• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/file.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/file.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  ext4 fs regular file handling primitives
17  *
18  *  64-bit file support on 64-bit platforms by Jakub Jelinek
19  *	(jj@sunsite.ms.mff.cuni.cz)
20  */
21 
22 #include <linux/time.h>
23 #include <linux/fs.h>
24 #include <linux/iomap.h>
25 #include <linux/mount.h>
26 #include <linux/path.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/pagevec.h>
30 #include <linux/uio.h>
31 #include <linux/mman.h>
32 #include <linux/backing-dev.h>
33 #include "ext4.h"
34 #include "ext4_jbd2.h"
35 #include "xattr.h"
36 #include "acl.h"
37 #include "truncate.h"
38 
39 /*
40  * Returns %true if the given DIO request should be attempted with DIO, or
41  * %false if it should fall back to buffered I/O.
42  *
43  * DIO isn't well specified; when it's unsupported (either due to the request
44  * being misaligned, or due to the file not supporting DIO at all), filesystems
45  * either fall back to buffered I/O or return EINVAL.  For files that don't use
46  * any special features like encryption or verity, ext4 has traditionally
47  * returned EINVAL for misaligned DIO.  iomap_dio_rw() uses this convention too.
48  * In this case, we should attempt the DIO, *not* fall back to buffered I/O.
49  *
50  * In contrast, in cases where DIO is unsupported due to ext4 features, ext4
51  * traditionally falls back to buffered I/O.
52  *
53  * This function implements the traditional ext4 behavior in all these cases.
54  */
ext4_should_use_dio(struct kiocb * iocb,struct iov_iter * iter)55 static bool ext4_should_use_dio(struct kiocb *iocb, struct iov_iter *iter)
56 {
57 	struct inode *inode = file_inode(iocb->ki_filp);
58 	u32 dio_align = ext4_dio_alignment(inode);
59 
60 	if (dio_align == 0)
61 		return false;
62 
63 	if (dio_align == 1)
64 		return true;
65 
66 	return IS_ALIGNED(iocb->ki_pos | iov_iter_alignment(iter), dio_align);
67 }
68 
ext4_dio_read_iter(struct kiocb * iocb,struct iov_iter * to)69 static ssize_t ext4_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
70 {
71 	ssize_t ret;
72 	struct inode *inode = file_inode(iocb->ki_filp);
73 
74 	if (iocb->ki_flags & IOCB_NOWAIT) {
75 		if (!inode_trylock_shared(inode))
76 			return -EAGAIN;
77 	} else {
78 		inode_lock_shared(inode);
79 	}
80 
81 	if (!ext4_should_use_dio(iocb, to)) {
82 		inode_unlock_shared(inode);
83 		/*
84 		 * Fallback to buffered I/O if the operation being performed on
85 		 * the inode is not supported by direct I/O. The IOCB_DIRECT
86 		 * flag needs to be cleared here in order to ensure that the
87 		 * direct I/O path within generic_file_read_iter() is not
88 		 * taken.
89 		 */
90 		iocb->ki_flags &= ~IOCB_DIRECT;
91 		return generic_file_read_iter(iocb, to);
92 	}
93 
94 	ret = iomap_dio_rw(iocb, to, &ext4_iomap_ops, NULL, 0, NULL, 0);
95 	inode_unlock_shared(inode);
96 
97 	file_accessed(iocb->ki_filp);
98 	return ret;
99 }
100 
101 #ifdef CONFIG_FS_DAX
ext4_dax_read_iter(struct kiocb * iocb,struct iov_iter * to)102 static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
103 {
104 	struct inode *inode = file_inode(iocb->ki_filp);
105 	ssize_t ret;
106 
107 	if (iocb->ki_flags & IOCB_NOWAIT) {
108 		if (!inode_trylock_shared(inode))
109 			return -EAGAIN;
110 	} else {
111 		inode_lock_shared(inode);
112 	}
113 	/*
114 	 * Recheck under inode lock - at this point we are sure it cannot
115 	 * change anymore
116 	 */
117 	if (!IS_DAX(inode)) {
118 		inode_unlock_shared(inode);
119 		/* Fallback to buffered IO in case we cannot support DAX */
120 		return generic_file_read_iter(iocb, to);
121 	}
122 	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
123 	inode_unlock_shared(inode);
124 
125 	file_accessed(iocb->ki_filp);
126 	return ret;
127 }
128 #endif
129 
ext4_file_read_iter(struct kiocb * iocb,struct iov_iter * to)130 static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
131 {
132 	struct inode *inode = file_inode(iocb->ki_filp);
133 
134 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
135 		return -EIO;
136 
137 	if (!iov_iter_count(to))
138 		return 0; /* skip atime */
139 
140 #ifdef CONFIG_FS_DAX
141 	if (IS_DAX(inode))
142 		return ext4_dax_read_iter(iocb, to);
143 #endif
144 	if (iocb->ki_flags & IOCB_DIRECT)
145 		return ext4_dio_read_iter(iocb, to);
146 
147 	return generic_file_read_iter(iocb, to);
148 }
149 
150 /*
151  * Called when an inode is released. Note that this is different
152  * from ext4_file_open: open gets called at every open, but release
153  * gets called only when /all/ the files are closed.
