1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/checkpoint.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 unsigned char reason)
31 {
32 f2fs_build_fault_attr(sbi, 0, 0);
33 set_ckpt_flags(sbi, CP_ERROR_FLAG);
34 if (!end_io) {
35 f2fs_flush_merged_writes(sbi);
36
37 f2fs_handle_stop(sbi, reason);
38 }
39 }
40
41 /*
42 * We guarantee no failure on the returned page.
43 */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
45 {
46 struct address_space *mapping = META_MAPPING(sbi);
47 struct page *page;
48 repeat:
49 page = f2fs_grab_cache_page(mapping, index, false);
50 if (!page) {
51 cond_resched();
52 goto repeat;
53 }
54 f2fs_wait_on_page_writeback(page, META, true, true);
55 if (!PageUptodate(page))
56 SetPageUptodate(page);
57 return page;
58 }
59
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
61 bool is_meta)
62 {
63 struct address_space *mapping = META_MAPPING(sbi);
64 struct page *page;
65 struct f2fs_io_info fio = {
66 .sbi = sbi,
67 .type = META,
68 .op = REQ_OP_READ,
69 .op_flags = REQ_META | REQ_PRIO,
70 .old_blkaddr = index,
71 .new_blkaddr = index,
72 .encrypted_page = NULL,
73 .is_por = !is_meta ? 1 : 0,
74 };
75 int err;
76
77 if (unlikely(!is_meta))
78 fio.op_flags &= ~REQ_META;
79 repeat:
80 page = f2fs_grab_cache_page(mapping, index, false);
81 if (!page) {
82 cond_resched();
83 goto repeat;
84 }
85 if (PageUptodate(page))
86 goto out;
87
88 fio.page = page;
89
90 err = f2fs_submit_page_bio(&fio);
91 if (err) {
92 f2fs_put_page(page, 1);
93 return ERR_PTR(err);
94 }
95
96 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
97
98 lock_page(page);
99 if (unlikely(page->mapping != mapping)) {
100 f2fs_put_page(page, 1);
101 goto repeat;
102 }
103
104 if (unlikely(!PageUptodate(page))) {
105 f2fs_handle_page_eio(sbi, page->index, META);
106 f2fs_put_page(page, 1);
107 return ERR_PTR(-EIO);
108 }
109 out:
110 return page;
111 }
112
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 return __get_meta_page(sbi, index, true);
116 }
117
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
119 {
120 struct page *page;
121 int count = 0;
122
123 retry:
124 page = __get_meta_page(sbi, index, true);
125 if (IS_ERR(page)) {
126 if (PTR_ERR(page) == -EIO &&
127 ++count <= DEFAULT_RETRY_IO_COUNT)
128 goto retry;
129 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
130 }
131 return page;
132 }
133
134 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
136 {
137 return __get_meta_page(sbi, index, false);
138 }
139
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
141 int type)
142 {
143 struct seg_entry *se;
144 unsigned int segno, offset;
145 bool exist;
146
147 if (type == DATA_GENERIC)
148 return true;
149
150 segno = GET_SEGNO(sbi, blkaddr);
151 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
152 se = get_seg_entry(sbi, segno);
153
154 exist = f2fs_test_bit(offset, se->cur_valid_map);
155
156 /* skip data, if we already have an error in checkpoint. */
157 if (unlikely(f2fs_cp_error(sbi)))
158 return exist;
159
160 if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
161 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
162 blkaddr, exist);
163 set_sbi_flag(sbi, SBI_NEED_FSCK);
164 return exist;
165 }
166
167 if (!exist && type == DATA_GENERIC_ENHANCE) {
168 f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
169 blkaddr, exist);
170 set_sbi_flag(sbi, SBI_NEED_FSCK);
171 dump_stack();
172 }
173 return exist;
174 }
175
__f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)176 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
177 block_t blkaddr, int type)
178 {
179 switch (type) {
180 case META_NAT:
181 break;
182 case META_SIT:
183 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
184 return false;
185 break;
186 case META_SSA:
187 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
188 blkaddr < SM_I(sbi)->ssa_blkaddr))
189 return false;
190 break;
191 case META_CP:
192 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
193 blkaddr < __start_cp_addr(sbi)))
194 return false;
195 break;
196 case META_POR:
197 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
198 blkaddr < MAIN_BLKADDR(sbi)))
199 return false;
200 break;
201 case DATA_GENERIC:
202 case DATA_GENERIC_ENHANCE:
203 case DATA_GENERIC_ENHANCE_READ:
204 case DATA_GENERIC_ENHANCE_UPDATE:
205 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
206 blkaddr < MAIN_BLKADDR(sbi))) {
207
208 /* Skip to emit an error message. */
209 if (unlikely(f2fs_cp_error(sbi)))
210 return false;
211
212 f2fs_warn(sbi, "access invalid blkaddr:%u",
213 blkaddr);
214 set_sbi_flag(sbi, SBI_NEED_FSCK);
215 dump_stack();
216 return false;
217 } else {
218 return __is_bitmap_valid(sbi, blkaddr, type);
219 }
220 break;
221 case META_GENERIC:
222 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
223 blkaddr >= MAIN_BLKADDR(sbi)))
224 return false;
225 break;
226 default:
227 BUG();
228 }
229
230 return true;
231 }
232
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)233 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
234 block_t blkaddr, int type)
235 {
236 if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
237 return false;
238 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
239 }
240
f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info * sbi,block_t blkaddr,int type)241 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
242 block_t blkaddr, int type)
243 {
244 return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
245 }
246
247 /*
248 * Readahead CP/NAT/SIT/SSA/POR pages
249 */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)250 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
251 int type, bool sync)
252 {
253 struct page *page;
254 block_t blkno = start;
255 struct f2fs_io_info fio = {
256 .sbi = sbi,
257 .type = META,
258 .op = REQ_OP_READ,
259 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
260 .encrypted_page = NULL,
261 .in_list = 0,
262 .is_por = (type == META_POR) ? 1 : 0,
263 };
264 struct blk_plug plug;
265 int err;
266
267 if (unlikely(type == META_POR))
268 fio.op_flags &= ~REQ_META;
269
270 blk_start_plug(&plug);
271 for (; nrpages-- > 0; blkno++) {
272
273 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
274 goto out;
275
276 switch (type) {
277 case META_NAT:
278 if (unlikely(blkno >=
279 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
280 blkno = 0;
281 /* get nat block addr */
282 fio.new_blkaddr = current_nat_addr(sbi,
283 blkno * NAT_ENTRY_PER_BLOCK);
284 break;
285 case META_SIT:
286 if (unlikely(blkno >= TOTAL_SEGS(sbi)))
287 goto out;
288 /* get sit block addr */
289 fio.new_blkaddr = current_sit_addr(sbi,
290 blkno * SIT_ENTRY_PER_BLOCK);
291 break;
292 case META_SSA:
293 case META_CP:
294 case META_POR:
295 fio.new_blkaddr = blkno;
296 break;
297 default:
298 BUG();
299 }
300
301 page = f2fs_grab_cache_page(META_MAPPING(sbi),
302 fio.new_blkaddr, false);
303 if (!page)
