1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/namei.h>
35 #include <linux/uio.h>
36 #include <linux/bio.h>
37 #include <linux/workqueue.h>
38 #include <linux/kernel.h>
39 #include <linux/printk.h>
40 #include <linux/slab.h>
41 #include <linux/bitops.h>
42 #include <linux/iomap.h>
43 #include <linux/iversion.h>
44
45 #include "ext4_jbd2.h"
46 #include "xattr.h"
47 #include "acl.h"
48 #include "truncate.h"
49
50 #include <trace/events/ext4.h>
51
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)52 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54 {
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u32 csum;
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
60
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
66
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
76 }
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 }
80
81 return csum;
82 }
83
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)84 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86 {
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
91 !ext4_has_metadata_csum(inode->i_sb))
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103 }
104
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107 {
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
112 !ext4_has_metadata_csum(inode->i_sb))
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 }
121
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124 {
125 trace_ext4_begin_ordered_truncate(inode, new_size);
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
137 }
138
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
142
143 /*
144 * Test whether an inode is a fast symlink.
145 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
146 */
ext4_inode_is_fast_symlink(struct inode * inode)147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157 }
158 return S_ISLNK(inode->i_mode) && inode->i_size &&
159 (inode->i_size < EXT4_N_BLOCKS * 4);
160 }
161
162 /*
163 * Called at the last iput() if i_nlink is zero.
164 */
ext4_evict_inode(struct inode * inode)165 void ext4_evict_inode(struct inode *inode)
166 {
167 handle_t *handle;
168 int err;
169 /*
170 * Credits for final inode cleanup and freeing:
171 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
172 * (xattr block freeing), bitmap, group descriptor (inode freeing)
173 */
174 int extra_credits = 6;
175 struct ext4_xattr_inode_array *ea_inode_array = NULL;
176 bool freeze_protected = false;
177
178 trace_ext4_evict_inode(inode);
179
180 if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
181 ext4_evict_ea_inode(inode);
182 if (inode->i_nlink) {
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidate_folio()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
203 S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
204 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
205 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
206
207 jbd2_complete_transaction(journal, commit_tid);
208 filemap_write_and_wait(&inode->i_data);
209 }
210 truncate_inode_pages_final(&inode->i_data);
211
212 goto no_delete;
213 }
214
215 if (is_bad_inode(inode))
216 goto no_delete;
217 dquot_initialize(inode);
218
219 if (ext4_should_order_data(inode))
220 ext4_begin_ordered_truncate(inode, 0);
221 truncate_inode_pages_final(&inode->i_data);
222
223 /*
224 * For inodes with journalled data, transaction commit could have
225 * dirtied the inode. And for inodes with dioread_nolock, unwritten
226 * extents converting worker could merge extents and also have dirtied
227 * the inode. Flush worker is ignoring it because of I_FREEING flag but
228 * we still need to remove the inode from the writeback lists.
229 */
230 if (!list_empty_careful(&inode->i_io_list))
231 inode_io_list_del(inode);
232
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it. When we are in a running transaction though,
236 * we are already protected against freezing and we cannot grab further
237 * protection due to lock ordering constraints.
238 */
239 if (!ext4_journal_current_handle()) {
240 sb_start_intwrite(inode->i_sb);
241 freeze_protected = true;
242 }
243
244 if (!IS_NOQUOTA(inode))
245 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
246
247 /*
248 * Block bitmap, group descriptor, and inode are accounted in both
249 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
250 */
251 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
252 ext4_blocks_for_truncate(inode) + extra_credits - 3);
253 if (IS_ERR(handle)) {
254 ext4_std_error(inode->i_sb, PTR_ERR(handle));
255 /*
256 * If we're going to skip the normal cleanup, we still need to
257 * make sure that the in-core orphan linked list is properly
258 * cleaned up.
259 */
260 ext4_orphan_del(NULL, inode);
261 if (freeze_protected)
262 sb_end_intwrite(inode->i_sb);
263 goto no_delete;
264 }
265
266 if (IS_SYNC(inode))
267 ext4_handle_sync(handle);
268
269 /*
270 * Set inode->i_size to 0 before calling ext4_truncate(). We need
271 * special handling of symlinks here because i_size is used to
272 * determine whether ext4_inode_info->i_data contains symlink data or
273 * block mappings. Setting i_size to 0 will remove its fast symlink
274 * status. Erase i_data so that it becomes a valid empty block map.
275 */
276 if (ext4_inode_is_fast_symlink(inode))
277 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
278 inode->i_size = 0;
279 err = ext4_mark_inode_dirty(handle, inode);
280 if (err) {
281 ext4_warning(inode->i_sb,
282 "couldn't mark inode dirty (err %d)", err);
283 goto stop_handle;
284 }
285 if (inode->i_blocks) {
286 err = ext4_truncate(inode);
287 if (err) {
288 ext4_error_err(inode->i_sb, -err,
289 "couldn't truncate inode %lu (err %d)",
290 inode->i_ino, err);
291 goto stop_handle;
292 }
293 }
294
295 /* Remove xattr references. */
296 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
297 extra_credits);
298 if (err) {
299 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
300 stop_handle:
301 ext4_journal_stop(handle);
302 ext4_orphan_del(NULL, inode);
303 if (freeze_protected)
304 sb_end_intwrite(inode->i_sb);
305 ext4_xattr_inode_array_free(ea_inode_array);
306 goto no_delete;
307 }
308
309 /*
310 * Kill off the orphan record which ext4_truncate created.
311 * AKPM: I think this can be inside the above `if'.
312 * Note that ext4_orphan_del() has to be able to cope with the
313 * deletion of a non-existent orphan - this is because we don't
314 * know if ext4_truncate() actually created an orphan record.
315 * (Well, we could do this if we need to, but heck - it works)
316 */
317 ext4_orphan_del(handle, inode);
318 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
319
320 /*
321 * One subtle ordering requirement: if anything has gone wrong
322 * (transaction abort, IO errors, whatever), then we can still
323 * do these next steps (the fs will already have been marked as
324 * having errors), but we can't free the inode if the mark_dirty
325 * fails.
326 */
327 if (ext4_mark_inode_dirty(handle, inode))
328 /* If that failed, just do the required in-core inode clear. */
329 ext4_clear_inode(inode);
330 else
331 ext4_free_inode(handle, inode);
332 ext4_journal_stop(handle);
333 if (freeze_protected)
334 sb_end_intwrite(inode->i_sb);
335 ext4_xattr_inode_array_free(ea_inode_array);
336 return;
337 no_delete:
338 /*
339 * Check out some where else accidentally dirty the evicting inode,
340 * which may probably cause inode use-after-free issues later.
341 */
342 WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
343
344 if (!list_empty(&EXT4_I(inode)->i_fc_list))
345 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
346 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
347 }
348
349 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)350 qsize_t *ext4_get_reserved_space(struct inode *inode)
351 {
352 return &EXT4_I(inode)->i_reserved_quota;
353 }
354 #endif
355
356 /*
357 * Called with i_data_sem down, which is important since we can call
358 * ext4_discard_preallocations() from here.
359 */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)360 void ext4_da_update_reserve_space(struct inode *inode,
361 int used, int quota_claim)
362 {
363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364 struct ext4_inode_info *ei = EXT4_I(inode);
365
366 spin_lock(&ei->i_block_reservation_lock);
367 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
368 if (unlikely(used > ei->i_reserved_data_blocks)) {
369 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
370 "with only %d reserved data blocks",
371 __func__, inode->i_ino, used,
372 ei->i_reserved_data_blocks);
373 WARN_ON(1);
374 used = ei->i_reserved_data_blocks;
375 }
376
377 /* Update per-inode reservations */
378 ei->i_reserved_data_blocks -= used;
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
380
381 spin_unlock(&ei->i_block_reservation_lock);
382
383 /* Update quota subsystem for data blocks */
384 if (quota_claim)
385 dquot_claim_block(inode, EXT4_C2B(sbi, used));
386 else {
387 /*
388 * We did fallocate with an offset that is already delayed
389 * allocated. So on delayed allocated writeback we should
390 * not re-claim the quota for fallocated blocks.
391 */
392 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
393 }
394
395 /*
396 * If we have done all the pending block allocations and if
397 * there aren't any writers on the inode, we can discard the
398 * inode's preallocations.
399 */
400 if ((ei->i_reserved_data_blocks == 0) &&
401 !inode_is_open_for_write(inode))
402 ext4_discard_preallocations(inode, 0);
403 }
404
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)405 static int __check_block_validity(struct inode *inode, const char *func,
406 unsigned int line,
407 struct ext4_map_blocks *map)
408 {
409 if (ext4_has_feature_journal(inode->i_sb) &&
410 (inode->i_ino ==
411 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
412 return 0;
413 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock %llu "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_pblk, map->m_len);
418 return -EFSCORRUPTED;
419 }
420 return 0;
421 }
422
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)423 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
424 ext4_lblk_t len)
425 {
426 int ret;
427
428 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
429 return fscrypt_zeroout_range(inode, lblk, pblk, len);
430
431 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
432 if (ret > 0)
433 ret = 0;
434
435 return ret;
436 }
437
438 #define check_block_validity(inode, map) \
439 __check_block_validity((inode), __func__, __LINE__, (map))
440
441 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)442 static void ext4_map_blocks_es_recheck(handle_t *handle,
443 struct inode *inode,
444 struct ext4_map_blocks *es_map,
445 struct ext4_map_blocks *map,
446 int flags)
447 {
448 int retval;
449
450 map->m_flags = 0;
451 /*
452 * There is a race window that the result is not the same.
453 * e.g. xfstests #223 when dioread_nolock enables. The reason
454 * is that we lookup a block mapping in extent status tree with
455 * out taking i_data_sem. So at the time the unwritten extent
456 * could be converted.
457 */
458 down_read(&EXT4_I(inode)->i_data_sem);
459 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
460 retval = ext4_ext_map_blocks(handle, inode, map, 0);
461 } else {
462 retval = ext4_ind_map_blocks(handle, inode, map, 0);
463 }
464 up_read((&EXT4_I(inode)->i_data_sem));
465
466 /*
467 * We don't check m_len because extent will be collpased in status
468 * tree. So the m_len might not equal.
469 */
470 if (es_map->m_lblk != map->m_lblk ||
471 es_map->m_flags != map->m_flags ||
472 es_map->m_pblk != map->m_pblk) {
473 printk("ES cache assertion failed for inode: %lu "
474 "es_cached ex [%d/%d/%llu/%x] != "
475 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
476 inode->i_ino, es_map->m_lblk, es_map->m_len,
477 es_map->m_pblk, es_map->m_flags, map->m_lblk,
478 map->m_len, map->m_pblk, map->m_flags,
479 retval, flags);
480 }
481 }
482 #endif /* ES_AGGRESSIVE_TEST */
483
484 /*
485 * The ext4_map_blocks() function tries to look up the requested blocks,
486 * and returns if the blocks are already mapped.
487 *
488 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
489 * and store the allocated blocks in the result buffer head and mark it
490 * mapped.
491 *
492 * If file type is extents based, it will call ext4_ext_map_blocks(),
493 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
494 * based files
495 *
496 * On success, it returns the number of blocks being mapped or allocated. if
497 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
498 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
499 *
500 * It returns 0 if plain look up failed (blocks have not been allocated), in
501 * that case, @map is returned as unmapped but we still do fill map->m_len to
502 * indicate the length of a hole starting at map->m_lblk.
503 *
504 * It returns the error in case of allocation failure.
505 */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)506 int ext4_map_blocks(handle_t *handle, struct inode *inode,
507 struct ext4_map_blocks *map, int flags)
508 {
509 struct extent_status es;
510 int retval;
511 int ret = 0;
512 #ifdef ES_AGGRESSIVE_TEST
513 struct ext4_map_blocks orig_map;
514
515 memcpy(&orig_map, map, sizeof(*map));
516 #endif
517
518 map->m_flags = 0;
519 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
520 flags, map->m_len, (unsigned long) map->m_lblk);
521
522 /*
523 * ext4_map_blocks returns an int, and m_len is an unsigned int
524 */
525 if (unlikely(map->m_len > INT_MAX))
526 map->m_len = INT_MAX;
527
528 /* We can handle the block number less than EXT_MAX_BLOCKS */
529 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
530 return -EFSCORRUPTED;
531
532 /* Lookup extent status tree firstly */
533 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
534 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
535 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
536 map->m_pblk = ext4_es_pblock(&es) +
537 map->m_lblk - es.es_lblk;
538 map->m_flags |= ext4_es_is_written(&es) ?
539 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
540 retval = es.es_len - (map->m_lblk - es.es_lblk);
541 if (retval > map->m_len)
542 retval = map->m_len;
543 map->m_len = retval;
544 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
545 map->m_pblk = 0;
546 retval = es.es_len - (map->m_lblk - es.es_lblk);
547 if (retval > map->m_len)
548 retval = map->m_len;
549 map->m_len = retval;
550 retval = 0;
551 } else {
552 BUG();
553 }
554
555 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
556 return retval;
557 #ifdef ES_AGGRESSIVE_TEST
558 ext4_map_blocks_es_recheck(handle, inode, map,
559 &orig_map, flags);
560 #endif
561 goto found;
562 }
563 /*
564 * In the query cache no-wait mode, nothing we can do more if we
565 * cannot find extent in the cache.
566 */
567 if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
568 return 0;
569
570 /*
571 * Try to see if we can get the block without requesting a new
572 * file system block.
573 */
574 down_read(&EXT4_I(inode)->i_data_sem);
575 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
576 retval = ext4_ext_map_blocks(handle, inode, map, 0);
577 } else {
578 retval = ext4_ind_map_blocks(handle, inode, map, 0);
579 }
580 if (retval > 0) {
581 unsigned int status;
582
583 if (unlikely(retval != map->m_len)) {
584 ext4_warning(inode->i_sb,
585 "ES len assertion failed for inode "
586 "%lu: retval %d != map->m_len %d",
587 inode->i_ino, retval, map->m_len);
588 WARN_ON(1);
589 }
590
591 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
592 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
593 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
594 !(status & EXTENT_STATUS_WRITTEN) &&
595 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
596 map->m_lblk + map->m_len - 1))
597 status |= EXTENT_STATUS_DELAYED;
598 ret = ext4_es_insert_extent(inode, map->m_lblk,
599 map->m_len, map->m_pblk, status);
600 if (ret < 0)
601 retval = ret;
602 }
603 up_read((&EXT4_I(inode)->i_data_sem));
604
605 found:
606 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
607 ret = check_block_validity(inode, map);
608 if (ret != 0)
609 return ret;
610 }
611
612 /* If it is only a block(s) look up */
613 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
614 return retval;
615
616 /*
617 * Returns if the blocks have already allocated
618 *
619 * Note that if blocks have been preallocated
620 * ext4_ext_get_block() returns the create = 0
621 * with buffer head unmapped.
622 */
623 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
624 /*
625 * If we need to convert extent to unwritten
626 * we continue and do the actual work in
627 * ext4_ext_map_blocks()
628 */
629 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
630 return retval;
631
632 /*
633 * Here we clear m_flags because after allocating an new extent,
634 * it will be set again.
635 */
636 map->m_flags &= ~EXT4_MAP_FLAGS;
637
638 /*
639 * New blocks allocate and/or writing to unwritten extent
640 * will possibly result in updating i_data, so we take
641 * the write lock of i_data_sem, and call get_block()
642 * with create == 1 flag.
643 */
644 down_write(&EXT4_I(inode)->i_data_sem);
645
646 /*
647 * We need to check for EXT4 here because migrate
648 * could have changed the inode type in between
649 */
650 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
651 retval = ext4_ext_map_blocks(handle, inode, map, flags);
652 } else {
653 retval = ext4_ind_map_blocks(handle, inode, map, flags);
654
655 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
656 /*
657 * We allocated new blocks which will result in
658 * i_data's format changing. Force the migrate
659 * to fail by clearing migrate flags
660 */
661 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
662 }
663 }
664
665 if (retval > 0) {
666 unsigned int status;
667
668 if (unlikely(retval != map->m_len)) {
669 ext4_warning(inode->i_sb,
670 "ES len assertion failed for inode "
671 "%lu: retval %d != map->m_len %d",
672 inode->i_ino, retval, map->m_len);
673 WARN_ON(1);
674 }
675
676 /*
677 * We have to zeroout blocks before inserting them into extent
678 * status tree. Otherwise someone could look them up there and
679 * use them before they are really zeroed. We also have to
680 * unmap metadata before zeroing as otherwise writeback can
681 * overwrite zeros with stale data from block device.
682 */
683 if (flags & EXT4_GET_BLOCKS_ZERO &&
684 map->m_flags & EXT4_MAP_MAPPED &&
685 map->m_flags & EXT4_MAP_NEW) {
686 ret = ext4_issue_zeroout(inode, map->m_lblk,
687 map->m_pblk, map->m_len);
688 if (ret) {
689 retval = ret;
690 goto out_sem;
691 }
692 }
693
694 /*
695 * If the extent has been zeroed out, we don't need to update
696 * extent status tree.
697 */
698 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
699 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
700 if (ext4_es_is_written(&es))
701 goto out_sem;
702 }
703 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
704 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
705 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
706 !(status & EXTENT_STATUS_WRITTEN) &&
707 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
708 map->m_lblk + map->m_len - 1))
709 status |= EXTENT_STATUS_DELAYED;
710 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
711 map->m_pblk, status);
712 if (ret < 0) {
713 retval = ret;
714 goto out_sem;
715 }
716 }
717
718 out_sem:
719 up_write((&EXT4_I(inode)->i_data_sem));
720 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
721 ret = check_block_validity(inode, map);
722 if (ret != 0)
723 return ret;
724
725 /*
726 * Inodes with freshly allocated blocks where contents will be
727 * visible after transaction commit must be on transaction's
728 * ordered data list.
729 */
730 if (map->m_flags & EXT4_MAP_NEW &&
731 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
732 !(flags & EXT4_GET_BLOCKS_ZERO) &&
733 !ext4_is_quota_file(inode) &&
734 ext4_should_order_data(inode)) {
735 loff_t start_byte =
736 (loff_t)map->m_lblk << inode->i_blkbits;
737 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
738
739 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
740 ret = ext4_jbd2_inode_add_wait(handle, inode,
741 start_byte, length);
742 else
743 ret = ext4_jbd2_inode_add_write(handle, inode,
744 start_byte, length);
745 if (ret)
746 return ret;
747 }
748 }
749 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
750 map->m_flags & EXT4_MAP_MAPPED))
751 ext4_fc_track_range(handle, inode, map->m_lblk,
752 map->m_lblk + map->m_len - 1);
753 if (retval < 0)
754 ext_debug(inode, "failed with err %d\n", retval);
755 return retval;
756 }
757
758 /*
759 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
760 * we have to be careful as someone else may be manipulating b_state as well.
761 */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)762 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
763 {
764 unsigned long old_state;
765 unsigned long new_state;
766
767 flags &= EXT4_MAP_FLAGS;
768
769 /* Dummy buffer_head? Set non-atomically. */
770 if (!bh->b_page) {
771 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
772 return;
773 }
774 /*
775 * Someone else may be modifying b_state. Be careful! This is ugly but
776 * once we get rid of using bh as a container for mapping information
777 * to pass to / from get_block functions, this can go away.
778 */
779 do {
780 old_state = READ_ONCE(bh->b_state);
781 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
782 } while (unlikely(
783 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
784 }
785
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)786 static int _ext4_get_block(struct inode *inode, sector_t iblock,
787 struct buffer_head *bh, int flags)
788 {
789 struct ext4_map_blocks map;
790 int ret = 0;
791
792 if (ext4_has_inline_data(inode))
793 return -ERANGE;
794
795 map.m_lblk = iblock;
796 map.m_len = bh->b_size >> inode->i_blkbits;
797
798 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
799 flags);
800 if (ret > 0) {
801 map_bh(bh, inode->i_sb, map.m_pblk);
802 ext4_update_bh_state(bh, map.m_flags);
803 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
804 ret = 0;
805 } else if (ret == 0) {
806 /* hole case, need to fill in bh->b_size */
807 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
808 }
809 return ret;
810 }
811
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)812 int ext4_get_block(struct inode *inode, sector_t iblock,
813 struct buffer_head *bh, int create)
814 {
815 return _ext4_get_block(inode, iblock, bh,
816 create ? EXT4_GET_BLOCKS_CREATE : 0);
817 }
818
819 /*
820 * Get block function used when preparing for buffered write if we require
821 * creating an unwritten extent if blocks haven't been allocated. The extent
822 * will be converted to written after the IO is complete.
823 */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)824 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
825 struct buffer_head *bh_result, int create)
826 {
827 int ret = 0;
828
829 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
830 inode->i_ino, create);
831 ret = _ext4_get_block(inode, iblock, bh_result,
832 EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
833
834 /*
835 * If the buffer is marked unwritten, mark it as new to make sure it is
836 * zeroed out correctly in case of partial writes. Otherwise, there is
837 * a chance of stale data getting exposed.
838 */
839 if (ret == 0 && buffer_unwritten(bh_result))
840 set_buffer_new(bh_result);
841
842 return ret;
843 }
844
845 /* Maximum number of blocks we map for direct IO at once. */
846 #define DIO_MAX_BLOCKS 4096
847
848 /*
849 * `handle' can be NULL if create is zero
850 */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)851 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
852 ext4_lblk_t block, int map_flags)
853 {
854 struct ext4_map_blocks map;
855 struct buffer_head *bh;
856 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
857 bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
858 int err;
859
860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 || handle != NULL || create == 0);
862 ASSERT(create == 0 || !nowait);
863
864 map.m_lblk = block;
865 map.m_len = 1;
866 err = ext4_map_blocks(handle, inode, &map, map_flags);
867
868 if (err == 0)
869 return create ? ERR_PTR(-ENOSPC) : NULL;
870 if (err < 0)
871 return ERR_PTR(err);
872
873 if (nowait)
874 return sb_find_get_block(inode->i_sb, map.m_pblk);
875
876 bh = sb_getblk(inode->i_sb, map.m_pblk);
877 if (unlikely(!bh))
878 return ERR_PTR(-ENOMEM);
879 if (map.m_flags & EXT4_MAP_NEW) {
880 ASSERT(create != 0);
881 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
882 || (handle != NULL));
883
884 /*
885 * Now that we do not always journal data, we should
886 * keep in mind whether this should always journal the
887 * new buffer as metadata. For now, regular file
888 * writes use ext4_get_block instead, so it's not a
889 * problem.
890 */
891 lock_buffer(bh);
892 BUFFER_TRACE(bh, "call get_create_access");
893 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
894 EXT4_JTR_NONE);
895 if (unlikely(err)) {
896 unlock_buffer(bh);
897 goto errout;
898 }
899 if (!buffer_uptodate(bh)) {
900 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
901 set_buffer_uptodate(bh);
902 }
903 unlock_buffer(bh);
904 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
905 err = ext4_handle_dirty_metadata(handle, inode, bh);
906 if (unlikely(err))
907 goto errout;
908 } else
909 BUFFER_TRACE(bh, "not a new buffer");
910 return bh;
911 errout:
912 brelse(bh);
913 return ERR_PTR(err);
914 }
915
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)916 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
917 ext4_lblk_t block, int map_flags)
918 {
919 struct buffer_head *bh;
920 int ret;
921
922 bh = ext4_getblk(handle, inode, block, map_flags);
923 if (IS_ERR(bh))
924 return bh;
925 if (!bh || ext4_buffer_uptodate(bh))
926 return bh;
927
928 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
929 if (ret) {
930 put_bh(bh);
931 return ERR_PTR(ret);
932 }
933 return bh;
934 }
935
936 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)937 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
938 bool wait, struct buffer_head **bhs)
939 {
940 int i, err;
941
942 for (i = 0; i < bh_count; i++) {
943 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
944 if (IS_ERR(bhs[i])) {
945 err = PTR_ERR(bhs[i]);
946 bh_count = i;
947 goto out_brelse;
948 }
949 }
950
951 for (i = 0; i < bh_count; i++)
952 /* Note that NULL bhs[i] is valid because of holes. */
953 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
954 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
955
956 if (!wait)
957 return 0;
958
959 for (i = 0; i < bh_count; i++)
960 if (bhs[i])
961 wait_on_buffer(bhs[i]);
962
963 for (i = 0; i < bh_count; i++) {
964 if (bhs[i] && !buffer_uptodate(bhs[i])) {
965 err = -EIO;
966 goto out_brelse;
967 }
968 }
969 return 0;
970
971 out_brelse:
972 for (i = 0; i < bh_count; i++) {
973 brelse(bhs[i]);
974 bhs[i] = NULL;
975 }
976 return err;
977 }
978
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))979 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
980 struct buffer_head *head,
981 unsigned from,
982 unsigned to,
983 int *partial,
984 int (*fn)(handle_t *handle, struct inode *inode,
985 struct buffer_head *bh))
986 {
987 struct buffer_head *bh;
988 unsigned block_start, block_end;
989 unsigned blocksize = head->b_size;
990 int err, ret = 0;
991 struct buffer_head *next;
992
993 for (bh = head, block_start = 0;
994 ret == 0 && (bh != head || !block_start);
995 block_start = block_end, bh = next) {
996 next = bh->b_this_page;
997 block_end = block_start + blocksize;
998 if (block_end <= from || block_start >= to) {
999 if (partial && !buffer_uptodate(bh))
1000 *partial = 1;
1001 continue;
1002 }
1003 err = (*fn)(handle, inode, bh);
1004 if (!ret)
1005 ret = err;
1006 }
1007 return ret;
1008 }
1009
1010 /*
1011 * To preserve ordering, it is essential that the hole instantiation and
1012 * the data write be encapsulated in a single transaction. We cannot
1013 * close off a transaction and start a new one between the ext4_get_block()
1014 * and the commit_write(). So doing the jbd2_journal_start at the start of
1015 * prepare_write() is the right place.
