• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44 
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49 
50 #include <trace/events/ext4.h>
51 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 			      struct ext4_inode_info *ei)
54 {
55 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 	__u32 csum;
57 	__u16 dummy_csum = 0;
58 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 	unsigned int csum_size = sizeof(dummy_csum);
60 
61 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 	offset += csum_size;
64 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
66 
67 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 		offset = offsetof(struct ext4_inode, i_checksum_hi);
69 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 				   EXT4_GOOD_OLD_INODE_SIZE,
71 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
72 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 					   csum_size);
75 			offset += csum_size;
76 		}
77 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
79 	}
80 
81 	return csum;
82 }
83 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 				  struct ext4_inode_info *ei)
86 {
87 	__u32 provided, calculated;
88 
89 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 	    cpu_to_le32(EXT4_OS_LINUX) ||
91 	    !ext4_has_metadata_csum(inode->i_sb))
92 		return 1;
93 
94 	provided = le16_to_cpu(raw->i_checksum_lo);
95 	calculated = ext4_inode_csum(inode, raw, ei);
96 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 	else
100 		calculated &= 0xFFFF;
101 
102 	return provided == calculated;
103 }
104 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 			 struct ext4_inode_info *ei)
107 {
108 	__u32 csum;
109 
110 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 	    cpu_to_le32(EXT4_OS_LINUX) ||
112 	    !ext4_has_metadata_csum(inode->i_sb))
113 		return;
114 
115 	csum = ext4_inode_csum(inode, raw, ei);
116 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 					      loff_t new_size)
124 {
125 	trace_ext4_begin_ordered_truncate(inode, new_size);
126 	/*
127 	 * If jinode is zero, then we never opened the file for
128 	 * writing, so there's no need to call
129 	 * jbd2_journal_begin_ordered_truncate() since there's no
130 	 * outstanding writes we need to flush.
131 	 */
132 	if (!EXT4_I(inode)->jinode)
133 		return 0;
134 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 						   EXT4_I(inode)->jinode,
136 						   new_size);
137 }
138 
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 				  int pextents);
142 
143 /*
144  * Test whether an inode is a fast symlink.
145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146  */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 
153 		if (ext4_has_inline_data(inode))
154 			return 0;
155 
156 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 	}
158 	return S_ISLNK(inode->i_mode) && inode->i_size &&
159 	       (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161 
162 /*
163  * Called at the last iput() if i_nlink is zero.
164  */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 	handle_t *handle;
168 	int err;
169 	/*
170 	 * Credits for final inode cleanup and freeing:
171 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 	 */
174 	int extra_credits = 6;
175 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 	bool freeze_protected = false;
177 
178 	trace_ext4_evict_inode(inode);
179 
180 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 		ext4_evict_ea_inode(inode);
182 	if (inode->i_nlink) {
183 		/*
184 		 * When journalling data dirty buffers are tracked only in the
185 		 * journal. So although mm thinks everything is clean and
186 		 * ready for reaping the inode might still have some pages to
187 		 * write in the running transaction or waiting to be
188 		 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 		 * (via truncate_inode_pages()) to discard these buffers can
190 		 * cause data loss. Also even if we did not discard these
191 		 * buffers, we would have no way to find them after the inode
192 		 * is reaped and thus user could see stale data if he tries to
193 		 * read them before the transaction is checkpointed. So be
194 		 * careful and force everything to disk here... We use
195 		 * ei->i_datasync_tid to store the newest transaction
196 		 * containing inode's data.
197 		 *
198 		 * Note that directories do not have this problem because they
199 		 * don't use page cache.
200 		 */
201 		if (inode->i_ino != EXT4_JOURNAL_INO &&
202 		    ext4_should_journal_data(inode) &&
203 		    S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206 
207 			jbd2_complete_transaction(journal, commit_tid);
208 			filemap_write_and_wait(&inode->i_data);
209 		}
210 		truncate_inode_pages_final(&inode->i_data);
211 
212 		goto no_delete;
213 	}
214 
215 	if (is_bad_inode(inode))
216 		goto no_delete;
217 	dquot_initialize(inode);
218 
219 	if (ext4_should_order_data(inode))
220 		ext4_begin_ordered_truncate(inode, 0);
221 	truncate_inode_pages_final(&inode->i_data);
222 
223 	/*
224 	 * For inodes with journalled data, transaction commit could have
225 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 	 * extents converting worker could merge extents and also have dirtied
227 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 	 * we still need to remove the inode from the writeback lists.
229 	 */
230 	if (!list_empty_careful(&inode->i_io_list))
231 		inode_io_list_del(inode);
232 
233 	/*
234 	 * Protect us against freezing - iput() caller didn't have to have any
235 	 * protection against it. When we are in a running transaction though,
236 	 * we are already protected against freezing and we cannot grab further
237 	 * protection due to lock ordering constraints.
238 	 */
239 	if (!ext4_journal_current_handle()) {
240 		sb_start_intwrite(inode->i_sb);
241 		freeze_protected = true;
242 	}
243 
244 	if (!IS_NOQUOTA(inode))
245 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246 
247 	/*
248 	 * Block bitmap, group descriptor, and inode are accounted in both
249 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 	 */
251 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 	if (IS_ERR(handle)) {
254 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 		/*
256 		 * If we're going to skip the normal cleanup, we still need to
257 		 * make sure that the in-core orphan linked list is properly
258 		 * cleaned up.
259 		 */
260 		ext4_orphan_del(NULL, inode);
261 		if (freeze_protected)
262 			sb_end_intwrite(inode->i_sb);
263 		goto no_delete;
264 	}
265 
266 	if (IS_SYNC(inode))
267 		ext4_handle_sync(handle);
268 
269 	/*
270 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 	 * special handling of symlinks here because i_size is used to
272 	 * determine whether ext4_inode_info->i_data contains symlink data or
273 	 * block mappings. Setting i_size to 0 will remove its fast symlink
274 	 * status. Erase i_data so that it becomes a valid empty block map.
275 	 */
276 	if (ext4_inode_is_fast_symlink(inode))
277 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 	inode->i_size = 0;
279 	err = ext4_mark_inode_dirty(handle, inode);
280 	if (err) {
281 		ext4_warning(inode->i_sb,
282 			     "couldn't mark inode dirty (err %d)", err);
283 		goto stop_handle;
284 	}
285 	if (inode->i_blocks) {
286 		err = ext4_truncate(inode);
287 		if (err) {
288 			ext4_error_err(inode->i_sb, -err,
289 				       "couldn't truncate inode %lu (err %d)",
290 				       inode->i_ino, err);
291 			goto stop_handle;
292 		}
293 	}
294 
295 	/* Remove xattr references. */
296 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 				      extra_credits);
298 	if (err) {
299 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 		ext4_journal_stop(handle);
302 		ext4_orphan_del(NULL, inode);
303 		if (freeze_protected)
304 			sb_end_intwrite(inode->i_sb);
305 		ext4_xattr_inode_array_free(ea_inode_array);
306 		goto no_delete;
307 	}
308 
309 	/*
310 	 * Kill off the orphan record which ext4_truncate created.
311 	 * AKPM: I think this can be inside the above `if'.
312 	 * Note that ext4_orphan_del() has to be able to cope with the
313 	 * deletion of a non-existent orphan - this is because we don't
314 	 * know if ext4_truncate() actually created an orphan record.
315 	 * (Well, we could do this if we need to, but heck - it works)
316 	 */
317 	ext4_orphan_del(handle, inode);
318 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
319 
320 	/*
321 	 * One subtle ordering requirement: if anything has gone wrong
322 	 * (transaction abort, IO errors, whatever), then we can still
323 	 * do these next steps (the fs will already have been marked as
324 	 * having errors), but we can't free the inode if the mark_dirty
325 	 * fails.
326 	 */
327 	if (ext4_mark_inode_dirty(handle, inode))
328 		/* If that failed, just do the required in-core inode clear. */
329 		ext4_clear_inode(inode);
330 	else
331 		ext4_free_inode(handle, inode);
332 	ext4_journal_stop(handle);
333 	if (freeze_protected)
334 		sb_end_intwrite(inode->i_sb);
335 	ext4_xattr_inode_array_free(ea_inode_array);
336 	return;
337 no_delete:
338 	/*
339 	 * Check out some where else accidentally dirty the evicting inode,
340 	 * which may probably cause inode use-after-free issues later.
341 	 */
342 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343 
344 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
347 }
348 
349 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352 	return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355 
356 /*
357  * Called with i_data_sem down, which is important since we can call
358  * ext4_discard_preallocations() from here.
359  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)360 void ext4_da_update_reserve_space(struct inode *inode,
361 					int used, int quota_claim)
362 {
363 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 	struct ext4_inode_info *ei = EXT4_I(inode);
365 
366 	spin_lock(&ei->i_block_reservation_lock);
367 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 	if (unlikely(used > ei->i_reserved_data_blocks)) {
369 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 			 "with only %d reserved data blocks",
371 			 __func__, inode->i_ino, used,
372 			 ei->i_reserved_data_blocks);
373 		WARN_ON(1);
374 		used = ei->i_reserved_data_blocks;
375 	}
376 
377 	/* Update per-inode reservations */
378 	ei->i_reserved_data_blocks -= used;
379 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380 
381 	spin_unlock(&ei->i_block_reservation_lock);
382 
383 	/* Update quota subsystem for data blocks */
384 	if (quota_claim)
385 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 	else {
387 		/*
388 		 * We did fallocate with an offset that is already delayed
389 		 * allocated. So on delayed allocated writeback we should
390 		 * not re-claim the quota for fallocated blocks.
391 		 */
392 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 	}
394 
395 	/*
396 	 * If we have done all the pending block allocations and if
397 	 * there aren't any writers on the inode, we can discard the
398 	 * inode's preallocations.
399 	 */
400 	if ((ei->i_reserved_data_blocks == 0) &&
401 	    !inode_is_open_for_write(inode))
402 		ext4_discard_preallocations(inode, 0);
403 }
404 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)405 static int __check_block_validity(struct inode *inode, const char *func,
406 				unsigned int line,
407 				struct ext4_map_blocks *map)
408 {
409 	if (ext4_has_feature_journal(inode->i_sb) &&
410 	    (inode->i_ino ==
411 	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 		return 0;
413 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 		ext4_error_inode(inode, func, line, map->m_pblk,
415 				 "lblock %lu mapped to illegal pblock %llu "
416 				 "(length %d)", (unsigned long) map->m_lblk,
417 				 map->m_pblk, map->m_len);
418 		return -EFSCORRUPTED;
419 	}
420 	return 0;
421 }
422 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 		       ext4_lblk_t len)
425 {
426 	int ret;
427 
428 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
430 
431 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 	if (ret > 0)
433 		ret = 0;
434 
435 	return ret;
436 }
437 
438 #define check_block_validity(inode, map)	\
439 	__check_block_validity((inode), __func__, __LINE__, (map))
440 
441 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443 				       struct inode *inode,
444 				       struct ext4_map_blocks *es_map,
445 				       struct ext4_map_blocks *map,
446 				       int flags)
447 {
448 	int retval;
449 
450 	map->m_flags = 0;
451 	/*
452 	 * There is a race window that the result is not the same.
453 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
454 	 * is that we lookup a block mapping in extent status tree with
455 	 * out taking i_data_sem.  So at the time the unwritten extent
456 	 * could be converted.
457 	 */
458 	down_read(&EXT4_I(inode)->i_data_sem);
459 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 	} else {
462 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 	}
464 	up_read((&EXT4_I(inode)->i_data_sem));
465 
466 	/*
467 	 * We don't check m_len because extent will be collpased in status
468 	 * tree.  So the m_len might not equal.
469 	 */
470 	if (es_map->m_lblk != map->m_lblk ||
471 	    es_map->m_flags != map->m_flags ||
472 	    es_map->m_pblk != map->m_pblk) {
473 		printk("ES cache assertion failed for inode: %lu "
474 		       "es_cached ex [%d/%d/%llu/%x] != "
475 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
477 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 		       map->m_len, map->m_pblk, map->m_flags,
479 		       retval, flags);
480 	}
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483 
484 /*
485  * The ext4_map_blocks() function tries to look up the requested blocks,
486  * and returns if the blocks are already mapped.
487  *
488  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489  * and store the allocated blocks in the result buffer head and mark it
490  * mapped.
491  *
492  * If file type is extents based, it will call ext4_ext_map_blocks(),
493  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494  * based files
495  *
496  * On success, it returns the number of blocks being mapped or allocated.  if
497  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499  *
500  * It returns 0 if plain look up failed (blocks have not been allocated), in
501  * that case, @map is returned as unmapped but we still do fill map->m_len to
502  * indicate the length of a hole starting at map->m_lblk.
503  *
504  * It returns the error in case of allocation failure.
505  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 		    struct ext4_map_blocks *map, int flags)
508 {
509 	struct extent_status es;
510 	int retval;
511 	int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513 	struct ext4_map_blocks orig_map;
514 
515 	memcpy(&orig_map, map, sizeof(*map));
516 #endif
517 
518 	map->m_flags = 0;
519 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 		  flags, map->m_len, (unsigned long) map->m_lblk);
521 
522 	/*
523 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 	 */
525 	if (unlikely(map->m_len > INT_MAX))
526 		map->m_len = INT_MAX;
527 
528 	/* We can handle the block number less than EXT_MAX_BLOCKS */
529 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 		return -EFSCORRUPTED;
531 
532 	/* Lookup extent status tree firstly */
533 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 			map->m_pblk = ext4_es_pblock(&es) +
537 					map->m_lblk - es.es_lblk;
538 			map->m_flags |= ext4_es_is_written(&es) ?
539 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 			retval = es.es_len - (map->m_lblk - es.es_lblk);
541 			if (retval > map->m_len)
542 				retval = map->m_len;
543 			map->m_len = retval;
544 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 			map->m_pblk = 0;
546 			retval = es.es_len - (map->m_lblk - es.es_lblk);
547 			if (retval > map->m_len)
548 				retval = map->m_len;
549 			map->m_len = retval;
550 			retval = 0;
551 		} else {
552 			BUG();
553 		}
554 
555 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 			return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558 		ext4_map_blocks_es_recheck(handle, inode, map,
559 					   &orig_map, flags);
560 #endif
561 		goto found;
562 	}
563 	/*
564 	 * In the query cache no-wait mode, nothing we can do more if we
565 	 * cannot find extent in the cache.
566 	 */
567 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 		return 0;
569 
570 	/*
571 	 * Try to see if we can get the block without requesting a new
572 	 * file system block.
573 	 */
574 	down_read(&EXT4_I(inode)->i_data_sem);
575 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 	} else {
578 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 	}
580 	if (retval > 0) {
581 		unsigned int status;
582 
583 		if (unlikely(retval != map->m_len)) {
584 			ext4_warning(inode->i_sb,
585 				     "ES len assertion failed for inode "
586 				     "%lu: retval %d != map->m_len %d",
587 				     inode->i_ino, retval, map->m_len);
588 			WARN_ON(1);
589 		}
590 
591 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 		    !(status & EXTENT_STATUS_WRITTEN) &&
595 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 				       map->m_lblk + map->m_len - 1))
597 			status |= EXTENT_STATUS_DELAYED;
598 		ret = ext4_es_insert_extent(inode, map->m_lblk,
599 					    map->m_len, map->m_pblk, status);
600 		if (ret < 0)
601 			retval = ret;
602 	}
603 	up_read((&EXT4_I(inode)->i_data_sem));
604 
605 found:
606 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 		ret = check_block_validity(inode, map);
608 		if (ret != 0)
609 			return ret;
610 	}
611 
612 	/* If it is only a block(s) look up */
613 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 		return retval;
615 
616 	/*
617 	 * Returns if the blocks have already allocated
618 	 *
619 	 * Note that if blocks have been preallocated
620 	 * ext4_ext_get_block() returns the create = 0
621 	 * with buffer head unmapped.
622 	 */
623 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 		/*
625 		 * If we need to convert extent to unwritten
626 		 * we continue and do the actual work in
627 		 * ext4_ext_map_blocks()
628 		 */
629 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 			return retval;
631 
632 	/*
633 	 * Here we clear m_flags because after allocating an new extent,
634 	 * it will be set again.
635 	 */
636 	map->m_flags &= ~EXT4_MAP_FLAGS;
637 
638 	/*
639 	 * New blocks allocate and/or writing to unwritten extent
640 	 * will possibly result in updating i_data, so we take
641 	 * the write lock of i_data_sem, and call get_block()
642 	 * with create == 1 flag.
643 	 */
644 	down_write(&EXT4_I(inode)->i_data_sem);
645 
646 	/*
647 	 * We need to check for EXT4 here because migrate
648 	 * could have changed the inode type in between
649 	 */
650 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 	} else {
653 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
654 
655 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 			/*
657 			 * We allocated new blocks which will result in
658 			 * i_data's format changing.  Force the migrate
659 			 * to fail by clearing migrate flags
660 			 */
661 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 		}
663 	}
664 
665 	if (retval > 0) {
666 		unsigned int status;
667 
668 		if (unlikely(retval != map->m_len)) {
669 			ext4_warning(inode->i_sb,
670 				     "ES len assertion failed for inode "
671 				     "%lu: retval %d != map->m_len %d",
672 				     inode->i_ino, retval, map->m_len);
673 			WARN_ON(1);
674 		}
675 
676 		/*
677 		 * We have to zeroout blocks before inserting them into extent
678 		 * status tree. Otherwise someone could look them up there and
679 		 * use them before they are really zeroed. We also have to
680 		 * unmap metadata before zeroing as otherwise writeback can
681 		 * overwrite zeros with stale data from block device.
682 		 */
683 		if (flags & EXT4_GET_BLOCKS_ZERO &&
684 		    map->m_flags & EXT4_MAP_MAPPED &&
685 		    map->m_flags & EXT4_MAP_NEW) {
686 			ret = ext4_issue_zeroout(inode, map->m_lblk,
687 						 map->m_pblk, map->m_len);
688 			if (ret) {
689 				retval = ret;
690 				goto out_sem;
691 			}
692 		}
693 
694 		/*
695 		 * If the extent has been zeroed out, we don't need to update
696 		 * extent status tree.
697 		 */
698 		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
699 		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
700 			if (ext4_es_is_written(&es))
701 				goto out_sem;
702 		}
703 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
704 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
705 		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
706 		    !(status & EXTENT_STATUS_WRITTEN) &&
707 		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
708 				       map->m_lblk + map->m_len - 1))
709 			status |= EXTENT_STATUS_DELAYED;
710 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
711 					    map->m_pblk, status);
712 		if (ret < 0) {
713 			retval = ret;
714 			goto out_sem;
715 		}
716 	}
717 
718 out_sem:
719 	up_write((&EXT4_I(inode)->i_data_sem));
720 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
721 		ret = check_block_validity(inode, map);
722 		if (ret != 0)
723 			return ret;
724 
725 		/*
726 		 * Inodes with freshly allocated blocks where contents will be
727 		 * visible after transaction commit must be on transaction's
728 		 * ordered data list.
729 		 */
730 		if (map->m_flags & EXT4_MAP_NEW &&
731 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
732 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
733 		    !ext4_is_quota_file(inode) &&
734 		    ext4_should_order_data(inode)) {
735 			loff_t start_byte =
736 				(loff_t)map->m_lblk << inode->i_blkbits;
737 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
738 
739 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
740 				ret = ext4_jbd2_inode_add_wait(handle, inode,
741 						start_byte, length);
742 			else
743 				ret = ext4_jbd2_inode_add_write(handle, inode,
744 						start_byte, length);
745 			if (ret)
746 				return ret;
747 		}
748 	}
749 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
750 				map->m_flags & EXT4_MAP_MAPPED))
751 		ext4_fc_track_range(handle, inode, map->m_lblk,
752 					map->m_lblk + map->m_len - 1);
753 	if (retval < 0)
754 		ext_debug(inode, "failed with err %d\n", retval);
755 	return retval;
756 }
757 
758 /*
759  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
760  * we have to be careful as someone else may be manipulating b_state as well.
761  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)762 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
763 {
764 	unsigned long old_state;
765 	unsigned long new_state;
766 
767 	flags &= EXT4_MAP_FLAGS;
768 
769 	/* Dummy buffer_head? Set non-atomically. */
770 	if (!bh->b_page) {
771 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
772 		return;
773 	}
774 	/*
775 	 * Someone else may be modifying b_state. Be careful! This is ugly but
776 	 * once we get rid of using bh as a container for mapping information
777 	 * to pass to / from get_block functions, this can go away.
778 	 */
779 	do {
780 		old_state = READ_ONCE(bh->b_state);
781 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
782 	} while (unlikely(
783 		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
784 }
785 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)786 static int _ext4_get_block(struct inode *inode, sector_t iblock,
787 			   struct buffer_head *bh, int flags)
788 {
789 	struct ext4_map_blocks map;
790 	int ret = 0;
791 
792 	if (ext4_has_inline_data(inode))
793 		return -ERANGE;
794 
795 	map.m_lblk = iblock;
796 	map.m_len = bh->b_size >> inode->i_blkbits;
797 
798 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
799 			      flags);
800 	if (ret > 0) {
801 		map_bh(bh, inode->i_sb, map.m_pblk);
802 		ext4_update_bh_state(bh, map.m_flags);
803 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 		ret = 0;
805 	} else if (ret == 0) {
806 		/* hole case, need to fill in bh->b_size */
807 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 	}
809 	return ret;
810 }
811 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)812 int ext4_get_block(struct inode *inode, sector_t iblock,
813 		   struct buffer_head *bh, int create)
814 {
815 	return _ext4_get_block(inode, iblock, bh,
816 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
817 }
818 
819 /*
820  * Get block function used when preparing for buffered write if we require
821  * creating an unwritten extent if blocks haven't been allocated.  The extent
822  * will be converted to written after the IO is complete.
823  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)824 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
825 			     struct buffer_head *bh_result, int create)
826 {
827 	int ret = 0;
828 
829 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 		   inode->i_ino, create);
831 	ret = _ext4_get_block(inode, iblock, bh_result,
832 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
833 
834 	/*
835 	 * If the buffer is marked unwritten, mark it as new to make sure it is
836 	 * zeroed out correctly in case of partial writes. Otherwise, there is
837 	 * a chance of stale data getting exposed.
838 	 */
839 	if (ret == 0 && buffer_unwritten(bh_result))
840 		set_buffer_new(bh_result);
841 
842 	return ret;
843 }
844 
845 /* Maximum number of blocks we map for direct IO at once. */
846 #define DIO_MAX_BLOCKS 4096
847 
848 /*
849  * `handle' can be NULL if create is zero
850  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)851 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
852 				ext4_lblk_t block, int map_flags)
853 {
854 	struct ext4_map_blocks map;
855 	struct buffer_head *bh;
856 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
857 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
858 	int err;
859 
860 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 		    || handle != NULL || create == 0);
862 	ASSERT(create == 0 || !nowait);
863 
864 	map.m_lblk = block;
865 	map.m_len = 1;
866 	err = ext4_map_blocks(handle, inode, &map, map_flags);
867 
868 	if (err == 0)
869 		return create ? ERR_PTR(-ENOSPC) : NULL;
870 	if (err < 0)
871 		return ERR_PTR(err);
872 
873 	if (nowait)
874 		return sb_find_get_block(inode->i_sb, map.m_pblk);
875 
876 	bh = sb_getblk(inode->i_sb, map.m_pblk);
877 	if (unlikely(!bh))
878 		return ERR_PTR(-ENOMEM);
879 	if (map.m_flags & EXT4_MAP_NEW) {
880 		ASSERT(create != 0);
881 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
882 			    || (handle != NULL));
883 
884 		/*
885 		 * Now that we do not always journal data, we should
886 		 * keep in mind whether this should always journal the
887 		 * new buffer as metadata.  For now, regular file
888 		 * writes use ext4_get_block instead, so it's not a
889 		 * problem.