304 continue;
305 if (PageUptodate(page)) {
306 f2fs_put_page(page, 1);
307 continue;
308 }
309
310 fio.page = page;
311 err = f2fs_submit_page_bio(&fio);
312 f2fs_put_page(page, err ? 1 : 0);
313
314 if (!err)
315 f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
316 F2FS_BLKSIZE);
317 }
318 out:
319 blk_finish_plug(&plug);
320 return blkno - start;
321 }
322
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index,unsigned int ra_blocks)323 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
324 unsigned int ra_blocks)
325 {
326 struct page *page;
327 bool readahead = false;
328
329 if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
330 return;
331
332 page = find_get_page(META_MAPPING(sbi), index);
333 if (!page || !PageUptodate(page))
334 readahead = true;
335 f2fs_put_page(page, 0);
336
337 if (readahead)
338 f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
339 }
340
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)341 static int __f2fs_write_meta_page(struct page *page,
342 struct writeback_control *wbc,
343 enum iostat_type io_type)
344 {
345 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
346
347 trace_f2fs_writepage(page, META);
348
349 if (unlikely(f2fs_cp_error(sbi))) {
350 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
351 ClearPageUptodate(page);
352 dec_page_count(sbi, F2FS_DIRTY_META);
353 unlock_page(page);
354 return 0;
355 }
356 goto redirty_out;
357 }
358 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
359 goto redirty_out;
360 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
361 goto redirty_out;
362
363 f2fs_do_write_meta_page(sbi, page, io_type);
364 dec_page_count(sbi, F2FS_DIRTY_META);
365
366 if (wbc->for_reclaim)
367 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
368
369 unlock_page(page);
370
371 if (unlikely(f2fs_cp_error(sbi)))
372 f2fs_submit_merged_write(sbi, META);
373
374 return 0;
375
376 redirty_out:
377 redirty_page_for_writepage(wbc, page);
378 return AOP_WRITEPAGE_ACTIVATE;
379 }
380
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)381 static int f2fs_write_meta_page(struct page *page,
382 struct writeback_control *wbc)
383 {
384 return __f2fs_write_meta_page(page, wbc, FS_META_IO);
385 }
386
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)387 static int f2fs_write_meta_pages(struct address_space *mapping,
388 struct writeback_control *wbc)
389 {
390 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
391 long diff, written;
392
393 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
394 goto skip_write;
395
396 /* collect a number of dirty meta pages and write together */
397 if (wbc->sync_mode != WB_SYNC_ALL &&
398 get_pages(sbi, F2FS_DIRTY_META) <
399 nr_pages_to_skip(sbi, META))
400 goto skip_write;
401
402 /* if locked failed, cp will flush dirty pages instead */
403 if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
404 goto skip_write;
405
406 trace_f2fs_writepages(mapping->host, wbc, META);
407 diff = nr_pages_to_write(sbi, META, wbc);
408 written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
409 f2fs_up_write(&sbi->cp_global_sem);
410 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
411 return 0;
412
413 skip_write:
414 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
415 trace_f2fs_writepages(mapping->host, wbc, META);
416 return 0;
417 }
418
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)419 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
420 long nr_to_write, enum iostat_type io_type)
421 {
422 struct address_space *mapping = META_MAPPING(sbi);
423 pgoff_t index = 0, prev = ULONG_MAX;
424 struct pagevec pvec;
425 long nwritten = 0;
426 int nr_pages;
427 struct writeback_control wbc = {
428 .for_reclaim = 0,
429 };
430 struct blk_plug plug;
431
432 pagevec_init(&pvec);
433
434 blk_start_plug(&plug);
435
436 while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 PAGECACHE_TAG_DIRTY))) {
438 int i;
439
440 for (i = 0; i < nr_pages; i++) {
441 struct page *page = pvec.pages[i];
442
443 if (prev == ULONG_MAX)
444 prev = page->index - 1;
445 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
446 pagevec_release(&pvec);
447 goto stop;
448 }
449
450 lock_page(page);
451
452 if (unlikely(page->mapping != mapping)) {
453 continue_unlock:
454 unlock_page(page);
455 continue;
456 }
457 if (!PageDirty(page)) {
458 /* someone wrote it for us */
459 goto continue_unlock;
460 }
461
462 f2fs_wait_on_page_writeback(page, META, true, true);
463
464 if (!clear_page_dirty_for_io(page))
465 goto continue_unlock;
466
467 if (__f2fs_write_meta_page(page, &wbc, io_type)) {
468 unlock_page(page);
469 break;
470 }
471 nwritten++;
472 prev = page->index;
473 if (unlikely(nwritten >= nr_to_write))
474 break;
475 }
476 pagevec_release(&pvec);
477 cond_resched();
478 }
479 stop:
480 if (nwritten)
481 f2fs_submit_merged_write(sbi, type);
482
483 blk_finish_plug(&plug);
484
485 return nwritten;
486 }
487
f2fs_dirty_meta_folio(struct address_space * mapping,struct folio * folio)488 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
489 struct folio *folio)
490 {
491 trace_f2fs_set_page_dirty(&folio->page, META);
492
493 if (!folio_test_uptodate(folio))
494 folio_mark_uptodate(folio);
495 if (filemap_dirty_folio(mapping, folio)) {
496 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
497 set_page_private_reference(&folio->page);
498 return true;
499 }
500 return false;
501 }
502
503 const struct address_space_operations f2fs_meta_aops = {
504 .writepage = f2fs_write_meta_page,
505 .writepages = f2fs_write_meta_pages,
506 .dirty_folio = f2fs_dirty_meta_folio,
507 .invalidate_folio = f2fs_invalidate_folio,
508 .release_folio = f2fs_release_folio,
509 .migrate_folio = filemap_migrate_folio,
510 };
511
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)512 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
513 unsigned int devidx, int type)
514 {
515 struct inode_management *im = &sbi->im[type];
516 struct ino_entry *e = NULL, *new = NULL;
517
518 if (type == FLUSH_INO) {
519 rcu_read_lock();
520 e = radix_tree_lookup(&im->ino_root, ino);
521 rcu_read_unlock();
522 }
523
524 retry:
525 if (!e)
526 new = f2fs_kmem_cache_alloc(ino_entry_slab,
527 GFP_NOFS, true, NULL);
528
529 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
530
531 spin_lock(&im->ino_lock);
532 e = radix_tree_lookup(&im->ino_root, ino);
533 if (!e) {
534 if (!new) {
535 spin_unlock(&im->ino_lock);
536 radix_tree_preload_end();
537 goto retry;
538 }
539 e = new;
540 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
541 f2fs_bug_on(sbi, 1);
542
543 memset(e, 0, sizeof(struct ino_entry));
544 e->ino = ino;
545
546 list_add_tail(&e->list, &im->ino_list);
547 if (type != ORPHAN_INO)
548 im->ino_num++;
549 }
550
551 if (type == FLUSH_INO)
552 f2fs_set_bit(devidx, (char *)&e->dirty_device);
553
554 spin_unlock(&im->ino_lock);
555 radix_tree_preload_end();
556
