• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * fs/ext4/fast_commit.c
5  *
6  * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
7  *
8  * Ext4 fast commits routines.
9  */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
14 
15 /*
16  * Ext4 Fast Commits
17  * -----------------
18  *
19  * Ext4 fast commits implement fine grained journalling for Ext4.
20  *
21  * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22  * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23  * TLV during the recovery phase. For the scenarios for which we currently
24  * don't have replay code, fast commit falls back to full commits.
25  * Fast commits record delta in one of the following three categories.
26  *
27  * (A) Directory entry updates:
28  *
29  * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
30  * - EXT4_FC_TAG_LINK		- records directory entry link
31  * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
32  *
33  * (B) File specific data range updates:
34  *
35  * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
36  * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
37  *
38  * (C) Inode metadata (mtime / ctime etc):
39  *
40  * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
41  *				  during recovery. Note that iblocks field is
42  *				  not replayed and instead derived during
43  *				  replay.
44  * Commit Operation
45  * ----------------
46  * With fast commits, we maintain all the directory entry operations in the
47  * order in which they are issued in an in-memory queue. This queue is flushed
48  * to disk during the commit operation. We also maintain a list of inodes
49  * that need to be committed during a fast commit in another in memory queue of
50  * inodes. During the commit operation, we commit in the following order:
51  *
52  * [1] Lock inodes for any further data updates by setting COMMITTING state
53  * [2] Submit data buffers of all the inodes
54  * [3] Wait for [2] to complete
55  * [4] Commit all the directory entry updates in the fast commit space
56  * [5] Commit all the changed inode structures
57  * [6] Write tail tag (this tag ensures the atomicity, please read the following
58  *     section for more details).
59  * [7] Wait for [4], [5] and [6] to complete.
60  *
61  * All the inode updates must call ext4_fc_start_update() before starting an
62  * update. If such an ongoing update is present, fast commit waits for it to
63  * complete. The completion of such an update is marked by
64  * ext4_fc_stop_update().
65  *
66  * Fast Commit Ineligibility
67  * -------------------------
68  *
69  * Not all operations are supported by fast commits today (e.g extended
70  * attributes). Fast commit ineligibility is marked by calling
71  * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72  * to full commit.
73  *
74  * Atomicity of commits
75  * --------------------
76  * In order to guarantee atomicity during the commit operation, fast commit
77  * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78  * tag contains CRC of the contents and TID of the transaction after which
79  * this fast commit should be applied. Recovery code replays fast commit
80  * logs only if there's at least 1 valid tail present. For every fast commit
81  * operation, there is 1 tail. This means, we may end up with multiple tails
82  * in the fast commit space. Here's an example:
83  *
84  * - Create a new file A and remove existing file B
85  * - fsync()
86  * - Append contents to file A
87  * - Truncate file A
88  * - fsync()
89  *
90  * The fast commit space at the end of above operations would look like this:
91  *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92  *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
93  *
94  * Replay code should thus check for all the valid tails in the FC area.
95  *
96  * Fast Commit Replay Idempotence
97  * ------------------------------
98  *
99  * Fast commits tags are idempotent in nature provided the recovery code follows
100  * certain rules. The guiding principle that the commit path follows while
101  * committing is that it stores the result of a particular operation instead of
102  * storing the procedure.
103  *
104  * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105  * was associated with inode 10. During fast commit, instead of storing this
106  * operation as a procedure "rename a to b", we store the resulting file system
107  * state as a "series" of outcomes:
108  *
109  * - Link dirent b to inode 10
110  * - Unlink dirent a
111  * - Inode <10> with valid refcount
112  *
113  * Now when recovery code runs, it needs "enforce" this state on the file
114  * system. This is what guarantees idempotence of fast commit replay.
115  *
116  * Let's take an example of a procedure that is not idempotent and see how fast
117  * commits make it idempotent. Consider following sequence of operations:
118  *
119  *     rm A;    mv B A;    read A
120  *  (x)     (y)        (z)
121  *
122  * (x), (y) and (z) are the points at which we can crash. If we store this
123  * sequence of operations as is then the replay is not idempotent. Let's say
124  * while in replay, we crash at (z). During the second replay, file A (which was
125  * actually created as a result of "mv B A" operation) would get deleted. Thus,
126  * file named A would be absent when we try to read A. So, this sequence of
127  * operations is not idempotent. However, as mentioned above, instead of storing
128  * the procedure fast commits store the outcome of each procedure. Thus the fast
129  * commit log for above procedure would be as follows:
130  *
131  * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132  * inode 11 before the replay)
133  *
134  *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
135  * (w)          (x)                    (y)          (z)
136  *
137  * If we crash at (z), we will have file A linked to inode 11. During the second
138  * replay, we will remove file A (inode 11). But we will create it back and make
139  * it point to inode 11. We won't find B, so we'll just skip that step. At this
140  * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141  * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142  * similarly. Thus, by converting a non-idempotent procedure into a series of
143  * idempotent outcomes, fast commits ensured idempotence during the replay.
144  *
145  * TODOs
146  * -----
147  *
148  * 0) Fast commit replay path hardening: Fast commit replay code should use
149  *    journal handles to make sure all the updates it does during the replay
150  *    path are atomic. With that if we crash during fast commit replay, after
151  *    trying to do recovery again, we will find a file system where fast commit
152  *    area is invalid (because new full commit would be found). In order to deal
153  *    with that, fast commit replay code should ensure that the "FC_REPLAY"
154  *    superblock state is persisted before starting the replay, so that after
155  *    the crash, fast commit recovery code can look at that flag and perform
156  *    fast commit recovery even if that area is invalidated by later full
157  *    commits.
158  *
159  * 1) Fast commit's commit path locks the entire file system during fast
160  *    commit. This has significant performance penalty. Instead of that, we
161  *    should use ext4_fc_start/stop_update functions to start inode level
162  *    updates from ext4_journal_start/stop. Once we do that we can drop file
163  *    system locking during commit path.
164  *
165  * 2) Handle more ineligible cases.
166  */
167 
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
170 
ext4_end_buffer_io_sync(struct buffer_head * bh,int uptodate)171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
172 {
173 	BUFFER_TRACE(bh, "");
174 	if (uptodate) {
175 		ext4_debug("%s: Block %lld up-to-date",
176 			   __func__, bh->b_blocknr);
177 		set_buffer_uptodate(bh);
178 	} else {
179 		ext4_debug("%s: Block %lld not up-to-date",
180 			   __func__, bh->b_blocknr);
181 		clear_buffer_uptodate(bh);
182 	}
183 
184 	unlock_buffer(bh);
185 }
186 
ext4_fc_reset_inode(struct inode * inode)187 static inline void ext4_fc_reset_inode(struct inode *inode)
188 {
189 	struct ext4_inode_info *ei = EXT4_I(inode);
190 
191 	ei->i_fc_lblk_start = 0;
192 	ei->i_fc_lblk_len = 0;
193 }
194 
ext4_fc_init_inode(struct inode * inode)195 void ext4_fc_init_inode(struct inode *inode)
196 {
197 	struct ext4_inode_info *ei = EXT4_I(inode);
198 
199 	ext4_fc_reset_inode(inode);
200 	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 	INIT_LIST_HEAD(&ei->i_fc_list);
202 	INIT_LIST_HEAD(&ei->i_fc_dilist);
203 	init_waitqueue_head(&ei->i_fc_wait);
204 	atomic_set(&ei->i_fc_updates, 0);
205 }
206 
207 /* This function must be called with sbi->s_fc_lock held. */
ext4_fc_wait_committing_inode(struct inode * inode)208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
210 {
211 	wait_queue_head_t *wq;
212 	struct ext4_inode_info *ei = EXT4_I(inode);
213 
214 #if (BITS_PER_LONG < 64)
215 	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 			EXT4_STATE_FC_COMMITTING);
217 	wq = bit_waitqueue(&ei->i_state_flags,
218 				EXT4_STATE_FC_COMMITTING);
219 #else
220 	DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 			EXT4_STATE_FC_COMMITTING);
222 	wq = bit_waitqueue(&ei->i_flags,
223 				EXT4_STATE_FC_COMMITTING);
224 #endif
225 	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 	schedule();
229 	finish_wait(wq, &wait.wq_entry);
230 }
231 
ext4_fc_disabled(struct super_block * sb)232 static bool ext4_fc_disabled(struct super_block *sb)
233 {
234 	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
236 }
237 
238 /*
239  * Inform Ext4's fast about start of an inode update
240  *
241  * This function is called by the high level call VFS callbacks before
242  * performing any inode update. This function blocks if there's an ongoing
243  * fast commit on the inode in question.
244  */
ext4_fc_start_update(struct inode * inode)245 void ext4_fc_start_update(struct inode *inode)
246 {
247 	struct ext4_inode_info *ei = EXT4_I(inode);
248 
249 	if (ext4_fc_disabled(inode->i_sb))
250 		return;
251 
252 restart:
253 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 	if (list_empty(&ei->i_fc_list))
255 		goto out;
256 
257 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 		ext4_fc_wait_committing_inode(inode);
259 		goto restart;
260 	}
261 out:
262 	atomic_inc(&ei->i_fc_updates);
263 	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
264 }
265 
266 /*
267  * Stop inode update and wake up waiting fast commits if any.
268  */
ext4_fc_stop_update(struct inode * inode)269 void ext4_fc_stop_update(struct inode *inode)
270 {
271 	struct ext4_inode_info *ei = EXT4_I(inode);
272 
273 	if (ext4_fc_disabled(inode->i_sb))
274 		return;
275 
276 	if (atomic_dec_and_test(&ei->i_fc_updates))
277 		wake_up_all(&ei->i_fc_wait);
278 }
279 
280 /*
281  * Remove inode from fast commit list. If the inode is being committed
282  * we wait until inode commit is done.
