• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28 
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31 
32 struct pagevec;
33 
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition)					\
38 	do {								\
39 		if (WARN_ON(condition))					\
40 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
41 	} while (0)
42 #endif
43 
44 enum {
45 	FAULT_KMALLOC,
46 	FAULT_KVMALLOC,
47 	FAULT_PAGE_ALLOC,
48 	FAULT_PAGE_GET,
49 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
50 	FAULT_ALLOC_NID,
51 	FAULT_ORPHAN,
52 	FAULT_BLOCK,
53 	FAULT_DIR_DEPTH,
54 	FAULT_EVICT_INODE,
55 	FAULT_TRUNCATE,
56 	FAULT_READ_IO,
57 	FAULT_CHECKPOINT,
58 	FAULT_DISCARD,
59 	FAULT_WRITE_IO,
60 	FAULT_SLAB_ALLOC,
61 	FAULT_DQUOT_INIT,
62 	FAULT_LOCK_OP,
63 	FAULT_BLKADDR_VALIDITY,
64 	FAULT_BLKADDR_CONSISTENCE,
65 	FAULT_MAX,
66 };
67 
68 #ifdef CONFIG_F2FS_FAULT_INJECTION
69 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
70 
71 struct f2fs_fault_info {
72 	atomic_t inject_ops;
73 	unsigned int inject_rate;
74 	unsigned int inject_type;
75 };
76 
77 extern const char *f2fs_fault_name[FAULT_MAX];
78 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
79 #endif
80 
81 /*
82  * For mount options
83  */
84 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
85 #define F2FS_MOUNT_DISCARD		0x00000004
86 #define F2FS_MOUNT_NOHEAP		0x00000008
87 #define F2FS_MOUNT_XATTR_USER		0x00000010
88 #define F2FS_MOUNT_POSIX_ACL		0x00000020
89 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
90 #define F2FS_MOUNT_INLINE_XATTR		0x00000080
91 #define F2FS_MOUNT_INLINE_DATA		0x00000100
92 #define F2FS_MOUNT_INLINE_DENTRY	0x00000200
93 #define F2FS_MOUNT_FLUSH_MERGE		0x00000400
94 #define F2FS_MOUNT_NOBARRIER		0x00000800
95 #define F2FS_MOUNT_FASTBOOT		0x00001000
96 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00002000
97 #define F2FS_MOUNT_DATA_FLUSH		0x00008000
98 #define F2FS_MOUNT_FAULT_INJECTION	0x00010000
99 #define F2FS_MOUNT_USRQUOTA		0x00080000
100 #define F2FS_MOUNT_GRPQUOTA		0x00100000
101 #define F2FS_MOUNT_PRJQUOTA		0x00200000
102 #define F2FS_MOUNT_QUOTA		0x00400000
103 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00800000
104 #define F2FS_MOUNT_RESERVE_ROOT		0x01000000
105 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x02000000
106 #define F2FS_MOUNT_NORECOVERY		0x04000000
107 #define F2FS_MOUNT_ATGC			0x08000000
108 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x10000000
109 #define	F2FS_MOUNT_GC_MERGE		0x20000000
110 #define F2FS_MOUNT_COMPRESS_CACHE	0x40000000
111 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x80000000
112 
113 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
114 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
115 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
116 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
117 
118 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
119 		typecheck(unsigned long long, b) &&			\
120 		((long long)((a) - (b)) > 0))
121 
122 typedef u32 block_t;	/*
123 			 * should not change u32, since it is the on-disk block
124 			 * address format, __le32.
125 			 */
126 typedef u32 nid_t;
127 
128 #define COMPRESS_EXT_NUM		16
129 
130 /*
131  * An implementation of an rwsem that is explicitly unfair to readers. This
132  * prevents priority inversion when a low-priority reader acquires the read lock
133  * while sleeping on the write lock but the write lock is needed by
134  * higher-priority clients.
135  */
136 
137 struct f2fs_rwsem {
138         struct rw_semaphore internal_rwsem;
139 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
140         wait_queue_head_t read_waiters;
141 #endif
142 };
143 
144 struct f2fs_mount_info {
145 	unsigned int opt;
146 	int write_io_size_bits;		/* Write IO size bits */
147 	block_t root_reserved_blocks;	/* root reserved blocks */
148 	kuid_t s_resuid;		/* reserved blocks for uid */
149 	kgid_t s_resgid;		/* reserved blocks for gid */
150 	int active_logs;		/* # of active logs */
151 	int inline_xattr_size;		/* inline xattr size */
152 #ifdef CONFIG_F2FS_FAULT_INJECTION
153 	struct f2fs_fault_info fault_info;	/* For fault injection */
154 #endif
155 #ifdef CONFIG_QUOTA
156 	/* Names of quota files with journalled quota */
157 	char *s_qf_names[MAXQUOTAS];
158 	int s_jquota_fmt;			/* Format of quota to use */
159 #endif
160 	/* For which write hints are passed down to block layer */
161 	int alloc_mode;			/* segment allocation policy */
162 	int fsync_mode;			/* fsync policy */
163 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
164 	int bggc_mode;			/* bggc mode: off, on or sync */
165 	int memory_mode;		/* memory mode */
166 	int discard_unit;		/*
167 					 * discard command's offset/size should
168 					 * be aligned to this unit: block,
169 					 * segment or section
170 					 */
171 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
172 	block_t unusable_cap_perc;	/* percentage for cap */
173 	block_t unusable_cap;		/* Amount of space allowed to be
174 					 * unusable when disabling checkpoint
175 					 */
176 
177 	/* For compression */
178 	unsigned char compress_algorithm;	/* algorithm type */
179 	unsigned char compress_log_size;	/* cluster log size */
180 	unsigned char compress_level;		/* compress level */
181 	bool compress_chksum;			/* compressed data chksum */
182 	unsigned char compress_ext_cnt;		/* extension count */
183 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
184 	int compress_mode;			/* compression mode */
185 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
186 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
187 };
188 
189 #define F2FS_FEATURE_ENCRYPT		0x0001
190 #define F2FS_FEATURE_BLKZONED		0x0002
191 #define F2FS_FEATURE_ATOMIC_WRITE	0x0004
192 #define F2FS_FEATURE_EXTRA_ATTR		0x0008
193 #define F2FS_FEATURE_PRJQUOTA		0x0010
194 #define F2FS_FEATURE_INODE_CHKSUM	0x0020
195 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x0040
196 #define F2FS_FEATURE_QUOTA_INO		0x0080
197 #define F2FS_FEATURE_INODE_CRTIME	0x0100
198 #define F2FS_FEATURE_LOST_FOUND		0x0200
199 #define F2FS_FEATURE_VERITY		0x0400
200 #define F2FS_FEATURE_SB_CHKSUM		0x0800
201 #define F2FS_FEATURE_CASEFOLD		0x1000
202 #define F2FS_FEATURE_COMPRESSION	0x2000
203 #define F2FS_FEATURE_RO			0x4000
204 
205 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
206 	((raw_super->feature & cpu_to_le32(mask)) != 0)
207 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
208 
209 /*
210  * Default values for user and/or group using reserved blocks
211  */
212 #define	F2FS_DEF_RESUID		0
213 #define	F2FS_DEF_RESGID		0
214 
215 /*
216  * For checkpoint manager
217  */
218 enum {
219 	NAT_BITMAP,
220 	SIT_BITMAP
221 };
222 
223 #define	CP_UMOUNT	0x00000001
224 #define	CP_FASTBOOT	0x00000002
225 #define	CP_SYNC		0x00000004
226 #define	CP_RECOVERY	0x00000008
227 #define	CP_DISCARD	0x00000010
228 #define CP_TRIMMED	0x00000020
229 #define CP_PAUSE	0x00000040
230 #define CP_RESIZE 	0x00000080
231 
232 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
237 #define DEF_CP_INTERVAL			60	/* 60 secs */
238 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
239 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
242 
243 struct cp_control {
244 	int reason;
245 	__u64 trim_start;
246 	__u64 trim_end;
247 	__u64 trim_minlen;
248 };
249 
250 /*
251  * indicate meta/data type
252  */
253 enum {
254 	META_CP,
255 	META_NAT,
256 	META_SIT,
257 	META_SSA,
258 	META_MAX,
259 	META_POR,
260 	DATA_GENERIC,		/* check range only */
261 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
262 	DATA_GENERIC_ENHANCE_READ,	/*
263 					 * strong check on range and segment
264 					 * bitmap but no warning due to race
265 					 * condition of read on truncated area
266 					 * by extent_cache
267 					 */
268 	DATA_GENERIC_ENHANCE_UPDATE,	/*
269 					 * strong check on range and segment
270 					 * bitmap for update case
271 					 */
272 	META_GENERIC,
273 };
274 
275 /* for the list of ino */
276 enum {
277 	ORPHAN_INO,		/* for orphan ino list */
278 	APPEND_INO,		/* for append ino list */
279 	UPDATE_INO,		/* for update ino list */
280 	TRANS_DIR_INO,		/* for transactions dir ino list */
281 	FLUSH_INO,		/* for multiple device flushing */
282 	MAX_INO_ENTRY,		/* max. list */
283 };
284 
285 struct ino_entry {
286 	struct list_head list;		/* list head */
287 	nid_t ino;			/* inode number */
288 	unsigned int dirty_device;	/* dirty device bitmap */
289 };
290 
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 	struct list_head list;	/* list head */
294 	struct inode *inode;	/* vfs inode pointer */
295 };
296 
297 struct fsync_node_entry {
298 	struct list_head list;	/* list head */
299 	struct page *page;	/* warm node page pointer */
300 	unsigned int seq_id;	/* sequence id */
301 };
302 
303 struct ckpt_req {
304 	struct completion wait;		/* completion for checkpoint done */
305 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
306 	int ret;			/* return code of checkpoint */
307 	ktime_t queue_time;		/* request queued time */
308 };
309 
310 struct ckpt_req_control {
311 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
312 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
313 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
314 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
315 	atomic_t total_ckpt;		/* # of total ckpts */
316 	atomic_t queued_ckpt;		/* # of queued ckpts */
317 	struct llist_head issue_list;	/* list for command issue */
318 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
319 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
320 	unsigned int peak_time;		/* peak wait time in msec until now */
321 };
322 
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 	struct list_head list;	/* list head */
326 	block_t start_blkaddr;	/* start blockaddr of current segment */
327 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
328 };
329 
330 /* minimum discard granularity, unit: block count */
331 #define MIN_DISCARD_GRANULARITY		1
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY		16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
336 
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM		512
339 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
340 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341 
342 enum {
343 	D_PREP,			/* initial */
344 	D_PARTIAL,		/* partially submitted */
345 	D_SUBMIT,		/* all submitted */
346 	D_DONE,			/* finished */
347 };
348 
349 struct discard_info {
350 	block_t lstart;			/* logical start address */
351 	block_t len;			/* length */
352 	block_t start;			/* actual start address in dev */
353 };
354 
355 struct discard_cmd {
356 	struct rb_node rb_node;		/* rb node located in rb-tree */
357 	struct discard_info di;		/* discard info */
358 	struct list_head list;		/* command list */
359 	struct completion wait;		/* compleation */
360 	struct block_device *bdev;	/* bdev */
361 	unsigned short ref;		/* reference count */
362 	unsigned char state;		/* state */
363 	unsigned char queued;		/* queued discard */
364 	int error;			/* bio error */
365 	spinlock_t lock;		/* for state/bio_ref updating */
366 	unsigned short bio_ref;		/* bio reference count */
367 };
368 
369 enum {
370 	DPOLICY_BG,
371 	DPOLICY_FORCE,
372 	DPOLICY_FSTRIM,
373 	DPOLICY_UMOUNT,
374 	MAX_DPOLICY,
375 };
376 
377 struct discard_policy {
378 	int type;			/* type of discard */
379 	unsigned int min_interval;	/* used for candidates exist */
380 	unsigned int mid_interval;	/* used for device busy */
381 	unsigned int max_interval;	/* used for candidates not exist */
382 	unsigned int max_requests;	/* # of discards issued per round */
383 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
384 	bool io_aware;			/* issue discard in idle time */
385 	bool sync;			/* submit discard with REQ_SYNC flag */
386 	bool ordered;			/* issue discard by lba order */
387 	bool timeout;			/* discard timeout for put_super */
388 	unsigned int granularity;	/* discard granularity */
389 };
390 
391 struct discard_cmd_control {
392 	struct task_struct *f2fs_issue_discard;	/* discard thread */
393 	struct list_head entry_list;		/* 4KB discard entry list */
394 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
395 	struct list_head wait_list;		/* store on-flushing entries */
396 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
397 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
398 	struct mutex cmd_lock;
399 	unsigned int nr_discards;		/* # of discards in the list */
400 	unsigned int max_discards;		/* max. discards to be issued */
401 	unsigned int max_discard_request;	/* max. discard request per round */
402 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
403 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
404 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
405 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
406 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
407 	unsigned int discard_granularity;	/* discard granularity */
408 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
409 	unsigned int undiscard_blks;		/* # of undiscard blocks */
410 	unsigned int next_pos;			/* next discard position */
411 	atomic_t issued_discard;		/* # of issued discard */
412 	atomic_t queued_discard;		/* # of queued discard */
413 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
414 	struct rb_root_cached root;		/* root of discard rb-tree */
415 	bool rbtree_check;			/* config for consistence check */
416 	bool discard_wake;			/* to wake up discard thread */
417 };
418 
419 /* for the list of fsync inodes, used only during recovery */
420 struct fsync_inode_entry {
421 	struct list_head list;	/* list head */
422 	struct inode *inode;	/* vfs inode pointer */
423 	block_t blkaddr;	/* block address locating the last fsync */
424 	block_t last_dentry;	/* block address locating the last dentry */
425 };
426 
427 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
428 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
429 
430 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
431 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
432 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
433 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
434 
435 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
436 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
437 
update_nats_in_cursum(struct f2fs_journal * journal,int i)438 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
439 {
440 	int before = nats_in_cursum(journal);
441 
442 	journal->n_nats = cpu_to_le16(before + i);
443 	return before;
444 }
445 
update_sits_in_cursum(struct f2fs_journal * journal,int i)446 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
447 {
448 	int before = sits_in_cursum(journal);
449 
450 	journal->n_sits = cpu_to_le16(before + i);
451 	return before;
452 }
453 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)454 static inline bool __has_cursum_space(struct f2fs_journal *journal,
455 							int size, int type)
456 {
457 	if (type == NAT_JOURNAL)
458 		return size <= MAX_NAT_JENTRIES(journal);
459 	return size <= MAX_SIT_JENTRIES(journal);
460 }
461 
462 /* for inline stuff */
463 #define DEF_INLINE_RESERVED_SIZE	1
464 static inline int get_extra_isize(struct inode *inode);
465 static inline int get_inline_xattr_addrs(struct inode *inode);
466 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
467 				(CUR_ADDRS_PER_INODE(inode) -		\
468 				get_inline_xattr_addrs(inode) -	\
469 				DEF_INLINE_RESERVED_SIZE))
470 
471 /* for inline dir */
472 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
473 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
474 				BITS_PER_BYTE + 1))
475 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
476 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
477 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
478 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479 				NR_INLINE_DENTRY(inode) + \
480 				INLINE_DENTRY_BITMAP_SIZE(inode)))
481 
482 /*
483  * For INODE and NODE manager
484  */
485 /* for directory operations */
486 
487 struct f2fs_filename {
488 	/*
489 	 * The filename the user specified.  This is NULL for some
490 	 * filesystem-internal operations, e.g. converting an inline directory
491 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
492 	 */
493 	const struct qstr *usr_fname;
494 
495 	/*
496 	 * The on-disk filename.  For encrypted directories, this is encrypted.