1016 *
1017 * Also, this function can nest inside ext4_writepage(). In that case, we
1018 * *know* that ext4_writepage() has generated enough buffer credits to do the
1019 * whole page. So we won't block on the journal in that case, which is good,
1020 * because the caller may be PF_MEMALLOC.
1021 *
1022 * By accident, ext4 can be reentered when a transaction is open via
1023 * quota file writes. If we were to commit the transaction while thus
1024 * reentered, there can be a deadlock - we would be holding a quota
1025 * lock, and the commit would never complete if another thread had a
1026 * transaction open and was blocking on the quota lock - a ranking
1027 * violation.
1028 *
1029 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1030 * will _not_ run commit under these circumstances because handle->h_ref
1031 * is elevated. We'll still have enough credits for the tiny quotafile
1032 * write.
1033 */
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1034 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1035 struct buffer_head *bh)
1036 {
1037 int dirty = buffer_dirty(bh);
1038 int ret;
1039
1040 if (!buffer_mapped(bh) || buffer_freed(bh))
1041 return 0;
1042 /*
1043 * __block_write_begin() could have dirtied some buffers. Clean
1044 * the dirty bit as jbd2_journal_get_write_access() could complain
1045 * otherwise about fs integrity issues. Setting of the dirty bit
1046 * by __block_write_begin() isn't a real problem here as we clear
1047 * the bit before releasing a page lock and thus writeback cannot
1048 * ever write the buffer.
1049 */
1050 if (dirty)
1051 clear_buffer_dirty(bh);
1052 BUFFER_TRACE(bh, "get write access");
1053 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1054 EXT4_JTR_NONE);
1055 if (!ret && dirty)
1056 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1057 return ret;
1058 }
1059
1060 #ifdef CONFIG_FS_ENCRYPTION
ext4_block_write_begin(struct page * page,loff_t pos,unsigned len,get_block_t * get_block)1061 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1062 get_block_t *get_block)
1063 {
1064 unsigned from = pos & (PAGE_SIZE - 1);
1065 unsigned to = from + len;
1066 struct inode *inode = page->mapping->host;
1067 unsigned block_start, block_end;
1068 sector_t block;
1069 int err = 0;
1070 unsigned blocksize = inode->i_sb->s_blocksize;
1071 unsigned bbits;
1072 struct buffer_head *bh, *head, *wait[2];
1073 int nr_wait = 0;
1074 int i;
1075
1076 BUG_ON(!PageLocked(page));
1077 BUG_ON(from > PAGE_SIZE);
1078 BUG_ON(to > PAGE_SIZE);
1079 BUG_ON(from > to);
1080
1081 if (!page_has_buffers(page))
1082 create_empty_buffers(page, blocksize, 0);
1083 head = page_buffers(page);
1084 bbits = ilog2(blocksize);
1085 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1086
1087 for (bh = head, block_start = 0; bh != head || !block_start;
1088 block++, block_start = block_end, bh = bh->b_this_page) {
1089 block_end = block_start + blocksize;
1090 if (block_end <= from || block_start >= to) {
1091 if (PageUptodate(page)) {
1092 set_buffer_uptodate(bh);
1093 }
1094 continue;
1095 }
1096 if (buffer_new(bh))
1097 clear_buffer_new(bh);
1098 if (!buffer_mapped(bh)) {
1099 WARN_ON(bh->b_size != blocksize);
1100 err = get_block(inode, block, bh, 1);
1101 if (err)
1102 break;
1103 if (buffer_new(bh)) {
1104 if (PageUptodate(page)) {
1105 clear_buffer_new(bh);
1106 set_buffer_uptodate(bh);
1107 mark_buffer_dirty(bh);
1108 continue;
1109 }
1110 if (block_end > to || block_start < from)
1111 zero_user_segments(page, to, block_end,
1112 block_start, from);
1113 continue;
1114 }
1115 }
1116 if (PageUptodate(page)) {
1117 set_buffer_uptodate(bh);
1118 continue;
1119 }
1120 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1121 !buffer_unwritten(bh) &&
1122 (block_start < from || block_end > to)) {
1123 ext4_read_bh_lock(bh, 0, false);
1124 wait[nr_wait++] = bh;
1125 }
1126 }
1127 /*
1128 * If we issued read requests, let them complete.
1129 */
1130 for (i = 0; i < nr_wait; i++) {
1131 wait_on_buffer(wait[i]);
1132 if (!buffer_uptodate(wait[i]))
1133 err = -EIO;
1134 }
1135 if (unlikely(err)) {
1136 page_zero_new_buffers(page, from, to);
1137 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1138 for (i = 0; i < nr_wait; i++) {
1139 int err2;
1140
1141 err2 = fscrypt_decrypt_pagecache_blocks(page_folio(page),
1142 blocksize,
1143 bh_offset(wait[i]));
1144 if (err2) {
1145 clear_buffer_uptodate(wait[i]);
1146 err = err2;
1147 }
1148 }
1149 }
1150
1151 return err;
1152 }
1153 #endif
1154
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)1155 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1156 loff_t pos, unsigned len,
1157 struct page **pagep, void **fsdata)
1158 {
1159 struct inode *inode = mapping->host;
1160 int ret, needed_blocks;
1161 handle_t *handle;
1162 int retries = 0;
1163 struct page *page;
1164 pgoff_t index;
1165 unsigned from, to;
1166
1167 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1168 return -EIO;
1169
1170 trace_ext4_write_begin(inode, pos, len);
1171 /*
1172 * Reserve one block more for addition to orphan list in case
1173 * we allocate blocks but write fails for some reason
1174 */
1175 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1176 index = pos >> PAGE_SHIFT;
1177 from = pos & (PAGE_SIZE - 1);
1178 to = from + len;
1179
1180 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1181 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1182 pagep);
1183 if (ret < 0)
1184 return ret;
1185 if (ret == 1)
1186 return 0;
1187 }
1188
1189 /*
1190 * grab_cache_page_write_begin() can take a long time if the
1191 * system is thrashing due to memory pressure, or if the page
1192 * is being written back. So grab it first before we start
1193 * the transaction handle. This also allows us to allocate
1194 * the page (if needed) without using GFP_NOFS.
1195 */
1196 retry_grab:
1197 page = grab_cache_page_write_begin(mapping, index);
1198 if (!page)
1199 return -ENOMEM;
1200 /*
1201 * The same as page allocation, we prealloc buffer heads before
1202 * starting the handle.
1203 */
1204 if (!page_has_buffers(page))
1205 create_empty_buffers(page, inode->i_sb->s_blocksize, 0);
1206
1207 unlock_page(page);
1208
1209 retry_journal:
1210 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1211 if (IS_ERR(handle)) {
1212 put_page(page);
1213 return PTR_ERR(handle);
1214 }
1215
1216 lock_page(page);
1217 if (page->mapping != mapping) {
1218 /* The page got truncated from under us */
1219 unlock_page(page);
1220 put_page(page);
1221 ext4_journal_stop(handle);
1222 goto retry_grab;
1223 }
1224 /* In case writeback began while the page was unlocked */
1225 wait_for_stable_page(page);
1226
1227 #ifdef CONFIG_FS_ENCRYPTION
1228 if (ext4_should_dioread_nolock(inode))
1229 ret = ext4_block_write_begin(page, pos, len,
1230 ext4_get_block_unwritten);
1231 else
1232 ret = ext4_block_write_begin(page, pos, len,
1233 ext4_get_block);
1234 #else
1235 if (ext4_should_dioread_nolock(inode))
1236 ret = __block_write_begin(page, pos, len,
1237 ext4_get_block_unwritten);
1238 else
1239 ret = __block_write_begin(page, pos, len, ext4_get_block);
1240 #endif
1241 if (!ret && ext4_should_journal_data(inode)) {
1242 ret = ext4_walk_page_buffers(handle, inode,
1243 page_buffers(page), from, to, NULL,
1244 do_journal_get_write_access);
1245 }
1246
1247 if (ret) {
1248 bool extended = (pos + len > inode->i_size) &&
1249 !ext4_verity_in_progress(inode);
1250
1251 unlock_page(page);
1252 /*
1253 * __block_write_begin may have instantiated a few blocks
1254 * outside i_size. Trim these off again. Don't need
1255 * i_size_read because we hold i_rwsem.
1256 *
1257 * Add inode to orphan list in case we crash before
1258 * truncate finishes
1259 */
1260 if (extended && ext4_can_truncate(inode))
1261 ext4_orphan_add(handle, inode);
1262
1263 ext4_journal_stop(handle);
1264 if (extended) {
1265 ext4_truncate_failed_write(inode);
1266 /*
1267 * If truncate failed early the inode might
1268 * still be on the orphan list; we need to
1269 * make sure the inode is removed from the
1270 * orphan list in that case.
1271 */
1272 if (inode->i_nlink)
1273 ext4_orphan_del(NULL, inode);
1274 }
1275
1276 if (ret == -ENOSPC &&
1277 ext4_should_retry_alloc(inode->i_sb, &retries))
1278 goto retry_journal;
1279 put_page(page);
1280 return ret;
1281 }
1282 *pagep = page;
1283 return ret;
1284 }
1285
1286 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1287 static int write_end_fn(handle_t *handle, struct inode *inode,
1288 struct buffer_head *bh)
1289 {
1290 int ret;
1291 if (!buffer_mapped(bh) || buffer_freed(bh))
1292 return 0;
1293 set_buffer_uptodate(bh);
1294 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1295 clear_buffer_meta(bh);
1296 clear_buffer_prio(bh);
1297 return ret;
1298 }
1299
1300 /*
1301 * We need to pick up the new inode size which generic_commit_write gave us
1302 * `file' can be NULL - eg, when called from page_symlink().
1303 *
1304 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1305 * buffers are managed internally.
1306 */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1307 static int ext4_write_end(struct file *file,
1308 struct address_space *mapping,
1309 loff_t pos, unsigned len, unsigned copied,
1310 struct page *page, void *fsdata)
1311 {
1312 handle_t *handle = ext4_journal_current_handle();
1313 struct inode *inode = mapping->host;
1314 loff_t old_size = inode->i_size;
1315 int ret = 0, ret2;
1316 int i_size_changed = 0;
1317 bool verity = ext4_verity_in_progress(inode);
1318
1319 trace_ext4_write_end(inode, pos, len, copied);
1320
1321 if (ext4_has_inline_data(inode) &&
1322 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1323 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1324
1325 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1326 /*
1327 * it's important to update i_size while still holding page lock:
1328 * page writeout could otherwise come in and zero beyond i_size.
1329 *
1330 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1331 * blocks are being written past EOF, so skip the i_size update.
1332 */
1333 if (!verity)
1334 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1335 unlock_page(page);
1336 put_page(page);
1337
1338 if (old_size < pos && !verity)
1339 pagecache_isize_extended(inode, old_size, pos);
1340 /*
1341 * Don't mark the inode dirty under page lock. First, it unnecessarily
1342 * makes the holding time of page lock longer. Second, it forces lock
1343 * ordering of page lock and transaction start for journaling
1344 * filesystems.
1345 */
1346 if (i_size_changed)
1347 ret = ext4_mark_inode_dirty(handle, inode);
1348
1349 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1350 /* if we have allocated more blocks and copied
1351 * less. We will have blocks allocated outside
1352 * inode->i_size. So truncate them
1353 */
1354 ext4_orphan_add(handle, inode);
1355
1356 ret2 = ext4_journal_stop(handle);
1357 if (!ret)
1358 ret = ret2;
1359
1360 if (pos + len > inode->i_size && !verity) {
1361 ext4_truncate_failed_write(inode);
1362 /*
1363 * If truncate failed early the inode might still be
1364 * on the orphan list; we need to make sure the inode
1365 * is removed from the orphan list in that case.
1366 */
1367 if (inode->i_nlink)
1368 ext4_orphan_del(NULL, inode);
1369 }
1370
1371 return ret ? ret : copied;
1372 }
1373
1374 /*
1375 * This is a private version of page_zero_new_buffers() which doesn't
1376 * set the buffer to be dirty, since in data=journalled mode we need
1377 * to call ext4_handle_dirty_metadata() instead.
1378 */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct page * page,unsigned from,unsigned to)1379 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1380 struct inode *inode,
1381 struct page *page,
1382 unsigned from, unsigned to)
1383 {
1384 unsigned int block_start = 0, block_end;
1385 struct buffer_head *head, *bh;
1386
1387 bh = head = page_buffers(page);
1388 do {
1389 block_end = block_start + bh->b_size;
1390 if (buffer_new(bh)) {
1391 if (block_end > from && block_start < to) {
1392 if (!PageUptodate(page)) {
1393 unsigned start, size;
1394
1395 start = max(from, block_start);
1396 size = min(to, block_end) - start;
1397
1398 zero_user(page, start, size);
1399 write_end_fn(handle, inode, bh);
1400 }
1401 clear_buffer_new(bh);
1402 }
1403 }
1404 block_start = block_end;
1405 bh = bh->b_this_page;
1406 } while (bh != head);
1407 }
1408
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1409 static int ext4_journalled_write_end(struct file *file,
1410 struct address_space *mapping,
1411 loff_t pos, unsigned len, unsigned copied,
1412 struct page *page, void *fsdata)
1413 {
1414 handle_t *handle = ext4_journal_current_handle();
1415 struct inode *inode = mapping->host;
1416 loff_t old_size = inode->i_size;
1417 int ret = 0, ret2;
1418 int partial = 0;
1419 unsigned from, to;
1420 int size_changed = 0;
1421 bool verity = ext4_verity_in_progress(inode);
1422
1423 trace_ext4_journalled_write_end(inode, pos, len, copied);
1424 from = pos & (PAGE_SIZE - 1);
1425 to = from + len;
1426
1427 BUG_ON(!ext4_handle_valid(handle));
1428
1429 if (ext4_has_inline_data(inode))
1430 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1431
1432 if (unlikely(copied < len) && !PageUptodate(page)) {
1433 copied = 0;
1434 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1435 } else {
1436 if (unlikely(copied < len))
1437 ext4_journalled_zero_new_buffers(handle, inode, page,
1438 from + copied, to);
1439 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1440 from, from + copied, &partial,
1441 write_end_fn);
1442 if (!partial)
1443 SetPageUptodate(page);
1444 }
1445 if (!verity)
1446 size_changed = ext4_update_inode_size(inode, pos + copied);
1447 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1448 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1449 unlock_page(page);
1450 put_page(page);
1451
1452 if (old_size < pos && !verity)
1453 pagecache_isize_extended(inode, old_size, pos);
1454
1455 if (size_changed) {
1456 ret2 = ext4_mark_inode_dirty(handle, inode);
1457 if (!ret)
1458 ret = ret2;
1459 }
1460
1461 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1462 /* if we have allocated more blocks and copied
1463 * less. We will have blocks allocated outside
1464 * inode->i_size. So truncate them
1465 */
1466 ext4_orphan_add(handle, inode);
1467
1468 ret2 = ext4_journal_stop(handle);
1469 if (!ret)
1470 ret = ret2;
1471 if (pos + len > inode->i_size && !verity) {
1472 ext4_truncate_failed_write(inode);
1473 /*
1474 * If truncate failed early the inode might still be
1475 * on the orphan list; we need to make sure the inode
1476 * is removed from the orphan list in that case.
1477 */
1478 if (inode->i_nlink)
1479 ext4_orphan_del(NULL, inode);
1480 }
1481
1482 return ret ? ret : copied;
1483 }
1484
1485 /*
1486 * Reserve space for a single cluster
1487 */
ext4_da_reserve_space(struct inode * inode)1488 static int ext4_da_reserve_space(struct inode *inode)
1489 {
1490 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1491 struct ext4_inode_info *ei = EXT4_I(inode);
1492 int ret;
1493
1494 /*
1495 * We will charge metadata quota at writeout time; this saves
1496 * us from metadata over-estimation, though we may go over by
1497 * a small amount in the end. Here we just reserve for data.
1498 */
1499 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1500 if (ret)
1501 return ret;
1502
1503 spin_lock(&ei->i_block_reservation_lock);
1504 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1505 spin_unlock(&ei->i_block_reservation_lock);
1506 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1507 return -ENOSPC;
1508 }
1509 ei->i_reserved_data_blocks++;
1510 trace_ext4_da_reserve_space(inode);
1511 spin_unlock(&ei->i_block_reservation_lock);
1512
1513 return 0; /* success */
1514 }
1515
ext4_da_release_space(struct inode * inode,int to_free)1516 void ext4_da_release_space(struct inode *inode, int to_free)
1517 {
1518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1519 struct ext4_inode_info *ei = EXT4_I(inode);
1520
1521 if (!to_free)
1522 return; /* Nothing to release, exit */
1523
1524 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1525
1526 trace_ext4_da_release_space(inode, to_free);
1527 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1528 /*
1529 * if there aren't enough reserved blocks, then the
1530 * counter is messed up somewhere. Since this
1531 * function is called from invalidate page, it's
1532 * harmless to return without any action.
1533 */
1534 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1535 "ino %lu, to_free %d with only %d reserved "
1536 "data blocks", inode->i_ino, to_free,
1537 ei->i_reserved_data_blocks);
1538 WARN_ON(1);
1539 to_free = ei->i_reserved_data_blocks;
1540 }
1541 ei->i_reserved_data_blocks -= to_free;
1542
1543 /* update fs dirty data blocks counter */
1544 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1545
1546 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1547
1548 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1549 }
1550
1551 /*
1552 * Delayed allocation stuff
1553 */
1554
1555 struct mpage_da_data {
1556 struct inode *inode;
1557 struct writeback_control *wbc;
1558
1559 pgoff_t first_page; /* The first page to write */
1560 pgoff_t next_page; /* Current page to examine */
1561 pgoff_t last_page; /* Last page to examine */
1562 /*
1563 * Extent to map - this can be after first_page because that can be
1564 * fully mapped. We somewhat abuse m_flags to store whether the extent
1565 * is delalloc or unwritten.
1566 */
1567 struct ext4_map_blocks map;
1568 struct ext4_io_submit io_submit; /* IO submission data */
1569 unsigned int do_map:1;
1570 unsigned int scanned_until_end:1;
1571 };
1572
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1573 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1574 bool invalidate)
1575 {
1576 unsigned nr, i;
1577 pgoff_t index, end;
1578 struct folio_batch fbatch;
1579 struct inode *inode = mpd->inode;
1580 struct address_space *mapping = inode->i_mapping;
1581
1582 /* This is necessary when next_page == 0. */
1583 if (mpd->first_page >= mpd->next_page)
1584 return;
1585
1586 mpd->scanned_until_end = 0;
1587 index = mpd->first_page;
1588 end = mpd->next_page - 1;
1589 if (invalidate) {
1590 ext4_lblk_t start, last;
1591 start = index << (PAGE_SHIFT - inode->i_blkbits);
1592 last = end << (PAGE_SHIFT - inode->i_blkbits);
1593
1594 /*
1595 * avoid racing with extent status tree scans made by
1596 * ext4_insert_delayed_block()
1597 */
1598 down_write(&EXT4_I(inode)->i_data_sem);
1599 ext4_es_remove_extent(inode, start, last - start + 1);
1600 up_write(&EXT4_I(inode)->i_data_sem);
1601 }
1602
1603 folio_batch_init(&fbatch);
1604 while (index <= end) {
1605 nr = filemap_get_folios(mapping, &index, end, &fbatch);
1606 if (nr == 0)
1607 break;
1608 for (i = 0; i < nr; i++) {
1609 struct folio *folio = fbatch.folios[i];
1610
1611 if (folio->index < mpd->first_page)
1612 continue;
1613 if (folio->index + folio_nr_pages(folio) - 1 > end)
1614 continue;
1615 BUG_ON(!folio_test_locked(folio));
1616 BUG_ON(folio_test_writeback(folio));
1617 if (invalidate) {
1618 if (folio_mapped(folio))
1619 folio_clear_dirty_for_io(folio);
1620 block_invalidate_folio(folio, 0,
1621 folio_size(folio));
1622 folio_clear_uptodate(folio);
1623 }
1624 folio_unlock(folio);
1625 }
1626 folio_batch_release(&fbatch);
1627 }
1628 }
1629
ext4_print_free_blocks(struct inode * inode)1630 static void ext4_print_free_blocks(struct inode *inode)
1631 {
1632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1633 struct super_block *sb = inode->i_sb;
1634 struct ext4_inode_info *ei = EXT4_I(inode);
1635
1636 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1637 EXT4_C2B(EXT4_SB(inode->i_sb),
1638 ext4_count_free_clusters(sb)));
1639 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1640 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1641 (long long) EXT4_C2B(EXT4_SB(sb),
1642 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1643 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1644 (long long) EXT4_C2B(EXT4_SB(sb),
1645 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1646 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1647 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1648 ei->i_reserved_data_blocks);
1649 return;
1650 }
1651
ext4_bh_delay_or_unwritten(handle_t * handle,struct inode * inode,struct buffer_head * bh)1652 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1653 struct buffer_head *bh)
1654 {
1655 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1656 }
1657
1658 /*
1659 * ext4_insert_delayed_block - adds a delayed block to the extents status
1660 * tree, incrementing the reserved cluster/block
1661 * count or making a pending reservation
1662 * where needed
1663 *
1664 * @inode - file containing the newly added block
1665 * @lblk - logical block to be added
1666 *
1667 * Returns 0 on success, negative error code on failure.
1668 */
ext4_insert_delayed_block(struct inode * inode,ext4_lblk_t lblk)1669 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1670 {
1671 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1672 int ret;
1673 bool allocated = false;
1674 bool reserved = false;
1675
1676 /*
1677 * If the cluster containing lblk is shared with a delayed,
1678 * written, or unwritten extent in a bigalloc file system, it's
1679 * already been accounted for and does not need to be reserved.
1680 * A pending reservation must be made for the cluster if it's
1681 * shared with a written or unwritten extent and doesn't already
1682 * have one. Written and unwritten extents can be purged from the
1683 * extents status tree if the system is under memory pressure, so
1684 * it's necessary to examine the extent tree if a search of the
1685 * extents status tree doesn't get a match.
1686 */
1687 if (sbi->s_cluster_ratio == 1) {
1688 ret = ext4_da_reserve_space(inode);
1689 if (ret != 0) /* ENOSPC */
1690 goto errout;
1691 reserved = true;
1692 } else { /* bigalloc */
1693 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1694 if (!ext4_es_scan_clu(inode,
1695 &ext4_es_is_mapped, lblk)) {
1696 ret = ext4_clu_mapped(inode,
1697 EXT4_B2C(sbi, lblk));
1698 if (ret < 0)
1699 goto errout;
1700 if (ret == 0) {
1701 ret = ext4_da_reserve_space(inode);
1702 if (ret != 0) /* ENOSPC */
1703 goto errout;
1704 reserved = true;
1705 } else {
1706 allocated = true;
1707 }
1708 } else {
1709 allocated = true;
1710 }
1711 }
1712 }
1713
1714 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1715 if (ret && reserved)
1716 ext4_da_release_space(inode, 1);
1717
1718 errout:
1719 return ret;
1720 }
1721
1722 /*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
ext4_da_map_blocks(struct inode * inode,sector_t iblock,struct ext4_map_blocks * map,struct buffer_head * bh)1728 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 struct ext4_map_blocks *map,
1730 struct buffer_head *bh)
1731 {
1732 struct extent_status es;
1733 int retval;
1734 sector_t invalid_block = ~((sector_t) 0xffff);
1735 #ifdef ES_AGGRESSIVE_TEST
1736 struct ext4_map_blocks orig_map;
1737
1738 memcpy(&orig_map, map, sizeof(*map));
1739 #endif
1740
1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 invalid_block = ~0;
1743
1744 map->m_flags = 0;
1745 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1746 (unsigned long) map->m_lblk);
1747
1748 /* Lookup extent status tree firstly */
1749 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1750 if (ext4_es_is_hole(&es)) {
1751 retval = 0;
1752 down_read(&EXT4_I(inode)->i_data_sem);
1753 goto add_delayed;
1754 }
1755
1756 /*
1757 * Delayed extent could be allocated by fallocate.