283  */
ext4_fc_del(struct inode * inode)284 void ext4_fc_del(struct inode *inode)
285 {
286 	struct ext4_inode_info *ei = EXT4_I(inode);
287 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 	struct ext4_fc_dentry_update *fc_dentry;
289 
290 	if (ext4_fc_disabled(inode->i_sb))
291 		return;
292 
293 restart:
294 	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
295 	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 		spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
297 		return;
298 	}
299 
300 	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 		ext4_fc_wait_committing_inode(inode);
302 		goto restart;
303 	}
304 
305 	if (!list_empty(&ei->i_fc_list))
306 		list_del_init(&ei->i_fc_list);
307 
308 	/*
309 	 * Since this inode is getting removed, let's also remove all FC
310 	 * dentry create references, since it is not needed to log it anyways.
311 	 */
312 	if (list_empty(&ei->i_fc_dilist)) {
313 		spin_unlock(&sbi->s_fc_lock);
314 		return;
315 	}
316 
317 	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 	list_del_init(&fc_dentry->fcd_list);
320 	list_del_init(&fc_dentry->fcd_dilist);
321 
322 	WARN_ON(!list_empty(&ei->i_fc_dilist));
323 	spin_unlock(&sbi->s_fc_lock);
324 
325 	if (fc_dentry->fcd_name.name &&
326 		fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 		kfree(fc_dentry->fcd_name.name);
328 	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
329 
330 	return;
331 }
332 
333 /*
334  * Mark file system as fast commit ineligible, and record latest
335  * ineligible transaction tid. This means until the recorded
336  * transaction, commit operation would result in a full jbd2 commit.
337  */
ext4_fc_mark_ineligible(struct super_block * sb,int reason,handle_t * handle)338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
339 {
340 	struct ext4_sb_info *sbi = EXT4_SB(sb);
341 	tid_t tid;
342 
343 	if (ext4_fc_disabled(sb))
344 		return;
345 
346 	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
347 	if (handle && !IS_ERR(handle))
348 		tid = handle->h_transaction->t_tid;
349 	else {
350 		read_lock(&sbi->s_journal->j_state_lock);
351 		tid = sbi->s_journal->j_running_transaction ?
352 				sbi->s_journal->j_running_transaction->t_tid : 0;
353 		read_unlock(&sbi->s_journal->j_state_lock);
354 	}
355 	spin_lock(&sbi->s_fc_lock);
356 	if (sbi->s_fc_ineligible_tid < tid)
357 		sbi->s_fc_ineligible_tid = tid;
358 	spin_unlock(&sbi->s_fc_lock);
359 	WARN_ON(reason >= EXT4_FC_REASON_MAX);
360 	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
361 }
362 
363 /*
364  * Generic fast commit tracking function. If this is the first time this we are
365  * called after a full commit, we initialize fast commit fields and then call
366  * __fc_track_fn() with update = 0. If we have already been called after a full
367  * commit, we pass update = 1. Based on that, the track function can determine
368  * if it needs to track a field for the first time or if it needs to just
369  * update the previously tracked value.
370  *
371  * If enqueue is set, this function enqueues the inode in fast commit list.
372  */
ext4_fc_track_template(handle_t * handle,struct inode * inode,int (* __fc_track_fn)(struct inode *,void *,bool),void * args,int enqueue)373 static int ext4_fc_track_template(
374 	handle_t *handle, struct inode *inode,
375 	int (*__fc_track_fn)(struct inode *, void *, bool),
376 	void *args, int enqueue)
377 {
378 	bool update = false;
379 	struct ext4_inode_info *ei = EXT4_I(inode);
380 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
381 	tid_t tid = 0;
382 	int ret;
383 
384 	tid = handle->h_transaction->t_tid;
385 	mutex_lock(&ei->i_fc_lock);
386 	if (tid == ei->i_sync_tid) {
387 		update = true;
388 	} else {
389 		ext4_fc_reset_inode(inode);
390 		ei->i_sync_tid = tid;
391 	}
392 	ret = __fc_track_fn(inode, args, update);
393 	mutex_unlock(&ei->i_fc_lock);
394 
395 	if (!enqueue)
396 		return ret;
397 
398 	spin_lock(&sbi->s_fc_lock);
399 	if (list_empty(&EXT4_I(inode)->i_fc_list))
400 		list_add_tail(&EXT4_I(inode)->i_fc_list,
401 				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
402 				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
403 				&sbi->s_fc_q[FC_Q_STAGING] :
404 				&sbi->s_fc_q[FC_Q_MAIN]);
405 	spin_unlock(&sbi->s_fc_lock);
406 
407 	return ret;
408 }
409 
410 struct __track_dentry_update_args {
411 	struct dentry *dentry;
412 	int op;
413 };
414 
415 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
__track_dentry_update(struct inode * inode,void * arg,bool update)416 static int __track_dentry_update(struct inode *inode, void *arg, bool update)
417 {
418 	struct ext4_fc_dentry_update *node;
419 	struct ext4_inode_info *ei = EXT4_I(inode);
420 	struct __track_dentry_update_args *dentry_update =
421 		(struct __track_dentry_update_args *)arg;
422 	struct dentry *dentry = dentry_update->dentry;
423 	struct inode *dir = dentry->d_parent->d_inode;
424 	struct super_block *sb = inode->i_sb;
425 	struct ext4_sb_info *sbi = EXT4_SB(sb);
426 
427 	mutex_unlock(&ei->i_fc_lock);
428 
429 	if (IS_ENCRYPTED(dir)) {
430 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
431 					NULL);
432 		mutex_lock(&ei->i_fc_lock);
433 		return -EOPNOTSUPP;
434 	}
435 
436 	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
437 	if (!node) {
438 		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
439 		mutex_lock(&ei->i_fc_lock);
440 		return -ENOMEM;
441 	}
442 
443 	node->fcd_op = dentry_update->op;
444 	node->fcd_parent = dir->i_ino;
445 	node->fcd_ino = inode->i_ino;
446 	if (dentry->d_name.len > DNAME_INLINE_LEN) {
447 		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
448 		if (!node->fcd_name.name) {
449 			kmem_cache_free(ext4_fc_dentry_cachep, node);
450 			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, NULL);
451 			mutex_lock(&ei->i_fc_lock);
452 			return -ENOMEM;
453 		}
454 		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
455 			dentry->d_name.len);
456 	} else {
457 		memcpy(node->fcd_iname, dentry->d_name.name,
458 			dentry->d_name.len);
459 		node->fcd_name.name = node->fcd_iname;
460 	}
461 	node->fcd_name.len = dentry->d_name.len;
462 	INIT_LIST_HEAD(&node->fcd_dilist);
463 	spin_lock(&sbi->s_fc_lock);
464 	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
465 		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
466 		list_add_tail(&node->fcd_list,
467 				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
468 	else
469 		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
470 
471 	/*
472 	 * This helps us keep a track of all fc_dentry updates which is part of
473 	 * this ext4 inode. So in case the inode is getting unlinked, before
474 	 * even we get a chance to fsync, we could remove all fc_dentry
475 	 * references while evicting the inode in ext4_fc_del().
476 	 * Also with this, we don't need to loop over all the inodes in
477 	 * sbi->s_fc_q to get the corresponding inode in
478 	 * ext4_fc_commit_dentry_updates().
479 	 */
480 	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
481 		WARN_ON(!list_empty(&ei->i_fc_dilist));
482 		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
483 	}
484 	spin_unlock(&sbi->s_fc_lock);
485 	mutex_lock(&ei->i_fc_lock);
486 
487 	return 0;
488 }
489 
__ext4_fc_track_unlink(handle_t * handle,struct inode * inode,struct dentry * dentry)490 void __ext4_fc_track_unlink(handle_t *handle,
491 		struct inode *inode, struct dentry *dentry)
492 {
493 	struct __track_dentry_update_args args;
494 	int ret;
495 
496 	args.dentry = dentry;
497 	args.op = EXT4_FC_TAG_UNLINK;
498 
499 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
500 					(void *)&args, 0);
501 	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
502 }
503 
ext4_fc_track_unlink(handle_t * handle,struct dentry * dentry)504 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
505 {
506 	struct inode *inode = d_inode(dentry);
507 
508 	if (ext4_fc_disabled(inode->i_sb))
509 		return;
510 
511 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
512 		return;
513 
514 	__ext4_fc_track_unlink(handle, inode, dentry);
515 }
516 
__ext4_fc_track_link(handle_t * handle,struct inode * inode,struct dentry * dentry)517 void __ext4_fc_track_link(handle_t *handle,
518 	struct inode *inode, struct dentry *dentry)
519 {
520 	struct __track_dentry_update_args args;
521 	int ret;
522 
523 	args.dentry = dentry;
524 	args.op = EXT4_FC_TAG_LINK;
525 
526 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
527 					(void *)&args, 0);
528 	trace_ext4_fc_track_link(handle, inode, dentry, ret);
529 }
530 
ext4_fc_track_link(handle_t * handle,struct dentry * dentry)531 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
532 {
533 	struct inode *inode = d_inode(dentry);
534 
535 	if (ext4_fc_disabled(inode->i_sb))
536 		return;
537 
538 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
539 		return;
540 
541 	__ext4_fc_track_link(handle, inode, dentry);
542 }
543 
__ext4_fc_track_create(handle_t * handle,struct inode * inode,struct dentry * dentry)544 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
545 			  struct dentry *dentry)
546 {
547 	struct __track_dentry_update_args args;
548 	int ret;
549 
550 	args.dentry = dentry;
551 	args.op = EXT4_FC_TAG_CREAT;
552 
553 	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
554 					(void *)&args, 0);
555 	trace_ext4_fc_track_create(handle, inode, dentry, ret);
556 }
557 
ext4_fc_track_create(handle_t * handle,struct dentry * dentry)558 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
559 {
560 	struct inode *inode = d_inode(dentry);
561 
562 	if (ext4_fc_disabled(inode->i_sb))
563 		return;
564 
565 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
566 		return;
567 
568 	__ext4_fc_track_create(handle, inode, dentry);
569 }
570 
571 /* __track_fn for inode tracking */
__track_inode(struct inode * inode,void * arg,bool update)572 static int __track_inode(struct inode *inode, void *arg, bool update)
573 {
574 	if (update)
575 		return -EEXIST;
576 
577 	EXT4_I(inode)->i_fc_lblk_len = 0;
578 
579 	return 0;
580 }
581 
ext4_fc_track_inode(handle_t * handle,struct inode * inode)582 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
583 {
584 	int ret;
585 
586 	if (S_ISDIR(inode->i_mode))
587 		return;
588 
589 	if (ext4_fc_disabled(inode->i_sb))
590 		return;
591 
592 	if (ext4_should_journal_data(inode)) {
593 		ext4_fc_mark_ineligible(inode->i_sb,