497 	 * This may be NULL for lookups in an encrypted dir without the key.
498 	 */
499 	struct fscrypt_str disk_name;
500 
501 	/* The dirhash of this filename */
502 	f2fs_hash_t hash;
503 
504 #ifdef CONFIG_FS_ENCRYPTION
505 	/*
506 	 * For lookups in encrypted directories: either the buffer backing
507 	 * disk_name, or a buffer that holds the decoded no-key name.
508 	 */
509 	struct fscrypt_str crypto_buf;
510 #endif
511 #if IS_ENABLED(CONFIG_UNICODE)
512 	/*
513 	 * For casefolded directories: the casefolded name, but it's left NULL
514 	 * if the original name is not valid Unicode, if the original name is
515 	 * "." or "..", if the directory is both casefolded and encrypted and
516 	 * its encryption key is unavailable, or if the filesystem is doing an
517 	 * internal operation where usr_fname is also NULL.  In all these cases
518 	 * we fall back to treating the name as an opaque byte sequence.
519 	 */
520 	struct fscrypt_str cf_name;
521 #endif
522 };
523 
524 struct f2fs_dentry_ptr {
525 	struct inode *inode;
526 	void *bitmap;
527 	struct f2fs_dir_entry *dentry;
528 	__u8 (*filename)[F2FS_SLOT_LEN];
529 	int max;
530 	int nr_bitmap;
531 };
532 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)533 static inline void make_dentry_ptr_block(struct inode *inode,
534 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
535 {
536 	d->inode = inode;
537 	d->max = NR_DENTRY_IN_BLOCK;
538 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
539 	d->bitmap = t->dentry_bitmap;
540 	d->dentry = t->dentry;
541 	d->filename = t->filename;
542 }
543 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)544 static inline void make_dentry_ptr_inline(struct inode *inode,
545 					struct f2fs_dentry_ptr *d, void *t)
546 {
547 	int entry_cnt = NR_INLINE_DENTRY(inode);
548 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
549 	int reserved_size = INLINE_RESERVED_SIZE(inode);
550 
551 	d->inode = inode;
552 	d->max = entry_cnt;
553 	d->nr_bitmap = bitmap_size;
554 	d->bitmap = t;
555 	d->dentry = t + bitmap_size + reserved_size;
556 	d->filename = t + bitmap_size + reserved_size +
557 					SIZE_OF_DIR_ENTRY * entry_cnt;
558 }
559 
560 /*
561  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
562  * as its node offset to distinguish from index node blocks.
563  * But some bits are used to mark the node block.
564  */
565 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
566 				>> OFFSET_BIT_SHIFT)
567 enum {
568 	ALLOC_NODE,			/* allocate a new node page if needed */
569 	LOOKUP_NODE,			/* look up a node without readahead */
570 	LOOKUP_NODE_RA,			/*
571 					 * look up a node with readahead called
572 					 * by get_data_block.
573 					 */
574 };
575 
576 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
577 
578 /* congestion wait timeout value, default: 20ms */
579 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
580 
581 /* maximum retry quota flush count */
582 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
583 
584 /* maximum retry of EIO'ed page */
585 #define MAX_RETRY_PAGE_EIO			100
586 
587 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
588 
589 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
590 
591 /* dirty segments threshold for triggering CP */
592 #define DEFAULT_DIRTY_THRESHOLD		4
593 
594 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
595 #define RECOVERY_MIN_RA_BLOCKS		1
596 
597 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
598 
599 /* for in-memory extent cache entry */
600 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
601 
602 /* number of extent info in extent cache we try to shrink */
603 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
604 
605 /* number of age extent info in extent cache we try to shrink */
606 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
607 #define LAST_AGE_WEIGHT			30
608 #define SAME_AGE_REGION			1024
609 
610 /*
611  * Define data block with age less than 1GB as hot data
612  * define data block with age less than 10GB but more than 1GB as warm data
613  */
614 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
615 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
616 
617 /* extent cache type */
618 enum extent_type {
619 	EX_READ,
620 	EX_BLOCK_AGE,
621 	NR_EXTENT_CACHES,
622 };
623 
624 struct extent_info {
625 	unsigned int fofs;		/* start offset in a file */
626 	unsigned int len;		/* length of the extent */
627 	union {
628 		/* read extent_cache */
629 		struct {
630 			/* start block address of the extent */
631 			block_t blk;
632 #ifdef CONFIG_F2FS_FS_COMPRESSION
633 			/* physical extent length of compressed blocks */
634 			unsigned int c_len;
635 #endif
636 		};
637 		/* block age extent_cache */
638 		struct {
639 			/* block age of the extent */
640 			unsigned long long age;
641 			/* last total blocks allocated */
642 			unsigned long long last_blocks;
643 		};
644 	};
645 };
646 
647 struct extent_node {
648 	struct rb_node rb_node;		/* rb node located in rb-tree */
649 	struct extent_info ei;		/* extent info */
650 	struct list_head list;		/* node in global extent list of sbi */
651 	struct extent_tree *et;		/* extent tree pointer */
652 };
653 
654 struct extent_tree {
655 	nid_t ino;			/* inode number */
656 	enum extent_type type;		/* keep the extent tree type */
657 	struct rb_root_cached root;	/* root of extent info rb-tree */
658 	struct extent_node *cached_en;	/* recently accessed extent node */
659 	struct list_head list;		/* to be used by sbi->zombie_list */
660 	rwlock_t lock;			/* protect extent info rb-tree */
661 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
662 	bool largest_updated;		/* largest extent updated */
663 	struct extent_info largest;	/* largest cached extent for EX_READ */
664 };
665 
666 struct extent_tree_info {
667 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
668 	struct mutex extent_tree_lock;	/* locking extent radix tree */
669 	struct list_head extent_list;		/* lru list for shrinker */
670 	spinlock_t extent_lock;			/* locking extent lru list */
671 	atomic_t total_ext_tree;		/* extent tree count */
672 	struct list_head zombie_list;		/* extent zombie tree list */
673 	atomic_t total_zombie_tree;		/* extent zombie tree count */
674 	atomic_t total_ext_node;		/* extent info count */
675 };
676 
677 /*
678  * State of block returned by f2fs_map_blocks.
679  */
680 #define F2FS_MAP_NEW		(1U << 0)
681 #define F2FS_MAP_MAPPED		(1U << 1)
682 #define F2FS_MAP_DELALLOC	(1U << 2)
683 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
684 				F2FS_MAP_DELALLOC)
685 
686 struct f2fs_map_blocks {
687 	struct block_device *m_bdev;	/* for multi-device dio */
688 	block_t m_pblk;
689 	block_t m_lblk;
690 	unsigned int m_len;
691 	unsigned int m_flags;
692 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
693 	pgoff_t *m_next_extent;		/* point to next possible extent */
694 	int m_seg_type;
695 	bool m_may_create;		/* indicate it is from write path */
696 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
697 };
698 
699 /* for flag in get_data_block */
700 enum {
701 	F2FS_GET_BLOCK_DEFAULT,
702 	F2FS_GET_BLOCK_FIEMAP,
703 	F2FS_GET_BLOCK_BMAP,
704 	F2FS_GET_BLOCK_DIO,
705 	F2FS_GET_BLOCK_PRE_DIO,
706 	F2FS_GET_BLOCK_PRE_AIO,
707 	F2FS_GET_BLOCK_PRECACHE,
708 };
709 
710 /*
711  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
712  */
713 #define FADVISE_COLD_BIT	0x01
714 #define FADVISE_LOST_PINO_BIT	0x02
715 #define FADVISE_ENCRYPT_BIT	0x04
716 #define FADVISE_ENC_NAME_BIT	0x08
717 #define FADVISE_KEEP_SIZE_BIT	0x10
718 #define FADVISE_HOT_BIT		0x20
719 #define FADVISE_VERITY_BIT	0x40
720 #define FADVISE_TRUNC_BIT	0x80
721 
722 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
723 
724 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
725 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
726 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
727 
728 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
729 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
730 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
731 
732 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
733 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
734 
735 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
736 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
737 
738 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
739 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
740 
741 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
742 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
743 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
744 
745 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
746 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
747 
748 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
749 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
750 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
751 
752 #define DEF_DIR_LEVEL		0
753 
754 enum {
755 	GC_FAILURE_PIN,
756 	MAX_GC_FAILURE
757 };
758 
759 /* used for f2fs_inode_info->flags */
760 enum {
761 	FI_NEW_INODE,		/* indicate newly allocated inode */
762 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
763 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
764 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
765 	FI_INC_LINK,		/* need to increment i_nlink */
766 	FI_ACL_MODE,		/* indicate acl mode */
767 	FI_NO_ALLOC,		/* should not allocate any blocks */
768 	FI_FREE_NID,		/* free allocated nide */
769 	FI_NO_EXTENT,		/* not to use the extent cache */
770 	FI_INLINE_XATTR,	/* used for inline xattr */
771 	FI_INLINE_DATA,		/* used for inline data*/
772 	FI_INLINE_DENTRY,	/* used for inline dentry */
773 	FI_APPEND_WRITE,	/* inode has appended data */
774 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
775 	FI_NEED_IPU,		/* used for ipu per file */
776 	FI_ATOMIC_FILE,		/* indicate atomic file */
777 	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
778 	FI_DROP_CACHE,		/* drop dirty page cache */
779 	FI_DATA_EXIST,		/* indicate data exists */
780 	FI_INLINE_DOTS,		/* indicate inline dot dentries */
781 	FI_SKIP_WRITES,		/* should skip data page writeback */
782 	FI_OPU_WRITE,		/* used for opu per file */
783 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
784 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
785 	FI_HOT_DATA,		/* indicate file is hot */
786 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
787 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
788 	FI_PIN_FILE,		/* indicate file should not be gced */
789 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
790 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
791 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
792 	FI_MMAP_FILE,		/* indicate file was mmapped */
793 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
794 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
795 	FI_ALIGNED_WRITE,	/* enable aligned write */
796 	FI_COW_FILE,		/* indicate COW file */
797 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
798 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
799 	FI_MAX,			/* max flag, never be used */
800 };
801 
802 struct f2fs_inode_info {
803 	struct inode vfs_inode;		/* serve a vfs inode */
804 	unsigned long i_flags;		/* keep an inode flags for ioctl */
805 	unsigned char i_advise;		/* use to give file attribute hints */
806 	unsigned char i_dir_level;	/* use for dentry level for large dir */
807 	unsigned int i_current_depth;	/* only for directory depth */
808 	/* for gc failure statistic */
809 	unsigned int i_gc_failures[MAX_GC_FAILURE];
810 	unsigned int i_pino;		/* parent inode number */
811 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
812 
