = __es_scan_range(inode, &ext4_es_is_delonly,
2307 						end + 1, last);
2308 		if (l_del) {
2309 			ret = __insert_pending(inode, last, prealloc);
2310 			if (ret < 0)
2311 				goto out;
2312 		} else
2313 			__remove_pending(inode, last);
2314 	}
2315 out:
2316 	return ret;
2317 }
2318