890 		 */
891 		lock_buffer(bh);
892 		BUFFER_TRACE(bh, "call get_create_access");
893 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
894 						     EXT4_JTR_NONE);
895 		if (unlikely(err)) {
896 			unlock_buffer(bh);
897 			goto errout;
898 		}
899 		if (!buffer_uptodate(bh)) {
900 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
901 			set_buffer_uptodate(bh);
902 		}
903 		unlock_buffer(bh);
904 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
905 		err = ext4_handle_dirty_metadata(handle, inode, bh);
906 		if (unlikely(err))
907 			goto errout;
908 	} else
909 		BUFFER_TRACE(bh, "not a new buffer");
910 	return bh;
911 errout:
912 	brelse(bh);
913 	return ERR_PTR(err);
914 }
915 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)916 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
917 			       ext4_lblk_t block, int map_flags)
918 {
919 	struct buffer_head *bh;
920 	int ret;
921 
922 	bh = ext4_getblk(handle, inode, block, map_flags);
923 	if (IS_ERR(bh))
924 		return bh;
925 	if (!bh || ext4_buffer_uptodate(bh))
926 		return bh;
927 
928 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
929 	if (ret) {
930 		put_bh(bh);
931 		return ERR_PTR(ret);
932 	}
933 	return bh;
934 }
935 
936 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)937 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
938 		     bool wait, struct buffer_head **bhs)
939 {
940 	int i, err;
941 
942 	for (i = 0; i < bh_count; i++) {
943 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
944 		if (IS_ERR(bhs[i])) {
945 			err = PTR_ERR(bhs[i]);
946 			bh_count = i;
947 			goto out_brelse;
948 		}
949 	}
950 
951 	for (i = 0; i < bh_count; i++)
952 		/* Note that NULL bhs[i] is valid because of holes. */
953 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
954 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
955 
956 	if (!wait)
957 		return 0;
958 
959 	for (i = 0; i < bh_count; i++)
960 		if (bhs[i])
961 			wait_on_buffer(bhs[i]);
962 
963 	for (i = 0; i < bh_count; i++) {
964 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
965 			err = -EIO;
966 			goto out_brelse;
967 		}
968 	}
969 	return 0;
970 
971 out_brelse:
972 	for (i = 0; i < bh_count; i++) {
973 		brelse(bhs[i]);
974 		bhs[i] = NULL;
975 	}
976 	return err;
977 }
978 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))979 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
980 			   struct buffer_head *head,
981 			   unsigned from,
982 			   unsigned to,
983 			   int *partial,
984 			   int (*fn)(handle_t *handle, struct inode *inode,
985 				     struct buffer_head *bh))
986 {
987 	struct buffer_head *bh;
988 	unsigned block_start, block_end;
989 	unsigned blocksize = head->b_size;
990 	int err, ret = 0;
991 	struct buffer_head *next;
992 
993 	for (bh = head, block_start = 0;
994 	     ret == 0 && (bh != head || !block_start);
995 	     block_start = block_end, bh = next) {
996 		next = bh->b_this_page;
997 		block_end = block_start + blocksize;
998 		if (block_end <= from || block_start >= to) {
999 			if (partial && !buffer_uptodate(bh))
1000 				*partial = 1;
1001 			continue;
1002 		}
1003 		err = (*fn)(handle, inode, bh);
1004 		if (!ret)
1005 			ret = err;
1006 	}
1007 	return ret;
1008 }
1009 
1010 /*
1011  * To preserve ordering, it is essential that the hole instantiation and
1012  * the data write be encapsulated in a single transaction.  We cannot
1013  * close off a transaction and start a new one between the ext4_get_block()
1014  * and the commit_write().  So doing the jbd2_journal_start at the start of
1015  * prepare_write() is the right place.
1016  *
1017  * Also, this function can nest inside ext4_writepage().  In that case, we
1018  * *know* that ext4_writepage() has generated enough buffer credits to do the
1019  * whole page.  So we won't block on the journal in that case, which is good,
1020  * because the caller may be PF_MEMALLOC.
1021  *
1022  * By accident, ext4 can be reentered when a transaction is open via
1023  * quota file writes.  If we were to commit the transaction while thus
1024  * reentered, there can be a deadlock - we would be holding a quota
1025  * lock, and the commit would never complete if another thread had a
1026  * transaction open and was blocking on the quota lock - a ranking
1027  * violation.
1028  *
1029  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1030  * will _not_ run commit under these circumstances because handle->h_ref
1031  * is elevated.  We'll still have enough credits for the tiny quotafile
1032  * write.
1033  */
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1034 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1035 				struct buffer_head *bh)
1036 {
1037 	int dirty = buffer_dirty(bh);
1038 	int ret;
1039 
1040 	if (!buffer_mapped(bh) || buffer_freed(bh))
1041 		return 0;
1042 	/*
1043 	 * __block_write_begin() could have dirtied some buffers. Clean
1044 	 * the dirty bit as jbd2_journal_get_write_access() could complain
1045 	 * otherwise about fs integrity issues. Setting of the dirty bit
1046 	 * by __block_write_begin() isn't a real problem here as we clear
1047 	 * the bit before releasing a page lock and thus writeback cannot
1048 	 * ever write the buffer.
1049 	 */
1050 	if (dirty)
1051 		clear_buffer_dirty(bh);
1052 	BUFFER_TRACE(bh, "get write access");
1053 	ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1054 					    EXT4_JTR_NONE);
1055 	if (!ret && dirty)
1056 		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1057 	return ret;
1058 }
1059 
1060 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1061 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1062 				  get_block_t *get_block)
1063 {
1064 	unsigned from = pos & (PAGE_SIZE - 1);
1065 	unsigned to = from + len;
1066 	struct inode *inode = page->mapping->host;
1067 	unsigned block_start, block_end;
1068 	sector_t block;
1069 	int err = 0;
1070 	unsigned blocksize = inode->i_sb->s_blocksize;
1071 	unsigned bbits;
1072 	struct buffer_head *bh, *head, *wait[2];
1073 	int nr_wait = 0;
1074 	int i;
1075 
1076 	BUG_ON(!PageLocked(page));
1077 	BUG_ON(from > PAGE_SIZE);
1078 	BUG_ON(to > PAGE_SIZE);
1079 	BUG_ON(from > to);
1080 
1081 	if (!page_has_buffers(page))
1082 		create_empty_buffers(page, blocksize, 0);
1083 	head = page_buffers(page);
1084 	bbits = ilog2(blocksize);
1085 	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1086 
1087 	for (bh = head, block_start = 0; bh != head || !block_start;
1088 	    block++, block_start = block_end, bh = bh->b_this_page) {
1089 		block_end = block_start + blocksize;
1090 		if (block_end <= from || block_start >= to) {
1091 			if (PageUptodate(page)) {
1092 				set_buffer_uptodate(bh);
1093 			}
1094 			continue;
1095 		}
1096 		if (buffer_new(bh))
1097 			clear_buffer_new(bh);
1098 		if (!buffer_mapped(bh)) {
1099 			WARN_ON(bh->b_size != blocksize);
1100 			err = get_block(inode, block, bh, 1);
1101 			if (err)
1102 				break;
1103 			if (buffer_new(bh)) {
1104 				if (PageUptodate(page)) {
1105 					clear_buffer_new(bh);
1106 					set_buffer_uptodate(bh);
1107 					mark_buffer_dirty(bh);
1108 					continue;
1109 				}
1110 				if (block_end > to || block_start < from)
1111 					zero_user_segments(page, to, block_end,
1112 							   block_start, from);
1113 				continue;
1114 			}
1115 		}
1116 		if (PageUptodate(page)) {
1117 			set_buffer_uptodate(bh);
1118 			continue;
1119 		}
1120 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1121 		    !buffer_unwritten(bh) &&
1122 		    (block_start < from || block_end > to)) {
1123 			ext4_read_bh_lock(bh, 0, false);
1124 			wait[nr_wait++] = bh;
1125 		}
1126 	}
1127 	/*
1128 	 * If we issued read requests, let them complete.
1129 	 */
1130 	for (i = 0; i < nr_wait; i++) {
1131 		wait_on_buffer(wait[i]);
1132 		if (!buffer_uptodate(wait[i]))
1133 			err = -EIO;
1134 	}
1135 	if (unlikely(err)) {
1136 		page_zero_new_buffers(page, from, to);
1137 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1138 		for (i = 0; i < nr_wait; i++) {
1139 			int err2;
1140 
1141 			err2 = fscrypt_decrypt_pagecache_blocks(page_folio(page),
1142 								blocksize,
1143 								bh_offset(wait[i]));
1144 			if (err2) {
1145 				clear_buffer_uptodate(wait[i]);
1146 				err = err2;
1147 			}
1148 		}
1149 	}
1150 
1151 	return err;
1152 }
1153 #endif
1154 
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1155 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1156 			    loff_t pos, unsigned len,
1157 			    struct page **pagep, void **fsdata)
1158 {
1159 	struct inode *inode = mapping->host;
1160 	int ret, needed_blocks;
1161 	handle_t *handle;
1162 	int retries = 0;
1163 	struct page *page;
1164 	pgoff_t index;
1165 	unsigned from, to;
1166 
1167 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1168 		return -EIO;
1169 
1170 	trace_ext4_write_begin(inode, pos, len);
1171 	/*
1172 	 * Reserve one block more for addition to orphan list in case
1173 	 * we allocate blocks but write fails for some reason
1174 	 */
1175 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1176 	index = pos >> PAGE_SHIFT;
1177 	from = pos & (PAGE_SIZE - 1);
1178 	to = from + len;
1179 
1180 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1181 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1182 						    pagep);
1183 		if (ret < 0)
1184 			return ret;
1185 		if (ret == 1)
1186 			return 0;
1187 	}
1188 
1189 	/*
1190 	 * grab_cache_page_write_begin() can take a long time if the
1191 	 * system is thrashing due to memory pressure, or if the page
1192 	 * is being written back.  So grab it first before we start
1193 	 * the transaction handle.  This also allows us to allocate
1194 	 * the page (if needed) without using GFP_NOFS.
1195 	 */
1196 retry_grab:
1197 	page = grab_cache_page_write_begin(mapping, index);
1198 	if (!page)
1199 		return -ENOMEM;
1200 	/*
1201 	 * The same as page allocation, we prealloc buffer heads before
1202 	 * starting the handle.
1203 	 */
1204 	if (!page_has_buffers(page))
1205 		create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1206 
1207 	unlock_page(page);
1208 
1209 retry_journal:
1210 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1211 	if (IS_ERR(handle)) {
1212 		put_page(page);
1213 		return PTR_ERR(handle);
1214 	}
1215 
1216 	lock_page(page);
1217 	if (page->mapping != mapping) {
1218 		/* The page got truncated from under us */
1219 		unlock_page(page);
1220 		put_page(page);
1221 		ext4_journal_stop(handle);
1222 		goto retry_grab;
1223 	}
1224 	/* In case writeback began while the page was unlocked */
1225 	wait_for_stable_page(page);
1226 
1227 #ifdef CONFIG_FS_ENCRYPTION
1228 	if (ext4_should_dioread_nolock(inode))
1229 		ret = ext4_block_write_begin(page, pos, len,
1230 					     ext4_get_block_unwritten);
1231 	else
1232 		ret = ext4_block_write_begin(page, pos, len,
1233 					     ext4_get_block);
1234 #else
1235 	if (ext4_should_dioread_nolock(inode))
1236 		ret = __block_write_begin(page, pos, len,
1237 					  ext4_get_block_unwritten);
1238 	else
1239 		ret = __block_write_begin(page, pos, len, ext4_get_block);
1240 #endif
1241 	if (!ret && ext4_should_journal_data(inode)) {
1242 		ret = ext4_walk_page_buffers(handle, inode,
1243 					     page_buffers(page), from, to, NULL,
1244 					     do_journal_get_write_access);
1245 	}
1246 
1247 	if (ret) {
1248 		bool extended = (pos + len > inode->i_size) &&
1249 				!ext4_verity_in_progress(inode);
1250 
1251 		unlock_page(page);
1252 		/*
1253 		 * __block_write_begin may have instantiated a few blocks
1254 		 * outside i_size.  Trim these off again. Don't need
1255 		 * i_size_read because we hold i_rwsem.
1256 		 *
1257 		 * Add inode to orphan list in case we crash before
1258 		 * truncate finishes
1259 		 */
1260 		if (extended && ext4_can_truncate(inode))
1261 			ext4_orphan_add(handle, inode);
1262 
1263 		ext4_journal_stop(handle);
1264 		if (extended) {
1265 			ext4_truncate_failed_write(inode);
1266 			/*
1267 			 * If truncate failed early the inode might
1268 			 * still be on the orphan list; we need to
1269 			 * make sure the inode is removed from the
1270 			 * orphan list in that case.
1271 			 */
1272 			if (inode->i_nlink)
1273 				ext4_orphan_del(NULL, inode);
1274 		}
1275 
1276 		if (ret == -ENOSPC &&
1277 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1278 			goto retry_journal;
1279 		put_page(page);
1280 		return ret;
1281 	}
1282 	*pagep = page;
1283 	return ret;
1284 }
1285 
1286 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1287 static int write_end_fn(handle_t *handle, struct inode *inode,
1288 			struct buffer_head *bh)
1289 {
1290 	int ret;
1291 	if (!buffer_mapped(bh) || buffer_freed(bh))
1292 		return 0;
1293 	set_buffer_uptodate(bh);
1294 	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1295 	clear_buffer_meta(bh);
1296 	clear_buffer_prio(bh);
1297 	return ret;
1298 }
1299 
1300 /*
1301  * We need to pick up the new inode size which generic_commit_write gave us
1302  * `file' can be NULL - eg, when called from page_symlink().
1303  *
1304  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1305  * buffers are managed internally.
1306  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1307 static int ext4_write_end(struct file *file,
1308 			  struct address_space *mapping,
1309 			  loff_t pos, unsigned len, unsigned copied,
1310 			  struct page *page, void *fsdata)
1311 {
1312 	handle_t *handle = ext4_journal_current_handle();
1313 	struct inode *inode = mapping->host;
1314 	loff_t old_size = inode->i_size;
1315 	int ret = 0, ret2;
1316 	int i_size_changed = 0;
1317 	bool verity = ext4_verity_in_progress(inode);
1318 
1319 	trace_ext4_write_end(inode, pos, len, copied);
1320 
1321 	if (ext4_has_inline_data(inode) &&
1322 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1323 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1324 
1325 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1326 	/*
1327 	 * it's important to update i_size while still holding page lock:
1328 	 * page writeout could otherwise come in and zero beyond i_size.
1329 	 *
1330 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1331 	 * blocks are being written past EOF, so skip the i_size update.
1332 	 */
1333 	if (!verity)
1334 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1335 	unlock_page(page);
1336 	put_page(page);
1337 
1338 	if (old_size < pos && !verity)
1339 		pagecache_isize_extended(inode, old_size, pos);
1340 	/*
1341 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1342 	 * makes the holding time of page lock longer. Second, it forces lock
1343 	 * ordering of page lock and transaction start for journaling
1344 	 * filesystems.
1345 	 */
1346 	if (i_size_changed)
1347 		ret = ext4_mark_inode_dirty(handle, inode);
1348 
1349 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1350 		/* if we have allocated more blocks and copied
1351 		 * less. We will have blocks allocated outside
1352 		 * inode->i_size. So truncate them
1353 		 */
1354 		ext4_orphan_add(handle, inode);
1355 
1356 	ret2 = ext4_journal_stop(handle);
1357 	if (!ret)
1358 		ret = ret2;
1359 
1360 	if (pos + len > inode->i_size && !verity) {
1361 		ext4_truncate_failed_write(inode);
1362 		/*
1363 		 * If truncate failed early the inode might still be
1364 		 * on the orphan list; we need to make sure the inode
1365 		 * is removed from the orphan list in that case.
1366 		 */
1367 		if (inode->i_nlink)
1368 			ext4_orphan_del(NULL, inode);
1369 	}
1370 
1371 	return ret ? ret : copied;
1372 }
1373 
1374 /*
1375  * This is a private version of page_zero_new_buffers() which doesn't
1376  * set the buffer to be dirty, since in data=journalled mode we need
1377  * to call ext4_handle_dirty_metadata() instead.
1378  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct page * page,unsigned from,unsigned to)1379 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1380 					    struct inode *inode,
1381 					    struct page *page,
1382 					    unsigned from, unsigned to)
1383 {
1384 	unsigned int block_start = 0, block_end;
1385 	struct buffer_head *head, *bh;
1386 
1387 	bh = head = page_buffers(page);
1388 	do {
1389 		block_end = block_start + bh->b_size;
1390 		if (buffer_new(bh)) {
1391 			if (block_end > from && block_start < to) {
1392 				if (!PageUptodate(page)) {
1393 					unsigned start, size;
1394 
1395 					start = max(from, block_start);
1396 					size = min(to, block_end) - start;
1397 
1398 					zero_user(page, start, size);
1399 					write_end_fn(handle, inode, bh);
1400 				}
1401 				clear_buffer_new(bh);
1402 			}
1403 		}
1404 		block_start = block_end;
1405 		bh = bh->b_this_page;
1406 	} while (bh != head);
1407 }
1408 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1409 static int ext4_journalled_write_end(struct file *file,
1410 				     struct address_space *mapping,
1411 				     loff_t pos, unsigned len, unsigned copied,
1412 				     struct page *page, void *fsdata)
1413 {
1414 	handle_t *handle = ext4_journal_current_handle();
1415 	struct inode *inode = mapping->host;
1416 	loff_t old_size = inode->i_size;
1417 	int ret = 0, ret2;
1418 	int partial = 0;
1419 	unsigned from, to;
1420 	int size_changed = 0;
1421 	bool verity = ext4_verity_in_progress(inode);
1422 
1423 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1424 	from = pos & (PAGE_SIZE - 1);
1425 	to = from + len;
1426 
1427 	BUG_ON(!ext4_handle_valid(handle));
1428 
1429 	if (ext4_has_inline_data(inode))
1430 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
1431 
1432 	if (unlikely(copied < len) && !PageUptodate(page)) {
1433 		copied = 0;
1434 		ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1435 	} else {
1436 		if (unlikely(copied < len))
1437 			ext4_journalled_zero_new_buffers(handle, inode, page,
1438 							 from + copied, to);
1439 		ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1440 					     from, from + copied, &partial,
1441 					     write_end_fn);
1442 		if (!partial)
1443 			SetPageUptodate(page);
1444 	}
1445 	if (!verity)
1446 		size_changed = ext4_update_inode_size(inode, pos + copied);
1447 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1448 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1449 	unlock_page(page);
1450 	put_page(page);
1451 
1452 	if (old_size < pos && !verity)
1453 		pagecache_isize_extended(inode, old_size, pos);
1454 
1455 	if (size_changed) {
1456 		ret2 = ext4_mark_inode_dirty(handle, inode);
1457 		if (!ret)
1458 			ret = ret2;
1459 	}
1460 
1461 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1462 		/* if we have allocated more blocks and copied
1463 		 * less. We will have blocks allocated outside
1464 		 * inode->i_size. So truncate them
1465 		 */
1466 		ext4_orphan_add(handle, inode);
1467 
1468 	ret2 = ext4_journal_stop(handle);
1469 	if (!ret)
1470 		ret = ret2;
1471 	if (pos + len > inode->i_size && !verity) {
1472 		ext4_truncate_failed_write(inode);
1473 		/*
1474 		 * If truncate failed early the inode might still be
1475 		 * on the orphan list; we need to make sure the inode
1476 		 * is removed from the orphan list in that case.
1477 		 */
1478 		if (inode->i_nlink)
1479 			ext4_orphan_del(NULL, inode);
1480 	}
1481 
1482 	return ret ? ret : copied;
1483 }
1484 
1485 /*
1486  * Reserve space for a single cluster
1487  */
ext4_da_reserve_space(struct inode * inode)1488 static int ext4_da_reserve_space(struct inode *inode)
1489 {
1490 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1491 	struct ext4_inode_info *ei = EXT4_I(inode);
1492 	int ret;
1493 
1494 	/*
1495 	 * We will charge metadata quota at writeout time; this saves
1496 	 * us from metadata over-estimation, though we may go over by
1497 	 * a small amount in the end.  Here we just reserve for data.
1498 	 */
1499 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1500 	if (ret)
1501 		return ret;
1502 
1503 	spin_lock(&ei->i_block_reservation_lock);
1504 	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1505 		spin_unlock(&ei->i_block_reservation_lock);
1506 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1507 		return -ENOSPC;
1508 	}
1509 	ei->i_reserved_data_blocks++;
1510 	trace_ext4_da_reserve_space(inode);
1511 	spin_unlock(&ei->i_block_reservation_lock);
1512 
1513 	return 0;       /* success */
1514 }
1515 
ext4_da_release_space(struct inode * inode,int to_free)1516 void ext4_da_release_space(struct inode *inode, int to_free)
1517 {
1518 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519 	struct ext4_inode_info *ei = EXT4_I(inode);
1520 
1521 	if (!to_free)
1522 		return;		/* Nothing to release, exit */
1523 
1524 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1525 
1526 	trace_ext4_da_release_space(inode, to_free);
1527 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1528 		/*
1529 		 * if there aren't enough reserved blocks, then the
1530 		 * counter is messed up somewhere.  Since this
1531 		 * function is called from invalidate page, it's
1532 		 * harmless to return without any action.
1533 		 */
1534 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1535 			 "ino %lu, to_free %d with only %d reserved "
1536 			 "data blocks", inode->i_ino, to_free,
1537 			 ei->i_reserved_data_blocks);
1538 		WARN_ON(1);
1539 		to_free = ei->i_reserved_data_blocks;
1540 	}
1541 	ei->i_reserved_data_blocks -= to_free;
1542 
1543 	/* update fs dirty data blocks counter */
1544 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1545 
1546 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547 
1548 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1549 }
1550 
1551 /*
1552  * Delayed allocation stuff
1553  */
1554 
1555 struct mpage_da_data {
1556 	struct inode *inode;
1557 	struct writeback_control *wbc;
1558 
1559 	pgoff_t first_page;	/* The first page to write */
1560 	pgoff_t next_page;	/* Current page to examine */
1561 	pgoff_t last_page;	/* Last page to examine */
1562 	/*
1563 	 * Extent to map - this can be after first_page because that can be
1564 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1565 	 * is delalloc or unwritten.
1566 	 */
1567 	struct ext4_map_blocks map;
1568 	struct ext4_io_submit io_submit;	/* IO submission data */
1569 	unsigned int do_map:1;
1570 	unsigned int scanned_until_end:1;
1571 };
1572 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 				       bool invalidate)
1575 {
1576 	unsigned nr, i;
1577 	pgoff_t index, end;
1578 	struct folio_batch fbatch;
1579 	struct inode *inode = mpd->inode;
1580 	struct address_space *mapping = inode->i_mapping;
1581 
1582 	/* This is necessary when next_page == 0. */
1583 	if (mpd->first_page >= mpd->next_page)
1584 		return;
1585 
1586 	mpd->scanned_until_end = 0;
1587 	index = mpd->first_page;
1588 	end   = mpd->next_page - 1;
1589 	if (invalidate) {
1590 		ext4_lblk_t start, last;
1591 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1593 
1594 		/*
1595 		 * avoid racing with extent status tree scans made by
1596 		 * ext4_insert_delayed_block()
1597 		 */
1598 		down_write(&EXT4_I(inode)->i_data_sem);
1599 		ext4_es_remove_extent(inode, start, last - start + 1);
1600 		up_write(&EXT4_I(inode)->i_data_sem);
1601 	}
1602 
1603 	folio_batch_init(&fbatch);
1604 	while (index <= end) {
1605 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 		if (nr == 0)
1607 			break;
1608 		for (i = 0; i < nr; i++) {
1609 			struct folio *folio = fbatch.folios[i];
1610 
1611 			if (folio->index < mpd->first_page)
1612 				continue;
1613 			if (folio->index + folio_nr_pages(folio) - 1 > end)
1614 				continue;
1615 			BUG_ON(!folio_test_locked(folio));
1616 			BUG_ON(folio_test_writeback(folio));
1617 			if (invalidate) {
1618 				if (folio_mapped(folio))
1619 					folio_clear_dirty_for_io(folio);
1620 				block_invalidate_folio(folio, 0,
1621 						folio_size(folio));
1622 				folio_clear_uptodate(folio);
1623 			}
1624 			folio_unlock(folio);
1625 		}
1626 		folio_batch_release(&fbatch);
1627 	}
1628 }
1629 
ext4_print_free_blocks(struct inode * inode)1630 static void ext4_print_free_blocks(struct inode *inode)
1631 {
1632 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 	struct super_block *sb = inode->i_sb;
1634 	struct ext4_inode_info *ei = EXT4_I(inode);
1635 
1636 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1638 			ext4_count_free_clusters(sb)));
1639 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 	       (long long) EXT4_C2B(EXT4_SB(sb),
1642 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 	       (long long) EXT4_C2B(EXT4_SB(sb),
1645 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 		 ei->i_reserved_data_blocks);
1649 	return;
1650 }
1651 
ext4_bh_delay_or_unwritten(handle_t * handle,struct inode * inode,struct buffer_head * bh)1652 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653 				      struct buffer_head *bh)
1654 {
1655 	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656 }
1657 
1658 /*
1659  * ext4_insert_delayed_block - adds a delayed block to the extents status
1660  *                             tree, incrementing the reserved cluster/block
1661  *                             count or making a pending reservation
1662  *                             where needed
1663  *
1664  * @inode - file containing the newly added block
1665  * @lblk - logical block to be added
1666  *
1667  * Returns 0 on success, negative error code on failure.
1668  */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1669 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670 {
1671 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 	int ret;
1673 	bool allocated = false;
1674 	bool reserved = false;
1675 
1676 	/*
1677 	 * If the cluster containing lblk is shared with a delayed,
1678 	 * written, or unwritten extent in a bigalloc file system, it's
1679 	 * already been accounted for and does not need to be reserved.
1680 	 * A pending reservation must be made for the cluster if it's
1681 	 * shared with a written or unwritten extent and doesn't already
1682 	 * have one.  Written and unwritten extents can be purged from the
1683 	 * extents status tree if the system is under memory pressure, so
1684 	 * it's necessary to examine the extent tree if a search of the
1685 	 * extents status tree doesn't get a match.
1686 	 */
1687 	if (sbi->s_cluster_ratio == 1) {
1688 		ret = ext4_da_reserve_space(inode);
1689 		if (ret != 0)   /* ENOSPC */
1690 			goto errout;
1691 		reserved = true;
1692 	} else {   /* bigalloc */
1693 		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694 			if (!ext4_es_scan_clu(inode,
1695 					      &ext4_es_is_mapped, lblk)) {
1696 				ret = ext4_clu_mapped(inode,
1697 						      EXT4_B2C(sbi, lblk));
1698 				if (ret < 0)
1699 					goto errout;
1700 				if (ret == 0) {
1701 					ret = ext4_da_reserve_space(inode);
1702 					if (ret != 0)   /* ENOSPC */
1703 						goto errout;
1704 					reserved = true;
1705 				} else {
1706 					allocated = true;
1707 				}
1708 			} else {
1709 				allocated = true;
1710 			}
1711 		}
1712 	}
1713 
1714 	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715 	if (ret && reserved)
1716 		ext4_da_release_space(inode, 1);
1717 
1718 errout:
1719 	return ret;
1720 }
1721 
1722 /*
1723  * This function is grabs code from the very beginning of
1724  * ext4_map_blocks, but assumes that the caller is from delayed write
1725  * time. This function looks up the requested blocks and sets the
1726  * buffer delay bit under the protection of i_data_sem.