1758 * So we need to check it.
1759 */
1760 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1761 map_bh(bh, inode->i_sb, invalid_block);
1762 set_buffer_new(bh);
1763 set_buffer_delay(bh);
1764 return 0;
1765 }
1766
1767 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1768 retval = es.es_len - (iblock - es.es_lblk);
1769 if (retval > map->m_len)
1770 retval = map->m_len;
1771 map->m_len = retval;
1772 if (ext4_es_is_written(&es))
1773 map->m_flags |= EXT4_MAP_MAPPED;
1774 else if (ext4_es_is_unwritten(&es))
1775 map->m_flags |= EXT4_MAP_UNWRITTEN;
1776 else
1777 BUG();
1778
1779 #ifdef ES_AGGRESSIVE_TEST
1780 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1781 #endif
1782 return retval;
1783 }
1784
1785 /*
1786 * Try to see if we can get the block without requesting a new
1787 * file system block.
1788 */
1789 down_read(&EXT4_I(inode)->i_data_sem);
1790 if (ext4_has_inline_data(inode))
1791 retval = 0;
1792 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1793 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1794 else
1795 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1796
1797 add_delayed:
1798 if (retval == 0) {
1799 int ret;
1800
1801 /*
1802 * XXX: __block_prepare_write() unmaps passed block,
1803 * is it OK?
1804 */
1805
1806 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1807 if (ret != 0) {
1808 retval = ret;
1809 goto out_unlock;
1810 }
1811
1812 map_bh(bh, inode->i_sb, invalid_block);
1813 set_buffer_new(bh);
1814 set_buffer_delay(bh);
1815 } else if (retval > 0) {
1816 int ret;
1817 unsigned int status;
1818
1819 if (unlikely(retval != map->m_len)) {
1820 ext4_warning(inode->i_sb,
1821 "ES len assertion failed for inode "
1822 "%lu: retval %d != map->m_len %d",
1823 inode->i_ino, retval, map->m_len);
1824 WARN_ON(1);
1825 }
1826
1827 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1828 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1829 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1830 map->m_pblk, status);
1831 if (ret != 0)
1832 retval = ret;
1833 }
1834
1835 out_unlock:
1836 up_read((&EXT4_I(inode)->i_data_sem));
1837
1838 return retval;
1839 }
1840
1841 /*
1842 * This is a special get_block_t callback which is used by
1843 * ext4_da_write_begin(). It will either return mapped block or
1844 * reserve space for a single block.
1845 *
1846 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1847 * We also have b_blocknr = -1 and b_bdev initialized properly
1848 *
1849 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1850 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1851 * initialized properly.
1852 */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1853 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1854 struct buffer_head *bh, int create)
1855 {
1856 struct ext4_map_blocks map;
1857 int ret = 0;
1858
1859 BUG_ON(create == 0);
1860 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862 map.m_lblk = iblock;
1863 map.m_len = 1;
1864
1865 /*
1866 * first, we need to know whether the block is allocated already
1867 * preallocated blocks are unmapped but should treated
1868 * the same as allocated blocks.
1869 */
1870 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1871 if (ret <= 0)
1872 return ret;
1873
1874 map_bh(bh, inode->i_sb, map.m_pblk);
1875 ext4_update_bh_state(bh, map.m_flags);
1876
1877 if (buffer_unwritten(bh)) {
1878 /* A delayed write to unwritten bh should be marked
1879 * new and mapped. Mapped ensures that we don't do
1880 * get_block multiple times when we write to the same
1881 * offset and new ensures that we do proper zero out
1882 * for partial write.
1883 */
1884 set_buffer_new(bh);
1885 set_buffer_mapped(bh);
1886 }
1887 return 0;
1888 }
1889
__ext4_journalled_writepage(struct page * page,unsigned int len)1890 static int __ext4_journalled_writepage(struct page *page,
1891 unsigned int len)
1892 {
1893 struct address_space *mapping = page->mapping;
1894 struct inode *inode = mapping->host;
1895 handle_t *handle = NULL;
1896 int ret = 0, err = 0;
1897 int inline_data = ext4_has_inline_data(inode);
1898 struct buffer_head *inode_bh = NULL;
1899 loff_t size;
1900
1901 ClearPageChecked(page);
1902
1903 if (inline_data) {
1904 BUG_ON(page->index != 0);
1905 BUG_ON(len > ext4_get_max_inline_size(inode));
1906 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1907 if (inode_bh == NULL)
1908 goto out;
1909 }
1910 /*
1911 * We need to release the page lock before we start the
1912 * journal, so grab a reference so the page won't disappear
1913 * out from under us.
1914 */
1915 get_page(page);
1916 unlock_page(page);
1917
1918 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1919 ext4_writepage_trans_blocks(inode));
1920 if (IS_ERR(handle)) {
1921 ret = PTR_ERR(handle);
1922 put_page(page);
1923 goto out_no_pagelock;
1924 }
1925 BUG_ON(!ext4_handle_valid(handle));
1926
1927 lock_page(page);
1928 put_page(page);
1929 size = i_size_read(inode);
1930 if (page->mapping != mapping || page_offset(page) > size) {
1931 /* The page got truncated from under us */
1932 ext4_journal_stop(handle);
1933 ret = 0;
1934 goto out;
1935 }
1936
1937 if (inline_data) {
1938 ret = ext4_mark_inode_dirty(handle, inode);
1939 } else {
1940 struct buffer_head *page_bufs = page_buffers(page);
1941
1942 if (page->index == size >> PAGE_SHIFT)
1943 len = size & ~PAGE_MASK;
1944 else
1945 len = PAGE_SIZE;
1946
1947 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1948 NULL, do_journal_get_write_access);
1949
1950 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1951 NULL, write_end_fn);
1952 }
1953 if (ret == 0)
1954 ret = err;
1955 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1956 if (ret == 0)
1957 ret = err;
1958 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1959 err = ext4_journal_stop(handle);
1960 if (!ret)
1961 ret = err;
1962
1963 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1964 out:
1965 unlock_page(page);
1966 out_no_pagelock:
1967 brelse(inode_bh);
1968 return ret;
1969 }
1970
1971 /*
1972 * Note that we don't need to start a transaction unless we're journaling data
1973 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1974 * need to file the inode to the transaction's list in ordered mode because if
1975 * we are writing back data added by write(), the inode is already there and if
1976 * we are writing back data modified via mmap(), no one guarantees in which
1977 * transaction the data will hit the disk. In case we are journaling data, we
1978 * cannot start transaction directly because transaction start ranks above page
1979 * lock so we have to do some magic.
1980 *
1981 * This function can get called via...
1982 * - ext4_writepages after taking page lock (have journal handle)
1983 * - journal_submit_inode_data_buffers (no journal handle)
1984 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1985 * - grab_page_cache when doing write_begin (have journal handle)
1986 *
1987 * We don't do any block allocation in this function. If we have page with
1988 * multiple blocks we need to write those buffer_heads that are mapped. This
1989 * is important for mmaped based write. So if we do with blocksize 1K
1990 * truncate(f, 1024);
1991 * a = mmap(f, 0, 4096);
1992 * a[0] = 'a';
1993 * truncate(f, 4096);
1994 * we have in the page first buffer_head mapped via page_mkwrite call back
1995 * but other buffer_heads would be unmapped but dirty (dirty done via the
1996 * do_wp_page). So writepage should write the first block. If we modify
1997 * the mmap area beyond 1024 we will again get a page_fault and the
1998 * page_mkwrite callback will do the block allocation and mark the
1999 * buffer_heads mapped.
2000 *
2001 * We redirty the page if we have any buffer_heads that is either delay or
2002 * unwritten in the page.
2003 *
2004 * We can get recursively called as show below.
2005 *
2006 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2007 * ext4_writepage()
2008 *
2009 * But since we don't do any block allocation we should not deadlock.
2010 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2011 */
ext4_writepage(struct page * page,struct writeback_control * wbc)2012 static int ext4_writepage(struct page *page,
2013 struct writeback_control *wbc)
2014 {
2015 struct folio *folio = page_folio(page);
2016 int ret = 0;
2017 loff_t size;
2018 unsigned int len;
2019 struct buffer_head *page_bufs = NULL;
2020 struct inode *inode = page->mapping->host;
2021 struct ext4_io_submit io_submit;
2022 bool keep_towrite = false;
2023
2024 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2025 folio_invalidate(folio, 0, folio_size(folio));
2026 folio_unlock(folio);
2027 return -EIO;
2028 }
2029
2030 trace_ext4_writepage(page);
2031 size = i_size_read(inode);
2032 if (page->index == size >> PAGE_SHIFT &&
2033 !ext4_verity_in_progress(inode))
2034 len = size & ~PAGE_MASK;
2035 else
2036 len = PAGE_SIZE;
2037
2038 /* Should never happen but for bugs in other kernel subsystems */
2039 if (!page_has_buffers(page)) {
2040 ext4_warning_inode(inode,
2041 "page %lu does not have buffers attached", page->index);
2042 ClearPageDirty(page);
2043 unlock_page(page);
2044 return 0;
2045 }
2046
2047 page_bufs = page_buffers(page);
2048 /*
2049 * We cannot do block allocation or other extent handling in this
2050 * function. If there are buffers needing that, we have to redirty
2051 * the page. But we may reach here when we do a journal commit via
2052 * journal_submit_inode_data_buffers() and in that case we must write
2053 * allocated buffers to achieve data=ordered mode guarantees.
2054 *
2055 * Also, if there is only one buffer per page (the fs block
2056 * size == the page size), if one buffer needs block
2057 * allocation or needs to modify the extent tree to clear the
2058 * unwritten flag, we know that the page can't be written at
2059 * all, so we might as well refuse the write immediately.
2060 * Unfortunately if the block size != page size, we can't as
2061 * easily detect this case using ext4_walk_page_buffers(), but
2062 * for the extremely common case, this is an optimization that
2063 * skips a useless round trip through ext4_bio_write_page().
2064 */
2065 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2066 ext4_bh_delay_or_unwritten)) {
2067 redirty_page_for_writepage(wbc, page);
2068 if ((current->flags & PF_MEMALLOC) ||
2069 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2070 /*
2071 * For memory cleaning there's no point in writing only
2072 * some buffers. So just bail out. Warn if we came here
2073 * from direct reclaim.
2074 */
2075 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2076 == PF_MEMALLOC);
2077 unlock_page(page);
2078 return 0;
2079 }
2080 keep_towrite = true;
2081 }
2082
2083 if (PageChecked(page) && ext4_should_journal_data(inode))
2084 /*
2085 * It's mmapped pagecache. Add buffers and journal it. There
2086 * doesn't seem much point in redirtying the page here.
2087 */
2088 return __ext4_journalled_writepage(page, len);
2089
2090 ext4_io_submit_init(&io_submit, wbc);
2091 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2092 if (!io_submit.io_end) {
2093 redirty_page_for_writepage(wbc, page);
2094 unlock_page(page);
2095 return -ENOMEM;
2096 }
2097 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2098 ext4_io_submit(&io_submit);
2099 /* Drop io_end reference we got from init */
2100 ext4_put_io_end_defer(io_submit.io_end);
2101 return ret;
2102 }
2103
mpage_submit_page(struct mpage_da_data * mpd,struct page * page)2104 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2105 {
2106 int len;
2107 loff_t size;
2108 int err;
2109
2110 BUG_ON(page->index != mpd->first_page);
2111 clear_page_dirty_for_io(page);
2112 /*
2113 * We have to be very careful here! Nothing protects writeback path
2114 * against i_size changes and the page can be writeably mapped into
2115 * page tables. So an application can be growing i_size and writing
2116 * data through mmap while writeback runs. clear_page_dirty_for_io()
2117 * write-protects our page in page tables and the page cannot get
2118 * written to again until we release page lock. So only after
2119 * clear_page_dirty_for_io() we are safe to sample i_size for
2120 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2121 * on the barrier provided by TestClearPageDirty in
2122 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2123 * after page tables are updated.
2124 */
2125 size = i_size_read(mpd->inode);
2126 if (page->index == size >> PAGE_SHIFT &&
2127 !ext4_verity_in_progress(mpd->inode))
2128 len = size & ~PAGE_MASK;
2129 else
2130 len = PAGE_SIZE;
2131 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2132 if (!err)
2133 mpd->wbc->nr_to_write--;
2134 mpd->first_page++;
2135
2136 return err;
2137 }
2138
2139 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2140
2141 /*
2142 * mballoc gives us at most this number of blocks...
2143 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2144 * The rest of mballoc seems to handle chunks up to full group size.
2145 */
2146 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2147
2148 /*
2149 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2150 *
2151 * @mpd - extent of blocks
2152 * @lblk - logical number of the block in the file
2153 * @bh - buffer head we want to add to the extent
2154 *
2155 * The function is used to collect contig. blocks in the same state. If the
2156 * buffer doesn't require mapping for writeback and we haven't started the
2157 * extent of buffers to map yet, the function returns 'true' immediately - the
2158 * caller can write the buffer right away. Otherwise the function returns true
2159 * if the block has been added to the extent, false if the block couldn't be
2160 * added.
2161 */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)2162 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2163 struct buffer_head *bh)
2164 {
2165 struct ext4_map_blocks *map = &mpd->map;
2166
2167 /* Buffer that doesn't need mapping for writeback? */
2168 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2169 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2170 /* So far no extent to map => we write the buffer right away */
2171 if (map->m_len == 0)
2172 return true;
2173 return false;
2174 }
2175
2176 /* First block in the extent? */
2177 if (map->m_len == 0) {
2178 /* We cannot map unless handle is started... */
2179 if (!mpd->do_map)
2180 return false;
2181 map->m_lblk = lblk;
2182 map->m_len = 1;
2183 map->m_flags = bh->b_state & BH_FLAGS;
2184 return true;
2185 }
2186
2187 /* Don't go larger than mballoc is willing to allocate */
2188 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2189 return false;
2190
2191 /* Can we merge the block to our big extent? */
2192 if (lblk == map->m_lblk + map->m_len &&
2193 (bh->b_state & BH_FLAGS) == map->m_flags) {
2194 map->m_len++;
2195 return true;
2196 }
2197 return false;
2198 }
2199
2200 /*
2201 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2202 *
2203 * @mpd - extent of blocks for mapping
2204 * @head - the first buffer in the page
2205 * @bh - buffer we should start processing from
2206 * @lblk - logical number of the block in the file corresponding to @bh
2207 *
2208 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2209 * the page for IO if all buffers in this page were mapped and there's no
2210 * accumulated extent of buffers to map or add buffers in the page to the
2211 * extent of buffers to map. The function returns 1 if the caller can continue
2212 * by processing the next page, 0 if it should stop adding buffers to the
2213 * extent to map because we cannot extend it anymore. It can also return value
2214 * < 0 in case of error during IO submission.
2215 */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2216 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2217 struct buffer_head *head,
2218 struct buffer_head *bh,
2219 ext4_lblk_t lblk)
2220 {
2221 struct inode *inode = mpd->inode;
2222 int err;
2223 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2224 >> inode->i_blkbits;
2225
2226 if (ext4_verity_in_progress(inode))
2227 blocks = EXT_MAX_BLOCKS;
2228
2229 do {
2230 BUG_ON(buffer_locked(bh));
2231
2232 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2233 /* Found extent to map? */
2234 if (mpd->map.m_len)
2235 return 0;
2236 /* Buffer needs mapping and handle is not started? */
2237 if (!mpd->do_map)
2238 return 0;
2239 /* Everything mapped so far and we hit EOF */
2240 break;
2241 }
2242 } while (lblk++, (bh = bh->b_this_page) != head);
2243 /* So far everything mapped? Submit the page for IO. */
2244 if (mpd->map.m_len == 0) {
2245 err = mpage_submit_page(mpd, head->b_page);
2246 if (err < 0)
2247 return err;
2248 }
2249 if (lblk >= blocks) {
2250 mpd->scanned_until_end = 1;
2251 return 0;
2252 }
2253 return 1;
2254 }
2255
2256 /*
2257 * mpage_process_page - update page buffers corresponding to changed extent and
2258 * may submit fully mapped page for IO
2259 *
2260 * @mpd - description of extent to map, on return next extent to map
2261 * @m_lblk - logical block mapping.
2262 * @m_pblk - corresponding physical mapping.
2263 * @map_bh - determines on return whether this page requires any further
2264 * mapping or not.
2265 * Scan given page buffers corresponding to changed extent and update buffer
2266 * state according to new extent state.
2267 * We map delalloc buffers to their physical location, clear unwritten bits.
2268 * If the given page is not fully mapped, we update @map to the next extent in
2269 * the given page that needs mapping & return @map_bh as true.
2270 */
mpage_process_page(struct mpage_da_data * mpd,struct page * page,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2271 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2272 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2273 bool *map_bh)
2274 {
2275 struct buffer_head *head, *bh;
2276 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2277 ext4_lblk_t lblk = *m_lblk;
2278 ext4_fsblk_t pblock = *m_pblk;
2279 int err = 0;
2280 int blkbits = mpd->inode->i_blkbits;
2281 ssize_t io_end_size = 0;
2282 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2283
2284 bh = head = page_buffers(page);
2285 do {
2286 if (lblk < mpd->map.m_lblk)
2287 continue;
2288 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2289 /*
2290 * Buffer after end of mapped extent.
2291 * Find next buffer in the page to map.
2292 */
2293 mpd->map.m_len = 0;
2294 mpd->map.m_flags = 0;
2295 io_end_vec->size += io_end_size;
2296
2297 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2298 if (err > 0)
2299 err = 0;
2300 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2301 io_end_vec = ext4_alloc_io_end_vec(io_end);
2302 if (IS_ERR(io_end_vec)) {
2303 err = PTR_ERR(io_end_vec);
2304 goto out;
2305 }
2306 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2307 }
2308 *map_bh = true;
2309 goto out;
2310 }
2311 if (buffer_delay(bh)) {
2312 clear_buffer_delay(bh);
2313 bh->b_blocknr = pblock++;
2314 }
2315 clear_buffer_unwritten(bh);
2316 io_end_size += (1 << blkbits);
2317 } while (lblk++, (bh = bh->b_this_page) != head);
2318
2319 io_end_vec->size += io_end_size;
2320 *map_bh = false;
2321 out:
2322 *m_lblk = lblk;
2323 *m_pblk = pblock;
2324 return err;
2325 }
2326
2327 /*
2328 * mpage_map_buffers - update buffers corresponding to changed extent and
2329 * submit fully mapped pages for IO
2330 *
2331 * @mpd - description of extent to map, on return next extent to map
2332 *
2333 * Scan buffers corresponding to changed extent (we expect corresponding pages
2334 * to be already locked) and update buffer state according to new extent state.
2335 * We map delalloc buffers to their physical location, clear unwritten bits,
2336 * and mark buffers as uninit when we perform writes to unwritten extents
2337 * and do extent conversion after IO is finished. If the last page is not fully
2338 * mapped, we update @map to the next extent in the last page that needs
2339 * mapping. Otherwise we submit the page for IO.
2340 */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2341 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2342 {
2343 struct folio_batch fbatch;
2344 unsigned nr, i;
2345 struct inode *inode = mpd->inode;
2346 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2347 pgoff_t start, end;
2348 ext4_lblk_t lblk;
2349 ext4_fsblk_t pblock;
2350 int err;
2351 bool map_bh = false;
2352
2353 start = mpd->map.m_lblk >> bpp_bits;
2354 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2355 lblk = start << bpp_bits;
2356 pblock = mpd->map.m_pblk;
2357
2358 folio_batch_init(&fbatch);
2359 while (start <= end) {
2360 nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2361 if (nr == 0)
2362 break;
2363 for (i = 0; i < nr; i++) {
2364 struct page *page = &fbatch.folios[i]->page;
2365
2366 err = mpage_process_page(mpd, page, &lblk, &pblock,
2367 &map_bh);
2368 /*
2369 * If map_bh is true, means page may require further bh
2370 * mapping, or maybe the page was submitted for IO.
2371 * So we return to call further extent mapping.
2372 */
2373 if (err < 0 || map_bh)
2374 goto out;
2375 /* Page fully mapped - let IO run! */
2376 err = mpage_submit_page(mpd, page);
2377 if (err < 0)
2378 goto out;
2379 }
2380 folio_batch_release(&fbatch);
2381 }
2382 /* Extent fully mapped and matches with page boundary. We are done. */
2383 mpd->map.m_len = 0;
2384 mpd->map.m_flags = 0;
2385 return 0;
2386 out:
2387 folio_batch_release(&fbatch);
2388 return err;
2389 }
2390
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2391 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2392 {
2393 struct inode *inode = mpd->inode;
2394 struct ext4_map_blocks *map = &mpd->map;
2395 int get_blocks_flags;
2396 int err, dioread_nolock;
2397
2398 trace_ext4_da_write_pages_extent(inode, map);
2399 /*
2400 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2401 * to convert an unwritten extent to be initialized (in the case
2402 * where we have written into one or more preallocated blocks). It is
2403 * possible that we're going to need more metadata blocks than
2404 * previously reserved. However we must not fail because we're in
2405 * writeback and there is nothing we can do about it so it might result
2406 * in data loss. So use reserved blocks to allocate metadata if
2407 * possible.
2408 *
2409 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2410 * the blocks in question are delalloc blocks. This indicates
2411 * that the blocks and quotas has already been checked when
2412 * the data was copied into the page cache.
2413 */
2414 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2415 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2416 EXT4_GET_BLOCKS_IO_SUBMIT;
2417 dioread_nolock = ext4_should_dioread_nolock(inode);
2418 if (dioread_nolock)
2419 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2420 if (map->m_flags & BIT(BH_Delay))
2421 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2422
2423 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2424 if (err < 0)
2425 return err;
2426 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2427 if (!mpd->io_submit.io_end->handle &&
2428 ext4_handle_valid(handle)) {
2429 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2430 handle->h_rsv_handle = NULL;
2431 }
2432 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2433 }
2434
2435 BUG_ON(map->m_len == 0);
2436 return 0;
2437 }
2438
2439 /*
2440 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2441 * mpd->len and submit pages underlying it for IO
2442 *
2443 * @handle - handle for journal operations
2444 * @mpd - extent to map
2445 * @give_up_on_write - we set this to true iff there is a fatal error and there
2446 * is no hope of writing the data. The caller should discard
2447 * dirty pages to avoid infinite loops.
2448 *
2449 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2450 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2451 * them to initialized or split the described range from larger unwritten
2452 * extent. Note that we need not map all the described range since allocation
2453 * can return less blocks or the range is covered by more unwritten extents. We
2454 * cannot map more because we are limited by reserved transaction credits. On
2455 * the other hand we always make sure that the last touched page is fully
2456 * mapped so that it can be written out (and thus forward progress is
2457 * guaranteed). After mapping we submit all mapped pages for IO.
2458 */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2459 static int mpage_map_and_submit_extent(handle_t *handle,
2460 struct mpage_da_data *mpd,
2461 bool *give_up_on_write)
2462 {
2463 struct inode *inode = mpd->inode;
2464 struct ext4_map_blocks *map = &mpd->map;
2465 int err;
2466 loff_t disksize;
2467 int progress = 0;
2468 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2469 struct ext4_io_end_vec *io_end_vec;
2470
2471 io_end_vec = ext4_alloc_io_end_vec(io_end);
2472 if (IS_ERR(io_end_vec))
2473 return PTR_ERR(io_end_vec);
2474 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2475 do {
2476 err = mpage_map_one_extent(handle, mpd);
2477 if (err < 0) {
2478 struct super_block *sb = inode->i_sb;
2479
2480 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2481 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2482 goto invalidate_dirty_pages;
2483 /*
2484 * Let the uper layers retry transient errors.
2485 * In the case of ENOSPC, if ext4_count_free_blocks()
2486 * is non-zero, a commit should free up blocks.