594 					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
595 		return;
596 	}
597 
598 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
599 		return;
600 
601 	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
602 	trace_ext4_fc_track_inode(handle, inode, ret);
603 }
604 
605 struct __track_range_args {
606 	ext4_lblk_t start, end;
607 };
608 
609 /* __track_fn for tracking data updates */
__track_range(struct inode * inode,void * arg,bool update)610 static int __track_range(struct inode *inode, void *arg, bool update)
611 {
612 	struct ext4_inode_info *ei = EXT4_I(inode);
613 	ext4_lblk_t oldstart;
614 	struct __track_range_args *__arg =
615 		(struct __track_range_args *)arg;
616 
617 	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
618 		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
619 		return -ECANCELED;
620 	}
621 
622 	oldstart = ei->i_fc_lblk_start;
623 
624 	if (update && ei->i_fc_lblk_len > 0) {
625 		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
626 		ei->i_fc_lblk_len =
627 			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
628 				ei->i_fc_lblk_start + 1;
629 	} else {
630 		ei->i_fc_lblk_start = __arg->start;
631 		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
632 	}
633 
634 	return 0;
635 }
636 
ext4_fc_track_range(handle_t * handle,struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)637 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
638 			 ext4_lblk_t end)
639 {
640 	struct __track_range_args args;
641 	int ret;
642 
643 	if (S_ISDIR(inode->i_mode))
644 		return;
645 
646 	if (ext4_fc_disabled(inode->i_sb))
647 		return;
648 
649 	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
650 		return;
651 
652 	args.start = start;
653 	args.end = end;
654 
655 	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
656 
657 	trace_ext4_fc_track_range(handle, inode, start, end, ret);
658 }
659 
ext4_fc_submit_bh(struct super_block * sb,bool is_tail)660 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
661 {
662 	blk_opf_t write_flags = REQ_SYNC;
663 	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
664 
665 	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
666 	if (test_opt(sb, BARRIER) && is_tail)
667 		write_flags |= REQ_FUA | REQ_PREFLUSH;
668 	lock_buffer(bh);
669 	set_buffer_dirty(bh);
670 	set_buffer_uptodate(bh);
671 	bh->b_end_io = ext4_end_buffer_io_sync;
672 	submit_bh(REQ_OP_WRITE | write_flags, bh);
673 	EXT4_SB(sb)->s_fc_bh = NULL;
674 }
675 
676 /* Ext4 commit path routines */
677 
678 /* memcpy to fc reserved space and update CRC */
ext4_fc_memcpy(struct super_block * sb,void * dst,const void * src,int len,u32 * crc)679 static void *ext4_fc_memcpy(struct super_block *sb, void *dst, const void *src,
680 				int len, u32 *crc)
681 {
682 	if (crc)
683 		*crc = ext4_chksum(EXT4_SB(sb), *crc, src, len);
684 	return memcpy(dst, src, len);
685 }
686 
687 /* memzero and update CRC */
ext4_fc_memzero(struct super_block * sb,void * dst,int len,u32 * crc)688 static void *ext4_fc_memzero(struct super_block *sb, void *dst, int len,
689 				u32 *crc)
690 {
691 	void *ret;
692 
693 	ret = memset(dst, 0, len);
694 	if (crc)
695 		*crc = ext4_chksum(EXT4_SB(sb), *crc, dst, len);
696 	return ret;
697 }
698 
699 /*
700  * Allocate len bytes on a fast commit buffer.
701  *
702  * During the commit time this function is used to manage fast commit
703  * block space. We don't split a fast commit log onto different
704  * blocks. So this function makes sure that if there's not enough space
705  * on the current block, the remaining space in the current block is
706  * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
707  * new block is from jbd2 and CRC is updated to reflect the padding
708  * we added.
709  */
ext4_fc_reserve_space(struct super_block * sb,int len,u32 * crc)710 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
711 {
712 	struct ext4_fc_tl tl;
713 	struct ext4_sb_info *sbi = EXT4_SB(sb);
714 	struct buffer_head *bh;
715 	int bsize = sbi->s_journal->j_blocksize;
716 	int ret, off = sbi->s_fc_bytes % bsize;
717 	int remaining;
718 	u8 *dst;
719 
720 	/*
721 	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
722 	 * cannot fulfill the request.
723 	 */
724 	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
725 		return NULL;
726 
727 	if (!sbi->s_fc_bh) {
728 		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
729 		if (ret)
730 			return NULL;
731 		sbi->s_fc_bh = bh;
732 	}
733 	dst = sbi->s_fc_bh->b_data + off;
734 
735 	/*
736 	 * Allocate the bytes in the current block if we can do so while still
737 	 * leaving enough space for a PAD tlv.
738 	 */
739 	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
740 	if (len <= remaining) {
741 		sbi->s_fc_bytes += len;
742 		return dst;
743 	}
744 
745 	/*
746 	 * Else, terminate the current block with a PAD tlv, then allocate a new
747 	 * block and allocate the bytes at the start of that new block.
748 	 */
749 
750 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
751 	tl.fc_len = cpu_to_le16(remaining);
752 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
753 	ext4_fc_memzero(sb, dst + EXT4_FC_TAG_BASE_LEN, remaining, crc);
754 
755 	ext4_fc_submit_bh(sb, false);
756 
757 	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
758 	if (ret)
759 		return NULL;
760 	sbi->s_fc_bh = bh;
761 	sbi->s_fc_bytes += bsize - off + len;
762 	return sbi->s_fc_bh->b_data;
763 }
764 
765 /*
766  * Complete a fast commit by writing tail tag.
767  *
768  * Writing tail tag marks the end of a fast commit. In order to guarantee
769  * atomicity, after writing tail tag, even if there's space remaining
770  * in the block, next commit shouldn't use it. That's why tail tag
771  * has the length as that of the remaining space on the block.
772  */
ext4_fc_write_tail(struct super_block * sb,u32 crc)773 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
774 {
775 	struct ext4_sb_info *sbi = EXT4_SB(sb);
776 	struct ext4_fc_tl tl;
777 	struct ext4_fc_tail tail;
778 	int off, bsize = sbi->s_journal->j_blocksize;
779 	u8 *dst;
780 
781 	/*
782 	 * ext4_fc_reserve_space takes care of allocating an extra block if
783 	 * there's no enough space on this block for accommodating this tail.
784 	 */
785 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
786 	if (!dst)
787 		return -ENOSPC;
788 
789 	off = sbi->s_fc_bytes % bsize;
790 
791 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
792 	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
793 	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
794 
795 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, &crc);
796 	dst += EXT4_FC_TAG_BASE_LEN;
797 	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
798 	ext4_fc_memcpy(sb, dst, &tail.fc_tid, sizeof(tail.fc_tid), &crc);
799 	dst += sizeof(tail.fc_tid);
800 	tail.fc_crc = cpu_to_le32(crc);
801 	ext4_fc_memcpy(sb, dst, &tail.fc_crc, sizeof(tail.fc_crc), NULL);
802 	dst += sizeof(tail.fc_crc);
803 	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
804 
805 	ext4_fc_submit_bh(sb, true);
806 
807 	return 0;
808 }
809 
810 /*
811  * Adds tag, length, value and updates CRC. Returns true if tlv was added.
812  * Returns false if there's not enough space.
813  */
ext4_fc_add_tlv(struct super_block * sb,u16 tag,u16 len,u8 * val,u32 * crc)814 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
815 			   u32 *crc)
816 {
817 	struct ext4_fc_tl tl;
818 	u8 *dst;
819 
820 	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
821 	if (!dst)
822 		return false;
823 
824 	tl.fc_tag = cpu_to_le16(tag);
825 	tl.fc_len = cpu_to_le16(len);
826 
827 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
828 	ext4_fc_memcpy(sb, dst + EXT4_FC_TAG_BASE_LEN, val, len, crc);
829 
830 	return true;
831 }
832 
833 /* Same as above, but adds dentry tlv. */
ext4_fc_add_dentry_tlv(struct super_block * sb,u32 * crc,struct ext4_fc_dentry_update * fc_dentry)834 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
835 				   struct ext4_fc_dentry_update *fc_dentry)
836 {
837 	struct ext4_fc_dentry_info fcd;
838 	struct ext4_fc_tl tl;
839 	int dlen = fc_dentry->fcd_name.len;
840 	u8 *dst = ext4_fc_reserve_space(sb,
841 			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
842 
843 	if (!dst)
844 		return false;
845 
846 	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
847 	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
848 	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
849 	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
850 	ext4_fc_memcpy(sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc);
851 	dst += EXT4_FC_TAG_BASE_LEN;
852 	ext4_fc_memcpy(sb, dst, &fcd, sizeof(fcd), crc);
853 	dst += sizeof(fcd);
854 	ext4_fc_memcpy(sb, dst, fc_dentry->fcd_name.name, dlen, crc);
855 
856 	return true;
857 }
858 
859 /*
860  * Writes inode in the fast commit space under TLV with tag @tag.
861  * Returns 0 on success, error on failure.
862  */
ext4_fc_write_inode(struct inode * inode,u32 * crc)863 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
864 {
865 	struct ext4_inode_info *ei = EXT4_I(inode);
866 	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
867 	int ret;
868 	struct ext4_iloc iloc;
869 	struct ext4_fc_inode fc_inode;
870 	struct ext4_fc_tl tl;
871 	u8 *dst;
872 
873 	ret = ext4_get_inode_loc(inode, &iloc);
874 	if (ret)
875 		return ret;
876 
877 	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
878 		inode_len = EXT4_INODE_SIZE(inode->i_sb);
879 	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
880 		inode_len += ei->i_extra_isize;
881 
882 	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
883 	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
884 	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
885 
886 	ret = -ECANCELED;
887 	dst = ext4_fc_reserve_space(inode->i_sb,
888 		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
889 	if (!dst)
890 		goto err;
891 
892 	if (!ext4_fc_memcpy(inode->i_sb, dst, &tl, EXT4_FC_TAG_BASE_LEN, crc))
893 		goto err;
894 	dst += EXT4_FC_TAG_BASE_LEN;
895 	if (!ext4_fc_memcpy(inode->i_sb, dst, &fc_inode, sizeof(fc_inode), crc))
896 		goto err;
897 	dst += sizeof(fc_inode);
898 	if (!ext4_fc_memcpy(inode->i_sb, dst, (u8 *)ext4_raw_inode(&iloc),
899 					inode_len, crc))
900 		goto err;
901 	ret = 0;
902 err:
903 	brelse(iloc.bh);
904 	return ret;
905 }
906 
907 /*
908  * Writes updated data ranges for the inode in question. Updates CRC.