813 	/* Use below internally in f2fs*/
814 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
815 	struct f2fs_rwsem i_sem;	/* protect fi info */
816 	atomic_t dirty_pages;		/* # of dirty pages */
817 	f2fs_hash_t chash;		/* hash value of given file name */
818 	unsigned int clevel;		/* maximum level of given file name */
819 	struct task_struct *task;	/* lookup and create consistency */
820 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
821 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
822 	nid_t i_xattr_nid;		/* node id that contains xattrs */
823 	loff_t	last_disk_size;		/* lastly written file size */
824 	spinlock_t i_size_lock;		/* protect last_disk_size */
825 
826 #ifdef CONFIG_QUOTA
827 	struct dquot *i_dquot[MAXQUOTAS];
828 
829 	/* quota space reservation, managed internally by quota code */
830 	qsize_t i_reserved_quota;
831 #endif
832 	struct list_head dirty_list;	/* dirty list for dirs and files */
833 	struct list_head gdirty_list;	/* linked in global dirty list */
834 	struct task_struct *atomic_write_task;	/* store atomic write task */
835 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
836 					/* cached extent_tree entry */
837 	struct inode *cow_inode;	/* copy-on-write inode for atomic write */
838 
839 	/* avoid racing between foreground op and gc */
840 	struct f2fs_rwsem i_gc_rwsem[2];
841 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
842 
843 	int i_extra_isize;		/* size of extra space located in i_addr */
844 	kprojid_t i_projid;		/* id for project quota */
845 	int i_inline_xattr_size;	/* inline xattr size */
846 	struct timespec64 i_crtime;	/* inode creation time */
847 	struct timespec64 i_disk_time[3];/* inode disk times */
848 
849 	/* for file compress */
850 	atomic_t i_compr_blocks;		/* # of compressed blocks */
851 	unsigned char i_compress_algorithm;	/* algorithm type */
852 	unsigned char i_log_cluster_size;	/* log of cluster size */
853 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
854 	unsigned char i_compress_flag;		/* compress flag */
855 	unsigned int i_cluster_size;		/* cluster size */
856 
857 	unsigned int atomic_write_cnt;
858 	loff_t original_i_size;		/* original i_size before atomic write */
859 };
860 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)861 static inline void get_read_extent_info(struct extent_info *ext,
862 					struct f2fs_extent *i_ext)
863 {
864 	ext->fofs = le32_to_cpu(i_ext->fofs);
865 	ext->blk = le32_to_cpu(i_ext->blk);
866 	ext->len = le32_to_cpu(i_ext->len);
867 }
868 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)869 static inline void set_raw_read_extent(struct extent_info *ext,
870 					struct f2fs_extent *i_ext)
871 {
872 	i_ext->fofs = cpu_to_le32(ext->fofs);
873 	i_ext->blk = cpu_to_le32(ext->blk);
874 	i_ext->len = cpu_to_le32(ext->len);
875 }
876 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)877 static inline bool __is_discard_mergeable(struct discard_info *back,
878 			struct discard_info *front, unsigned int max_len)
879 {
880 	return (back->lstart + back->len == front->lstart) &&
881 		(back->len + front->len <= max_len);
882 }
883 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)884 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
885 			struct discard_info *back, unsigned int max_len)
886 {
887 	return __is_discard_mergeable(back, cur, max_len);
888 }
889 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)890 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
891 			struct discard_info *front, unsigned int max_len)
892 {
893 	return __is_discard_mergeable(cur, front, max_len);
894 }
895 
896 /*
897  * For free nid management
898  */
899 enum nid_state {
900 	FREE_NID,		/* newly added to free nid list */
901 	PREALLOC_NID,		/* it is preallocated */
902 	MAX_NID_STATE,
903 };
904 
905 enum nat_state {
906 	TOTAL_NAT,
907 	DIRTY_NAT,
908 	RECLAIMABLE_NAT,
909 	MAX_NAT_STATE,
910 };
911 
912 struct f2fs_nm_info {
913 	block_t nat_blkaddr;		/* base disk address of NAT */
914 	nid_t max_nid;			/* maximum possible node ids */
915 	nid_t available_nids;		/* # of available node ids */
916 	nid_t next_scan_nid;		/* the next nid to be scanned */
917 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
918 	unsigned int ram_thresh;	/* control the memory footprint */
919 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
920 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
921 
922 	/* NAT cache management */
923 	struct radix_tree_root nat_root;/* root of the nat entry cache */
924 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
925 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
926 	struct list_head nat_entries;	/* cached nat entry list (clean) */
927 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
928 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
929 	unsigned int nat_blocks;	/* # of nat blocks */
930 
931 	/* free node ids management */
932 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
933 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
934 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
935 	spinlock_t nid_list_lock;	/* protect nid lists ops */
936 	struct mutex build_lock;	/* lock for build free nids */
937 	unsigned char **free_nid_bitmap;
938 	unsigned char *nat_block_bitmap;
939 	unsigned short *free_nid_count;	/* free nid count of NAT block */
940 
941 	/* for checkpoint */
942 	char *nat_bitmap;		/* NAT bitmap pointer */
943 
944 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
945 	unsigned char *nat_bits;	/* NAT bits blocks */
946 	unsigned char *full_nat_bits;	/* full NAT pages */
947 	unsigned char *empty_nat_bits;	/* empty NAT pages */
948 #ifdef CONFIG_F2FS_CHECK_FS
949 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
950 #endif
951 	int bitmap_size;		/* bitmap size */
952 };
953 
954 /*
955  * this structure is used as one of function parameters.
956  * all the information are dedicated to a given direct node block determined
957  * by the data offset in a file.
958  */
959 struct dnode_of_data {
960 	struct inode *inode;		/* vfs inode pointer */
961 	struct page *inode_page;	/* its inode page, NULL is possible */
962 	struct page *node_page;		/* cached direct node page */
963 	nid_t nid;			/* node id of the direct node block */
964 	unsigned int ofs_in_node;	/* data offset in the node page */
965 	bool inode_page_locked;		/* inode page is locked or not */
966 	bool node_changed;		/* is node block changed */
967 	char cur_level;			/* level of hole node page */
968 	char max_level;			/* level of current page located */
969 	block_t	data_blkaddr;		/* block address of the node block */
970 };
971 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)972 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
973 		struct page *ipage, struct page *npage, nid_t nid)
974 {
975 	memset(dn, 0, sizeof(*dn));
976 	dn->inode = inode;
977 	dn->inode_page = ipage;
978 	dn->node_page = npage;
979 	dn->nid = nid;
980 }
981 
982 /*
983  * For SIT manager
984  *
985  * By default, there are 6 active log areas across the whole main area.
986  * When considering hot and cold data separation to reduce cleaning overhead,
987  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
988  * respectively.
989  * In the current design, you should not change the numbers intentionally.
990  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
991  * logs individually according to the underlying devices. (default: 6)
992  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
993  * data and 8 for node logs.
994  */
995 #define	NR_CURSEG_DATA_TYPE	(3)
996 #define NR_CURSEG_NODE_TYPE	(3)
997 #define NR_CURSEG_INMEM_TYPE	(2)
998 #define NR_CURSEG_RO_TYPE	(2)
999 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1000 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1001 
1002 enum {
1003 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1004 	CURSEG_WARM_DATA,	/* data blocks */
1005 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1006 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1007 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1008 	CURSEG_COLD_NODE,	/* indirect node blocks */
1009 	NR_PERSISTENT_LOG,	/* number of persistent log */
1010 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1011 				/* pinned file that needs consecutive block address */
1012 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1013 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1014 };
1015 
1016 struct flush_cmd {
1017 	struct completion wait;
1018 	struct llist_node llnode;
1019 	nid_t ino;
1020 	int ret;
1021 };
1022 
1023 struct flush_cmd_control {
1024 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1025 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1026 	atomic_t issued_flush;			/* # of issued flushes */
1027 	atomic_t queued_flush;			/* # of queued flushes */
1028 	struct llist_head issue_list;		/* list for command issue */
1029 	struct llist_node *dispatch_list;	/* list for command dispatch */
1030 };
1031 
1032 struct f2fs_sm_info {
1033 	struct sit_info *sit_info;		/* whole segment information */
1034 	struct free_segmap_info *free_info;	/* free segment information */
1035 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1036 	struct curseg_info *curseg_array;	/* active segment information */
1037 
1038 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1039 
1040 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1041 	block_t main_blkaddr;		/* start block address of main area */
1042 	block_t ssa_blkaddr;		/* start block address of SSA area */
1043 
1044 	unsigned int segment_count;	/* total # of segments */
1045 	unsigned int main_segments;	/* # of segments in main area */
1046 	unsigned int reserved_segments;	/* # of reserved segments */
1047 	unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1048 	unsigned int ovp_segments;	/* # of overprovision segments */
1049 
1050 	/* a threshold to reclaim prefree segments */
1051 	unsigned int rec_prefree_segments;
1052 
1053 	struct list_head sit_entry_set;	/* sit entry set list */
1054 
1055 	unsigned int ipu_policy;	/* in-place-update policy */
1056 	unsigned int min_ipu_util;	/* in-place-update threshold */
1057 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1058 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1059 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1060 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1061 
1062 	/* for flush command control */
1063 	struct flush_cmd_control *fcc_info;
1064 
1065 	/* for discard command control */
1066 	struct discard_cmd_control *dcc_info;
1067 };
1068 
1069 /*
1070  * For superblock
1071  */
1072 /*
1073  * COUNT_TYPE for monitoring
1074  *
1075  * f2fs monitors the number of several block types such as on-writeback,
1076  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1077  */
1078 #define WB_DATA_TYPE(p, f)			\
1079 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1080 enum count_type {
1081 	F2FS_DIRTY_DENTS,
1082 	F2FS_DIRTY_DATA,
1083 	F2FS_DIRTY_QDATA,
1084 	F2FS_DIRTY_NODES,
1085 	F2FS_DIRTY_META,
1086 	F2FS_DIRTY_IMETA,
1087 	F2FS_WB_CP_DATA,
1088 	F2FS_WB_DATA,
1089 	F2FS_RD_DATA,
1090 	F2FS_RD_NODE,
1091 	F2FS_RD_META,
1092 	F2FS_DIO_WRITE,
1093 	F2FS_DIO_READ,
1094 	NR_COUNT_TYPE,
1095 };
1096 
1097 /*
1098  * The below are the page types of bios used in submit_bio().
1099  * The available types are:
1100  * DATA			User data pages. It operates as async mode.
1101  * NODE			Node pages. It operates as async mode.
1102  * META			FS metadata pages such as SIT, NAT, CP.
1103  * NR_PAGE_TYPE		The number of page types.
1104  * META_FLUSH		Make sure the previous pages are written
1105  *			with waiting the bio's completion
1106  * ...			Only can be used with META.