1727  */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 			      struct ext4_map_blocks *map,
1730 			      struct buffer_head *bh)
1731 {
1732 	struct extent_status es;
1733 	int retval;
1734 	sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 	struct ext4_map_blocks orig_map;
1737 
1738 	memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740 
1741 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 		invalid_block = ~0;
1743 
1744 	map->m_flags = 0;
1745 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1746 		  (unsigned long) map->m_lblk);
1747 
1748 	/* Lookup extent status tree firstly */
1749 	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750 		if (ext4_es_is_hole(&es)) {
1751 			retval = 0;
1752 			down_read(&EXT4_I(inode)->i_data_sem);
1753 			goto add_delayed;
1754 		}
1755 
1756 		/*
1757 		 * Delayed extent could be allocated by fallocate.
1758 		 * So we need to check it.
1759 		 */
1760 		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 			map_bh(bh, inode->i_sb, invalid_block);
1762 			set_buffer_new(bh);
1763 			set_buffer_delay(bh);
1764 			return 0;
1765 		}
1766 
1767 		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 		retval = es.es_len - (iblock - es.es_lblk);
1769 		if (retval > map->m_len)
1770 			retval = map->m_len;
1771 		map->m_len = retval;
1772 		if (ext4_es_is_written(&es))
1773 			map->m_flags |= EXT4_MAP_MAPPED;
1774 		else if (ext4_es_is_unwritten(&es))
1775 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 		else
1777 			BUG();
1778 
1779 #ifdef ES_AGGRESSIVE_TEST
1780 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 		return retval;
1783 	}
1784 
1785 	/*
1786 	 * Try to see if we can get the block without requesting a new
1787 	 * file system block.
1788 	 */
1789 	down_read(&EXT4_I(inode)->i_data_sem);
1790 	if (ext4_has_inline_data(inode))
1791 		retval = 0;
1792 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 	else
1795 		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796 
1797 add_delayed:
1798 	if (retval == 0) {
1799 		int ret;
1800 
1801 		/*
1802 		 * XXX: __block_prepare_write() unmaps passed block,
1803 		 * is it OK?
1804 		 */
1805 
1806 		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807 		if (ret != 0) {
1808 			retval = ret;
1809 			goto out_unlock;
1810 		}
1811 
1812 		map_bh(bh, inode->i_sb, invalid_block);
1813 		set_buffer_new(bh);
1814 		set_buffer_delay(bh);
1815 	} else if (retval > 0) {
1816 		int ret;
1817 		unsigned int status;
1818 
1819 		if (unlikely(retval != map->m_len)) {
1820 			ext4_warning(inode->i_sb,
1821 				     "ES len assertion failed for inode "
1822 				     "%lu: retval %d != map->m_len %d",
1823 				     inode->i_ino, retval, map->m_len);
1824 			WARN_ON(1);
1825 		}
1826 
1827 		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828 				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829 		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830 					    map->m_pblk, status);
1831 		if (ret != 0)
1832 			retval = ret;
1833 	}
1834 
1835 out_unlock:
1836 	up_read((&EXT4_I(inode)->i_data_sem));
1837 
1838 	return retval;
1839 }
1840 
1841 /*
1842  * This is a special get_block_t callback which is used by
1843  * ext4_da_write_begin().  It will either return mapped block or
1844  * reserve space for a single block.
1845  *
1846  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847  * We also have b_blocknr = -1 and b_bdev initialized properly
1848  *
1849  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851  * initialized properly.
1852  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1853 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854 			   struct buffer_head *bh, int create)
1855 {
1856 	struct ext4_map_blocks map;
1857 	int ret = 0;
1858 
1859 	BUG_ON(create == 0);
1860 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861 
1862 	map.m_lblk = iblock;
1863 	map.m_len = 1;
1864 
1865 	/*
1866 	 * first, we need to know whether the block is allocated already
1867 	 * preallocated blocks are unmapped but should treated
1868 	 * the same as allocated blocks.
1869 	 */
1870 	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871 	if (ret <= 0)
1872 		return ret;
1873 
1874 	map_bh(bh, inode->i_sb, map.m_pblk);
1875 	ext4_update_bh_state(bh, map.m_flags);
1876 
1877 	if (buffer_unwritten(bh)) {
1878 		/* A delayed write to unwritten bh should be marked
1879 		 * new and mapped.  Mapped ensures that we don't do
1880 		 * get_block multiple times when we write to the same
1881 		 * offset and new ensures that we do proper zero out
1882 		 * for partial write.
1883 		 */
1884 		set_buffer_new(bh);
1885 		set_buffer_mapped(bh);
1886 	}
1887 	return 0;
1888 }
1889 
__ext4_journalled_writepage(struct page * page,unsigned int len)1890 static int __ext4_journalled_writepage(struct page *page,
1891 				       unsigned int len)
1892 {
1893 	struct address_space *mapping = page->mapping;
1894 	struct inode *inode = mapping->host;
1895 	handle_t *handle = NULL;
1896 	int ret = 0, err = 0;
1897 	int inline_data = ext4_has_inline_data(inode);
1898 	struct buffer_head *inode_bh = NULL;
1899 	loff_t size;
1900 
1901 	ClearPageChecked(page);
1902 
1903 	if (inline_data) {
1904 		BUG_ON(page->index != 0);
1905 		BUG_ON(len > ext4_get_max_inline_size(inode));
1906 		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907 		if (inode_bh == NULL)
1908 			goto out;
1909 	}
1910 	/*
1911 	 * We need to release the page lock before we start the
1912 	 * journal, so grab a reference so the page won't disappear
1913 	 * out from under us.
1914 	 */
1915 	get_page(page);
1916 	unlock_page(page);
1917 
1918 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919 				    ext4_writepage_trans_blocks(inode));
1920 	if (IS_ERR(handle)) {
1921 		ret = PTR_ERR(handle);
1922 		put_page(page);
1923 		goto out_no_pagelock;
1924 	}
1925 	BUG_ON(!ext4_handle_valid(handle));
1926 
1927 	lock_page(page);
1928 	put_page(page);
1929 	size = i_size_read(inode);
1930 	if (page->mapping != mapping || page_offset(page) > size) {
1931 		/* The page got truncated from under us */
1932 		ext4_journal_stop(handle);
1933 		ret = 0;
1934 		goto out;
1935 	}
1936 
1937 	if (inline_data) {
1938 		ret = ext4_mark_inode_dirty(handle, inode);
1939 	} else {
1940 		struct buffer_head *page_bufs = page_buffers(page);
1941 
1942 		if (page->index == size >> PAGE_SHIFT)
1943 			len = size & ~PAGE_MASK;
1944 		else
1945 			len = PAGE_SIZE;
1946 
1947 		ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948 					     NULL, do_journal_get_write_access);
1949 
1950 		err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951 					     NULL, write_end_fn);
1952 	}
1953 	if (ret == 0)
1954 		ret = err;
1955 	err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956 	if (ret == 0)
1957 		ret = err;
1958 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959 	err = ext4_journal_stop(handle);
1960 	if (!ret)
1961 		ret = err;
1962 
1963 	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964 out:
1965 	unlock_page(page);
1966 out_no_pagelock:
1967 	brelse(inode_bh);
1968 	return ret;
1969 }
1970 
1971 /*
1972  * Note that we don't need to start a transaction unless we're journaling data
1973  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974  * need to file the inode to the transaction's list in ordered mode because if
1975  * we are writing back data added by write(), the inode is already there and if
1976  * we are writing back data modified via mmap(), no one guarantees in which
1977  * transaction the data will hit the disk. In case we are journaling data, we
1978  * cannot start transaction directly because transaction start ranks above page
1979  * lock so we have to do some magic.
1980  *
1981  * This function can get called via...
1982  *   - ext4_writepages after taking page lock (have journal handle)
1983  *   - journal_submit_inode_data_buffers (no journal handle)
1984  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985  *   - grab_page_cache when doing write_begin (have journal handle)
1986  *
1987  * We don't do any block allocation in this function. If we have page with
1988  * multiple blocks we need to write those buffer_heads that are mapped. This
1989  * is important for mmaped based write. So if we do with blocksize 1K
1990  * truncate(f, 1024);
1991  * a = mmap(f, 0, 4096);
1992  * a[0] = 'a';
1993  * truncate(f, 4096);
1994  * we have in the page first buffer_head mapped via page_mkwrite call back
1995  * but other buffer_heads would be unmapped but dirty (dirty done via the
1996  * do_wp_page). So writepage should write the first block. If we modify
1997  * the mmap area beyond 1024 we will again get a page_fault and the
1998  * page_mkwrite callback will do the block allocation and mark the
1999  * buffer_heads mapped.
2000  *
2001  * We redirty the page if we have any buffer_heads that is either delay or
2002  * unwritten in the page.
2003  *
2004  * We can get recursively called as show below.
2005  *
2006  *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007  *		ext4_writepage()
2008  *
2009  * But since we don't do any block allocation we should not deadlock.
2010  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011  */
ext4_writepage(struct page * page,struct writeback_control * wbc)2012 static int ext4_writepage(struct page *page,
2013 			  struct writeback_control *wbc)
2014 {
2015 	struct folio *folio = page_folio(page);
2016 	int ret = 0;
2017 	loff_t size;
2018 	unsigned int len;
2019 	struct buffer_head *page_bufs = NULL;
2020 	struct inode *inode = page->mapping->host;
2021 	struct ext4_io_submit io_submit;
2022 	bool keep_towrite = false;
2023 
2024 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2025 		folio_invalidate(folio, 0, folio_size(folio));
2026 		folio_unlock(folio);
2027 		return -EIO;
2028 	}
2029 
2030 	trace_ext4_writepage(page);
2031 	size = i_size_read(inode);
2032 	if (page->index == size >> PAGE_SHIFT &&
2033 	    !ext4_verity_in_progress(inode))
2034 		len = size & ~PAGE_MASK;
2035 	else
2036 		len = PAGE_SIZE;
2037 
2038 	/* Should never happen but for bugs in other kernel subsystems */
2039 	if (!page_has_buffers(page)) {
2040 		ext4_warning_inode(inode,
2041 		   "page %lu does not have buffers attached", page->index);
2042 		ClearPageDirty(page);
2043 		unlock_page(page);
2044 		return 0;
2045 	}
2046 
2047 	page_bufs = page_buffers(page);
2048 	/*
2049 	 * We cannot do block allocation or other extent handling in this
2050 	 * function. If there are buffers needing that, we have to redirty
2051 	 * the page. But we may reach here when we do a journal commit via
2052 	 * journal_submit_inode_data_buffers() and in that case we must write
2053 	 * allocated buffers to achieve data=ordered mode guarantees.
2054 	 *
2055 	 * Also, if there is only one buffer per page (the fs block
2056 	 * size == the page size), if one buffer needs block
2057 	 * allocation or needs to modify the extent tree to clear the
2058 	 * unwritten flag, we know that the page can't be written at
2059 	 * all, so we might as well refuse the write immediately.
2060 	 * Unfortunately if the block size != page size, we can't as
2061 	 * easily detect this case using ext4_walk_page_buffers(), but
2062 	 * for the extremely common case, this is an optimization that
2063 	 * skips a useless round trip through ext4_bio_write_page().
2064 	 */
2065 	if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2066 				   ext4_bh_delay_or_unwritten)) {
2067 		redirty_page_for_writepage(wbc, page);
2068 		if ((current->flags & PF_MEMALLOC) ||
2069 		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2070 			/*
2071 			 * For memory cleaning there's no point in writing only
2072 			 * some buffers. So just bail out. Warn if we came here
2073 			 * from direct reclaim.
2074 			 */
2075 			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2076 							== PF_MEMALLOC);
2077 			unlock_page(page);
2078 			return 0;
2079 		}
2080 		keep_towrite = true;
2081 	}
2082 
2083 	if (PageChecked(page) && ext4_should_journal_data(inode))
2084 		/*
2085 		 * It's mmapped pagecache.  Add buffers and journal it.  There
2086 		 * doesn't seem much point in redirtying the page here.
2087 		 */
2088 		return __ext4_journalled_writepage(page, len);
2089 
2090 	ext4_io_submit_init(&io_submit, wbc);
2091 	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2092 	if (!io_submit.io_end) {
2093 		redirty_page_for_writepage(wbc, page);
2094 		unlock_page(page);
2095 		return -ENOMEM;
2096 	}
2097 	ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2098 	ext4_io_submit(&io_submit);
2099 	/* Drop io_end reference we got from init */
2100 	ext4_put_io_end_defer(io_submit.io_end);
2101 	return ret;
2102 }
2103 
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2104 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2105 {
2106 	int len;
2107 	loff_t size;
2108 	int err;
2109 
2110 	BUG_ON(page->index != mpd->first_page);
2111 	clear_page_dirty_for_io(page);
2112 	/*
2113 	 * We have to be very careful here!  Nothing protects writeback path
2114 	 * against i_size changes and the page can be writeably mapped into
2115 	 * page tables. So an application can be growing i_size and writing
2116 	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2117 	 * write-protects our page in page tables and the page cannot get
2118 	 * written to again until we release page lock. So only after
2119 	 * clear_page_dirty_for_io() we are safe to sample i_size for
2120 	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2121 	 * on the barrier provided by TestClearPageDirty in
2122 	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2123 	 * after page tables are updated.
2124 	 */
2125 	size = i_size_read(mpd->inode);
2126 	if (page->index == size >> PAGE_SHIFT &&
2127 	    !ext4_verity_in_progress(mpd->inode))
2128 		len = size & ~PAGE_MASK;
2129 	else
2130 		len = PAGE_SIZE;
2131 	err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2132 	if (!err)
2133 		mpd->wbc->nr_to_write--;
2134 	mpd->first_page++;
2135 
2136 	return err;
2137 }
2138 
2139 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2140 
2141 /*
2142  * mballoc gives us at most this number of blocks...
2143  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2144  * The rest of mballoc seems to handle chunks up to full group size.
2145  */
2146 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2147 
2148 /*
2149  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2150  *
2151  * @mpd - extent of blocks
2152  * @lblk - logical number of the block in the file
2153  * @bh - buffer head we want to add to the extent
2154  *
2155  * The function is used to collect contig. blocks in the same state. If the
2156  * buffer doesn't require mapping for writeback and we haven't started the
2157  * extent of buffers to map yet, the function returns 'true' immediately - the
2158  * caller can write the buffer right away. Otherwise the function returns true
2159  * if the block has been added to the extent, false if the block couldn't be
2160  * added.
2161  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2162 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2163 				   struct buffer_head *bh)
2164 {
2165 	struct ext4_map_blocks *map = &mpd->map;
2166 
2167 	/* Buffer that doesn't need mapping for writeback? */
2168 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2169 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2170 		/* So far no extent to map => we write the buffer right away */
2171 		if (map->m_len == 0)
2172 			return true;
2173 		return false;
2174 	}
2175 
2176 	/* First block in the extent? */
2177 	if (map->m_len == 0) {
2178 		/* We cannot map unless handle is started... */
2179 		if (!mpd->do_map)
2180 			return false;
2181 		map->m_lblk = lblk;
2182 		map->m_len = 1;
2183 		map->m_flags = bh->b_state & BH_FLAGS;
2184 		return true;
2185 	}
2186 
2187 	/* Don't go larger than mballoc is willing to allocate */
2188 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2189 		return false;
2190 
2191 	/* Can we merge the block to our big extent? */
2192 	if (lblk == map->m_lblk + map->m_len &&
2193 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2194 		map->m_len++;
2195 		return true;
2196 	}
2197 	return false;
2198 }
2199 
2200 /*
2201  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2202  *
2203  * @mpd - extent of blocks for mapping
2204  * @head - the first buffer in the page
2205  * @bh - buffer we should start processing from
2206  * @lblk - logical number of the block in the file corresponding to @bh
2207  *
2208  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2209  * the page for IO if all buffers in this page were mapped and there's no
2210  * accumulated extent of buffers to map or add buffers in the page to the
2211  * extent of buffers to map. The function returns 1 if the caller can continue
2212  * by processing the next page, 0 if it should stop adding buffers to the
2213  * extent to map because we cannot extend it anymore. It can also return value
2214  * < 0 in case of error during IO submission.
2215  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2216 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2217 				   struct buffer_head *head,
2218 				   struct buffer_head *bh,
2219 				   ext4_lblk_t lblk)
2220 {
2221 	struct inode *inode = mpd->inode;
2222 	int err;
2223 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2224 							>> inode->i_blkbits;
2225 
2226 	if (ext4_verity_in_progress(inode))
2227 		blocks = EXT_MAX_BLOCKS;
2228 
2229 	do {
2230 		BUG_ON(buffer_locked(bh));
2231 
2232 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2233 			/* Found extent to map? */
2234 			if (mpd->map.m_len)
2235 				return 0;
2236 			/* Buffer needs mapping and handle is not started? */
2237 			if (!mpd->do_map)
2238 				return 0;
2239 			/* Everything mapped so far and we hit EOF */
2240 			break;
2241 		}
2242 	} while (lblk++, (bh = bh->b_this_page) != head);
2243 	/* So far everything mapped? Submit the page for IO. */
2244 	if (mpd->map.m_len == 0) {
2245 		err = mpage_submit_page(mpd, head->b_page);
2246 		if (err < 0)
2247 			return err;
2248 	}
2249 	if (lblk >= blocks) {
2250 		mpd->scanned_until_end = 1;
2251 		return 0;
2252 	}
2253 	return 1;
2254 }
2255 
2256 /*
2257  * mpage_process_page - update page buffers corresponding to changed extent and
2258  *		       may submit fully mapped page for IO
2259  *
2260  * @mpd		- description of extent to map, on return next extent to map
2261  * @m_lblk	- logical block mapping.
2262  * @m_pblk	- corresponding physical mapping.
2263  * @map_bh	- determines on return whether this page requires any further
2264  *		  mapping or not.
2265  * Scan given page buffers corresponding to changed extent and update buffer
2266  * state according to new extent state.
2267  * We map delalloc buffers to their physical location, clear unwritten bits.
2268  * If the given page is not fully mapped, we update @map to the next extent in
2269  * the given page that needs mapping & return @map_bh as true.
2270  */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2271 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2272 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2273 			      bool *map_bh)
2274 {
2275 	struct buffer_head *head, *bh;
2276 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2277 	ext4_lblk_t lblk = *m_lblk;
2278 	ext4_fsblk_t pblock = *m_pblk;
2279 	int err = 0;
2280 	int blkbits = mpd->inode->i_blkbits;
2281 	ssize_t io_end_size = 0;
2282 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2283 
2284 	bh = head = page_buffers(page);
2285 	do {
2286 		if (lblk < mpd->map.m_lblk)
2287 			continue;
2288 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2289 			/*
2290 			 * Buffer after end of mapped extent.
2291 			 * Find next buffer in the page to map.
2292 			 */
2293 			mpd->map.m_len = 0;
2294 			mpd->map.m_flags = 0;
2295 			io_end_vec->size += io_end_size;
2296 
2297 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2298 			if (err > 0)
2299 				err = 0;
2300 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2301 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2302 				if (IS_ERR(io_end_vec)) {
2303 					err = PTR_ERR(io_end_vec);
2304 					goto out;
2305 				}
2306 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2307 			}
2308 			*map_bh = true;
2309 			goto out;
2310 		}
2311 		if (buffer_delay(bh)) {
2312 			clear_buffer_delay(bh);
2313 			bh->b_blocknr = pblock++;
2314 		}
2315 		clear_buffer_unwritten(bh);
2316 		io_end_size += (1 << blkbits);
2317 	} while (lblk++, (bh = bh->b_this_page) != head);
2318 
2319 	io_end_vec->size += io_end_size;
2320 	*map_bh = false;
2321 out:
2322 	*m_lblk = lblk;
2323 	*m_pblk = pblock;
2324 	return err;
2325 }
2326 
2327 /*
2328  * mpage_map_buffers - update buffers corresponding to changed extent and
2329  *		       submit fully mapped pages for IO
2330  *
2331  * @mpd - description of extent to map, on return next extent to map
2332  *
2333  * Scan buffers corresponding to changed extent (we expect corresponding pages
2334  * to be already locked) and update buffer state according to new extent state.
2335  * We map delalloc buffers to their physical location, clear unwritten bits,
2336  * and mark buffers as uninit when we perform writes to unwritten extents
2337  * and do extent conversion after IO is finished. If the last page is not fully
2338  * mapped, we update @map to the next extent in the last page that needs
2339  * mapping. Otherwise we submit the page for IO.
2340  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 {
2343 	struct folio_batch fbatch;
2344 	unsigned nr, i;
2345 	struct inode *inode = mpd->inode;
2346 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2347 	pgoff_t start, end;
2348 	ext4_lblk_t lblk;
2349 	ext4_fsblk_t pblock;
2350 	int err;
2351 	bool map_bh = false;
2352 
2353 	start = mpd->map.m_lblk >> bpp_bits;
2354 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355 	lblk = start << bpp_bits;
2356 	pblock = mpd->map.m_pblk;
2357 
2358 	folio_batch_init(&fbatch);
2359 	while (start <= end) {
2360 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2361 		if (nr == 0)
2362 			break;
2363 		for (i = 0; i < nr; i++) {
2364 			struct page *page = &fbatch.folios[i]->page;
2365 
2366 			err = mpage_process_page(mpd, page, &lblk, &pblock,
2367 						 &map_bh);
2368 			/*
2369 			 * If map_bh is true, means page may require further bh
2370 			 * mapping, or maybe the page was submitted for IO.
2371 			 * So we return to call further extent mapping.
2372 			 */
2373 			if (err < 0 || map_bh)
2374 				goto out;
2375 			/* Page fully mapped - let IO run! */
2376 			err = mpage_submit_page(mpd, page);
2377 			if (err < 0)
2378 				goto out;
2379 		}
2380 		folio_batch_release(&fbatch);
2381 	}
2382 	/* Extent fully mapped and matches with page boundary. We are done. */
2383 	mpd->map.m_len = 0;
2384 	mpd->map.m_flags = 0;
2385 	return 0;
2386 out:
2387 	folio_batch_release(&fbatch);
2388 	return err;
2389 }
2390 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2391 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2392 {
2393 	struct inode *inode = mpd->inode;
2394 	struct ext4_map_blocks *map = &mpd->map;
2395 	int get_blocks_flags;
2396 	int err, dioread_nolock;
2397 
2398 	trace_ext4_da_write_pages_extent(inode, map);
2399 	/*
2400 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2401 	 * to convert an unwritten extent to be initialized (in the case
2402 	 * where we have written into one or more preallocated blocks).  It is
2403 	 * possible that we're going to need more metadata blocks than
2404 	 * previously reserved. However we must not fail because we're in
2405 	 * writeback and there is nothing we can do about it so it might result
2406 	 * in data loss.  So use reserved blocks to allocate metadata if
2407 	 * possible.
2408 	 *
2409 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2410 	 * the blocks in question are delalloc blocks.  This indicates
2411 	 * that the blocks and quotas has already been checked when
2412 	 * the data was copied into the page cache.
2413 	 */
2414 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2415 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2416 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2417 	dioread_nolock = ext4_should_dioread_nolock(inode);
2418 	if (dioread_nolock)
2419 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2420 	if (map->m_flags & BIT(BH_Delay))
2421 		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2422 
2423 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2424 	if (err < 0)
2425 		return err;
2426 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2427 		if (!mpd->io_submit.io_end->handle &&
2428 		    ext4_handle_valid(handle)) {
2429 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2430 			handle->h_rsv_handle = NULL;
2431 		}
2432 		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2433 	}
2434 
2435 	BUG_ON(map->m_len == 0);
2436 	return 0;
2437 }
2438 
2439 /*
2440  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2441  *				 mpd->len and submit pages underlying it for IO
2442  *
2443  * @handle - handle for journal operations
2444  * @mpd - extent to map
2445  * @give_up_on_write - we set this to true iff there is a fatal error and there
2446  *                     is no hope of writing the data. The caller should discard
2447  *                     dirty pages to avoid infinite loops.
2448  *
2449  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2450  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2451  * them to initialized or split the described range from larger unwritten
2452  * extent. Note that we need not map all the described range since allocation
2453  * can return less blocks or the range is covered by more unwritten extents. We
2454  * cannot map more because we are limited by reserved transaction credits. On
2455  * the other hand we always make sure that the last touched page is fully
2456  * mapped so that it can be written out (and thus forward progress is
2457  * guaranteed). After mapping we submit all mapped pages for IO.
2458  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2459 static int mpage_map_and_submit_extent(handle_t *handle,
2460 				       struct mpage_da_data *mpd,
2461 				       bool *give_up_on_write)
2462 {
2463 	struct inode *inode = mpd->inode;
2464 	struct ext4_map_blocks *map = &mpd->map;
2465 	int err;
2466 	loff_t disksize;
2467 	int progress = 0;
2468 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2469 	struct ext4_io_end_vec *io_end_vec;
2470 
2471 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2472 	if (IS_ERR(io_end_vec))
2473 		return PTR_ERR(io_end_vec);
2474 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2475 	do {
2476 		err = mpage_map_one_extent(handle, mpd);
2477 		if (err < 0) {
2478 			struct super_block *sb = inode->i_sb;
2479 
2480 			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2481 			    ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2482 				goto invalidate_dirty_pages;
2483 			/*
2484 			 * Let the uper layers retry transient errors.
