• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/checkpoint.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/bio.h>
10 #include <linux/mpage.h>
11 #include <linux/writeback.h>
12 #include <linux/blkdev.h>
13 #include <linux/f2fs_fs.h>
14 #include <linux/pagevec.h>
15 #include <linux/swap.h>
16 #include <linux/kthread.h>
17 
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include "iostat.h"
22 #include <trace/events/f2fs.h>
23 
24 #define DEFAULT_CHECKPOINT_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
25 
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28 
f2fs_stop_checkpoint(struct f2fs_sb_info * sbi,bool end_io,unsigned char reason)29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
30 						unsigned char reason)
31 {
32 	f2fs_build_fault_attr(sbi, 0, 0);
33 	set_ckpt_flags(sbi, CP_ERROR_FLAG);
34 	if (!end_io) {
35 		f2fs_flush_merged_writes(sbi);
36 
37 		f2fs_handle_stop(sbi, reason);
38 	}
39 }
40 
41 /*
42  * We guarantee no failure on the returned page.
43  */
f2fs_grab_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)44 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
45 {
46 	struct address_space *mapping = META_MAPPING(sbi);
47 	struct page *page;
48 repeat:
49 	page = f2fs_grab_cache_page(mapping, index, false);
50 	if (!page) {
51 		cond_resched();
52 		goto repeat;
53 	}
54 	f2fs_wait_on_page_writeback(page, META, true, true);
55 	if (!PageUptodate(page))
56 		SetPageUptodate(page);
57 	return page;
58 }
59 
__get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index,bool is_meta)60 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
61 							bool is_meta)
62 {
63 	struct address_space *mapping = META_MAPPING(sbi);
64 	struct page *page;
65 	struct f2fs_io_info fio = {
66 		.sbi = sbi,
67 		.type = META,
68 		.op = REQ_OP_READ,
69 		.op_flags = REQ_META | REQ_PRIO,
70 		.old_blkaddr = index,
71 		.new_blkaddr = index,
72 		.encrypted_page = NULL,
73 		.is_por = !is_meta ? 1 : 0,
74 	};
75 	int err;
76 
77 	if (unlikely(!is_meta))
78 		fio.op_flags &= ~REQ_META;
79 repeat:
80 	page = f2fs_grab_cache_page(mapping, index, false);
81 	if (!page) {
82 		cond_resched();
83 		goto repeat;
84 	}
85 	if (PageUptodate(page))
86 		goto out;
87 
88 	fio.page = page;
89 
90 	err = f2fs_submit_page_bio(&fio);
91 	if (err) {
92 		f2fs_put_page(page, 1);
93 		return ERR_PTR(err);
94 	}
95 
96 	f2fs_update_iostat(sbi, NULL, FS_META_READ_IO, F2FS_BLKSIZE);
97 
98 	lock_page(page);
99 	if (unlikely(page->mapping != mapping)) {
100 		f2fs_put_page(page, 1);
101 		goto repeat;
102 	}
103 
104 	if (unlikely(!PageUptodate(page))) {
105 		f2fs_handle_page_eio(sbi, page->index, META);
106 		f2fs_put_page(page, 1);
107 		return ERR_PTR(-EIO);
108 	}
109 out:
110 	return page;
111 }
112 
f2fs_get_meta_page(struct f2fs_sb_info * sbi,pgoff_t index)113 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
114 {
115 	return __get_meta_page(sbi, index, true);
116 }
117 
f2fs_get_meta_page_retry(struct f2fs_sb_info * sbi,pgoff_t index)118 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index)
119 {
120 	struct page *page;
121 	int count = 0;
122 
123 retry:
124 	page = __get_meta_page(sbi, index, true);
125 	if (IS_ERR(page)) {
126 		if (PTR_ERR(page) == -EIO &&
127 				++count <= DEFAULT_RETRY_IO_COUNT)
128 			goto retry;
129 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_META_PAGE);
130 	}
131 	return page;
132 }
133 
134 /* for POR only */
f2fs_get_tmp_page(struct f2fs_sb_info * sbi,pgoff_t index)135 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
136 {
137 	return __get_meta_page(sbi, index, false);
138 }
139 
__is_bitmap_valid(struct f2fs_sb_info * sbi,block_t blkaddr,int type)140 static bool __is_bitmap_valid(struct f2fs_sb_info *sbi, block_t blkaddr,
141 							int type)
142 {
143 	struct seg_entry *se;
144 	unsigned int segno, offset;
145 	bool exist;
146 
147 	if (type == DATA_GENERIC)
148 		return true;
149 
150 	segno = GET_SEGNO(sbi, blkaddr);
151 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
152 	se = get_seg_entry(sbi, segno);
153 
154 	exist = f2fs_test_bit(offset, se->cur_valid_map);
155 
156 	/* skip data, if we already have an error in checkpoint. */
157 	if (unlikely(f2fs_cp_error(sbi)))
158 		return exist;
159 
160 	if (exist && type == DATA_GENERIC_ENHANCE_UPDATE) {
161 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
162 			 blkaddr, exist);
163 		set_sbi_flag(sbi, SBI_NEED_FSCK);
164 		return exist;
165 	}
166 
167 	if (!exist && type == DATA_GENERIC_ENHANCE) {
168 		f2fs_err(sbi, "Inconsistent error blkaddr:%u, sit bitmap:%d",
169 			 blkaddr, exist);
170 		set_sbi_flag(sbi, SBI_NEED_FSCK);
171 		dump_stack();
172 	}
173 	return exist;
174 }
175 
__f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)176 static bool __f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
177 					block_t blkaddr, int type)
178 {
179 	switch (type) {
180 	case META_NAT:
181 		break;
182 	case META_SIT:
183 		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
184 			return false;
185 		break;
186 	case META_SSA:
187 		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
188 			blkaddr < SM_I(sbi)->ssa_blkaddr))
189 			return false;
190 		break;
191 	case META_CP:
192 		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
193 			blkaddr < __start_cp_addr(sbi)))
194 			return false;
195 		break;
196 	case META_POR:
197 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
198 			blkaddr < MAIN_BLKADDR(sbi)))
199 			return false;
200 		break;
201 	case DATA_GENERIC:
202 	case DATA_GENERIC_ENHANCE:
203 	case DATA_GENERIC_ENHANCE_READ:
204 	case DATA_GENERIC_ENHANCE_UPDATE:
205 		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
206 				blkaddr < MAIN_BLKADDR(sbi))) {
207 
208 			/* Skip to emit an error message. */
209 			if (unlikely(f2fs_cp_error(sbi)))
210 				return false;
211 
212 			f2fs_warn(sbi, "access invalid blkaddr:%u",
213 				  blkaddr);
214 			set_sbi_flag(sbi, SBI_NEED_FSCK);
215 			dump_stack();
216 			return false;
217 		} else {
218 			return __is_bitmap_valid(sbi, blkaddr, type);
219 		}
220 		break;
221 	case META_GENERIC:
222 		if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
223 			blkaddr >= MAIN_BLKADDR(sbi)))
224 			return false;
225 		break;
226 	default:
227 		BUG();
228 	}
229 
230 	return true;
231 }
232 
f2fs_is_valid_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)233 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
234 					block_t blkaddr, int type)
235 {
236 	if (time_to_inject(sbi, FAULT_BLKADDR_VALIDITY))
237 		return false;
238 	return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
239 }
240 
f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info * sbi,block_t blkaddr,int type)241 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
242 					block_t blkaddr, int type)
243 {
244 	return __f2fs_is_valid_blkaddr(sbi, blkaddr, type);
245 }
246 
247 /*
248  * Readahead CP/NAT/SIT/SSA/POR pages
249  */
f2fs_ra_meta_pages(struct f2fs_sb_info * sbi,block_t start,int nrpages,int type,bool sync)250 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
251 							int type, bool sync)
252 {
253 	struct page *page;
254 	block_t blkno = start;
255 	struct f2fs_io_info fio = {
256 		.sbi = sbi,
257 		.type = META,
258 		.op = REQ_OP_READ,
259 		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
260 		.encrypted_page = NULL,
261 		.in_list = 0,
262 		.is_por = (type == META_POR) ? 1 : 0,
263 	};
264 	struct blk_plug plug;
265 	int err;
266 
267 	if (unlikely(type == META_POR))
268 		fio.op_flags &= ~REQ_META;
269 
270 	blk_start_plug(&plug);
271 	for (; nrpages-- > 0; blkno++) {
272 
273 		if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
274 			goto out;
275 
276 		switch (type) {
277 		case META_NAT:
278 			if (unlikely(blkno >=
279 					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
280 				blkno = 0;
281 			/* get nat block addr */
282 			fio.new_blkaddr = current_nat_addr(sbi,
283 					blkno * NAT_ENTRY_PER_BLOCK);
284 			break;
285 		case META_SIT:
286 			if (unlikely(blkno >= TOTAL_SEGS(sbi)))
287 				goto out;
288 			/* get sit block addr */
289 			fio.new_blkaddr = current_sit_addr(sbi,
290 					blkno * SIT_ENTRY_PER_BLOCK);
291 			break;
292 		case META_SSA:
293 		case META_CP:
294 		case META_POR:
295 			fio.new_blkaddr = blkno;
296 			break;
297 		default:
298 			BUG();
299 		}
300 
301 		page = f2fs_grab_cache_page(META_MAPPING(sbi),
302 						fio.new_blkaddr, false);
303 		if (!page)
304 			continue;
305 		if (PageUptodate(page)) {
306 			f2fs_put_page(page, 1);
307 			continue;
308 		}
309 
310 		fio.page = page;
311 		err = f2fs_submit_page_bio(&fio);
312 		f2fs_put_page(page, err ? 1 : 0);
313 
314 		if (!err)
315 			f2fs_update_iostat(sbi, NULL, FS_META_READ_IO,
316 							F2FS_BLKSIZE);
317 	}
318 out:
319 	blk_finish_plug(&plug);
320 	return blkno - start;
321 }
322 
f2fs_ra_meta_pages_cond(struct f2fs_sb_info * sbi,pgoff_t index,unsigned int ra_blocks)323 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
324 							unsigned int ra_blocks)
325 {
326 	struct page *page;
327 	bool readahead = false;
328 
329 	if (ra_blocks == RECOVERY_MIN_RA_BLOCKS)
330 		return;
331 
332 	page = find_get_page(META_MAPPING(sbi), index);
333 	if (!page || !PageUptodate(page))
334 		readahead = true;
335 	f2fs_put_page(page, 0);
336 
337 	if (readahead)
338 		f2fs_ra_meta_pages(sbi, index, ra_blocks, META_POR, true);
339 }
340 
__f2fs_write_meta_page(struct page * page,struct writeback_control * wbc,enum iostat_type io_type)341 static int __f2fs_write_meta_page(struct page *page,
342 				struct writeback_control *wbc,
343 				enum iostat_type io_type)
344 {
345 	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
346 
347 	trace_f2fs_writepage(page, META);
348 
349 	if (unlikely(f2fs_cp_error(sbi))) {
350 		if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
351 			ClearPageUptodate(page);
352 			dec_page_count(sbi, F2FS_DIRTY_META);
353 			unlock_page(page);
354 			return 0;
355 		}
356 		goto redirty_out;
357 	}
358 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
359 		goto redirty_out;
360 	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
361 		goto redirty_out;
362 
363 	f2fs_do_write_meta_page(sbi, page, io_type);
364 	dec_page_count(sbi, F2FS_DIRTY_META);
365 
366 	if (wbc->for_reclaim)
367 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, META);
368 
369 	unlock_page(page);
370 
371 	if (unlikely(f2fs_cp_error(sbi)))
372 		f2fs_submit_merged_write(sbi, META);
373 
374 	return 0;
375 
376 redirty_out:
377 	redirty_page_for_writepage(wbc, page);
378 	return AOP_WRITEPAGE_ACTIVATE;
379 }
380 
f2fs_write_meta_page(struct page * page,struct writeback_control * wbc)381 static int f2fs_write_meta_page(struct page *page,
382 				struct writeback_control *wbc)
383 {
384 	return __f2fs_write_meta_page(page, wbc, FS_META_IO);
385 }
386 
f2fs_write_meta_pages(struct address_space * mapping,struct writeback_control * wbc)387 static int f2fs_write_meta_pages(struct address_space *mapping,
388 				struct writeback_control *wbc)
389 {
390 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
391 	long diff, written;
392 
393 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
394 		goto skip_write;
395 
396 	/* collect a number of dirty meta pages and write together */
397 	if (wbc->sync_mode != WB_SYNC_ALL &&
398 			get_pages(sbi, F2FS_DIRTY_META) <
399 					nr_pages_to_skip(sbi, META))
400 		goto skip_write;
401 
402 	/* if locked failed, cp will flush dirty pages instead */
403 	if (!f2fs_down_write_trylock(&sbi->cp_global_sem))
404 		goto skip_write;
405 
406 	trace_f2fs_writepages(mapping->host, wbc, META);
407 	diff = nr_pages_to_write(sbi, META, wbc);
408 	written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
409 	f2fs_up_write(&sbi->cp_global_sem);
410 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
411 	return 0;
412 
413 skip_write:
414 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
415 	trace_f2fs_writepages(mapping->host, wbc, META);
416 	return 0;
417 }
418 
f2fs_sync_meta_pages(struct f2fs_sb_info * sbi,enum page_type type,long nr_to_write,enum iostat_type io_type)419 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
420 				long nr_to_write, enum iostat_type io_type)
421 {
422 	struct address_space *mapping = META_MAPPING(sbi);
423 	pgoff_t index = 0, prev = ULONG_MAX;
424 	struct pagevec pvec;
425 	long nwritten = 0;
426 	int nr_pages;
427 	struct writeback_control wbc = {
428 		.for_reclaim = 0,
429 	};
430 	struct blk_plug plug;
431 
432 	pagevec_init(&pvec);
433 
434 	blk_start_plug(&plug);
435 
436 	while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
437 				PAGECACHE_TAG_DIRTY))) {
438 		int i;
439 
440 		for (i = 0; i < nr_pages; i++) {
441 			struct page *page = pvec.pages[i];
442 
443 			if (prev == ULONG_MAX)
444 				prev = page->index - 1;
445 			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
446 				pagevec_release(&pvec);
447 				goto stop;
448 			}
449 
450 			lock_page(page);
451 
452 			if (unlikely(page->mapping != mapping)) {
453 continue_unlock:
454 				unlock_page(page);
455 				continue;
456 			}
457 			if (!PageDirty(page)) {
458 				/* someone wrote it for us */
459 				goto continue_unlock;
460 			}
461 
462 			f2fs_wait_on_page_writeback(page, META, true, true);
463 
464 			if (!clear_page_dirty_for_io(page))
465 				goto continue_unlock;
466 
467 			if (__f2fs_write_meta_page(page, &wbc, io_type)) {
468 				unlock_page(page);
469 				break;
470 			}
471 			nwritten++;
472 			prev = page->index;
473 			if (unlikely(nwritten >= nr_to_write))
474 				break;
475 		}
476 		pagevec_release(&pvec);
477 		cond_resched();
478 	}
479 stop:
480 	if (nwritten)
481 		f2fs_submit_merged_write(sbi, type);
482 
483 	blk_finish_plug(&plug);
484 
485 	return nwritten;
486 }
487 
f2fs_dirty_meta_folio(struct address_space * mapping,struct folio * folio)488 static bool f2fs_dirty_meta_folio(struct address_space *mapping,
489 		struct folio *folio)
490 {
491 	trace_f2fs_set_page_dirty(&folio->page, META);
492 
493 	if (!folio_test_uptodate(folio))
494 		folio_mark_uptodate(folio);
495 	if (filemap_dirty_folio(mapping, folio)) {
496 		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_META);
497 		set_page_private_reference(&folio->page);
498 		return true;
499 	}
500 	return false;
501 }
502 
503 const struct address_space_operations f2fs_meta_aops = {
504 	.writepage	= f2fs_write_meta_page,
505 	.writepages	= f2fs_write_meta_pages,
506 	.dirty_folio	= f2fs_dirty_meta_folio,
507 	.invalidate_folio = f2fs_invalidate_folio,
508 	.release_folio	= f2fs_release_folio,
509 	.migrate_folio	= filemap_migrate_folio,
510 };
511 
__add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)512 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
513 						unsigned int devidx, int type)
514 {
515 	struct inode_management *im = &sbi->im[type];
516 	struct ino_entry *e = NULL, *new = NULL;
517 
518 	if (type == FLUSH_INO) {
519 		rcu_read_lock();
520 		e = radix_tree_lookup(&im->ino_root, ino);
521 		rcu_read_unlock();
522 	}
523 
524 retry:
525 	if (!e)
526 		new = f2fs_kmem_cache_alloc(ino_entry_slab,
527 						GFP_NOFS, true, NULL);
528 
529 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
530 
531 	spin_lock(&im->ino_lock);
532 	e = radix_tree_lookup(&im->ino_root, ino);
533 	if (!e) {
534 		if (!new) {
535 			spin_unlock(&im->ino_lock);
536 			radix_tree_preload_end();
537 			goto retry;
538 		}
539 		e = new;