154  */
ext4_release_file(struct inode * inode,struct file * filp)155 static int ext4_release_file(struct inode *inode, struct file *filp)
156 {
157 	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
158 		ext4_alloc_da_blocks(inode);
159 		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
160 	}
161 	/* if we are the last writer on the inode, drop the block reservation */
162 	if ((filp->f_mode & FMODE_WRITE) &&
163 			(atomic_read(&inode->i_writecount) == 1) &&
164 			!EXT4_I(inode)->i_reserved_data_blocks) {
165 		down_write(&EXT4_I(inode)->i_data_sem);
166 		ext4_discard_preallocations(inode, 0);
167 		up_write(&EXT4_I(inode)->i_data_sem);
168 	}
169 	if (is_dx(inode) && filp->private_data)
170 		ext4_htree_free_dir_info(filp->private_data);
171 
172 	return 0;
173 }
174 
175 /*
176  * This tests whether the IO in question is block-aligned or not.
177  * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
178  * are converted to written only after the IO is complete.  Until they are
179  * mapped, these blocks appear as holes, so dio_zero_block() will assume that
180  * it needs to zero out portions of the start and/or end block.  If 2 AIO
181  * threads are at work on the same unwritten block, they must be synchronized
182  * or one thread will zero the other's data, causing corruption.
183  */
184 static bool
ext4_unaligned_io(struct inode * inode,struct iov_iter * from,loff_t pos)185 ext4_unaligned_io(struct inode *inode, struct iov_iter *from, loff_t pos)
186 {
187 	struct super_block *sb = inode->i_sb;
188 	unsigned long blockmask = sb->s_blocksize - 1;
189 
190 	if ((pos | iov_iter_alignment(from)) & blockmask)
191 		return true;
192 
193 	return false;
194 }
195 
196 static bool
ext4_extending_io(struct inode * inode,loff_t offset,size_t len)197 ext4_extending_io(struct inode *inode, loff_t offset, size_t len)
198 {
199 	if (offset + len > i_size_read(inode) ||
200 	    offset + len > EXT4_I(inode)->i_disksize)
201 		return true;
202 	return false;
203 }
204 
205 /* Is IO overwriting allocated and initialized blocks? */
ext4_overwrite_io(struct inode * inode,loff_t pos,loff_t len)206 static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
207 {
208 	struct ext4_map_blocks map;
209 	unsigned int blkbits = inode->i_blkbits;
210 	int err, blklen;
211 
212 	if (pos + len > i_size_read(inode))
213 		return false;
214 
215 	map.m_lblk = pos >> blkbits;
216 	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
217 	blklen = map.m_len;
218 
219 	err = ext4_map_blocks(NULL, inode, &map, 0);
220 	/*
221 	 * 'err==len' means that all of the blocks have been preallocated,
222 	 * regardless of whether they have been initialized or not. To exclude
223 	 * unwritten extents, we need to check m_flags.
224 	 */
225 	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
226 }
227 
ext4_generic_write_checks(struct kiocb * iocb,struct iov_iter * from)228 static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
229 					 struct iov_iter *from)
230 {
231 	struct inode *inode = file_inode(iocb->ki_filp);
232 	ssize_t ret;
233 
234 	if (unlikely(IS_IMMUTABLE(inode)))
235 		return -EPERM;
236 
237 	ret = generic_write_checks(iocb, from);
238 	if (ret <= 0)
239 		return ret;
240 
241 	/*
242 	 * If we have encountered a bitmap-format file, the size limit
243 	 * is smaller than s_maxbytes, which is for extent-mapped files.