557 if (new && e != new)
558 kmem_cache_free(ino_entry_slab, new);
559 }
560
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)561 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
562 {
563 struct inode_management *im = &sbi->im[type];
564 struct ino_entry *e;
565
566 spin_lock(&im->ino_lock);
567 e = radix_tree_lookup(&im->ino_root, ino);
568 if (e) {
569 list_del(&e->list);
570 radix_tree_delete(&im->ino_root, ino);
571 im->ino_num--;
572 spin_unlock(&im->ino_lock);
573 kmem_cache_free(ino_entry_slab, e);
574 return;
575 }
576 spin_unlock(&im->ino_lock);
577 }
578
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)579 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
580 {
581 /* add new dirty ino entry into list */
582 __add_ino_entry(sbi, ino, 0, type);
583 }
584
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)585 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
586 {
587 /* remove dirty ino entry from list */
588 __remove_ino_entry(sbi, ino, type);
589 }
590
591 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)592 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
593 {
594 struct inode_management *im = &sbi->im[mode];
595 struct ino_entry *e;
596
597 spin_lock(&im->ino_lock);
598 e = radix_tree_lookup(&im->ino_root, ino);
599 spin_unlock(&im->ino_lock);
600 return e ? true : false;
601 }
602
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)603 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
604 {
605 struct ino_entry *e, *tmp;
606 int i;
607
608 for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
609 struct inode_management *im = &sbi->im[i];
610
611 spin_lock(&im->ino_lock);
612 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
613 list_del(&e->list);
614 radix_tree_delete(&im->ino_root, e->ino);
615 kmem_cache_free(ino_entry_slab, e);
616 im->ino_num--;
617 }
618 spin_unlock(&im->ino_lock);
619 }
620 }
621
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)622 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
623 unsigned int devidx, int type)
624 {
625 __add_ino_entry(sbi, ino, devidx, type);
626 }
627
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)628 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
629 unsigned int devidx, int type)
630 {
631 struct inode_management *im = &sbi->im[type];
632 struct ino_entry *e;
633 bool is_dirty = false;
634
635 spin_lock(&im->ino_lock);
636 e = radix_tree_lookup(&im->ino_root, ino);
637 if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
638 is_dirty = true;
639 spin_unlock(&im->ino_lock);
640 return is_dirty;
641 }
642
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)643 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
644 {
645 struct inode_management *im = &sbi->im[ORPHAN_INO];
646 int err = 0;
647
648 spin_lock(&im->ino_lock);
649
650 if (time_to_inject(sbi, FAULT_ORPHAN)) {
651 spin_unlock(&im->ino_lock);
652 return -ENOSPC;
653 }
654
655 if (unlikely(im->ino_num >= sbi->max_orphans))
656 err = -ENOSPC;
657 else
658 im->ino_num++;
659 spin_unlock(&im->ino_lock);
660
661 return err;
662 }
663
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)664 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
665 {
666 struct inode_management *im = &sbi->im[ORPHAN_INO];
667
668 spin_lock(&im->ino_lock);
669 f2fs_bug_on(sbi, im->ino_num == 0);
670 im->ino_num--;
671 spin_unlock(&im->ino_lock);
672 }
673
f2fs_add_orphan_inode(struct inode * inode)674 void f2fs_add_orphan_inode(struct inode *inode)
675 {
676 /* add new orphan ino entry into list */
677 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
678 f2fs_update_inode_page(inode);
679 }
680
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)681 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
682 {
683 /* remove orphan entry from orphan list */
684 __remove_ino_entry(sbi, ino, ORPHAN_INO);
685 }
686
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)687 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
688 {
689 struct inode *inode;
690 struct node_info ni;
691 int err;
692
693 inode = f2fs_iget_retry(sbi->sb, ino);
694 if (IS_ERR(inode)) {
695 /*
696 * there should be a bug that we can't find the entry
697 * to orphan inode.
698 */
699 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
700 return PTR_ERR(inode);
701 }
702
703 err = f2fs_dquot_initialize(inode);
704 if (err) {
705 iput(inode);
706 goto err_out;
707 }
708
709 clear_nlink(inode);
710
711 /* truncate all the data during iput */
712 iput(inode);
713
714 err = f2fs_get_node_info(sbi, ino, &ni, false);
715 if (err)
716 goto err_out;
717
718 /* ENOMEM was fully retried in f2fs_evict_inode. */
719 if (ni.blk_addr != NULL_ADDR) {
720 err = -EIO;
721 goto err_out;
722 }
723 return 0;
724
725 err_out:
726 set_sbi_flag(sbi, SBI_NEED_FSCK);
727 f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
728 __func__, ino);
729 return err;
730 }
731
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)732 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
733 {
734 block_t start_blk, orphan_blocks, i, j;
735 int err = 0;
736
737 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
738 return 0;
739
740 if (f2fs_hw_is_readonly(sbi)) {
741 f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
742 return 0;
743 }
744
745 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
746 f2fs_info(sbi, "orphan cleanup on readonly fs");
747
748 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
749 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
750
751 f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
752
753 for (i = 0; i < orphan_blocks; i++) {
754 struct page *page;
755 struct f2fs_orphan_block *orphan_blk;
756
757 page = f2fs_get_meta_page(sbi, start_blk + i);
758 if (IS_ERR(page)) {
759 err = PTR_ERR(page);
760 goto out;
761 }
762
763 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
764 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
765 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
766
767 err = recover_orphan_inode(sbi, ino);
768 if (err) {
769 f2fs_put_page(page, 1);
770 goto out;
771 }
772 }
773 f2fs_put_page(page, 1);
774 }
775 /* clear Orphan Flag */
776 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
777 out:
778 set_sbi_flag(sbi, SBI_IS_RECOVERED);
779
780 return err;
781 }
782
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)783 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
784 {
785 struct list_head *head;
786 struct f2fs_orphan_block *orphan_blk = NULL;
787 unsigned int nentries = 0;
788 unsigned short index = 1;
789 unsigned short orphan_blocks;
790 struct page *page = NULL;
791 struct ino_entry *orphan = NULL;
792 struct inode_management *im = &sbi->im[ORPHAN_INO];
793
794 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
795
796 /*
797 * we don't need to do spin_lock(&im->ino_lock) here, since all the
798 * orphan inode operations are covered under f2fs_lock_op().