909  * Returns 0 on success, error otherwise.
910  */
ext4_fc_write_inode_data(struct inode * inode,u32 * crc)911 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
912 {
913 	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
914 	struct ext4_inode_info *ei = EXT4_I(inode);
915 	struct ext4_map_blocks map;
916 	struct ext4_fc_add_range fc_ext;
917 	struct ext4_fc_del_range lrange;
918 	struct ext4_extent *ex;
919 	int ret;
920 
921 	mutex_lock(&ei->i_fc_lock);
922 	if (ei->i_fc_lblk_len == 0) {
923 		mutex_unlock(&ei->i_fc_lock);
924 		return 0;
925 	}
926 	old_blk_size = ei->i_fc_lblk_start;
927 	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
928 	ei->i_fc_lblk_len = 0;
929 	mutex_unlock(&ei->i_fc_lock);
930 
931 	cur_lblk_off = old_blk_size;
932 	ext4_debug("will try writing %d to %d for inode %ld\n",
933 		   cur_lblk_off, new_blk_size, inode->i_ino);
934 
935 	while (cur_lblk_off <= new_blk_size) {
936 		map.m_lblk = cur_lblk_off;
937 		map.m_len = new_blk_size - cur_lblk_off + 1;
938 		ret = ext4_map_blocks(NULL, inode, &map, 0);
939 		if (ret < 0)
940 			return -ECANCELED;
941 
942 		if (map.m_len == 0) {
943 			cur_lblk_off++;
944 			continue;
945 		}
946 
947 		if (ret == 0) {
948 			lrange.fc_ino = cpu_to_le32(inode->i_ino);
949 			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
950 			lrange.fc_len = cpu_to_le32(map.m_len);
951 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
952 					    sizeof(lrange), (u8 *)&lrange, crc))
953 				return -ENOSPC;
954 		} else {
955 			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
956 				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
957 
958 			/* Limit the number of blocks in one extent */
959 			map.m_len = min(max, map.m_len);
960 
961 			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
962 			ex = (struct ext4_extent *)&fc_ext.fc_ex;
963 			ex->ee_block = cpu_to_le32(map.m_lblk);
964 			ex->ee_len = cpu_to_le16(map.m_len);
965 			ext4_ext_store_pblock(ex, map.m_pblk);
966 			if (map.m_flags & EXT4_MAP_UNWRITTEN)
967 				ext4_ext_mark_unwritten(ex);
968 			else
969 				ext4_ext_mark_initialized(ex);
970 			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
971 					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
972 				return -ENOSPC;
973 		}
974 
975 		cur_lblk_off += map.m_len;
976 	}
977 
978 	return 0;
979 }
980 
981 
982 /* Submit data for all the fast commit inodes */
ext4_fc_submit_inode_data_all(journal_t * journal)983 static int ext4_fc_submit_inode_data_all(journal_t *journal)
984 {
985 	struct super_block *sb = journal->j_private;
986 	struct ext4_sb_info *sbi = EXT4_SB(sb);
987 	struct ext4_inode_info *ei;
988 	int ret = 0;
989 
990 	spin_lock(&sbi->s_fc_lock);
991 	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
992 		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
993 		while (atomic_read(&ei->i_fc_updates)) {
994 			DEFINE_WAIT(wait);
995 
996 			prepare_to_wait(&ei->i_fc_wait, &wait,
997 						TASK_UNINTERRUPTIBLE);
998 			if (atomic_read(&ei->i_fc_updates)) {
999 				spin_unlock(&sbi->s_fc_lock);
1000 				schedule();
1001 				spin_lock(&sbi->s_fc_lock);
1002 			}
1003 			finish_wait(&ei->i_fc_wait, &wait);
1004 		}
1005 		spin_unlock(&sbi->s_fc_lock);
1006 		ret = jbd2_submit_inode_data(ei->jinode);
1007 		if (ret)
1008 			return ret;
1009 		spin_lock(&sbi->s_fc_lock);
1010 	}
1011 	spin_unlock(&sbi->s_fc_lock);
1012 
1013 	return ret;
1014 }
1015 
1016 /* Wait for completion of data for all the fast commit inodes */
ext4_fc_wait_inode_data_all(journal_t * journal)1017 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1018 {
1019 	struct super_block *sb = journal->j_private;
1020 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1021 	struct ext4_inode_info *pos, *n;
1022 	int ret = 0;
1023 
1024 	spin_lock(&sbi->s_fc_lock);
1025 	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1026 		if (!ext4_test_inode_state(&pos->vfs_inode,
1027 					   EXT4_STATE_FC_COMMITTING))
1028 			continue;
1029 		spin_unlock(&sbi->s_fc_lock);
1030 
1031 		ret = jbd2_wait_inode_data(journal, pos->jinode);
1032 		if (ret)
1033 			return ret;
1034 		spin_lock(&sbi->s_fc_lock);
1035 	}
1036 	spin_unlock(&sbi->s_fc_lock);
1037 
1038 	return 0;
1039 }
1040 
1041 /* Commit all the directory entry updates */
ext4_fc_commit_dentry_updates(journal_t * journal,u32 * crc)1042 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1043 __acquires(&sbi->s_fc_lock)
1044 __releases(&sbi->s_fc_lock)
1045 {
1046 	struct super_block *sb = journal->j_private;
1047 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1048 	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1049 	struct inode *inode;
1050 	struct ext4_inode_info *ei;
1051 	int ret;
1052 
1053 	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1054 		return 0;
1055 	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1056 				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1057 		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1058 			spin_unlock(&sbi->s_fc_lock);
1059 			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1060 				ret = -ENOSPC;
1061 				goto lock_and_exit;
1062 			}
1063 			spin_lock(&sbi->s_fc_lock);
1064 			continue;
1065 		}
1066 		/*
1067 		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1068 		 * corresponding inode pointer
1069 		 */
1070 		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1071 		ei = list_first_entry(&fc_dentry->fcd_dilist,
1072 				struct ext4_inode_info, i_fc_dilist);
1073 		inode = &ei->vfs_inode;
1074 		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1075 
1076 		spin_unlock(&sbi->s_fc_lock);
1077 
1078 		/*
1079 		 * We first write the inode and then the create dirent. This
1080 		 * allows the recovery code to create an unnamed inode first
1081 		 * and then link it to a directory entry. This allows us
1082 		 * to use namei.c routines almost as is and simplifies
1083 		 * the recovery code.
1084 		 */
1085 		ret = ext4_fc_write_inode(inode, crc);
1086 		if (ret)
1087 			goto lock_and_exit;
1088 
1089 		ret = ext4_fc_write_inode_data(inode, crc);
1090 		if (ret)
1091 			goto lock_and_exit;
1092 
1093 		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1094 			ret = -ENOSPC;
1095 			goto lock_and_exit;
1096 		}
1097 
1098 		spin_lock(&sbi->s_fc_lock);
1099 	}
1100 	return 0;
1101 lock_and_exit:
1102 	spin_lock(&sbi->s_fc_lock);
1103 	return ret;
1104 }
1105 
ext4_fc_perform_commit(journal_t * journal)1106 static int ext4_fc_perform_commit(journal_t *journal)
1107 {
1108 	struct super_block *sb = journal->j_private;
1109 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1110 	struct ext4_inode_info *iter;
1111 	struct ext4_fc_head head;
1112 	struct inode *inode;
1113 	struct blk_plug plug;
1114 	int ret = 0;
1115 	u32 crc = 0;
1116 
1117 	ret = ext4_fc_submit_inode_data_all(journal);
1118 	if (ret)
1119 		return ret;
1120 
1121 	ret = ext4_fc_wait_inode_data_all(journal);
1122 	if (ret)
1123 		return ret;
1124 
1125 	/*
1126 	 * If file system device is different from journal device, issue a cache
1127 	 * flush before we start writing fast commit blocks.
1128 	 */
1129 	if (journal->j_fs_dev != journal->j_dev)
1130 		blkdev_issue_flush(journal->j_fs_dev);
1131 
1132 	blk_start_plug(&plug);
1133 	if (sbi->s_fc_bytes == 0) {
1134 		/*
1135 		 * Add a head tag only if this is the first fast commit
1136 		 * in this TID.