244 	 */
245 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
246 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
247 
248 		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
249 			return -EFBIG;
250 		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
251 	}
252 
253 	return iov_iter_count(from);
254 }
255 
ext4_write_checks(struct kiocb * iocb,struct iov_iter * from)256 static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
257 {
258 	ssize_t ret, count;
259 
260 	count = ext4_generic_write_checks(iocb, from);
261 	if (count <= 0)
262 		return count;
263 
264 	ret = file_modified(iocb->ki_filp);
265 	if (ret)
266 		return ret;
267 	return count;
268 }
269 
ext4_buffered_write_iter(struct kiocb * iocb,struct iov_iter * from)270 static ssize_t ext4_buffered_write_iter(struct kiocb *iocb,
271 					struct iov_iter *from)
272 {
273 	ssize_t ret;
274 	struct inode *inode = file_inode(iocb->ki_filp);
275 
276 	if (iocb->ki_flags & IOCB_NOWAIT)
277 		return -EOPNOTSUPP;
278 
279 	inode_lock(inode);
280 	ret = ext4_write_checks(iocb, from);
281 	if (ret <= 0)
282 		goto out;
283 
284 	current->backing_dev_info = inode_to_bdi(inode);
285 	ret = generic_perform_write(iocb, from);
286 	current->backing_dev_info = NULL;
287 
288 out:
289 	inode_unlock(inode);
290 	if (likely(ret > 0)) {
291 		iocb->ki_pos += ret;
292 		ret = generic_write_sync(iocb, ret);
293 	}
294 
295 	return ret;
296 }
297 
ext4_handle_inode_extension(struct inode * inode,loff_t offset,ssize_t count)298 static ssize_t ext4_handle_inode_extension(struct inode *inode, loff_t offset,
299 					   ssize_t count)
300 {
301 	handle_t *handle;
302 
303 	lockdep_assert_held_write(&inode->i_rwsem);
304 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
305 	if (IS_ERR(handle))
306 		return PTR_ERR(handle);
307 
308 	if (ext4_update_inode_size(inode, offset + count)) {
309 		int ret = ext4_mark_inode_dirty(handle, inode);
310 		if (unlikely(ret)) {
311 			ext4_journal_stop(handle);
312 			return ret;
313 		}
314 	}
315 
316 	if (inode->i_nlink)
317 		ext4_orphan_del(handle, inode);
318 	ext4_journal_stop(handle);
319 
320 	return count;
321 }
322 
323 /*
324  * Clean up the inode after DIO or DAX extending write has completed and the
325  * inode size has been updated using ext4_handle_inode_extension().
326  */
ext4_inode_extension_cleanup(struct inode * inode,ssize_t count)327 static void ext4_inode_extension_cleanup(struct inode *inode, ssize_t count)
328 {
329 	lockdep_assert_held_write(&inode->i_rwsem);
330 	if (count < 0) {
331 		ext4_truncate_failed_write(inode);
332 		/*
333 		 * If the truncate operation failed early, then the inode may
334 		 * still be on the orphan list. In that case, we need to try
335 		 * remove the inode from the in-memory linked list.
336 		 */
337 		if (inode->i_nlink)
338 			ext4_orphan_del(NULL, inode);
339 		return;
340 	}
341 	/*
342 	 * If i_disksize got extended either due to writeback of delalloc
343 	 * blocks or extending truncate while the DIO was running we could fail
344 	 * to cleanup the orphan list in ext4_handle_inode_extension(). Do it
345 	 * now.
346 	 */
347 	if (!list_empty(&EXT4_I(inode)->i_orphan) && inode->i_nlink) {
348 		handle_t *handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
349 
350 		if (IS_ERR(handle)) {
351 			/*
352 			 * The write has successfully completed. Not much to
353 			 * do with the error here so just cleanup the orphan
354 			 * list and hope for the best.