1107  */
1108 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1109 enum page_type {
1110 	DATA = 0,
1111 	NODE = 1,	/* should not change this */
1112 	META,
1113 	NR_PAGE_TYPE,
1114 	META_FLUSH,
1115 	IPU,		/* the below types are used by tracepoints only. */
1116 	OPU,
1117 };
1118 
1119 enum temp_type {
1120 	HOT = 0,	/* must be zero for meta bio */
1121 	WARM,
1122 	COLD,
1123 	NR_TEMP_TYPE,
1124 };
1125 
1126 enum need_lock_type {
1127 	LOCK_REQ = 0,
1128 	LOCK_DONE,
1129 	LOCK_RETRY,
1130 };
1131 
1132 enum cp_reason_type {
1133 	CP_NO_NEEDED,
1134 	CP_NON_REGULAR,
1135 	CP_COMPRESSED,
1136 	CP_HARDLINK,
1137 	CP_SB_NEED_CP,
1138 	CP_WRONG_PINO,
1139 	CP_NO_SPC_ROLL,
1140 	CP_NODE_NEED_CP,
1141 	CP_FASTBOOT_MODE,
1142 	CP_SPEC_LOG_NUM,
1143 	CP_RECOVER_DIR,
1144 };
1145 
1146 enum iostat_type {
1147 	/* WRITE IO */
1148 	APP_DIRECT_IO,			/* app direct write IOs */
1149 	APP_BUFFERED_IO,		/* app buffered write IOs */
1150 	APP_WRITE_IO,			/* app write IOs */
1151 	APP_MAPPED_IO,			/* app mapped IOs */
1152 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1153 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1154 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1155 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1156 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1157 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1158 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1159 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1160 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1161 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1162 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1163 
1164 	/* READ IO */
1165 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1166 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1167 	APP_READ_IO,			/* app read IOs */
1168 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1169 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1170 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1171 	FS_DATA_READ_IO,		/* data read IOs */
1172 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1173 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1174 	FS_NODE_READ_IO,		/* node read IOs */
1175 	FS_META_READ_IO,		/* meta read IOs */
1176 
1177 	/* other */
1178 	FS_DISCARD_IO,			/* discard */
1179 	FS_FLUSH_IO,			/* flush */
1180 	NR_IO_TYPE,
1181 };
1182 
1183 struct f2fs_io_info {
1184 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1185 	nid_t ino;		/* inode number */
1186 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1187 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1188 	enum req_op op;		/* contains REQ_OP_ */
1189 	blk_opf_t op_flags;	/* req_flag_bits */
1190 	block_t new_blkaddr;	/* new block address to be written */
1191 	block_t old_blkaddr;	/* old block address before Cow */
1192 	struct page *page;	/* page to be written */
1193 	struct page *encrypted_page;	/* encrypted page */
1194 	struct page *compressed_page;	/* compressed page */
1195 	struct list_head list;		/* serialize IOs */
1196 	unsigned int compr_blocks;	/* # of compressed block addresses */
1197 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1198 	unsigned int version:8;		/* version of the node */
1199 	unsigned int submitted:1;	/* indicate IO submission */
1200 	unsigned int in_list:1;		/* indicate fio is in io_list */
1201 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1202 	unsigned int retry:1;		/* need to reallocate block address */
1203 	unsigned int encrypted:1;	/* indicate file is encrypted */
1204 	unsigned int post_read:1;	/* require post read */
1205 	enum iostat_type io_type;	/* io type */
1206 	struct writeback_control *io_wbc; /* writeback control */
1207 	struct bio **bio;		/* bio for ipu */
1208 	sector_t *last_block;		/* last block number in bio */
1209 };
1210 
1211 struct bio_entry {
1212 	struct bio *bio;
1213 	struct list_head list;
1214 };
1215 
1216 #define is_read_io(rw) ((rw) == READ)
1217 struct f2fs_bio_info {
1218 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1219 	struct bio *bio;		/* bios to merge */
1220 	sector_t last_block_in_bio;	/* last block number */
1221 	struct f2fs_io_info fio;	/* store buffered io info. */
1222 #ifdef CONFIG_BLK_DEV_ZONED
1223 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1224 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1225 	void *bi_private;		/* previous bi_private for pending bio */
1226 #endif
1227 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1228 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1229 	struct list_head io_list;	/* track fios */
1230 	struct list_head bio_list;	/* bio entry list head */
1231 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1232 };
1233 
1234 #define FDEV(i)				(sbi->devs[i])
1235 #define RDEV(i)				(raw_super->devs[i])
1236 struct f2fs_dev_info {
1237 	struct block_device *bdev;
1238 	char path[MAX_PATH_LEN];
1239 	unsigned int total_segments;
1240 	block_t start_blk;
1241 	block_t end_blk;
1242 #ifdef CONFIG_BLK_DEV_ZONED
1243 	unsigned int nr_blkz;		/* Total number of zones */
1244 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1245 #endif
1246 };
1247 
1248 enum inode_type {
1249 	DIR_INODE,			/* for dirty dir inode */
1250 	FILE_INODE,			/* for dirty regular/symlink inode */
1251 	DIRTY_META,			/* for all dirtied inode metadata */
1252 	NR_INODE_TYPE,
1253 };
1254 
1255 /* for inner inode cache management */
1256 struct inode_management {
1257 	struct radix_tree_root ino_root;	/* ino entry array */
1258 	spinlock_t ino_lock;			/* for ino entry lock */
1259 	struct list_head ino_list;		/* inode list head */
1260 	unsigned long ino_num;			/* number of entries */
1261 };
1262 
1263 /* for GC_AT */
1264 struct atgc_management {
1265 	bool atgc_enabled;			/* ATGC is enabled or not */
1266 	struct rb_root_cached root;		/* root of victim rb-tree */
1267 	struct list_head victim_list;		/* linked with all victim entries */
1268 	unsigned int victim_count;		/* victim count in rb-tree */
1269 	unsigned int candidate_ratio;		/* candidate ratio */
1270 	unsigned int max_candidate_count;	/* max candidate count */
1271 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1272 	unsigned long long age_threshold;	/* age threshold */
1273 };
1274 
1275 struct f2fs_gc_control {
1276 	unsigned int victim_segno;	/* target victim segment number */
1277 	int init_gc_type;		/* FG_GC or BG_GC */
1278 	bool no_bg_gc;			/* check the space and stop bg_gc */
1279 	bool should_migrate_blocks;	/* should migrate blocks */
1280 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1281 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1282 };
1283 
1284 /*
1285  * For s_flag in struct f2fs_sb_info
1286  * Modification on enum should be synchronized with s_flag array
1287  */
1288 enum {
1289 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1290 	SBI_IS_CLOSE,				/* specify unmounting */
1291 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1292 	SBI_POR_DOING,				/* recovery is doing or not */
1293 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1294 	SBI_NEED_CP,				/* need to checkpoint */
1295 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1296 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1297 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1298 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1299 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1300 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1301 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1302 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1303 	SBI_IS_FREEZING,			/* freezefs is in process */
1304 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1305 	MAX_SBI_FLAG,
1306 };
1307 
1308 enum {
1309 	CP_TIME,
1310 	REQ_TIME,
1311 	DISCARD_TIME,
1312 	GC_TIME,
1313 	DISABLE_TIME,
1314 	UMOUNT_DISCARD_TIMEOUT,
1315 	MAX_TIME,
1316 };
1317 
1318 /* Note that you need to keep synchronization with this gc_mode_names array */
1319 enum {
1320 	GC_NORMAL,
1321 	GC_IDLE_CB,
1322 	GC_IDLE_GREEDY,
1323 	GC_IDLE_AT,
1324 	GC_URGENT_HIGH,
1325 	GC_URGENT_LOW,
1326 	GC_URGENT_MID,
1327 	MAX_GC_MODE,
1328 };
1329 
1330 enum {
1331 	BGGC_MODE_ON,		/* background gc is on */
1332 	BGGC_MODE_OFF,		/* background gc is off */
1333 	BGGC_MODE_SYNC,		/*
1334 				 * background gc is on, migrating blocks
1335 				 * like foreground gc
1336 				 */
1337 };
1338 
1339 enum {
1340 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1341 	FS_MODE_LFS,			/* use lfs allocation only */
1342 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1343 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1344 };
1345 
1346 enum {
1347 	ALLOC_MODE_DEFAULT,	/* stay default */
1348 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1349 };
1350 
1351 enum fsync_mode {
1352 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1353 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1354 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1355 };
1356 
1357 enum {
1358 	COMPR_MODE_FS,		/*
1359 				 * automatically compress compression
1360 				 * enabled files
1361 				 */
1362 	COMPR_MODE_USER,	/*
1363 				 * automatical compression is disabled.
1364 				 * user can control the file compression
1365 				 * using ioctls
1366 				 */
1367 };
1368 
1369 enum {
1370 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1371 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1372 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1373 };
1374 
1375 enum {
1376 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1377 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1378 };
1379 
1380 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1381 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1382 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1383 
1384 /*
1385  * Layout of f2fs page.private:
1386  *
1387  * Layout A: lowest bit should be 1
1388  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1389  * bit 0	PAGE_PRIVATE_NOT_POINTER
1390  * bit 1	PAGE_PRIVATE_DUMMY_WRITE
1391  * bit 2	PAGE_PRIVATE_ONGOING_MIGRATION
1392  * bit 3	PAGE_PRIVATE_INLINE_INODE
1393  * bit 4	PAGE_PRIVATE_REF_RESOURCE
1394  * bit 5-	f2fs private data
1395  *
1396  * Layout B: lowest bit should be 0
1397  * page.private is a wrapped pointer.
1398  */
1399 enum {
1400 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1401 	PAGE_PRIVATE_DUMMY_WRITE,		/* data page for padding aligned IO */
1402 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1403 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1404 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1405 	PAGE_PRIVATE_MAX
1406 };
1407 
1408 /* For compression */
1409 enum compress_algorithm_type {
1410 	COMPRESS_LZO,
1411 	COMPRESS_LZ4,
1412 	COMPRESS_ZSTD,
1413 	COMPRESS_LZORLE,
1414 	COMPRESS_MAX,
1415 };
1416 
1417 enum compress_flag {
1418 	COMPRESS_CHKSUM,
1419 	COMPRESS_MAX_FLAG,
1420 };
1421 
1422 #define	COMPRESS_WATERMARK			20
1423 #define	COMPRESS_PERCENT			20
1424 
1425 #define COMPRESS_DATA_RESERVED_SIZE		4
1426 struct compress_data {
1427 	__le32 clen;			/* compressed data size */
1428 	__le32 chksum;			/* compressed data chksum */
1429 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1430 	u8 cdata[];			/* compressed data */
1431 };
1432 
1433 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1434 
1435 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1436 
1437 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1438 
1439 #define	COMPRESS_LEVEL_OFFSET	8
1440 
1441 /* compress context */
1442 struct compress_ctx {
1443 	struct inode *inode;		/* inode the context belong to */
1444 	pgoff_t cluster_idx;		/* cluster index number */
1445 	unsigned int cluster_size;	/* page count in cluster */
1446 	unsigned int log_cluster_size;	/* log of cluster size */
1447 	struct page **rpages;		/* pages store raw data in cluster */
1448 	unsigned int nr_rpages;		/* total page number in rpages */
1449 	struct page **cpages;		/* pages store compressed data in cluster */
1450 	unsigned int nr_cpages;		/* total page number in cpages */
1451 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1452 	void *rbuf;			/* virtual mapped address on rpages */
1453 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1454 	size_t rlen;			/* valid data length in rbuf */
1455 	size_t clen;			/* valid data length in cbuf */
1456 	void *private;			/* payload buffer for specified compression algorithm */
1457 	void *private2;			/* extra payload buffer */
1458 };
1459 
1460 /* compress context for write IO path */
1461 struct compress_io_ctx {
1462 	u32 magic;			/* magic number to indicate page is compressed */
1463 	struct inode *inode;		/* inode the context belong to */
1464 	struct page **rpages;		/* pages store raw data in cluster */
1465 	unsigned int nr_rpages;		/* total page number in rpages */
1466 	atomic_t pending_pages;		/* in-flight compressed page count */
1467 };
1468 
1469 /* Context for decompressing one cluster on the read IO path */
1470 struct decompress_io_ctx {
1471 	u32 magic;			/* magic number to indicate page is compressed */
1472 	struct inode *inode;		/* inode the context belong to */
1473 	pgoff_t cluster_idx;		/* cluster index number */
1474 	unsigned int cluster_size;	/* page count in cluster */
1475 	unsigned int log_cluster_size;	/* log of cluster size */
1476 	struct page **rpages;		/* pages store raw data in cluster */
1477 	unsigned int nr_rpages;		/* total page number in rpages */
1478 	struct page **cpages;		/* pages store compressed data in cluster */
1479 	unsigned int nr_cpages;		/* total page number in cpages */
1480 	struct page **tpages;		/* temp pages to pad holes in cluster */
1481 	void *rbuf;			/* virtual mapped address on rpages */
1482 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1483 	size_t rlen;			/* valid data length in rbuf */
1484 	size_t clen;			/* valid data length in cbuf */
1485 
1486 	/*
1487 	 * The number of compressed pages remaining to be read in this cluster.
1488 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1489 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1490 	 * is decompressed (or an error is reported).
1491 	 *
1492 	 * If an error occurs before all the pages have been submitted for I/O,
1493 	 * then this will never reach 0.  In this case the I/O submitter is
1494 	 * responsible for calling f2fs_decompress_end_io() instead.
1495 	 */
1496 	atomic_t remaining_pages;
1497 
1498 	/*
1499 	 * Number of references to this decompress_io_ctx.
1500 	 *
1501 	 * One reference is held for I/O completion.  This reference is dropped
1502 	 * after the pagecache pages are updated and unlocked -- either after
1503 	 * decompression (and verity if enabled), or after an error.
1504 	 *
1505 	 * In addition, each compressed page holds a reference while it is in a
1506 	 * bio.  These references are necessary prevent compressed pages from
1507 	 * being freed while they are still in a bio.