1137 		 */
1138 		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1139 		head.fc_tid = cpu_to_le32(
1140 			sbi->s_journal->j_running_transaction->t_tid);
1141 		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1142 			(u8 *)&head, &crc)) {
1143 			ret = -ENOSPC;
1144 			goto out;
1145 		}
1146 	}
1147 
1148 	spin_lock(&sbi->s_fc_lock);
1149 	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1150 	if (ret) {
1151 		spin_unlock(&sbi->s_fc_lock);
1152 		goto out;
1153 	}
1154 
1155 	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1156 		inode = &iter->vfs_inode;
1157 		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1158 			continue;
1159 
1160 		spin_unlock(&sbi->s_fc_lock);
1161 		ret = ext4_fc_write_inode_data(inode, &crc);
1162 		if (ret)
1163 			goto out;
1164 		ret = ext4_fc_write_inode(inode, &crc);
1165 		if (ret)
1166 			goto out;
1167 		spin_lock(&sbi->s_fc_lock);
1168 	}
1169 	spin_unlock(&sbi->s_fc_lock);
1170 
1171 	ret = ext4_fc_write_tail(sb, crc);
1172 
1173 out:
1174 	blk_finish_plug(&plug);
1175 	return ret;
1176 }
1177 
ext4_fc_update_stats(struct super_block * sb,int status,u64 commit_time,int nblks,tid_t commit_tid)1178 static void ext4_fc_update_stats(struct super_block *sb, int status,
1179 				 u64 commit_time, int nblks, tid_t commit_tid)
1180 {
1181 	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1182 
1183 	ext4_debug("Fast commit ended with status = %d for tid %u",
1184 			status, commit_tid);
1185 	if (status == EXT4_FC_STATUS_OK) {
1186 		stats->fc_num_commits++;
1187 		stats->fc_numblks += nblks;
1188 		if (likely(stats->s_fc_avg_commit_time))
1189 			stats->s_fc_avg_commit_time =
1190 				(commit_time +
1191 				 stats->s_fc_avg_commit_time * 3) / 4;
1192 		else
1193 			stats->s_fc_avg_commit_time = commit_time;
1194 	} else if (status == EXT4_FC_STATUS_FAILED ||
1195 		   status == EXT4_FC_STATUS_INELIGIBLE) {
1196 		if (status == EXT4_FC_STATUS_FAILED)
1197 			stats->fc_failed_commits++;
1198 		stats->fc_ineligible_commits++;
1199 	} else {
1200 		stats->fc_skipped_commits++;
1201 	}
1202 	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1203 }
1204 
1205 /*
1206  * The main commit entry point. Performs a fast commit for transaction
1207  * commit_tid if needed. If it's not possible to perform a fast commit
1208  * due to various reasons, we fall back to full commit. Returns 0
1209  * on success, error otherwise.
1210  */
ext4_fc_commit(journal_t * journal,tid_t commit_tid)1211 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1212 {
1213 	struct super_block *sb = journal->j_private;
1214 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1215 	int nblks = 0, ret, bsize = journal->j_blocksize;
1216 	int subtid = atomic_read(&sbi->s_fc_subtid);
1217 	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1218 	ktime_t start_time, commit_time;
1219 
1220 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1221 		return jbd2_complete_transaction(journal, commit_tid);
1222 
1223 	trace_ext4_fc_commit_start(sb, commit_tid);
1224 
1225 	start_time = ktime_get();
1226 
1227 restart_fc:
1228 	ret = jbd2_fc_begin_commit(journal, commit_tid);
1229 	if (ret == -EALREADY) {
1230 		/* There was an ongoing commit, check if we need to restart */
1231 		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1232 			commit_tid > journal->j_commit_sequence)
1233 			goto restart_fc;
1234 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1235 				commit_tid);
1236 		return 0;
1237 	} else if (ret) {
1238 		/*
1239 		 * Commit couldn't start. Just update stats and perform a
1240 		 * full commit.
1241 		 */
1242 		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1243 				commit_tid);
1244 		return jbd2_complete_transaction(journal, commit_tid);
1245 	}
1246 
1247 	/*
1248 	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1249 	 * if we are fast commit ineligible.
1250 	 */
1251 	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1252 		status = EXT4_FC_STATUS_INELIGIBLE;
1253 		goto fallback;
1254 	}
1255 
1256 	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1257 	ret = ext4_fc_perform_commit(journal);
1258 	if (ret < 0) {
1259 		status = EXT4_FC_STATUS_FAILED;
1260 		goto fallback;
1261 	}
1262 	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1263 	ret = jbd2_fc_wait_bufs(journal, nblks);
1264 	if (ret < 0) {
1265 		status = EXT4_FC_STATUS_FAILED;
1266 		goto fallback;
1267 	}
1268 	atomic_inc(&sbi->s_fc_subtid);
1269 	ret = jbd2_fc_end_commit(journal);
1270 	/*
1271 	 * weight the commit time higher than the average time so we
1272 	 * don't react too strongly to vast changes in the commit time
1273 	 */
1274 	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1275 	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1276 	return ret;
1277 
1278 fallback:
1279 	ret = jbd2_fc_end_commit_fallback(journal);
1280 	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Fast commit cleanup routine. This is called after every fast commit and
1286  * full commit. full is true if we are called after a full commit.
1287  */
ext4_fc_cleanup(journal_t * journal,int full,tid_t tid)1288 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1289 {
1290 	struct super_block *sb = journal->j_private;
1291 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1292 	struct ext4_inode_info *iter, *iter_n;
1293 	struct ext4_fc_dentry_update *fc_dentry;
1294 
1295 	if (full && sbi->s_fc_bh)
1296 		sbi->s_fc_bh = NULL;
1297 
1298 	trace_ext4_fc_cleanup(journal, full, tid);
1299 	jbd2_fc_release_bufs(journal);
1300 
1301 	spin_lock(&sbi->s_fc_lock);
1302 	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1303 				 i_fc_list) {
1304 		list_del_init(&iter->i_fc_list);
1305 		ext4_clear_inode_state(&iter->vfs_inode,
1306 				       EXT4_STATE_FC_COMMITTING);
1307 		if (iter->i_sync_tid <= tid)
1308 			ext4_fc_reset_inode(&iter->vfs_inode);
1309 		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1310 		smp_mb();
1311 #if (BITS_PER_LONG < 64)
1312 		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1313 #else
1314 		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1315 #endif
1316 	}
1317 
1318 	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1319 		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1320 					     struct ext4_fc_dentry_update,
1321 					     fcd_list);
1322 		list_del_init(&fc_dentry->fcd_list);
1323 		list_del_init(&fc_dentry->fcd_dilist);
1324 		spin_unlock(&sbi->s_fc_lock);
1325 
1326 		if (fc_dentry->fcd_name.name &&
1327 			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1328 			kfree(fc_dentry->fcd_name.name);
1329 		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1330 		spin_lock(&sbi->s_fc_lock);
1331 	}
1332 
1333 	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1334 				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1335 	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1336 				&sbi->s_fc_q[FC_Q_MAIN]);
1337 
1338 	if (tid >= sbi->s_fc_ineligible_tid) {
1339 		sbi->s_fc_ineligible_tid = 0;
1340 		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1341 	}
1342 
1343 	if (full)
1344 		sbi->s_fc_bytes = 0;
1345 	spin_unlock(&sbi->s_fc_lock);
1346 	trace_ext4_fc_stats(sb);
1347 }
1348 
1349 /* Ext4 Replay Path Routines */
1350 
1351 /* Helper struct for dentry replay routines */
1352 struct dentry_info_args {
1353 	int parent_ino, dname_len, ino, inode_len;
1354 	char *dname;
1355 };
1356 
1357 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1358 struct ext4_fc_tl_mem {
1359 	u16 fc_tag;
1360 	u16 fc_len;
1361 };
1362 
tl_to_darg(struct dentry_info_args * darg,struct ext4_fc_tl_mem * tl,u8 * val)1363 static inline void tl_to_darg(struct dentry_info_args *darg,
1364 			      struct ext4_fc_tl_mem *tl, u8 *val)
1365 {
1366 	struct ext4_fc_dentry_info fcd;
1367 
1368 	memcpy(&fcd, val, sizeof(fcd));
1369 
1370 	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1371 	darg->ino = le32_to_cpu(fcd.fc_ino);
1372 	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1373 	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1374 }
1375 
ext4_fc_get_tl(struct ext4_fc_tl_mem * tl,u8 * val)1376 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1377 {
1378 	struct ext4_fc_tl tl_disk;
1379 
1380 	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1381 	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1382 	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1383 }
1384 
1385 /* Unlink replay function */
ext4_fc_replay_unlink(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1386 static int ext4_fc_replay_unlink(struct super_block *sb,
1387 				 struct ext4_fc_tl_mem *tl, u8 *val)
1388 {
1389 	struct inode *inode, *old_parent;
1390 	struct qstr entry;
1391 	struct dentry_info_args darg;
1392 	int ret = 0;
1393 
1394 	tl_to_darg(&darg, tl, val);
1395 
1396 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1397 			darg.parent_ino, darg.dname_len);
1398 
1399 	entry.name = darg.dname;
1400 	entry.len = darg.dname_len;
1401 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1402 
1403 	if (IS_ERR(inode)) {
1404 		ext4_debug("Inode %d not found", darg.ino);
1405 		return 0;
1406 	}
1407 
1408 	old_parent = ext4_iget(sb, darg.parent_ino,
1409 				EXT4_IGET_NORMAL);
1410 	if (IS_ERR(old_parent)) {
1411 		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1412 		iput(inode);
1413 		return 0;
1414 	}
1415 
1416 	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1417 	/* -ENOENT ok coz it might not exist anymore. */
1418 	if (ret == -ENOENT)
1419 		ret = 0;
1420 	iput(old_parent);
1421 	iput(inode);
1422 	return ret;
1423 }
1424 
ext4_fc_replay_link_internal(struct super_block * sb,struct dentry_info_args * darg,struct inode * inode)1425 static int ext4_fc_replay_link_internal(struct super_block *sb,
1426 				struct dentry_info_args *darg,
1427 				struct inode *inode)
1428 {
1429 	struct inode *dir = NULL;
1430 	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1431 	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1432 	int ret = 0;
1433 
1434 	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1435 	if (IS_ERR(dir)) {
1436 		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1437 		dir = NULL;
1438 		goto out;
1439 	}
1440 
1441 	dentry_dir = d_obtain_alias(dir);
1442 	if (IS_ERR(dentry_dir)) {
1443 		ext4_debug("Failed to obtain dentry");
1444 		dentry_dir = NULL;
1445 		goto out;
1446 	}
1447 
1448 	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1449 	if (!dentry_inode) {
1450 		ext4_debug("Inode dentry not created.");
1451 		ret = -ENOMEM;
1452 		goto out;
1453 	}
1454 
1455 	ret = __ext4_link(dir, inode, dentry_inode);
1456 	/*
1457 	 * It's possible that link already existed since data blocks
1458 	 * for the dir in question got persisted before we crashed OR
1459 	 * we replayed this tag and crashed before the entire replay
1460 	 * could complete.