355 			 */
356 			ext4_orphan_del(NULL, inode);
357 			return;
358 		}
359 		ext4_orphan_del(handle, inode);
360 		ext4_journal_stop(handle);
361 	}
362 }
363 
ext4_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned int flags)364 static int ext4_dio_write_end_io(struct kiocb *iocb, ssize_t size,
365 				 int error, unsigned int flags)
366 {
367 	loff_t pos = iocb->ki_pos;
368 	struct inode *inode = file_inode(iocb->ki_filp);
369 
370 	if (!error && size && flags & IOMAP_DIO_UNWRITTEN)
371 		error = ext4_convert_unwritten_extents(NULL, inode, pos, size);
372 	if (error)
373 		return error;
374 	/*
375 	 * Note that EXT4_I(inode)->i_disksize can get extended up to
376 	 * inode->i_size while the I/O was running due to writeback of delalloc
377 	 * blocks. But the code in ext4_iomap_alloc() is careful to use
378 	 * zeroed/unwritten extents if this is possible; thus we won't leave
379 	 * uninitialized blocks in a file even if we didn't succeed in writing
380 	 * as much as we intended. Also we can race with truncate or write
381 	 * expanding the file so we have to be a bit careful here.
382 	 */
383 	if (pos + size <= READ_ONCE(EXT4_I(inode)->i_disksize) &&
384 	    pos + size <= i_size_read(inode))
385 		return size;
386 	return ext4_handle_inode_extension(inode, pos, size);
387 }
388 
389 static const struct iomap_dio_ops ext4_dio_write_ops = {
390 	.end_io = ext4_dio_write_end_io,
391 };
392 
393 /*
394  * The intention here is to start with shared lock acquired then see if any
395  * condition requires an exclusive inode lock. If yes, then we restart the
396  * whole operation by releasing the shared lock and acquiring exclusive lock.
397  *
398  * - For unaligned_io we never take shared lock as it may cause data corruption
399  *   when two unaligned IO tries to modify the same block e.g. while zeroing.
400  *
401  * - For extending writes case we don't take the shared lock, since it requires
402  *   updating inode i_disksize and/or orphan handling with exclusive lock.
403  *
404  * - shared locking will only be true mostly with overwrites. Otherwise we will
405  *   switch to exclusive i_rwsem lock.
406  */
ext4_dio_write_checks(struct kiocb * iocb,struct iov_iter * from,bool * ilock_shared,bool * extend)407 static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
408 				     bool *ilock_shared, bool *extend)
409 {
410 	struct file *file = iocb->ki_filp;
411 	struct inode *inode = file_inode(file);
412 	loff_t offset;
413 	size_t count;
414 	ssize_t ret;
415 
416 restart:
417 	ret = ext4_generic_write_checks(iocb, from);
418 	if (ret <= 0)
419 		goto out;
420 
421 	offset = iocb->ki_pos;
422 	count = ret;
423 	if (ext4_extending_io(inode, offset, count))
424 		*extend = true;
425 	/*
426 	 * Determine whether the IO operation will overwrite allocated
427 	 * and initialized blocks.
428 	 * We need exclusive i_rwsem for changing security info
429 	 * in file_modified().
430 	 */
431 	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
432 	     !ext4_overwrite_io(inode, offset, count))) {
433 		if (iocb->ki_flags & IOCB_NOWAIT) {
434 			ret = -EAGAIN;
435 			goto out;
436 		}
437 		inode_unlock_shared(inode);
438 		*ilock_shared = false;
439 		inode_lock(inode);
440 		goto restart;
441 	}
442 
443 	ret = file_modified(file);
444 	if (ret < 0)
445 		goto out;
446 
447 	return count;
448 out:
449 	if (*ilock_shared)
450 		inode_unlock_shared(inode);
451 	else
452 		inode_unlock(inode);
453 	return ret;
454 }
455 
ext4_dio_write_iter(struct kiocb * iocb,struct iov_iter * from)456 static ssize_t ext4_dio_write_iter(struct kiocb *iocb, struct iov_iter *from)
457 {
458 	ssize_t ret;
459 	handle_t *handle;
460 	struct inode *inode = file_inode(iocb->ki_filp);
461 	loff_t offset = iocb->ki_pos;
462 	size_t count = iov_iter_count(from);
463 	const struct iomap_ops *iomap_ops = &ext4_iomap_ops;
464 	bool extend = false, unaligned_io = false;
465 	bool ilock_shared = true;
466 
467 	/*
468 	 * We initially start with shared inode lock unless it is
469 	 * unaligned IO which needs exclusive lock anyways.