540 		if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
541 			f2fs_bug_on(sbi, 1);
542 
543 		memset(e, 0, sizeof(struct ino_entry));
544 		e->ino = ino;
545 
546 		list_add_tail(&e->list, &im->ino_list);
547 		if (type != ORPHAN_INO)
548 			im->ino_num++;
549 	}
550 
551 	if (type == FLUSH_INO)
552 		f2fs_set_bit(devidx, (char *)&e->dirty_device);
553 
554 	spin_unlock(&im->ino_lock);
555 	radix_tree_preload_end();
556 
557 	if (new && e != new)
558 		kmem_cache_free(ino_entry_slab, new);
559 }
560 
__remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)561 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
562 {
563 	struct inode_management *im = &sbi->im[type];
564 	struct ino_entry *e;
565 
566 	spin_lock(&im->ino_lock);
567 	e = radix_tree_lookup(&im->ino_root, ino);
568 	if (e) {
569 		list_del(&e->list);
570 		radix_tree_delete(&im->ino_root, ino);
571 		im->ino_num--;
572 		spin_unlock(&im->ino_lock);
573 		kmem_cache_free(ino_entry_slab, e);
574 		return;
575 	}
576 	spin_unlock(&im->ino_lock);
577 }
578 
f2fs_add_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)579 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
580 {
581 	/* add new dirty ino entry into list */
582 	__add_ino_entry(sbi, ino, 0, type);
583 }
584 
f2fs_remove_ino_entry(struct f2fs_sb_info * sbi,nid_t ino,int type)585 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
586 {
587 	/* remove dirty ino entry from list */
588 	__remove_ino_entry(sbi, ino, type);
589 }
590 
591 /* mode should be APPEND_INO, UPDATE_INO or TRANS_DIR_INO */
f2fs_exist_written_data(struct f2fs_sb_info * sbi,nid_t ino,int mode)592 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
593 {
594 	struct inode_management *im = &sbi->im[mode];
595 	struct ino_entry *e;
596 
597 	spin_lock(&im->ino_lock);
598 	e = radix_tree_lookup(&im->ino_root, ino);
599 	spin_unlock(&im->ino_lock);
600 	return e ? true : false;
601 }
602 
f2fs_release_ino_entry(struct f2fs_sb_info * sbi,bool all)603 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
604 {
605 	struct ino_entry *e, *tmp;
606 	int i;
607 
608 	for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
609 		struct inode_management *im = &sbi->im[i];
610 
611 		spin_lock(&im->ino_lock);
612 		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
613 			list_del(&e->list);
614 			radix_tree_delete(&im->ino_root, e->ino);
615 			kmem_cache_free(ino_entry_slab, e);
616 			im->ino_num--;
617 		}
618 		spin_unlock(&im->ino_lock);
619 	}
620 }
621 
f2fs_set_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)622 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
623 					unsigned int devidx, int type)
624 {
625 	__add_ino_entry(sbi, ino, devidx, type);
626 }
627 
f2fs_is_dirty_device(struct f2fs_sb_info * sbi,nid_t ino,unsigned int devidx,int type)628 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
629 					unsigned int devidx, int type)
630 {
631 	struct inode_management *im = &sbi->im[type];
632 	struct ino_entry *e;
633 	bool is_dirty = false;
634 
635 	spin_lock(&im->ino_lock);
636 	e = radix_tree_lookup(&im->ino_root, ino);
637 	if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
638 		is_dirty = true;
639 	spin_unlock(&im->ino_lock);
640 	return is_dirty;
641 }
642 
f2fs_acquire_orphan_inode(struct f2fs_sb_info * sbi)643 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
644 {
645 	struct inode_management *im = &sbi->im[ORPHAN_INO];
646 	int err = 0;
647 
648 	spin_lock(&im->ino_lock);
649 
650 	if (time_to_inject(sbi, FAULT_ORPHAN)) {
651 		spin_unlock(&im->ino_lock);
652 		return -ENOSPC;
653 	}
654 
655 	if (unlikely(im->ino_num >= sbi->max_orphans))
656 		err = -ENOSPC;
657 	else
658 		im->ino_num++;
659 	spin_unlock(&im->ino_lock);
660 
661 	return err;
662 }
663 
f2fs_release_orphan_inode(struct f2fs_sb_info * sbi)664 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
665 {
666 	struct inode_management *im = &sbi->im[ORPHAN_INO];
667 
668 	spin_lock(&im->ino_lock);
669 	f2fs_bug_on(sbi, im->ino_num == 0);
670 	im->ino_num--;
671 	spin_unlock(&im->ino_lock);
672 }
673 
f2fs_add_orphan_inode(struct inode * inode)674 void f2fs_add_orphan_inode(struct inode *inode)
675 {
676 	/* add new orphan ino entry into list */
677 	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
678 	f2fs_update_inode_page(inode);
679 }
680 
f2fs_remove_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)681 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
682 {
683 	/* remove orphan entry from orphan list */
684 	__remove_ino_entry(sbi, ino, ORPHAN_INO);
685 }
686 
recover_orphan_inode(struct f2fs_sb_info * sbi,nid_t ino)687 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
688 {
689 	struct inode *inode;
690 	struct node_info ni;
691 	int err;
692 
693 	inode = f2fs_iget_retry(sbi->sb, ino);
694 	if (IS_ERR(inode)) {
695 		/*
696 		 * there should be a bug that we can't find the entry
697 		 * to orphan inode.
698 		 */
699 		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
700 		return PTR_ERR(inode);
701 	}
702 
703 	err = f2fs_dquot_initialize(inode);
704 	if (err) {
705 		iput(inode);
706 		goto err_out;
707 	}
708 
709 	clear_nlink(inode);
710 
711 	/* truncate all the data during iput */
712 	iput(inode);
713 
714 	err = f2fs_get_node_info(sbi, ino, &ni, false);
715 	if (err)
716 		goto err_out;
717 
718 	/* ENOMEM was fully retried in f2fs_evict_inode. */
719 	if (ni.blk_addr != NULL_ADDR) {
720 		err = -EIO;
721 		goto err_out;
722 	}
723 	return 0;
724 
725 err_out:
726 	set_sbi_flag(sbi, SBI_NEED_FSCK);
727 	f2fs_warn(sbi, "%s: orphan failed (ino=%x), run fsck to fix.",
728 		  __func__, ino);
729 	return err;
730 }
731 
f2fs_recover_orphan_inodes(struct f2fs_sb_info * sbi)732 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
733 {
734 	block_t start_blk, orphan_blocks, i, j;
735 	int err = 0;
736 
737 	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
738 		return 0;
739 
740 	if (f2fs_hw_is_readonly(sbi)) {
741 		f2fs_info(sbi, "write access unavailable, skipping orphan cleanup");
742 		return 0;
743 	}
744 
745 	if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE))
746 		f2fs_info(sbi, "orphan cleanup on readonly fs");
747 
748 	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
749 	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
750 
751 	f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
752 
753 	for (i = 0; i < orphan_blocks; i++) {
754 		struct page *page;
755 		struct f2fs_orphan_block *orphan_blk;
756 
757 		page = f2fs_get_meta_page(sbi, start_blk + i);
758 		if (IS_ERR(page)) {
759 			err = PTR_ERR(page);
760 			goto out;
761 		}
762 
763 		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
764 		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
765 			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
766 
767 			err = recover_orphan_inode(sbi, ino);
768 			if (err) {
769 				f2fs_put_page(page, 1);
770 				goto out;
771 			}
772 		}
773 		f2fs_put_page(page, 1);
774 	}
775 	/* clear Orphan Flag */
776 	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
777 out:
778 	set_sbi_flag(sbi, SBI_IS_RECOVERED);
779 
780 	return err;
781 }
782 
write_orphan_inodes(struct f2fs_sb_info * sbi,block_t start_blk)783 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
784 {
785 	struct list_head *head;
786 	struct f2fs_orphan_block *orphan_blk = NULL;
787 	unsigned int nentries = 0;
788 	unsigned short index = 1;
789 	unsigned short orphan_blocks;
790 	struct page *page = NULL;
791 	struct ino_entry *orphan = NULL;
792 	struct inode_management *im = &sbi->im[ORPHAN_INO];
793 
794 	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
795 
796 	/*
797 	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
798 	 * orphan inode operations are covered under f2fs_lock_op().