2485 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2486 			 * is non-zero, a commit should free up blocks.
2487 			 */
2488 			if ((err == -ENOMEM) ||
2489 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2490 				if (progress)
2491 					goto update_disksize;
2492 				return err;
2493 			}
2494 			ext4_msg(sb, KERN_CRIT,
2495 				 "Delayed block allocation failed for "
2496 				 "inode %lu at logical offset %llu with"
2497 				 " max blocks %u with error %d",
2498 				 inode->i_ino,
2499 				 (unsigned long long)map->m_lblk,
2500 				 (unsigned)map->m_len, -err);
2501 			ext4_msg(sb, KERN_CRIT,
2502 				 "This should not happen!! Data will "
2503 				 "be lost\n");
2504 			if (err == -ENOSPC)
2505 				ext4_print_free_blocks(inode);
2506 		invalidate_dirty_pages:
2507 			*give_up_on_write = true;
2508 			return err;
2509 		}
2510 		progress = 1;
2511 		/*
2512 		 * Update buffer state, submit mapped pages, and get us new
2513 		 * extent to map
2514 		 */
2515 		err = mpage_map_and_submit_buffers(mpd);
2516 		if (err < 0)
2517 			goto update_disksize;
2518 	} while (map->m_len);
2519 
2520 update_disksize:
2521 	/*
2522 	 * Update on-disk size after IO is submitted.  Races with
2523 	 * truncate are avoided by checking i_size under i_data_sem.
2524 	 */
2525 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2526 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2527 		int err2;
2528 		loff_t i_size;
2529 
2530 		down_write(&EXT4_I(inode)->i_data_sem);
2531 		i_size = i_size_read(inode);
2532 		if (disksize > i_size)
2533 			disksize = i_size;
2534 		if (disksize > EXT4_I(inode)->i_disksize)
2535 			EXT4_I(inode)->i_disksize = disksize;
2536 		up_write(&EXT4_I(inode)->i_data_sem);
2537 		err2 = ext4_mark_inode_dirty(handle, inode);
2538 		if (err2) {
2539 			ext4_error_err(inode->i_sb, -err2,
2540 				       "Failed to mark inode %lu dirty",
2541 				       inode->i_ino);
2542 		}
2543 		if (!err)
2544 			err = err2;
2545 	}
2546 	return err;
2547 }
2548 
2549 /*
2550  * Calculate the total number of credits to reserve for one writepages
2551  * iteration. This is called from ext4_writepages(). We map an extent of
2552  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2553  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2554  * bpp - 1 blocks in bpp different extents.
2555  */
ext4_da_writepages_trans_blocks(struct inode * inode)2556 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2557 {
2558 	int bpp = ext4_journal_blocks_per_page(inode);
2559 
2560 	return ext4_meta_trans_blocks(inode,
2561 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2562 }
2563 
2564 /*
2565  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2566  * 				 and underlying extent to map
2567  *
2568  * @mpd - where to look for pages
2569  *
2570  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2571  * IO immediately. When we find a page which isn't mapped we start accumulating
2572  * extent of buffers underlying these pages that needs mapping (formed by
2573  * either delayed or unwritten buffers). We also lock the pages containing
2574  * these buffers. The extent found is returned in @mpd structure (starting at
2575  * mpd->lblk with length mpd->len blocks).
2576  *
2577  * Note that this function can attach bios to one io_end structure which are
2578  * neither logically nor physically contiguous. Although it may seem as an
2579  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2580  * case as we need to track IO to all buffers underlying a page in one io_end.
2581  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2582 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2583 {
2584 	struct address_space *mapping = mpd->inode->i_mapping;
2585 	struct pagevec pvec;
2586 	unsigned int nr_pages;
2587 	long left = mpd->wbc->nr_to_write;
2588 	pgoff_t index = mpd->first_page;
2589 	pgoff_t end = mpd->last_page;
2590 	xa_mark_t tag;
2591 	int i, err = 0;
2592 	int blkbits = mpd->inode->i_blkbits;
2593 	ext4_lblk_t lblk;
2594 	struct buffer_head *head;
2595 
2596 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2597 		tag = PAGECACHE_TAG_TOWRITE;
2598 	else
2599 		tag = PAGECACHE_TAG_DIRTY;
2600 
2601 	pagevec_init(&pvec);
2602 	mpd->map.m_len = 0;
2603 	mpd->next_page = index;
2604 	while (index <= end) {
2605 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2606 				tag);
2607 		if (nr_pages == 0)
2608 			break;
2609 
2610 		for (i = 0; i < nr_pages; i++) {
2611 			struct page *page = pvec.pages[i];
2612 
2613 			/*
2614 			 * Accumulated enough dirty pages? This doesn't apply
2615 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2616 			 * keep going because someone may be concurrently
2617 			 * dirtying pages, and we might have synced a lot of
2618 			 * newly appeared dirty pages, but have not synced all
2619 			 * of the old dirty pages.
2620 			 */
2621 			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2622 				goto out;
2623 
2624 			/* If we can't merge this page, we are done. */
2625 			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2626 				goto out;
2627 
2628 			lock_page(page);
2629 			/*
2630 			 * If the page is no longer dirty, or its mapping no
2631 			 * longer corresponds to inode we are writing (which
2632 			 * means it has been truncated or invalidated), or the
2633 			 * page is already under writeback and we are not doing
2634 			 * a data integrity writeback, skip the page
2635 			 */
2636 			if (!PageDirty(page) ||
2637 			    (PageWriteback(page) &&
2638 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2639 			    unlikely(page->mapping != mapping)) {
2640 				unlock_page(page);
2641 				continue;
2642 			}
2643 
2644 			wait_on_page_writeback(page);
2645 			BUG_ON(PageWriteback(page));
2646 
2647 			/*
2648 			 * Should never happen but for buggy code in
2649 			 * other subsystems that call
2650 			 * set_page_dirty() without properly warning
2651 			 * the file system first.  See [1] for more
2652 			 * information.
2653 			 *
2654 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2655 			 */
2656 			if (!page_has_buffers(page)) {
2657 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2658 				ClearPageDirty(page);
2659 				unlock_page(page);
2660 				continue;
2661 			}
2662 
2663 			if (mpd->map.m_len == 0)
2664 				mpd->first_page = page->index;
2665 			mpd->next_page = page->index + 1;
2666 			/* Add all dirty buffers to mpd */
2667 			lblk = ((ext4_lblk_t)page->index) <<
2668 				(PAGE_SHIFT - blkbits);
2669 			head = page_buffers(page);
2670 			err = mpage_process_page_bufs(mpd, head, head, lblk);
2671 			if (err <= 0)
2672 				goto out;
2673 			err = 0;
2674 			left--;
2675 		}
2676 		pagevec_release(&pvec);
2677 		cond_resched();
2678 	}
2679 	mpd->scanned_until_end = 1;
2680 	return 0;
2681 out:
2682 	pagevec_release(&pvec);
2683 	return err;
2684 }
2685 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2686 static int ext4_writepages(struct address_space *mapping,
2687 			   struct writeback_control *wbc)
2688 {
2689 	pgoff_t	writeback_index = 0;
2690 	long nr_to_write = wbc->nr_to_write;
2691 	int range_whole = 0;
2692 	int cycled = 1;
2693 	handle_t *handle = NULL;
2694 	struct mpage_da_data mpd;
2695 	struct inode *inode = mapping->host;
2696 	int needed_blocks, rsv_blocks = 0, ret = 0;
2697 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2698 	struct blk_plug plug;
2699 	bool give_up_on_write = false;
2700 
2701 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2702 		return -EIO;
2703 
2704 	percpu_down_read(&sbi->s_writepages_rwsem);
2705 	trace_ext4_writepages(inode, wbc);
2706 
2707 	/*
2708 	 * No pages to write? This is mainly a kludge to avoid starting
2709 	 * a transaction for special inodes like journal inode on last iput()
2710 	 * because that could violate lock ordering on umount
2711 	 */
2712 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2713 		goto out_writepages;
2714 
2715 	if (ext4_should_journal_data(inode)) {
2716 		ret = generic_writepages(mapping, wbc);
2717 		goto out_writepages;
2718 	}
2719 
2720 	/*
2721 	 * If the filesystem has aborted, it is read-only, so return
2722 	 * right away instead of dumping stack traces later on that
2723 	 * will obscure the real source of the problem.  We test
2724 	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2725 	 * the latter could be true if the filesystem is mounted
2726 	 * read-only, and in that case, ext4_writepages should
2727 	 * *never* be called, so if that ever happens, we would want
2728 	 * the stack trace.
2729 	 */
2730 	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2731 		     ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2732 		ret = -EROFS;
2733 		goto out_writepages;
2734 	}
2735 
2736 	/*
2737 	 * If we have inline data and arrive here, it means that
2738 	 * we will soon create the block for the 1st page, so
2739 	 * we'd better clear the inline data here.
2740 	 */
2741 	if (ext4_has_inline_data(inode)) {
2742 		/* Just inode will be modified... */
2743 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2744 		if (IS_ERR(handle)) {
2745 			ret = PTR_ERR(handle);
2746 			goto out_writepages;
2747 		}
2748 		BUG_ON(ext4_test_inode_state(inode,
2749 				EXT4_STATE_MAY_INLINE_DATA));
2750 		ext4_destroy_inline_data(handle, inode);
2751 		ext4_journal_stop(handle);
2752 	}
2753 
2754 	if (ext4_should_dioread_nolock(inode)) {
2755 		/*
2756 		 * We may need to convert up to one extent per block in
2757 		 * the page and we may dirty the inode.
2758 		 */
2759 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2760 						PAGE_SIZE >> inode->i_blkbits);
2761 	}
2762 
2763 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2764 		range_whole = 1;
2765 
2766 	if (wbc->range_cyclic) {
2767 		writeback_index = mapping->writeback_index;
2768 		if (writeback_index)
2769 			cycled = 0;
2770 		mpd.first_page = writeback_index;
2771 		mpd.last_page = -1;
2772 	} else {
2773 		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2774 		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2775 	}
2776 
2777 	mpd.inode = inode;
2778 	mpd.wbc = wbc;
2779 	ext4_io_submit_init(&mpd.io_submit, wbc);
2780 retry:
2781 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2782 		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2783 	blk_start_plug(&plug);
2784 
2785 	/*
2786 	 * First writeback pages that don't need mapping - we can avoid
2787 	 * starting a transaction unnecessarily and also avoid being blocked
2788 	 * in the block layer on device congestion while having transaction
2789 	 * started.
2790 	 */
2791 	mpd.do_map = 0;
2792 	mpd.scanned_until_end = 0;
2793 	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2794 	if (!mpd.io_submit.io_end) {
2795 		ret = -ENOMEM;
2796 		goto unplug;
2797 	}
2798 	ret = mpage_prepare_extent_to_map(&mpd);
2799 	/* Unlock pages we didn't use */
2800 	mpage_release_unused_pages(&mpd, false);
2801 	/* Submit prepared bio */
2802 	ext4_io_submit(&mpd.io_submit);
2803 	ext4_put_io_end_defer(mpd.io_submit.io_end);
2804 	mpd.io_submit.io_end = NULL;
2805 	if (ret < 0)
2806 		goto unplug;
2807 
2808 	while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2809 		/* For each extent of pages we use new io_end */
2810 		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2811 		if (!mpd.io_submit.io_end) {
2812 			ret = -ENOMEM;
2813 			break;
2814 		}
2815 
2816 		/*
2817 		 * We have two constraints: We find one extent to map and we
2818 		 * must always write out whole page (makes a difference when
2819 		 * blocksize < pagesize) so that we don't block on IO when we
2820 		 * try to write out the rest of the page. Journalled mode is
2821 		 * not supported by delalloc.
2822 		 */
2823 		BUG_ON(ext4_should_journal_data(inode));
2824 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2825 
2826 		/* start a new transaction */
2827 		handle = ext4_journal_start_with_reserve(inode,
2828 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2829 		if (IS_ERR(handle)) {
2830 			ret = PTR_ERR(handle);
2831 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2832 			       "%ld pages, ino %lu; err %d", __func__,
2833 				wbc->nr_to_write, inode->i_ino, ret);
2834 			/* Release allocated io_end */
2835 			ext4_put_io_end(mpd.io_submit.io_end);
2836 			mpd.io_submit.io_end = NULL;
2837 			break;
2838 		}
2839 		mpd.do_map = 1;
2840 
2841 		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2842 		ret = mpage_prepare_extent_to_map(&mpd);
2843 		if (!ret && mpd.map.m_len)
2844 			ret = mpage_map_and_submit_extent(handle, &mpd,
2845 					&give_up_on_write);
2846 		/*
2847 		 * Caution: If the handle is synchronous,
2848 		 * ext4_journal_stop() can wait for transaction commit
2849 		 * to finish which may depend on writeback of pages to
2850 		 * complete or on page lock to be released.  In that
2851 		 * case, we have to wait until after we have
2852 		 * submitted all the IO, released page locks we hold,
2853 		 * and dropped io_end reference (for extent conversion
2854 		 * to be able to complete) before stopping the handle.
2855 		 */
2856 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2857 			ext4_journal_stop(handle);
2858 			handle = NULL;
2859 			mpd.do_map = 0;
2860 		}
2861 		/* Unlock pages we didn't use */
2862 		mpage_release_unused_pages(&mpd, give_up_on_write);
2863 		/* Submit prepared bio */
2864 		ext4_io_submit(&mpd.io_submit);
2865 
2866 		/*
2867 		 * Drop our io_end reference we got from init. We have
2868 		 * to be careful and use deferred io_end finishing if
2869 		 * we are still holding the transaction as we can
2870 		 * release the last reference to io_end which may end
2871 		 * up doing unwritten extent conversion.
2872 		 */
2873 		if (handle) {
2874 			ext4_put_io_end_defer(mpd.io_submit.io_end);
2875 			ext4_journal_stop(handle);
2876 		} else
2877 			ext4_put_io_end(mpd.io_submit.io_end);
2878 		mpd.io_submit.io_end = NULL;
2879 
2880 		if (ret == -ENOSPC && sbi->s_journal) {
2881 			/*
2882 			 * Commit the transaction which would
2883 			 * free blocks released in the transaction
2884 			 * and try again
2885 			 */
2886 			jbd2_journal_force_commit_nested(sbi->s_journal);
2887 			ret = 0;
2888 			continue;
2889 		}
2890 		/* Fatal error - ENOMEM, EIO... */
2891 		if (ret)
2892 			break;
2893 	}
2894 unplug:
2895 	blk_finish_plug(&plug);
2896 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2897 		cycled = 1;
2898 		mpd.last_page = writeback_index - 1;
2899 		mpd.first_page = 0;
2900 		goto retry;
2901 	}
2902 
2903 	/* Update index */
2904 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2905 		/*
2906 		 * Set the writeback_index so that range_cyclic
2907 		 * mode will write it back later
2908 		 */
2909 		mapping->writeback_index = mpd.first_page;
2910 
2911 out_writepages:
2912 	trace_ext4_writepages_result(inode, wbc, ret,
2913 				     nr_to_write - wbc->nr_to_write);
2914 	percpu_up_read(&sbi->s_writepages_rwsem);
2915 	return ret;
2916 }
2917 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2918 static int ext4_dax_writepages(struct address_space *mapping,
2919 			       struct writeback_control *wbc)
2920 {
2921 	int ret;
2922 	long nr_to_write = wbc->nr_to_write;
2923 	struct inode *inode = mapping->host;
2924 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2925 
2926 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2927 		return -EIO;
2928 
2929 	percpu_down_read(&sbi->s_writepages_rwsem);
2930 	trace_ext4_writepages(inode, wbc);
2931 
2932 	ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2933 	trace_ext4_writepages_result(inode, wbc, ret,
2934 				     nr_to_write - wbc->nr_to_write);
2935 	percpu_up_read(&sbi->s_writepages_rwsem);
2936 	return ret;
2937 }
2938 
ext4_nonda_switch(struct super_block * sb)2939 static int ext4_nonda_switch(struct super_block *sb)
2940 {
2941 	s64 free_clusters, dirty_clusters;
2942 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2943 
2944 	/*
2945 	 * switch to non delalloc mode if we are running low
2946 	 * on free block. The free block accounting via percpu
2947 	 * counters can get slightly wrong with percpu_counter_batch getting
2948 	 * accumulated on each CPU without updating global counters
2949 	 * Delalloc need an accurate free block accounting. So switch
2950 	 * to non delalloc when we are near to error range.
2951 	 */
2952 	free_clusters =
2953 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2954 	dirty_clusters =
2955 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2956 	/*
2957 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2958 	 */
2959 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2960 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2961 
2962 	if (2 * free_clusters < 3 * dirty_clusters ||
2963 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2964 		/*
2965 		 * free block count is less than 150% of dirty blocks
2966 		 * or free blocks is less than watermark
2967 		 */
2968 		return 1;
2969 	}
2970 	return 0;
2971 }
2972 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2973 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2974 			       loff_t pos, unsigned len,
2975 			       struct page **pagep, void **fsdata)
2976 {
2977 	int ret, retries = 0;
2978 	struct page *page;
2979 	pgoff_t index;
2980 	struct inode *inode = mapping->host;
2981 
2982 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2983 		return -EIO;
2984 
2985 	index = pos >> PAGE_SHIFT;
2986 
2987 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2988 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2989 		return ext4_write_begin(file, mapping, pos,
2990 					len, pagep, fsdata);
2991 	}
2992 	*fsdata = (void *)0;
2993 	trace_ext4_da_write_begin(inode, pos, len);
2994 
2995 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2996 		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2997 						      pagep, fsdata);
2998 		if (ret < 0)
2999 			return ret;
3000 		if (ret == 1)
3001 			return 0;
3002 	}
3003 
3004 retry:
3005 	page = grab_cache_page_write_begin(mapping, index);
3006 	if (!page)
3007 		return -ENOMEM;
3008 
3009 	/* In case writeback began while the page was unlocked */
3010 	wait_for_stable_page(page);
3011 
3012 #ifdef CONFIG_FS_ENCRYPTION
3013 	ret = ext4_block_write_begin(page, pos, len,
3014 				     ext4_da_get_block_prep);
3015 #else
3016 	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3017 #endif
3018 	if (ret < 0) {
3019 		unlock_page(page);
3020 		put_page(page);
3021 		/*
3022 		 * block_write_begin may have instantiated a few blocks
3023 		 * outside i_size.  Trim these off again. Don't need
3024 		 * i_size_read because we hold inode lock.
3025 		 */
3026 		if (pos + len > inode->i_size)
3027 			ext4_truncate_failed_write(inode);
3028 
3029 		if (ret == -ENOSPC &&
3030 		    ext4_should_retry_alloc(inode->i_sb, &retries))
3031 			goto retry;
3032 		return ret;
3033 	}
3034 
3035 	*pagep = page;
3036 	return ret;
3037 }
3038 
3039 /*
3040  * Check if we should update i_disksize
3041  * when write to the end of file but not require block allocation
3042  */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3043 static int ext4_da_should_update_i_disksize(struct page *page,
3044 					    unsigned long offset)
3045 {
3046 	struct buffer_head *bh;
3047 	struct inode *inode = page->mapping->host;
3048 	unsigned int idx;
3049 	int i;
3050 
3051 	bh = page_buffers(page);
3052 	idx = offset >> inode->i_blkbits;
3053 
3054 	for (i = 0; i < idx; i++)
3055 		bh = bh->b_this_page;
3056 
3057 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3058 		return 0;
3059 	return 1;
3060 }
3061 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3062 static int ext4_da_write_end(struct file *file,
3063 			     struct address_space *mapping,
3064 			     loff_t pos, unsigned len, unsigned copied,
3065 			     struct page *page, void *fsdata)
3066 {
3067 	struct inode *inode = mapping->host;
3068 	loff_t new_i_size;
3069 	unsigned long start, end;
3070 	int write_mode = (int)(unsigned long)fsdata;
3071 
3072 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3073 		return ext4_write_end(file, mapping, pos,
3074 				      len, copied, page, fsdata);
3075 
3076 	trace_ext4_da_write_end(inode, pos, len, copied);
3077 
3078 	if (write_mode != CONVERT_INLINE_DATA &&
3079 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3080 	    ext4_has_inline_data(inode))
3081 		return ext4_write_inline_data_end(inode, pos, len, copied, page);
3082 
3083 	if (unlikely(copied < len) && !PageUptodate(page))
3084 		copied = 0;
3085 
3086 	start = pos & (PAGE_SIZE - 1);
3087 	end = start + copied - 1;
3088 
3089 	/*
3090 	 * Since we are holding inode lock, we are sure i_disksize <=
3091 	 * i_size. We also know that if i_disksize < i_size, there are
3092 	 * delalloc writes pending in the range upto i_size. If the end of
3093 	 * the current write is <= i_size, there's no need to touch
3094 	 * i_disksize since writeback will push i_disksize upto i_size
3095 	 * eventually. If the end of the current write is > i_size and
3096 	 * inside an allocated block (ext4_da_should_update_i_disksize()
3097 	 * check), we need to update i_disksize here as neither
3098 	 * ext4_writepage() nor certain ext4_writepages() paths not
3099 	 * allocating blocks update i_disksize.
3100 	 *
3101 	 * Note that we defer inode dirtying to generic_write_end() /
3102 	 * ext4_da_write_inline_data_end().
3103 	 */
3104 	new_i_size = pos + copied;
3105 	if (copied && new_i_size > inode->i_size &&
3106 	    ext4_da_should_update_i_disksize(page, end))
3107 		ext4_update_i_disksize(inode, new_i_size);
3108 
3109 	return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3110 }
3111 
3112 /*
3113  * Force all delayed allocation blocks to be allocated for a given inode.
3114  */
ext4_alloc_da_blocks(struct inode * inode)3115 int ext4_alloc_da_blocks(struct inode *inode)
3116 {
3117 	trace_ext4_alloc_da_blocks(inode);
3118 
3119 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3120 		return 0;
3121 
3122 	/*
3123 	 * We do something simple for now.  The filemap_flush() will
3124 	 * also start triggering a write of the data blocks, which is
3125 	 * not strictly speaking necessary (and for users of
3126 	 * laptop_mode, not even desirable).  However, to do otherwise
3127 	 * would require replicating code paths in:
3128 	 *
3129 	 * ext4_writepages() ->
3130 	 *    write_cache_pages() ---> (via passed in callback function)
3131 	 *        __mpage_da_writepage() -->
3132 	 *           mpage_add_bh_to_extent()
3133 	 *           mpage_da_map_blocks()
3134 	 *
3135 	 * The problem is that write_cache_pages(), located in
3136 	 * mm/page-writeback.c, marks pages clean in preparation for
3137 	 * doing I/O, which is not desirable if we're not planning on
3138 	 * doing I/O at all.
3139 	 *
3140 	 * We could call write_cache_pages(), and then redirty all of
3141 	 * the pages by calling redirty_page_for_writepage() but that
3142 	 * would be ugly in the extreme.  So instead we would need to
3143 	 * replicate parts of the code in the above functions,
3144 	 * simplifying them because we wouldn't actually intend to
3145 	 * write out the pages, but rather only collect contiguous
3146 	 * logical block extents, call the multi-block allocator, and
3147 	 * then update the buffer heads with the block allocations.
3148 	 *
3149 	 * For now, though, we'll cheat by calling filemap_flush(),
3150 	 * which will map the blocks, and start the I/O, but not
3151 	 * actually wait for the I/O to complete.
3152 	 */
3153 	return filemap_flush(inode->i_mapping);
3154 }
3155 
3156 /*
3157  * bmap() is special.  It gets used by applications such as lilo and by
3158  * the swapper to find the on-disk block of a specific piece of data.
3159  *
3160  * Naturally, this is dangerous if the block concerned is still in the
3161  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3162  * filesystem and enables swap, then they may get a nasty shock when the
3163  * data getting swapped to that swapfile suddenly gets overwritten by
3164  * the original zero's written out previously to the journal and
3165  * awaiting writeback in the kernel's buffer cache.
3166  *
3167  * So, if we see any bmap calls here on a modified, data-journaled file,
3168  * take extra steps to flush any blocks which might be in the cache.
3169  */
ext4_bmap(struct address_space * mapping,sector_t block)3170 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3171 {
3172 	struct inode *inode = mapping->host;
3173 	journal_t *journal;
3174 	sector_t ret = 0;
3175 	int err;
3176 
3177 	inode_lock_shared(inode);
3178 	/*
3179 	 * We can get here for an inline file via the FIBMAP ioctl
3180 	 */
3181 	if (ext4_has_inline_data(inode))
3182 		goto out;
3183 
3184 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3185 			test_opt(inode->i_sb, DELALLOC)) {
3186 		/*
3187 		 * With delalloc we want to sync the file
3188 		 * so that we can make sure we allocate
3189 		 * blocks for file
3190 		 */
3191 		filemap_write_and_wait(mapping);
3192 	}
3193 
3194 	if (EXT4_JOURNAL(inode) &&
3195 	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3196 		/*
3197 		 * This is a REALLY heavyweight approach, but the use of
3198 		 * bmap on dirty files is expected to be extremely rare:
3199 		 * only if we run lilo or swapon on a freshly made file
3200 		 * do we expect this to happen.
3201 		 *
3202 		 * (bmap requires CAP_SYS_RAWIO so this does not
3203 		 * represent an unprivileged user DOS attack --- we'd be
3204 		 * in trouble if mortal users could trigger this path at
3205 		 * will.)