470 	 */
471 	if (ext4_unaligned_io(inode, from, offset)) {
472 		unaligned_io = true;
473 		ilock_shared = false;
474 	}
475 	/*
476 	 * Quick check here without any i_rwsem lock to see if it is extending
477 	 * IO. A more reliable check is done in ext4_dio_write_checks() with
478 	 * proper locking in place.
479 	 */
480 	if (offset + count > i_size_read(inode))
481 		ilock_shared = false;
482 
483 	if (iocb->ki_flags & IOCB_NOWAIT) {
484 		if (ilock_shared) {
485 			if (!inode_trylock_shared(inode))
486 				return -EAGAIN;
487 		} else {
488 			if (!inode_trylock(inode))
489 				return -EAGAIN;
490 		}
491 	} else {
492 		if (ilock_shared)
493 			inode_lock_shared(inode);
494 		else
495 			inode_lock(inode);
496 	}
497 
498 	/* Fallback to buffered I/O if the inode does not support direct I/O. */
499 	if (!ext4_should_use_dio(iocb, from)) {
500 		if (ilock_shared)
501 			inode_unlock_shared(inode);
502 		else
503 			inode_unlock(inode);
504 		return ext4_buffered_write_iter(iocb, from);
505 	}
506 
507 	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
508 	if (ret <= 0)
509 		return ret;
510 
511 	/* if we're going to block and IOCB_NOWAIT is set, return -EAGAIN */
512 	if ((iocb->ki_flags & IOCB_NOWAIT) && (unaligned_io || extend)) {
513 		ret = -EAGAIN;
514 		goto out;
515 	}
516 	/*
517 	 * Make sure inline data cannot be created anymore since we are going
518 	 * to allocate blocks for DIO. We know the inode does not have any
519 	 * inline data now because ext4_dio_supported() checked for that.
520 	 */
521 	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
522 
523 	offset = iocb->ki_pos;
524 	count = ret;
525 
526 	/*
527 	 * Unaligned direct IO must be serialized among each other as zeroing
528 	 * of partial blocks of two competing unaligned IOs can result in data
529 	 * corruption.
530 	 *
531 	 * So we make sure we don't allow any unaligned IO in flight.
532 	 * For IOs where we need not wait (like unaligned non-AIO DIO),
533 	 * below inode_dio_wait() may anyway become a no-op, since we start
534 	 * with exclusive lock.
535 	 */
536 	if (unaligned_io)
537 		inode_dio_wait(inode);
538 
539 	if (extend) {
540 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
541 		if (IS_ERR(handle)) {
542 			ret = PTR_ERR(handle);
543 			goto out;
544 		}
545 
546 		ret = ext4_orphan_add(handle, inode);
547 		if (ret) {
548 			ext4_journal_stop(handle);
549 			goto out;
550 		}
551 
552 		ext4_journal_stop(handle);
553 	}
554 
555 	if (ilock_shared)
556 		iomap_ops = &ext4_iomap_overwrite_ops;
557 	ret = iomap_dio_rw(iocb, from, iomap_ops, &ext4_dio_write_ops,
558 			   (unaligned_io || extend) ? IOMAP_DIO_FORCE_WAIT : 0,
559 			   NULL, 0);
560 	if (ret == -ENOTBLK)
561 		ret = 0;
562 	if (extend) {
563 		/*
564 		 * We always perform extending DIO write synchronously so by
565 		 * now the IO is completed and ext4_handle_inode_extension()
566 		 * was called. Cleanup the inode in case of error or race with
567 		 * writeback of delalloc blocks.
568 		 */
569 		WARN_ON_ONCE(ret == -EIOCBQUEUED);
570 		ext4_inode_extension_cleanup(inode, ret);
571 	}
572 
573 out:
574 	if (ilock_shared)
575 		inode_unlock_shared(inode);
576 	else
577 		inode_unlock(inode);
578 
579 	if (ret >= 0 && iov_iter_count(from)) {
580 		ssize_t err;
581 		loff_t endbyte;
582 
583 		offset = iocb->ki_pos;
584 		err = ext4_buffered_write_iter(iocb, from);
585 		if (err < 0)
586 			return err;
587 
588 		/*
589 		 * We need to ensure that the pages within the page cache for
590 		 * the range covered by this I/O are written to disk and
591 		 * invalidated. This is in attempt to preserve the expected
592 		 * direct I/O semantics in the case we fallback to buffered I/O
593 		 * to complete off the I/O request.