1508 	 */
1509 	refcount_t refcnt;
1510 
1511 	bool failed;			/* IO error occurred before decompression? */
1512 	bool need_verity;		/* need fs-verity verification after decompression? */
1513 	void *private;			/* payload buffer for specified decompression algorithm */
1514 	void *private2;			/* extra payload buffer */
1515 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1516 	struct work_struct free_work;	/* work for late free this structure itself */
1517 };
1518 
1519 #define NULL_CLUSTER			((unsigned int)(~0))
1520 #define MIN_COMPRESS_LOG_SIZE		2
1521 #define MAX_COMPRESS_LOG_SIZE		8
1522 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1523 
1524 struct f2fs_sb_info {
1525 	struct super_block *sb;			/* pointer to VFS super block */
1526 	struct proc_dir_entry *s_proc;		/* proc entry */
1527 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1528 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1529 	int valid_super_block;			/* valid super block no */
1530 	unsigned long s_flag;				/* flags for sbi */
1531 	struct mutex writepages;		/* mutex for writepages() */
1532 
1533 #ifdef CONFIG_BLK_DEV_ZONED
1534 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1535 #endif
1536 
1537 	/* for node-related operations */
1538 	struct f2fs_nm_info *nm_info;		/* node manager */
1539 	struct inode *node_inode;		/* cache node blocks */
1540 
1541 	/* for segment-related operations */
1542 	struct f2fs_sm_info *sm_info;		/* segment manager */
1543 
1544 	/* for bio operations */
1545 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1546 	/* keep migration IO order for LFS mode */
1547 	struct f2fs_rwsem io_order_lock;
1548 	mempool_t *write_io_dummy;		/* Dummy pages */
1549 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1550 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1551 
1552 	/* for checkpoint */
1553 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1554 	int cur_cp_pack;			/* remain current cp pack */
1555 	spinlock_t cp_lock;			/* for flag in ckpt */
1556 	struct inode *meta_inode;		/* cache meta blocks */
1557 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1558 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1559 	struct f2fs_rwsem node_write;		/* locking node writes */
1560 	struct f2fs_rwsem node_change;	/* locking node change */
1561 	wait_queue_head_t cp_wait;
1562 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1563 	long interval_time[MAX_TIME];		/* to store thresholds */
1564 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1565 
1566 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1567 
1568 	spinlock_t fsync_node_lock;		/* for node entry lock */
1569 	struct list_head fsync_node_list;	/* node list head */
1570 	unsigned int fsync_seg_id;		/* sequence id */
1571 	unsigned int fsync_node_num;		/* number of node entries */
1572 
1573 	/* for orphan inode, use 0'th array */
1574 	unsigned int max_orphans;		/* max orphan inodes */
1575 
1576 	/* for inode management */
1577 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1578 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1579 	struct mutex flush_lock;		/* for flush exclusion */
1580 
1581 	/* for extent tree cache */
1582 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1583 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1584 
1585 	/* The threshold used for hot and warm data seperation*/
1586 	unsigned int hot_data_age_threshold;
1587 	unsigned int warm_data_age_threshold;
1588 	unsigned int last_age_weight;
1589 
1590 	/* basic filesystem units */
1591 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1592 	unsigned int log_blocksize;		/* log2 block size */
1593 	unsigned int blocksize;			/* block size */
1594 	unsigned int root_ino_num;		/* root inode number*/
1595 	unsigned int node_ino_num;		/* node inode number*/
1596 	unsigned int meta_ino_num;		/* meta inode number*/
1597 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1598 	unsigned int blocks_per_seg;		/* blocks per segment */
1599 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1600 	unsigned int segs_per_sec;		/* segments per section */
1601 	unsigned int secs_per_zone;		/* sections per zone */
1602 	unsigned int total_sections;		/* total section count */
1603 	unsigned int total_node_count;		/* total node block count */
1604 	unsigned int total_valid_node_count;	/* valid node block count */
1605 	int dir_level;				/* directory level */
1606 	bool readdir_ra;			/* readahead inode in readdir */
1607 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1608 
1609 	block_t user_block_count;		/* # of user blocks */
1610 	block_t total_valid_block_count;	/* # of valid blocks */
1611 	block_t discard_blks;			/* discard command candidats */
1612 	block_t last_valid_block_count;		/* for recovery */
1613 	block_t reserved_blocks;		/* configurable reserved blocks */
1614 	block_t current_reserved_blocks;	/* current reserved blocks */
1615 
1616 	/* Additional tracking for no checkpoint mode */
1617 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1618 
1619 	unsigned int nquota_files;		/* # of quota sysfile */
1620 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1621 
1622 	/* # of pages, see count_type */
1623 	atomic_t nr_pages[NR_COUNT_TYPE];
1624 	/* # of allocated blocks */
1625 	struct percpu_counter alloc_valid_block_count;
1626 	/* # of node block writes as roll forward recovery */
1627 	struct percpu_counter rf_node_block_count;
1628 
1629 	/* writeback control */
1630 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1631 
1632 	/* valid inode count */
1633 	struct percpu_counter total_valid_inode_count;
1634 
1635 	struct f2fs_mount_info mount_opt;	/* mount options */
1636 
1637 	/* for cleaning operations */
1638 	struct f2fs_rwsem gc_lock;		/*
1639 						 * semaphore for GC, avoid
1640 						 * race between GC and GC or CP
1641 						 */
1642 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1643 	struct atgc_management am;		/* atgc management */
1644 	unsigned int cur_victim_sec;		/* current victim section num */
1645 	unsigned int gc_mode;			/* current GC state */
1646 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1647 	spinlock_t gc_remaining_trials_lock;
1648 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1649 	unsigned int gc_remaining_trials;
1650 
1651 	/* for skip statistic */
1652 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1653 
1654 	/* threshold for gc trials on pinned files */
1655 	u64 gc_pin_file_threshold;
1656 	struct f2fs_rwsem pin_sem;
1657 
1658 	/* maximum # of trials to find a victim segment for SSR and GC */
1659 	unsigned int max_victim_search;
1660 	/* migration granularity of garbage collection, unit: segment */
1661 	unsigned int migration_granularity;
1662 
1663 	/*
1664 	 * for stat information.
1665 	 * one is for the LFS mode, and the other is for the SSR mode.
1666 	 */
1667 #ifdef CONFIG_F2FS_STAT_FS
1668 	struct f2fs_stat_info *stat_info;	/* FS status information */
1669 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1670 	unsigned int segment_count[2];		/* # of allocated segments */
1671 	unsigned int block_count[2];		/* # of allocated blocks */
1672 	atomic_t inplace_count;		/* # of inplace update */
1673 	/* # of lookup extent cache */
1674 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1675 	/* # of hit rbtree extent node */
1676 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1677 	/* # of hit cached extent node */
1678 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1679 	/* # of hit largest extent node in read extent cache */
1680 	atomic64_t read_hit_largest;
1681 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1682 	atomic_t inline_inode;			/* # of inline_data inodes */
1683 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1684 	atomic_t compr_inode;			/* # of compressed inodes */
1685 	atomic64_t compr_blocks;		/* # of compressed blocks */
1686 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1687 	atomic_t atomic_files;			/* # of opened atomic file */
1688 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1689 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1690 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1691 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1692 #endif
1693 	spinlock_t stat_lock;			/* lock for stat operations */
1694 
1695 	/* to attach REQ_META|REQ_FUA flags */
1696 	unsigned int data_io_flag;
1697 	unsigned int node_io_flag;
1698 
1699 	/* For sysfs support */
1700 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1701 	struct completion s_kobj_unregister;
1702 
1703 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1704 	struct completion s_stat_kobj_unregister;
1705 
1706 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1707 	struct completion s_feature_list_kobj_unregister;
1708 
1709 	/* For shrinker support */
1710 	struct list_head s_list;
1711 	struct mutex umount_mutex;
1712 	unsigned int shrinker_run_no;
1713 
1714 	/* For multi devices */
1715 	int s_ndevs;				/* number of devices */
1716 	struct f2fs_dev_info *devs;		/* for device list */
1717 	unsigned int dirty_device;		/* for checkpoint data flush */
1718 	spinlock_t dev_lock;			/* protect dirty_device */
1719 	bool aligned_blksize;			/* all devices has the same logical blksize */
1720 
1721 	/* For write statistics */
1722 	u64 sectors_written_start;
1723 	u64 kbytes_written;
1724 
1725 	/* Reference to checksum algorithm driver via cryptoapi */
1726 	struct crypto_shash *s_chksum_driver;
1727 
1728 	/* Precomputed FS UUID checksum for seeding other checksums */
1729 	__u32 s_chksum_seed;
1730 
1731 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1732 
1733 	unsigned char errors[MAX_F2FS_ERRORS];	/* error flags */
1734 	spinlock_t error_lock;			/* protect errors array */
1735 	bool error_dirty;			/* errors of sb is dirty */
1736 
1737 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1738 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1739 
1740 	/* For reclaimed segs statistics per each GC mode */
1741 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1742 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1743 
1744 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1745 
1746 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1747 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1748 
1749 	/* For atomic write statistics */
1750 	atomic64_t current_atomic_write;
1751 	s64 peak_atomic_write;
1752 	u64 committed_atomic_block;
1753 	u64 revoked_atomic_block;
1754 
1755 #ifdef CONFIG_F2FS_FS_COMPRESSION
1756 	struct kmem_cache *page_array_slab;	/* page array entry */
1757 	unsigned int page_array_slab_size;	/* default page array slab size */
1758 
1759 	/* For runtime compression statistics */
1760 	u64 compr_written_block;
1761 	u64 compr_saved_block;
1762 	u32 compr_new_inode;
1763 
1764 	/* For compressed block cache */
1765 	struct inode *compress_inode;		/* cache compressed blocks */
1766 	unsigned int compress_percent;		/* cache page percentage */
1767 	unsigned int compress_watermark;	/* cache page watermark */
1768 	atomic_t compress_page_hit;		/* cache hit count */
1769 #endif
1770 
1771 #ifdef CONFIG_F2FS_IOSTAT
1772 	/* For app/fs IO statistics */
1773 	spinlock_t iostat_lock;
1774 	unsigned long long iostat_count[NR_IO_TYPE];
1775 	unsigned long long iostat_bytes[NR_IO_TYPE];
1776 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1777 	bool iostat_enable;
1778 	unsigned long iostat_next_period;
1779 	unsigned int iostat_period_ms;
1780 
1781 	/* For io latency related statistics info in one iostat period */
1782 	spinlock_t iostat_lat_lock;
1783 	struct iostat_lat_info *iostat_io_lat;
1784 #endif
1785 };
1786 
1787 #ifdef CONFIG_F2FS_FAULT_INJECTION
1788 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1789 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1790 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1791 				const char *func, const char *parent_func)
1792 {
1793 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1794 
1795 	if (!ffi->inject_rate)
1796 		return false;
1797 
1798 	if (!IS_FAULT_SET(ffi, type))
1799 		return false;
1800 
1801 	atomic_inc(&ffi->inject_ops);
1802 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1803 		atomic_set(&ffi->inject_ops, 0);
1804 		printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1805 			KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1806 			func, parent_func);
1807 		return true;
1808 	}
1809 	return false;
1810 }
1811 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1812 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1813 {
1814 	return false;
1815 }
1816 #endif
1817 
1818 /*
1819  * Test if the mounted volume is a multi-device volume.