1461 	 */
1462 	if (ret && ret != -EEXIST) {
1463 		ext4_debug("Failed to link\n");
1464 		goto out;
1465 	}
1466 
1467 	ret = 0;
1468 out:
1469 	if (dentry_dir) {
1470 		d_drop(dentry_dir);
1471 		dput(dentry_dir);
1472 	} else if (dir) {
1473 		iput(dir);
1474 	}
1475 	if (dentry_inode) {
1476 		d_drop(dentry_inode);
1477 		dput(dentry_inode);
1478 	}
1479 
1480 	return ret;
1481 }
1482 
1483 /* Link replay function */
ext4_fc_replay_link(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1484 static int ext4_fc_replay_link(struct super_block *sb,
1485 			       struct ext4_fc_tl_mem *tl, u8 *val)
1486 {
1487 	struct inode *inode;
1488 	struct dentry_info_args darg;
1489 	int ret = 0;
1490 
1491 	tl_to_darg(&darg, tl, val);
1492 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1493 			darg.parent_ino, darg.dname_len);
1494 
1495 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1496 	if (IS_ERR(inode)) {
1497 		ext4_debug("Inode not found.");
1498 		return 0;
1499 	}
1500 
1501 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1502 	iput(inode);
1503 	return ret;
1504 }
1505 
1506 /*
1507  * Record all the modified inodes during replay. We use this later to setup
1508  * block bitmaps correctly.
1509  */
ext4_fc_record_modified_inode(struct super_block * sb,int ino)1510 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1511 {
1512 	struct ext4_fc_replay_state *state;
1513 	int i;
1514 
1515 	state = &EXT4_SB(sb)->s_fc_replay_state;
1516 	for (i = 0; i < state->fc_modified_inodes_used; i++)
1517 		if (state->fc_modified_inodes[i] == ino)
1518 			return 0;
1519 	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1520 		int *fc_modified_inodes;
1521 
1522 		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1523 				sizeof(int) * (state->fc_modified_inodes_size +
1524 				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1525 				GFP_KERNEL);
1526 		if (!fc_modified_inodes)
1527 			return -ENOMEM;
1528 		state->fc_modified_inodes = fc_modified_inodes;
1529 		state->fc_modified_inodes_size +=
1530 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1531 	}
1532 	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1533 	return 0;
1534 }
1535 
1536 /*
1537  * Inode replay function
1538  */
ext4_fc_replay_inode(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1539 static int ext4_fc_replay_inode(struct super_block *sb,
1540 				struct ext4_fc_tl_mem *tl, u8 *val)
1541 {
1542 	struct ext4_fc_inode fc_inode;
1543 	struct ext4_inode *raw_inode;
1544 	struct ext4_inode *raw_fc_inode;
1545 	struct inode *inode = NULL;
1546 	struct ext4_iloc iloc;
1547 	int inode_len, ino, ret, tag = tl->fc_tag;
1548 	struct ext4_extent_header *eh;
1549 	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1550 
1551 	memcpy(&fc_inode, val, sizeof(fc_inode));
1552 
1553 	ino = le32_to_cpu(fc_inode.fc_ino);
1554 	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1555 
1556 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1557 	if (!IS_ERR(inode)) {
1558 		ext4_ext_clear_bb(inode);
1559 		iput(inode);
1560 	}
1561 	inode = NULL;
1562 
1563 	ret = ext4_fc_record_modified_inode(sb, ino);
1564 	if (ret)
1565 		goto out;
1566 
1567 	raw_fc_inode = (struct ext4_inode *)
1568 		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1569 	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1570 	if (ret)
1571 		goto out;
1572 
1573 	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1574 	raw_inode = ext4_raw_inode(&iloc);
1575 
1576 	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1577 	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1578 	       inode_len - off_gen);
1579 	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1580 		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1581 		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1582 			memset(eh, 0, sizeof(*eh));
1583 			eh->eh_magic = EXT4_EXT_MAGIC;
1584 			eh->eh_max = cpu_to_le16(
1585 				(sizeof(raw_inode->i_block) -
1586 				 sizeof(struct ext4_extent_header))
1587 				 / sizeof(struct ext4_extent));
1588 		}
1589 	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1590 		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1591 			sizeof(raw_inode->i_block));
1592 	}
1593 
1594 	/* Immediately update the inode on disk. */
1595 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1596 	if (ret)
1597 		goto out;
1598 	ret = sync_dirty_buffer(iloc.bh);
1599 	if (ret)
1600 		goto out;
1601 	ret = ext4_mark_inode_used(sb, ino);
1602 	if (ret)
1603 		goto out;
1604 
1605 	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1606 	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1607 	if (IS_ERR(inode)) {
1608 		ext4_debug("Inode not found.");
1609 		return -EFSCORRUPTED;
1610 	}
1611 
1612 	/*
1613 	 * Our allocator could have made different decisions than before
1614 	 * crashing. This should be fixed but until then, we calculate
1615 	 * the number of blocks the inode.
1616 	 */
1617 	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1618 		ext4_ext_replay_set_iblocks(inode);
1619 
1620 	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1621 	ext4_reset_inode_seed(inode);
1622 
1623 	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1624 	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1625 	sync_dirty_buffer(iloc.bh);
1626 	brelse(iloc.bh);
1627 out:
1628 	iput(inode);
1629 	if (!ret)
1630 		blkdev_issue_flush(sb->s_bdev);
1631 
1632 	return 0;
1633 }
1634 
1635 /*
1636  * Dentry create replay function.
1637  *
1638  * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1639  * inode for which we are trying to create a dentry here, should already have
1640  * been replayed before we start here.
1641  */
ext4_fc_replay_create(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1642 static int ext4_fc_replay_create(struct super_block *sb,
1643 				 struct ext4_fc_tl_mem *tl, u8 *val)
1644 {
1645 	int ret = 0;
1646 	struct inode *inode = NULL;
1647 	struct inode *dir = NULL;
1648 	struct dentry_info_args darg;
1649 
1650 	tl_to_darg(&darg, tl, val);
1651 
1652 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1653 			darg.parent_ino, darg.dname_len);
1654 
1655 	/* This takes care of update group descriptor and other metadata */
1656 	ret = ext4_mark_inode_used(sb, darg.ino);
1657 	if (ret)
1658 		goto out;
1659 
1660 	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1661 	if (IS_ERR(inode)) {
1662 		ext4_debug("inode %d not found.", darg.ino);
1663 		inode = NULL;
1664 		ret = -EINVAL;
1665 		goto out;
1666 	}
1667 
1668 	if (S_ISDIR(inode->i_mode)) {
1669 		/*
1670 		 * If we are creating a directory, we need to make sure that the
1671 		 * dot and dot dot dirents are setup properly.
1672 		 */
1673 		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1674 		if (IS_ERR(dir)) {
1675 			ext4_debug("Dir %d not found.", darg.ino);
1676 			goto out;
1677 		}
1678 		ret = ext4_init_new_dir(NULL, dir, inode);
1679 		iput(dir);
1680 		if (ret) {
1681 			ret = 0;
1682 			goto out;
1683 		}
1684 	}
1685 	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1686 	if (ret)
1687 		goto out;
1688 	set_nlink(inode, 1);
1689 	ext4_mark_inode_dirty(NULL, inode);
1690 out:
1691 	iput(inode);
1692 	return ret;
1693 }
1694 
1695 /*
1696  * Record physical disk regions which are in use as per fast commit area,
1697  * and used by inodes during replay phase. Our simple replay phase
1698  * allocator excludes these regions from allocation.
1699  */
ext4_fc_record_regions(struct super_block * sb,int ino,ext4_lblk_t lblk,ext4_fsblk_t pblk,int len,int replay)1700 int ext4_fc_record_regions(struct super_block *sb, int ino,
1701 		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1702 {
1703 	struct ext4_fc_replay_state *state;
1704 	struct ext4_fc_alloc_region *region;
1705 
1706 	state = &EXT4_SB(sb)->s_fc_replay_state;
1707 	/*
1708 	 * during replay phase, the fc_regions_valid may not same as
1709 	 * fc_regions_used, update it when do new additions.
1710 	 */
1711 	if (replay && state->fc_regions_used != state->fc_regions_valid)
1712 		state->fc_regions_used = state->fc_regions_valid;
1713 	if (state->fc_regions_used == state->fc_regions_size) {
1714 		struct ext4_fc_alloc_region *fc_regions;
1715 
1716 		fc_regions = krealloc(state->fc_regions,
1717 				      sizeof(struct ext4_fc_alloc_region) *
1718 				      (state->fc_regions_size +
1719 				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1720 				      GFP_KERNEL);
1721 		if (!fc_regions)
1722 			return -ENOMEM;
1723 		state->fc_regions_size +=
1724 			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1725 		state->fc_regions = fc_regions;
1726 	}
1727 	region = &state->fc_regions[state->fc_regions_used++];
1728 	region->ino = ino;
1729 	region->lblk = lblk;
1730 	region->pblk = pblk;
1731 	region->len = len;
1732 
1733 	if (replay)
1734 		state->fc_regions_valid++;
1735 
1736 	return 0;
1737 }
1738 
1739 /* Replay add range tag */
ext4_fc_replay_add_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1740 static int ext4_fc_replay_add_range(struct super_block *sb,
1741 				    struct ext4_fc_tl_mem *tl, u8 *val)
1742 {
1743 	struct ext4_fc_add_range fc_add_ex;
1744 	struct ext4_extent newex, *ex;
1745 	struct inode *inode;
1746 	ext4_lblk_t start, cur;
1747 	int remaining, len;
1748 	ext4_fsblk_t start_pblk;
1749 	struct ext4_map_blocks map;
1750 	struct ext4_ext_path *path = NULL;
1751 	int ret;
1752 
1753 	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1754 	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1755 
1756 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1757 		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1758 		ext4_ext_get_actual_len(ex));
1759 
1760 	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1761 	if (IS_ERR(inode)) {
1762 		ext4_debug("Inode not found.");
1763 		return 0;
1764 	}
1765 
1766 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1767 	if (ret)
1768 		goto out;
1769 
1770 	start = le32_to_cpu(ex->ee_block);
1771 	start_pblk = ext4_ext_pblock(ex);
1772 	len = ext4_ext_get_actual_len(ex);
1773 
1774 	cur = start;
1775 	remaining = len;
1776 	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1777 		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1778 		  inode->i_ino);
1779 
1780 	while (remaining > 0) {
1781 		map.m_lblk = cur;
1782 		map.m_len = remaining;
1783 		map.m_pblk = 0;
1784 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1785 
1786 		if (ret < 0)
1787 			goto out;
1788 
1789 		if (ret == 0) {
1790 			/* Range is not mapped */
1791 			path = ext4_find_extent(inode, cur, NULL, 0);
1792 			if (IS_ERR(path))
1793 				goto out;
1794 			memset(&newex, 0, sizeof(newex));
1795 			newex.ee_block = cpu_to_le32(cur);
1796 			ext4_ext_store_pblock(
1797 				&newex, start_pblk + cur - start);
1798 			newex.ee_len = cpu_to_le16(map.m_len);
1799 			if (ext4_ext_is_unwritten(ex))
1800 				ext4_ext_mark_unwritten(&newex);
1801 			down_write(&EXT4_I(inode)->i_data_sem);
1802 			ret = ext4_ext_insert_extent(
1803 				NULL, inode, &path, &newex, 0);
1804 			up_write((&EXT4_I(inode)->i_data_sem));
1805 			ext4_free_ext_path(path);
1806 			if (ret)
1807 				goto out;
1808 			goto next;
1809 		}
1810 
1811 		if (start_pblk + cur - start != map.m_pblk) {
1812 			/*
1813 			 * Logical to physical mapping changed. This can happen
1814 			 * if this range was removed and then reallocated to
1815 			 * map to new physical blocks during a fast commit.