594 		 */
595 		ret += err;
596 		endbyte = offset + err - 1;
597 		err = filemap_write_and_wait_range(iocb->ki_filp->f_mapping,
598 						   offset, endbyte);
599 		if (!err)
600 			invalidate_mapping_pages(iocb->ki_filp->f_mapping,
601 						 offset >> PAGE_SHIFT,
602 						 endbyte >> PAGE_SHIFT);
603 	}
604 
605 	return ret;
606 }
607 
608 #ifdef CONFIG_FS_DAX
609 static ssize_t
ext4_dax_write_iter(struct kiocb * iocb,struct iov_iter * from)610 ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
611 {
612 	ssize_t ret;
613 	size_t count;
614 	loff_t offset;
615 	handle_t *handle;
616 	bool extend = false;
617 	struct inode *inode = file_inode(iocb->ki_filp);
618 
619 	if (iocb->ki_flags & IOCB_NOWAIT) {
620 		if (!inode_trylock(inode))
621 			return -EAGAIN;
622 	} else {
623 		inode_lock(inode);
624 	}
625 
626 	ret = ext4_write_checks(iocb, from);
627 	if (ret <= 0)
628 		goto out;
629 
630 	offset = iocb->ki_pos;
631 	count = iov_iter_count(from);
632 
633 	if (offset + count > EXT4_I(inode)->i_disksize) {
634 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
635 		if (IS_ERR(handle)) {
636 			ret = PTR_ERR(handle);
637 			goto out;
638 		}
639 
640 		ret = ext4_orphan_add(handle, inode);
641 		if (ret) {
642 			ext4_journal_stop(handle);
643 			goto out;
644 		}
645 
646 		extend = true;
647 		ext4_journal_stop(handle);
648 	}
649 
650 	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
651 
652 	if (extend) {
653 		ret = ext4_handle_inode_extension(inode, offset, ret);
654 		ext4_inode_extension_cleanup(inode, ret);
655 	}
656 out:
657 	inode_unlock(inode);
658 	if (ret > 0)
659 		ret = generic_write_sync(iocb, ret);
660 	return ret;
661 }
662 #endif
663 
664 static ssize_t
ext4_file_write_iter(struct kiocb * iocb,struct iov_iter * from)665 ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
666 {
667 	struct inode *inode = file_inode(iocb->ki_filp);
668 
669 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
670 		return -EIO;
671 
672 #ifdef CONFIG_FS_DAX
673 	if (IS_DAX(inode))
674 		return ext4_dax_write_iter(iocb, from);
675 #endif
676 	if (iocb->ki_flags & IOCB_DIRECT)
677 		return ext4_dio_write_iter(iocb, from);
678 	else
679 		return ext4_buffered_write_iter(iocb, from);
680 }
681 
682 #ifdef CONFIG_FS_DAX
ext4_dax_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)683 static vm_fault_t ext4_dax_huge_fault(struct vm_fault *vmf,
684 		enum page_entry_size pe_size)
685 {
686 	int error = 0;
687 	vm_fault_t result;
688 	int retries = 0;
689 	handle_t *handle = NULL;
690 	struct inode *inode = file_inode(vmf->vma->vm_file);
691 	struct super_block *sb = inode->i_sb;
692 
693 	/*
694 	 * We have to distinguish real writes from writes which will result in a
695 	 * COW page; COW writes should *not* poke the journal (the file will not
696 	 * be changed). Doing so would cause unintended failures when mounted
697 	 * read-only.
698 	 *
699 	 * We check for VM_SHARED rather than vmf->cow_page since the latter is
700 	 * unset for pe_size != PE_SIZE_PTE (i.e. only in do_cow_fault); for
701 	 * other sizes, dax_iomap_fault will handle splitting / fallback so that
702 	 * we eventually come back with a COW page.