799 * And, spin_lock should be avoided due to page operations below.
800 */
801 head = &im->ino_list;
802
803 /* loop for each orphan inode entry and write them in journal block */
804 list_for_each_entry(orphan, head, list) {
805 if (!page) {
806 page = f2fs_grab_meta_page(sbi, start_blk++);
807 orphan_blk =
808 (struct f2fs_orphan_block *)page_address(page);
809 memset(orphan_blk, 0, sizeof(*orphan_blk));
810 }
811
812 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
813
814 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
815 /*
816 * an orphan block is full of 1020 entries,
817 * then we need to flush current orphan blocks
818 * and bring another one in memory
819 */
820 orphan_blk->blk_addr = cpu_to_le16(index);
821 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
822 orphan_blk->entry_count = cpu_to_le32(nentries);
823 set_page_dirty(page);
824 f2fs_put_page(page, 1);
825 index++;
826 nentries = 0;
827 page = NULL;
828 }
829 }
830
831 if (page) {
832 orphan_blk->blk_addr = cpu_to_le16(index);
833 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
834 orphan_blk->entry_count = cpu_to_le32(nentries);
835 set_page_dirty(page);
836 f2fs_put_page(page, 1);
837 }
838 }
839
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)840 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
841 struct f2fs_checkpoint *ckpt)
842 {
843 unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
844 __u32 chksum;
845
846 chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
847 if (chksum_ofs < CP_CHKSUM_OFFSET) {
848 chksum_ofs += sizeof(chksum);
849 chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
850 F2FS_BLKSIZE - chksum_ofs);
851 }
852 return chksum;
853 }
854
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)855 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
856 struct f2fs_checkpoint **cp_block, struct page **cp_page,
857 unsigned long long *version)
858 {
859 size_t crc_offset = 0;
860 __u32 crc;
861
862 *cp_page = f2fs_get_meta_page(sbi, cp_addr);
863 if (IS_ERR(*cp_page))
864 return PTR_ERR(*cp_page);
865
866 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
867
868 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
869 if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
870 crc_offset > CP_CHKSUM_OFFSET) {
871 f2fs_put_page(*cp_page, 1);
872 f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
873 return -EINVAL;
874 }
875
876 crc = f2fs_checkpoint_chksum(sbi, *cp_block);
877 if (crc != cur_cp_crc(*cp_block)) {
878 f2fs_put_page(*cp_page, 1);
879 f2fs_warn(sbi, "invalid crc value");
880 return -EINVAL;
881 }
882
883 *version = cur_cp_version(*cp_block);
884 return 0;
885 }
886
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)887 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
888 block_t cp_addr, unsigned long long *version)
889 {
890 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
891 struct f2fs_checkpoint *cp_block = NULL;
892 unsigned long long cur_version = 0, pre_version = 0;
893 unsigned int cp_blocks;
894 int err;
895
896 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
897 &cp_page_1, version);
898 if (err)
899 return NULL;
900
901 cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
902
903 if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
904 f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
905 le32_to_cpu(cp_block->cp_pack_total_block_count));
906 goto invalid_cp;
907 }
908 pre_version = *version;
909
910 cp_addr += cp_blocks - 1;
911 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
912 &cp_page_2, version);
913 if (err)
914 goto invalid_cp;
915 cur_version = *version;
916
917 if (cur_version == pre_version) {
918 *version = cur_version;
919 f2fs_put_page(cp_page_2, 1);
920 return cp_page_1;
921 }
922 f2fs_put_page(cp_page_2, 1);
923 invalid_cp:
924 f2fs_put_page(cp_page_1, 1);
925 return NULL;
926 }
927
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)928 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
929 {
930 struct f2fs_checkpoint *cp_block;
931 struct f2fs_super_block *fsb = sbi->raw_super;
932 struct page *cp1, *cp2, *cur_page;
933 unsigned long blk_size = sbi->blocksize;
934 unsigned long long cp1_version = 0, cp2_version = 0;
935 unsigned long long cp_start_blk_no;
936 unsigned int cp_blks = 1 + __cp_payload(sbi);
937 block_t cp_blk_no;
938 int i;
939 int err;
940
941 sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
942 GFP_KERNEL);
943 if (!sbi->ckpt)
944 return -ENOMEM;
945 /*
946 * Finding out valid cp block involves read both
947 * sets( cp pack 1 and cp pack 2)
948 */
949 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
950 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
951
952 /* The second checkpoint pack should start at the next segment */
953 cp_start_blk_no += ((unsigned long long)1) <<
954 le32_to_cpu(fsb->log_blocks_per_seg);
955 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
956
957 if (cp1 && cp2) {
958 if (ver_after(cp2_version, cp1_version))
959 cur_page = cp2;
960 else
961 cur_page = cp1;
962 } else if (cp1) {
963 cur_page = cp1;
964 } else if (cp2) {
965 cur_page = cp2;
966 } else {
967 err = -EFSCORRUPTED;
968 goto fail_no_cp;
969 }
970
971 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
972 memcpy(sbi->ckpt, cp_block, blk_size);
973
974 if (cur_page == cp1)
975 sbi->cur_cp_pack = 1;
976 else
977 sbi->cur_cp_pack = 2;
978
979 /* Sanity checking of checkpoint */
980 if (f2fs_sanity_check_ckpt(sbi)) {
981 err = -EFSCORRUPTED;
982 goto free_fail_no_cp;
983 }
984
985 if (cp_blks <= 1)
986 goto done;
987
988 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
989 if (cur_page == cp2)
990 cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
991
992 for (i = 1; i < cp_blks; i++) {
993 void *sit_bitmap_ptr;
994 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
995
996 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
997 if (IS_ERR(cur_page)) {
998 err = PTR_ERR(cur_page);
999 goto free_fail_no_cp;
1000 }
1001 sit_bitmap_ptr = page_address(cur_page);
1002 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1003 f2fs_put_page(cur_page, 1);
1004 }
1005 done:
1006 f2fs_put_page(cp1, 1);
1007 f2fs_put_page(cp2, 1);
1008 return 0;
1009
1010 free_fail_no_cp:
1011 f2fs_put_page(cp1, 1);
1012 f2fs_put_page(cp2, 1);
1013 fail_no_cp:
1014 kvfree(sbi->ckpt);
1015 return err;
1016 }
1017
__add_dirty_inode(struct inode * inode,enum inode_type type)1018 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1019 {
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1022
1023 if (is_inode_flag_set(inode, flag))
1024 return;
1025
1026 set_inode_flag(inode, flag);
1027 list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1028 stat_inc_dirty_inode(sbi, type);
1029 }
1030
__remove_dirty_inode(struct inode * inode,enum inode_type type)1031 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1032 {
1033 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1034
1035 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1036 return;
1037
1038 list_del_init(&F2FS_I(inode)->dirty_list);
1039 clear_inode_flag(inode, flag);
1040 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1041 }
1042
f2fs_update_dirty_folio(struct inode * inode,struct folio * folio)1043 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1044 {
1045 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1047
1048 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1049 !S_ISLNK(inode->i_mode))
1050 return;
1051
1052 spin_lock(&sbi->inode_lock[type]);
1053 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1054 __add_dirty_inode(inode, type);
1055 inode_inc_dirty_pages(inode);
1056 spin_unlock(&sbi->inode_lock[type]);
1057
1058 set_page_private_reference(&folio->page);
1059 }
1060
f2fs_remove_dirty_inode(struct inode * inode)1061 void f2fs_remove_dirty_inode(struct inode *inode)
1062 {
1063 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1065
1066 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1067 !S_ISLNK(inode->i_mode))
1068 return;
1069
1070 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1071 return;
1072
1073 spin_lock(&sbi->inode_lock[type]);
1074 __remove_dirty_inode(inode, type);
1075 spin_unlock(&sbi->inode_lock[type]);
1076 }
1077
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1078 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1079 bool from_cp)
1080 {
1081 struct list_head *head;
1082 struct inode *inode;
1083 struct f2fs_inode_info *fi;
1084 bool is_dir = (type == DIR_INODE);
1085 unsigned long ino = 0;
1086
1087 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1088 get_pages(sbi, is_dir ?