799 	 * And, spin_lock should be avoided due to page operations below.
800 	 */
801 	head = &im->ino_list;
802 
803 	/* loop for each orphan inode entry and write them in journal block */
804 	list_for_each_entry(orphan, head, list) {
805 		if (!page) {
806 			page = f2fs_grab_meta_page(sbi, start_blk++);
807 			orphan_blk =
808 				(struct f2fs_orphan_block *)page_address(page);
809 			memset(orphan_blk, 0, sizeof(*orphan_blk));
810 		}
811 
812 		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
813 
814 		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
815 			/*
816 			 * an orphan block is full of 1020 entries,
817 			 * then we need to flush current orphan blocks
818 			 * and bring another one in memory
819 			 */
820 			orphan_blk->blk_addr = cpu_to_le16(index);
821 			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
822 			orphan_blk->entry_count = cpu_to_le32(nentries);
823 			set_page_dirty(page);
824 			f2fs_put_page(page, 1);
825 			index++;
826 			nentries = 0;
827 			page = NULL;
828 		}
829 	}
830 
831 	if (page) {
832 		orphan_blk->blk_addr = cpu_to_le16(index);
833 		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
834 		orphan_blk->entry_count = cpu_to_le32(nentries);
835 		set_page_dirty(page);
836 		f2fs_put_page(page, 1);
837 	}
838 }
839 
f2fs_checkpoint_chksum(struct f2fs_sb_info * sbi,struct f2fs_checkpoint * ckpt)840 static __u32 f2fs_checkpoint_chksum(struct f2fs_sb_info *sbi,
841 						struct f2fs_checkpoint *ckpt)
842 {
843 	unsigned int chksum_ofs = le32_to_cpu(ckpt->checksum_offset);
844 	__u32 chksum;
845 
846 	chksum = f2fs_crc32(sbi, ckpt, chksum_ofs);
847 	if (chksum_ofs < CP_CHKSUM_OFFSET) {
848 		chksum_ofs += sizeof(chksum);
849 		chksum = f2fs_chksum(sbi, chksum, (__u8 *)ckpt + chksum_ofs,
850 						F2FS_BLKSIZE - chksum_ofs);
851 	}
852 	return chksum;
853 }
854 
get_checkpoint_version(struct f2fs_sb_info * sbi,block_t cp_addr,struct f2fs_checkpoint ** cp_block,struct page ** cp_page,unsigned long long * version)855 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
856 		struct f2fs_checkpoint **cp_block, struct page **cp_page,
857 		unsigned long long *version)
858 {
859 	size_t crc_offset = 0;
860 	__u32 crc;
861 
862 	*cp_page = f2fs_get_meta_page(sbi, cp_addr);
863 	if (IS_ERR(*cp_page))
864 		return PTR_ERR(*cp_page);
865 
866 	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
867 
868 	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
869 	if (crc_offset < CP_MIN_CHKSUM_OFFSET ||
870 			crc_offset > CP_CHKSUM_OFFSET) {
871 		f2fs_put_page(*cp_page, 1);
872 		f2fs_warn(sbi, "invalid crc_offset: %zu", crc_offset);
873 		return -EINVAL;
874 	}
875 
876 	crc = f2fs_checkpoint_chksum(sbi, *cp_block);
877 	if (crc != cur_cp_crc(*cp_block)) {
878 		f2fs_put_page(*cp_page, 1);
879 		f2fs_warn(sbi, "invalid crc value");
880 		return -EINVAL;
881 	}
882 
883 	*version = cur_cp_version(*cp_block);
884 	return 0;
885 }
886 
validate_checkpoint(struct f2fs_sb_info * sbi,block_t cp_addr,unsigned long long * version)887 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
888 				block_t cp_addr, unsigned long long *version)
889 {
890 	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
891 	struct f2fs_checkpoint *cp_block = NULL;
892 	unsigned long long cur_version = 0, pre_version = 0;
893 	unsigned int cp_blocks;
894 	int err;
895 
896 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
897 					&cp_page_1, version);
898 	if (err)
899 		return NULL;
900 
901 	cp_blocks = le32_to_cpu(cp_block->cp_pack_total_block_count);
902 
903 	if (cp_blocks > sbi->blocks_per_seg || cp_blocks <= F2FS_CP_PACKS) {
904 		f2fs_warn(sbi, "invalid cp_pack_total_block_count:%u",
905 			  le32_to_cpu(cp_block->cp_pack_total_block_count));
906 		goto invalid_cp;
907 	}
908 	pre_version = *version;
909 
910 	cp_addr += cp_blocks - 1;
911 	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
912 					&cp_page_2, version);
913 	if (err)
914 		goto invalid_cp;
915 	cur_version = *version;
916 
917 	if (cur_version == pre_version) {
918 		*version = cur_version;
919 		f2fs_put_page(cp_page_2, 1);
920 		return cp_page_1;
921 	}
922 	f2fs_put_page(cp_page_2, 1);
923 invalid_cp:
924 	f2fs_put_page(cp_page_1, 1);
925 	return NULL;
926 }
927 
f2fs_get_valid_checkpoint(struct f2fs_sb_info * sbi)928 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
929 {
930 	struct f2fs_checkpoint *cp_block;
931 	struct f2fs_super_block *fsb = sbi->raw_super;
932 	struct page *cp1, *cp2, *cur_page;
933 	unsigned long blk_size = sbi->blocksize;
934 	unsigned long long cp1_version = 0, cp2_version = 0;
935 	unsigned long long cp_start_blk_no;
936 	unsigned int cp_blks = 1 + __cp_payload(sbi);
937 	block_t cp_blk_no;
938 	int i;
939 	int err;
940 
941 	sbi->ckpt = f2fs_kvzalloc(sbi, array_size(blk_size, cp_blks),
942 				  GFP_KERNEL);
943 	if (!sbi->ckpt)
944 		return -ENOMEM;
945 	/*
946 	 * Finding out valid cp block involves read both
947 	 * sets( cp pack 1 and cp pack 2)
948 	 */
949 	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
950 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
951 
952 	/* The second checkpoint pack should start at the next segment */
953 	cp_start_blk_no += ((unsigned long long)1) <<
954 				le32_to_cpu(fsb->log_blocks_per_seg);
955 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
956 
957 	if (cp1 && cp2) {
958 		if (ver_after(cp2_version, cp1_version))
959 			cur_page = cp2;
960 		else
961 			cur_page = cp1;
962 	} else if (cp1) {
963 		cur_page = cp1;
964 	} else if (cp2) {
965 		cur_page = cp2;
966 	} else {
967 		err = -EFSCORRUPTED;
968 		goto fail_no_cp;
969 	}
970 
971 	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
972 	memcpy(sbi->ckpt, cp_block, blk_size);
973 
974 	if (cur_page == cp1)
975 		sbi->cur_cp_pack = 1;
976 	else
977 		sbi->cur_cp_pack = 2;
978 
979 	/* Sanity checking of checkpoint */
980 	if (f2fs_sanity_check_ckpt(sbi)) {
981 		err = -EFSCORRUPTED;
982 		goto free_fail_no_cp;
983 	}
984 
985 	if (cp_blks <= 1)
986 		goto done;
987 
988 	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
989 	if (cur_page == cp2)
990 		cp_blk_no += BIT(le32_to_cpu(fsb->log_blocks_per_seg));
991 
992 	for (i = 1; i < cp_blks; i++) {
993 		void *sit_bitmap_ptr;
994 		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
995 
996 		cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
997 		if (IS_ERR(cur_page)) {
998 			err = PTR_ERR(cur_page);
999 			goto free_fail_no_cp;
1000 		}
1001 		sit_bitmap_ptr = page_address(cur_page);
1002 		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
1003 		f2fs_put_page(cur_page, 1);
1004 	}
1005 done:
1006 	f2fs_put_page(cp1, 1);
1007 	f2fs_put_page(cp2, 1);
1008 	return 0;
1009 
1010 free_fail_no_cp:
1011 	f2fs_put_page(cp1, 1);
1012 	f2fs_put_page(cp2, 1);
1013 fail_no_cp:
1014 	kvfree(sbi->ckpt);
1015 	return err;
1016 }
1017 
__add_dirty_inode(struct inode * inode,enum inode_type type)1018 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
1019 {
1020 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1021 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1022 
1023 	if (is_inode_flag_set(inode, flag))
1024 		return;
1025 
1026 	set_inode_flag(inode, flag);
1027 	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
1028 	stat_inc_dirty_inode(sbi, type);
1029 }
1030 
__remove_dirty_inode(struct inode * inode,enum inode_type type)1031 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
1032 {
1033 	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
1034 
1035 	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
1036 		return;
1037 
1038 	list_del_init(&F2FS_I(inode)->dirty_list);
1039 	clear_inode_flag(inode, flag);
1040 	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
1041 }
1042 
f2fs_update_dirty_folio(struct inode * inode,struct folio * folio)1043 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio)
1044 {
1045 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1046 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1047 
1048 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1049 			!S_ISLNK(inode->i_mode))
1050 		return;
1051 
1052 	spin_lock(&sbi->inode_lock[type]);
1053 	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
1054 		__add_dirty_inode(inode, type);
1055 	inode_inc_dirty_pages(inode);
1056 	spin_unlock(&sbi->inode_lock[type]);
1057 
1058 	set_page_private_reference(&folio->page);
1059 }
1060 
f2fs_remove_dirty_inode(struct inode * inode)1061 void f2fs_remove_dirty_inode(struct inode *inode)
1062 {
1063 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
1065 
1066 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1067 			!S_ISLNK(inode->i_mode))
1068 		return;
1069 
1070 	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
1071 		return;
1072 
1073 	spin_lock(&sbi->inode_lock[type]);
1074 	__remove_dirty_inode(inode, type);
1075 	spin_unlock(&sbi->inode_lock[type]);
1076 }
1077 
f2fs_sync_dirty_inodes(struct f2fs_sb_info * sbi,enum inode_type type,bool from_cp)1078 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
1079 						bool from_cp)
1080 {
1081 	struct list_head *head;
1082 	struct inode *inode;
1083 	struct f2fs_inode_info *fi;
1084 	bool is_dir = (type == DIR_INODE);
1085 	unsigned long ino = 0;
1086 
1087 	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1088 				get_pages(sbi, is_dir ?