703 	 */
704 	bool write = (vmf->flags & FAULT_FLAG_WRITE) &&
705 		(vmf->vma->vm_flags & VM_SHARED);
706 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
707 	pfn_t pfn;
708 
709 	if (write) {
710 		sb_start_pagefault(sb);
711 		file_update_time(vmf->vma->vm_file);
712 		filemap_invalidate_lock_shared(mapping);
713 retry:
714 		handle = ext4_journal_start_sb(sb, EXT4_HT_WRITE_PAGE,
715 					       EXT4_DATA_TRANS_BLOCKS(sb));
716 		if (IS_ERR(handle)) {
717 			filemap_invalidate_unlock_shared(mapping);
718 			sb_end_pagefault(sb);
719 			return VM_FAULT_SIGBUS;
720 		}
721 	} else {
722 		filemap_invalidate_lock_shared(mapping);
723 	}
724 	result = dax_iomap_fault(vmf, pe_size, &pfn, &error, &ext4_iomap_ops);
725 	if (write) {
726 		ext4_journal_stop(handle);
727 
728 		if ((result & VM_FAULT_ERROR) && error == -ENOSPC &&
729 		    ext4_should_retry_alloc(sb, &retries))
730 			goto retry;
731 		/* Handling synchronous page fault? */
732 		if (result & VM_FAULT_NEEDDSYNC)
733 			result = dax_finish_sync_fault(vmf, pe_size, pfn);
734 		filemap_invalidate_unlock_shared(mapping);
735 		sb_end_pagefault(sb);
736 	} else {
737 		filemap_invalidate_unlock_shared(mapping);
738 	}
739 
740 	return result;
741 }
742 
ext4_dax_fault(struct vm_fault * vmf)743 static vm_fault_t ext4_dax_fault(struct vm_fault *vmf)
744 {
745 	return ext4_dax_huge_fault(vmf, PE_SIZE_PTE);
746 }
747 
748 static const struct vm_operations_struct ext4_dax_vm_ops = {
749 	.fault		= ext4_dax_fault,
750 	.huge_fault	= ext4_dax_huge_fault,
751 	.page_mkwrite	= ext4_dax_fault,
752 	.pfn_mkwrite	= ext4_dax_fault,
753 };
754 #else
755 #define ext4_dax_vm_ops	ext4_file_vm_ops
756 #endif
757 
758 static const struct vm_operations_struct ext4_file_vm_ops = {
759 	.fault		= filemap_fault,
760 	.map_pages	= filemap_map_pages,
761 	.page_mkwrite   = ext4_page_mkwrite,
762 };
763 
ext4_file_mmap(struct file * file,struct vm_area_struct * vma)764 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
765 {
766 	struct inode *inode = file->f_mapping->host;
767 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
768 	struct dax_device *dax_dev = sbi->s_daxdev;
769 
770 	if (unlikely(ext4_forced_shutdown(sbi)))
771 		return -EIO;
772 
773 	/*
774 	 * We don't support synchronous mappings for non-DAX files and
775 	 * for DAX files if underneath dax_device is not synchronous.
776 	 */
777 	if (!daxdev_mapping_supported(vma, dax_dev))
778 		return -EOPNOTSUPP;
779 
780 	file_accessed(file);
781 	if (IS_DAX(file_inode(file))) {
782 		vma->vm_ops = &ext4_dax_vm_ops;
783 		vm_flags_set(vma, VM_HUGEPAGE);
784 	} else {
785 		vma->vm_ops = &ext4_file_vm_ops;
786 	}
787 	return 0;
788 }
789 
ext4_sample_last_mounted(struct super_block * sb,struct vfsmount * mnt)790 static int ext4_sample_last_mounted(struct super_block *sb,
791 				    struct vfsmount *mnt)
792 {
793 	struct ext4_sb_info *sbi = EXT4_SB(sb);
794 	struct path path;
795 	char buf[64], *cp;
796 	handle_t *handle;
797 	int err;
798 
799 	if (likely(ext4_test_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED)))
800 		return 0;
801 
802 	if (sb_rdonly(sb) || !sb_start_intwrite_trylock(sb))
803 		return 0;
804 
805 	ext4_set_mount_flag(sb, EXT4_MF_MNTDIR_SAMPLED);
806 	/*
807 	 * Sample where the filesystem has been mounted and
808 	 * store it in the superblock for sysadmin convenience
809 	 * when trying to sort through large numbers of block
810 	 * devices or filesystem images.