2487 */
2488 if ((err == -ENOMEM) ||
2489 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2490 if (progress)
2491 goto update_disksize;
2492 return err;
2493 }
2494 ext4_msg(sb, KERN_CRIT,
2495 "Delayed block allocation failed for "
2496 "inode %lu at logical offset %llu with"
2497 " max blocks %u with error %d",
2498 inode->i_ino,
2499 (unsigned long long)map->m_lblk,
2500 (unsigned)map->m_len, -err);
2501 ext4_msg(sb, KERN_CRIT,
2502 "This should not happen!! Data will "
2503 "be lost\n");
2504 if (err == -ENOSPC)
2505 ext4_print_free_blocks(inode);
2506 invalidate_dirty_pages:
2507 *give_up_on_write = true;
2508 return err;
2509 }
2510 progress = 1;
2511 /*
2512 * Update buffer state, submit mapped pages, and get us new
2513 * extent to map
2514 */
2515 err = mpage_map_and_submit_buffers(mpd);
2516 if (err < 0)
2517 goto update_disksize;
2518 } while (map->m_len);
2519
2520 update_disksize:
2521 /*
2522 * Update on-disk size after IO is submitted. Races with
2523 * truncate are avoided by checking i_size under i_data_sem.
2524 */
2525 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2526 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2527 int err2;
2528 loff_t i_size;
2529
2530 down_write(&EXT4_I(inode)->i_data_sem);
2531 i_size = i_size_read(inode);
2532 if (disksize > i_size)
2533 disksize = i_size;
2534 if (disksize > EXT4_I(inode)->i_disksize)
2535 EXT4_I(inode)->i_disksize = disksize;
2536 up_write(&EXT4_I(inode)->i_data_sem);
2537 err2 = ext4_mark_inode_dirty(handle, inode);
2538 if (err2) {
2539 ext4_error_err(inode->i_sb, -err2,
2540 "Failed to mark inode %lu dirty",
2541 inode->i_ino);
2542 }
2543 if (!err)
2544 err = err2;
2545 }
2546 return err;
2547 }
2548
2549 /*
2550 * Calculate the total number of credits to reserve for one writepages
2551 * iteration. This is called from ext4_writepages(). We map an extent of
2552 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2553 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2554 * bpp - 1 blocks in bpp different extents.
2555 */
ext4_da_writepages_trans_blocks(struct inode * inode)2556 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2557 {
2558 int bpp = ext4_journal_blocks_per_page(inode);
2559
2560 return ext4_meta_trans_blocks(inode,
2561 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2562 }
2563
2564 /*
2565 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2566 * and underlying extent to map
2567 *
2568 * @mpd - where to look for pages
2569 *
2570 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2571 * IO immediately. When we find a page which isn't mapped we start accumulating
2572 * extent of buffers underlying these pages that needs mapping (formed by
2573 * either delayed or unwritten buffers). We also lock the pages containing
2574 * these buffers. The extent found is returned in @mpd structure (starting at
2575 * mpd->lblk with length mpd->len blocks).
2576 *
2577 * Note that this function can attach bios to one io_end structure which are
2578 * neither logically nor physically contiguous. Although it may seem as an
2579 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2580 * case as we need to track IO to all buffers underlying a page in one io_end.
2581 */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2582 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2583 {
2584 struct address_space *mapping = mpd->inode->i_mapping;
2585 struct pagevec pvec;
2586 unsigned int nr_pages;
2587 long left = mpd->wbc->nr_to_write;
2588 pgoff_t index = mpd->first_page;
2589 pgoff_t end = mpd->last_page;
2590 xa_mark_t tag;
2591 int i, err = 0;
2592 int blkbits = mpd->inode->i_blkbits;
2593 ext4_lblk_t lblk;
2594 struct buffer_head *head;
2595
2596 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2597 tag = PAGECACHE_TAG_TOWRITE;
2598 else
2599 tag = PAGECACHE_TAG_DIRTY;
2600
2601 pagevec_init(&pvec);
2602 mpd->map.m_len = 0;
2603 mpd->next_page = index;
2604 while (index <= end) {
2605 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2606 tag);
2607 if (nr_pages == 0)
2608 break;
2609
2610 for (i = 0; i < nr_pages; i++) {
2611 struct page *page = pvec.pages[i];
2612
2613 /*
2614 * Accumulated enough dirty pages? This doesn't apply
2615 * to WB_SYNC_ALL mode. For integrity sync we have to
2616 * keep going because someone may be concurrently
2617 * dirtying pages, and we might have synced a lot of
2618 * newly appeared dirty pages, but have not synced all
2619 * of the old dirty pages.
2620 */
2621 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2622 goto out;
2623
2624 /* If we can't merge this page, we are done. */
2625 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2626 goto out;
2627
2628 lock_page(page);
2629 /*
2630 * If the page is no longer dirty, or its mapping no
2631 * longer corresponds to inode we are writing (which
2632 * means it has been truncated or invalidated), or the
2633 * page is already under writeback and we are not doing
2634 * a data integrity writeback, skip the page
2635 */
2636 if (!PageDirty(page) ||
2637 (PageWriteback(page) &&
2638 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2639 unlikely(page->mapping != mapping)) {
2640 unlock_page(page);
2641 continue;
2642 }
2643
2644 wait_on_page_writeback(page);
2645 BUG_ON(PageWriteback(page));
2646
2647 /*
2648 * Should never happen but for buggy code in
2649 * other subsystems that call
2650 * set_page_dirty() without properly warning
2651 * the file system first. See [1] for more
2652 * information.
2653 *
2654 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2655 */
2656 if (!page_has_buffers(page)) {
2657 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2658 ClearPageDirty(page);
2659 unlock_page(page);
2660 continue;
2661 }
2662
2663 if (mpd->map.m_len == 0)
2664 mpd->first_page = page->index;
2665 mpd->next_page = page->index + 1;
2666 /* Add all dirty buffers to mpd */
2667 lblk = ((ext4_lblk_t)page->index) <<
2668 (PAGE_SHIFT - blkbits);
2669 head = page_buffers(page);
2670 err = mpage_process_page_bufs(mpd, head, head, lblk);
2671 if (err <= 0)
2672 goto out;
2673 err = 0;
2674 left--;
2675 }
2676 pagevec_release(&pvec);
2677 cond_resched();
2678 }
2679 mpd->scanned_until_end = 1;
2680 return 0;
2681 out:
2682 pagevec_release(&pvec);
2683 return err;
2684 }
2685
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2686 static int ext4_writepages(struct address_space *mapping,
2687 struct writeback_control *wbc)
2688 {
2689 pgoff_t writeback_index = 0;
2690 long nr_to_write = wbc->nr_to_write;
2691 int range_whole = 0;
2692 int cycled = 1;
2693 handle_t *handle = NULL;
2694 struct mpage_da_data mpd;
2695 struct inode *inode = mapping->host;
2696 int needed_blocks, rsv_blocks = 0, ret = 0;
2697 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2698 struct blk_plug plug;
2699 bool give_up_on_write = false;
2700
2701 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2702 return -EIO;
2703
2704 percpu_down_read(&sbi->s_writepages_rwsem);
2705 trace_ext4_writepages(inode, wbc);
2706
2707 /*
2708 * No pages to write? This is mainly a kludge to avoid starting
2709 * a transaction for special inodes like journal inode on last iput()
2710 * because that could violate lock ordering on umount
2711 */
2712 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2713 goto out_writepages;
2714
2715 if (ext4_should_journal_data(inode)) {
2716 ret = generic_writepages(mapping, wbc);
2717 goto out_writepages;
2718 }
2719
2720 /*
2721 * If the filesystem has aborted, it is read-only, so return
2722 * right away instead of dumping stack traces later on that
2723 * will obscure the real source of the problem. We test
2724 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2725 * the latter could be true if the filesystem is mounted
2726 * read-only, and in that case, ext4_writepages should
2727 * *never* be called, so if that ever happens, we would want
2728 * the stack trace.
2729 */
2730 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2731 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2732 ret = -EROFS;
2733 goto out_writepages;
2734 }
2735
2736 /*
2737 * If we have inline data and arrive here, it means that
2738 * we will soon create the block for the 1st page, so
2739 * we'd better clear the inline data here.
2740 */
2741 if (ext4_has_inline_data(inode)) {
2742 /* Just inode will be modified... */
2743 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2744 if (IS_ERR(handle)) {
2745 ret = PTR_ERR(handle);
2746 goto out_writepages;
2747 }
2748 BUG_ON(ext4_test_inode_state(inode,
2749 EXT4_STATE_MAY_INLINE_DATA));
2750 ext4_destroy_inline_data(handle, inode);
2751 ext4_journal_stop(handle);
2752 }
2753
2754 if (ext4_should_dioread_nolock(inode)) {
2755 /*
2756 * We may need to convert up to one extent per block in
2757 * the page and we may dirty the inode.
2758 */
2759 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2760 PAGE_SIZE >> inode->i_blkbits);
2761 }
2762
2763 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2764 range_whole = 1;
2765
2766 if (wbc->range_cyclic) {
2767 writeback_index = mapping->writeback_index;
2768 if (writeback_index)
2769 cycled = 0;
2770 mpd.first_page = writeback_index;
2771 mpd.last_page = -1;
2772 } else {
2773 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2774 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2775 }
2776
2777 mpd.inode = inode;
2778 mpd.wbc = wbc;
2779 ext4_io_submit_init(&mpd.io_submit, wbc);
2780 retry:
2781 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2782 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2783 blk_start_plug(&plug);
2784
2785 /*
2786 * First writeback pages that don't need mapping - we can avoid
2787 * starting a transaction unnecessarily and also avoid being blocked
2788 * in the block layer on device congestion while having transaction
2789 * started.
2790 */
2791 mpd.do_map = 0;
2792 mpd.scanned_until_end = 0;
2793 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2794 if (!mpd.io_submit.io_end) {
2795 ret = -ENOMEM;
2796 goto unplug;
2797 }
2798 ret = mpage_prepare_extent_to_map(&mpd);
2799 /* Unlock pages we didn't use */
2800 mpage_release_unused_pages(&mpd, false);
2801 /* Submit prepared bio */
2802 ext4_io_submit(&mpd.io_submit);
2803 ext4_put_io_end_defer(mpd.io_submit.io_end);
2804 mpd.io_submit.io_end = NULL;
2805 if (ret < 0)
2806 goto unplug;
2807
2808 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2809 /* For each extent of pages we use new io_end */
2810 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2811 if (!mpd.io_submit.io_end) {
2812 ret = -ENOMEM;
2813 break;
2814 }
2815
2816 /*
2817 * We have two constraints: We find one extent to map and we
2818 * must always write out whole page (makes a difference when
2819 * blocksize < pagesize) so that we don't block on IO when we
2820 * try to write out the rest of the page. Journalled mode is
2821 * not supported by delalloc.
2822 */
2823 BUG_ON(ext4_should_journal_data(inode));
2824 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2825
2826 /* start a new transaction */
2827 handle = ext4_journal_start_with_reserve(inode,
2828 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2829 if (IS_ERR(handle)) {
2830 ret = PTR_ERR(handle);
2831 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2832 "%ld pages, ino %lu; err %d", __func__,
2833 wbc->nr_to_write, inode->i_ino, ret);
2834 /* Release allocated io_end */
2835 ext4_put_io_end(mpd.io_submit.io_end);
2836 mpd.io_submit.io_end = NULL;
2837 break;
2838 }
2839 mpd.do_map = 1;
2840
2841 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2842 ret = mpage_prepare_extent_to_map(&mpd);
2843 if (!ret && mpd.map.m_len)
2844 ret = mpage_map_and_submit_extent(handle, &mpd,
2845 &give_up_on_write);
2846 /*
2847 * Caution: If the handle is synchronous,
2848 * ext4_journal_stop() can wait for transaction commit
2849 * to finish which may depend on writeback of pages to
2850 * complete or on page lock to be released. In that
2851 * case, we have to wait until after we have
2852 * submitted all the IO, released page locks we hold,
2853 * and dropped io_end reference (for extent conversion
2854 * to be able to complete) before stopping the handle.
2855 */
2856 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2857 ext4_journal_stop(handle);
2858 handle = NULL;
2859 mpd.do_map = 0;
2860 }
2861 /* Unlock pages we didn't use */
2862 mpage_release_unused_pages(&mpd, give_up_on_write);
2863 /* Submit prepared bio */
2864 ext4_io_submit(&mpd.io_submit);
2865
2866 /*
2867 * Drop our io_end reference we got from init. We have
2868 * to be careful and use deferred io_end finishing if
2869 * we are still holding the transaction as we can
2870 * release the last reference to io_end which may end
2871 * up doing unwritten extent conversion.
2872 */
2873 if (handle) {
2874 ext4_put_io_end_defer(mpd.io_submit.io_end);
2875 ext4_journal_stop(handle);
2876 } else
2877 ext4_put_io_end(mpd.io_submit.io_end);
2878 mpd.io_submit.io_end = NULL;
2879
2880 if (ret == -ENOSPC && sbi->s_journal) {
2881 /*
2882 * Commit the transaction which would
2883 * free blocks released in the transaction
2884 * and try again
2885 */
2886 jbd2_journal_force_commit_nested(sbi->s_journal);
2887 ret = 0;
2888 continue;
2889 }
2890 /* Fatal error - ENOMEM, EIO... */
2891 if (ret)
2892 break;
2893 }
2894 unplug:
2895 blk_finish_plug(&plug);
2896 if (!ret && !cycled && wbc->nr_to_write > 0) {
2897 cycled = 1;
2898 mpd.last_page = writeback_index - 1;
2899 mpd.first_page = 0;
2900 goto retry;
2901 }
2902
2903 /* Update index */
2904 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2905 /*
2906 * Set the writeback_index so that range_cyclic
2907 * mode will write it back later
2908 */
2909 mapping->writeback_index = mpd.first_page;
2910
2911 out_writepages:
2912 trace_ext4_writepages_result(inode, wbc, ret,
2913 nr_to_write - wbc->nr_to_write);
2914 percpu_up_read(&sbi->s_writepages_rwsem);
2915 return ret;
2916 }
2917
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2918 static int ext4_dax_writepages(struct address_space *mapping,
2919 struct writeback_control *wbc)
2920 {
2921 int ret;
2922 long nr_to_write = wbc->nr_to_write;
2923 struct inode *inode = mapping->host;
2924 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2925
2926 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2927 return -EIO;
2928
2929 percpu_down_read(&sbi->s_writepages_rwsem);
2930 trace_ext4_writepages(inode, wbc);
2931
2932 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2933 trace_ext4_writepages_result(inode, wbc, ret,
2934 nr_to_write - wbc->nr_to_write);
2935 percpu_up_read(&sbi->s_writepages_rwsem);
2936 return ret;
2937 }
2938
ext4_nonda_switch(struct super_block * sb)2939 static int ext4_nonda_switch(struct super_block *sb)
2940 {
2941 s64 free_clusters, dirty_clusters;
2942 struct ext4_sb_info *sbi = EXT4_SB(sb);
2943
2944 /*
2945 * switch to non delalloc mode if we are running low
2946 * on free block. The free block accounting via percpu
2947 * counters can get slightly wrong with percpu_counter_batch getting
2948 * accumulated on each CPU without updating global counters
2949 * Delalloc need an accurate free block accounting. So switch
2950 * to non delalloc when we are near to error range.
2951 */
2952 free_clusters =
2953 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2954 dirty_clusters =
2955 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2956 /*
2957 * Start pushing delalloc when 1/2 of free blocks are dirty.
2958 */
2959 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2960 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2961
2962 if (2 * free_clusters < 3 * dirty_clusters ||
2963 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2964 /*
2965 * free block count is less than 150% of dirty blocks
2966 * or free blocks is less than watermark
2967 */
2968 return 1;
2969 }
2970 return 0;
2971 }
2972
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2973 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2974 loff_t pos, unsigned len,
2975 struct page **pagep, void **fsdata)
2976 {
2977 int ret, retries = 0;
2978 struct page *page;
2979 pgoff_t index;
2980 struct inode *inode = mapping->host;
2981
2982 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2983 return -EIO;
2984
2985 index = pos >> PAGE_SHIFT;
2986
2987 if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2988 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2989 return ext4_write_begin(file, mapping, pos,
2990 len, pagep, fsdata);
2991 }
2992 *fsdata = (void *)0;
2993 trace_ext4_da_write_begin(inode, pos, len);
2994
2995 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2996 ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2997 pagep, fsdata);
2998 if (ret < 0)
2999 return ret;
3000 if (ret == 1)
3001 return 0;
3002 }
3003
3004 retry:
3005 page = grab_cache_page_write_begin(mapping, index);
3006 if (!page)
3007 return -ENOMEM;
3008
3009 /* In case writeback began while the page was unlocked */
3010 wait_for_stable_page(page);
3011
3012 #ifdef CONFIG_FS_ENCRYPTION
3013 ret = ext4_block_write_begin(page, pos, len,
3014 ext4_da_get_block_prep);
3015 #else
3016 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3017 #endif
3018 if (ret < 0) {
3019 unlock_page(page);
3020 put_page(page);
3021 /*
3022 * block_write_begin may have instantiated a few blocks
3023 * outside i_size. Trim these off again. Don't need
3024 * i_size_read because we hold inode lock.
3025 */
3026 if (pos + len > inode->i_size)
3027 ext4_truncate_failed_write(inode);
3028
3029 if (ret == -ENOSPC &&
3030 ext4_should_retry_alloc(inode->i_sb, &retries))
3031 goto retry;
3032 return ret;
3033 }
3034
3035 *pagep = page;
3036 return ret;
3037 }
3038
3039 /*
3040 * Check if we should update i_disksize
3041 * when write to the end of file but not require block allocation
3042 */
ext4_da_should_update_i_disksize(struct page * page,unsigned long offset)3043 static int ext4_da_should_update_i_disksize(struct page *page,
3044 unsigned long offset)
3045 {
3046 struct buffer_head *bh;
3047 struct inode *inode = page->mapping->host;
3048 unsigned int idx;
3049 int i;
3050
3051 bh = page_buffers(page);
3052 idx = offset >> inode->i_blkbits;
3053
3054 for (i = 0; i < idx; i++)
3055 bh = bh->b_this_page;
3056
3057 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3058 return 0;
3059 return 1;
3060 }
3061
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)3062 static int ext4_da_write_end(struct file *file,
3063 struct address_space *mapping,
3064 loff_t pos, unsigned len, unsigned copied,
3065 struct page *page, void *fsdata)
3066 {
3067 struct inode *inode = mapping->host;
3068 loff_t new_i_size;
3069 unsigned long start, end;
3070 int write_mode = (int)(unsigned long)fsdata;
3071
3072 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3073 return ext4_write_end(file, mapping, pos,
3074 len, copied, page, fsdata);
3075
3076 trace_ext4_da_write_end(inode, pos, len, copied);
3077
3078 if (write_mode != CONVERT_INLINE_DATA &&
3079 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3080 ext4_has_inline_data(inode))
3081 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3082
3083 if (unlikely(copied < len) && !PageUptodate(page))
3084 copied = 0;
3085
3086 start = pos & (PAGE_SIZE - 1);
3087 end = start + copied - 1;
3088
3089 /*
3090 * Since we are holding inode lock, we are sure i_disksize <=
3091 * i_size. We also know that if i_disksize < i_size, there are
3092 * delalloc writes pending in the range upto i_size. If the end of
3093 * the current write is <= i_size, there's no need to touch
3094 * i_disksize since writeback will push i_disksize upto i_size
3095 * eventually. If the end of the current write is > i_size and
3096 * inside an allocated block (ext4_da_should_update_i_disksize()
3097 * check), we need to update i_disksize here as neither
3098 * ext4_writepage() nor certain ext4_writepages() paths not
3099 * allocating blocks update i_disksize.
3100 *
3101 * Note that we defer inode dirtying to generic_write_end() /
3102 * ext4_da_write_inline_data_end().
3103 */
3104 new_i_size = pos + copied;
3105 if (copied && new_i_size > inode->i_size &&
3106 ext4_da_should_update_i_disksize(page, end))
3107 ext4_update_i_disksize(inode, new_i_size);
3108
3109 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3110 }
3111
3112 /*
3113 * Force all delayed allocation blocks to be allocated for a given inode.
3114 */
ext4_alloc_da_blocks(struct inode * inode)3115 int ext4_alloc_da_blocks(struct inode *inode)
3116 {
3117 trace_ext4_alloc_da_blocks(inode);
3118
3119 if (!EXT4_I(inode)->i_reserved_data_blocks)
3120 return 0;
3121
3122 /*
3123 * We do something simple for now. The filemap_flush() will
3124 * also start triggering a write of the data blocks, which is
3125 * not strictly speaking necessary (and for users of
3126 * laptop_mode, not even desirable). However, to do otherwise
3127 * would require replicating code paths in:
3128 *
3129 * ext4_writepages() ->
3130 * write_cache_pages() ---> (via passed in callback function)
3131 * __mpage_da_writepage() -->
3132 * mpage_add_bh_to_extent()
3133 * mpage_da_map_blocks()
3134 *
3135 * The problem is that write_cache_pages(), located in
3136 * mm/page-writeback.c, marks pages clean in preparation for
3137 * doing I/O, which is not desirable if we're not planning on
3138 * doing I/O at all.
3139 *
3140 * We could call write_cache_pages(), and then redirty all of
3141 * the pages by calling redirty_page_for_writepage() but that
3142 * would be ugly in the extreme. So instead we would need to
3143 * replicate parts of the code in the above functions,
3144 * simplifying them because we wouldn't actually intend to
3145 * write out the pages, but rather only collect contiguous
3146 * logical block extents, call the multi-block allocator, and
3147 * then update the buffer heads with the block allocations.
3148 *
3149 * For now, though, we'll cheat by calling filemap_flush(),
3150 * which will map the blocks, and start the I/O, but not
3151 * actually wait for the I/O to complete.
3152 */
3153 return filemap_flush(inode->i_mapping);
3154 }
3155
3156 /*
3157 * bmap() is special. It gets used by applications such as lilo and by
3158 * the swapper to find the on-disk block of a specific piece of data.
3159 *
3160 * Naturally, this is dangerous if the block concerned is still in the
3161 * journal. If somebody makes a swapfile on an ext4 data-journaling
3162 * filesystem and enables swap, then they may get a nasty shock when the
3163 * data getting swapped to that swapfile suddenly gets overwritten by
3164 * the original zero's written out previously to the journal and
3165 * awaiting writeback in the kernel's buffer cache.
3166 *
3167 * So, if we see any bmap calls here on a modified, data-journaled file,
3168 * take extra steps to flush any blocks which might be in the cache.
3169 */
ext4_bmap(struct address_space * mapping,sector_t block)3170 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3171 {
3172 struct inode *inode = mapping->host;
3173 journal_t *journal;
3174 sector_t ret = 0;
3175 int err;
3176
3177 inode_lock_shared(inode);
3178 /*
3179 * We can get here for an inline file via the FIBMAP ioctl
3180 */
3181 if (ext4_has_inline_data(inode))
3182 goto out;
3183
3184 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3185 test_opt(inode->i_sb, DELALLOC)) {
3186 /*
3187 * With delalloc we want to sync the file
3188 * so that we can make sure we allocate
3189 * blocks for file
3190 */
3191 filemap_write_and_wait(mapping);
3192 }
3193
3194 if (EXT4_JOURNAL(inode) &&
3195 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3196 /*
3197 * This is a REALLY heavyweight approach, but the use of
3198 * bmap on dirty files is expected to be extremely rare:
3199 * only if we run lilo or swapon on a freshly made file
3200 * do we expect this to happen.
3201 *
3202 * (bmap requires CAP_SYS_RAWIO so this does not
3203 * represent an unprivileged user DOS attack --- we'd be
3204 * in trouble if mortal users could trigger this path at
3205 * will.)
3206 *
3207 * NB. EXT4_STATE_JDATA is not set on files other than
3208 * regular files. If somebody wants to bmap a directory
3209 * or symlink and gets confused because the buffer
3210 * hasn't yet been flushed to disk, they deserve
3211 * everything they get.