1089 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1090 retry:
1091 	if (unlikely(f2fs_cp_error(sbi))) {
1092 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1093 				get_pages(sbi, is_dir ?
1094 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1095 		return -EIO;
1096 	}
1097 
1098 	spin_lock(&sbi->inode_lock[type]);
1099 
1100 	head = &sbi->inode_list[type];
1101 	if (list_empty(head)) {
1102 		spin_unlock(&sbi->inode_lock[type]);
1103 		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1104 				get_pages(sbi, is_dir ?
1105 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1106 		return 0;
1107 	}
1108 	fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1109 	inode = igrab(&fi->vfs_inode);
1110 	spin_unlock(&sbi->inode_lock[type]);
1111 	if (inode) {
1112 		unsigned long cur_ino = inode->i_ino;
1113 
1114 		if (from_cp)
1115 			F2FS_I(inode)->cp_task = current;
1116 		F2FS_I(inode)->wb_task = current;
1117 
1118 		filemap_fdatawrite(inode->i_mapping);
1119 
1120 		F2FS_I(inode)->wb_task = NULL;
1121 		if (from_cp)
1122 			F2FS_I(inode)->cp_task = NULL;
1123 
1124 		iput(inode);
1125 		/* We need to give cpu to another writers. */
1126 		if (ino == cur_ino)
1127 			cond_resched();
1128 		else
1129 			ino = cur_ino;
1130 	} else {
1131 		/*
1132 		 * We should submit bio, since it exists several
1133 		 * writebacking dentry pages in the freeing inode.
1134 		 */
1135 		f2fs_submit_merged_write(sbi, DATA);
1136 		cond_resched();
1137 	}
1138 	goto retry;
1139 }
1140 
f2fs_sync_inode_meta(struct f2fs_sb_info * sbi)1141 static int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1142 {
1143 	struct list_head *head = &sbi->inode_list[DIRTY_META];
1144 	struct inode *inode;
1145 	struct f2fs_inode_info *fi;
1146 	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1147 
1148 	while (total--) {
1149 		if (unlikely(f2fs_cp_error(sbi)))
1150 			return -EIO;
1151 
1152 		spin_lock(&sbi->inode_lock[DIRTY_META]);
1153 		if (list_empty(head)) {
1154 			spin_unlock(&sbi->inode_lock[DIRTY_META]);
1155 			return 0;
1156 		}
1157 		fi = list_first_entry(head, struct f2fs_inode_info,
1158 							gdirty_list);
1159 		inode = igrab(&fi->vfs_inode);
1160 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 		if (inode) {
1162 			sync_inode_metadata(inode, 0);
1163 
1164 			/* it's on eviction */
1165 			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1166 				f2fs_update_inode_page(inode);
1167 			iput(inode);
1168 		}
1169 	}
1170 	return 0;
1171 }
1172 
__prepare_cp_block(struct f2fs_sb_info * sbi)1173 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1174 {
1175 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1176 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1177 	nid_t last_nid = nm_i->next_scan_nid;
1178 
1179 	next_free_nid(sbi, &last_nid);
1180 	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1181 	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1182 	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1183 	ckpt->next_free_nid = cpu_to_le32(last_nid);
1184 }
1185 
__need_flush_quota(struct f2fs_sb_info * sbi)1186 static bool __need_flush_quota(struct f2fs_sb_info *sbi)
1187 {
1188 	bool ret = false;
1189 
1190 	if (!is_journalled_quota(sbi))
1191 		return false;
1192 
1193 	if (!f2fs_down_write_trylock(&sbi->quota_sem))
1194 		return true;
1195 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH)) {
1196 		ret = false;
1197 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR)) {
1198 		ret = false;
1199 	} else if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_FLUSH)) {
1200 		clear_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1201 		ret = true;
1202 	} else if (get_pages(sbi, F2FS_DIRTY_QDATA)) {
1203 		ret = true;
1204 	}
1205 	f2fs_up_write(&sbi->quota_sem);
1206 	return ret;
1207 }
1208 
1209 /*
1210  * Freeze all the FS-operations for checkpoint.
1211  */
block_operations(struct f2fs_sb_info * sbi)1212 static int block_operations(struct f2fs_sb_info *sbi)
1213 {
1214 	struct writeback_control wbc = {
1215 		.sync_mode = WB_SYNC_ALL,
1216 		.nr_to_write = LONG_MAX,
1217 		.for_reclaim = 0,
1218 	};
1219 	int err = 0, cnt = 0;
1220 
1221 	/*
1222 	 * Let's flush inline_data in dirty node pages.
1223 	 */
1224 	f2fs_flush_inline_data(sbi);
1225 
1226 retry_flush_quotas:
1227 	f2fs_lock_all(sbi);
1228 	if (__need_flush_quota(sbi)) {
1229 		int locked;
1230 
1231 		if (++cnt > DEFAULT_RETRY_QUOTA_FLUSH_COUNT) {
1232 			set_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1233 			set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
1234 			goto retry_flush_dents;
1235 		}
1236 		f2fs_unlock_all(sbi);
1237 
1238 		/* only failed during mount/umount/freeze/quotactl */
1239 		locked = down_read_trylock(&sbi->sb->s_umount);
1240 		f2fs_quota_sync(sbi->sb, -1);
1241 		if (locked)
1242 			up_read(&sbi->sb->s_umount);
1243 		cond_resched();
1244 		goto retry_flush_quotas;
1245 	}
1246 
1247 retry_flush_dents:
1248 	/* write all the dirty dentry pages */
1249 	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1250 		f2fs_unlock_all(sbi);
1251 		err = f2fs_sync_dirty_inodes(sbi, DIR_INODE, true);
1252 		if (err)
1253 			return err;
1254 		cond_resched();
1255 		goto retry_flush_quotas;
1256 	}
1257 
1258 	/*
1259 	 * POR: we should ensure that there are no dirty node pages
1260 	 * until finishing nat/sit flush. inode->i_blocks can be updated.
1261 	 */
1262 	f2fs_down_write(&sbi->node_change);
1263 
1264 	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1265 		f2fs_up_write(&sbi->node_change);
1266 		f2fs_unlock_all(sbi);
1267 		err = f2fs_sync_inode_meta(sbi);
1268 		if (err)
1269 			return err;
1270 		cond_resched();
1271 		goto retry_flush_quotas;
1272 	}
1273 
1274 retry_flush_nodes:
1275 	f2fs_down_write(&sbi->node_write);
1276 
1277 	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1278 		f2fs_up_write(&sbi->node_write);
1279 		atomic_inc(&sbi->wb_sync_req[NODE]);
1280 		err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1281 		atomic_dec(&sbi->wb_sync_req[NODE]);
1282 		if (err) {
1283 			f2fs_up_write(&sbi->node_change);
1284 			f2fs_unlock_all(sbi);
1285 			return err;
1286 		}
1287 		cond_resched();
1288 		goto retry_flush_nodes;
1289 	}
1290 
1291 	/*
1292 	 * sbi->node_change is used only for AIO write_begin path which produces
1293 	 * dirty node blocks and some checkpoint values by block allocation.