3206 		 *
3207 		 * NB. EXT4_STATE_JDATA is not set on files other than
3208 		 * regular files.  If somebody wants to bmap a directory
3209 		 * or symlink and gets confused because the buffer
3210 		 * hasn't yet been flushed to disk, they deserve
3211 		 * everything they get.
3212 		 */
3213 
3214 		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3215 		journal = EXT4_JOURNAL(inode);
3216 		jbd2_journal_lock_updates(journal);
3217 		err = jbd2_journal_flush(journal, 0);
3218 		jbd2_journal_unlock_updates(journal);
3219 
3220 		if (err)
3221 			goto out;
3222 	}
3223 
3224 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3225 
3226 out:
3227 	inode_unlock_shared(inode);
3228 	return ret;
3229 }
3230 
ext4_read_folio(struct file * file,struct folio * folio)3231 static int ext4_read_folio(struct file *file, struct folio *folio)
3232 {
3233 	struct page *page = &folio->page;
3234 	int ret = -EAGAIN;
3235 	struct inode *inode = page->mapping->host;
3236 
3237 	trace_ext4_readpage(page);
3238 
3239 	if (ext4_has_inline_data(inode))
3240 		ret = ext4_readpage_inline(inode, page);
3241 
3242 	if (ret == -EAGAIN)
3243 		return ext4_mpage_readpages(inode, NULL, page);
3244 
3245 	return ret;
3246 }
3247 
ext4_readahead(struct readahead_control * rac)3248 static void ext4_readahead(struct readahead_control *rac)
3249 {
3250 	struct inode *inode = rac->mapping->host;
3251 
3252 	/* If the file has inline data, no need to do readahead. */
3253 	if (ext4_has_inline_data(inode))
3254 		return;
3255 
3256 	ext4_mpage_readpages(inode, rac, NULL);
3257 }
3258 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3259 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3260 				size_t length)
3261 {
3262 	trace_ext4_invalidate_folio(folio, offset, length);
3263 
3264 	/* No journalling happens on data buffers when this function is used */
3265 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3266 
3267 	block_invalidate_folio(folio, offset, length);
3268 }
3269 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3270 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3271 					    size_t offset, size_t length)
3272 {
3273 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3274 
3275 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3276 
3277 	/*
3278 	 * If it's a full truncate we just forget about the pending dirtying
3279 	 */
3280 	if (offset == 0 && length == folio_size(folio))
3281 		folio_clear_checked(folio);
3282 
3283 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3284 }
3285 
3286 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3287 static void ext4_journalled_invalidate_folio(struct folio *folio,
3288 					   size_t offset,
3289 					   size_t length)
3290 {
3291 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3292 }
3293 
ext4_release_folio(struct folio * folio,gfp_t wait)3294 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3295 {
3296 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3297 
3298 	trace_ext4_releasepage(&folio->page);
3299 
3300 	/* Page has dirty journalled data -> cannot release */
3301 	if (folio_test_checked(folio))
3302 		return false;
3303 	if (journal)
3304 		return jbd2_journal_try_to_free_buffers(journal, folio);
3305 	else
3306 		return try_to_free_buffers(folio);
3307 }
3308 
ext4_inode_datasync_dirty(struct inode * inode)3309 static bool ext4_inode_datasync_dirty(struct inode *inode)
3310 {
3311 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3312 
3313 	if (journal) {
3314 		if (jbd2_transaction_committed(journal,
3315 			EXT4_I(inode)->i_datasync_tid))
3316 			return false;
3317 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3318 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3319 		return true;
3320 	}
3321 
3322 	/* Any metadata buffers to write? */
3323 	if (!list_empty(&inode->i_mapping->private_list))
3324 		return true;
3325 	return inode->i_state & I_DIRTY_DATASYNC;
3326 }
3327 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3328 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3329 			   struct ext4_map_blocks *map, loff_t offset,
3330 			   loff_t length, unsigned int flags)
3331 {
3332 	u8 blkbits = inode->i_blkbits;
3333 
3334 	/*
3335 	 * Writes that span EOF might trigger an I/O size update on completion,
3336 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3337 	 * there is no other metadata changes being made or are pending.
3338 	 */
3339 	iomap->flags = 0;
3340 	if (ext4_inode_datasync_dirty(inode) ||
3341 	    offset + length > i_size_read(inode))
3342 		iomap->flags |= IOMAP_F_DIRTY;
3343 
3344 	if (map->m_flags & EXT4_MAP_NEW)
3345 		iomap->flags |= IOMAP_F_NEW;
3346 
3347 	if (flags & IOMAP_DAX)
3348 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3349 	else
3350 		iomap->bdev = inode->i_sb->s_bdev;
3351 	iomap->offset = (u64) map->m_lblk << blkbits;
3352 	iomap->length = (u64) map->m_len << blkbits;
3353 
3354 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3355 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3356 		iomap->flags |= IOMAP_F_MERGED;
3357 
3358 	/*
3359 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3360 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3361 	 * set. In order for any allocated unwritten extents to be converted
3362 	 * into written extents correctly within the ->end_io() handler, we
3363 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3364 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3365 	 * been set first.
3366 	 */
3367 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3368 		iomap->type = IOMAP_UNWRITTEN;
3369 		iomap->addr = (u64) map->m_pblk << blkbits;
3370 		if (flags & IOMAP_DAX)
3371 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3372 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3373 		iomap->type = IOMAP_MAPPED;
3374 		iomap->addr = (u64) map->m_pblk << blkbits;
3375 		if (flags & IOMAP_DAX)
3376 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3377 	} else {
3378 		iomap->type = IOMAP_HOLE;
3379 		iomap->addr = IOMAP_NULL_ADDR;
3380 	}
3381 }
3382 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3383 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3384 			    unsigned int flags)
3385 {
3386 	handle_t *handle;
3387 	u8 blkbits = inode->i_blkbits;
3388 	int ret, dio_credits, m_flags = 0, retries = 0;
3389 
3390 	/*
3391 	 * Trim the mapping request to the maximum value that we can map at
3392 	 * once for direct I/O.
3393 	 */
3394 	if (map->m_len > DIO_MAX_BLOCKS)
3395 		map->m_len = DIO_MAX_BLOCKS;
3396 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3397 
3398 retry:
3399 	/*
3400 	 * Either we allocate blocks and then don't get an unwritten extent, so
3401 	 * in that case we have reserved enough credits. Or, the blocks are
3402 	 * already allocated and unwritten. In that case, the extent conversion
3403 	 * fits into the credits as well.
3404 	 */
3405 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3406 	if (IS_ERR(handle))
3407 		return PTR_ERR(handle);
3408 
3409 	/*
3410 	 * DAX and direct I/O are the only two operations that are currently
3411 	 * supported with IOMAP_WRITE.
3412 	 */
3413 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3414 	if (flags & IOMAP_DAX)
3415 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3416 	/*
3417 	 * We use i_size instead of i_disksize here because delalloc writeback
3418 	 * can complete at any point during the I/O and subsequently push the
3419 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3420 	 * happening and thus expose allocated blocks to direct I/O reads.
3421 	 */
3422 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3423 		m_flags = EXT4_GET_BLOCKS_CREATE;
3424 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3425 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3426 
3427 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3428 
3429 	/*
3430 	 * We cannot fill holes in indirect tree based inodes as that could
3431 	 * expose stale data in the case of a crash. Use the magic error code
3432 	 * to fallback to buffered I/O.
3433 	 */
3434 	if (!m_flags && !ret)
3435 		ret = -ENOTBLK;
3436 
3437 	ext4_journal_stop(handle);
3438 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3439 		goto retry;
3440 
3441 	return ret;
3442 }
3443 
3444 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3445 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3446 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3447 {
3448 	int ret;
3449 	struct ext4_map_blocks map;
3450 	u8 blkbits = inode->i_blkbits;
3451 
3452 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453 		return -EINVAL;
3454 
3455 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3456 		return -ERANGE;
3457 
3458 	/*
3459 	 * Calculate the first and last logical blocks respectively.
3460 	 */
3461 	map.m_lblk = offset >> blkbits;
3462 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3463 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3464 
3465 	if (flags & IOMAP_WRITE) {
3466 		/*
3467 		 * We check here if the blocks are already allocated, then we
3468 		 * don't need to start a journal txn and we can directly return
3469 		 * the mapping information. This could boost performance
3470 		 * especially in multi-threaded overwrite requests.
3471 		 */
3472 		if (offset + length <= i_size_read(inode)) {
3473 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3475 				goto out;
3476 		}
3477 		ret = ext4_iomap_alloc(inode, &map, flags);
3478 	} else {
3479 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3480 	}
3481 
3482 	if (ret < 0)
3483 		return ret;
3484 out:
3485 	/*
3486 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3487 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3488 	 * limiting the length of the mapping returned.
3489 	 */
3490 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3491 
3492 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3493 
3494 	return 0;
3495 }
3496 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3497 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3498 		loff_t length, unsigned flags, struct iomap *iomap,
3499 		struct iomap *srcmap)
3500 {
3501 	int ret;
3502 
3503 	/*
3504 	 * Even for writes we don't need to allocate blocks, so just pretend
3505 	 * we are reading to save overhead of starting a transaction.
3506 	 */
3507 	flags &= ~IOMAP_WRITE;
3508 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3509 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3510 	return ret;
3511 }
3512 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3513 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3514 			  ssize_t written, unsigned flags, struct iomap *iomap)
3515 {
3516 	/*
3517 	 * Check to see whether an error occurred while writing out the data to
3518 	 * the allocated blocks. If so, return the magic error code so that we
3519 	 * fallback to buffered I/O and attempt to complete the remainder of
3520 	 * the I/O. Any blocks that may have been allocated in preparation for
3521 	 * the direct I/O will be reused during buffered I/O.
3522 	 */
3523 	if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3524 		return -ENOTBLK;
3525 
3526 	return 0;
3527 }
3528 
3529 const struct iomap_ops ext4_iomap_ops = {
3530 	.iomap_begin		= ext4_iomap_begin,
3531 	.iomap_end		= ext4_iomap_end,
3532 };
3533 
3534 const struct iomap_ops ext4_iomap_overwrite_ops = {
3535 	.iomap_begin		= ext4_iomap_overwrite_begin,
3536 	.iomap_end		= ext4_iomap_end,
3537 };
3538 
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3539 static bool ext4_iomap_is_delalloc(struct inode *inode,
3540 				   struct ext4_map_blocks *map)
3541 {
3542 	struct extent_status es;
3543 	ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3544 
3545 	ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3546 				  map->m_lblk, end, &es);
3547 
3548 	if (!es.es_len || es.es_lblk > end)
3549 		return false;
3550 
3551 	if (es.es_lblk > map->m_lblk) {
3552 		map->m_len = es.es_lblk - map->m_lblk;
3553 		return false;
3554 	}
3555 
3556 	offset = map->m_lblk - es.es_lblk;
3557 	map->m_len = es.es_len - offset;
3558 
3559 	return true;
3560 }
3561 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3562 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3563 				   loff_t length, unsigned int flags,
3564 				   struct iomap *iomap, struct iomap *srcmap)
3565 {
3566 	int ret;
3567 	bool delalloc = false;
3568 	struct ext4_map_blocks map;
3569 	u8 blkbits = inode->i_blkbits;
3570 
3571 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3572 		return -EINVAL;
3573 
3574 	if (ext4_has_inline_data(inode)) {
3575 		ret = ext4_inline_data_iomap(inode, iomap);
3576 		if (ret != -EAGAIN) {
3577 			if (ret == 0 && offset >= iomap->length)
3578 				ret = -ENOENT;
3579 			return ret;
3580 		}
3581 	}
3582 
3583 	/*
3584 	 * Calculate the first and last logical block respectively.
3585 	 */
3586 	map.m_lblk = offset >> blkbits;
3587 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3588 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3589 
3590 	/*
3591 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3592 	 * So handle it here itself instead of querying ext4_map_blocks().
3593 	 * Since ext4_map_blocks() will warn about it and will return
3594 	 * -EIO error.
3595 	 */
3596 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3597 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3598 
3599 		if (offset >= sbi->s_bitmap_maxbytes) {
3600 			map.m_flags = 0;
3601 			goto set_iomap;
3602 		}
3603 	}
3604 
3605 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3606 	if (ret < 0)
3607 		return ret;
3608 	if (ret == 0)
3609 		delalloc = ext4_iomap_is_delalloc(inode, &map);
3610 
3611 set_iomap:
3612 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3613 	if (delalloc && iomap->type == IOMAP_HOLE)
3614 		iomap->type = IOMAP_DELALLOC;
3615 
3616 	return 0;
3617 }
3618 
3619 const struct iomap_ops ext4_iomap_report_ops = {
3620 	.iomap_begin = ext4_iomap_begin_report,
3621 };
3622 
3623 /*
3624  * Whenever the folio is being dirtied, corresponding buffers should already
3625  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3626  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3627  * lists here because ->dirty_folio is called under VFS locks and the folio
3628  * is not necessarily locked.
3629  *
3630  * We cannot just dirty the folio and leave attached buffers clean, because the
3631  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3632  * or jbddirty because all the journalling code will explode.
3633  *
3634  * So what we do is to mark the folio "pending dirty" and next time writepage
3635  * is called, propagate that into the buffers appropriately.
3636  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3637 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3638 		struct folio *folio)
3639 {
3640 	WARN_ON_ONCE(!folio_buffers(folio));
3641 	folio_set_checked(folio);
3642 	return filemap_dirty_folio(mapping, folio);
3643 }
3644 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3645 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3646 {
3647 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3648 	WARN_ON_ONCE(!folio_buffers(folio));
3649 	return block_dirty_folio(mapping, folio);
3650 }
3651 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3652 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3653 				    struct file *file, sector_t *span)
3654 {
3655 	return iomap_swapfile_activate(sis, file, span,
3656 				       &ext4_iomap_report_ops);
3657 }
3658 
3659 static const struct address_space_operations ext4_aops = {
3660 	.read_folio		= ext4_read_folio,
3661 	.readahead		= ext4_readahead,
3662 	.writepage		= ext4_writepage,
3663 	.writepages		= ext4_writepages,
3664 	.write_begin		= ext4_write_begin,
3665 	.write_end		= ext4_write_end,
3666 	.dirty_folio		= ext4_dirty_folio,
3667 	.bmap			= ext4_bmap,
3668 	.invalidate_folio	= ext4_invalidate_folio,
3669 	.release_folio		= ext4_release_folio,
3670 	.direct_IO		= noop_direct_IO,
3671 	.migrate_folio		= buffer_migrate_folio,
3672 	.is_partially_uptodate  = block_is_partially_uptodate,
3673 	.error_remove_page	= generic_error_remove_page,
3674 	.swap_activate		= ext4_iomap_swap_activate,
3675 };
3676 
3677 static const struct address_space_operations ext4_journalled_aops = {
3678 	.read_folio		= ext4_read_folio,
3679 	.readahead		= ext4_readahead,
3680 	.writepage		= ext4_writepage,
3681 	.writepages		= ext4_writepages,
3682 	.write_begin		= ext4_write_begin,
3683 	.write_end		= ext4_journalled_write_end,
3684 	.dirty_folio		= ext4_journalled_dirty_folio,
3685 	.bmap			= ext4_bmap,
3686 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3687 	.release_folio		= ext4_release_folio,
3688 	.direct_IO		= noop_direct_IO,
3689 	.is_partially_uptodate  = block_is_partially_uptodate,
3690 	.error_remove_page	= generic_error_remove_page,
3691 	.swap_activate		= ext4_iomap_swap_activate,
3692 };
3693 
3694 static const struct address_space_operations ext4_da_aops = {
3695 	.read_folio		= ext4_read_folio,
3696 	.readahead		= ext4_readahead,
3697 	.writepage		= ext4_writepage,
3698 	.writepages		= ext4_writepages,
3699 	.write_begin		= ext4_da_write_begin,
3700 	.write_end		= ext4_da_write_end,
3701 	.dirty_folio		= ext4_dirty_folio,
3702 	.bmap			= ext4_bmap,
3703 	.invalidate_folio	= ext4_invalidate_folio,
3704 	.release_folio		= ext4_release_folio,
3705 	.direct_IO		= noop_direct_IO,
3706 	.migrate_folio		= buffer_migrate_folio,
3707 	.is_partially_uptodate  = block_is_partially_uptodate,
3708 	.error_remove_page	= generic_error_remove_page,
3709 	.swap_activate		= ext4_iomap_swap_activate,
3710 };
3711 
3712 static const struct address_space_operations ext4_dax_aops = {
3713 	.writepages		= ext4_dax_writepages,
3714 	.direct_IO		= noop_direct_IO,
3715 	.dirty_folio		= noop_dirty_folio,
3716 	.bmap			= ext4_bmap,
3717 	.swap_activate		= ext4_iomap_swap_activate,
3718 };
3719 
ext4_set_aops(struct inode * inode)3720 void ext4_set_aops(struct inode *inode)
3721 {
3722 	switch (ext4_inode_journal_mode(inode)) {
3723 	case EXT4_INODE_ORDERED_DATA_MODE:
3724 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3725 		break;
3726 	case EXT4_INODE_JOURNAL_DATA_MODE:
3727 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3728 		return;
3729 	default:
3730 		BUG();
3731 	}
3732 	if (IS_DAX(inode))
3733 		inode->i_mapping->a_ops = &ext4_dax_aops;
3734 	else if (test_opt(inode->i_sb, DELALLOC))
3735 		inode->i_mapping->a_ops = &ext4_da_aops;
3736 	else
3737 		inode->i_mapping->a_ops = &ext4_aops;
3738 }
3739 
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3740 static int __ext4_block_zero_page_range(handle_t *handle,
3741 		struct address_space *mapping, loff_t from, loff_t length)
3742 {
3743 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3744 	unsigned offset = from & (PAGE_SIZE-1);
3745 	unsigned blocksize, pos;
3746 	ext4_lblk_t iblock;
3747 	struct inode *inode = mapping->host;
3748 	struct buffer_head *bh;
3749 	struct page *page;
3750 	int err = 0;
3751 
3752 	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3753 				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3754 	if (!page)
3755 		return -ENOMEM;
3756 
3757 	blocksize = inode->i_sb->s_blocksize;
3758 
3759 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3760 
3761 	if (!page_has_buffers(page))
3762 		create_empty_buffers(page, blocksize, 0);
3763 
3764 	/* Find the buffer that contains "offset" */
3765 	bh = page_buffers(page);
3766 	pos = blocksize;
3767 	while (offset >= pos) {
3768 		bh = bh->b_this_page;
3769 		iblock++;
3770 		pos += blocksize;
3771 	}
3772 	if (buffer_freed(bh)) {
3773 		BUFFER_TRACE(bh, "freed: skip");
3774 		goto unlock;
3775 	}
3776 	if (!buffer_mapped(bh)) {
3777 		BUFFER_TRACE(bh, "unmapped");
3778 		ext4_get_block(inode, iblock, bh, 0);
3779 		/* unmapped? It's a hole - nothing to do */
3780 		if (!buffer_mapped(bh)) {
3781 			BUFFER_TRACE(bh, "still unmapped");
3782 			goto unlock;
3783 		}
3784 	}
3785 
3786 	/* Ok, it's mapped. Make sure it's up-to-date */
3787 	if (PageUptodate(page))
3788 		set_buffer_uptodate(bh);
3789 
3790 	if (!buffer_uptodate(bh)) {
3791 		err = ext4_read_bh_lock(bh, 0, true);
3792 		if (err)
3793 			goto unlock;
3794 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3795 			/* We expect the key to be set. */
3796 			BUG_ON(!fscrypt_has_encryption_key(inode));
3797 			err = fscrypt_decrypt_pagecache_blocks(page_folio(page),
3798 							       blocksize,
3799 							       bh_offset(bh));
3800 			if (err) {
3801 				clear_buffer_uptodate(bh);
3802 				goto unlock;
3803 			}
3804 		}
3805 	}
3806 	if (ext4_should_journal_data(inode)) {
3807 		BUFFER_TRACE(bh, "get write access");
3808 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3809 						    EXT4_JTR_NONE);
3810 		if (err)
3811 			goto unlock;
3812 	}
3813 	zero_user(page, offset, length);
3814 	BUFFER_TRACE(bh, "zeroed end of block");
3815 
3816 	if (ext4_should_journal_data(inode)) {
3817 		err = ext4_handle_dirty_metadata(handle, inode, bh);
3818 	} else {
3819 		err = 0;
3820 		mark_buffer_dirty(bh);
3821 		if (ext4_should_order_data(inode))
3822 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3823 					length);
3824 	}
3825 
3826 unlock:
3827 	unlock_page(page);
3828 	put_page(page);
3829 	return err;
3830 }
3831 
3832 /*
3833  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3834  * starting from file offset 'from'.  The range to be zero'd must
3835  * be contained with in one block.  If the specified range exceeds
3836  * the end of the block it will be shortened to end of the block
3837  * that corresponds to 'from'
3838  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3839 static int ext4_block_zero_page_range(handle_t *handle,
3840 		struct address_space *mapping, loff_t from, loff_t length)
3841 {
3842 	struct inode *inode = mapping->host;
3843 	unsigned offset = from & (PAGE_SIZE-1);
3844 	unsigned blocksize = inode->i_sb->s_blocksize;
3845 	unsigned max = blocksize - (offset & (blocksize - 1));
3846 
3847 	/*
3848 	 * correct length if it does not fall between
3849 	 * 'from' and the end of the block
3850 	 */
3851 	if (length > max || length < 0)
3852 		length = max;
3853 
3854 	if (IS_DAX(inode)) {
3855 		return dax_zero_range(inode, from, length, NULL,
3856 				      &ext4_iomap_ops);
3857 	}
3858 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3859 }
3860 
3861 /*
3862  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3863  * up to the end of the block which corresponds to `from'.
3864  * This required during truncate. We need to physically zero the tail end
3865  * of that block so it doesn't yield old data if the file is later grown.
3866  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3867 static int ext4_block_truncate_page(handle_t *handle,
3868 		struct address_space *mapping, loff_t from)
3869 {
3870 	unsigned offset = from & (PAGE_SIZE-1);
3871 	unsigned length;
3872 	unsigned blocksize;
3873 	struct inode *inode = mapping->host;
3874 
3875 	/* If we are processing an encrypted inode during orphan list handling */
3876 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3877 		return 0;
3878 
3879 	blocksize = inode->i_sb->s_blocksize;
3880 	length = blocksize - (offset & (blocksize - 1));
3881 
3882 	return ext4_block_zero_page_range(handle, mapping, from, length);
3883 }
3884 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3885 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3886 			     loff_t lstart, loff_t length)
3887 {
3888 	struct super_block *sb = inode->i_sb;
3889 	struct address_space *mapping = inode->i_mapping;
3890 	unsigned partial_start, partial_end;
3891 	ext4_fsblk_t start, end;
3892 	loff_t byte_end = (lstart + length - 1);
3893 	int err = 0;
3894 
3895 	partial_start = lstart & (sb->s_blocksize - 1);
3896 	partial_end = byte_end & (sb->s_blocksize - 1);
3897 
3898 	start = lstart >> sb->s_blocksize_bits;
3899 	end = byte_end >> sb->s_blocksize_bits;
3900 
3901 	/* Handle partial zero within the single block */
3902 	if (start == end &&
3903 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3904 		err = ext4_block_zero_page_range(handle, mapping,
3905 						 lstart, length);
3906 		return err;
3907 	}
3908 	/* Handle partial zero out on the start of the range */
3909 	if (partial_start) {
3910 		err = ext4_block_zero_page_range(handle, mapping,
3911 						 lstart, sb->s_blocksize);
3912 		if (err)
3913 			return err;
3914 	}
3915 	/* Handle partial zero out on the end of the range */
3916 	if (partial_end != sb->s_blocksize - 1)
3917 		err = ext4_block_zero_page_range(handle, mapping,
3918 						 byte_end - partial_end,
3919 						 partial_end + 1);
3920 	return err;
3921 }
3922 
ext4_can_truncate(struct inode * inode)3923 int ext4_can_truncate(struct inode *inode)
3924 {
3925 	if (S_ISREG(inode->i_mode))
3926 		return 1;
3927 	if (S_ISDIR(inode->i_mode))
3928 		return 1;
3929 	if (S_ISLNK(inode->i_mode))
3930 		return !ext4_inode_is_fast_symlink(inode);
3931 	return 0;
3932 }
3933 
3934 /*
3935  * We have to make sure i_disksize gets properly updated before we truncate
3936  * page cache due to hole punching or zero range. Otherwise i_disksize update
3937  * can get lost as it may have been postponed to submission of writeback but
3938  * that will never happen after we truncate page cache.