3212 */
3213
3214 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3215 journal = EXT4_JOURNAL(inode);
3216 jbd2_journal_lock_updates(journal);
3217 err = jbd2_journal_flush(journal, 0);
3218 jbd2_journal_unlock_updates(journal);
3219
3220 if (err)
3221 goto out;
3222 }
3223
3224 ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3225
3226 out:
3227 inode_unlock_shared(inode);
3228 return ret;
3229 }
3230
ext4_read_folio(struct file * file,struct folio * folio)3231 static int ext4_read_folio(struct file *file, struct folio *folio)
3232 {
3233 struct page *page = &folio->page;
3234 int ret = -EAGAIN;
3235 struct inode *inode = page->mapping->host;
3236
3237 trace_ext4_readpage(page);
3238
3239 if (ext4_has_inline_data(inode))
3240 ret = ext4_readpage_inline(inode, page);
3241
3242 if (ret == -EAGAIN)
3243 return ext4_mpage_readpages(inode, NULL, page);
3244
3245 return ret;
3246 }
3247
ext4_readahead(struct readahead_control * rac)3248 static void ext4_readahead(struct readahead_control *rac)
3249 {
3250 struct inode *inode = rac->mapping->host;
3251
3252 /* If the file has inline data, no need to do readahead. */
3253 if (ext4_has_inline_data(inode))
3254 return;
3255
3256 ext4_mpage_readpages(inode, rac, NULL);
3257 }
3258
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3259 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3260 size_t length)
3261 {
3262 trace_ext4_invalidate_folio(folio, offset, length);
3263
3264 /* No journalling happens on data buffers when this function is used */
3265 WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3266
3267 block_invalidate_folio(folio, offset, length);
3268 }
3269
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3270 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3271 size_t offset, size_t length)
3272 {
3273 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3274
3275 trace_ext4_journalled_invalidate_folio(folio, offset, length);
3276
3277 /*
3278 * If it's a full truncate we just forget about the pending dirtying
3279 */
3280 if (offset == 0 && length == folio_size(folio))
3281 folio_clear_checked(folio);
3282
3283 return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3284 }
3285
3286 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3287 static void ext4_journalled_invalidate_folio(struct folio *folio,
3288 size_t offset,
3289 size_t length)
3290 {
3291 WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3292 }
3293
ext4_release_folio(struct folio * folio,gfp_t wait)3294 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3295 {
3296 journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3297
3298 trace_ext4_releasepage(&folio->page);
3299
3300 /* Page has dirty journalled data -> cannot release */
3301 if (folio_test_checked(folio))
3302 return false;
3303 if (journal)
3304 return jbd2_journal_try_to_free_buffers(journal, folio);
3305 else
3306 return try_to_free_buffers(folio);
3307 }
3308
ext4_inode_datasync_dirty(struct inode * inode)3309 static bool ext4_inode_datasync_dirty(struct inode *inode)
3310 {
3311 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3312
3313 if (journal) {
3314 if (jbd2_transaction_committed(journal,
3315 EXT4_I(inode)->i_datasync_tid))
3316 return false;
3317 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3318 return !list_empty(&EXT4_I(inode)->i_fc_list);
3319 return true;
3320 }
3321
3322 /* Any metadata buffers to write? */
3323 if (!list_empty(&inode->i_mapping->private_list))
3324 return true;
3325 return inode->i_state & I_DIRTY_DATASYNC;
3326 }
3327
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3328 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3329 struct ext4_map_blocks *map, loff_t offset,
3330 loff_t length, unsigned int flags)
3331 {
3332 u8 blkbits = inode->i_blkbits;
3333
3334 /*
3335 * Writes that span EOF might trigger an I/O size update on completion,
3336 * so consider them to be dirty for the purpose of O_DSYNC, even if
3337 * there is no other metadata changes being made or are pending.
3338 */
3339 iomap->flags = 0;
3340 if (ext4_inode_datasync_dirty(inode) ||
3341 offset + length > i_size_read(inode))
3342 iomap->flags |= IOMAP_F_DIRTY;
3343
3344 if (map->m_flags & EXT4_MAP_NEW)
3345 iomap->flags |= IOMAP_F_NEW;
3346
3347 if (flags & IOMAP_DAX)
3348 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3349 else
3350 iomap->bdev = inode->i_sb->s_bdev;
3351 iomap->offset = (u64) map->m_lblk << blkbits;
3352 iomap->length = (u64) map->m_len << blkbits;
3353
3354 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3355 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3356 iomap->flags |= IOMAP_F_MERGED;
3357
3358 /*
3359 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3360 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3361 * set. In order for any allocated unwritten extents to be converted
3362 * into written extents correctly within the ->end_io() handler, we
3363 * need to ensure that the iomap->type is set appropriately. Hence, the
3364 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3365 * been set first.
3366 */
3367 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3368 iomap->type = IOMAP_UNWRITTEN;
3369 iomap->addr = (u64) map->m_pblk << blkbits;
3370 if (flags & IOMAP_DAX)
3371 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3372 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3373 iomap->type = IOMAP_MAPPED;
3374 iomap->addr = (u64) map->m_pblk << blkbits;
3375 if (flags & IOMAP_DAX)
3376 iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3377 } else {
3378 iomap->type = IOMAP_HOLE;
3379 iomap->addr = IOMAP_NULL_ADDR;
3380 }
3381 }
3382
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3383 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3384 unsigned int flags)
3385 {
3386 handle_t *handle;
3387 u8 blkbits = inode->i_blkbits;
3388 int ret, dio_credits, m_flags = 0, retries = 0;
3389
3390 /*
3391 * Trim the mapping request to the maximum value that we can map at
3392 * once for direct I/O.
3393 */
3394 if (map->m_len > DIO_MAX_BLOCKS)
3395 map->m_len = DIO_MAX_BLOCKS;
3396 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3397
3398 retry:
3399 /*
3400 * Either we allocate blocks and then don't get an unwritten extent, so
3401 * in that case we have reserved enough credits. Or, the blocks are
3402 * already allocated and unwritten. In that case, the extent conversion
3403 * fits into the credits as well.
3404 */
3405 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3406 if (IS_ERR(handle))
3407 return PTR_ERR(handle);
3408
3409 /*
3410 * DAX and direct I/O are the only two operations that are currently
3411 * supported with IOMAP_WRITE.
3412 */
3413 WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3414 if (flags & IOMAP_DAX)
3415 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3416 /*
3417 * We use i_size instead of i_disksize here because delalloc writeback
3418 * can complete at any point during the I/O and subsequently push the
3419 * i_disksize out to i_size. This could be beyond where direct I/O is
3420 * happening and thus expose allocated blocks to direct I/O reads.
3421 */
3422 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3423 m_flags = EXT4_GET_BLOCKS_CREATE;
3424 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3425 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3426
3427 ret = ext4_map_blocks(handle, inode, map, m_flags);
3428
3429 /*
3430 * We cannot fill holes in indirect tree based inodes as that could
3431 * expose stale data in the case of a crash. Use the magic error code
3432 * to fallback to buffered I/O.
3433 */
3434 if (!m_flags && !ret)
3435 ret = -ENOTBLK;
3436
3437 ext4_journal_stop(handle);
3438 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3439 goto retry;
3440
3441 return ret;
3442 }
3443
3444
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3445 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3446 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3447 {
3448 int ret;
3449 struct ext4_map_blocks map;
3450 u8 blkbits = inode->i_blkbits;
3451
3452 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3453 return -EINVAL;
3454
3455 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3456 return -ERANGE;
3457
3458 /*
3459 * Calculate the first and last logical blocks respectively.
3460 */
3461 map.m_lblk = offset >> blkbits;
3462 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3463 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3464
3465 if (flags & IOMAP_WRITE) {
3466 /*
3467 * We check here if the blocks are already allocated, then we
3468 * don't need to start a journal txn and we can directly return
3469 * the mapping information. This could boost performance
3470 * especially in multi-threaded overwrite requests.
3471 */
3472 if (offset + length <= i_size_read(inode)) {
3473 ret = ext4_map_blocks(NULL, inode, &map, 0);
3474 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3475 goto out;
3476 }
3477 ret = ext4_iomap_alloc(inode, &map, flags);
3478 } else {
3479 ret = ext4_map_blocks(NULL, inode, &map, 0);
3480 }
3481
3482 if (ret < 0)
3483 return ret;
3484 out:
3485 /*
3486 * When inline encryption is enabled, sometimes I/O to an encrypted file
3487 * has to be broken up to guarantee DUN contiguity. Handle this by
3488 * limiting the length of the mapping returned.
3489 */
3490 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3491
3492 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3493
3494 return 0;
3495 }
3496
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3497 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3498 loff_t length, unsigned flags, struct iomap *iomap,
3499 struct iomap *srcmap)
3500 {
3501 int ret;
3502
3503 /*
3504 * Even for writes we don't need to allocate blocks, so just pretend
3505 * we are reading to save overhead of starting a transaction.
3506 */
3507 flags &= ~IOMAP_WRITE;
3508 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3509 WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3510 return ret;
3511 }
3512
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3513 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3514 ssize_t written, unsigned flags, struct iomap *iomap)
3515 {
3516 /*
3517 * Check to see whether an error occurred while writing out the data to
3518 * the allocated blocks. If so, return the magic error code so that we
3519 * fallback to buffered I/O and attempt to complete the remainder of
3520 * the I/O. Any blocks that may have been allocated in preparation for
3521 * the direct I/O will be reused during buffered I/O.
3522 */
3523 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3524 return -ENOTBLK;
3525
3526 return 0;
3527 }
3528
3529 const struct iomap_ops ext4_iomap_ops = {
3530 .iomap_begin = ext4_iomap_begin,
3531 .iomap_end = ext4_iomap_end,
3532 };
3533
3534 const struct iomap_ops ext4_iomap_overwrite_ops = {
3535 .iomap_begin = ext4_iomap_overwrite_begin,
3536 .iomap_end = ext4_iomap_end,
3537 };
3538
ext4_iomap_is_delalloc(struct inode * inode,struct ext4_map_blocks * map)3539 static bool ext4_iomap_is_delalloc(struct inode *inode,
3540 struct ext4_map_blocks *map)
3541 {
3542 struct extent_status es;
3543 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3544
3545 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3546 map->m_lblk, end, &es);
3547
3548 if (!es.es_len || es.es_lblk > end)
3549 return false;
3550
3551 if (es.es_lblk > map->m_lblk) {
3552 map->m_len = es.es_lblk - map->m_lblk;
3553 return false;
3554 }
3555
3556 offset = map->m_lblk - es.es_lblk;
3557 map->m_len = es.es_len - offset;
3558
3559 return true;
3560 }
3561
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3562 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3563 loff_t length, unsigned int flags,
3564 struct iomap *iomap, struct iomap *srcmap)
3565 {
3566 int ret;
3567 bool delalloc = false;
3568 struct ext4_map_blocks map;
3569 u8 blkbits = inode->i_blkbits;
3570
3571 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3572 return -EINVAL;
3573
3574 if (ext4_has_inline_data(inode)) {
3575 ret = ext4_inline_data_iomap(inode, iomap);
3576 if (ret != -EAGAIN) {
3577 if (ret == 0 && offset >= iomap->length)
3578 ret = -ENOENT;
3579 return ret;
3580 }
3581 }
3582
3583 /*
3584 * Calculate the first and last logical block respectively.
3585 */
3586 map.m_lblk = offset >> blkbits;
3587 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3588 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3589
3590 /*
3591 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3592 * So handle it here itself instead of querying ext4_map_blocks().
3593 * Since ext4_map_blocks() will warn about it and will return
3594 * -EIO error.
3595 */
3596 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3597 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3598
3599 if (offset >= sbi->s_bitmap_maxbytes) {
3600 map.m_flags = 0;
3601 goto set_iomap;
3602 }
3603 }
3604
3605 ret = ext4_map_blocks(NULL, inode, &map, 0);
3606 if (ret < 0)
3607 return ret;
3608 if (ret == 0)
3609 delalloc = ext4_iomap_is_delalloc(inode, &map);
3610
3611 set_iomap:
3612 ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3613 if (delalloc && iomap->type == IOMAP_HOLE)
3614 iomap->type = IOMAP_DELALLOC;
3615
3616 return 0;
3617 }
3618
3619 const struct iomap_ops ext4_iomap_report_ops = {
3620 .iomap_begin = ext4_iomap_begin_report,
3621 };
3622
3623 /*
3624 * Whenever the folio is being dirtied, corresponding buffers should already
3625 * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3626 * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3627 * lists here because ->dirty_folio is called under VFS locks and the folio
3628 * is not necessarily locked.
3629 *
3630 * We cannot just dirty the folio and leave attached buffers clean, because the
3631 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3632 * or jbddirty because all the journalling code will explode.
3633 *
3634 * So what we do is to mark the folio "pending dirty" and next time writepage
3635 * is called, propagate that into the buffers appropriately.
3636 */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3637 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3638 struct folio *folio)
3639 {
3640 WARN_ON_ONCE(!folio_buffers(folio));
3641 folio_set_checked(folio);
3642 return filemap_dirty_folio(mapping, folio);
3643 }
3644
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3645 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3646 {
3647 WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3648 WARN_ON_ONCE(!folio_buffers(folio));
3649 return block_dirty_folio(mapping, folio);
3650 }
3651
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3652 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3653 struct file *file, sector_t *span)
3654 {
3655 return iomap_swapfile_activate(sis, file, span,
3656 &ext4_iomap_report_ops);
3657 }
3658
3659 static const struct address_space_operations ext4_aops = {
3660 .read_folio = ext4_read_folio,
3661 .readahead = ext4_readahead,
3662 .writepage = ext4_writepage,
3663 .writepages = ext4_writepages,
3664 .write_begin = ext4_write_begin,
3665 .write_end = ext4_write_end,
3666 .dirty_folio = ext4_dirty_folio,
3667 .bmap = ext4_bmap,
3668 .invalidate_folio = ext4_invalidate_folio,
3669 .release_folio = ext4_release_folio,
3670 .direct_IO = noop_direct_IO,
3671 .migrate_folio = buffer_migrate_folio,
3672 .is_partially_uptodate = block_is_partially_uptodate,
3673 .error_remove_page = generic_error_remove_page,
3674 .swap_activate = ext4_iomap_swap_activate,
3675 };
3676
3677 static const struct address_space_operations ext4_journalled_aops = {
3678 .read_folio = ext4_read_folio,
3679 .readahead = ext4_readahead,
3680 .writepage = ext4_writepage,
3681 .writepages = ext4_writepages,
3682 .write_begin = ext4_write_begin,
3683 .write_end = ext4_journalled_write_end,
3684 .dirty_folio = ext4_journalled_dirty_folio,
3685 .bmap = ext4_bmap,
3686 .invalidate_folio = ext4_journalled_invalidate_folio,
3687 .release_folio = ext4_release_folio,
3688 .direct_IO = noop_direct_IO,
3689 .is_partially_uptodate = block_is_partially_uptodate,
3690 .error_remove_page = generic_error_remove_page,
3691 .swap_activate = ext4_iomap_swap_activate,
3692 };
3693
3694 static const struct address_space_operations ext4_da_aops = {
3695 .read_folio = ext4_read_folio,
3696 .readahead = ext4_readahead,
3697 .writepage = ext4_writepage,
3698 .writepages = ext4_writepages,
3699 .write_begin = ext4_da_write_begin,
3700 .write_end = ext4_da_write_end,
3701 .dirty_folio = ext4_dirty_folio,
3702 .bmap = ext4_bmap,
3703 .invalidate_folio = ext4_invalidate_folio,
3704 .release_folio = ext4_release_folio,
3705 .direct_IO = noop_direct_IO,
3706 .migrate_folio = buffer_migrate_folio,
3707 .is_partially_uptodate = block_is_partially_uptodate,
3708 .error_remove_page = generic_error_remove_page,
3709 .swap_activate = ext4_iomap_swap_activate,
3710 };
3711
3712 static const struct address_space_operations ext4_dax_aops = {
3713 .writepages = ext4_dax_writepages,
3714 .direct_IO = noop_direct_IO,
3715 .dirty_folio = noop_dirty_folio,
3716 .bmap = ext4_bmap,
3717 .swap_activate = ext4_iomap_swap_activate,
3718 };
3719
ext4_set_aops(struct inode * inode)3720 void ext4_set_aops(struct inode *inode)
3721 {
3722 switch (ext4_inode_journal_mode(inode)) {
3723 case EXT4_INODE_ORDERED_DATA_MODE:
3724 case EXT4_INODE_WRITEBACK_DATA_MODE:
3725 break;
3726 case EXT4_INODE_JOURNAL_DATA_MODE:
3727 inode->i_mapping->a_ops = &ext4_journalled_aops;
3728 return;
3729 default:
3730 BUG();
3731 }
3732 if (IS_DAX(inode))
3733 inode->i_mapping->a_ops = &ext4_dax_aops;
3734 else if (test_opt(inode->i_sb, DELALLOC))
3735 inode->i_mapping->a_ops = &ext4_da_aops;
3736 else
3737 inode->i_mapping->a_ops = &ext4_aops;
3738 }
3739
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3740 static int __ext4_block_zero_page_range(handle_t *handle,
3741 struct address_space *mapping, loff_t from, loff_t length)
3742 {
3743 ext4_fsblk_t index = from >> PAGE_SHIFT;
3744 unsigned offset = from & (PAGE_SIZE-1);
3745 unsigned blocksize, pos;
3746 ext4_lblk_t iblock;
3747 struct inode *inode = mapping->host;
3748 struct buffer_head *bh;
3749 struct page *page;
3750 int err = 0;
3751
3752 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3753 mapping_gfp_constraint(mapping, ~__GFP_FS));
3754 if (!page)
3755 return -ENOMEM;
3756
3757 blocksize = inode->i_sb->s_blocksize;
3758
3759 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3760
3761 if (!page_has_buffers(page))
3762 create_empty_buffers(page, blocksize, 0);
3763
3764 /* Find the buffer that contains "offset" */
3765 bh = page_buffers(page);
3766 pos = blocksize;
3767 while (offset >= pos) {
3768 bh = bh->b_this_page;
3769 iblock++;
3770 pos += blocksize;
3771 }
3772 if (buffer_freed(bh)) {
3773 BUFFER_TRACE(bh, "freed: skip");
3774 goto unlock;
3775 }
3776 if (!buffer_mapped(bh)) {
3777 BUFFER_TRACE(bh, "unmapped");
3778 ext4_get_block(inode, iblock, bh, 0);
3779 /* unmapped? It's a hole - nothing to do */
3780 if (!buffer_mapped(bh)) {
3781 BUFFER_TRACE(bh, "still unmapped");
3782 goto unlock;
3783 }
3784 }
3785
3786 /* Ok, it's mapped. Make sure it's up-to-date */
3787 if (PageUptodate(page))
3788 set_buffer_uptodate(bh);
3789
3790 if (!buffer_uptodate(bh)) {
3791 err = ext4_read_bh_lock(bh, 0, true);
3792 if (err)
3793 goto unlock;
3794 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3795 /* We expect the key to be set. */
3796 BUG_ON(!fscrypt_has_encryption_key(inode));
3797 err = fscrypt_decrypt_pagecache_blocks(page_folio(page),
3798 blocksize,
3799 bh_offset(bh));
3800 if (err) {
3801 clear_buffer_uptodate(bh);
3802 goto unlock;
3803 }
3804 }
3805 }
3806 if (ext4_should_journal_data(inode)) {
3807 BUFFER_TRACE(bh, "get write access");
3808 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3809 EXT4_JTR_NONE);
3810 if (err)
3811 goto unlock;
3812 }
3813 zero_user(page, offset, length);
3814 BUFFER_TRACE(bh, "zeroed end of block");
3815
3816 if (ext4_should_journal_data(inode)) {
3817 err = ext4_handle_dirty_metadata(handle, inode, bh);
3818 } else {
3819 err = 0;
3820 mark_buffer_dirty(bh);
3821 if (ext4_should_order_data(inode))
3822 err = ext4_jbd2_inode_add_write(handle, inode, from,
3823 length);
3824 }
3825
3826 unlock:
3827 unlock_page(page);
3828 put_page(page);
3829 return err;
3830 }
3831
3832 /*
3833 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3834 * starting from file offset 'from'. The range to be zero'd must
3835 * be contained with in one block. If the specified range exceeds
3836 * the end of the block it will be shortened to end of the block
3837 * that corresponds to 'from'
3838 */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3839 static int ext4_block_zero_page_range(handle_t *handle,
3840 struct address_space *mapping, loff_t from, loff_t length)
3841 {
3842 struct inode *inode = mapping->host;
3843 unsigned offset = from & (PAGE_SIZE-1);
3844 unsigned blocksize = inode->i_sb->s_blocksize;
3845 unsigned max = blocksize - (offset & (blocksize - 1));
3846
3847 /*
3848 * correct length if it does not fall between
3849 * 'from' and the end of the block
3850 */
3851 if (length > max || length < 0)
3852 length = max;
3853
3854 if (IS_DAX(inode)) {
3855 return dax_zero_range(inode, from, length, NULL,
3856 &ext4_iomap_ops);
3857 }
3858 return __ext4_block_zero_page_range(handle, mapping, from, length);
3859 }
3860
3861 /*
3862 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3863 * up to the end of the block which corresponds to `from'.
3864 * This required during truncate. We need to physically zero the tail end
3865 * of that block so it doesn't yield old data if the file is later grown.
3866 */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3867 static int ext4_block_truncate_page(handle_t *handle,
3868 struct address_space *mapping, loff_t from)
3869 {
3870 unsigned offset = from & (PAGE_SIZE-1);
3871 unsigned length;
3872 unsigned blocksize;
3873 struct inode *inode = mapping->host;
3874
3875 /* If we are processing an encrypted inode during orphan list handling */
3876 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3877 return 0;
3878
3879 blocksize = inode->i_sb->s_blocksize;
3880 length = blocksize - (offset & (blocksize - 1));
3881
3882 return ext4_block_zero_page_range(handle, mapping, from, length);
3883 }
3884
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3885 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3886 loff_t lstart, loff_t length)
3887 {
3888 struct super_block *sb = inode->i_sb;
3889 struct address_space *mapping = inode->i_mapping;
3890 unsigned partial_start, partial_end;
3891 ext4_fsblk_t start, end;
3892 loff_t byte_end = (lstart + length - 1);
3893 int err = 0;
3894
3895 partial_start = lstart & (sb->s_blocksize - 1);
3896 partial_end = byte_end & (sb->s_blocksize - 1);
3897
3898 start = lstart >> sb->s_blocksize_bits;
3899 end = byte_end >> sb->s_blocksize_bits;
3900
3901 /* Handle partial zero within the single block */
3902 if (start == end &&
3903 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3904 err = ext4_block_zero_page_range(handle, mapping,
3905 lstart, length);
3906 return err;
3907 }
3908 /* Handle partial zero out on the start of the range */
3909 if (partial_start) {
3910 err = ext4_block_zero_page_range(handle, mapping,
3911 lstart, sb->s_blocksize);
3912 if (err)
3913 return err;
3914 }
3915 /* Handle partial zero out on the end of the range */
3916 if (partial_end != sb->s_blocksize - 1)
3917 err = ext4_block_zero_page_range(handle, mapping,
3918 byte_end - partial_end,
3919 partial_end + 1);
3920 return err;
3921 }
3922
ext4_can_truncate(struct inode * inode)3923 int ext4_can_truncate(struct inode *inode)
3924 {
3925 if (S_ISREG(inode->i_mode))
3926 return 1;
3927 if (S_ISDIR(inode->i_mode))
3928 return 1;
3929 if (S_ISLNK(inode->i_mode))
3930 return !ext4_inode_is_fast_symlink(inode);
3931 return 0;
3932 }
3933
3934 /*
3935 * We have to make sure i_disksize gets properly updated before we truncate
3936 * page cache due to hole punching or zero range. Otherwise i_disksize update
3937 * can get lost as it may have been postponed to submission of writeback but
3938 * that will never happen after we truncate page cache.
3939 */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3940 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3941 loff_t len)
3942 {
3943 handle_t *handle;
3944 int ret;
3945
3946 loff_t size = i_size_read(inode);
3947
3948 WARN_ON(!inode_is_locked(inode));
3949 if (offset > size || offset + len < size)
3950 return 0;
3951
3952 if (EXT4_I(inode)->i_disksize >= size)
3953 return 0;
3954
3955 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3956 if (IS_ERR(handle))
3957 return PTR_ERR(handle);
3958 ext4_update_i_disksize(inode, size);
3959 ret = ext4_mark_inode_dirty(handle, inode);
3960 ext4_journal_stop(handle);
3961
3962 return ret;
3963 }
3964
ext4_wait_dax_page(struct inode * inode)3965 static void ext4_wait_dax_page(struct inode *inode)
3966 {
3967 filemap_invalidate_unlock(inode->i_mapping);
3968 schedule();
3969 filemap_invalidate_lock(inode->i_mapping);
3970 }
3971
ext4_break_layouts(struct inode * inode)3972 int ext4_break_layouts(struct inode *inode)
3973 {
3974 struct page *page;
3975 int error;
3976
3977 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3978 return -EINVAL;
3979
3980 do {
3981 page = dax_layout_busy_page(inode->i_mapping);
3982 if (!page)
3983 return 0;
3984
3985 error = ___wait_var_event(&page->_refcount,
3986 atomic_read(&page->_refcount) == 1,
3987 TASK_INTERRUPTIBLE, 0, 0,
3988 ext4_wait_dax_page(inode));
3989 } while (error == 0);
3990
3991 return error;
3992 }
3993
3994 /*
3995 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3996 * associated with the given offset and length
3997 *
3998 * @inode: File inode
3999 * @offset: The offset where the hole will begin
4000 * @len: The length of the hole
4001 *
4002 * Returns: 0 on success or negative on failure
4003 */
4004
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4005 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4006 {
4007 struct inode *inode = file_inode(file);
4008 struct super_block *sb = inode->i_sb;
4009 ext4_lblk_t first_block, stop_block;
4010 struct address_space *mapping = inode->i_mapping;
4011 loff_t first_block_offset, last_block_offset, max_length;
4012 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4013 handle_t *handle;
4014 unsigned int credits;
4015 int ret = 0, ret2 = 0;
4016
4017 trace_ext4_punch_hole(inode, offset, length, 0);
4018
4019 /*
4020 * Write out all dirty pages to avoid race conditions
4021 * Then release them.