1089 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1090 retry:
1091 if (unlikely(f2fs_cp_error(sbi))) {
1092 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1093 get_pages(sbi, is_dir ?
1094 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1095 return -EIO;
1096 }
1097
1098 spin_lock(&sbi->inode_lock[type]);
1099
1100 head = &sbi->inode_list[type];
1101 if (list_empty(head)) {
1102 spin_unlock(&sbi->inode_lock[type]);
1103 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1104 get_pages(sbi, is_dir ?
1105 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1106 return 0;
1107 }
1108 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1109 inode = igrab(&fi->vfs_inode);
1110 spin_unlock(&sbi->inode_lock[type]);
1111 if (inode) {
1112 unsigned long cur_ino = inode->i_ino;
1113
1114 if (from_cp)
1115 F2FS_I(inode)->cp_task = current;
1116 F2FS_I(inode)->wb_task = current;
1117
1118 filemap_fdatawrite(inode->i_mapping);
1119
1120 F2FS_I(inode)->wb_task = NULL;
1121 if (from_cp)
1122 F2FS_I(inode)->cp_task = NULL;
1123
1124 iput(inode);
1125 /* We need to give cpu to another writers. */
1126 if (ino == cur_ino)
1127 cond_resched();
1128 else
1129 ino = cur_ino;
1130 } else {
1131 /*
1132 * We should submit bio, since it exists several
1133 * writebacking dentry pages in the freeing inode.
1134 */
1135 f2fs_submit_merged_write(sbi, DATA);
1136 cond_resched();
1137 }
1138 goto retry;
1139 }
1140
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1141 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1142 {
1143 struct list_head *head = &sbi->inode_list[DIRTY_META];
1144 struct inode *inode;
1145 struct f2fs_inode_info *fi;
1146 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1147
1148 while (total--) {
1149 if (unlikely(f2fs_cp_error(sbi)))
1150 return -EIO;
1151
1152 spin_lock(&sbi->inode_lock[DIRTY_META]);
1153 if (list_empty(head)) {
1154 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1155 return 0;
1156 }
1157 fi = list_first_entry(head, struct f2fs_inode_info,
1158 gdirty_list);
1159 inode = igrab(&fi->vfs_inode);
1160 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 if (inode) {
1162 sync_inode_metadata(inode, 0);
1163
1164 /* it's on eviction */
1165 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1166 f2fs_update_inode_page(inode);
1167 iput(inode);
1168 }
1169 }
1170 return 0;
1171 }
1172
__prepare_cp_block(struct f2fs_sb_info * sbi)1173 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1174 {
1175 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1176 struct f2fs_nm_info *nm_i = NM_I(sbi);
1177 nid_t last_nid = nm_i->next_scan_nid;
1178
1179 next_free_nid(sbi, &last_nid);
1180 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1181 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1182 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1183 ckpt->next_free_nid = cpu_to_le32(last_nid);
1184 }
1185
__need_flush_quota(struct f2fs_sb_info * sbi)1186 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1187 {
1188 bool ret = false;
1189
1190 if (!is_journalled_quota(sbi))
1191 return false;
1192
1193 if (!f2fs_down_write_trylock(&sbi->quota_sem))
1194 return true;
1195 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1196 ret = false;
1197 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1198 ret = false;
1199 } else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1200 clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1201 ret = true;
1202 } else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1203 ret = true;
1204 }
1205 f2fs_up_write(&sbi->quota_sem);
1206 return ret;
1207 }
1208
1209 /*
1210 * Freeze all the FS-operations for checkpoint.
1211 */
block_operations(struct f2fs_sb_info * sbi)1212 static int block_operations(struct f2fs_sb_info *sbi)
1213 {
1214 struct writeback_control wbc = {
1215 .sync_mode = WB_SYNC_ALL,
1216 .nr_to_write = LONG_MAX,
1217 .for_reclaim = 0,
1218 };
1219 int err = 0, cnt = 0;
1220
1221 /*
1222 * Let's flush inline_data in dirty node pages.
1223 */
1224 f2fs_flush_inline_data(sbi);
1225
1226 retry_flush_quotas:
1227 f2fs_lock_all(sbi);
1228 if (__need_flush_quota(sbi)) {
1229 int locked;
1230
1231 if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1232 set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1233 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1234 goto retry_flush_dents;
1235 }
1236 f2fs_unlock_all(sbi);
1237
1238 /* only failed during mount/umount/freeze/quotactl */
1239 locked = down_read_trylock(&sbi->sb->s_umount);
1240 f2fs_quota_sync(sbi->sb, -1);
1241 if (locked)
1242 up_read(&sbi->sb->s_umount);
1243 cond_resched();
1244 goto retry_flush_quotas;
1245 }
1246
1247 retry_flush_dents:
1248 /* write all the dirty dentry pages */
1249 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1250 f2fs_unlock_all(sbi);
1251 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1252 if (err)
1253 return err;
1254 cond_resched();
1255 goto retry_flush_quotas;
1256 }
1257
1258 /*
1259 * POR: we should ensure that there are no dirty node pages
1260 * until finishing nat/sit flush. inode->i_blocks can be updated.