3939  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3940 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3941 				      loff_t len)
3942 {
3943 	handle_t *handle;
3944 	int ret;
3945 
3946 	loff_t size = i_size_read(inode);
3947 
3948 	WARN_ON(!inode_is_locked(inode));
3949 	if (offset > size || offset + len < size)
3950 		return 0;
3951 
3952 	if (EXT4_I(inode)->i_disksize >= size)
3953 		return 0;
3954 
3955 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3956 	if (IS_ERR(handle))
3957 		return PTR_ERR(handle);
3958 	ext4_update_i_disksize(inode, size);
3959 	ret = ext4_mark_inode_dirty(handle, inode);
3960 	ext4_journal_stop(handle);
3961 
3962 	return ret;
3963 }
3964 
ext4_wait_dax_page(struct inode * inode)3965 static void ext4_wait_dax_page(struct inode *inode)
3966 {
3967 	filemap_invalidate_unlock(inode->i_mapping);
3968 	schedule();
3969 	filemap_invalidate_lock(inode->i_mapping);
3970 }
3971 
ext4_break_layouts(struct inode * inode)3972 int ext4_break_layouts(struct inode *inode)
3973 {
3974 	struct page *page;
3975 	int error;
3976 
3977 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3978 		return -EINVAL;
3979 
3980 	do {
3981 		page = dax_layout_busy_page(inode->i_mapping);
3982 		if (!page)
3983 			return 0;
3984 
3985 		error = ___wait_var_event(&page->_refcount,
3986 				atomic_read(&page->_refcount) == 1,
3987 				TASK_INTERRUPTIBLE, 0, 0,
3988 				ext4_wait_dax_page(inode));
3989 	} while (error == 0);
3990 
3991 	return error;
3992 }
3993 
3994 /*
3995  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3996  * associated with the given offset and length
3997  *
3998  * @inode:  File inode
3999  * @offset: The offset where the hole will begin
4000  * @len:    The length of the hole
4001  *
4002  * Returns: 0 on success or negative on failure
4003  */
4004 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4005 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4006 {
4007 	struct inode *inode = file_inode(file);
4008 	struct super_block *sb = inode->i_sb;
4009 	ext4_lblk_t first_block, stop_block;
4010 	struct address_space *mapping = inode->i_mapping;
4011 	loff_t first_block_offset, last_block_offset, max_length;
4012 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4013 	handle_t *handle;
4014 	unsigned int credits;
4015 	int ret = 0, ret2 = 0;
4016 
4017 	trace_ext4_punch_hole(inode, offset, length, 0);
4018 
4019 	/*
4020 	 * Write out all dirty pages to avoid race conditions
4021 	 * Then release them.
4022 	 */
4023 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4024 		ret = filemap_write_and_wait_range(mapping, offset,
4025 						   offset + length - 1);
4026 		if (ret)
4027 			return ret;
4028 	}
4029 
4030 	inode_lock(inode);
4031 
4032 	/* No need to punch hole beyond i_size */
4033 	if (offset >= inode->i_size)
4034 		goto out_mutex;
4035 
4036 	/*
4037 	 * If the hole extends beyond i_size, set the hole
4038 	 * to end after the page that contains i_size
4039 	 */
4040 	if (offset + length > inode->i_size) {
4041 		length = inode->i_size +
4042 		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4043 		   offset;
4044 	}
4045 
4046 	/*
4047 	 * For punch hole the length + offset needs to be within one block
4048 	 * before last range. Adjust the length if it goes beyond that limit.
4049 	 */
4050 	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4051 	if (offset + length > max_length)
4052 		length = max_length - offset;
4053 
4054 	if (offset & (sb->s_blocksize - 1) ||
4055 	    (offset + length) & (sb->s_blocksize - 1)) {
4056 		/*
4057 		 * Attach jinode to inode for jbd2 if we do any zeroing of
4058 		 * partial block
4059 		 */
4060 		ret = ext4_inode_attach_jinode(inode);
4061 		if (ret < 0)
4062 			goto out_mutex;
4063 
4064 	}
4065 
4066 	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4067 	inode_dio_wait(inode);
4068 
4069 	ret = file_modified(file);
4070 	if (ret)
4071 		goto out_mutex;
4072 
4073 	/*
4074 	 * Prevent page faults from reinstantiating pages we have released from
4075 	 * page cache.
4076 	 */
4077 	filemap_invalidate_lock(mapping);
4078 
4079 	ret = ext4_break_layouts(inode);
4080 	if (ret)
4081 		goto out_dio;
4082 
4083 	first_block_offset = round_up(offset, sb->s_blocksize);
4084 	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4085 
4086 	/* Now release the pages and zero block aligned part of pages*/
4087 	if (last_block_offset > first_block_offset) {
4088 		ret = ext4_update_disksize_before_punch(inode, offset, length);
4089 		if (ret)
4090 			goto out_dio;
4091 		truncate_pagecache_range(inode, first_block_offset,
4092 					 last_block_offset);
4093 	}
4094 
4095 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4096 		credits = ext4_writepage_trans_blocks(inode);
4097 	else
4098 		credits = ext4_blocks_for_truncate(inode);
4099 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4100 	if (IS_ERR(handle)) {
4101 		ret = PTR_ERR(handle);
4102 		ext4_std_error(sb, ret);
4103 		goto out_dio;
4104 	}
4105 
4106 	ret = ext4_zero_partial_blocks(handle, inode, offset,
4107 				       length);
4108 	if (ret)
4109 		goto out_stop;
4110 
4111 	first_block = (offset + sb->s_blocksize - 1) >>
4112 		EXT4_BLOCK_SIZE_BITS(sb);
4113 	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4114 
4115 	/* If there are blocks to remove, do it */
4116 	if (stop_block > first_block) {
4117 
4118 		down_write(&EXT4_I(inode)->i_data_sem);
4119 		ext4_discard_preallocations(inode, 0);
4120 
4121 		ret = ext4_es_remove_extent(inode, first_block,
4122 					    stop_block - first_block);
4123 		if (ret) {
4124 			up_write(&EXT4_I(inode)->i_data_sem);
4125 			goto out_stop;
4126 		}
4127 
4128 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4129 			ret = ext4_ext_remove_space(inode, first_block,
4130 						    stop_block - 1);
4131 		else
4132 			ret = ext4_ind_remove_space(handle, inode, first_block,
4133 						    stop_block);
4134 
4135 		up_write(&EXT4_I(inode)->i_data_sem);
4136 	}
4137 	ext4_fc_track_range(handle, inode, first_block, stop_block);
4138 	if (IS_SYNC(inode))
4139 		ext4_handle_sync(handle);
4140 
4141 	inode->i_mtime = inode->i_ctime = current_time(inode);
4142 	ret2 = ext4_mark_inode_dirty(handle, inode);
4143 	if (unlikely(ret2))
4144 		ret = ret2;
4145 	if (ret >= 0)
4146 		ext4_update_inode_fsync_trans(handle, inode, 1);
4147 out_stop:
4148 	ext4_journal_stop(handle);
4149 out_dio:
4150 	filemap_invalidate_unlock(mapping);
4151 out_mutex:
4152 	inode_unlock(inode);
4153 	return ret;
4154 }
4155 
ext4_inode_attach_jinode(struct inode * inode)4156 int ext4_inode_attach_jinode(struct inode *inode)
4157 {
4158 	struct ext4_inode_info *ei = EXT4_I(inode);
4159 	struct jbd2_inode *jinode;
4160 
4161 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4162 		return 0;
4163 
4164 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4165 	spin_lock(&inode->i_lock);
4166 	if (!ei->jinode) {
4167 		if (!jinode) {
4168 			spin_unlock(&inode->i_lock);
4169 			return -ENOMEM;
4170 		}
4171 		ei->jinode = jinode;
4172 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4173 		jinode = NULL;
4174 	}
4175 	spin_unlock(&inode->i_lock);
4176 	if (unlikely(jinode != NULL))
4177 		jbd2_free_inode(jinode);
4178 	return 0;
4179 }
4180 
4181 /*
4182  * ext4_truncate()
4183  *
4184  * We block out ext4_get_block() block instantiations across the entire
4185  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4186  * simultaneously on behalf of the same inode.
4187  *
4188  * As we work through the truncate and commit bits of it to the journal there
4189  * is one core, guiding principle: the file's tree must always be consistent on
4190  * disk.  We must be able to restart the truncate after a crash.
4191  *
4192  * The file's tree may be transiently inconsistent in memory (although it
4193  * probably isn't), but whenever we close off and commit a journal transaction,
4194  * the contents of (the filesystem + the journal) must be consistent and
4195  * restartable.  It's pretty simple, really: bottom up, right to left (although
4196  * left-to-right works OK too).
4197  *
4198  * Note that at recovery time, journal replay occurs *before* the restart of
4199  * truncate against the orphan inode list.
4200  *
4201  * The committed inode has the new, desired i_size (which is the same as
4202  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4203  * that this inode's truncate did not complete and it will again call
4204  * ext4_truncate() to have another go.  So there will be instantiated blocks
4205  * to the right of the truncation point in a crashed ext4 filesystem.  But
4206  * that's fine - as long as they are linked from the inode, the post-crash
4207  * ext4_truncate() run will find them and release them.
4208  */
ext4_truncate(struct inode * inode)4209 int ext4_truncate(struct inode *inode)
4210 {
4211 	struct ext4_inode_info *ei = EXT4_I(inode);
4212 	unsigned int credits;
4213 	int err = 0, err2;
4214 	handle_t *handle;
4215 	struct address_space *mapping = inode->i_mapping;
4216 
4217 	/*
4218 	 * There is a possibility that we're either freeing the inode
4219 	 * or it's a completely new inode. In those cases we might not
4220 	 * have i_rwsem locked because it's not necessary.
4221 	 */
4222 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4223 		WARN_ON(!inode_is_locked(inode));
4224 	trace_ext4_truncate_enter(inode);
4225 
4226 	if (!ext4_can_truncate(inode))
4227 		goto out_trace;
4228 
4229 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4230 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4231 
4232 	if (ext4_has_inline_data(inode)) {
4233 		int has_inline = 1;
4234 
4235 		err = ext4_inline_data_truncate(inode, &has_inline);
4236 		if (err || has_inline)
4237 			goto out_trace;
4238 	}
4239 
4240 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4241 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4242 		err = ext4_inode_attach_jinode(inode);
4243 		if (err)
4244 			goto out_trace;
4245 	}
4246 
4247 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4248 		credits = ext4_writepage_trans_blocks(inode);
4249 	else
4250 		credits = ext4_blocks_for_truncate(inode);
4251 
4252 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4253 	if (IS_ERR(handle)) {
4254 		err = PTR_ERR(handle);
4255 		goto out_trace;
4256 	}
4257 
4258 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4259 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4260 
4261 	/*
4262 	 * We add the inode to the orphan list, so that if this
4263 	 * truncate spans multiple transactions, and we crash, we will
4264 	 * resume the truncate when the filesystem recovers.  It also
4265 	 * marks the inode dirty, to catch the new size.
4266 	 *
4267 	 * Implication: the file must always be in a sane, consistent
4268 	 * truncatable state while each transaction commits.
4269 	 */
4270 	err = ext4_orphan_add(handle, inode);
4271 	if (err)
4272 		goto out_stop;
4273 
4274 	down_write(&EXT4_I(inode)->i_data_sem);
4275 
4276 	ext4_discard_preallocations(inode, 0);
4277 
4278 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4279 		err = ext4_ext_truncate(handle, inode);
4280 	else
4281 		ext4_ind_truncate(handle, inode);
4282 
4283 	up_write(&ei->i_data_sem);
4284 	if (err)
4285 		goto out_stop;
4286 
4287 	if (IS_SYNC(inode))
4288 		ext4_handle_sync(handle);
4289 
4290 out_stop:
4291 	/*
4292 	 * If this was a simple ftruncate() and the file will remain alive,
4293 	 * then we need to clear up the orphan record which we created above.
4294 	 * However, if this was a real unlink then we were called by
4295 	 * ext4_evict_inode(), and we allow that function to clean up the
4296 	 * orphan info for us.
4297 	 */
4298 	if (inode->i_nlink)
4299 		ext4_orphan_del(handle, inode);
4300 
4301 	inode->i_mtime = inode->i_ctime = current_time(inode);
4302 	err2 = ext4_mark_inode_dirty(handle, inode);
4303 	if (unlikely(err2 && !err))
4304 		err = err2;
4305 	ext4_journal_stop(handle);
4306 
4307 out_trace:
4308 	trace_ext4_truncate_exit(inode);
4309 	return err;
4310 }
4311 
ext4_inode_peek_iversion(const struct inode * inode)4312 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4313 {
4314 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4315 		return inode_peek_iversion_raw(inode);
4316 	else
4317 		return inode_peek_iversion(inode);
4318 }
4319 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4320 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4321 				 struct ext4_inode_info *ei)
4322 {
4323 	struct inode *inode = &(ei->vfs_inode);
4324 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4325 	struct super_block *sb = inode->i_sb;
4326 
4327 	if (i_blocks <= ~0U) {
4328 		/*
4329 		 * i_blocks can be represented in a 32 bit variable
4330 		 * as multiple of 512 bytes
4331 		 */
4332 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4333 		raw_inode->i_blocks_high = 0;
4334 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4335 		return 0;
4336 	}
4337 
4338 	/*
4339 	 * This should never happen since sb->s_maxbytes should not have
4340 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4341 	 * feature in ext4_fill_super().
4342 	 */
4343 	if (!ext4_has_feature_huge_file(sb))
4344 		return -EFSCORRUPTED;
4345 
4346 	if (i_blocks <= 0xffffffffffffULL) {
4347 		/*
4348 		 * i_blocks can be represented in a 48 bit variable
4349 		 * as multiple of 512 bytes
4350 		 */
4351 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4352 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4353 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4354 	} else {
4355 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4356 		/* i_block is stored in file system block size */
4357 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4358 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4359 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4360 	}
4361 	return 0;
4362 }
4363 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4364 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4365 {
4366 	struct ext4_inode_info *ei = EXT4_I(inode);
4367 	uid_t i_uid;
4368 	gid_t i_gid;
4369 	projid_t i_projid;
4370 	int block;
4371 	int err;
4372 
4373 	err = ext4_inode_blocks_set(raw_inode, ei);
4374 
4375 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4376 	i_uid = i_uid_read(inode);
4377 	i_gid = i_gid_read(inode);
4378 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4379 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4380 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4381 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4382 		/*
4383 		 * Fix up interoperability with old kernels. Otherwise,
4384 		 * old inodes get re-used with the upper 16 bits of the
4385 		 * uid/gid intact.
4386 		 */
4387 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4388 			raw_inode->i_uid_high = 0;
4389 			raw_inode->i_gid_high = 0;
4390 		} else {
4391 			raw_inode->i_uid_high =
4392 				cpu_to_le16(high_16_bits(i_uid));
4393 			raw_inode->i_gid_high =
4394 				cpu_to_le16(high_16_bits(i_gid));
4395 		}
4396 	} else {
4397 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4398 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4399 		raw_inode->i_uid_high = 0;
4400 		raw_inode->i_gid_high = 0;
4401 	}
4402 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4403 
4404 	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4405 	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4406 	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4407 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4408 
4409 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4410 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4411 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4412 		raw_inode->i_file_acl_high =
4413 			cpu_to_le16(ei->i_file_acl >> 32);
4414 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4415 	ext4_isize_set(raw_inode, ei->i_disksize);
4416 
4417 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4418 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4419 		if (old_valid_dev(inode->i_rdev)) {
4420 			raw_inode->i_block[0] =
4421 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4422 			raw_inode->i_block[1] = 0;
4423 		} else {
4424 			raw_inode->i_block[0] = 0;
4425 			raw_inode->i_block[1] =
4426 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4427 			raw_inode->i_block[2] = 0;
4428 		}
4429 	} else if (!ext4_has_inline_data(inode)) {
4430 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4431 			raw_inode->i_block[block] = ei->i_data[block];
4432 	}
4433 
4434 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4435 		u64 ivers = ext4_inode_peek_iversion(inode);
4436 
4437 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4438 		if (ei->i_extra_isize) {
4439 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4440 				raw_inode->i_version_hi =
4441 					cpu_to_le32(ivers >> 32);
4442 			raw_inode->i_extra_isize =
4443 				cpu_to_le16(ei->i_extra_isize);
4444 		}
4445 	}
4446 
4447 	if (i_projid != EXT4_DEF_PROJID &&
4448 	    !ext4_has_feature_project(inode->i_sb))
4449 		err = err ?: -EFSCORRUPTED;
4450 
4451 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4452 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4453 		raw_inode->i_projid = cpu_to_le32(i_projid);
4454 
4455 	ext4_inode_csum_set(inode, raw_inode, ei);
4456 	return err;
4457 }
4458 
4459 /*
4460  * ext4_get_inode_loc returns with an extra refcount against the inode's
4461  * underlying buffer_head on success. If we pass 'inode' and it does not
4462  * have in-inode xattr, we have all inode data in memory that is needed
4463  * to recreate the on-disk version of this inode.
4464  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4465 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4466 				struct inode *inode, struct ext4_iloc *iloc,
4467 				ext4_fsblk_t *ret_block)
4468 {
4469 	struct ext4_group_desc	*gdp;
4470 	struct buffer_head	*bh;
4471 	ext4_fsblk_t		block;
4472 	struct blk_plug		plug;
4473 	int			inodes_per_block, inode_offset;
4474 
4475 	iloc->bh = NULL;
4476 	if (ino < EXT4_ROOT_INO ||
4477 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4478 		return -EFSCORRUPTED;
4479 
4480 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4481 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4482 	if (!gdp)
4483 		return -EIO;
4484 
4485 	/*
4486 	 * Figure out the offset within the block group inode table
4487 	 */
4488 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4489 	inode_offset = ((ino - 1) %
4490 			EXT4_INODES_PER_GROUP(sb));
4491 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4492 
4493 	block = ext4_inode_table(sb, gdp);
4494 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4495 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4496 		ext4_error(sb, "Invalid inode table block %llu in "
4497 			   "block_group %u", block, iloc->block_group);
4498 		return -EFSCORRUPTED;
4499 	}
4500 	block += (inode_offset / inodes_per_block);
4501 
4502 	bh = sb_getblk(sb, block);
4503 	if (unlikely(!bh))
4504 		return -ENOMEM;
4505 	if (ext4_buffer_uptodate(bh))
4506 		goto has_buffer;
4507 
4508 	lock_buffer(bh);
4509 	if (ext4_buffer_uptodate(bh)) {
4510 		/* Someone brought it uptodate while we waited */
4511 		unlock_buffer(bh);
4512 		goto has_buffer;
4513 	}
4514 
4515 	/*
4516 	 * If we have all information of the inode in memory and this
4517 	 * is the only valid inode in the block, we need not read the
4518 	 * block.
4519 	 */
4520 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4521 		struct buffer_head *bitmap_bh;
4522 		int i, start;
4523 
4524 		start = inode_offset & ~(inodes_per_block - 1);
4525 
4526 		/* Is the inode bitmap in cache? */
4527 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4528 		if (unlikely(!bitmap_bh))
4529 			goto make_io;
4530 
4531 		/*
4532 		 * If the inode bitmap isn't in cache then the
4533 		 * optimisation may end up performing two reads instead
4534 		 * of one, so skip it.
4535 		 */
4536 		if (!buffer_uptodate(bitmap_bh)) {
4537 			brelse(bitmap_bh);
4538 			goto make_io;
4539 		}
4540 		for (i = start; i < start + inodes_per_block; i++) {
4541 			if (i == inode_offset)
4542 				continue;
4543 			if (ext4_test_bit(i, bitmap_bh->b_data))
4544 				break;
4545 		}
4546 		brelse(bitmap_bh);
4547 		if (i == start + inodes_per_block) {
4548 			struct ext4_inode *raw_inode =
4549 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4550 
4551 			/* all other inodes are free, so skip I/O */
4552 			memset(bh->b_data, 0, bh->b_size);
4553 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4554 				ext4_fill_raw_inode(inode, raw_inode);
4555 			set_buffer_uptodate(bh);
4556 			unlock_buffer(bh);
4557 			goto has_buffer;
4558 		}
4559 	}
4560 
4561 make_io:
4562 	/*
4563 	 * If we need to do any I/O, try to pre-readahead extra
4564 	 * blocks from the inode table.
4565 	 */
4566 	blk_start_plug(&plug);
4567 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4568 		ext4_fsblk_t b, end, table;
4569 		unsigned num;
4570 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4571 
4572 		table = ext4_inode_table(sb, gdp);
4573 		/* s_inode_readahead_blks is always a power of 2 */
4574 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4575 		if (table > b)
4576 			b = table;
4577 		end = b + ra_blks;
4578 		num = EXT4_INODES_PER_GROUP(sb);
4579 		if (ext4_has_group_desc_csum(sb))
4580 			num -= ext4_itable_unused_count(sb, gdp);
4581 		table += num / inodes_per_block;
4582 		if (end > table)
4583 			end = table;
4584 		while (b <= end)
4585 			ext4_sb_breadahead_unmovable(sb, b++);
4586 	}
4587 
4588 	/*
4589 	 * There are other valid inodes in the buffer, this inode
4590 	 * has in-inode xattrs, or we don't have this inode in memory.
4591 	 * Read the block from disk.
4592 	 */
4593 	trace_ext4_load_inode(sb, ino);
4594 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4595 	blk_finish_plug(&plug);
4596 	wait_on_buffer(bh);
4597 	ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4598 	if (!buffer_uptodate(bh)) {
4599 		if (ret_block)
4600 			*ret_block = block;
4601 		brelse(bh);
4602 		return -EIO;
4603 	}
4604 has_buffer:
4605 	iloc->bh = bh;
4606 	return 0;
4607 }
4608 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4609 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4610 					struct ext4_iloc *iloc)
4611 {
4612 	ext4_fsblk_t err_blk = 0;
4613 	int ret;
4614 
4615 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4616 					&err_blk);
4617 
4618 	if (ret == -EIO)
4619 		ext4_error_inode_block(inode, err_blk, EIO,
4620 					"unable to read itable block");
4621 
4622 	return ret;
4623 }
4624 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4625 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4626 {
4627 	ext4_fsblk_t err_blk = 0;
4628 	int ret;
4629 
4630 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4631 					&err_blk);
4632 
4633 	if (ret == -EIO)
4634 		ext4_error_inode_block(inode, err_blk, EIO,
4635 					"unable to read itable block");
4636 
4637 	return ret;
4638 }
4639 
4640 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4641 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4642 			  struct ext4_iloc *iloc)
4643 {
4644 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4645 }
4646 
ext4_should_enable_dax(struct inode * inode)4647 static bool ext4_should_enable_dax(struct inode *inode)
4648 {
4649 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4650 
4651 	if (test_opt2(inode->i_sb, DAX_NEVER))
4652 		return false;
4653 	if (!S_ISREG(inode->i_mode))
4654 		return false;
4655 	if (ext4_should_journal_data(inode))
4656 		return false;
4657 	if (ext4_has_inline_data(inode))
4658 		return false;
4659 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4660 		return false;
4661 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4662 		return false;
4663 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4664 		return false;
4665 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4666 		return true;
4667 
4668 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4669 }
4670 
ext4_set_inode_flags(struct inode * inode,bool init)4671 void ext4_set_inode_flags(struct inode *inode, bool init)
4672 {
4673 	unsigned int flags = EXT4_I(inode)->i_flags;
4674 	unsigned int new_fl = 0;
4675 
4676 	WARN_ON_ONCE(IS_DAX(inode) && init);
4677 
4678 	if (flags & EXT4_SYNC_FL)
4679 		new_fl |= S_SYNC;
4680 	if (flags & EXT4_APPEND_FL)
4681 		new_fl |= S_APPEND;
4682 	if (flags & EXT4_IMMUTABLE_FL)
4683 		new_fl |= S_IMMUTABLE;
4684 	if (flags & EXT4_NOATIME_FL)
4685 		new_fl |= S_NOATIME;
4686 	if (flags & EXT4_DIRSYNC_FL)
4687 		new_fl |= S_DIRSYNC;
4688 
4689 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4690 	 * here if already set. */
4691 	new_fl |= (inode->i_flags & S_DAX);
4692 	if (init && ext4_should_enable_dax(inode))
4693 		new_fl |= S_DAX;
4694 
4695 	if (flags & EXT4_ENCRYPT_FL)
4696 		new_fl |= S_ENCRYPTED;
4697 	if (flags & EXT4_CASEFOLD_FL)
4698 		new_fl |= S_CASEFOLD;
4699 	if (flags & EXT4_VERITY_FL)
4700 		new_fl |= S_VERITY;
4701 	inode_set_flags(inode, new_fl,
4702 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4703 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4704 }
4705 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4706 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4707 				  struct ext4_inode_info *ei)
4708 {
4709 	blkcnt_t i_blocks ;
4710 	struct inode *inode = &(ei->vfs_inode);
4711 	struct super_block *sb = inode->i_sb;
4712 
4713 	if (ext4_has_feature_huge_file(sb)) {
4714 		/* we are using combined 48 bit field */
4715 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4716 					le32_to_cpu(raw_inode->i_blocks_lo);
4717 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4718 			/* i_blocks represent file system block size */
4719 			return i_blocks  << (inode->i_blkbits - 9);
4720 		} else {
4721 			return i_blocks;
4722 		}
4723 	} else {
4724 		return le32_to_cpu(raw_inode->i_blocks_lo);
4725 	}
4726 }
4727 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4728 static inline int ext4_iget_extra_inode(struct inode *inode,
4729 					 struct ext4_inode *raw_inode,
4730 					 struct ext4_inode_info *ei)
4731 {
4732 	__le32 *magic = (void *)raw_inode +
4733 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4734 
4735 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4736 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4737 		int err;
4738 
4739 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4740 		err = ext4_find_inline_data_nolock(inode);
4741 		if (!err && ext4_has_inline_data(inode))
4742 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4743 		return err;
4744 	} else
4745 		EXT4_I(inode)->i_inline_off = 0;
4746 	return 0;
4747 }
4748 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4749 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4750 {
4751 	if (!ext4_has_feature_project(inode->i_sb))
4752 		return -EOPNOTSUPP;
4753 	*projid = EXT4_I(inode)->i_projid;
4754 	return 0;
4755 }
4756 
4757 /*
4758  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4759  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4760  * set.