4022 */
4023 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4024 ret = filemap_write_and_wait_range(mapping, offset,
4025 offset + length - 1);
4026 if (ret)
4027 return ret;
4028 }
4029
4030 inode_lock(inode);
4031
4032 /* No need to punch hole beyond i_size */
4033 if (offset >= inode->i_size)
4034 goto out_mutex;
4035
4036 /*
4037 * If the hole extends beyond i_size, set the hole
4038 * to end after the page that contains i_size
4039 */
4040 if (offset + length > inode->i_size) {
4041 length = inode->i_size +
4042 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4043 offset;
4044 }
4045
4046 /*
4047 * For punch hole the length + offset needs to be within one block
4048 * before last range. Adjust the length if it goes beyond that limit.
4049 */
4050 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4051 if (offset + length > max_length)
4052 length = max_length - offset;
4053
4054 if (offset & (sb->s_blocksize - 1) ||
4055 (offset + length) & (sb->s_blocksize - 1)) {
4056 /*
4057 * Attach jinode to inode for jbd2 if we do any zeroing of
4058 * partial block
4059 */
4060 ret = ext4_inode_attach_jinode(inode);
4061 if (ret < 0)
4062 goto out_mutex;
4063
4064 }
4065
4066 /* Wait all existing dio workers, newcomers will block on i_rwsem */
4067 inode_dio_wait(inode);
4068
4069 ret = file_modified(file);
4070 if (ret)
4071 goto out_mutex;
4072
4073 /*
4074 * Prevent page faults from reinstantiating pages we have released from
4075 * page cache.
4076 */
4077 filemap_invalidate_lock(mapping);
4078
4079 ret = ext4_break_layouts(inode);
4080 if (ret)
4081 goto out_dio;
4082
4083 first_block_offset = round_up(offset, sb->s_blocksize);
4084 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4085
4086 /* Now release the pages and zero block aligned part of pages*/
4087 if (last_block_offset > first_block_offset) {
4088 ret = ext4_update_disksize_before_punch(inode, offset, length);
4089 if (ret)
4090 goto out_dio;
4091 truncate_pagecache_range(inode, first_block_offset,
4092 last_block_offset);
4093 }
4094
4095 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4096 credits = ext4_writepage_trans_blocks(inode);
4097 else
4098 credits = ext4_blocks_for_truncate(inode);
4099 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4100 if (IS_ERR(handle)) {
4101 ret = PTR_ERR(handle);
4102 ext4_std_error(sb, ret);
4103 goto out_dio;
4104 }
4105
4106 ret = ext4_zero_partial_blocks(handle, inode, offset,
4107 length);
4108 if (ret)
4109 goto out_stop;
4110
4111 first_block = (offset + sb->s_blocksize - 1) >>
4112 EXT4_BLOCK_SIZE_BITS(sb);
4113 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4114
4115 /* If there are blocks to remove, do it */
4116 if (stop_block > first_block) {
4117
4118 down_write(&EXT4_I(inode)->i_data_sem);
4119 ext4_discard_preallocations(inode, 0);
4120
4121 ret = ext4_es_remove_extent(inode, first_block,
4122 stop_block - first_block);
4123 if (ret) {
4124 up_write(&EXT4_I(inode)->i_data_sem);
4125 goto out_stop;
4126 }
4127
4128 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4129 ret = ext4_ext_remove_space(inode, first_block,
4130 stop_block - 1);
4131 else
4132 ret = ext4_ind_remove_space(handle, inode, first_block,
4133 stop_block);
4134
4135 up_write(&EXT4_I(inode)->i_data_sem);
4136 }
4137 ext4_fc_track_range(handle, inode, first_block, stop_block);
4138 if (IS_SYNC(inode))
4139 ext4_handle_sync(handle);
4140
4141 inode->i_mtime = inode->i_ctime = current_time(inode);
4142 ret2 = ext4_mark_inode_dirty(handle, inode);
4143 if (unlikely(ret2))
4144 ret = ret2;
4145 if (ret >= 0)
4146 ext4_update_inode_fsync_trans(handle, inode, 1);
4147 out_stop:
4148 ext4_journal_stop(handle);
4149 out_dio:
4150 filemap_invalidate_unlock(mapping);
4151 out_mutex:
4152 inode_unlock(inode);
4153 return ret;
4154 }
4155
ext4_inode_attach_jinode(struct inode * inode)4156 int ext4_inode_attach_jinode(struct inode *inode)
4157 {
4158 struct ext4_inode_info *ei = EXT4_I(inode);
4159 struct jbd2_inode *jinode;
4160
4161 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4162 return 0;
4163
4164 jinode = jbd2_alloc_inode(GFP_KERNEL);
4165 spin_lock(&inode->i_lock);
4166 if (!ei->jinode) {
4167 if (!jinode) {
4168 spin_unlock(&inode->i_lock);
4169 return -ENOMEM;
4170 }
4171 ei->jinode = jinode;
4172 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4173 jinode = NULL;
4174 }
4175 spin_unlock(&inode->i_lock);
4176 if (unlikely(jinode != NULL))
4177 jbd2_free_inode(jinode);
4178 return 0;
4179 }
4180
4181 /*
4182 * ext4_truncate()
4183 *
4184 * We block out ext4_get_block() block instantiations across the entire
4185 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4186 * simultaneously on behalf of the same inode.
4187 *
4188 * As we work through the truncate and commit bits of it to the journal there
4189 * is one core, guiding principle: the file's tree must always be consistent on
4190 * disk. We must be able to restart the truncate after a crash.
4191 *
4192 * The file's tree may be transiently inconsistent in memory (although it
4193 * probably isn't), but whenever we close off and commit a journal transaction,
4194 * the contents of (the filesystem + the journal) must be consistent and
4195 * restartable. It's pretty simple, really: bottom up, right to left (although
4196 * left-to-right works OK too).
4197 *
4198 * Note that at recovery time, journal replay occurs *before* the restart of
4199 * truncate against the orphan inode list.
4200 *
4201 * The committed inode has the new, desired i_size (which is the same as
4202 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4203 * that this inode's truncate did not complete and it will again call
4204 * ext4_truncate() to have another go. So there will be instantiated blocks
4205 * to the right of the truncation point in a crashed ext4 filesystem. But
4206 * that's fine - as long as they are linked from the inode, the post-crash
4207 * ext4_truncate() run will find them and release them.
4208 */
ext4_truncate(struct inode * inode)4209 int ext4_truncate(struct inode *inode)
4210 {
4211 struct ext4_inode_info *ei = EXT4_I(inode);
4212 unsigned int credits;
4213 int err = 0, err2;
4214 handle_t *handle;
4215 struct address_space *mapping = inode->i_mapping;
4216
4217 /*
4218 * There is a possibility that we're either freeing the inode
4219 * or it's a completely new inode. In those cases we might not
4220 * have i_rwsem locked because it's not necessary.
4221 */
4222 if (!(inode->i_state & (I_NEW|I_FREEING)))
4223 WARN_ON(!inode_is_locked(inode));
4224 trace_ext4_truncate_enter(inode);
4225
4226 if (!ext4_can_truncate(inode))
4227 goto out_trace;
4228
4229 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4230 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4231
4232 if (ext4_has_inline_data(inode)) {
4233 int has_inline = 1;
4234
4235 err = ext4_inline_data_truncate(inode, &has_inline);
4236 if (err || has_inline)
4237 goto out_trace;
4238 }
4239
4240 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4241 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4242 err = ext4_inode_attach_jinode(inode);
4243 if (err)
4244 goto out_trace;
4245 }
4246
4247 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4248 credits = ext4_writepage_trans_blocks(inode);
4249 else
4250 credits = ext4_blocks_for_truncate(inode);
4251
4252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4253 if (IS_ERR(handle)) {
4254 err = PTR_ERR(handle);
4255 goto out_trace;
4256 }
4257
4258 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4259 ext4_block_truncate_page(handle, mapping, inode->i_size);
4260
4261 /*
4262 * We add the inode to the orphan list, so that if this
4263 * truncate spans multiple transactions, and we crash, we will
4264 * resume the truncate when the filesystem recovers. It also
4265 * marks the inode dirty, to catch the new size.
4266 *
4267 * Implication: the file must always be in a sane, consistent
4268 * truncatable state while each transaction commits.
4269 */
4270 err = ext4_orphan_add(handle, inode);
4271 if (err)
4272 goto out_stop;
4273
4274 down_write(&EXT4_I(inode)->i_data_sem);
4275
4276 ext4_discard_preallocations(inode, 0);
4277
4278 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4279 err = ext4_ext_truncate(handle, inode);
4280 else
4281 ext4_ind_truncate(handle, inode);
4282
4283 up_write(&ei->i_data_sem);
4284 if (err)
4285 goto out_stop;
4286
4287 if (IS_SYNC(inode))
4288 ext4_handle_sync(handle);
4289
4290 out_stop:
4291 /*
4292 * If this was a simple ftruncate() and the file will remain alive,
4293 * then we need to clear up the orphan record which we created above.
4294 * However, if this was a real unlink then we were called by
4295 * ext4_evict_inode(), and we allow that function to clean up the
4296 * orphan info for us.
4297 */
4298 if (inode->i_nlink)
4299 ext4_orphan_del(handle, inode);
4300
4301 inode->i_mtime = inode->i_ctime = current_time(inode);
4302 err2 = ext4_mark_inode_dirty(handle, inode);
4303 if (unlikely(err2 && !err))
4304 err = err2;
4305 ext4_journal_stop(handle);
4306
4307 out_trace:
4308 trace_ext4_truncate_exit(inode);
4309 return err;
4310 }
4311
ext4_inode_peek_iversion(const struct inode * inode)4312 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4313 {
4314 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4315 return inode_peek_iversion_raw(inode);
4316 else
4317 return inode_peek_iversion(inode);
4318 }
4319
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4320 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4321 struct ext4_inode_info *ei)
4322 {
4323 struct inode *inode = &(ei->vfs_inode);
4324 u64 i_blocks = READ_ONCE(inode->i_blocks);
4325 struct super_block *sb = inode->i_sb;
4326
4327 if (i_blocks <= ~0U) {
4328 /*
4329 * i_blocks can be represented in a 32 bit variable
4330 * as multiple of 512 bytes
4331 */
4332 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4333 raw_inode->i_blocks_high = 0;
4334 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4335 return 0;
4336 }
4337
4338 /*
4339 * This should never happen since sb->s_maxbytes should not have
4340 * allowed this, sb->s_maxbytes was set according to the huge_file
4341 * feature in ext4_fill_super().
4342 */
4343 if (!ext4_has_feature_huge_file(sb))
4344 return -EFSCORRUPTED;
4345
4346 if (i_blocks <= 0xffffffffffffULL) {
4347 /*
4348 * i_blocks can be represented in a 48 bit variable
4349 * as multiple of 512 bytes
4350 */
4351 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4352 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4353 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4354 } else {
4355 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4356 /* i_block is stored in file system block size */
4357 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4358 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4359 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4360 }
4361 return 0;
4362 }
4363
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4364 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4365 {
4366 struct ext4_inode_info *ei = EXT4_I(inode);
4367 uid_t i_uid;
4368 gid_t i_gid;
4369 projid_t i_projid;
4370 int block;
4371 int err;
4372
4373 err = ext4_inode_blocks_set(raw_inode, ei);
4374
4375 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4376 i_uid = i_uid_read(inode);
4377 i_gid = i_gid_read(inode);
4378 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4379 if (!(test_opt(inode->i_sb, NO_UID32))) {
4380 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4381 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4382 /*
4383 * Fix up interoperability with old kernels. Otherwise,
4384 * old inodes get re-used with the upper 16 bits of the
4385 * uid/gid intact.
4386 */
4387 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4388 raw_inode->i_uid_high = 0;
4389 raw_inode->i_gid_high = 0;
4390 } else {
4391 raw_inode->i_uid_high =
4392 cpu_to_le16(high_16_bits(i_uid));
4393 raw_inode->i_gid_high =
4394 cpu_to_le16(high_16_bits(i_gid));
4395 }
4396 } else {
4397 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4398 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4399 raw_inode->i_uid_high = 0;
4400 raw_inode->i_gid_high = 0;
4401 }
4402 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4403
4404 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4405 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4406 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4407 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4408
4409 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4410 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4411 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4412 raw_inode->i_file_acl_high =
4413 cpu_to_le16(ei->i_file_acl >> 32);
4414 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4415 ext4_isize_set(raw_inode, ei->i_disksize);
4416
4417 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4418 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4419 if (old_valid_dev(inode->i_rdev)) {
4420 raw_inode->i_block[0] =
4421 cpu_to_le32(old_encode_dev(inode->i_rdev));
4422 raw_inode->i_block[1] = 0;
4423 } else {
4424 raw_inode->i_block[0] = 0;
4425 raw_inode->i_block[1] =
4426 cpu_to_le32(new_encode_dev(inode->i_rdev));
4427 raw_inode->i_block[2] = 0;
4428 }
4429 } else if (!ext4_has_inline_data(inode)) {
4430 for (block = 0; block < EXT4_N_BLOCKS; block++)
4431 raw_inode->i_block[block] = ei->i_data[block];
4432 }
4433
4434 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4435 u64 ivers = ext4_inode_peek_iversion(inode);
4436
4437 raw_inode->i_disk_version = cpu_to_le32(ivers);
4438 if (ei->i_extra_isize) {
4439 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4440 raw_inode->i_version_hi =
4441 cpu_to_le32(ivers >> 32);
4442 raw_inode->i_extra_isize =
4443 cpu_to_le16(ei->i_extra_isize);
4444 }
4445 }
4446
4447 if (i_projid != EXT4_DEF_PROJID &&
4448 !ext4_has_feature_project(inode->i_sb))
4449 err = err ?: -EFSCORRUPTED;
4450
4451 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4452 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4453 raw_inode->i_projid = cpu_to_le32(i_projid);
4454
4455 ext4_inode_csum_set(inode, raw_inode, ei);
4456 return err;
4457 }
4458
4459 /*
4460 * ext4_get_inode_loc returns with an extra refcount against the inode's
4461 * underlying buffer_head on success. If we pass 'inode' and it does not
4462 * have in-inode xattr, we have all inode data in memory that is needed
4463 * to recreate the on-disk version of this inode.
4464 */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4465 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4466 struct inode *inode, struct ext4_iloc *iloc,
4467 ext4_fsblk_t *ret_block)
4468 {
4469 struct ext4_group_desc *gdp;
4470 struct buffer_head *bh;
4471 ext4_fsblk_t block;
4472 struct blk_plug plug;
4473 int inodes_per_block, inode_offset;
4474
4475 iloc->bh = NULL;
4476 if (ino < EXT4_ROOT_INO ||
4477 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4478 return -EFSCORRUPTED;
4479
4480 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4481 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4482 if (!gdp)
4483 return -EIO;
4484
4485 /*
4486 * Figure out the offset within the block group inode table
4487 */
4488 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4489 inode_offset = ((ino - 1) %
4490 EXT4_INODES_PER_GROUP(sb));
4491 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4492
4493 block = ext4_inode_table(sb, gdp);
4494 if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4495 (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4496 ext4_error(sb, "Invalid inode table block %llu in "
4497 "block_group %u", block, iloc->block_group);
4498 return -EFSCORRUPTED;
4499 }
4500 block += (inode_offset / inodes_per_block);
4501
4502 bh = sb_getblk(sb, block);
4503 if (unlikely(!bh))
4504 return -ENOMEM;
4505 if (ext4_buffer_uptodate(bh))
4506 goto has_buffer;
4507
4508 lock_buffer(bh);
4509 if (ext4_buffer_uptodate(bh)) {
4510 /* Someone brought it uptodate while we waited */
4511 unlock_buffer(bh);
4512 goto has_buffer;
4513 }
4514
4515 /*
4516 * If we have all information of the inode in memory and this
4517 * is the only valid inode in the block, we need not read the
4518 * block.
4519 */
4520 if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4521 struct buffer_head *bitmap_bh;
4522 int i, start;
4523
4524 start = inode_offset & ~(inodes_per_block - 1);
4525
4526 /* Is the inode bitmap in cache? */
4527 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4528 if (unlikely(!bitmap_bh))
4529 goto make_io;
4530
4531 /*
4532 * If the inode bitmap isn't in cache then the
4533 * optimisation may end up performing two reads instead
4534 * of one, so skip it.
4535 */
4536 if (!buffer_uptodate(bitmap_bh)) {
4537 brelse(bitmap_bh);
4538 goto make_io;
4539 }
4540 for (i = start; i < start + inodes_per_block; i++) {
4541 if (i == inode_offset)
4542 continue;
4543 if (ext4_test_bit(i, bitmap_bh->b_data))
4544 break;
4545 }
4546 brelse(bitmap_bh);
4547 if (i == start + inodes_per_block) {
4548 struct ext4_inode *raw_inode =
4549 (struct ext4_inode *) (bh->b_data + iloc->offset);
4550
4551 /* all other inodes are free, so skip I/O */
4552 memset(bh->b_data, 0, bh->b_size);
4553 if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4554 ext4_fill_raw_inode(inode, raw_inode);
4555 set_buffer_uptodate(bh);
4556 unlock_buffer(bh);
4557 goto has_buffer;
4558 }
4559 }
4560
4561 make_io:
4562 /*
4563 * If we need to do any I/O, try to pre-readahead extra
4564 * blocks from the inode table.
4565 */
4566 blk_start_plug(&plug);
4567 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4568 ext4_fsblk_t b, end, table;
4569 unsigned num;
4570 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4571
4572 table = ext4_inode_table(sb, gdp);
4573 /* s_inode_readahead_blks is always a power of 2 */
4574 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4575 if (table > b)
4576 b = table;
4577 end = b + ra_blks;
4578 num = EXT4_INODES_PER_GROUP(sb);
4579 if (ext4_has_group_desc_csum(sb))
4580 num -= ext4_itable_unused_count(sb, gdp);
4581 table += num / inodes_per_block;
4582 if (end > table)
4583 end = table;
4584 while (b <= end)
4585 ext4_sb_breadahead_unmovable(sb, b++);
4586 }
4587
4588 /*
4589 * There are other valid inodes in the buffer, this inode
4590 * has in-inode xattrs, or we don't have this inode in memory.
4591 * Read the block from disk.
4592 */
4593 trace_ext4_load_inode(sb, ino);
4594 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4595 blk_finish_plug(&plug);
4596 wait_on_buffer(bh);
4597 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4598 if (!buffer_uptodate(bh)) {
4599 if (ret_block)
4600 *ret_block = block;
4601 brelse(bh);
4602 return -EIO;
4603 }
4604 has_buffer:
4605 iloc->bh = bh;
4606 return 0;
4607 }
4608
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4609 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4610 struct ext4_iloc *iloc)
4611 {
4612 ext4_fsblk_t err_blk = 0;
4613 int ret;
4614
4615 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4616 &err_blk);
4617
4618 if (ret == -EIO)
4619 ext4_error_inode_block(inode, err_blk, EIO,
4620 "unable to read itable block");
4621
4622 return ret;
4623 }
4624
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4625 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4626 {
4627 ext4_fsblk_t err_blk = 0;
4628 int ret;
4629
4630 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4631 &err_blk);
4632
4633 if (ret == -EIO)
4634 ext4_error_inode_block(inode, err_blk, EIO,
4635 "unable to read itable block");
4636
4637 return ret;
4638 }
4639
4640
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4641 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4642 struct ext4_iloc *iloc)
4643 {
4644 return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4645 }
4646
ext4_should_enable_dax(struct inode * inode)4647 static bool ext4_should_enable_dax(struct inode *inode)
4648 {
4649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4650
4651 if (test_opt2(inode->i_sb, DAX_NEVER))
4652 return false;
4653 if (!S_ISREG(inode->i_mode))
4654 return false;
4655 if (ext4_should_journal_data(inode))
4656 return false;
4657 if (ext4_has_inline_data(inode))
4658 return false;
4659 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4660 return false;
4661 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4662 return false;
4663 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4664 return false;
4665 if (test_opt(inode->i_sb, DAX_ALWAYS))
4666 return true;
4667
4668 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4669 }
4670
ext4_set_inode_flags(struct inode * inode,bool init)4671 void ext4_set_inode_flags(struct inode *inode, bool init)
4672 {
4673 unsigned int flags = EXT4_I(inode)->i_flags;
4674 unsigned int new_fl = 0;
4675
4676 WARN_ON_ONCE(IS_DAX(inode) && init);
4677
4678 if (flags & EXT4_SYNC_FL)
4679 new_fl |= S_SYNC;
4680 if (flags & EXT4_APPEND_FL)
4681 new_fl |= S_APPEND;
4682 if (flags & EXT4_IMMUTABLE_FL)
4683 new_fl |= S_IMMUTABLE;
4684 if (flags & EXT4_NOATIME_FL)
4685 new_fl |= S_NOATIME;
4686 if (flags & EXT4_DIRSYNC_FL)
4687 new_fl |= S_DIRSYNC;
4688
4689 /* Because of the way inode_set_flags() works we must preserve S_DAX
4690 * here if already set. */
4691 new_fl |= (inode->i_flags & S_DAX);
4692 if (init && ext4_should_enable_dax(inode))
4693 new_fl |= S_DAX;
4694
4695 if (flags & EXT4_ENCRYPT_FL)
4696 new_fl |= S_ENCRYPTED;
4697 if (flags & EXT4_CASEFOLD_FL)
4698 new_fl |= S_CASEFOLD;
4699 if (flags & EXT4_VERITY_FL)
4700 new_fl |= S_VERITY;
4701 inode_set_flags(inode, new_fl,
4702 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4703 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4704 }
4705
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4706 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4707 struct ext4_inode_info *ei)
4708 {
4709 blkcnt_t i_blocks ;
4710 struct inode *inode = &(ei->vfs_inode);
4711 struct super_block *sb = inode->i_sb;
4712
4713 if (ext4_has_feature_huge_file(sb)) {
4714 /* we are using combined 48 bit field */
4715 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4716 le32_to_cpu(raw_inode->i_blocks_lo);
4717 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4718 /* i_blocks represent file system block size */
4719 return i_blocks << (inode->i_blkbits - 9);
4720 } else {
4721 return i_blocks;
4722 }
4723 } else {
4724 return le32_to_cpu(raw_inode->i_blocks_lo);
4725 }
4726 }
4727
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4728 static inline int ext4_iget_extra_inode(struct inode *inode,
4729 struct ext4_inode *raw_inode,
4730 struct ext4_inode_info *ei)
4731 {
4732 __le32 *magic = (void *)raw_inode +
4733 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4734
4735 if (EXT4_INODE_HAS_XATTR_SPACE(inode) &&
4736 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4737 int err;
4738
4739 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4740 err = ext4_find_inline_data_nolock(inode);
4741 if (!err && ext4_has_inline_data(inode))
4742 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4743 return err;
4744 } else
4745 EXT4_I(inode)->i_inline_off = 0;
4746 return 0;
4747 }
4748
ext4_get_projid(struct inode * inode,kprojid_t * projid)4749 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4750 {
4751 if (!ext4_has_feature_project(inode->i_sb))
4752 return -EOPNOTSUPP;
4753 *projid = EXT4_I(inode)->i_projid;
4754 return 0;
4755 }
4756
4757 /*
4758 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4759 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4760 * set.