1261 */
1262 f2fs_down_write(&sbi->node_change);
1263
1264 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1265 f2fs_up_write(&sbi->node_change);
1266 f2fs_unlock_all(sbi);
1267 err = f2fs_sync_inode_meta(sbi);
1268 if (err)
1269 return err;
1270 cond_resched();
1271 goto retry_flush_quotas;
1272 }
1273
1274 retry_flush_nodes:
1275 f2fs_down_write(&sbi->node_write);
1276
1277 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1278 f2fs_up_write(&sbi->node_write);
1279 atomic_inc(&sbi->wb_sync_req[NODE]);
1280 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1281 atomic_dec(&sbi->wb_sync_req[NODE]);
1282 if (err) {
1283 f2fs_up_write(&sbi->node_change);
1284 f2fs_unlock_all(sbi);
1285 return err;
1286 }
1287 cond_resched();
1288 goto retry_flush_nodes;
1289 }
1290
1291 /*
1292 * sbi->node_change is used only for AIO write_begin path which produces
1293 * dirty node blocks and some checkpoint values by block allocation.
1294 */
1295 __prepare_cp_block(sbi);
1296 f2fs_up_write(&sbi->node_change);
1297 return err;
1298 }
1299
unblock_operations(struct f2fs_sb_info * sbi)1300 static void unblock_operations(struct f2fs_sb_info *sbi)
1301 {
1302 f2fs_up_write(&sbi->node_write);
1303 f2fs_unlock_all(sbi);
1304 }
1305
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1306 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1307 {
1308 DEFINE_WAIT(wait);
1309
1310 for (;;) {
1311 if (!get_pages(sbi, type))
1312 break;
1313
1314 if (unlikely(f2fs_cp_error(sbi) &&
1315 !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1316 break;
1317
1318 if (type == F2FS_DIRTY_META)
1319 f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1320 FS_CP_META_IO);
1321 else if (type == F2FS_WB_CP_DATA)
1322 f2fs_submit_merged_write(sbi, DATA);
1323
1324 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1325 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1326 }
1327 finish_wait(&sbi->cp_wait, &wait);
1328 }
1329
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1330 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1331 {
1332 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1333 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1334 unsigned long flags;
1335
1336 if (cpc->reason & CP_UMOUNT) {
1337 if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1338 NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1339 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1340 f2fs_notice(sbi, "Disable nat_bits due to no space");
1341 } else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1342 f2fs_nat_bitmap_enabled(sbi)) {
1343 f2fs_enable_nat_bits(sbi);
1344 set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1345 f2fs_notice(sbi, "Rebuild and enable nat_bits");
1346 }
1347 }
1348
1349 spin_lock_irqsave(&sbi->cp_lock, flags);
1350
1351 if (cpc->reason & CP_TRIMMED)
1352 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1353 else
1354 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1355
1356 if (cpc->reason & CP_UMOUNT)
1357 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1358 else
1359 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1360
1361 if (cpc->reason & CP_FASTBOOT)
1362 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1363 else
1364 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1365
1366 if (orphan_num)
1367 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1368 else
1369 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1370
1371 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1372 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1373
1374 if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1375 __set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1376 else
1377 __clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1378
1379 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1380 __set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1381 else
1382 __clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1383
1384 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1385 __set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1386 else
1387 __clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1388
1389 if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1390 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1391 else
1392 __clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1393
1394 if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1395 __set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1396
1397 /* set this flag to activate crc|cp_ver for recovery */
1398 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1399 __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1400
1401 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1402 }
1403
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1404 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1405 void *src, block_t blk_addr)
1406 {
1407 struct writeback_control wbc = {
1408 .for_reclaim = 0,
1409 };
1410
1411 /*
1412 * pagevec_lookup_tag and lock_page again will take
1413 * some extra time. Therefore, f2fs_update_meta_pages and
1414 * f2fs_sync_meta_pages are combined in this function.
1415 */
1416 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1417 int err;
1418
1419 f2fs_wait_on_page_writeback(page, META, true, true);
1420
1421 memcpy(page_address(page), src, PAGE_SIZE);
1422
1423 set_page_dirty(page);
1424 if (unlikely(!clear_page_dirty_for_io(page)))
1425 f2fs_bug_on(sbi, 1);
1426
1427 /* writeout cp pack 2 page */
1428 err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1429 if (unlikely(err && f2fs_cp_error(sbi))) {
1430 f2fs_put_page(page, 1);
1431 return;
1432 }
1433
1434 f2fs_bug_on(sbi, err);
1435 f2fs_put_page(page, 0);
1436
1437 /* submit checkpoint (with barrier if NOBARRIER is not set) */
1438 f2fs_submit_merged_write(sbi, META_FLUSH);
1439 }
1440
get_sectors_written(struct block_device * bdev)1441 static inline u64 get_sectors_written(struct block_device *bdev)
1442 {
1443 return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1444 }
1445
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1446 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1447 {
1448 if (f2fs_is_multi_device(sbi)) {
1449 u64 sectors = 0;
1450 int i;
1451
1452 for (i = 0; i < sbi->s_ndevs; i++)
1453 sectors += get_sectors_written(FDEV(i).bdev);
1454
1455 return sectors;
1456 }
1457
1458 return get_sectors_written(sbi->sb->s_bdev);
1459 }
1460
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1461 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1462 {
1463 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1464 struct f2fs_nm_info *nm_i = NM_I(sbi);
1465 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1466 block_t start_blk;
1467 unsigned int data_sum_blocks, orphan_blocks;
1468 __u32 crc32 = 0;
1469 int i;
1470 int cp_payload_blks = __cp_payload(sbi);
1471 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1472 u64 kbytes_written;
1473 int err;
1474
1475 /* Flush all the NAT/SIT pages */
1476 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1477
1478 /* start to update checkpoint, cp ver is already updated previously */
1479 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1480 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1481 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1482 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1483
1484 ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1485 ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1486 ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1487 }