1820  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1821  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1822  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1823  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1824 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1825 {
1826 	return sbi->s_ndevs > 1;
1827 }
1828 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1829 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1830 {
1831 	unsigned long now = jiffies;
1832 
1833 	sbi->last_time[type] = now;
1834 
1835 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1836 	if (type == REQ_TIME) {
1837 		sbi->last_time[DISCARD_TIME] = now;
1838 		sbi->last_time[GC_TIME] = now;
1839 	}
1840 }
1841 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1842 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1843 {
1844 	unsigned long interval = sbi->interval_time[type] * HZ;
1845 
1846 	return time_after(jiffies, sbi->last_time[type] + interval);
1847 }
1848 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1849 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1850 						int type)
1851 {
1852 	unsigned long interval = sbi->interval_time[type] * HZ;
1853 	unsigned int wait_ms = 0;
1854 	long delta;
1855 
1856 	delta = (sbi->last_time[type] + interval) - jiffies;
1857 	if (delta > 0)
1858 		wait_ms = jiffies_to_msecs(delta);
1859 
1860 	return wait_ms;
1861 }
1862 
1863 /*
1864  * Inline functions
1865  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1866 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1867 			      const void *address, unsigned int length)
1868 {
1869 	struct {
1870 		struct shash_desc shash;
1871 		char ctx[4];
1872 	} desc;
1873 	int err;
1874 
1875 	BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1876 
1877 	desc.shash.tfm = sbi->s_chksum_driver;
1878 	*(u32 *)desc.ctx = crc;
1879 
1880 	err = crypto_shash_update(&desc.shash, address, length);
1881 	BUG_ON(err);
1882 
1883 	return *(u32 *)desc.ctx;
1884 }
1885 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1886 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1887 			   unsigned int length)
1888 {
1889 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1890 }
1891 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1892 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1893 				  void *buf, size_t buf_size)
1894 {
1895 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1896 }
1897 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1898 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1899 			      const void *address, unsigned int length)
1900 {
1901 	return __f2fs_crc32(sbi, crc, address, length);
1902 }
1903 
F2FS_I(struct inode * inode)1904 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1905 {
1906 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1907 }
1908 
F2FS_SB(struct super_block * sb)1909 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1910 {
1911 	return sb->s_fs_info;
1912 }
1913 
F2FS_I_SB(struct inode * inode)1914 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1915 {
1916 	return F2FS_SB(inode->i_sb);
1917 }
1918 
F2FS_M_SB(struct address_space * mapping)1919 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1920 {
1921 	return F2FS_I_SB(mapping->host);
1922 }
1923 
F2FS_P_SB(struct page * page)1924 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1925 {
1926 	return F2FS_M_SB(page_file_mapping(page));
1927 }
1928 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1929 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1930 {
1931 	return (struct f2fs_super_block *)(sbi->raw_super);
1932 }
1933 
F2FS_CKPT(struct f2fs_sb_info * sbi)1934 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1935 {
1936 	return (struct f2fs_checkpoint *)(sbi->ckpt);
1937 }
1938 
F2FS_NODE(struct page * page)1939 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1940 {
1941 	return (struct f2fs_node *)page_address(page);
1942 }
1943 
F2FS_INODE(struct page * page)1944 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1945 {
1946 	return &((struct f2fs_node *)page_address(page))->i;
1947 }
1948 
NM_I(struct f2fs_sb_info * sbi)1949 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1950 {
1951 	return (struct f2fs_nm_info *)(sbi->nm_info);
1952 }
1953 
SM_I(struct f2fs_sb_info * sbi)1954 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1955 {
1956 	return (struct f2fs_sm_info *)(sbi->sm_info);
1957 }
1958 
SIT_I(struct f2fs_sb_info * sbi)1959 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1960 {
1961 	return (struct sit_info *)(SM_I(sbi)->sit_info);
1962 }
1963 
FREE_I(struct f2fs_sb_info * sbi)1964 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1965 {
1966 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1967 }
1968 
DIRTY_I(struct f2fs_sb_info * sbi)1969 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1970 {
1971 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1972 }
1973 
META_MAPPING(struct f2fs_sb_info * sbi)1974 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1975 {
1976 	return sbi->meta_inode->i_mapping;
1977 }
1978 
NODE_MAPPING(struct f2fs_sb_info * sbi)1979 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1980 {
1981 	return sbi->node_inode->i_mapping;
1982 }
1983 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1984 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1985 {
1986 	return test_bit(type, &sbi->s_flag);
1987 }
1988 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1989 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1990 {
1991 	set_bit(type, &sbi->s_flag);
1992 }
1993 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1994 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1995 {
1996 	clear_bit(type, &sbi->s_flag);
1997 }
1998 
cur_cp_version(struct f2fs_checkpoint * cp)1999 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2000 {
2001 	return le64_to_cpu(cp->checkpoint_ver);
2002 }
2003 
f2fs_qf_ino(struct super_block * sb,int type)2004 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2005 {
2006 	if (type < F2FS_MAX_QUOTAS)
2007 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2008 	return 0;
2009 }
2010 
cur_cp_crc(struct f2fs_checkpoint * cp)2011 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2012 {
2013 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2014 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2015 }
2016 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2017 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2018 {
2019 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2020 
2021 	return ckpt_flags & f;
2022 }
2023 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2024 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2025 {
2026 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2027 }
2028 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2029 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2030 {
2031 	unsigned int ckpt_flags;
2032 
2033 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2034 	ckpt_flags |= f;
2035 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2036 }
2037 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2038 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2039 {
2040 	unsigned long flags;
2041 
2042 	spin_lock_irqsave(&sbi->cp_lock, flags);
2043 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2044 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2045 }
2046 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2047 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2048 {
2049 	unsigned int ckpt_flags;
2050 
2051 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2052 	ckpt_flags &= (~f);
2053 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2054 }
2055 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2056 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2057 {
2058 	unsigned long flags;
2059 
2060 	spin_lock_irqsave(&sbi->cp_lock, flags);
2061 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2062 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2063 }
2064 
2065 #define init_f2fs_rwsem(sem)					\
2066 do {								\
2067 	static struct lock_class_key __key;			\
2068 								\
2069 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2070 } while (0)
2071 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2072 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2073 		const char *sem_name, struct lock_class_key *key)
2074 {
2075 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2076 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2077 	init_waitqueue_head(&sem->read_waiters);
2078 #endif
2079 }
2080 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2081 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2082 {
2083 	return rwsem_is_locked(&sem->internal_rwsem);
2084 }
2085 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2086 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2087 {
2088 	return rwsem_is_contended(&sem->internal_rwsem);
2089 }
2090 
f2fs_down_read(struct f2fs_rwsem * sem)2091 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2092 {
2093 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2094 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2095 #else
2096 	down_read(&sem->internal_rwsem);
2097 #endif
2098 }
2099 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2100 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2101 {
2102 	return down_read_trylock(&sem->internal_rwsem);
2103 }
2104 
f2fs_up_read(struct f2fs_rwsem * sem)2105 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2106 {
2107 	up_read(&sem->internal_rwsem);
2108 }
2109 
f2fs_down_write(struct f2fs_rwsem * sem)2110 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2111 {
2112 	down_write(&sem->internal_rwsem);
2113 }
2114 
2115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2116 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2117 {
2118 	down_read_nested(&sem->internal_rwsem, subclass);
2119 }
2120 
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2121 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2122 {
2123 	down_write_nested(&sem->internal_rwsem, subclass);
2124 }
2125 #else
2126 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2127 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2128 #endif
2129 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2130 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2131 {
2132 	return down_write_trylock(&sem->internal_rwsem);
2133 }
2134 
f2fs_up_write(struct f2fs_rwsem * sem)2135 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2136 {
2137 	up_write(&sem->internal_rwsem);
2138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2139 	wake_up_all(&sem->read_waiters);
2140 #endif
2141 }
2142 
f2fs_lock_op(struct f2fs_sb_info * sbi)2143 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2144 {
2145 	f2fs_down_read(&sbi->cp_rwsem);
2146 }
2147 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2148 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2149 {
2150 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2151 		return 0;
2152 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2153 }
2154 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2155 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2156 {
2157 	f2fs_up_read(&sbi->cp_rwsem);
2158 }
2159 
f2fs_lock_all(struct f2fs_sb_info * sbi)2160 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2161 {
2162 	f2fs_down_write(&sbi->cp_rwsem);
2163 }
2164 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2165 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2166 {
2167 	f2fs_up_write(&sbi->cp_rwsem);
2168 }
2169 
__get_cp_reason(struct f2fs_sb_info * sbi)2170 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2171 {
2172 	int reason = CP_SYNC;
2173 
2174 	if (test_opt(sbi, FASTBOOT))
2175 		reason = CP_FASTBOOT;
2176 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2177 		reason = CP_UMOUNT;
2178 	return reason;
2179 }
2180 
__remain_node_summaries(int reason)2181 static inline bool __remain_node_summaries(int reason)
2182 {
2183 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2184 }
2185 
__exist_node_summaries(struct f2fs_sb_info * sbi)2186 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2187 {
2188 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2189 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2190 }
2191 
2192 /*
2193  * Check whether the inode has blocks or not
2194  */
F2FS_HAS_BLOCKS(struct inode * inode)2195 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2196 {
2197 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2198 
2199 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2200 }
2201 
f2fs_has_xattr_block(unsigned int ofs)2202 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2203 {
2204 	return ofs == XATTR_NODE_OFFSET;
2205 }
2206 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2207 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2208 					struct inode *inode, bool cap)
2209 {
2210 	if (!inode)
2211 		return true;
2212 	if (!test_opt(sbi, RESERVE_ROOT))
2213 		return false;
2214 	if (IS_NOQUOTA(inode))
2215 		return true;
2216 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2217 		return true;
2218 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2219 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2220 		return true;
2221 	if (cap && capable(CAP_SYS_RESOURCE))
2222 		return true;
2223 	return false;
2224 }
2225 
2226 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2227 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2228 				 struct inode *inode, blkcnt_t *count, bool partial)
2229 {
2230 	blkcnt_t diff = 0, release = 0;
2231 	block_t avail_user_block_count;
2232 	int ret;
2233 
2234 	ret = dquot_reserve_block(inode, *count);
2235 	if (ret)
2236 		return ret;
2237 
2238 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2239 		release = *count;
2240 		goto release_quota;
2241 	}
2242 
2243 	/*
2244 	 * let's increase this in prior to actual block count change in order
2245 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2246 	 */
2247 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2248 
2249 	spin_lock(&sbi->stat_lock);
2250 	sbi->total_valid_block_count += (block_t)(*count);
2251 	avail_user_block_count = sbi->user_block_count -
2252 					sbi->current_reserved_blocks;
2253 
2254 	if (!__allow_reserved_blocks(sbi, inode, true))
2255 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2256 
2257 	if (F2FS_IO_ALIGNED(sbi))
2258 		avail_user_block_count -= sbi->blocks_per_seg *
2259 				SM_I(sbi)->additional_reserved_segments;
2260 
2261 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2262 		if (avail_user_block_count > sbi->unusable_block_count)
2263 			avail_user_block_count -= sbi->unusable_block_count;
2264 		else
2265 			avail_user_block_count = 0;
2266 	}
2267 	if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2268 		if (!partial) {
2269 			spin_unlock(&sbi->stat_lock);
2270 			goto enospc;
2271 		}
2272 
2273 		diff = sbi->total_valid_block_count - avail_user_block_count;
2274 		if (diff > *count)
2275 			diff = *count;
2276 		*count -= diff;
2277 		release = diff;
2278 		sbi->total_valid_block_count -= diff;
2279 		if (!*count) {
2280 			spin_unlock(&sbi->stat_lock);
2281 			goto enospc;
2282 		}
2283 	}
2284 	spin_unlock(&sbi->stat_lock);
2285 
2286 	if (unlikely(release)) {
2287 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2288 		dquot_release_reservation_block(inode, release);
2289 	}
2290 	f2fs_i_blocks_write(inode, *count, true, true);
2291 	return 0;
2292 
2293 enospc:
2294 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2295 release_quota:
2296 	dquot_release_reservation_block(inode, release);
2297 	return -ENOSPC;
2298 }
2299 
2300 __printf(2, 3)
2301 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2302 
2303 #define f2fs_err(sbi, fmt, ...)						\
2304 	f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2305 #define f2fs_warn(sbi, fmt, ...)					\
2306 	f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2307 #define f2fs_notice(sbi, fmt, ...)					\
2308 	f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2309 #define f2fs_info(sbi, fmt, ...)					\
2310 	f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2311 #define f2fs_debug(sbi, fmt, ...)					\
2312 	f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2313 
2314 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2315 static inline bool page_private_##name(struct page *page) \
2316 { \
2317 	return PagePrivate(page) && \
2318 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2319 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2320 }
2321 
2322 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2323 static inline void set_page_private_##name(struct page *page) \
2324 { \
2325 	if (!PagePrivate(page)) \
2326 		attach_page_private(page, (void *)0); \
2327 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2328 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2329 }
2330 
2331 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2332 static inline void clear_page_private_##name(struct page *page) \
2333 { \
2334 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2335 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2336 		detach_page_private(page); \
2337 }
2338 
2339 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2340 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2341 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2342 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2343 
2344 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2345 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2346 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2347 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2348 
2349 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2350 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2351 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2352 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2353 
get_page_private_data(struct page * page)2354 static inline unsigned long get_page_private_data(struct page *page)
2355 {
2356 	unsigned long data = page_private(page);
2357 
2358 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2359 		return 0;
2360 	return data >> PAGE_PRIVATE_MAX;
2361 }
2362 
set_page_private_data(struct page * page,unsigned long data)2363 static inline void set_page_private_data(struct page *page, unsigned long data)
2364 {
2365 	if (!PagePrivate(page))
2366 		attach_page_private(page, (void *)0);
2367 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2368 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2369 }
2370 
clear_page_private_data(struct page * page)2371 static inline void clear_page_private_data(struct page *page)
2372 {
2373 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2374 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2375 		detach_page_private(page);
2376 }
2377 
clear_page_private_all(struct page * page)2378 static inline void clear_page_private_all(struct page *page)
2379 {
2380 	clear_page_private_data(page);
2381 	clear_page_private_reference(page);
2382 	clear_page_private_gcing(page);
2383 	clear_page_private_inline(page);
2384 
2385 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2386 }
2387 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2388 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2389 						struct inode *inode,
2390 						block_t count)
2391 {
2392 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2393 
2394 	spin_lock(&sbi->stat_lock);
2395 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2396 	sbi->total_valid_block_count -= (block_t)count;
2397 	if (sbi->reserved_blocks &&
2398 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2399 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2400 					sbi->current_reserved_blocks + count);
2401 	spin_unlock(&sbi->stat_lock);
2402 	if (unlikely(inode->i_blocks < sectors)) {
2403 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2404 			  inode->i_ino,
2405 			  (unsigned long long)inode->i_blocks,
2406 			  (unsigned long long)sectors);
2407 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2408 		return;
2409 	}
2410 	f2fs_i_blocks_write(inode, count, false, true);
2411 }
2412 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2413 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2414 {
2415 	atomic_inc(&sbi->nr_pages[count_type]);
2416 
2417 	if (count_type == F2FS_DIRTY_DENTS ||
2418 			count_type == F2FS_DIRTY_NODES ||
2419 			count_type == F2FS_DIRTY_META ||
2420 			count_type == F2FS_DIRTY_QDATA ||
2421 			count_type == F2FS_DIRTY_IMETA)
2422 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2423 }
2424 
inode_inc_dirty_pages(struct inode * inode)2425 static inline void inode_inc_dirty_pages(struct inode *inode)
2426 {
2427 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2428 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2429 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2430 	if (IS_NOQUOTA(inode))
2431 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2432 }
2433 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2434 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2435 {
2436 	atomic_dec(&sbi->nr_pages[count_type]);
2437 }
2438 
inode_dec_dirty_pages(struct inode * inode)2439 static inline void inode_dec_dirty_pages(struct inode *inode)
2440 {
2441 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2442 			!S_ISLNK(inode->i_mode))
2443 		return;
2444 
2445 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2446 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2447 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2448 	if (IS_NOQUOTA(inode))
2449 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2450 }
2451 
inc_atomic_write_cnt(struct inode * inode)2452 static inline void inc_atomic_write_cnt(struct inode *inode)
2453 {
2454 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2455 	struct f2fs_inode_info *fi = F2FS_I(inode);
2456 	u64 current_write;
2457 
2458 	fi->atomic_write_cnt++;
2459 	atomic64_inc(&sbi->current_atomic_write);
2460 	current_write = atomic64_read(&sbi->current_atomic_write);
2461 	if (current_write > sbi->peak_atomic_write)
2462 		sbi->peak_atomic_write = current_write;
2463 }
2464 
release_atomic_write_cnt(struct inode * inode)2465 static inline void release_atomic_write_cnt(struct inode *inode)
2466 {
2467 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2468 	struct f2fs_inode_info *fi = F2FS_I(inode);
2469 
2470 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2471 	fi->atomic_write_cnt = 0;
2472 }
2473 
get_pages(struct f2fs_sb_info * sbi,int count_type)2474 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2475 {
2476 	return atomic_read(&sbi->nr_pages[count_type]);
2477 }
2478 
get_dirty_pages(struct inode * inode)2479 static inline int get_dirty_pages(struct inode *inode)
2480 {
2481 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2482 }
2483 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2484 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2485 {
2486 	unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2487 	unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2488 						sbi->log_blocks_per_seg;
2489 
2490 	return segs / sbi->segs_per_sec;
2491 }
2492 
valid_user_blocks(struct f2fs_sb_info * sbi)2493 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2494 {
2495 	return sbi->total_valid_block_count;
2496 }
2497 
discard_blocks(struct f2fs_sb_info * sbi)2498 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2499 {
2500 	return sbi->discard_blks;
2501 }
2502 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2503 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2504 {
2505 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2506 
2507 	/* return NAT or SIT bitmap */
2508 	if (flag == NAT_BITMAP)
2509 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2510 	else if (flag == SIT_BITMAP)
2511 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2512 
2513 	return 0;
2514 }
2515 
__cp_payload(struct f2fs_sb_info * sbi)2516 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2517 {
2518 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2519 }
2520 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2521 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2522 {
2523 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2524 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2525 	int offset;
2526 
2527 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2528 		offset = (flag == SIT_BITMAP) ?