4761 */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4762 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4763 {
4764 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4765 inode_set_iversion_raw(inode, val);
4766 else
4767 inode_set_iversion_queried(inode, val);
4768 }
4769
check_igot_inode(struct inode * inode,ext4_iget_flags flags)4770 static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4771
4772 {
4773 if (flags & EXT4_IGET_EA_INODE) {
4774 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4775 return "missing EA_INODE flag";
4776 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4777 EXT4_I(inode)->i_file_acl)
4778 return "ea_inode with extended attributes";
4779 } else {
4780 if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4781 return "unexpected EA_INODE flag";
4782 }
4783 if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4784 return "unexpected bad inode w/o EXT4_IGET_BAD";
4785 return NULL;
4786 }
4787
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4788 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4789 ext4_iget_flags flags, const char *function,
4790 unsigned int line)
4791 {
4792 struct ext4_iloc iloc;
4793 struct ext4_inode *raw_inode;
4794 struct ext4_inode_info *ei;
4795 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4796 struct inode *inode;
4797 const char *err_str;
4798 journal_t *journal = EXT4_SB(sb)->s_journal;
4799 long ret;
4800 loff_t size;
4801 int block;
4802 uid_t i_uid;
4803 gid_t i_gid;
4804 projid_t i_projid;
4805
4806 if ((!(flags & EXT4_IGET_SPECIAL) &&
4807 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4808 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4809 ino == le32_to_cpu(es->s_grp_quota_inum) ||
4810 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4811 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4812 (ino < EXT4_ROOT_INO) ||
4813 (ino > le32_to_cpu(es->s_inodes_count))) {
4814 if (flags & EXT4_IGET_HANDLE)
4815 return ERR_PTR(-ESTALE);
4816 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4817 "inode #%lu: comm %s: iget: illegal inode #",
4818 ino, current->comm);
4819 return ERR_PTR(-EFSCORRUPTED);
4820 }
4821
4822 inode = iget_locked(sb, ino);
4823 if (!inode)
4824 return ERR_PTR(-ENOMEM);
4825 if (!(inode->i_state & I_NEW)) {
4826 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4827 ext4_error_inode(inode, function, line, 0, err_str);
4828 iput(inode);
4829 return ERR_PTR(-EFSCORRUPTED);
4830 }
4831 return inode;
4832 }
4833
4834 ei = EXT4_I(inode);
4835 iloc.bh = NULL;
4836
4837 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4838 if (ret < 0)
4839 goto bad_inode;
4840 raw_inode = ext4_raw_inode(&iloc);
4841
4842 if ((flags & EXT4_IGET_HANDLE) &&
4843 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4844 ret = -ESTALE;
4845 goto bad_inode;
4846 }
4847
4848 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4849 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4850 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4851 EXT4_INODE_SIZE(inode->i_sb) ||
4852 (ei->i_extra_isize & 3)) {
4853 ext4_error_inode(inode, function, line, 0,
4854 "iget: bad extra_isize %u "
4855 "(inode size %u)",
4856 ei->i_extra_isize,
4857 EXT4_INODE_SIZE(inode->i_sb));
4858 ret = -EFSCORRUPTED;
4859 goto bad_inode;
4860 }
4861 } else
4862 ei->i_extra_isize = 0;
4863
4864 /* Precompute checksum seed for inode metadata */
4865 if (ext4_has_metadata_csum(sb)) {
4866 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4867 __u32 csum;
4868 __le32 inum = cpu_to_le32(inode->i_ino);
4869 __le32 gen = raw_inode->i_generation;
4870 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4871 sizeof(inum));
4872 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4873 sizeof(gen));
4874 }
4875
4876 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4877 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4878 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4879 ext4_error_inode_err(inode, function, line, 0,
4880 EFSBADCRC, "iget: checksum invalid");
4881 ret = -EFSBADCRC;
4882 goto bad_inode;
4883 }
4884
4885 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4886 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4887 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4888 if (ext4_has_feature_project(sb) &&
4889 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4890 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4891 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4892 else
4893 i_projid = EXT4_DEF_PROJID;
4894
4895 if (!(test_opt(inode->i_sb, NO_UID32))) {
4896 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4897 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4898 }
4899 i_uid_write(inode, i_uid);
4900 i_gid_write(inode, i_gid);
4901 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4902 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4903
4904 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4905 ei->i_inline_off = 0;
4906 ei->i_dir_start_lookup = 0;
4907 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4908 /* We now have enough fields to check if the inode was active or not.
4909 * This is needed because nfsd might try to access dead inodes
4910 * the test is that same one that e2fsck uses
4911 * NeilBrown 1999oct15
4912 */
4913 if (inode->i_nlink == 0) {
4914 if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4915 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4916 ino != EXT4_BOOT_LOADER_INO) {
4917 /* this inode is deleted or unallocated */
4918 if (flags & EXT4_IGET_SPECIAL) {
4919 ext4_error_inode(inode, function, line, 0,
4920 "iget: special inode unallocated");
4921 ret = -EFSCORRUPTED;
4922 } else
4923 ret = -ESTALE;
4924 goto bad_inode;
4925 }
4926 /* The only unlinked inodes we let through here have
4927 * valid i_mode and are being read by the orphan
4928 * recovery code: that's fine, we're about to complete
4929 * the process of deleting those.
4930 * OR it is the EXT4_BOOT_LOADER_INO which is
4931 * not initialized on a new filesystem. */
4932 }
4933 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4934 ext4_set_inode_flags(inode, true);
4935 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4936 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4937 if (ext4_has_feature_64bit(sb))
4938 ei->i_file_acl |=
4939 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4940 inode->i_size = ext4_isize(sb, raw_inode);
4941 if ((size = i_size_read(inode)) < 0) {
4942 ext4_error_inode(inode, function, line, 0,
4943 "iget: bad i_size value: %lld", size);
4944 ret = -EFSCORRUPTED;
4945 goto bad_inode;
4946 }
4947 /*
4948 * If dir_index is not enabled but there's dir with INDEX flag set,
4949 * we'd normally treat htree data as empty space. But with metadata
4950 * checksumming that corrupts checksums so forbid that.
4951 */
4952 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4953 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4954 ext4_error_inode(inode, function, line, 0,
4955 "iget: Dir with htree data on filesystem without dir_index feature.");
4956 ret = -EFSCORRUPTED;
4957 goto bad_inode;
4958 }
4959 ei->i_disksize = inode->i_size;
4960 #ifdef CONFIG_QUOTA
4961 ei->i_reserved_quota = 0;
4962 #endif
4963 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4964 ei->i_block_group = iloc.block_group;
4965 ei->i_last_alloc_group = ~0;
4966 /*
4967 * NOTE! The in-memory inode i_data array is in little-endian order
4968 * even on big-endian machines: we do NOT byteswap the block numbers!
4969 */
4970 for (block = 0; block < EXT4_N_BLOCKS; block++)
4971 ei->i_data[block] = raw_inode->i_block[block];
4972 INIT_LIST_HEAD(&ei->i_orphan);
4973 ext4_fc_init_inode(&ei->vfs_inode);
4974
4975 /*
4976 * Set transaction id's of transactions that have to be committed
4977 * to finish f[data]sync. We set them to currently running transaction
4978 * as we cannot be sure that the inode or some of its metadata isn't
4979 * part of the transaction - the inode could have been reclaimed and
4980 * now it is reread from disk.
4981 */
4982 if (journal) {
4983 transaction_t *transaction;
4984 tid_t tid;
4985
4986 read_lock(&journal->j_state_lock);
4987 if (journal->j_running_transaction)
4988 transaction = journal->j_running_transaction;
4989 else
4990 transaction = journal->j_committing_transaction;
4991 if (transaction)
4992 tid = transaction->t_tid;
4993 else
4994 tid = journal->j_commit_sequence;
4995 read_unlock(&journal->j_state_lock);
4996 ei->i_sync_tid = tid;
4997 ei->i_datasync_tid = tid;
4998 }
4999
5000 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5001 if (ei->i_extra_isize == 0) {
5002 /* The extra space is currently unused. Use it. */
5003 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
5004 ei->i_extra_isize = sizeof(struct ext4_inode) -
5005 EXT4_GOOD_OLD_INODE_SIZE;
5006 } else {
5007 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5008 if (ret)
5009 goto bad_inode;
5010 }
5011 }
5012
5013 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5014 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5015 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5016 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5017
5018 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5019 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5020
5021 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5022 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023 ivers |=
5024 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5025 }
5026 ext4_inode_set_iversion_queried(inode, ivers);
5027 }
5028
5029 ret = 0;
5030 if (ei->i_file_acl &&
5031 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5032 ext4_error_inode(inode, function, line, 0,
5033 "iget: bad extended attribute block %llu",
5034 ei->i_file_acl);
5035 ret = -EFSCORRUPTED;
5036 goto bad_inode;
5037 } else if (!ext4_has_inline_data(inode)) {
5038 /* validate the block references in the inode */
5039 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5040 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5041 (S_ISLNK(inode->i_mode) &&
5042 !ext4_inode_is_fast_symlink(inode)))) {
5043 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5044 ret = ext4_ext_check_inode(inode);
5045 else
5046 ret = ext4_ind_check_inode(inode);
5047 }
5048 }
5049 if (ret)
5050 goto bad_inode;
5051
5052 if (S_ISREG(inode->i_mode)) {
5053 inode->i_op = &ext4_file_inode_operations;
5054 inode->i_fop = &ext4_file_operations;
5055 ext4_set_aops(inode);
5056 } else if (S_ISDIR(inode->i_mode)) {
5057 inode->i_op = &ext4_dir_inode_operations;
5058 inode->i_fop = &ext4_dir_operations;
5059 } else if (S_ISLNK(inode->i_mode)) {
5060 /* VFS does not allow setting these so must be corruption */
5061 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5062 ext4_error_inode(inode, function, line, 0,
5063 "iget: immutable or append flags "
5064 "not allowed on symlinks");
5065 ret = -EFSCORRUPTED;
5066 goto bad_inode;
5067 }
5068 if (IS_ENCRYPTED(inode)) {
5069 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5070 } else if (ext4_inode_is_fast_symlink(inode)) {
5071 inode->i_link = (char *)ei->i_data;
5072 inode->i_op = &ext4_fast_symlink_inode_operations;
5073 nd_terminate_link(ei->i_data, inode->i_size,
5074 sizeof(ei->i_data) - 1);
5075 } else {
5076 inode->i_op = &ext4_symlink_inode_operations;
5077 }
5078 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5079 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5080 inode->i_op = &ext4_special_inode_operations;
5081 if (raw_inode->i_block[0])
5082 init_special_inode(inode, inode->i_mode,
5083 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5084 else
5085 init_special_inode(inode, inode->i_mode,
5086 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5087 } else if (ino == EXT4_BOOT_LOADER_INO) {
5088 make_bad_inode(inode);
5089 } else {
5090 ret = -EFSCORRUPTED;
5091 ext4_error_inode(inode, function, line, 0,
5092 "iget: bogus i_mode (%o)", inode->i_mode);
5093 goto bad_inode;
5094 }
5095 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5096 ext4_error_inode(inode, function, line, 0,
5097 "casefold flag without casefold feature");
5098 if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5099 ext4_error_inode(inode, function, line, 0, err_str);
5100 ret = -EFSCORRUPTED;
5101 goto bad_inode;
5102 }
5103
5104 brelse(iloc.bh);
5105 unlock_new_inode(inode);
5106 return inode;
5107
5108 bad_inode:
5109 brelse(iloc.bh);
5110 iget_failed(inode);
5111 return ERR_PTR(ret);
5112 }
5113
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5114 static void __ext4_update_other_inode_time(struct super_block *sb,
5115 unsigned long orig_ino,
5116 unsigned long ino,
5117 struct ext4_inode *raw_inode)
5118 {
5119 struct inode *inode;
5120
5121 inode = find_inode_by_ino_rcu(sb, ino);
5122 if (!inode)
5123 return;
5124
5125 if (!inode_is_dirtytime_only(inode))
5126 return;
5127
5128 spin_lock(&inode->i_lock);
5129 if (inode_is_dirtytime_only(inode)) {
5130 struct ext4_inode_info *ei = EXT4_I(inode);
5131
5132 inode->i_state &= ~I_DIRTY_TIME;
5133 spin_unlock(&inode->i_lock);
5134
5135 spin_lock(&ei->i_raw_lock);
5136 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5137 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5138 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5139 ext4_inode_csum_set(inode, raw_inode, ei);
5140 spin_unlock(&ei->i_raw_lock);
5141 trace_ext4_other_inode_update_time(inode, orig_ino);
5142 return;
5143 }
5144 spin_unlock(&inode->i_lock);
5145 }
5146
5147 /*
5148 * Opportunistically update the other time fields for other inodes in
5149 * the same inode table block.
5150 */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5151 static void ext4_update_other_inodes_time(struct super_block *sb,
5152 unsigned long orig_ino, char *buf)
5153 {
5154 unsigned long ino;
5155 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5156 int inode_size = EXT4_INODE_SIZE(sb);
5157
5158 /*
5159 * Calculate the first inode in the inode table block. Inode
5160 * numbers are one-based. That is, the first inode in a block
5161 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5162 */
5163 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5164 rcu_read_lock();
5165 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5166 if (ino == orig_ino)
5167 continue;
5168 __ext4_update_other_inode_time(sb, orig_ino, ino,
5169 (struct ext4_inode *)buf);
5170 }
5171 rcu_read_unlock();
5172 }
5173
5174 /*
5175 * Post the struct inode info into an on-disk inode location in the
5176 * buffer-cache. This gobbles the caller's reference to the
5177 * buffer_head in the inode location struct.
5178 *
5179 * The caller must have write access to iloc->bh.
5180 */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5181 static int ext4_do_update_inode(handle_t *handle,
5182 struct inode *inode,
5183 struct ext4_iloc *iloc)
5184 {
5185 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5186 struct ext4_inode_info *ei = EXT4_I(inode);
5187 struct buffer_head *bh = iloc->bh;
5188 struct super_block *sb = inode->i_sb;
5189 int err;
5190 int need_datasync = 0, set_large_file = 0;
5191
5192 spin_lock(&ei->i_raw_lock);
5193
5194 /*
5195 * For fields not tracked in the in-memory inode, initialise them
5196 * to zero for new inodes.
5197 */
5198 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5199 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5200
5201 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5202 need_datasync = 1;
5203 if (ei->i_disksize > 0x7fffffffULL) {
5204 if (!ext4_has_feature_large_file(sb) ||
5205 EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5206 set_large_file = 1;
5207 }
5208
5209 err = ext4_fill_raw_inode(inode, raw_inode);
5210 spin_unlock(&ei->i_raw_lock);
5211 if (err) {
5212 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5213 goto out_brelse;
5214 }
5215
5216 if (inode->i_sb->s_flags & SB_LAZYTIME)
5217 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5218 bh->b_data);
5219
5220 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5221 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5222 if (err)
5223 goto out_error;
5224 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5225 if (set_large_file) {
5226 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5227 err = ext4_journal_get_write_access(handle, sb,
5228 EXT4_SB(sb)->s_sbh,
5229 EXT4_JTR_NONE);
5230 if (err)
5231 goto out_error;
5232 lock_buffer(EXT4_SB(sb)->s_sbh);
5233 ext4_set_feature_large_file(sb);
5234 ext4_superblock_csum_set(sb);
5235 unlock_buffer(EXT4_SB(sb)->s_sbh);
5236 ext4_handle_sync(handle);
5237 err = ext4_handle_dirty_metadata(handle, NULL,
5238 EXT4_SB(sb)->s_sbh);
5239 }
5240 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5241 out_error:
5242 ext4_std_error(inode->i_sb, err);
5243 out_brelse:
5244 brelse(bh);
5245 return err;
5246 }
5247
5248 /*
5249 * ext4_write_inode()
5250 *
5251 * We are called from a few places:
5252 *
5253 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5254 * Here, there will be no transaction running. We wait for any running
5255 * transaction to commit.
5256 *
5257 * - Within flush work (sys_sync(), kupdate and such).
5258 * We wait on commit, if told to.
5259 *
5260 * - Within iput_final() -> write_inode_now()
5261 * We wait on commit, if told to.
5262 *
5263 * In all cases it is actually safe for us to return without doing anything,
5264 * because the inode has been copied into a raw inode buffer in
5265 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5266 * writeback.
5267 *
5268 * Note that we are absolutely dependent upon all inode dirtiers doing the
5269 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5270 * which we are interested.
5271 *
5272 * It would be a bug for them to not do this. The code:
5273 *
5274 * mark_inode_dirty(inode)
5275 * stuff();
5276 * inode->i_size = expr;
5277 *
5278 * is in error because write_inode() could occur while `stuff()' is running,
5279 * and the new i_size will be lost. Plus the inode will no longer be on the
5280 * superblock's dirty inode list.
5281 */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5282 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5283 {
5284 int err;
5285
5286 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5287 sb_rdonly(inode->i_sb))
5288 return 0;
5289
5290 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5291 return -EIO;
5292
5293 if (EXT4_SB(inode->i_sb)->s_journal) {
5294 if (ext4_journal_current_handle()) {
5295 ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5296 dump_stack();
5297 return -EIO;
5298 }
5299
5300 /*
5301 * No need to force transaction in WB_SYNC_NONE mode. Also
5302 * ext4_sync_fs() will force the commit after everything is
5303 * written.
5304 */
5305 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5306 return 0;
5307
5308 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5309 EXT4_I(inode)->i_sync_tid);
5310 } else {
5311 struct ext4_iloc iloc;
5312
5313 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5314 if (err)
5315 return err;
5316 /*
5317 * sync(2) will flush the whole buffer cache. No need to do
5318 * it here separately for each inode.
5319 */
5320 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5321 sync_dirty_buffer(iloc.bh);
5322 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5323 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5324 "IO error syncing inode");
5325 err = -EIO;
5326 }
5327 brelse(iloc.bh);
5328 }
5329 return err;
5330 }
5331
5332 /*
5333 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5334 * buffers that are attached to a folio straddling i_size and are undergoing
5335 * commit. In that case we have to wait for commit to finish and try again.
5336 */
ext4_wait_for_tail_page_commit(struct inode * inode)5337 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5338 {
5339 unsigned offset;
5340 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5341 tid_t commit_tid = 0;
5342 int ret;
5343
5344 offset = inode->i_size & (PAGE_SIZE - 1);
5345 /*
5346 * If the folio is fully truncated, we don't need to wait for any commit
5347 * (and we even should not as __ext4_journalled_invalidate_folio() may
5348 * strip all buffers from the folio but keep the folio dirty which can then
5349 * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5350 * buffers). Also we don't need to wait for any commit if all buffers in
5351 * the folio remain valid. This is most beneficial for the common case of
5352 * blocksize == PAGESIZE.
5353 */
5354 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5355 return;
5356 while (1) {
5357 struct folio *folio = filemap_lock_folio(inode->i_mapping,
5358 inode->i_size >> PAGE_SHIFT);
5359 if (!folio)
5360 return;
5361 ret = __ext4_journalled_invalidate_folio(folio, offset,
5362 folio_size(folio) - offset);
5363 folio_unlock(folio);
5364 folio_put(folio);
5365 if (ret != -EBUSY)
5366 return;
5367 commit_tid = 0;
5368 read_lock(&journal->j_state_lock);
5369 if (journal->j_committing_transaction)
5370 commit_tid = journal->j_committing_transaction->t_tid;
5371 read_unlock(&journal->j_state_lock);
5372 if (commit_tid)
5373 jbd2_log_wait_commit(journal, commit_tid);
5374 }
5375 }
5376
5377 /*
5378 * ext4_setattr()
5379 *
5380 * Called from notify_change.
5381 *
5382 * We want to trap VFS attempts to truncate the file as soon as
5383 * possible. In particular, we want to make sure that when the VFS
5384 * shrinks i_size, we put the inode on the orphan list and modify
5385 * i_disksize immediately, so that during the subsequent flushing of
5386 * dirty pages and freeing of disk blocks, we can guarantee that any
5387 * commit will leave the blocks being flushed in an unused state on
5388 * disk. (On recovery, the inode will get truncated and the blocks will
5389 * be freed, so we have a strong guarantee that no future commit will
5390 * leave these blocks visible to the user.)
5391 *
5392 * Another thing we have to assure is that if we are in ordered mode
5393 * and inode is still attached to the committing transaction, we must
5394 * we start writeout of all the dirty pages which are being truncated.
5395 * This way we are sure that all the data written in the previous
5396 * transaction are already on disk (truncate waits for pages under
5397 * writeback).
5398 *
5399 * Called with inode->i_rwsem down.
5400 */
ext4_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)5401 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5402 struct iattr *attr)
5403 {
5404 struct inode *inode = d_inode(dentry);
5405 int error, rc = 0;
5406 int orphan = 0;
5407 const unsigned int ia_valid = attr->ia_valid;
5408 bool inc_ivers = true;
5409
5410 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5411 return -EIO;
5412
5413 if (unlikely(IS_IMMUTABLE(inode)))
5414 return -EPERM;
5415
5416 if (unlikely(IS_APPEND(inode) &&
5417 (ia_valid & (ATTR_MODE | ATTR_UID |
5418 ATTR_GID | ATTR_TIMES_SET))))
5419 return -EPERM;
5420
5421 error = setattr_prepare(mnt_userns, dentry, attr);
5422 if (error)
5423 return error;
5424
5425 error = fscrypt_prepare_setattr(dentry, attr);
5426 if (error)
5427 return error;
5428
5429 error = fsverity_prepare_setattr(dentry, attr);
5430 if (error)
5431 return error;
5432
5433 if (is_quota_modification(mnt_userns, inode, attr)) {
5434 error = dquot_initialize(inode);
5435 if (error)
5436 return error;
5437 }
5438
5439 if (i_uid_needs_update(mnt_userns, attr, inode) ||
5440 i_gid_needs_update(mnt_userns, attr, inode)) {
5441 handle_t *handle;
5442
5443 /* (user+group)*(old+new) structure, inode write (sb,
5444 * inode block, ? - but truncate inode update has it) */
5445 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5446 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5447 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5448 if (IS_ERR(handle)) {
5449 error = PTR_ERR(handle);
5450 goto err_out;
5451 }
5452
5453 /* dquot_transfer() calls back ext4_get_inode_usage() which
5454 * counts xattr inode references.
5455 */
5456 down_read(&EXT4_I(inode)->xattr_sem);
5457 error = dquot_transfer(mnt_userns, inode, attr);
5458 up_read(&EXT4_I(inode)->xattr_sem);
5459
5460 if (error) {
5461 ext4_journal_stop(handle);
5462 return error;
5463 }
5464 /* Update corresponding info in inode so that everything is in
5465 * one transaction */
5466 i_uid_update(mnt_userns, attr, inode);
5467 i_gid_update(mnt_userns, attr, inode);
5468 error = ext4_mark_inode_dirty(handle, inode);
5469 ext4_journal_stop(handle);
5470 if (unlikely(error)) {
5471 return error;
5472 }
5473 }
5474
5475 if (attr->ia_valid & ATTR_SIZE) {
5476 handle_t *handle;
5477 loff_t oldsize = inode->i_size;
5478 loff_t old_disksize;
5479 int shrink = (attr->ia_size < inode->i_size);
5480
5481 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5482 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5483
5484 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5485 return -EFBIG;
5486 }
5487 }
5488 if (!S_ISREG(inode->i_mode)) {
5489 return -EINVAL;
5490 }
5491
5492 if (attr->ia_size == inode->i_size)
5493 inc_ivers = false;
5494
5495 if (shrink) {
5496 if (ext4_should_order_data(inode)) {
5497 error = ext4_begin_ordered_truncate(inode,
5498 attr->ia_size);
5499 if (error)
5500 goto err_out;
5501 }
5502 /*
5503 * Blocks are going to be removed from the inode. Wait
5504 * for dio in flight.
5505 */
5506 inode_dio_wait(inode);
5507 }
5508
5509 filemap_invalidate_lock(inode->i_mapping);
5510
5511 rc = ext4_break_layouts(inode);
5512 if (rc) {
5513 filemap_invalidate_unlock(inode->i_mapping);
5514 goto err_out;
5515 }
5516
5517 if (attr->ia_size != inode->i_size) {
5518 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5519 if (IS_ERR(handle)) {
5520 error = PTR_ERR(handle);
5521 goto out_mmap_sem;
5522 }
5523 if (ext4_handle_valid(handle) && shrink) {
5524 error = ext4_orphan_add(handle, inode);
5525 orphan = 1;
5526 }
5527 /*
5528 * Update c/mtime on truncate up, ext4_truncate() will
5529 * update c/mtime in shrink case below
5530 */
5531 if (!shrink) {
5532 inode->i_mtime = current_time(inode);
5533 inode->i_ctime = inode->i_mtime;
5534 }
5535
5536 if (shrink)
5537 ext4_fc_track_range(handle, inode,
5538 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5539 inode->i_sb->s_blocksize_bits,
5540 EXT_MAX_BLOCKS - 1);
5541 else
5542 ext4_fc_track_range(
5543 handle, inode,
5544 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5545 inode->i_sb->s_blocksize_bits,
5546 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5547 inode->i_sb->s_blocksize_bits);
5548
5549 down_write(&EXT4_I(inode)->i_data_sem);
5550 old_disksize = EXT4_I(inode)->i_disksize;
5551 EXT4_I(inode)->i_disksize = attr->ia_size;
5552 rc = ext4_mark_inode_dirty(handle, inode);
5553 if (!error)
5554 error = rc;
5555 /*
5556 * We have to update i_size under i_data_sem together
5557 * with i_disksize to avoid races with writeback code
5558 * running ext4_wb_update_i_disksize().