1488 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1489 struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1490
1491 ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1492 ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1493 ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1494 }
1495
1496 /* 2 cp + n data seg summary + orphan inode blocks */
1497 data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1498 spin_lock_irqsave(&sbi->cp_lock, flags);
1499 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1500 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1501 else
1502 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1503 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1504
1505 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1506 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1507 orphan_blocks);
1508
1509 if (__remain_node_summaries(cpc->reason))
1510 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1511 cp_payload_blks + data_sum_blocks +
1512 orphan_blocks + NR_CURSEG_NODE_TYPE);
1513 else
1514 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1515 cp_payload_blks + data_sum_blocks +
1516 orphan_blocks);
1517
1518 /* update ckpt flag for checkpoint */
1519 update_ckpt_flags(sbi, cpc);
1520
1521 /* update SIT/NAT bitmap */
1522 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1523 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1524
1525 crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1526 *((__le32 *)((unsigned char *)ckpt +
1527 le32_to_cpu(ckpt->checksum_offset)))
1528 = cpu_to_le32(crc32);
1529
1530 start_blk = __start_cp_next_addr(sbi);
1531
1532 /* write nat bits */
1533 if ((cpc->reason & CP_UMOUNT) &&
1534 is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1535 __u64 cp_ver = cur_cp_version(ckpt);
1536 block_t blk;
1537
1538 cp_ver |= ((__u64)crc32 << 32);
1539 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1540
1541 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1542 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1543 f2fs_update_meta_page(sbi, nm_i->nat_bits +
1544 (i << F2FS_BLKSIZE_BITS), blk + i);
1545 }
1546
1547 /* write out checkpoint buffer at block 0 */
1548 f2fs_update_meta_page(sbi, ckpt, start_blk++);
1549
1550 for (i = 1; i < 1 + cp_payload_blks; i++)
1551 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1552 start_blk++);
1553
1554 if (orphan_num) {
1555 write_orphan_inodes(sbi, start_blk);
1556 start_blk += orphan_blocks;
1557 }
1558
1559 f2fs_write_data_summaries(sbi, start_blk);
1560 start_blk += data_sum_blocks;
1561
1562 /* Record write statistics in the hot node summary */
1563 kbytes_written = sbi->kbytes_written;
1564 kbytes_written += (f2fs_get_sectors_written(sbi) -
1565 sbi->sectors_written_start) >> 1;
1566 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1567
1568 if (__remain_node_summaries(cpc->reason)) {
1569 f2fs_write_node_summaries(sbi, start_blk);
1570 start_blk += NR_CURSEG_NODE_TYPE;
1571 }
1572
1573 /* update user_block_counts */
1574 sbi->last_valid_block_count = sbi->total_valid_block_count;
1575 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1576 percpu_counter_set(&sbi->rf_node_block_count, 0);
1577
1578 /* Here, we have one bio having CP pack except cp pack 2 page */
1579 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1580 /* Wait for all dirty meta pages to be submitted for IO */
1581 f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1582
1583 /* wait for previous submitted meta pages writeback */
1584 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1585
1586 /* flush all device cache */
1587 err = f2fs_flush_device_cache(sbi);
1588 if (err)
1589 return err;
1590
1591 /* barrier and flush checkpoint cp pack 2 page if it can */
1592 commit_checkpoint(sbi, ckpt, start_blk);
1593 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1594
1595 /*
1596 * invalidate intermediate page cache borrowed from meta inode which are
1597 * used for migration of encrypted, verity or compressed inode's blocks.
1598 */
1599 if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1600 f2fs_sb_has_compression(sbi))
1601 invalidate_mapping_pages(META_MAPPING(sbi),
1602 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1603
1604 f2fs_release_ino_entry(sbi, false);
1605
1606 f2fs_reset_fsync_node_info(sbi);
1607
1608 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1609 clear_sbi_flag(sbi, SBI_NEED_CP);
1610 clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1611
1612 spin_lock(&sbi->stat_lock);
1613 sbi->unusable_block_count = 0;
1614 spin_unlock(&sbi->stat_lock);
1615
1616 __set_cp_next_pack(sbi);
1617
1618 /*
1619 * redirty superblock if metadata like node page or inode cache is
1620 * updated during writing checkpoint.
1621 */
1622 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1623 get_pages(sbi, F2FS_DIRTY_IMETA))
1624 set_sbi_flag(sbi, SBI_IS_DIRTY);
1625
1626 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1627
1628 return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1629 }
1630
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1631 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1632 {
1633 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1634 unsigned long long ckpt_ver;
1635 int err = 0;
1636
1637 if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1638 return -EROFS;
1639
1640 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1641 if (cpc->reason != CP_PAUSE)
1642 return 0;
1643 f2fs_warn(sbi, "Start checkpoint disabled!");
1644 }
1645 if (cpc->reason != CP_RESIZE)
1646 f2fs_down_write(&sbi->cp_global_sem);
1647
1648 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1649 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1650 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1651 goto out;
1652 if (unlikely(f2fs_cp_error(sbi))) {
1653 err = -EIO;
1654 goto out;
1655 }
1656
1657 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1658
1659 err = block_operations(sbi);
1660 if (err)
1661 goto out;
1662
1663 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1664
1665 f2fs_flush_merged_writes(sbi);
1666
1667 /* this is the case of multiple fstrims without any changes */
1668 if (cpc->reason & CP_DISCARD) {
1669 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1670 unblock_operations(sbi);
1671 goto out;
1672 }
1673
1674 if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1675 SIT_I(sbi)->dirty_sentries == 0 &&
1676 prefree_segments(sbi) == 0) {
1677 f2fs_flush_sit_entries(sbi, cpc);
1678 f2fs_clear_prefree_segments(sbi, cpc);
1679 unblock_operations(sbi);
1680 goto out;
1681 }
1682 }
1683
1684 /*
1685 * update checkpoint pack index
1686 * Increase the version number so that
1687 * SIT entries and seg summaries are written at correct place
1688 */
1689 ckpt_ver = cur_cp_version(ckpt);
1690 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1691
1692 /* write cached NAT/SIT entries to NAT/SIT area */
1693 err = f2fs_flush_nat_entries(sbi, cpc);
1694 if (err) {
1695 f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1696 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1697 goto stop;
1698 }
1699
1700 f2fs_flush_sit_entries(sbi, cpc);
1701
1702 /* save inmem log status */
1703 f2fs_save_inmem_curseg(sbi);
1704
1705 err = do_checkpoint(sbi, cpc);
1706 if (err) {
1707 f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1708 f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1709 f2fs_release_discard_addrs(sbi);
1710 } else {