4761  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4762 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4763 {
4764 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4765 		inode_set_iversion_raw(inode, val);
4766 	else
4767 		inode_set_iversion_queried(inode, val);
4768 }
4769 
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4770 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4771 
4772 {
4773 	if (flags & EXT4_IGET_EA_INODE) {
4774 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4775 			return "missing EA_INODE flag";
4776 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4777 		    EXT4_I(inode)->i_file_acl)
4778 			return "ea_inode with extended attributes";
4779 	} else {
4780 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4781 			return "unexpected EA_INODE flag";
4782 	}
4783 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4784 		return "unexpected bad inode w/o EXT4_IGET_BAD";
4785 	return NULL;
4786 }
4787 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4788 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4789 			  ext4_iget_flags flags, const char *function,
4790 			  unsigned int line)
4791 {
4792 	struct ext4_iloc iloc;
4793 	struct ext4_inode *raw_inode;
4794 	struct ext4_inode_info *ei;
4795 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4796 	struct inode *inode;
4797 	const char *err_str;
4798 	journal_t *journal = EXT4_SB(sb)->s_journal;
4799 	long ret;
4800 	loff_t size;
4801 	int block;
4802 	uid_t i_uid;
4803 	gid_t i_gid;
4804 	projid_t i_projid;
4805 
4806 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4807 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4808 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4809 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4810 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4811 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4812 	    (ino < EXT4_ROOT_INO) ||
4813 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4814 		if (flags & EXT4_IGET_HANDLE)
4815 			return ERR_PTR(-ESTALE);
4816 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4817 			     "inode #%lu: comm %s: iget: illegal inode #",
4818 			     ino, current->comm);
4819 		return ERR_PTR(-EFSCORRUPTED);
4820 	}
4821 
4822 	inode = iget_locked(sb, ino);
4823 	if (!inode)
4824 		return ERR_PTR(-ENOMEM);
4825 	if (!(inode->i_state & I_NEW)) {
4826 		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4827 			ext4_error_inode(inode, function, line, 0, err_str);
4828 			iput(inode);
4829 			return ERR_PTR(-EFSCORRUPTED);
4830 		}
4831 		return inode;
4832 	}
4833 
4834 	ei = EXT4_I(inode);
4835 	iloc.bh = NULL;
4836 
4837 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4838 	if (ret < 0)
4839 		goto bad_inode;
4840 	raw_inode = ext4_raw_inode(&iloc);
4841 
4842 	if ((flags & EXT4_IGET_HANDLE) &&
4843 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4844 		ret = -ESTALE;
4845 		goto bad_inode;
4846 	}
4847 
4848 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4849 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4850 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4851 			EXT4_INODE_SIZE(inode->i_sb) ||
4852 		    (ei->i_extra_isize & 3)) {
4853 			ext4_error_inode(inode, function, line, 0,
4854 					 "iget: bad extra_isize %u "
4855 					 "(inode size %u)",
4856 					 ei->i_extra_isize,
4857 					 EXT4_INODE_SIZE(inode->i_sb));
4858 			ret = -EFSCORRUPTED;
4859 			goto bad_inode;
4860 		}
4861 	} else
4862 		ei->i_extra_isize = 0;
4863 
4864 	/* Precompute checksum seed for inode metadata */
4865 	if (ext4_has_metadata_csum(sb)) {
4866 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4867 		__u32 csum;
4868 		__le32 inum = cpu_to_le32(inode->i_ino);
4869 		__le32 gen = raw_inode->i_generation;
4870 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4871 				   sizeof(inum));
4872 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4873 					      sizeof(gen));
4874 	}
4875 
4876 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4877 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4878 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4879 		ext4_error_inode_err(inode, function, line, 0,
4880 				EFSBADCRC, "iget: checksum invalid");
4881 		ret = -EFSBADCRC;
4882 		goto bad_inode;
4883 	}
4884 
4885 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4886 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4887 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4888 	if (ext4_has_feature_project(sb) &&
4889 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4890 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4891 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4892 	else
4893 		i_projid = EXT4_DEF_PROJID;
4894 
4895 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4896 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4897 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4898 	}
4899 	i_uid_write(inode, i_uid);
4900 	i_gid_write(inode, i_gid);
4901 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4902 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4903 
4904 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4905 	ei->i_inline_off = 0;
4906 	ei->i_dir_start_lookup = 0;
4907 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4908 	/* We now have enough fields to check if the inode was active or not.
4909 	 * This is needed because nfsd might try to access dead inodes
4910 	 * the test is that same one that e2fsck uses
4911 	 * NeilBrown 1999oct15
4912 	 */
4913 	if (inode->i_nlink == 0) {
4914 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4915 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4916 		    ino != EXT4_BOOT_LOADER_INO) {
4917 			/* this inode is deleted or unallocated */
4918 			if (flags & EXT4_IGET_SPECIAL) {
4919 				ext4_error_inode(inode, function, line, 0,
4920 						 "iget: special inode unallocated");
4921 				ret = -EFSCORRUPTED;
4922 			} else
4923 				ret = -ESTALE;
4924 			goto bad_inode;
4925 		}
4926 		/* The only unlinked inodes we let through here have
4927 		 * valid i_mode and are being read by the orphan
4928 		 * recovery code: that's fine, we're about to complete
4929 		 * the process of deleting those.
4930 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4931 		 * not initialized on a new filesystem. */
4932 	}
4933 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4934 	ext4_set_inode_flags(inode, true);
4935 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4936 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4937 	if (ext4_has_feature_64bit(sb))
4938 		ei->i_file_acl |=
4939 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4940 	inode->i_size = ext4_isize(sb, raw_inode);
4941 	if ((size = i_size_read(inode)) < 0) {
4942 		ext4_error_inode(inode, function, line, 0,
4943 				 "iget: bad i_size value: %lld", size);
4944 		ret = -EFSCORRUPTED;
4945 		goto bad_inode;
4946 	}
4947 	/*
4948 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4949 	 * we'd normally treat htree data as empty space. But with metadata
4950 	 * checksumming that corrupts checksums so forbid that.
4951 	 */
4952 	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4953 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4954 		ext4_error_inode(inode, function, line, 0,
4955 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4956 		ret = -EFSCORRUPTED;
4957 		goto bad_inode;
4958 	}
4959 	ei->i_disksize = inode->i_size;
4960 #ifdef CONFIG_QUOTA
4961 	ei->i_reserved_quota = 0;
4962 #endif
4963 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4964 	ei->i_block_group = iloc.block_group;
4965 	ei->i_last_alloc_group = ~0;
4966 	/*
4967 	 * NOTE! The in-memory inode i_data array is in little-endian order
4968 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4969 	 */
4970 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4971 		ei->i_data[block] = raw_inode->i_block[block];
4972 	INIT_LIST_HEAD(&ei->i_orphan);
4973 	ext4_fc_init_inode(&ei->vfs_inode);
4974 
4975 	/*
4976 	 * Set transaction id's of transactions that have to be committed
4977 	 * to finish f[data]sync. We set them to currently running transaction
4978 	 * as we cannot be sure that the inode or some of its metadata isn't
4979 	 * part of the transaction - the inode could have been reclaimed and
4980 	 * now it is reread from disk.
4981 	 */
4982 	if (journal) {
4983 		transaction_t *transaction;
4984 		tid_t tid;
4985 
4986 		read_lock(&journal->j_state_lock);
4987 		if (journal->j_running_transaction)
4988 			transaction = journal->j_running_transaction;
4989 		else
4990 			transaction = journal->j_committing_transaction;
4991 		if (transaction)
4992 			tid = transaction->t_tid;
4993 		else
4994 			tid = journal->j_commit_sequence;
4995 		read_unlock(&journal->j_state_lock);
4996 		ei->i_sync_tid = tid;
4997 		ei->i_datasync_tid = tid;
4998 	}
4999 
5000 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5001 		if (ei->i_extra_isize == 0) {
5002 			/* The extra space is currently unused. Use it. */
5003 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5004 			ei->i_extra_isize = sizeof(struct ext4_inode) -
5005 					    EXT4_GOOD_OLD_INODE_SIZE;
5006 		} else {
5007 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5008 			if (ret)
5009 				goto bad_inode;
5010 		}
5011 	}
5012 
5013 	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5014 	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5015 	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5016 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5017 
5018 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5019 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5020 
5021 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5022 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023 				ivers |=
5024 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5025 		}
5026 		ext4_inode_set_iversion_queried(inode, ivers);
5027 	}
5028 
5029 	ret = 0;
5030 	if (ei->i_file_acl &&
5031 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5032 		ext4_error_inode(inode, function, line, 0,
5033 				 "iget: bad extended attribute block %llu",
5034 				 ei->i_file_acl);
5035 		ret = -EFSCORRUPTED;
5036 		goto bad_inode;
5037 	} else if (!ext4_has_inline_data(inode)) {
5038 		/* validate the block references in the inode */
5039 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5040 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5041 			(S_ISLNK(inode->i_mode) &&
5042 			!ext4_inode_is_fast_symlink(inode)))) {
5043 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5044 				ret = ext4_ext_check_inode(inode);
5045 			else
5046 				ret = ext4_ind_check_inode(inode);
5047 		}
5048 	}
5049 	if (ret)
5050 		goto bad_inode;
5051 
5052 	if (S_ISREG(inode->i_mode)) {
5053 		inode->i_op = &ext4_file_inode_operations;
5054 		inode->i_fop = &ext4_file_operations;
5055 		ext4_set_aops(inode);
5056 	} else if (S_ISDIR(inode->i_mode)) {
5057 		inode->i_op = &ext4_dir_inode_operations;
5058 		inode->i_fop = &ext4_dir_operations;
5059 	} else if (S_ISLNK(inode->i_mode)) {
5060 		/* VFS does not allow setting these so must be corruption */
5061 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5062 			ext4_error_inode(inode, function, line, 0,
5063 					 "iget: immutable or append flags "
5064 					 "not allowed on symlinks");
5065 			ret = -EFSCORRUPTED;
5066 			goto bad_inode;
5067 		}
5068 		if (IS_ENCRYPTED(inode)) {
5069 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5070 		} else if (ext4_inode_is_fast_symlink(inode)) {
5071 			inode->i_link = (char *)ei->i_data;
5072 			inode->i_op = &ext4_fast_symlink_inode_operations;
5073 			nd_terminate_link(ei->i_data, inode->i_size,
5074 				sizeof(ei->i_data) - 1);
5075 		} else {
5076 			inode->i_op = &ext4_symlink_inode_operations;
5077 		}
5078 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5079 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5080 		inode->i_op = &ext4_special_inode_operations;
5081 		if (raw_inode->i_block[0])
5082 			init_special_inode(inode, inode->i_mode,
5083 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5084 		else
5085 			init_special_inode(inode, inode->i_mode,
5086 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5087 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5088 		make_bad_inode(inode);
5089 	} else {
5090 		ret = -EFSCORRUPTED;
5091 		ext4_error_inode(inode, function, line, 0,
5092 				 "iget: bogus i_mode (%o)", inode->i_mode);
5093 		goto bad_inode;
5094 	}
5095 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5096 		ext4_error_inode(inode, function, line, 0,
5097 				 "casefold flag without casefold feature");
5098 	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5099 		ext4_error_inode(inode, function, line, 0, err_str);
5100 		ret = -EFSCORRUPTED;
5101 		goto bad_inode;
5102 	}
5103 
5104 	brelse(iloc.bh);
5105 	unlock_new_inode(inode);
5106 	return inode;
5107 
5108 bad_inode:
5109 	brelse(iloc.bh);
5110 	iget_failed(inode);
5111 	return ERR_PTR(ret);
5112 }
5113 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5114 static void __ext4_update_other_inode_time(struct super_block *sb,
5115 					   unsigned long orig_ino,
5116 					   unsigned long ino,
5117 					   struct ext4_inode *raw_inode)
5118 {
5119 	struct inode *inode;
5120 
5121 	inode = find_inode_by_ino_rcu(sb, ino);
5122 	if (!inode)
5123 		return;
5124 
5125 	if (!inode_is_dirtytime_only(inode))
5126 		return;
5127 
5128 	spin_lock(&inode->i_lock);
5129 	if (inode_is_dirtytime_only(inode)) {
5130 		struct ext4_inode_info	*ei = EXT4_I(inode);
5131 
5132 		inode->i_state &= ~I_DIRTY_TIME;
5133 		spin_unlock(&inode->i_lock);
5134 
5135 		spin_lock(&ei->i_raw_lock);
5136 		EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5137 		EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5138 		EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5139 		ext4_inode_csum_set(inode, raw_inode, ei);
5140 		spin_unlock(&ei->i_raw_lock);
5141 		trace_ext4_other_inode_update_time(inode, orig_ino);
5142 		return;
5143 	}
5144 	spin_unlock(&inode->i_lock);
5145 }
5146 
5147 /*
5148  * Opportunistically update the other time fields for other inodes in
5149  * the same inode table block.
5150  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5151 static void ext4_update_other_inodes_time(struct super_block *sb,
5152 					  unsigned long orig_ino, char *buf)
5153 {
5154 	unsigned long ino;
5155 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5156 	int inode_size = EXT4_INODE_SIZE(sb);
5157 
5158 	/*
5159 	 * Calculate the first inode in the inode table block.  Inode
5160 	 * numbers are one-based.  That is, the first inode in a block
5161 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5162 	 */
5163 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5164 	rcu_read_lock();
5165 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5166 		if (ino == orig_ino)
5167 			continue;
5168 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5169 					       (struct ext4_inode *)buf);
5170 	}
5171 	rcu_read_unlock();
5172 }
5173 
5174 /*
5175  * Post the struct inode info into an on-disk inode location in the
5176  * buffer-cache.  This gobbles the caller's reference to the
5177  * buffer_head in the inode location struct.
5178  *
5179  * The caller must have write access to iloc->bh.
5180  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5181 static int ext4_do_update_inode(handle_t *handle,
5182 				struct inode *inode,
5183 				struct ext4_iloc *iloc)
5184 {
5185 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5186 	struct ext4_inode_info *ei = EXT4_I(inode);
5187 	struct buffer_head *bh = iloc->bh;
5188 	struct super_block *sb = inode->i_sb;
5189 	int err;
5190 	int need_datasync = 0, set_large_file = 0;
5191 
5192 	spin_lock(&ei->i_raw_lock);
5193 
5194 	/*
5195 	 * For fields not tracked in the in-memory inode, initialise them
5196 	 * to zero for new inodes.
5197 	 */
5198 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5199 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5200 
5201 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5202 		need_datasync = 1;
5203 	if (ei->i_disksize > 0x7fffffffULL) {
5204 		if (!ext4_has_feature_large_file(sb) ||
5205 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5206 			set_large_file = 1;
5207 	}
5208 
5209 	err = ext4_fill_raw_inode(inode, raw_inode);
5210 	spin_unlock(&ei->i_raw_lock);
5211 	if (err) {
5212 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5213 		goto out_brelse;
5214 	}
5215 
5216 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5217 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5218 					      bh->b_data);
5219 
5220 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5221 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5222 	if (err)
5223 		goto out_error;
5224 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5225 	if (set_large_file) {
5226 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5227 		err = ext4_journal_get_write_access(handle, sb,
5228 						    EXT4_SB(sb)->s_sbh,
5229 						    EXT4_JTR_NONE);
5230 		if (err)
5231 			goto out_error;
5232 		lock_buffer(EXT4_SB(sb)->s_sbh);
5233 		ext4_set_feature_large_file(sb);
5234 		ext4_superblock_csum_set(sb);
5235 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5236 		ext4_handle_sync(handle);
5237 		err = ext4_handle_dirty_metadata(handle, NULL,
5238 						 EXT4_SB(sb)->s_sbh);
5239 	}
5240 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5241 out_error:
5242 	ext4_std_error(inode->i_sb, err);
5243 out_brelse:
5244 	brelse(bh);
5245 	return err;
5246 }
5247 
5248 /*
5249  * ext4_write_inode()
5250  *
5251  * We are called from a few places:
5252  *
5253  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5254  *   Here, there will be no transaction running. We wait for any running
5255  *   transaction to commit.
5256  *
5257  * - Within flush work (sys_sync(), kupdate and such).
5258  *   We wait on commit, if told to.
5259  *
5260  * - Within iput_final() -> write_inode_now()
5261  *   We wait on commit, if told to.
5262  *
5263  * In all cases it is actually safe for us to return without doing anything,
5264  * because the inode has been copied into a raw inode buffer in
5265  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5266  * writeback.
5267  *
5268  * Note that we are absolutely dependent upon all inode dirtiers doing the
5269  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5270  * which we are interested.
5271  *
5272  * It would be a bug for them to not do this.  The code:
5273  *
5274  *	mark_inode_dirty(inode)
5275  *	stuff();
5276  *	inode->i_size = expr;
5277  *
5278  * is in error because write_inode() could occur while `stuff()' is running,
5279  * and the new i_size will be lost.  Plus the inode will no longer be on the
5280  * superblock's dirty inode list.
5281  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5282 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5283 {
5284 	int err;
5285 
5286 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5287 	    sb_rdonly(inode->i_sb))
5288 		return 0;
5289 
5290 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5291 		return -EIO;
5292 
5293 	if (EXT4_SB(inode->i_sb)->s_journal) {
5294 		if (ext4_journal_current_handle()) {
5295 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5296 			dump_stack();
5297 			return -EIO;
5298 		}
5299 
5300 		/*
5301 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5302 		 * ext4_sync_fs() will force the commit after everything is
5303 		 * written.
5304 		 */
5305 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5306 			return 0;
5307 
5308 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5309 						EXT4_I(inode)->i_sync_tid);
5310 	} else {
5311 		struct ext4_iloc iloc;
5312 
5313 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5314 		if (err)
5315 			return err;
5316 		/*
5317 		 * sync(2) will flush the whole buffer cache. No need to do
5318 		 * it here separately for each inode.
5319 		 */
5320 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5321 			sync_dirty_buffer(iloc.bh);
5322 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5323 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5324 					       "IO error syncing inode");
5325 			err = -EIO;
5326 		}
5327 		brelse(iloc.bh);
5328 	}
5329 	return err;
5330 }
5331 
5332 /*
5333  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5334  * buffers that are attached to a folio straddling i_size and are undergoing
5335  * commit. In that case we have to wait for commit to finish and try again.
5336  */
ext4_wait_for_tail_page_commit(struct inode * inode)5337 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5338 {
5339 	unsigned offset;
5340 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5341 	tid_t commit_tid = 0;
5342 	int ret;
5343 
5344 	offset = inode->i_size & (PAGE_SIZE - 1);
5345 	/*
5346 	 * If the folio is fully truncated, we don't need to wait for any commit
5347 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5348 	 * strip all buffers from the folio but keep the folio dirty which can then
5349 	 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5350 	 * buffers). Also we don't need to wait for any commit if all buffers in
5351 	 * the folio remain valid. This is most beneficial for the common case of
5352 	 * blocksize == PAGESIZE.
5353 	 */
5354 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5355 		return;
5356 	while (1) {
5357 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5358 				      inode->i_size >> PAGE_SHIFT);
5359 		if (!folio)
5360 			return;
5361 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5362 						folio_size(folio) - offset);
5363 		folio_unlock(folio);
5364 		folio_put(folio);
5365 		if (ret != -EBUSY)
5366 			return;
5367 		commit_tid = 0;
5368 		read_lock(&journal->j_state_lock);
5369 		if (journal->j_committing_transaction)
5370 			commit_tid = journal->j_committing_transaction->t_tid;
5371 		read_unlock(&journal->j_state_lock);
5372 		if (commit_tid)
5373 			jbd2_log_wait_commit(journal, commit_tid);
5374 	}
5375 }
5376 
5377 /*
5378  * ext4_setattr()
5379  *
5380  * Called from notify_change.
5381  *
5382  * We want to trap VFS attempts to truncate the file as soon as
5383  * possible.  In particular, we want to make sure that when the VFS
5384  * shrinks i_size, we put the inode on the orphan list and modify
5385  * i_disksize immediately, so that during the subsequent flushing of
5386  * dirty pages and freeing of disk blocks, we can guarantee that any
5387  * commit will leave the blocks being flushed in an unused state on
5388  * disk.  (On recovery, the inode will get truncated and the blocks will
5389  * be freed, so we have a strong guarantee that no future commit will
5390  * leave these blocks visible to the user.)
5391  *
5392  * Another thing we have to assure is that if we are in ordered mode
5393  * and inode is still attached to the committing transaction, we must
5394  * we start writeout of all the dirty pages which are being truncated.
5395  * This way we are sure that all the data written in the previous
5396  * transaction are already on disk (truncate waits for pages under
5397  * writeback).
5398  *
5399  * Called with inode->i_rwsem down.
5400  */
ext4_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5401 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5402 		 struct iattr *attr)
5403 {
5404 	struct inode *inode = d_inode(dentry);
5405 	int error, rc = 0;
5406 	int orphan = 0;
5407 	const unsigned int ia_valid = attr->ia_valid;
5408 	bool inc_ivers = true;
5409 
5410 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5411 		return -EIO;
5412 
5413 	if (unlikely(IS_IMMUTABLE(inode)))
5414 		return -EPERM;
5415 
5416 	if (unlikely(IS_APPEND(inode) &&
5417 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5418 				  ATTR_GID | ATTR_TIMES_SET))))
5419 		return -EPERM;
5420 
5421 	error = setattr_prepare(mnt_userns, dentry, attr);
5422 	if (error)
5423 		return error;
5424 
5425 	error = fscrypt_prepare_setattr(dentry, attr);
5426 	if (error)
5427 		return error;
5428 
5429 	error = fsverity_prepare_setattr(dentry, attr);
5430 	if (error)
5431 		return error;
5432 
5433 	if (is_quota_modification(mnt_userns, inode, attr)) {
5434 		error = dquot_initialize(inode);
5435 		if (error)
5436 			return error;
5437 	}
5438 
5439 	if (i_uid_needs_update(mnt_userns, attr, inode) ||
5440 	    i_gid_needs_update(mnt_userns, attr, inode)) {
5441 		handle_t *handle;
5442 
5443 		/* (user+group)*(old+new) structure, inode write (sb,
5444 		 * inode block, ? - but truncate inode update has it) */
5445 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5446 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5447 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5448 		if (IS_ERR(handle)) {
5449 			error = PTR_ERR(handle);
5450 			goto err_out;
5451 		}
5452 
5453 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5454 		 * counts xattr inode references.
5455 		 */
5456 		down_read(&EXT4_I(inode)->xattr_sem);
5457 		error = dquot_transfer(mnt_userns, inode, attr);
5458 		up_read(&EXT4_I(inode)->xattr_sem);
5459 
5460 		if (error) {
5461 			ext4_journal_stop(handle);
5462 			return error;
5463 		}
5464 		/* Update corresponding info in inode so that everything is in
5465 		 * one transaction */
5466 		i_uid_update(mnt_userns, attr, inode);
5467 		i_gid_update(mnt_userns, attr, inode);
5468 		error = ext4_mark_inode_dirty(handle, inode);
5469 		ext4_journal_stop(handle);
5470 		if (unlikely(error)) {
5471 			return error;
5472 		}
5473 	}
5474 
5475 	if (attr->ia_valid & ATTR_SIZE) {
5476 		handle_t *handle;
5477 		loff_t oldsize = inode->i_size;
5478 		loff_t old_disksize;
5479 		int shrink = (attr->ia_size < inode->i_size);
5480 
5481 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5482 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5483 
5484 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5485 				return -EFBIG;
5486 			}
5487 		}
5488 		if (!S_ISREG(inode->i_mode)) {
5489 			return -EINVAL;
5490 		}
5491 
5492 		if (attr->ia_size == inode->i_size)
5493 			inc_ivers = false;
5494 
5495 		if (shrink) {
5496 			if (ext4_should_order_data(inode)) {
5497 				error = ext4_begin_ordered_truncate(inode,
5498 							    attr->ia_size);
5499 				if (error)
5500 					goto err_out;
5501 			}
5502 			/*
5503 			 * Blocks are going to be removed from the inode. Wait
5504 			 * for dio in flight.
5505 			 */
5506 			inode_dio_wait(inode);
5507 		}
5508 
5509 		filemap_invalidate_lock(inode->i_mapping);
5510 
5511 		rc = ext4_break_layouts(inode);
5512 		if (rc) {
5513 			filemap_invalidate_unlock(inode->i_mapping);
5514 			goto err_out;
5515 		}
5516 
5517 		if (attr->ia_size != inode->i_size) {
5518 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5519 			if (IS_ERR(handle)) {
5520 				error = PTR_ERR(handle);
5521 				goto out_mmap_sem;
5522 			}
5523 			if (ext4_handle_valid(handle) && shrink) {
5524 				error = ext4_orphan_add(handle, inode);
5525 				orphan = 1;
5526 			}
5527 			/*
5528 			 * Update c/mtime on truncate up, ext4_truncate() will
5529 			 * update c/mtime in shrink case below
5530 			 */
5531 			if (!shrink) {
5532 				inode->i_mtime = current_time(inode);
5533 				inode->i_ctime = inode->i_mtime;
5534 			}
5535 
5536 			if (shrink)
5537 				ext4_fc_track_range(handle, inode,
5538 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5539 					inode->i_sb->s_blocksize_bits,
5540 					EXT_MAX_BLOCKS - 1);
5541 			else
5542 				ext4_fc_track_range(
5543 					handle, inode,
5544 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5545 					inode->i_sb->s_blocksize_bits,
5546 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5547 					inode->i_sb->s_blocksize_bits);
5548 
5549 			down_write(&EXT4_I(inode)->i_data_sem);
5550 			old_disksize = EXT4_I(inode)->i_disksize;
5551 			EXT4_I(inode)->i_disksize = attr->ia_size;
5552 			rc = ext4_mark_inode_dirty(handle, inode);
5553 			if (!error)
5554 				error = rc;
5555 			/*
5556 			 * We have to update i_size under i_data_sem together
5557 			 * with i_disksize to avoid races with writeback code
5558 			 * running ext4_wb_update_i_disksize().