2529 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2530 		/*
2531 		 * if large_nat_bitmap feature is enabled, leave checksum
2532 		 * protection for all nat/sit bitmaps.
2533 		 */
2534 		return tmp_ptr + offset + sizeof(__le32);
2535 	}
2536 
2537 	if (__cp_payload(sbi) > 0) {
2538 		if (flag == NAT_BITMAP)
2539 			return tmp_ptr;
2540 		else
2541 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2542 	} else {
2543 		offset = (flag == NAT_BITMAP) ?
2544 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2545 		return tmp_ptr + offset;
2546 	}
2547 }
2548 
__start_cp_addr(struct f2fs_sb_info * sbi)2549 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2550 {
2551 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2552 
2553 	if (sbi->cur_cp_pack == 2)
2554 		start_addr += sbi->blocks_per_seg;
2555 	return start_addr;
2556 }
2557 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2558 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2559 {
2560 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2561 
2562 	if (sbi->cur_cp_pack == 1)
2563 		start_addr += sbi->blocks_per_seg;
2564 	return start_addr;
2565 }
2566 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2567 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2568 {
2569 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2570 }
2571 
__start_sum_addr(struct f2fs_sb_info * sbi)2572 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2573 {
2574 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2575 }
2576 
2577 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2578 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2579 					struct inode *inode, bool is_inode)
2580 {
2581 	block_t	valid_block_count;
2582 	unsigned int valid_node_count, user_block_count;
2583 	int err;
2584 
2585 	if (is_inode) {
2586 		if (inode) {
2587 			err = dquot_alloc_inode(inode);
2588 			if (err)
2589 				return err;
2590 		}
2591 	} else {
2592 		err = dquot_reserve_block(inode, 1);
2593 		if (err)
2594 			return err;
2595 	}
2596 
2597 	if (time_to_inject(sbi, FAULT_BLOCK))
2598 		goto enospc;
2599 
2600 	spin_lock(&sbi->stat_lock);
2601 
2602 	valid_block_count = sbi->total_valid_block_count +
2603 					sbi->current_reserved_blocks + 1;
2604 
2605 	if (!__allow_reserved_blocks(sbi, inode, false))
2606 		valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2607 
2608 	if (F2FS_IO_ALIGNED(sbi))
2609 		valid_block_count += sbi->blocks_per_seg *
2610 				SM_I(sbi)->additional_reserved_segments;
2611 
2612 	user_block_count = sbi->user_block_count;
2613 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2614 		user_block_count -= sbi->unusable_block_count;
2615 
2616 	if (unlikely(valid_block_count > user_block_count)) {
2617 		spin_unlock(&sbi->stat_lock);
2618 		goto enospc;
2619 	}
2620 
2621 	valid_node_count = sbi->total_valid_node_count + 1;
2622 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2623 		spin_unlock(&sbi->stat_lock);
2624 		goto enospc;
2625 	}
2626 
2627 	sbi->total_valid_node_count++;
2628 	sbi->total_valid_block_count++;
2629 	spin_unlock(&sbi->stat_lock);
2630 
2631 	if (inode) {
2632 		if (is_inode)
2633 			f2fs_mark_inode_dirty_sync(inode, true);
2634 		else
2635 			f2fs_i_blocks_write(inode, 1, true, true);
2636 	}
2637 
2638 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2639 	return 0;
2640 
2641 enospc:
2642 	if (is_inode) {
2643 		if (inode)
2644 			dquot_free_inode(inode);
2645 	} else {
2646 		dquot_release_reservation_block(inode, 1);
2647 	}
2648 	return -ENOSPC;
2649 }
2650 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2651 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2652 					struct inode *inode, bool is_inode)
2653 {
2654 	spin_lock(&sbi->stat_lock);
2655 
2656 	if (unlikely(!sbi->total_valid_block_count ||
2657 			!sbi->total_valid_node_count)) {
2658 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2659 			  sbi->total_valid_block_count,
2660 			  sbi->total_valid_node_count);
2661 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2662 	} else {
2663 		sbi->total_valid_block_count--;
2664 		sbi->total_valid_node_count--;
2665 	}
2666 
2667 	if (sbi->reserved_blocks &&
2668 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2669 		sbi->current_reserved_blocks++;
2670 
2671 	spin_unlock(&sbi->stat_lock);
2672 
2673 	if (is_inode) {
2674 		dquot_free_inode(inode);
2675 	} else {
2676 		if (unlikely(inode->i_blocks == 0)) {
2677 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2678 				  inode->i_ino,
2679 				  (unsigned long long)inode->i_blocks);
2680 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2681 			return;
2682 		}
2683 		f2fs_i_blocks_write(inode, 1, false, true);
2684 	}
2685 }
2686 
valid_node_count(struct f2fs_sb_info * sbi)2687 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2688 {
2689 	return sbi->total_valid_node_count;
2690 }
2691 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2692 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2693 {
2694 	percpu_counter_inc(&sbi->total_valid_inode_count);
2695 }
2696 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2697 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2698 {
2699 	percpu_counter_dec(&sbi->total_valid_inode_count);
2700 }
2701 
valid_inode_count(struct f2fs_sb_info * sbi)2702 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2703 {
2704 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2705 }
2706 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2707 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2708 						pgoff_t index, bool for_write)
2709 {
2710 	struct page *page;
2711 	unsigned int flags;
2712 
2713 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2714 		if (!for_write)
2715 			page = find_get_page_flags(mapping, index,
2716 							FGP_LOCK | FGP_ACCESSED);
2717 		else
2718 			page = find_lock_page(mapping, index);
2719 		if (page)
2720 			return page;
2721 
2722 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2723 			return NULL;
2724 	}
2725 
2726 	if (!for_write)
2727 		return grab_cache_page(mapping, index);
2728 
2729 	flags = memalloc_nofs_save();
2730 	page = grab_cache_page_write_begin(mapping, index);
2731 	memalloc_nofs_restore(flags);
2732 
2733 	return page;
2734 }
2735 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2736 static inline struct page *f2fs_pagecache_get_page(
2737 				struct address_space *mapping, pgoff_t index,
2738 				int fgp_flags, gfp_t gfp_mask)
2739 {
2740 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2741 		return NULL;
2742 
2743 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2744 }
2745 
f2fs_put_page(struct page * page,int unlock)2746 static inline void f2fs_put_page(struct page *page, int unlock)
2747 {
2748 	if (!page)
2749 		return;
2750 
2751 	if (unlock) {
2752 		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2753 		unlock_page(page);
2754 	}
2755 	put_page(page);
2756 }
2757 
f2fs_put_dnode(struct dnode_of_data * dn)2758 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2759 {
2760 	if (dn->node_page)
2761 		f2fs_put_page(dn->node_page, 1);
2762 	if (dn->inode_page && dn->node_page != dn->inode_page)
2763 		f2fs_put_page(dn->inode_page, 0);
2764 	dn->node_page = NULL;
2765 	dn->inode_page = NULL;
2766 }
2767 
f2fs_kmem_cache_create(const char * name,size_t size)2768 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2769 					size_t size)
2770 {
2771 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2772 }
2773 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2774 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2775 						gfp_t flags)
2776 {
2777 	void *entry;
2778 
2779 	entry = kmem_cache_alloc(cachep, flags);
2780 	if (!entry)
2781 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2782 	return entry;
2783 }
2784 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2785 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2786 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2787 {
2788 	if (nofail)
2789 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2790 
2791 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2792 		return NULL;
2793 
2794 	return kmem_cache_alloc(cachep, flags);
2795 }
2796 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2797 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2798 {
2799 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2800 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2801 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2802 		get_pages(sbi, F2FS_DIO_READ) ||
2803 		get_pages(sbi, F2FS_DIO_WRITE))
2804 		return true;
2805 
2806 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2807 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2808 		return true;
2809 
2810 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2811 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2812 		return true;
2813 	return false;
2814 }
2815 
is_idle(struct f2fs_sb_info * sbi,int type)2816 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2817 {
2818 	if (sbi->gc_mode == GC_URGENT_HIGH)
2819 		return true;
2820 
2821 	if (is_inflight_io(sbi, type))
2822 		return false;
2823 
2824 	if (sbi->gc_mode == GC_URGENT_MID)
2825 		return true;
2826 
2827 	if (sbi->gc_mode == GC_URGENT_LOW &&
2828 			(type == DISCARD_TIME || type == GC_TIME))
2829 		return true;
2830 
2831 	return f2fs_time_over(sbi, type);
2832 }
2833 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2834 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2835 				unsigned long index, void *item)
2836 {
2837 	while (radix_tree_insert(root, index, item))
2838 		cond_resched();
2839 }
2840 
2841 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2842 
IS_INODE(struct page * page)2843 static inline bool IS_INODE(struct page *page)
2844 {
2845 	struct f2fs_node *p = F2FS_NODE(page);
2846 
2847 	return RAW_IS_INODE(p);
2848 }
2849 
offset_in_addr(struct f2fs_inode * i)2850 static inline int offset_in_addr(struct f2fs_inode *i)
2851 {
2852 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
2853 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2854 }
2855 
blkaddr_in_node(struct f2fs_node * node)2856 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2857 {
2858 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2859 }
2860 
2861 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2862 static inline block_t data_blkaddr(struct inode *inode,
2863 			struct page *node_page, unsigned int offset)
2864 {
2865 	struct f2fs_node *raw_node;
2866 	__le32 *addr_array;
2867 	int base = 0;
2868 	bool is_inode = IS_INODE(node_page);
2869 
2870 	raw_node = F2FS_NODE(node_page);
2871 
2872 	if (is_inode) {
2873 		if (!inode)
2874 			/* from GC path only */
2875 			base = offset_in_addr(&raw_node->i);
2876 		else if (f2fs_has_extra_attr(inode))
2877 			base = get_extra_isize(inode);
2878 	}
2879 
2880 	addr_array = blkaddr_in_node(raw_node);
2881 	return le32_to_cpu(addr_array[base + offset]);
2882 }
2883 
f2fs_data_blkaddr(struct dnode_of_data * dn)2884 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2885 {
2886 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2887 }
2888 
f2fs_test_bit(unsigned int nr,char * addr)2889 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2890 {
2891 	int mask;
2892 
2893 	addr += (nr >> 3);
2894 	mask = BIT(7 - (nr & 0x07));
2895 	return mask & *addr;
2896 }
2897 
f2fs_set_bit(unsigned int nr,char * addr)2898 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2899 {
2900 	int mask;
2901 
2902 	addr += (nr >> 3);
2903 	mask = BIT(7 - (nr & 0x07));
2904 	*addr |= mask;
2905 }
2906 
f2fs_clear_bit(unsigned int nr,char * addr)2907 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2908 {
2909 	int mask;
2910 
2911 	addr += (nr >> 3);
2912 	mask = BIT(7 - (nr & 0x07));
2913 	*addr &= ~mask;
2914 }
2915 
f2fs_test_and_set_bit(unsigned int nr,char * addr)2916 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2917 {
2918 	int mask;
2919 	int ret;
2920 
2921 	addr += (nr >> 3);
2922 	mask = BIT(7 - (nr & 0x07));
2923 	ret = mask & *addr;
2924 	*addr |= mask;
2925 	return ret;
2926 }
2927 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2928 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2929 {
2930 	int mask;
2931 	int ret;
2932 
2933 	addr += (nr >> 3);
2934 	mask = BIT(7 - (nr & 0x07));
2935 	ret = mask & *addr;
2936 	*addr &= ~mask;
2937 	return ret;
2938 }
2939 
f2fs_change_bit(unsigned int nr,char * addr)2940 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2941 {
2942 	int mask;
2943 
2944 	addr += (nr >> 3);
2945 	mask = BIT(7 - (nr & 0x07));
2946 	*addr ^= mask;
2947 }
2948 
2949 /*
2950  * On-disk inode flags (f2fs_inode::i_flags)
2951  */
2952 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
2953 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
2954 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
2955 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
2956 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
2957 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
2958 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
2959 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