1711 f2fs_clear_prefree_segments(sbi, cpc);
1712 }
1713
1714 f2fs_restore_inmem_curseg(sbi);
1715 stop:
1716 unblock_operations(sbi);
1717 stat_inc_cp_count(sbi->stat_info);
1718
1719 if (cpc->reason & CP_RECOVERY)
1720 f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1721
1722 /* update CP_TIME to trigger checkpoint periodically */
1723 f2fs_update_time(sbi, CP_TIME);
1724 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1725 out:
1726 if (cpc->reason != CP_RESIZE)
1727 f2fs_up_write(&sbi->cp_global_sem);
1728 return err;
1729 }
1730
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1731 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1732 {
1733 int i;
1734
1735 for (i = 0; i < MAX_INO_ENTRY; i++) {
1736 struct inode_management *im = &sbi->im[i];
1737
1738 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1739 spin_lock_init(&im->ino_lock);
1740 INIT_LIST_HEAD(&im->ino_list);
1741 im->ino_num = 0;
1742 }
1743
1744 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1745 NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1746 F2FS_ORPHANS_PER_BLOCK;
1747 }
1748
f2fs_create_checkpoint_caches(void)1749 int __init f2fs_create_checkpoint_caches(void)
1750 {
1751 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1752 sizeof(struct ino_entry));
1753 if (!ino_entry_slab)
1754 return -ENOMEM;
1755 f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1756 sizeof(struct inode_entry));
1757 if (!f2fs_inode_entry_slab) {
1758 kmem_cache_destroy(ino_entry_slab);
1759 return -ENOMEM;
1760 }
1761 return 0;
1762 }
1763
f2fs_destroy_checkpoint_caches(void)1764 void f2fs_destroy_checkpoint_caches(void)
1765 {
1766 kmem_cache_destroy(ino_entry_slab);
1767 kmem_cache_destroy(f2fs_inode_entry_slab);
1768 }
1769
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1770 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1771 {
1772 struct cp_control cpc = { .reason = CP_SYNC, };
1773 int err;
1774
1775 f2fs_down_write(&sbi->gc_lock);
1776 err = f2fs_write_checkpoint(sbi, &cpc);
1777 f2fs_up_write(&sbi->gc_lock);
1778
1779 return err;
1780 }
1781
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1782 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1783 {
1784 struct ckpt_req_control *cprc = &sbi->cprc_info;
1785 struct ckpt_req *req, *next;
1786 struct llist_node *dispatch_list;
1787 u64 sum_diff = 0, diff, count = 0;
1788 int ret;
1789
1790 dispatch_list = llist_del_all(&cprc->issue_list);
1791 if (!dispatch_list)
1792 return;
1793 dispatch_list = llist_reverse_order(dispatch_list);
1794
1795 ret = __write_checkpoint_sync(sbi);
1796 atomic_inc(&cprc->issued_ckpt);
1797
1798 llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1799 diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1800 req->ret = ret;
1801 complete(&req->wait);
1802
1803 sum_diff += diff;
1804 count++;
1805 }
1806 atomic_sub(count, &cprc->queued_ckpt);
1807 atomic_add(count, &cprc->total_ckpt);
1808
1809 spin_lock(&cprc->stat_lock);
1810 cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1811 if (cprc->peak_time < cprc->cur_time)
1812 cprc->peak_time = cprc->cur_time;
1813 spin_unlock(&cprc->stat_lock);
1814 }
1815
issue_checkpoint_thread(void * data)1816 static int issue_checkpoint_thread(void *data)
1817 {
1818 struct f2fs_sb_info *sbi = data;
1819 struct ckpt_req_control *cprc = &sbi->cprc_info;
1820 wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1821 repeat:
1822 if (kthread_should_stop())
1823 return 0;
1824
1825 if (!llist_empty(&cprc->issue_list))
1826 __checkpoint_and_complete_reqs(sbi);
1827
1828 wait_event_interruptible(*q,
1829 kthread_should_stop() || !llist_empty(&cprc->issue_list));
1830 goto repeat;
1831 }
1832
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1833 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1834 struct ckpt_req *wait_req)
1835 {
1836 struct ckpt_req_control *cprc = &sbi->cprc_info;
1837
1838 if (!llist_empty(&cprc->issue_list)) {
1839 __checkpoint_and_complete_reqs(sbi);
1840 } else {
1841 /* already dispatched by issue_checkpoint_thread */
1842 if (wait_req)
1843 wait_for_completion(&wait_req->wait);
1844 }
1845 }
1846
init_ckpt_req(struct ckpt_req * req)1847 static void init_ckpt_req(struct ckpt_req *req)
1848 {
1849 memset(req, 0, sizeof(struct ckpt_req));
1850
1851 init_completion(&req->wait);
1852 req->queue_time = ktime_get();
1853 }
1854
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1855 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1856 {
1857 struct ckpt_req_control *cprc = &sbi->cprc_info;
1858 struct ckpt_req req;
1859 struct cp_control cpc;
1860
1861 cpc.reason = __get_cp_reason(sbi);
1862 if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1863 int ret;
1864
1865 f2fs_down_write(&sbi->gc_lock);
1866 ret = f2fs_write_checkpoint(sbi, &cpc);
1867 f2fs_up_write(&sbi->gc_lock);
1868
1869 return ret;
1870 }
1871
1872 if (!cprc->f2fs_issue_ckpt)
1873 return __write_checkpoint_sync(sbi);
1874
1875 init_ckpt_req(&req);
1876
1877 llist_add(&req.llnode, &cprc->issue_list);
1878 atomic_inc(&cprc->queued_ckpt);
1879
1880 /*
1881 * update issue_list before we wake up issue_checkpoint thread,
1882 * this smp_mb() pairs with another barrier in ___wait_event(),
1883 * see more details in comments of waitqueue_active().
1884 */
1885 smp_mb();
1886
1887 if (waitqueue_active(&cprc->ckpt_wait_queue))
1888 wake_up(&cprc->ckpt_wait_queue);
1889
1890 if (cprc->f2fs_issue_ckpt)
1891 wait_for_completion(&req.wait);
1892 else
1893 flush_remained_ckpt_reqs(sbi, &req);
1894
1895 return req.ret;
1896 }
1897
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1898 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1899 {
1900 dev_t dev = sbi->sb->s_bdev->bd_dev;
1901 struct ckpt_req_control *cprc = &sbi->cprc_info;
1902
1903 if (cprc->f2fs_issue_ckpt)
1904 return 0;
1905
1906 cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1907 "f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1908 if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1909 int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1910
1911 cprc->f2fs_issue_ckpt = NULL;
1912 return err;
1913 }
1914
1915 set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1916
1917 return 0;
1918 }
1919
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1920 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1921 {
1922 struct ckpt_req_control *cprc = &sbi->cprc_info;
1923 struct task_struct *ckpt_task;
1924
1925 if (!cprc->f2fs_issue_ckpt)
1926 return;
1927
1928 ckpt_task = cprc->f2fs_issue_ckpt;
1929 cprc->f2fs_issue_ckpt = NULL;
1930 kthread_stop(ckpt_task);
1931
1932 f2fs_flush_ckpt_thread(sbi);
1933 }
1934
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1935 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1936 {
1937 struct ckpt_req_control *cprc = &sbi->cprc_info;
1938
1939 flush_remained_ckpt_reqs(sbi, NULL);
1940
1941 /* Let's wait for the previous dispatched checkpoint. */
1942 while (atomic_read(&cprc->queued_ckpt))
1943 io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1944 }
1945
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1946 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1947 {
1948 struct ckpt_req_control *cprc = &sbi->cprc_info;
1949
1950 atomic_set(&cprc->issued_ckpt, 0);
1951 atomic_set(&cprc->total_ckpt, 0);
1952 atomic_set(&cprc->queued_ckpt, 0);
1953 cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1954 init_waitqueue_head(&cprc->ckpt_wait_queue);
1955 init_llist_head(&cprc->issue_list);
1956 spin_lock_init(&cprc->stat_lock);
1957 }
1958