5559 */
5560 if (!error)
5561 i_size_write(inode, attr->ia_size);
5562 else
5563 EXT4_I(inode)->i_disksize = old_disksize;
5564 up_write(&EXT4_I(inode)->i_data_sem);
5565 ext4_journal_stop(handle);
5566 if (error)
5567 goto out_mmap_sem;
5568 if (!shrink) {
5569 pagecache_isize_extended(inode, oldsize,
5570 inode->i_size);
5571 } else if (ext4_should_journal_data(inode)) {
5572 ext4_wait_for_tail_page_commit(inode);
5573 }
5574 }
5575
5576 /*
5577 * Truncate pagecache after we've waited for commit
5578 * in data=journal mode to make pages freeable.
5579 */
5580 truncate_pagecache(inode, inode->i_size);
5581 /*
5582 * Call ext4_truncate() even if i_size didn't change to
5583 * truncate possible preallocated blocks.
5584 */
5585 if (attr->ia_size <= oldsize) {
5586 rc = ext4_truncate(inode);
5587 if (rc)
5588 error = rc;
5589 }
5590 out_mmap_sem:
5591 filemap_invalidate_unlock(inode->i_mapping);
5592 }
5593
5594 if (!error) {
5595 if (inc_ivers)
5596 inode_inc_iversion(inode);
5597 setattr_copy(mnt_userns, inode, attr);
5598 mark_inode_dirty(inode);
5599 }
5600
5601 /*
5602 * If the call to ext4_truncate failed to get a transaction handle at
5603 * all, we need to clean up the in-core orphan list manually.
5604 */
5605 if (orphan && inode->i_nlink)
5606 ext4_orphan_del(NULL, inode);
5607
5608 if (!error && (ia_valid & ATTR_MODE))
5609 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5610
5611 err_out:
5612 if (error)
5613 ext4_std_error(inode->i_sb, error);
5614 if (!error)
5615 error = rc;
5616 return error;
5617 }
5618
ext4_dio_alignment(struct inode * inode)5619 u32 ext4_dio_alignment(struct inode *inode)
5620 {
5621 if (fsverity_active(inode))
5622 return 0;
5623 if (ext4_should_journal_data(inode))
5624 return 0;
5625 if (ext4_has_inline_data(inode))
5626 return 0;
5627 if (IS_ENCRYPTED(inode)) {
5628 if (!fscrypt_dio_supported(inode))
5629 return 0;
5630 return i_blocksize(inode);
5631 }
5632 return 1; /* use the iomap defaults */
5633 }
5634
ext4_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5635 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5636 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5637 {
5638 struct inode *inode = d_inode(path->dentry);
5639 struct ext4_inode *raw_inode;
5640 struct ext4_inode_info *ei = EXT4_I(inode);
5641 unsigned int flags;
5642
5643 if ((request_mask & STATX_BTIME) &&
5644 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5645 stat->result_mask |= STATX_BTIME;
5646 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5647 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5648 }
5649
5650 /*
5651 * Return the DIO alignment restrictions if requested. We only return
5652 * this information when requested, since on encrypted files it might
5653 * take a fair bit of work to get if the file wasn't opened recently.
5654 */
5655 if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5656 u32 dio_align = ext4_dio_alignment(inode);
5657
5658 stat->result_mask |= STATX_DIOALIGN;
5659 if (dio_align == 1) {
5660 struct block_device *bdev = inode->i_sb->s_bdev;
5661
5662 /* iomap defaults */
5663 stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5664 stat->dio_offset_align = bdev_logical_block_size(bdev);
5665 } else {
5666 stat->dio_mem_align = dio_align;
5667 stat->dio_offset_align = dio_align;
5668 }
5669 }
5670
5671 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5672 if (flags & EXT4_APPEND_FL)
5673 stat->attributes |= STATX_ATTR_APPEND;
5674 if (flags & EXT4_COMPR_FL)
5675 stat->attributes |= STATX_ATTR_COMPRESSED;
5676 if (flags & EXT4_ENCRYPT_FL)
5677 stat->attributes |= STATX_ATTR_ENCRYPTED;
5678 if (flags & EXT4_IMMUTABLE_FL)
5679 stat->attributes |= STATX_ATTR_IMMUTABLE;
5680 if (flags & EXT4_NODUMP_FL)
5681 stat->attributes |= STATX_ATTR_NODUMP;
5682 if (flags & EXT4_VERITY_FL)
5683 stat->attributes |= STATX_ATTR_VERITY;
5684
5685 stat->attributes_mask |= (STATX_ATTR_APPEND |
5686 STATX_ATTR_COMPRESSED |
5687 STATX_ATTR_ENCRYPTED |
5688 STATX_ATTR_IMMUTABLE |
5689 STATX_ATTR_NODUMP |
5690 STATX_ATTR_VERITY);
5691
5692 generic_fillattr(mnt_userns, inode, stat);
5693 return 0;
5694 }
5695
ext4_file_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5696 int ext4_file_getattr(struct user_namespace *mnt_userns,
5697 const struct path *path, struct kstat *stat,
5698 u32 request_mask, unsigned int query_flags)
5699 {
5700 struct inode *inode = d_inode(path->dentry);
5701 u64 delalloc_blocks;
5702
5703 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5704
5705 /*
5706 * If there is inline data in the inode, the inode will normally not
5707 * have data blocks allocated (it may have an external xattr block).
5708 * Report at least one sector for such files, so tools like tar, rsync,
5709 * others don't incorrectly think the file is completely sparse.
5710 */
5711 if (unlikely(ext4_has_inline_data(inode)))
5712 stat->blocks += (stat->size + 511) >> 9;
5713
5714 /*
5715 * We can't update i_blocks if the block allocation is delayed
5716 * otherwise in the case of system crash before the real block
5717 * allocation is done, we will have i_blocks inconsistent with
5718 * on-disk file blocks.
5719 * We always keep i_blocks updated together with real
5720 * allocation. But to not confuse with user, stat
5721 * will return the blocks that include the delayed allocation
5722 * blocks for this file.
5723 */
5724 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5725 EXT4_I(inode)->i_reserved_data_blocks);
5726 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5727 return 0;
5728 }
5729
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5730 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5731 int pextents)
5732 {
5733 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5734 return ext4_ind_trans_blocks(inode, lblocks);
5735 return ext4_ext_index_trans_blocks(inode, pextents);
5736 }
5737
5738 /*
5739 * Account for index blocks, block groups bitmaps and block group
5740 * descriptor blocks if modify datablocks and index blocks
5741 * worse case, the indexs blocks spread over different block groups
5742 *
5743 * If datablocks are discontiguous, they are possible to spread over
5744 * different block groups too. If they are contiguous, with flexbg,
5745 * they could still across block group boundary.
5746 *
5747 * Also account for superblock, inode, quota and xattr blocks
5748 */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5749 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5750 int pextents)
5751 {
5752 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5753 int gdpblocks;
5754 int idxblocks;
5755 int ret = 0;
5756
5757 /*
5758 * How many index blocks need to touch to map @lblocks logical blocks
5759 * to @pextents physical extents?
5760 */
5761 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5762
5763 ret = idxblocks;
5764
5765 /*
5766 * Now let's see how many group bitmaps and group descriptors need
5767 * to account
5768 */
5769 groups = idxblocks + pextents;
5770 gdpblocks = groups;
5771 if (groups > ngroups)
5772 groups = ngroups;
5773 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5774 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5775
5776 /* bitmaps and block group descriptor blocks */
5777 ret += groups + gdpblocks;
5778
5779 /* Blocks for super block, inode, quota and xattr blocks */
5780 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5781
5782 return ret;
5783 }
5784
5785 /*
5786 * Calculate the total number of credits to reserve to fit
5787 * the modification of a single pages into a single transaction,
5788 * which may include multiple chunks of block allocations.
5789 *
5790 * This could be called via ext4_write_begin()
5791 *
5792 * We need to consider the worse case, when
5793 * one new block per extent.
5794 */
ext4_writepage_trans_blocks(struct inode * inode)5795 int ext4_writepage_trans_blocks(struct inode *inode)
5796 {
5797 int bpp = ext4_journal_blocks_per_page(inode);
5798 int ret;
5799
5800 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5801
5802 /* Account for data blocks for journalled mode */
5803 if (ext4_should_journal_data(inode))
5804 ret += bpp;
5805 return ret;
5806 }
5807
5808 /*
5809 * Calculate the journal credits for a chunk of data modification.
5810 *
5811 * This is called from DIO, fallocate or whoever calling
5812 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5813 *
5814 * journal buffers for data blocks are not included here, as DIO
5815 * and fallocate do no need to journal data buffers.
5816 */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5817 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5818 {
5819 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5820 }
5821
5822 /*
5823 * The caller must have previously called ext4_reserve_inode_write().
5824 * Give this, we know that the caller already has write access to iloc->bh.
5825 */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5826 int ext4_mark_iloc_dirty(handle_t *handle,
5827 struct inode *inode, struct ext4_iloc *iloc)
5828 {
5829 int err = 0;
5830
5831 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5832 put_bh(iloc->bh);
5833 return -EIO;
5834 }
5835 ext4_fc_track_inode(handle, inode);
5836
5837 /* the do_update_inode consumes one bh->b_count */
5838 get_bh(iloc->bh);
5839
5840 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5841 err = ext4_do_update_inode(handle, inode, iloc);
5842 put_bh(iloc->bh);
5843 return err;
5844 }
5845
5846 /*
5847 * On success, We end up with an outstanding reference count against
5848 * iloc->bh. This _must_ be cleaned up later.
5849 */
5850
5851 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5852 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5853 struct ext4_iloc *iloc)
5854 {
5855 int err;
5856
5857 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5858 return -EIO;
5859
5860 err = ext4_get_inode_loc(inode, iloc);
5861 if (!err) {
5862 BUFFER_TRACE(iloc->bh, "get_write_access");
5863 err = ext4_journal_get_write_access(handle, inode->i_sb,
5864 iloc->bh, EXT4_JTR_NONE);
5865 if (err) {
5866 brelse(iloc->bh);
5867 iloc->bh = NULL;
5868 }
5869 }
5870 ext4_std_error(inode->i_sb, err);
5871 return err;
5872 }
5873
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5874 static int __ext4_expand_extra_isize(struct inode *inode,
5875 unsigned int new_extra_isize,
5876 struct ext4_iloc *iloc,
5877 handle_t *handle, int *no_expand)
5878 {
5879 struct ext4_inode *raw_inode;
5880 struct ext4_xattr_ibody_header *header;
5881 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5882 struct ext4_inode_info *ei = EXT4_I(inode);
5883 int error;
5884
5885 /* this was checked at iget time, but double check for good measure */
5886 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5887 (ei->i_extra_isize & 3)) {
5888 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5889 ei->i_extra_isize,
5890 EXT4_INODE_SIZE(inode->i_sb));
5891 return -EFSCORRUPTED;
5892 }
5893 if ((new_extra_isize < ei->i_extra_isize) ||
5894 (new_extra_isize < 4) ||
5895 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5896 return -EINVAL; /* Should never happen */
5897
5898 raw_inode = ext4_raw_inode(iloc);
5899
5900 header = IHDR(inode, raw_inode);
5901
5902 /* No extended attributes present */
5903 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5904 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5905 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5906 EXT4_I(inode)->i_extra_isize, 0,
5907 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5908 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5909 return 0;
5910 }
5911
5912 /*
5913 * We may need to allocate external xattr block so we need quotas
5914 * initialized. Here we can be called with various locks held so we
5915 * cannot affort to initialize quotas ourselves. So just bail.
5916 */
5917 if (dquot_initialize_needed(inode))
5918 return -EAGAIN;
5919
5920 /* try to expand with EAs present */
5921 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5922 raw_inode, handle);
5923 if (error) {
5924 /*
5925 * Inode size expansion failed; don't try again
5926 */
5927 *no_expand = 1;
5928 }
5929
5930 return error;
5931 }
5932
5933 /*
5934 * Expand an inode by new_extra_isize bytes.
5935 * Returns 0 on success or negative error number on failure.
5936 */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5937 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5938 unsigned int new_extra_isize,
5939 struct ext4_iloc iloc,
5940 handle_t *handle)
5941 {
5942 int no_expand;
5943 int error;
5944
5945 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5946 return -EOVERFLOW;
5947
5948 /*
5949 * In nojournal mode, we can immediately attempt to expand
5950 * the inode. When journaled, we first need to obtain extra
5951 * buffer credits since we may write into the EA block
5952 * with this same handle. If journal_extend fails, then it will
5953 * only result in a minor loss of functionality for that inode.
5954 * If this is felt to be critical, then e2fsck should be run to
5955 * force a large enough s_min_extra_isize.
5956 */
5957 if (ext4_journal_extend(handle,
5958 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5959 return -ENOSPC;
5960
5961 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5962 return -EBUSY;
5963
5964 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5965 handle, &no_expand);
5966 ext4_write_unlock_xattr(inode, &no_expand);
5967
5968 return error;
5969 }
5970
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)5971 int ext4_expand_extra_isize(struct inode *inode,
5972 unsigned int new_extra_isize,
5973 struct ext4_iloc *iloc)
5974 {
5975 handle_t *handle;
5976 int no_expand;
5977 int error, rc;
5978
5979 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5980 brelse(iloc->bh);
5981 return -EOVERFLOW;
5982 }
5983
5984 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5985 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5986 if (IS_ERR(handle)) {
5987 error = PTR_ERR(handle);
5988 brelse(iloc->bh);
5989 return error;
5990 }
5991
5992 ext4_write_lock_xattr(inode, &no_expand);
5993
5994 BUFFER_TRACE(iloc->bh, "get_write_access");
5995 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5996 EXT4_JTR_NONE);
5997 if (error) {
5998 brelse(iloc->bh);
5999 goto out_unlock;
6000 }
6001
6002 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6003 handle, &no_expand);
6004
6005 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6006 if (!error)
6007 error = rc;
6008
6009 out_unlock:
6010 ext4_write_unlock_xattr(inode, &no_expand);
6011 ext4_journal_stop(handle);
6012 return error;
6013 }
6014
6015 /*
6016 * What we do here is to mark the in-core inode as clean with respect to inode
6017 * dirtiness (it may still be data-dirty).
6018 * This means that the in-core inode may be reaped by prune_icache
6019 * without having to perform any I/O. This is a very good thing,
6020 * because *any* task may call prune_icache - even ones which
6021 * have a transaction open against a different journal.
6022 *
6023 * Is this cheating? Not really. Sure, we haven't written the
6024 * inode out, but prune_icache isn't a user-visible syncing function.
6025 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6026 * we start and wait on commits.
6027 */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6028 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6029 const char *func, unsigned int line)
6030 {
6031 struct ext4_iloc iloc;
6032 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6033 int err;
6034
6035 might_sleep();
6036 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6037 err = ext4_reserve_inode_write(handle, inode, &iloc);
6038 if (err)
6039 goto out;
6040
6041 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6042 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6043 iloc, handle);
6044
6045 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6046 out:
6047 if (unlikely(err))
6048 ext4_error_inode_err(inode, func, line, 0, err,
6049 "mark_inode_dirty error");
6050 return err;
6051 }
6052
6053 /*
6054 * ext4_dirty_inode() is called from __mark_inode_dirty()
6055 *
6056 * We're really interested in the case where a file is being extended.
6057 * i_size has been changed by generic_commit_write() and we thus need
6058 * to include the updated inode in the current transaction.
6059 *
6060 * Also, dquot_alloc_block() will always dirty the inode when blocks
6061 * are allocated to the file.
6062 *
6063 * If the inode is marked synchronous, we don't honour that here - doing
6064 * so would cause a commit on atime updates, which we don't bother doing.
6065 * We handle synchronous inodes at the highest possible level.
6066 */
ext4_dirty_inode(struct inode * inode,int flags)6067 void ext4_dirty_inode(struct inode *inode, int flags)
6068 {
6069 handle_t *handle;
6070
6071 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6072 if (IS_ERR(handle))
6073 return;
6074 ext4_mark_inode_dirty(handle, inode);
6075 ext4_journal_stop(handle);
6076 }
6077
ext4_change_inode_journal_flag(struct inode * inode,int val)6078 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6079 {
6080 journal_t *journal;
6081 handle_t *handle;
6082 int err;
6083 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6084
6085 /*
6086 * We have to be very careful here: changing a data block's
6087 * journaling status dynamically is dangerous. If we write a
6088 * data block to the journal, change the status and then delete
6089 * that block, we risk forgetting to revoke the old log record
6090 * from the journal and so a subsequent replay can corrupt data.
6091 * So, first we make sure that the journal is empty and that
6092 * nobody is changing anything.
6093 */
6094
6095 journal = EXT4_JOURNAL(inode);
6096 if (!journal)
6097 return 0;
6098 if (is_journal_aborted(journal))
6099 return -EROFS;
6100
6101 /* Wait for all existing dio workers */
6102 inode_dio_wait(inode);
6103
6104 /*
6105 * Before flushing the journal and switching inode's aops, we have
6106 * to flush all dirty data the inode has. There can be outstanding
6107 * delayed allocations, there can be unwritten extents created by
6108 * fallocate or buffered writes in dioread_nolock mode covered by
6109 * dirty data which can be converted only after flushing the dirty
6110 * data (and journalled aops don't know how to handle these cases).
6111 */
6112 if (val) {
6113 filemap_invalidate_lock(inode->i_mapping);
6114 err = filemap_write_and_wait(inode->i_mapping);
6115 if (err < 0) {
6116 filemap_invalidate_unlock(inode->i_mapping);
6117 return err;
6118 }
6119 }
6120
6121 percpu_down_write(&sbi->s_writepages_rwsem);
6122 jbd2_journal_lock_updates(journal);
6123
6124 /*
6125 * OK, there are no updates running now, and all cached data is
6126 * synced to disk. We are now in a completely consistent state
6127 * which doesn't have anything in the journal, and we know that
6128 * no filesystem updates are running, so it is safe to modify
6129 * the inode's in-core data-journaling state flag now.
6130 */
6131
6132 if (val)
6133 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6134 else {
6135 err = jbd2_journal_flush(journal, 0);
6136 if (err < 0) {
6137 jbd2_journal_unlock_updates(journal);
6138 percpu_up_write(&sbi->s_writepages_rwsem);
6139 return err;
6140 }
6141 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6142 }
6143 ext4_set_aops(inode);
6144
6145 jbd2_journal_unlock_updates(journal);
6146 percpu_up_write(&sbi->s_writepages_rwsem);
6147
6148 if (val)
6149 filemap_invalidate_unlock(inode->i_mapping);
6150
6151 /* Finally we can mark the inode as dirty. */
6152
6153 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6154 if (IS_ERR(handle))
6155 return PTR_ERR(handle);
6156
6157 ext4_fc_mark_ineligible(inode->i_sb,
6158 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6159 err = ext4_mark_inode_dirty(handle, inode);
6160 ext4_handle_sync(handle);
6161 ext4_journal_stop(handle);
6162 ext4_std_error(inode->i_sb, err);
6163
6164 return err;
6165 }
6166
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6167 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6168 struct buffer_head *bh)
6169 {
6170 return !buffer_mapped(bh);
6171 }
6172
ext4_page_mkwrite(struct vm_fault * vmf)6173 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6174 {
6175 struct vm_area_struct *vma = vmf->vma;
6176 struct page *page = vmf->page;
6177 loff_t size;
6178 unsigned long len;
6179 int err;
6180 vm_fault_t ret;
6181 struct file *file = vma->vm_file;
6182 struct inode *inode = file_inode(file);
6183 struct address_space *mapping = inode->i_mapping;
6184 handle_t *handle;
6185 get_block_t *get_block;
6186 int retries = 0;
6187
6188 if (unlikely(IS_IMMUTABLE(inode)))
6189 return VM_FAULT_SIGBUS;
6190
6191 sb_start_pagefault(inode->i_sb);
6192 file_update_time(vma->vm_file);
6193
6194 filemap_invalidate_lock_shared(mapping);
6195
6196 err = ext4_convert_inline_data(inode);
6197 if (err)
6198 goto out_ret;
6199
6200 /*
6201 * On data journalling we skip straight to the transaction handle:
6202 * there's no delalloc; page truncated will be checked later; the
6203 * early return w/ all buffers mapped (calculates size/len) can't
6204 * be used; and there's no dioread_nolock, so only ext4_get_block.
6205 */
6206 if (ext4_should_journal_data(inode))
6207 goto retry_alloc;
6208
6209 /* Delalloc case is easy... */
6210 if (test_opt(inode->i_sb, DELALLOC) &&
6211 !ext4_nonda_switch(inode->i_sb)) {
6212 do {
6213 err = block_page_mkwrite(vma, vmf,
6214 ext4_da_get_block_prep);
6215 } while (err == -ENOSPC &&
6216 ext4_should_retry_alloc(inode->i_sb, &retries));
6217 goto out_ret;
6218 }
6219
6220 lock_page(page);
6221 size = i_size_read(inode);
6222 /* Page got truncated from under us? */
6223 if (page->mapping != mapping || page_offset(page) > size) {
6224 unlock_page(page);
6225 ret = VM_FAULT_NOPAGE;
6226 goto out;
6227 }
6228
6229 if (page->index == size >> PAGE_SHIFT)
6230 len = size & ~PAGE_MASK;
6231 else
6232 len = PAGE_SIZE;
6233 /*
6234 * Return if we have all the buffers mapped. This avoids the need to do
6235 * journal_start/journal_stop which can block and take a long time
6236 *
6237 * This cannot be done for data journalling, as we have to add the
6238 * inode to the transaction's list to writeprotect pages on commit.
6239 */
6240 if (page_has_buffers(page)) {
6241 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6242 0, len, NULL,
6243 ext4_bh_unmapped)) {
6244 /* Wait so that we don't change page under IO */
6245 wait_for_stable_page(page);
6246 ret = VM_FAULT_LOCKED;
6247 goto out;
6248 }
6249 }
6250 unlock_page(page);
6251 /* OK, we need to fill the hole... */
6252 if (ext4_should_dioread_nolock(inode))
6253 get_block = ext4_get_block_unwritten;
6254 else
6255 get_block = ext4_get_block;
6256 retry_alloc:
6257 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6258 ext4_writepage_trans_blocks(inode));
6259 if (IS_ERR(handle)) {
6260 ret = VM_FAULT_SIGBUS;
6261 goto out;
6262 }
6263 /*
6264 * Data journalling can't use block_page_mkwrite() because it
6265 * will set_buffer_dirty() before do_journal_get_write_access()
6266 * thus might hit warning messages for dirty metadata buffers.
6267 */
6268 if (!ext4_should_journal_data(inode)) {
6269 err = block_page_mkwrite(vma, vmf, get_block);
6270 } else {
6271 lock_page(page);
6272 size = i_size_read(inode);
6273 /* Page got truncated from under us? */
6274 if (page->mapping != mapping || page_offset(page) > size) {
6275 ret = VM_FAULT_NOPAGE;
6276 goto out_error;
6277 }
6278
6279 if (page->index == size >> PAGE_SHIFT)
6280 len = size & ~PAGE_MASK;
6281 else
6282 len = PAGE_SIZE;
6283
6284 err = __block_write_begin(page, 0, len, ext4_get_block);
6285 if (!err) {
6286 ret = VM_FAULT_SIGBUS;
6287 if (ext4_walk_page_buffers(handle, inode,
6288 page_buffers(page), 0, len, NULL,
6289 do_journal_get_write_access))
6290 goto out_error;
6291 if (ext4_walk_page_buffers(handle, inode,
6292 page_buffers(page), 0, len, NULL,
6293 write_end_fn))
6294 goto out_error;
6295 if (ext4_jbd2_inode_add_write(handle, inode,
6296 page_offset(page), len))
6297 goto out_error;
6298 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6299 } else {
6300 unlock_page(page);
6301 }
6302 }
6303 ext4_journal_stop(handle);
6304 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6305 goto retry_alloc;
6306 out_ret:
6307 ret = block_page_mkwrite_return(err);
6308 out:
6309 filemap_invalidate_unlock_shared(mapping);
6310 sb_end_pagefault(inode->i_sb);
6311 return ret;
6312 out_error:
6313 unlock_page(page);
6314 ext4_journal_stop(handle);
6315 goto out;
6316 }
6317