1294 	 */
1295 	__prepare_cp_block(sbi);
1296 	f2fs_up_write(&sbi->node_change);
1297 	return err;
1298 }
1299 
unblock_operations(struct f2fs_sb_info * sbi)1300 static void unblock_operations(struct f2fs_sb_info *sbi)
1301 {
1302 	f2fs_up_write(&sbi->node_write);
1303 	f2fs_unlock_all(sbi);
1304 }
1305 
f2fs_wait_on_all_pages(struct f2fs_sb_info * sbi,int type)1306 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type)
1307 {
1308 	DEFINE_WAIT(wait);
1309 
1310 	for (;;) {
1311 		if (!get_pages(sbi, type))
1312 			break;
1313 
1314 		if (unlikely(f2fs_cp_error(sbi) &&
1315 			!is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1316 			break;
1317 
1318 		if (type == F2FS_DIRTY_META)
1319 			f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1320 							FS_CP_META_IO);
1321 		else if (type == F2FS_WB_CP_DATA)
1322 			f2fs_submit_merged_write(sbi, DATA);
1323 
1324 		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1325 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1326 	}
1327 	finish_wait(&sbi->cp_wait, &wait);
1328 }
1329 
update_ckpt_flags(struct f2fs_sb_info * sbi,struct cp_control * cpc)1330 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1331 {
1332 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1333 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1334 	unsigned long flags;
1335 
1336 	if (cpc->reason & CP_UMOUNT) {
1337 		if (le32_to_cpu(ckpt->cp_pack_total_block_count) +
1338 			NM_I(sbi)->nat_bits_blocks > sbi->blocks_per_seg) {
1339 			clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1340 			f2fs_notice(sbi, "Disable nat_bits due to no space");
1341 		} else if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG) &&
1342 						f2fs_nat_bitmap_enabled(sbi)) {
1343 			f2fs_enable_nat_bits(sbi);
1344 			set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1345 			f2fs_notice(sbi, "Rebuild and enable nat_bits");
1346 		}
1347 	}
1348 
1349 	spin_lock_irqsave(&sbi->cp_lock, flags);
1350 
1351 	if (cpc->reason & CP_TRIMMED)
1352 		__set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1353 	else
1354 		__clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1355 
1356 	if (cpc->reason & CP_UMOUNT)
1357 		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1358 	else
1359 		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1360 
1361 	if (cpc->reason & CP_FASTBOOT)
1362 		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1363 	else
1364 		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1365 
1366 	if (orphan_num)
1367 		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1368 	else
1369 		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1370 
1371 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1372 		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1373 
1374 	if (is_sbi_flag_set(sbi, SBI_IS_RESIZEFS))
1375 		__set_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1376 	else
1377 		__clear_ckpt_flags(ckpt, CP_RESIZEFS_FLAG);
1378 
1379 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
1380 		__set_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1381 	else
1382 		__clear_ckpt_flags(ckpt, CP_DISABLED_FLAG);
1383 
1384 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK))
1385 		__set_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1386 	else
1387 		__clear_ckpt_flags(ckpt, CP_DISABLED_QUICK_FLAG);
1388 
1389 	if (is_sbi_flag_set(sbi, SBI_QUOTA_SKIP_FLUSH))
1390 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1391 	else
1392 		__clear_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1393 
1394 	if (is_sbi_flag_set(sbi, SBI_QUOTA_NEED_REPAIR))
1395 		__set_ckpt_flags(ckpt, CP_QUOTA_NEED_FSCK_FLAG);
1396 
1397 	/* set this flag to activate crc|cp_ver for recovery */
1398 	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1399 	__clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1400 
1401 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1402 }
1403 
commit_checkpoint(struct f2fs_sb_info * sbi,void * src,block_t blk_addr)1404 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1405 	void *src, block_t blk_addr)
1406 {
1407 	struct writeback_control wbc = {
1408 		.for_reclaim = 0,
1409 	};
1410 
1411 	/*
1412 	 * pagevec_lookup_tag and lock_page again will take
1413 	 * some extra time. Therefore, f2fs_update_meta_pages and
1414 	 * f2fs_sync_meta_pages are combined in this function.
1415 	 */
1416 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1417 	int err;
1418 
1419 	f2fs_wait_on_page_writeback(page, META, true, true);
1420 
1421 	memcpy(page_address(page), src, PAGE_SIZE);
1422 
1423 	set_page_dirty(page);
1424 	if (unlikely(!clear_page_dirty_for_io(page)))
1425 		f2fs_bug_on(sbi, 1);
1426 
1427 	/* writeout cp pack 2 page */
1428 	err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1429 	if (unlikely(err && f2fs_cp_error(sbi))) {
1430 		f2fs_put_page(page, 1);
1431 		return;
1432 	}
1433 
1434 	f2fs_bug_on(sbi, err);
1435 	f2fs_put_page(page, 0);
1436 
1437 	/* submit checkpoint (with barrier if NOBARRIER is not set) */
1438 	f2fs_submit_merged_write(sbi, META_FLUSH);
1439 }
1440 
get_sectors_written(struct block_device * bdev)1441 static inline u64 get_sectors_written(struct block_device *bdev)
1442 {
1443 	return (u64)part_stat_read(bdev, sectors[STAT_WRITE]);
1444 }
1445 
f2fs_get_sectors_written(struct f2fs_sb_info * sbi)1446 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi)
1447 {
1448 	if (f2fs_is_multi_device(sbi)) {
1449 		u64 sectors = 0;
1450 		int i;
1451 
1452 		for (i = 0; i < sbi->s_ndevs; i++)
1453 			sectors += get_sectors_written(FDEV(i).bdev);
1454 
1455 		return sectors;
1456 	}
1457 
1458 	return get_sectors_written(sbi->sb->s_bdev);
1459 }
1460 
do_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1461 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1462 {
1463 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1464 	struct f2fs_nm_info *nm_i = NM_I(sbi);
1465 	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1466 	block_t start_blk;
1467 	unsigned int data_sum_blocks, orphan_blocks;
1468 	__u32 crc32 = 0;
1469 	int i;
1470 	int cp_payload_blks = __cp_payload(sbi);
1471 	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1472 	u64 kbytes_written;
1473 	int err;
1474 
1475 	/* Flush all the NAT/SIT pages */
1476 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1477 
1478 	/* start to update checkpoint, cp ver is already updated previously */
1479 	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1480 	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1481 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1482 		struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_NODE);
1483 
1484 		ckpt->cur_node_segno[i] = cpu_to_le32(curseg->segno);
1485 		ckpt->cur_node_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1486 		ckpt->alloc_type[i + CURSEG_HOT_NODE] = curseg->alloc_type;
1487 	}
1488 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1489 		struct curseg_info *curseg = CURSEG_I(sbi, i + CURSEG_HOT_DATA);
1490 
1491 		ckpt->cur_data_segno[i] = cpu_to_le32(curseg->segno);
1492 		ckpt->cur_data_blkoff[i] = cpu_to_le16(curseg->next_blkoff);
1493 		ckpt->alloc_type[i + CURSEG_HOT_DATA] = curseg->alloc_type;
1494 	}
1495 
1496 	/* 2 cp + n data seg summary + orphan inode blocks */
1497 	data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1498 	spin_lock_irqsave(&sbi->cp_lock, flags);
1499 	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1500 		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1501 	else