811 	 */
812 	memset(buf, 0, sizeof(buf));
813 	path.mnt = mnt;
814 	path.dentry = mnt->mnt_root;
815 	cp = d_path(&path, buf, sizeof(buf));
816 	err = 0;
817 	if (IS_ERR(cp))
818 		goto out;
819 
820 	handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
821 	err = PTR_ERR(handle);
822 	if (IS_ERR(handle))
823 		goto out;
824 	BUFFER_TRACE(sbi->s_sbh, "get_write_access");
825 	err = ext4_journal_get_write_access(handle, sb, sbi->s_sbh,
826 					    EXT4_JTR_NONE);
827 	if (err)
828 		goto out_journal;
829 	lock_buffer(sbi->s_sbh);
830 	strncpy(sbi->s_es->s_last_mounted, cp,
831 		sizeof(sbi->s_es->s_last_mounted));
832 	ext4_superblock_csum_set(sb);
833 	unlock_buffer(sbi->s_sbh);
834 	ext4_handle_dirty_metadata(handle, NULL, sbi->s_sbh);
835 out_journal:
836 	ext4_journal_stop(handle);
837 out:
838 	sb_end_intwrite(sb);
839 	return err;
840 }
841 
ext4_file_open(struct inode * inode,struct file * filp)842 static int ext4_file_open(struct inode *inode, struct file *filp)
843 {
844 	int ret;
845 
846 	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
847 		return -EIO;
848 
849 	ret = ext4_sample_last_mounted(inode->i_sb, filp->f_path.mnt);
850 	if (ret)
851 		return ret;
852 
853 	ret = fscrypt_file_open(inode, filp);
854 	if (ret)
855 		return ret;
856 
857 	ret = fsverity_file_open(inode, filp);
858 	if (ret)
859 		return ret;
860 
861 	/*
862 	 * Set up the jbd2_inode if we are opening the inode for
863 	 * writing and the journal is present
864 	 */
865 	if (filp->f_mode & FMODE_WRITE) {
866 		ret = ext4_inode_attach_jinode(inode);
867 		if (ret < 0)
868 			return ret;
869 	}
870 
871 	filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
872 	return dquot_file_open(inode, filp);
873 }
874 
875 /*
876  * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
877  * by calling generic_file_llseek_size() with the appropriate maxbytes
878  * value for each.
879  */
ext4_llseek(struct file * file,loff_t offset,int whence)880 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
881 {
882 	struct inode *inode = file->f_mapping->host;
883 	loff_t maxbytes;
884 
885 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
886 		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
887 	else
888 		maxbytes = inode->i_sb->s_maxbytes;
889 
890 	switch (whence) {
891 	default:
892 		return generic_file_llseek_size(file, offset, whence,
893 						maxbytes, i_size_read(inode));
894 	case SEEK_HOLE:
895 		inode_lock_shared(inode);
896 		offset = iomap_seek_hole(inode, offset,
897 					 &ext4_iomap_report_ops);
898 		inode_unlock_shared(inode);
899 		break;
900 	case SEEK_DATA:
901 		inode_lock_shared(inode);
902 		offset = iomap_seek_data(inode, offset,
903 					 &ext4_iomap_report_ops);
904 		inode_unlock_shared(inode);
905 		break;
906 	}
907 
908 	if (offset < 0)
909 		return offset;
910 	return vfs_setpos(file, offset, maxbytes);
911 }
912 
913 const struct file_operations ext4_file_operations = {
914 	.llseek		= ext4_llseek,
915 	.read_iter	= ext4_file_read_iter,
916 	.write_iter	= ext4_file_write_iter,
917 	.iopoll		= iocb_bio_iopoll,
918 	.unlocked_ioctl = ext4_ioctl,
919 #ifdef CONFIG_COMPAT
920 	.compat_ioctl	= ext4_compat_ioctl,
921 #endif
922 	.mmap		= ext4_file_mmap,
923 	.mmap_supported_flags = MAP_SYNC,
924 	.open		= ext4_file_open,
925 	.release	= ext4_release_file,
926 	.fsync		= ext4_sync_file,
927 	.get_unmapped_area = thp_get_unmapped_area,
928 	.splice_read	= generic_file_splice_read,
929 	.splice_write	= iter_file_splice_write,
930 	.fallocate	= ext4_fallocate,
931 };
932 
933 const struct inode_operations ext4_file_inode_operations = {
934 	.setattr	= ext4_setattr,
935 	.getattr	= ext4_file_getattr,
936 	.listxattr	= ext4_listxattr,
937 	.get_acl	= ext4_get_acl,
938 	.set_acl	= ext4_set_acl,
939 	.fiemap		= ext4_fiemap,
940 	.fileattr_get	= ext4_fileattr_get,
941 	.fileattr_set	= ext4_fileattr_set,
942 };
943 
944