1816 			 */
1817 			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1818 					ext4_ext_is_unwritten(ex),
1819 					start_pblk + cur - start);
1820 			if (ret)
1821 				goto out;
1822 			/*
1823 			 * Mark the old blocks as free since they aren't used
1824 			 * anymore. We maintain an array of all the modified
1825 			 * inodes. In case these blocks are still used at either
1826 			 * a different logical range in the same inode or in
1827 			 * some different inode, we will mark them as allocated
1828 			 * at the end of the FC replay using our array of
1829 			 * modified inodes.
1830 			 */
1831 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1832 			goto next;
1833 		}
1834 
1835 		/* Range is mapped and needs a state change */
1836 		ext4_debug("Converting from %ld to %d %lld",
1837 				map.m_flags & EXT4_MAP_UNWRITTEN,
1838 			ext4_ext_is_unwritten(ex), map.m_pblk);
1839 		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1840 					ext4_ext_is_unwritten(ex), map.m_pblk);
1841 		if (ret)
1842 			goto out;
1843 		/*
1844 		 * We may have split the extent tree while toggling the state.
1845 		 * Try to shrink the extent tree now.
1846 		 */
1847 		ext4_ext_replay_shrink_inode(inode, start + len);
1848 next:
1849 		cur += map.m_len;
1850 		remaining -= map.m_len;
1851 	}
1852 	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1853 					sb->s_blocksize_bits);
1854 out:
1855 	iput(inode);
1856 	return 0;
1857 }
1858 
1859 /* Replay DEL_RANGE tag */
1860 static int
ext4_fc_replay_del_range(struct super_block * sb,struct ext4_fc_tl_mem * tl,u8 * val)1861 ext4_fc_replay_del_range(struct super_block *sb,
1862 			 struct ext4_fc_tl_mem *tl, u8 *val)
1863 {
1864 	struct inode *inode;
1865 	struct ext4_fc_del_range lrange;
1866 	struct ext4_map_blocks map;
1867 	ext4_lblk_t cur, remaining;
1868 	int ret;
1869 
1870 	memcpy(&lrange, val, sizeof(lrange));
1871 	cur = le32_to_cpu(lrange.fc_lblk);
1872 	remaining = le32_to_cpu(lrange.fc_len);
1873 
1874 	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1875 		le32_to_cpu(lrange.fc_ino), cur, remaining);
1876 
1877 	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1878 	if (IS_ERR(inode)) {
1879 		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1880 		return 0;
1881 	}
1882 
1883 	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1884 	if (ret)
1885 		goto out;
1886 
1887 	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1888 			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1889 			le32_to_cpu(lrange.fc_len));
1890 	while (remaining > 0) {
1891 		map.m_lblk = cur;
1892 		map.m_len = remaining;
1893 
1894 		ret = ext4_map_blocks(NULL, inode, &map, 0);
1895 		if (ret < 0)
1896 			goto out;
1897 		if (ret > 0) {
1898 			remaining -= ret;
1899 			cur += ret;
1900 			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, 0);
1901 		} else {
1902 			remaining -= map.m_len;
1903 			cur += map.m_len;
1904 		}
1905 	}
1906 
1907 	down_write(&EXT4_I(inode)->i_data_sem);
1908 	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1909 				le32_to_cpu(lrange.fc_lblk) +
1910 				le32_to_cpu(lrange.fc_len) - 1);
1911 	up_write(&EXT4_I(inode)->i_data_sem);
1912 	if (ret)
1913 		goto out;
1914 	ext4_ext_replay_shrink_inode(inode,
1915 		i_size_read(inode) >> sb->s_blocksize_bits);
1916 	ext4_mark_inode_dirty(NULL, inode);
1917 out:
1918 	iput(inode);
1919 	return 0;
1920 }
1921 
ext4_fc_set_bitmaps_and_counters(struct super_block * sb)1922 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1923 {
1924 	struct ext4_fc_replay_state *state;
1925 	struct inode *inode;
1926 	struct ext4_ext_path *path = NULL;
1927 	struct ext4_map_blocks map;
1928 	int i, ret, j;
1929 	ext4_lblk_t cur, end;
1930 
1931 	state = &EXT4_SB(sb)->s_fc_replay_state;
1932 	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1933 		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1934 			EXT4_IGET_NORMAL);
1935 		if (IS_ERR(inode)) {
1936 			ext4_debug("Inode %d not found.",
1937 				state->fc_modified_inodes[i]);
1938 			continue;
1939 		}
1940 		cur = 0;
1941 		end = EXT_MAX_BLOCKS;
1942 		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1943 			iput(inode);
1944 			continue;
1945 		}
1946 		while (cur < end) {
1947 			map.m_lblk = cur;
1948 			map.m_len = end - cur;
1949 
1950 			ret = ext4_map_blocks(NULL, inode, &map, 0);
1951 			if (ret < 0)
1952 				break;
1953 
1954 			if (ret > 0) {
1955 				path = ext4_find_extent(inode, map.m_lblk, NULL, 0);
1956 				if (!IS_ERR(path)) {
1957 					for (j = 0; j < path->p_depth; j++)
1958 						ext4_mb_mark_bb(inode->i_sb,
1959 							path[j].p_block, 1, 1);
1960 					ext4_free_ext_path(path);
1961 				}
1962 				cur += ret;
1963 				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1964 							map.m_len, 1);
1965 			} else {
1966 				cur = cur + (map.m_len ? map.m_len : 1);
1967 			}
1968 		}
1969 		iput(inode);
1970 	}
1971 }
1972 
1973 /*
1974  * Check if block is in excluded regions for block allocation. The simple
1975  * allocator that runs during replay phase is calls this function to see
1976  * if it is okay to use a block.
1977  */
ext4_fc_replay_check_excluded(struct super_block * sb,ext4_fsblk_t blk)1978 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1979 {
1980 	int i;
1981 	struct ext4_fc_replay_state *state;
1982 
1983 	state = &EXT4_SB(sb)->s_fc_replay_state;
1984 	for (i = 0; i < state->fc_regions_valid; i++) {
1985 		if (state->fc_regions[i].ino == 0 ||
1986 			state->fc_regions[i].len == 0)
1987 			continue;
1988 		if (in_range(blk, state->fc_regions[i].pblk,
1989 					state->fc_regions[i].len))
1990 			return true;
1991 	}
1992 	return false;
1993 }
1994 
1995 /* Cleanup function called after replay */
ext4_fc_replay_cleanup(struct super_block * sb)1996 void ext4_fc_replay_cleanup(struct super_block *sb)
1997 {
1998 	struct ext4_sb_info *sbi = EXT4_SB(sb);
1999 
2000 	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2001 	kfree(sbi->s_fc_replay_state.fc_regions);
2002 	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2003 }
2004 
ext4_fc_value_len_isvalid(struct ext4_sb_info * sbi,int tag,int len)2005 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2006 				      int tag, int len)
2007 {
2008 	switch (tag) {
2009 	case EXT4_FC_TAG_ADD_RANGE:
2010 		return len == sizeof(struct ext4_fc_add_range);
2011 	case EXT4_FC_TAG_DEL_RANGE:
2012 		return len == sizeof(struct ext4_fc_del_range);
2013 	case EXT4_FC_TAG_CREAT:
2014 	case EXT4_FC_TAG_LINK:
2015 	case EXT4_FC_TAG_UNLINK:
2016 		len -= sizeof(struct ext4_fc_dentry_info);
2017 		return len >= 1 && len <= EXT4_NAME_LEN;
2018 	case EXT4_FC_TAG_INODE:
2019 		len -= sizeof(struct ext4_fc_inode);
2020 		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2021 			len <= sbi->s_inode_size;
2022 	case EXT4_FC_TAG_PAD:
2023 		return true; /* padding can have any length */
2024 	case EXT4_FC_TAG_TAIL:
2025 		return len >= sizeof(struct ext4_fc_tail);
2026 	case EXT4_FC_TAG_HEAD:
2027 		return len == sizeof(struct ext4_fc_head);
2028 	}
2029 	return false;
2030 }
2031 
2032 /*
2033  * Recovery Scan phase handler
2034  *
2035  * This function is called during the scan phase and is responsible
2036  * for doing following things:
2037  * - Make sure the fast commit area has valid tags for replay
2038  * - Count number of tags that need to be replayed by the replay handler
2039  * - Verify CRC
2040  * - Create a list of excluded blocks for allocation during replay phase
2041  *
2042  * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2043  * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2044  * to indicate that scan has finished and JBD2 can now start replay phase.
2045  * It returns a negative error to indicate that there was an error. At the end
2046  * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2047  * to indicate the number of tags that need to replayed during the replay phase.