1502 		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1503 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
1504 
1505 	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1506 	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1507 			orphan_blocks);
1508 
1509 	if (__remain_node_summaries(cpc->reason))
1510 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1511 				cp_payload_blks + data_sum_blocks +
1512 				orphan_blocks + NR_CURSEG_NODE_TYPE);
1513 	else
1514 		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1515 				cp_payload_blks + data_sum_blocks +
1516 				orphan_blocks);
1517 
1518 	/* update ckpt flag for checkpoint */
1519 	update_ckpt_flags(sbi, cpc);
1520 
1521 	/* update SIT/NAT bitmap */
1522 	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1523 	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1524 
1525 	crc32 = f2fs_checkpoint_chksum(sbi, ckpt);
1526 	*((__le32 *)((unsigned char *)ckpt +
1527 				le32_to_cpu(ckpt->checksum_offset)))
1528 				= cpu_to_le32(crc32);
1529 
1530 	start_blk = __start_cp_next_addr(sbi);
1531 
1532 	/* write nat bits */
1533 	if ((cpc->reason & CP_UMOUNT) &&
1534 			is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG)) {
1535 		__u64 cp_ver = cur_cp_version(ckpt);
1536 		block_t blk;
1537 
1538 		cp_ver |= ((__u64)crc32 << 32);
1539 		*(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1540 
1541 		blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1542 		for (i = 0; i < nm_i->nat_bits_blocks; i++)
1543 			f2fs_update_meta_page(sbi, nm_i->nat_bits +
1544 					(i << F2FS_BLKSIZE_BITS), blk + i);
1545 	}
1546 
1547 	/* write out checkpoint buffer at block 0 */
1548 	f2fs_update_meta_page(sbi, ckpt, start_blk++);
1549 
1550 	for (i = 1; i < 1 + cp_payload_blks; i++)
1551 		f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1552 							start_blk++);
1553 
1554 	if (orphan_num) {
1555 		write_orphan_inodes(sbi, start_blk);
1556 		start_blk += orphan_blocks;
1557 	}
1558 
1559 	f2fs_write_data_summaries(sbi, start_blk);
1560 	start_blk += data_sum_blocks;
1561 
1562 	/* Record write statistics in the hot node summary */
1563 	kbytes_written = sbi->kbytes_written;
1564 	kbytes_written += (f2fs_get_sectors_written(sbi) -
1565 				sbi->sectors_written_start) >> 1;
1566 	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1567 
1568 	if (__remain_node_summaries(cpc->reason)) {
1569 		f2fs_write_node_summaries(sbi, start_blk);
1570 		start_blk += NR_CURSEG_NODE_TYPE;
1571 	}
1572 
1573 	/* update user_block_counts */
1574 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1575 	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1576 	percpu_counter_set(&sbi->rf_node_block_count, 0);
1577 
1578 	/* Here, we have one bio having CP pack except cp pack 2 page */
1579 	f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1580 	/* Wait for all dirty meta pages to be submitted for IO */
1581 	f2fs_wait_on_all_pages(sbi, F2FS_DIRTY_META);
1582 
1583 	/* wait for previous submitted meta pages writeback */
1584 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1585 
1586 	/* flush all device cache */
1587 	err = f2fs_flush_device_cache(sbi);
1588 	if (err)
1589 		return err;
1590 
1591 	/* barrier and flush checkpoint cp pack 2 page if it can */
1592 	commit_checkpoint(sbi, ckpt, start_blk);
1593 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1594 
1595 	/*
1596 	 * invalidate intermediate page cache borrowed from meta inode which are
1597 	 * used for migration of encrypted, verity or compressed inode's blocks.
1598 	 */
1599 	if (f2fs_sb_has_encrypt(sbi) || f2fs_sb_has_verity(sbi) ||
1600 		f2fs_sb_has_compression(sbi))
1601 		invalidate_mapping_pages(META_MAPPING(sbi),
1602 				MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1603 
1604 	f2fs_release_ino_entry(sbi, false);
1605 
1606 	f2fs_reset_fsync_node_info(sbi);
1607 
1608 	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1609 	clear_sbi_flag(sbi, SBI_NEED_CP);
1610 	clear_sbi_flag(sbi, SBI_QUOTA_SKIP_FLUSH);
1611 
1612 	spin_lock(&sbi->stat_lock);
1613 	sbi->unusable_block_count = 0;
1614 	spin_unlock(&sbi->stat_lock);
1615 
1616 	__set_cp_next_pack(sbi);
1617 
1618 	/*
1619 	 * redirty superblock if metadata like node page or inode cache is
1620 	 * updated during writing checkpoint.
1621 	 */
1622 	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1623 			get_pages(sbi, F2FS_DIRTY_IMETA))
1624 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1625 
1626 	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1627 
1628 	return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1629 }
1630 
f2fs_write_checkpoint(struct f2fs_sb_info * sbi,struct cp_control * cpc)1631 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1632 {
1633 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1634 	unsigned long long ckpt_ver;
1635 	int err = 0;
1636 
1637 	if (f2fs_readonly(sbi->sb) || f2fs_hw_is_readonly(sbi))
1638 		return -EROFS;
1639 
1640 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1641 		if (cpc->reason != CP_PAUSE)
1642 			return 0;
1643 		f2fs_warn(sbi, "Start checkpoint disabled!");
1644 	}
1645 	if (cpc->reason != CP_RESIZE)
1646 		f2fs_down_write(&sbi->cp_global_sem);
1647 
1648 	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1649 		((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1650 		((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1651 		goto out;
1652 	if (unlikely(f2fs_cp_error(sbi))) {
1653 		err = -EIO;
1654 		goto out;
1655 	}
1656 
1657 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1658 
1659 	err = block_operations(sbi);
1660 	if (err)
1661 		goto out;
1662 
1663 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1664 
1665 	f2fs_flush_merged_writes(sbi);
1666 
1667 	/* this is the case of multiple fstrims without any changes */
1668 	if (cpc->reason & CP_DISCARD) {
1669 		if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1670 			unblock_operations(sbi);
1671 			goto out;
1672 		}
1673 
1674 		if (NM_I(sbi)->nat_cnt[DIRTY_NAT] == 0 &&
1675 				SIT_I(sbi)->dirty_sentries == 0 &&
1676 				prefree_segments(sbi) == 0) {
1677 			f2fs_flush_sit_entries(sbi, cpc);
1678 			f2fs_clear_prefree_segments(sbi, cpc);
1679 			unblock_operations(sbi);
1680 			goto out;
1681 		}
1682 	}
1683 
1684 	/*
1685 	 * update checkpoint pack index
1686 	 * Increase the version number so that
1687 	 * SIT entries and seg summaries are written at correct place
1688 	 */
1689 	ckpt_ver = cur_cp_version(ckpt);
1690 	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1691 
1692 	/* write cached NAT/SIT entries to NAT/SIT area */
1693 	err = f2fs_flush_nat_entries(sbi, cpc);
1694 	if (err) {
1695 		f2fs_err(sbi, "f2fs_flush_nat_entries failed err:%d, stop checkpoint", err);
1696 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1697 		goto stop;
1698 	}
1699 
1700 	f2fs_flush_sit_entries(sbi, cpc);
1701 
1702 	/* save inmem log status */
1703 	f2fs_save_inmem_curseg(sbi);
1704 
1705 	err = do_checkpoint(sbi, cpc);
1706 	if (err) {
1707 		f2fs_err(sbi, "do_checkpoint failed err:%d, stop checkpoint", err);
1708 		f2fs_bug_on(sbi, !f2fs_cp_error(sbi));
1709 		f2fs_release_discard_addrs(sbi);
1710 	} else {
1711 		f2fs_clear_prefree_segments(sbi, cpc);
1712 	}
1713 
1714 	f2fs_restore_inmem_curseg(sbi);
1715 stop:
1716 	unblock_operations(sbi);
1717 	stat_inc_cp_count(sbi->stat_info);
1718 
1719 	if (cpc->reason & CP_RECOVERY)
1720 		f2fs_notice(sbi, "checkpoint: version = %llx", ckpt_ver);
1721 
1722 	/* update CP_TIME to trigger checkpoint periodically */