5559 			 */
5560 			if (!error)
5561 				i_size_write(inode, attr->ia_size);
5562 			else
5563 				EXT4_I(inode)->i_disksize = old_disksize;
5564 			up_write(&EXT4_I(inode)->i_data_sem);
5565 			ext4_journal_stop(handle);
5566 			if (error)
5567 				goto out_mmap_sem;
5568 			if (!shrink) {
5569 				pagecache_isize_extended(inode, oldsize,
5570 							 inode->i_size);
5571 			} else if (ext4_should_journal_data(inode)) {
5572 				ext4_wait_for_tail_page_commit(inode);
5573 			}
5574 		}
5575 
5576 		/*
5577 		 * Truncate pagecache after we've waited for commit
5578 		 * in data=journal mode to make pages freeable.
5579 		 */
5580 		truncate_pagecache(inode, inode->i_size);
5581 		/*
5582 		 * Call ext4_truncate() even if i_size didn't change to
5583 		 * truncate possible preallocated blocks.
5584 		 */
5585 		if (attr->ia_size <= oldsize) {
5586 			rc = ext4_truncate(inode);
5587 			if (rc)
5588 				error = rc;
5589 		}
5590 out_mmap_sem:
5591 		filemap_invalidate_unlock(inode->i_mapping);
5592 	}
5593 
5594 	if (!error) {
5595 		if (inc_ivers)
5596 			inode_inc_iversion(inode);
5597 		setattr_copy(mnt_userns, inode, attr);
5598 		mark_inode_dirty(inode);
5599 	}
5600 
5601 	/*
5602 	 * If the call to ext4_truncate failed to get a transaction handle at
5603 	 * all, we need to clean up the in-core orphan list manually.
5604 	 */
5605 	if (orphan && inode->i_nlink)
5606 		ext4_orphan_del(NULL, inode);
5607 
5608 	if (!error && (ia_valid & ATTR_MODE))
5609 		rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5610 
5611 err_out:
5612 	if  (error)
5613 		ext4_std_error(inode->i_sb, error);
5614 	if (!error)
5615 		error = rc;
5616 	return error;
5617 }
5618 
ext4_dio_alignment(struct inode * inode)5619 u32 ext4_dio_alignment(struct inode *inode)
5620 {
5621 	if (fsverity_active(inode))
5622 		return 0;
5623 	if (ext4_should_journal_data(inode))
5624 		return 0;
5625 	if (ext4_has_inline_data(inode))
5626 		return 0;
5627 	if (IS_ENCRYPTED(inode)) {
5628 		if (!fscrypt_dio_supported(inode))
5629 			return 0;
5630 		return i_blocksize(inode);
5631 	}
5632 	return 1; /* use the iomap defaults */
5633 }
5634 
ext4_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5635 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5636 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5637 {
5638 	struct inode *inode = d_inode(path->dentry);
5639 	struct ext4_inode *raw_inode;
5640 	struct ext4_inode_info *ei = EXT4_I(inode);
5641 	unsigned int flags;
5642 
5643 	if ((request_mask & STATX_BTIME) &&
5644 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5645 		stat->result_mask |= STATX_BTIME;
5646 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5647 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5648 	}
5649 
5650 	/*
5651 	 * Return the DIO alignment restrictions if requested.  We only return
5652 	 * this information when requested, since on encrypted files it might
5653 	 * take a fair bit of work to get if the file wasn't opened recently.
5654 	 */
5655 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5656 		u32 dio_align = ext4_dio_alignment(inode);
5657 
5658 		stat->result_mask |= STATX_DIOALIGN;
5659 		if (dio_align == 1) {
5660 			struct block_device *bdev = inode->i_sb->s_bdev;
5661 
5662 			/* iomap defaults */
5663 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5664 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5665 		} else {
5666 			stat->dio_mem_align = dio_align;
5667 			stat->dio_offset_align = dio_align;
5668 		}
5669 	}
5670 
5671 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5672 	if (flags & EXT4_APPEND_FL)
5673 		stat->attributes |= STATX_ATTR_APPEND;
5674 	if (flags & EXT4_COMPR_FL)
5675 		stat->attributes |= STATX_ATTR_COMPRESSED;
5676 	if (flags & EXT4_ENCRYPT_FL)
5677 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5678 	if (flags & EXT4_IMMUTABLE_FL)
5679 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5680 	if (flags & EXT4_NODUMP_FL)
5681 		stat->attributes |= STATX_ATTR_NODUMP;
5682 	if (flags & EXT4_VERITY_FL)
5683 		stat->attributes |= STATX_ATTR_VERITY;
5684 
5685 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5686 				  STATX_ATTR_COMPRESSED |
5687 				  STATX_ATTR_ENCRYPTED |
5688 				  STATX_ATTR_IMMUTABLE |
5689 				  STATX_ATTR_NODUMP |
5690 				  STATX_ATTR_VERITY);
5691 
5692 	generic_fillattr(mnt_userns, inode, stat);
5693 	return 0;
5694 }
5695 
ext4_file_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5696 int ext4_file_getattr(struct user_namespace *mnt_userns,
5697 		      const struct path *path, struct kstat *stat,
5698 		      u32 request_mask, unsigned int query_flags)
5699 {
5700 	struct inode *inode = d_inode(path->dentry);
5701 	u64 delalloc_blocks;
5702 
5703 	ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5704 
5705 	/*
5706 	 * If there is inline data in the inode, the inode will normally not
5707 	 * have data blocks allocated (it may have an external xattr block).
5708 	 * Report at least one sector for such files, so tools like tar, rsync,
5709 	 * others don't incorrectly think the file is completely sparse.
5710 	 */
5711 	if (unlikely(ext4_has_inline_data(inode)))
5712 		stat->blocks += (stat->size + 511) >> 9;
5713 
5714 	/*
5715 	 * We can't update i_blocks if the block allocation is delayed
5716 	 * otherwise in the case of system crash before the real block
5717 	 * allocation is done, we will have i_blocks inconsistent with
5718 	 * on-disk file blocks.
5719 	 * We always keep i_blocks updated together with real
5720 	 * allocation. But to not confuse with user, stat
5721 	 * will return the blocks that include the delayed allocation
5722 	 * blocks for this file.
5723 	 */
5724 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5725 				   EXT4_I(inode)->i_reserved_data_blocks);
5726 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5727 	return 0;
5728 }
5729 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5730 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5731 				   int pextents)
5732 {
5733 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5734 		return ext4_ind_trans_blocks(inode, lblocks);
5735 	return ext4_ext_index_trans_blocks(inode, pextents);
5736 }
5737 
5738 /*
5739  * Account for index blocks, block groups bitmaps and block group
5740  * descriptor blocks if modify datablocks and index blocks
5741  * worse case, the indexs blocks spread over different block groups
5742  *
5743  * If datablocks are discontiguous, they are possible to spread over
5744  * different block groups too. If they are contiguous, with flexbg,
5745  * they could still across block group boundary.
5746  *
5747  * Also account for superblock, inode, quota and xattr blocks
5748  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5749 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5750 				  int pextents)
5751 {
5752 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5753 	int gdpblocks;
5754 	int idxblocks;
5755 	int ret = 0;
5756 
5757 	/*
5758 	 * How many index blocks need to touch to map @lblocks logical blocks
5759 	 * to @pextents physical extents?
5760 	 */
5761 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5762 
5763 	ret = idxblocks;
5764 
5765 	/*
5766 	 * Now let's see how many group bitmaps and group descriptors need
5767 	 * to account
5768 	 */
5769 	groups = idxblocks + pextents;
5770 	gdpblocks = groups;
5771 	if (groups > ngroups)
5772 		groups = ngroups;
5773 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5774 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5775 
5776 	/* bitmaps and block group descriptor blocks */
5777 	ret += groups + gdpblocks;
5778 
5779 	/* Blocks for super block, inode, quota and xattr blocks */
5780 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5781 
5782 	return ret;
5783 }
5784 
5785 /*
5786  * Calculate the total number of credits to reserve to fit
5787  * the modification of a single pages into a single transaction,
5788  * which may include multiple chunks of block allocations.
5789  *
5790  * This could be called via ext4_write_begin()
5791  *
5792  * We need to consider the worse case, when
5793  * one new block per extent.
5794  */
ext4_writepage_trans_blocks(struct inode * inode)5795 int ext4_writepage_trans_blocks(struct inode *inode)
5796 {
5797 	int bpp = ext4_journal_blocks_per_page(inode);
5798 	int ret;
5799 
5800 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5801 
5802 	/* Account for data blocks for journalled mode */
5803 	if (ext4_should_journal_data(inode))
5804 		ret += bpp;
5805 	return ret;
5806 }
5807 
5808 /*
5809  * Calculate the journal credits for a chunk of data modification.
5810  *
5811  * This is called from DIO, fallocate or whoever calling
5812  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5813  *
5814  * journal buffers for data blocks are not included here, as DIO
5815  * and fallocate do no need to journal data buffers.
5816  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5817 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5818 {
5819 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5820 }
5821 
5822 /*
5823  * The caller must have previously called ext4_reserve_inode_write().
5824  * Give this, we know that the caller already has write access to iloc->bh.
5825  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5826 int ext4_mark_iloc_dirty(handle_t *handle,
5827 			 struct inode *inode, struct ext4_iloc *iloc)
5828 {
5829 	int err = 0;
5830 
5831 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5832 		put_bh(iloc->bh);
5833 		return -EIO;
5834 	}
5835 	ext4_fc_track_inode(handle, inode);
5836 
5837 	/* the do_update_inode consumes one bh->b_count */
5838 	get_bh(iloc->bh);
5839 
5840 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5841 	err = ext4_do_update_inode(handle, inode, iloc);
5842 	put_bh(iloc->bh);
5843 	return err;
5844 }
5845 
5846 /*
5847  * On success, We end up with an outstanding reference count against
5848  * iloc->bh.  This _must_ be cleaned up later.
5849  */
5850 
5851 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5852 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5853 			 struct ext4_iloc *iloc)
5854 {
5855 	int err;
5856 
5857 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5858 		return -EIO;
5859 
5860 	err = ext4_get_inode_loc(inode, iloc);
5861 	if (!err) {
5862 		BUFFER_TRACE(iloc->bh, "get_write_access");
5863 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5864 						    iloc->bh, EXT4_JTR_NONE);
5865 		if (err) {
5866 			brelse(iloc->bh);
5867 			iloc->bh = NULL;
5868 		}
5869 	}
5870 	ext4_std_error(inode->i_sb, err);
5871 	return err;
5872 }
5873 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5874 static int __ext4_expand_extra_isize(struct inode *inode,
5875 				     unsigned int new_extra_isize,
5876 				     struct ext4_iloc *iloc,
5877 				     handle_t *handle, int *no_expand)
5878 {
5879 	struct ext4_inode *raw_inode;
5880 	struct ext4_xattr_ibody_header *header;
5881 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5882 	struct ext4_inode_info *ei = EXT4_I(inode);
5883 	int error;
5884 
5885 	/* this was checked at iget time, but double check for good measure */
5886 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5887 	    (ei->i_extra_isize & 3)) {
5888 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5889 				 ei->i_extra_isize,
5890 				 EXT4_INODE_SIZE(inode->i_sb));
5891 		return -EFSCORRUPTED;
5892 	}
5893 	if ((new_extra_isize < ei->i_extra_isize) ||
5894 	    (new_extra_isize < 4) ||
5895 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5896 		return -EINVAL;	/* Should never happen */
5897 
5898 	raw_inode = ext4_raw_inode(iloc);
5899 
5900 	header = IHDR(inode, raw_inode);
5901 
5902 	/* No extended attributes present */
5903 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5904 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5905 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5906 		       EXT4_I(inode)->i_extra_isize, 0,
5907 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5908 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5909 		return 0;
5910 	}
5911 
5912 	/*
5913 	 * We may need to allocate external xattr block so we need quotas
5914 	 * initialized. Here we can be called with various locks held so we
5915 	 * cannot affort to initialize quotas ourselves. So just bail.
5916 	 */
5917 	if (dquot_initialize_needed(inode))
5918 		return -EAGAIN;
5919 
5920 	/* try to expand with EAs present */
5921 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5922 					   raw_inode, handle);
5923 	if (error) {
5924 		/*
5925 		 * Inode size expansion failed; don't try again
5926 		 */
5927 		*no_expand = 1;
5928 	}
5929 
5930 	return error;
5931 }
5932 
5933 /*
5934  * Expand an inode by new_extra_isize bytes.
5935  * Returns 0 on success or negative error number on failure.
5936  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5937 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5938 					  unsigned int new_extra_isize,
5939 					  struct ext4_iloc iloc,
5940 					  handle_t *handle)
5941 {
5942 	int no_expand;
5943 	int error;
5944 
5945 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5946 		return -EOVERFLOW;
5947 
5948 	/*
5949 	 * In nojournal mode, we can immediately attempt to expand
5950 	 * the inode.  When journaled, we first need to obtain extra
5951 	 * buffer credits since we may write into the EA block
5952 	 * with this same handle. If journal_extend fails, then it will
5953 	 * only result in a minor loss of functionality for that inode.
5954 	 * If this is felt to be critical, then e2fsck should be run to
5955 	 * force a large enough s_min_extra_isize.
5956 	 */
5957 	if (ext4_journal_extend(handle,
5958 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5959 		return -ENOSPC;
5960 
5961 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5962 		return -EBUSY;
5963 
5964 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5965 					  handle, &no_expand);
5966 	ext4_write_unlock_xattr(inode, &no_expand);
5967 
5968 	return error;
5969 }
5970 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5971 int ext4_expand_extra_isize(struct inode *inode,
5972 			    unsigned int new_extra_isize,
5973 			    struct ext4_iloc *iloc)
5974 {
5975 	handle_t *handle;
5976 	int no_expand;
5977 	int error, rc;
5978 
5979 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5980 		brelse(iloc->bh);
5981 		return -EOVERFLOW;
5982 	}
5983 
5984 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5985 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5986 	if (IS_ERR(handle)) {
5987 		error = PTR_ERR(handle);
5988 		brelse(iloc->bh);
5989 		return error;
5990 	}
5991 
5992 	ext4_write_lock_xattr(inode, &no_expand);
5993 
5994 	BUFFER_TRACE(iloc->bh, "get_write_access");
5995 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5996 					      EXT4_JTR_NONE);
5997 	if (error) {
5998 		brelse(iloc->bh);
5999 		goto out_unlock;
6000 	}
6001 
6002 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6003 					  handle, &no_expand);
6004 
6005 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6006 	if (!error)
6007 		error = rc;
6008 
6009 out_unlock:
6010 	ext4_write_unlock_xattr(inode, &no_expand);
6011 	ext4_journal_stop(handle);
6012 	return error;
6013 }
6014 
6015 /*
6016  * What we do here is to mark the in-core inode as clean with respect to inode
6017  * dirtiness (it may still be data-dirty).
6018  * This means that the in-core inode may be reaped by prune_icache
6019  * without having to perform any I/O.  This is a very good thing,
6020  * because *any* task may call prune_icache - even ones which
6021  * have a transaction open against a different journal.
6022  *
6023  * Is this cheating?  Not really.  Sure, we haven't written the
6024  * inode out, but prune_icache isn't a user-visible syncing function.
6025  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6026  * we start and wait on commits.
6027  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6028 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6029 				const char *func, unsigned int line)
6030 {
6031 	struct ext4_iloc iloc;
6032 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6033 	int err;
6034 
6035 	might_sleep();
6036 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6037 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6038 	if (err)
6039 		goto out;
6040 
6041 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6042 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6043 					       iloc, handle);
6044 
6045 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6046 out:
6047 	if (unlikely(err))
6048 		ext4_error_inode_err(inode, func, line, 0, err,
6049 					"mark_inode_dirty error");
6050 	return err;
6051 }
6052 
6053 /*
6054  * ext4_dirty_inode() is called from __mark_inode_dirty()
6055  *
6056  * We're really interested in the case where a file is being extended.
6057  * i_size has been changed by generic_commit_write() and we thus need
6058  * to include the updated inode in the current transaction.
6059  *
6060  * Also, dquot_alloc_block() will always dirty the inode when blocks
6061  * are allocated to the file.
6062  *
6063  * If the inode is marked synchronous, we don't honour that here - doing
6064  * so would cause a commit on atime updates, which we don't bother doing.
6065  * We handle synchronous inodes at the highest possible level.
6066  */
ext4_dirty_inode(struct inode * inode,int flags)6067 void ext4_dirty_inode(struct inode *inode, int flags)
6068 {
6069 	handle_t *handle;
6070 
6071 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6072 	if (IS_ERR(handle))
6073 		return;
6074 	ext4_mark_inode_dirty(handle, inode);
6075 	ext4_journal_stop(handle);
6076 }
6077 
ext4_change_inode_journal_flag(struct inode * inode,int val)6078 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6079 {
6080 	journal_t *journal;
6081 	handle_t *handle;
6082 	int err;
6083 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6084 
6085 	/*
6086 	 * We have to be very careful here: changing a data block's
6087 	 * journaling status dynamically is dangerous.  If we write a
6088 	 * data block to the journal, change the status and then delete
6089 	 * that block, we risk forgetting to revoke the old log record
6090 	 * from the journal and so a subsequent replay can corrupt data.
6091 	 * So, first we make sure that the journal is empty and that
6092 	 * nobody is changing anything.
6093 	 */
6094 
6095 	journal = EXT4_JOURNAL(inode);
6096 	if (!journal)
6097 		return 0;
6098 	if (is_journal_aborted(journal))
6099 		return -EROFS;
6100 
6101 	/* Wait for all existing dio workers */
6102 	inode_dio_wait(inode);
6103 
6104 	/*
6105 	 * Before flushing the journal and switching inode's aops, we have
6106 	 * to flush all dirty data the inode has. There can be outstanding
6107 	 * delayed allocations, there can be unwritten extents created by
6108 	 * fallocate or buffered writes in dioread_nolock mode covered by
6109 	 * dirty data which can be converted only after flushing the dirty
6110 	 * data (and journalled aops don't know how to handle these cases).
6111 	 */
6112 	if (val) {
6113 		filemap_invalidate_lock(inode->i_mapping);
6114 		err = filemap_write_and_wait(inode->i_mapping);
6115 		if (err < 0) {
6116 			filemap_invalidate_unlock(inode->i_mapping);
6117 			return err;
6118 		}
6119 	}
6120 
6121 	percpu_down_write(&sbi->s_writepages_rwsem);
6122 	jbd2_journal_lock_updates(journal);
6123 
6124 	/*
6125 	 * OK, there are no updates running now, and all cached data is
6126 	 * synced to disk.  We are now in a completely consistent state
6127 	 * which doesn't have anything in the journal, and we know that
6128 	 * no filesystem updates are running, so it is safe to modify
6129 	 * the inode's in-core data-journaling state flag now.
6130 	 */
6131 
6132 	if (val)
6133 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6134 	else {
6135 		err = jbd2_journal_flush(journal, 0);
6136 		if (err < 0) {
6137 			jbd2_journal_unlock_updates(journal);
6138 			percpu_up_write(&sbi->s_writepages_rwsem);
6139 			return err;
6140 		}
6141 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6142 	}
6143 	ext4_set_aops(inode);
6144 
6145 	jbd2_journal_unlock_updates(journal);
6146 	percpu_up_write(&sbi->s_writepages_rwsem);
6147 
6148 	if (val)
6149 		filemap_invalidate_unlock(inode->i_mapping);
6150 
6151 	/* Finally we can mark the inode as dirty. */
6152 
6153 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6154 	if (IS_ERR(handle))
6155 		return PTR_ERR(handle);
6156 
6157 	ext4_fc_mark_ineligible(inode->i_sb,
6158 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6159 	err = ext4_mark_inode_dirty(handle, inode);
6160 	ext4_handle_sync(handle);
6161 	ext4_journal_stop(handle);
6162 	ext4_std_error(inode->i_sb, err);
6163 
6164 	return err;
6165 }
6166 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6167 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6168 			    struct buffer_head *bh)
6169 {
6170 	return !buffer_mapped(bh);
6171 }
6172 
ext4_page_mkwrite(struct vm_fault * vmf)6173 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6174 {
6175 	struct vm_area_struct *vma = vmf->vma;
6176 	struct page *page = vmf->page;
6177 	loff_t size;
6178 	unsigned long len;
6179 	int err;
6180 	vm_fault_t ret;
6181 	struct file *file = vma->vm_file;
6182 	struct inode *inode = file_inode(file);
6183 	struct address_space *mapping = inode->i_mapping;
6184 	handle_t *handle;
6185 	get_block_t *get_block;
6186 	int retries = 0;
6187 
6188 	if (unlikely(IS_IMMUTABLE(inode)))
6189 		return VM_FAULT_SIGBUS;
6190 
6191 	sb_start_pagefault(inode->i_sb);
6192 	file_update_time(vma->vm_file);
6193 
6194 	filemap_invalidate_lock_shared(mapping);
6195 
6196 	err = ext4_convert_inline_data(inode);
6197 	if (err)
6198 		goto out_ret;
6199 
6200 	/*
6201 	 * On data journalling we skip straight to the transaction handle:
6202 	 * there's no delalloc; page truncated will be checked later; the
6203 	 * early return w/ all buffers mapped (calculates size/len) can't
6204 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6205 	 */
6206 	if (ext4_should_journal_data(inode))
6207 		goto retry_alloc;
6208 
6209 	/* Delalloc case is easy... */
6210 	if (test_opt(inode->i_sb, DELALLOC) &&
6211 	    !ext4_nonda_switch(inode->i_sb)) {
6212 		do {
6213 			err = block_page_mkwrite(vma, vmf,
6214 						   ext4_da_get_block_prep);
6215 		} while (err == -ENOSPC &&
6216 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6217 		goto out_ret;
6218 	}
6219 
6220 	lock_page(page);
6221 	size = i_size_read(inode);
6222 	/* Page got truncated from under us? */
6223 	if (page->mapping != mapping || page_offset(page) > size) {
6224 		unlock_page(page);
6225 		ret = VM_FAULT_NOPAGE;
6226 		goto out;
6227 	}
6228 
6229 	if (page->index == size >> PAGE_SHIFT)
6230 		len = size & ~PAGE_MASK;
6231 	else
6232 		len = PAGE_SIZE;
6233 	/*
6234 	 * Return if we have all the buffers mapped. This avoids the need to do
6235 	 * journal_start/journal_stop which can block and take a long time
6236 	 *
6237 	 * This cannot be done for data journalling, as we have to add the
6238 	 * inode to the transaction's list to writeprotect pages on commit.
6239 	 */
6240 	if (page_has_buffers(page)) {
6241 		if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6242 					    0, len, NULL,
6243 					    ext4_bh_unmapped)) {
6244 			/* Wait so that we don't change page under IO */
6245 			wait_for_stable_page(page);
6246 			ret = VM_FAULT_LOCKED;
6247 			goto out;
6248 		}
6249 	}
6250 	unlock_page(page);
6251 	/* OK, we need to fill the hole... */
6252 	if (ext4_should_dioread_nolock(inode))
6253 		get_block = ext4_get_block_unwritten;
6254 	else
6255 		get_block = ext4_get_block;
6256 retry_alloc:
6257 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6258 				    ext4_writepage_trans_blocks(inode));
6259 	if (IS_ERR(handle)) {
6260 		ret = VM_FAULT_SIGBUS;
6261 		goto out;
6262 	}
6263 	/*
6264 	 * Data journalling can't use block_page_mkwrite() because it
6265 	 * will set_buffer_dirty() before do_journal_get_write_access()
6266 	 * thus might hit warning messages for dirty metadata buffers.
6267 	 */
6268 	if (!ext4_should_journal_data(inode)) {
6269 		err = block_page_mkwrite(vma, vmf, get_block);
6270 	} else {
6271 		lock_page(page);
6272 		size = i_size_read(inode);
6273 		/* Page got truncated from under us? */
6274 		if (page->mapping != mapping || page_offset(page) > size) {
6275 			ret = VM_FAULT_NOPAGE;
6276 			goto out_error;
6277 		}
6278 
6279 		if (page->index == size >> PAGE_SHIFT)
6280 			len = size & ~PAGE_MASK;
6281 		else
6282 			len = PAGE_SIZE;
6283 
6284 		err = __block_write_begin(page, 0, len, ext4_get_block);
6285 		if (!err) {
6286 			ret = VM_FAULT_SIGBUS;
6287 			if (ext4_walk_page_buffers(handle, inode,
6288 					page_buffers(page), 0, len, NULL,
6289 					do_journal_get_write_access))
6290 				goto out_error;
6291 			if (ext4_walk_page_buffers(handle, inode,
6292 					page_buffers(page), 0, len, NULL,
6293 					write_end_fn))
6294 				goto out_error;
6295 			if (ext4_jbd2_inode_add_write(handle, inode,
6296 						      page_offset(page), len))
6297 				goto out_error;
6298 			ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6299 		} else {
6300 			unlock_page(page);
6301 		}
6302 	}
6303 	ext4_journal_stop(handle);
6304 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6305 		goto retry_alloc;
6306 out_ret:
6307 	ret = block_page_mkwrite_return(err);
6308 out:
6309 	filemap_invalidate_unlock_shared(mapping);
6310 	sb_end_pagefault(inode->i_sb);
6311 	return ret;
6312 out_error:
6313 	unlock_page(page);
6314 	ext4_journal_stop(handle);
6315 	goto out;
6316 }
6317