2048  */
ext4_fc_replay_scan(journal_t * journal,struct buffer_head * bh,int off,tid_t expected_tid)2049 static int ext4_fc_replay_scan(journal_t *journal,
2050 				struct buffer_head *bh, int off,
2051 				tid_t expected_tid)
2052 {
2053 	struct super_block *sb = journal->j_private;
2054 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2055 	struct ext4_fc_replay_state *state;
2056 	int ret = JBD2_FC_REPLAY_CONTINUE;
2057 	struct ext4_fc_add_range ext;
2058 	struct ext4_fc_tl_mem tl;
2059 	struct ext4_fc_tail tail;
2060 	__u8 *start, *end, *cur, *val;
2061 	struct ext4_fc_head head;
2062 	struct ext4_extent *ex;
2063 
2064 	state = &sbi->s_fc_replay_state;
2065 
2066 	start = (u8 *)bh->b_data;
2067 	end = start + journal->j_blocksize;
2068 
2069 	if (state->fc_replay_expected_off == 0) {
2070 		state->fc_cur_tag = 0;
2071 		state->fc_replay_num_tags = 0;
2072 		state->fc_crc = 0;
2073 		state->fc_regions = NULL;
2074 		state->fc_regions_valid = state->fc_regions_used =
2075 			state->fc_regions_size = 0;
2076 		/* Check if we can stop early */
2077 		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2078 			!= EXT4_FC_TAG_HEAD)
2079 			return 0;
2080 	}
2081 
2082 	if (off != state->fc_replay_expected_off) {
2083 		ret = -EFSCORRUPTED;
2084 		goto out_err;
2085 	}
2086 
2087 	state->fc_replay_expected_off++;
2088 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2089 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2090 		ext4_fc_get_tl(&tl, cur);
2091 		val = cur + EXT4_FC_TAG_BASE_LEN;
2092 		if (tl.fc_len > end - val ||
2093 		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2094 			ret = state->fc_replay_num_tags ?
2095 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2096 			goto out_err;
2097 		}
2098 		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2099 			   tag2str(tl.fc_tag), bh->b_blocknr);
2100 		switch (tl.fc_tag) {
2101 		case EXT4_FC_TAG_ADD_RANGE:
2102 			memcpy(&ext, val, sizeof(ext));
2103 			ex = (struct ext4_extent *)&ext.fc_ex;
2104 			ret = ext4_fc_record_regions(sb,
2105 				le32_to_cpu(ext.fc_ino),
2106 				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2107 				ext4_ext_get_actual_len(ex), 0);
2108 			if (ret < 0)
2109 				break;
2110 			ret = JBD2_FC_REPLAY_CONTINUE;
2111 			fallthrough;
2112 		case EXT4_FC_TAG_DEL_RANGE:
2113 		case EXT4_FC_TAG_LINK:
2114 		case EXT4_FC_TAG_UNLINK:
2115 		case EXT4_FC_TAG_CREAT:
2116 		case EXT4_FC_TAG_INODE:
2117 		case EXT4_FC_TAG_PAD:
2118 			state->fc_cur_tag++;
2119 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2120 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2121 			break;
2122 		case EXT4_FC_TAG_TAIL:
2123 			state->fc_cur_tag++;
2124 			memcpy(&tail, val, sizeof(tail));
2125 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2126 						EXT4_FC_TAG_BASE_LEN +
2127 						offsetof(struct ext4_fc_tail,
2128 						fc_crc));
2129 			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2130 				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2131 				state->fc_replay_num_tags = state->fc_cur_tag;
2132 				state->fc_regions_valid =
2133 					state->fc_regions_used;
2134 			} else {
2135 				ret = state->fc_replay_num_tags ?
2136 					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2137 			}
2138 			state->fc_crc = 0;
2139 			break;
2140 		case EXT4_FC_TAG_HEAD:
2141 			memcpy(&head, val, sizeof(head));
2142 			if (le32_to_cpu(head.fc_features) &
2143 				~EXT4_FC_SUPPORTED_FEATURES) {
2144 				ret = -EOPNOTSUPP;
2145 				break;
2146 			}
2147 			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2148 				ret = JBD2_FC_REPLAY_STOP;
2149 				break;
2150 			}
2151 			state->fc_cur_tag++;
2152 			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2153 				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2154 			break;
2155 		default:
2156 			ret = state->fc_replay_num_tags ?
2157 				JBD2_FC_REPLAY_STOP : -ECANCELED;
2158 		}
2159 		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2160 			break;
2161 	}
2162 
2163 out_err:
2164 	trace_ext4_fc_replay_scan(sb, ret, off);
2165 	return ret;
2166 }
2167 
2168 /*
2169  * Main recovery path entry point.
2170  * The meaning of return codes is similar as above.
2171  */
ext4_fc_replay(journal_t * journal,struct buffer_head * bh,enum passtype pass,int off,tid_t expected_tid)2172 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2173 				enum passtype pass, int off, tid_t expected_tid)
2174 {
2175 	struct super_block *sb = journal->j_private;
2176 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2177 	struct ext4_fc_tl_mem tl;
2178 	__u8 *start, *end, *cur, *val;
2179 	int ret = JBD2_FC_REPLAY_CONTINUE;
2180 	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2181 	struct ext4_fc_tail tail;
2182 
2183 	if (pass == PASS_SCAN) {
2184 		state->fc_current_pass = PASS_SCAN;
2185 		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2186 	}
2187 
2188 	if (state->fc_current_pass != pass) {
2189 		state->fc_current_pass = pass;
2190 		sbi->s_mount_state |= EXT4_FC_REPLAY;
2191 	}
2192 	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2193 		ext4_debug("Replay stops\n");
2194 		ext4_fc_set_bitmaps_and_counters(sb);
2195 		return 0;
2196 	}
2197 
2198 #ifdef CONFIG_EXT4_DEBUG
2199 	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2200 		pr_warn("Dropping fc block %d because max_replay set\n", off);
2201 		return JBD2_FC_REPLAY_STOP;
2202 	}
2203 #endif
2204 
2205 	start = (u8 *)bh->b_data;
2206 	end = start + journal->j_blocksize;
2207 
2208 	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2209 	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2210 		ext4_fc_get_tl(&tl, cur);
2211 		val = cur + EXT4_FC_TAG_BASE_LEN;
2212 
2213 		if (state->fc_replay_num_tags == 0) {
2214 			ret = JBD2_FC_REPLAY_STOP;
2215 			ext4_fc_set_bitmaps_and_counters(sb);
2216 			break;
2217 		}
2218 
2219 		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2220 		state->fc_replay_num_tags--;
2221 		switch (tl.fc_tag) {
2222 		case EXT4_FC_TAG_LINK:
2223 			ret = ext4_fc_replay_link(sb, &tl, val);
2224 			break;
2225 		case EXT4_FC_TAG_UNLINK:
2226 			ret = ext4_fc_replay_unlink(sb, &tl, val);
2227 			break;
2228 		case EXT4_FC_TAG_ADD_RANGE:
2229 			ret = ext4_fc_replay_add_range(sb, &tl, val);
2230 			break;
2231 		case EXT4_FC_TAG_CREAT:
2232 			ret = ext4_fc_replay_create(sb, &tl, val);
2233 			break;
2234 		case EXT4_FC_TAG_DEL_RANGE:
2235 			ret = ext4_fc_replay_del_range(sb, &tl, val);
2236 			break;
2237 		case EXT4_FC_TAG_INODE:
2238 			ret = ext4_fc_replay_inode(sb, &tl, val);
2239 			break;
2240 		case EXT4_FC_TAG_PAD:
2241 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2242 					     tl.fc_len, 0);
2243 			break;
2244 		case EXT4_FC_TAG_TAIL:
2245 			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2246 					     0, tl.fc_len, 0);
2247 			memcpy(&tail, val, sizeof(tail));
2248 			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2249 			break;
2250 		case EXT4_FC_TAG_HEAD:
2251 			break;
2252 		default:
2253 			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2254 			ret = -ECANCELED;
2255 			break;
2256 		}
2257 		if (ret < 0)
2258 			break;
2259 		ret = JBD2_FC_REPLAY_CONTINUE;
2260 	}
2261 	return ret;
2262 }
2263 
ext4_fc_init(struct super_block * sb,journal_t * journal)2264 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2265 {
2266 	/*
2267 	 * We set replay callback even if fast commit disabled because we may
2268 	 * could still have fast commit blocks that need to be replayed even if
2269 	 * fast commit has now been turned off.
2270 	 */
2271 	journal->j_fc_replay_callback = ext4_fc_replay;
2272 	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2273 		return;
2274 	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2275 }
2276 
2277 static const char * const fc_ineligible_reasons[] = {
2278 	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2279 	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2280 	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2281 	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2282 	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2283 	[EXT4_FC_REASON_RESIZE] = "Resize",
2284 	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2285 	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2286 	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2287 	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2288 };
2289 
ext4_fc_info_show(struct seq_file * seq,void * v)2290 int ext4_fc_info_show(struct seq_file *seq, void *v)
2291 {
2292 	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2293 	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2294 	int i;
2295 
2296 	if (v != SEQ_START_TOKEN)
2297 		return 0;
2298 
2299 	seq_printf(seq,
2300 		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2301 		   stats->fc_num_commits, stats->fc_ineligible_commits,
2302 		   stats->fc_numblks,
2303 		   div_u64(stats->s_fc_avg_commit_time, 1000));
2304 	seq_puts(seq, "Ineligible reasons:\n");
2305 	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2306 		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2307 			stats->fc_ineligible_reason_count[i]);
2308 
2309 	return 0;
2310 }
2311 
ext4_fc_init_dentry_cache(void)2312 int __init ext4_fc_init_dentry_cache(void)
2313 {
2314 	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2315 					   SLAB_RECLAIM_ACCOUNT);
2316 
2317 	if (ext4_fc_dentry_cachep == NULL)
2318 		return -ENOMEM;
2319 
2320 	return 0;
2321 }
2322 
ext4_fc_destroy_dentry_cache(void)2323 void ext4_fc_destroy_dentry_cache(void)
2324 {
2325 	kmem_cache_destroy(ext4_fc_dentry_cachep);
2326 }
2327