1723 	f2fs_update_time(sbi, CP_TIME);
1724 	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1725 out:
1726 	if (cpc->reason != CP_RESIZE)
1727 		f2fs_up_write(&sbi->cp_global_sem);
1728 	return err;
1729 }
1730 
f2fs_init_ino_entry_info(struct f2fs_sb_info * sbi)1731 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1732 {
1733 	int i;
1734 
1735 	for (i = 0; i < MAX_INO_ENTRY; i++) {
1736 		struct inode_management *im = &sbi->im[i];
1737 
1738 		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1739 		spin_lock_init(&im->ino_lock);
1740 		INIT_LIST_HEAD(&im->ino_list);
1741 		im->ino_num = 0;
1742 	}
1743 
1744 	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1745 			NR_CURSEG_PERSIST_TYPE - __cp_payload(sbi)) *
1746 				F2FS_ORPHANS_PER_BLOCK;
1747 }
1748 
f2fs_create_checkpoint_caches(void)1749 int __init f2fs_create_checkpoint_caches(void)
1750 {
1751 	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1752 			sizeof(struct ino_entry));
1753 	if (!ino_entry_slab)
1754 		return -ENOMEM;
1755 	f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1756 			sizeof(struct inode_entry));
1757 	if (!f2fs_inode_entry_slab) {
1758 		kmem_cache_destroy(ino_entry_slab);
1759 		return -ENOMEM;
1760 	}
1761 	return 0;
1762 }
1763 
f2fs_destroy_checkpoint_caches(void)1764 void f2fs_destroy_checkpoint_caches(void)
1765 {
1766 	kmem_cache_destroy(ino_entry_slab);
1767 	kmem_cache_destroy(f2fs_inode_entry_slab);
1768 }
1769 
__write_checkpoint_sync(struct f2fs_sb_info * sbi)1770 static int __write_checkpoint_sync(struct f2fs_sb_info *sbi)
1771 {
1772 	struct cp_control cpc = { .reason = CP_SYNC, };
1773 	int err;
1774 
1775 	f2fs_down_write(&sbi->gc_lock);
1776 	err = f2fs_write_checkpoint(sbi, &cpc);
1777 	f2fs_up_write(&sbi->gc_lock);
1778 
1779 	return err;
1780 }
1781 
__checkpoint_and_complete_reqs(struct f2fs_sb_info * sbi)1782 static void __checkpoint_and_complete_reqs(struct f2fs_sb_info *sbi)
1783 {
1784 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1785 	struct ckpt_req *req, *next;
1786 	struct llist_node *dispatch_list;
1787 	u64 sum_diff = 0, diff, count = 0;
1788 	int ret;
1789 
1790 	dispatch_list = llist_del_all(&cprc->issue_list);
1791 	if (!dispatch_list)
1792 		return;
1793 	dispatch_list = llist_reverse_order(dispatch_list);
1794 
1795 	ret = __write_checkpoint_sync(sbi);
1796 	atomic_inc(&cprc->issued_ckpt);
1797 
1798 	llist_for_each_entry_safe(req, next, dispatch_list, llnode) {
1799 		diff = (u64)ktime_ms_delta(ktime_get(), req->queue_time);
1800 		req->ret = ret;
1801 		complete(&req->wait);
1802 
1803 		sum_diff += diff;
1804 		count++;
1805 	}
1806 	atomic_sub(count, &cprc->queued_ckpt);
1807 	atomic_add(count, &cprc->total_ckpt);
1808 
1809 	spin_lock(&cprc->stat_lock);
1810 	cprc->cur_time = (unsigned int)div64_u64(sum_diff, count);
1811 	if (cprc->peak_time < cprc->cur_time)
1812 		cprc->peak_time = cprc->cur_time;
1813 	spin_unlock(&cprc->stat_lock);
1814 }
1815 
issue_checkpoint_thread(void * data)1816 static int issue_checkpoint_thread(void *data)
1817 {
1818 	struct f2fs_sb_info *sbi = data;
1819 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1820 	wait_queue_head_t *q = &cprc->ckpt_wait_queue;
1821 repeat:
1822 	if (kthread_should_stop())
1823 		return 0;
1824 
1825 	if (!llist_empty(&cprc->issue_list))
1826 		__checkpoint_and_complete_reqs(sbi);
1827 
1828 	wait_event_interruptible(*q,
1829 		kthread_should_stop() || !llist_empty(&cprc->issue_list));
1830 	goto repeat;
1831 }
1832 
flush_remained_ckpt_reqs(struct f2fs_sb_info * sbi,struct ckpt_req * wait_req)1833 static void flush_remained_ckpt_reqs(struct f2fs_sb_info *sbi,
1834 		struct ckpt_req *wait_req)
1835 {
1836 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1837 
1838 	if (!llist_empty(&cprc->issue_list)) {
1839 		__checkpoint_and_complete_reqs(sbi);
1840 	} else {
1841 		/* already dispatched by issue_checkpoint_thread */
1842 		if (wait_req)
1843 			wait_for_completion(&wait_req->wait);
1844 	}
1845 }
1846 
init_ckpt_req(struct ckpt_req * req)1847 static void init_ckpt_req(struct ckpt_req *req)
1848 {
1849 	memset(req, 0, sizeof(struct ckpt_req));
1850 
1851 	init_completion(&req->wait);
1852 	req->queue_time = ktime_get();
1853 }
1854 
f2fs_issue_checkpoint(struct f2fs_sb_info * sbi)1855 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi)
1856 {
1857 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1858 	struct ckpt_req req;
1859 	struct cp_control cpc;
1860 
1861 	cpc.reason = __get_cp_reason(sbi);
1862 	if (!test_opt(sbi, MERGE_CHECKPOINT) || cpc.reason != CP_SYNC) {
1863 		int ret;
1864 
1865 		f2fs_down_write(&sbi->gc_lock);
1866 		ret = f2fs_write_checkpoint(sbi, &cpc);
1867 		f2fs_up_write(&sbi->gc_lock);
1868 
1869 		return ret;
1870 	}
1871 
1872 	if (!cprc->f2fs_issue_ckpt)
1873 		return __write_checkpoint_sync(sbi);
1874 
1875 	init_ckpt_req(&req);
1876 
1877 	llist_add(&req.llnode, &cprc->issue_list);
1878 	atomic_inc(&cprc->queued_ckpt);
1879 
1880 	/*
1881 	 * update issue_list before we wake up issue_checkpoint thread,
1882 	 * this smp_mb() pairs with another barrier in ___wait_event(),
1883 	 * see more details in comments of waitqueue_active().
1884 	 */
1885 	smp_mb();
1886 
1887 	if (waitqueue_active(&cprc->ckpt_wait_queue))
1888 		wake_up(&cprc->ckpt_wait_queue);
1889 
1890 	if (cprc->f2fs_issue_ckpt)
1891 		wait_for_completion(&req.wait);
1892 	else
1893 		flush_remained_ckpt_reqs(sbi, &req);
1894 
1895 	return req.ret;
1896 }
1897 
f2fs_start_ckpt_thread(struct f2fs_sb_info * sbi)1898 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi)
1899 {
1900 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1901 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1902 
1903 	if (cprc->f2fs_issue_ckpt)
1904 		return 0;
1905 
1906 	cprc->f2fs_issue_ckpt = kthread_run(issue_checkpoint_thread, sbi,
1907 			"f2fs_ckpt-%u:%u", MAJOR(dev), MINOR(dev));
1908 	if (IS_ERR(cprc->f2fs_issue_ckpt)) {
1909 		int err = PTR_ERR(cprc->f2fs_issue_ckpt);
1910 
1911 		cprc->f2fs_issue_ckpt = NULL;
1912 		return err;
1913 	}
1914 
1915 	set_task_ioprio(cprc->f2fs_issue_ckpt, cprc->ckpt_thread_ioprio);
1916 
1917 	return 0;
1918 }
1919 
f2fs_stop_ckpt_thread(struct f2fs_sb_info * sbi)1920 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi)
1921 {
1922 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1923 	struct task_struct *ckpt_task;
1924 
1925 	if (!cprc->f2fs_issue_ckpt)
1926 		return;
1927 
1928 	ckpt_task = cprc->f2fs_issue_ckpt;
1929 	cprc->f2fs_issue_ckpt = NULL;
1930 	kthread_stop(ckpt_task);
1931 
1932 	f2fs_flush_ckpt_thread(sbi);
1933 }
1934 
f2fs_flush_ckpt_thread(struct f2fs_sb_info * sbi)1935 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi)
1936 {
1937 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1938 
1939 	flush_remained_ckpt_reqs(sbi, NULL);
1940 
1941 	/* Let's wait for the previous dispatched checkpoint. */
1942 	while (atomic_read(&cprc->queued_ckpt))
1943 		io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1944 }
1945 
f2fs_init_ckpt_req_control(struct f2fs_sb_info * sbi)1946 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi)
1947 {
1948 	struct ckpt_req_control *cprc = &sbi->cprc_info;
1949 
1950 	atomic_set(&cprc->issued_ckpt, 0);
1951 	atomic_set(&cprc->total_ckpt, 0);
1952 	atomic_set(&cprc->queued_ckpt, 0);
1953 	cprc->ckpt_thread_ioprio = DEFAULT_CHECKPOINT_IOPRIO;
1954 	init_waitqueue_head(&cprc->ckpt_wait_queue);
1955 	init_llist_head(&cprc->issue_list);
1956 	spin_lock_init(&cprc->stat_lock);
1957 }
1958