2960 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
2961 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
2962 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
2963 
2964 /* Flags that should be inherited by new inodes from their parent. */
2965 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2966 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2967 			   F2FS_CASEFOLD_FL)
2968 
2969 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2970 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2971 				F2FS_CASEFOLD_FL))
2972 
2973 /* Flags that are appropriate for non-directories/regular files. */
2974 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2975 
f2fs_mask_flags(umode_t mode,__u32 flags)2976 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2977 {
2978 	if (S_ISDIR(mode))
2979 		return flags;
2980 	else if (S_ISREG(mode))
2981 		return flags & F2FS_REG_FLMASK;
2982 	else
2983 		return flags & F2FS_OTHER_FLMASK;
2984 }
2985 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2986 static inline void __mark_inode_dirty_flag(struct inode *inode,
2987 						int flag, bool set)
2988 {
2989 	switch (flag) {
2990 	case FI_INLINE_XATTR:
2991 	case FI_INLINE_DATA:
2992 	case FI_INLINE_DENTRY:
2993 	case FI_NEW_INODE:
2994 		if (set)
2995 			return;
2996 		fallthrough;
2997 	case FI_DATA_EXIST:
2998 	case FI_INLINE_DOTS:
2999 	case FI_PIN_FILE:
3000 	case FI_COMPRESS_RELEASED:
3001 		f2fs_mark_inode_dirty_sync(inode, true);
3002 	}
3003 }
3004 
set_inode_flag(struct inode * inode,int flag)3005 static inline void set_inode_flag(struct inode *inode, int flag)
3006 {
3007 	set_bit(flag, F2FS_I(inode)->flags);
3008 	__mark_inode_dirty_flag(inode, flag, true);
3009 }
3010 
is_inode_flag_set(struct inode * inode,int flag)3011 static inline int is_inode_flag_set(struct inode *inode, int flag)
3012 {
3013 	return test_bit(flag, F2FS_I(inode)->flags);
3014 }
3015 
clear_inode_flag(struct inode * inode,int flag)3016 static inline void clear_inode_flag(struct inode *inode, int flag)
3017 {
3018 	clear_bit(flag, F2FS_I(inode)->flags);
3019 	__mark_inode_dirty_flag(inode, flag, false);
3020 }
3021 
f2fs_verity_in_progress(struct inode * inode)3022 static inline bool f2fs_verity_in_progress(struct inode *inode)
3023 {
3024 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3025 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3026 }
3027 
set_acl_inode(struct inode * inode,umode_t mode)3028 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3029 {
3030 	F2FS_I(inode)->i_acl_mode = mode;
3031 	set_inode_flag(inode, FI_ACL_MODE);
3032 	f2fs_mark_inode_dirty_sync(inode, false);
3033 }
3034 
f2fs_i_links_write(struct inode * inode,bool inc)3035 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3036 {
3037 	if (inc)
3038 		inc_nlink(inode);
3039 	else
3040 		drop_nlink(inode);
3041 	f2fs_mark_inode_dirty_sync(inode, true);
3042 }
3043 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3044 static inline void f2fs_i_blocks_write(struct inode *inode,
3045 					block_t diff, bool add, bool claim)
3046 {
3047 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3048 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3049 
3050 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3051 	if (add) {
3052 		if (claim)
3053 			dquot_claim_block(inode, diff);
3054 		else
3055 			dquot_alloc_block_nofail(inode, diff);
3056 	} else {
3057 		dquot_free_block(inode, diff);
3058 	}
3059 
3060 	f2fs_mark_inode_dirty_sync(inode, true);
3061 	if (clean || recover)
3062 		set_inode_flag(inode, FI_AUTO_RECOVER);
3063 }
3064 
3065 static inline bool f2fs_is_atomic_file(struct inode *inode);
3066 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3067 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3068 {
3069 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3070 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3071 
3072 	if (i_size_read(inode) == i_size)
3073 		return;
3074 
3075 	i_size_write(inode, i_size);
3076 
3077 	if (f2fs_is_atomic_file(inode))
3078 		return;
3079 
3080 	f2fs_mark_inode_dirty_sync(inode, true);
3081 	if (clean || recover)
3082 		set_inode_flag(inode, FI_AUTO_RECOVER);
3083 }
3084 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3085 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3086 {
3087 	F2FS_I(inode)->i_current_depth = depth;
3088 	f2fs_mark_inode_dirty_sync(inode, true);
3089 }
3090 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3091 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3092 					unsigned int count)
3093 {
3094 	F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3095 	f2fs_mark_inode_dirty_sync(inode, true);
3096 }
3097 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3098 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3099 {
3100 	F2FS_I(inode)->i_xattr_nid = xnid;
3101 	f2fs_mark_inode_dirty_sync(inode, true);
3102 }
3103 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3104 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3105 {
3106 	F2FS_I(inode)->i_pino = pino;
3107 	f2fs_mark_inode_dirty_sync(inode, true);
3108 }
3109 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3110 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3111 {
3112 	struct f2fs_inode_info *fi = F2FS_I(inode);
3113 
3114 	if (ri->i_inline & F2FS_INLINE_XATTR)
3115 		set_bit(FI_INLINE_XATTR, fi->flags);
3116 	if (ri->i_inline & F2FS_INLINE_DATA)
3117 		set_bit(FI_INLINE_DATA, fi->flags);
3118 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3119 		set_bit(FI_INLINE_DENTRY, fi->flags);
3120 	if (ri->i_inline & F2FS_DATA_EXIST)
3121 		set_bit(FI_DATA_EXIST, fi->flags);
3122 	if (ri->i_inline & F2FS_INLINE_DOTS)
3123 		set_bit(FI_INLINE_DOTS, fi->flags);
3124 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3125 		set_bit(FI_EXTRA_ATTR, fi->flags);
3126 	if (ri->i_inline & F2FS_PIN_FILE)
3127 		set_bit(FI_PIN_FILE, fi->flags);
3128 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3129 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3130 }
3131 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3132 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3133 {
3134 	ri->i_inline = 0;
3135 
3136 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3137 		ri->i_inline |= F2FS_INLINE_XATTR;
3138 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3139 		ri->i_inline |= F2FS_INLINE_DATA;
3140 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3141 		ri->i_inline |= F2FS_INLINE_DENTRY;
3142 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3143 		ri->i_inline |= F2FS_DATA_EXIST;
3144 	if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3145 		ri->i_inline |= F2FS_INLINE_DOTS;
3146 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3147 		ri->i_inline |= F2FS_EXTRA_ATTR;
3148 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3149 		ri->i_inline |= F2FS_PIN_FILE;
3150 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3151 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3152 }
3153 
f2fs_has_extra_attr(struct inode * inode)3154 static inline int f2fs_has_extra_attr(struct inode *inode)
3155 {
3156 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3157 }
3158 
f2fs_has_inline_xattr(struct inode * inode)3159 static inline int f2fs_has_inline_xattr(struct inode *inode)
3160 {
3161 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3162 }
3163 
f2fs_compressed_file(struct inode * inode)3164 static inline int f2fs_compressed_file(struct inode *inode)
3165 {
3166 	return S_ISREG(inode->i_mode) &&
3167 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3168 }
3169 
f2fs_need_compress_data(struct inode * inode)3170 static inline bool f2fs_need_compress_data(struct inode *inode)
3171 {
3172 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3173 
3174 	if (!f2fs_compressed_file(inode))
3175 		return false;
3176 
3177 	if (compress_mode == COMPR_MODE_FS)
3178 		return true;
3179 	else if (compress_mode == COMPR_MODE_USER &&
3180 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3181 		return true;
3182 
3183 	return false;
3184 }
3185 
addrs_per_inode(struct inode * inode)3186 static inline unsigned int addrs_per_inode(struct inode *inode)
3187 {
3188 	unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3189 				get_inline_xattr_addrs(inode);
3190 
3191 	if (!f2fs_compressed_file(inode))
3192 		return addrs;
3193 	return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3194 }
3195 
addrs_per_block(struct inode * inode)3196 static inline unsigned int addrs_per_block(struct inode *inode)
3197 {
3198 	if (!f2fs_compressed_file(inode))
3199 		return DEF_ADDRS_PER_BLOCK;
3200 	return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3201 }
3202 
inline_xattr_addr(struct inode * inode,struct page * page)3203 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3204 {
3205 	struct f2fs_inode *ri = F2FS_INODE(page);
3206 
3207 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3208 					get_inline_xattr_addrs(inode)]);
3209 }
3210 
inline_xattr_size(struct inode * inode)3211 static inline int inline_xattr_size(struct inode *inode)
3212 {
3213 	if (f2fs_has_inline_xattr(inode))
3214 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3215 	return 0;
3216 }
3217 
3218 /*
3219  * Notice: check inline_data flag without inode page lock is unsafe.
3220  * It could change at any time by f2fs_convert_inline_page().
3221  */
f2fs_has_inline_data(struct inode * inode)3222 static inline int f2fs_has_inline_data(struct inode *inode)
3223 {
3224 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3225 }
3226 
f2fs_exist_data(struct inode * inode)3227 static inline int f2fs_exist_data(struct inode *inode)
3228 {
3229 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3230 }
3231 
f2fs_has_inline_dots(struct inode * inode)3232 static inline int f2fs_has_inline_dots(struct inode *inode)
3233 {
3234 	return is_inode_flag_set(inode, FI_INLINE_DOTS);
3235 }
3236 
f2fs_is_mmap_file(struct inode * inode)3237 static inline int f2fs_is_mmap_file(struct inode *inode)
3238 {
3239 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3240 }
3241 
f2fs_is_pinned_file(struct inode * inode)3242 static inline bool f2fs_is_pinned_file(struct inode *inode)
3243 {
3244 	return is_inode_flag_set(inode, FI_PIN_FILE);
3245 }
3246 
f2fs_is_atomic_file(struct inode * inode)3247 static inline bool f2fs_is_atomic_file(struct inode *inode)
3248 {
3249 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3250 }
3251 
f2fs_is_cow_file(struct inode * inode)3252 static inline bool f2fs_is_cow_file(struct inode *inode)
3253 {
3254 	return is_inode_flag_set(inode, FI_COW_FILE);
3255 }
3256 
f2fs_is_first_block_written(struct inode * inode)3257 static inline bool f2fs_is_first_block_written(struct inode *inode)
3258 {
3259 	return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3260 }
3261 
f2fs_is_drop_cache(struct inode * inode)3262 static inline bool f2fs_is_drop_cache(struct inode *inode)
3263 {
3264 	return is_inode_flag_set(inode, FI_DROP_CACHE);
3265 }
3266 
inline_data_addr(struct inode * inode,struct page * page)3267 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3268 {
3269 	struct f2fs_inode *ri = F2FS_INODE(page);
3270 	int extra_size = get_extra_isize(inode);
3271 
3272 	return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3273 }
3274 
f2fs_has_inline_dentry(struct inode * inode)3275 static inline int f2fs_has_inline_dentry(struct inode *inode)
3276 {
3277 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3278 }
3279 
is_file(struct inode * inode,int type)3280 static inline int is_file(struct inode *inode, int type)
3281 {
3282 	return F2FS_I(inode)->i_advise & type;
3283 }
3284 
set_file(struct inode * inode,int type)3285 static inline void set_file(struct inode *inode, int type)
3286 {
3287 	if (is_file(inode, type))
3288 		return;
3289 	F2FS_I(inode)->i_advise |= type;
3290 	f2fs_mark_inode_dirty_sync(inode, true);
3291 }
3292 
clear_file(struct inode * inode,int type)3293 static inline void clear_file(struct inode *inode, int type)
3294 {
3295 	if (!is_file(inode, type))
3296 		return;
3297 	F2FS_I(inode)->i_advise &= ~type;
3298 	f2fs_mark_inode_dirty_sync(inode, true);
3299 }
3300 
f2fs_is_time_consistent(struct inode * inode)3301 static inline bool f2fs_is_time_consistent(struct inode *inode)
3302 {
3303 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3304 		return false;
3305 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3306 		return false;
3307 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3308 		return false;
3309 	return true;
3310 }
3311 
f2fs_skip_inode_update(struct inode * inode,int dsync)3312 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3313 {
3314 	bool ret;
3315 
3316 	if (dsync) {
3317 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318 
3319 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3320 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3321 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3322 		return ret;
3323 	}
3324 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3325 			file_keep_isize(inode) ||
3326 			i_size_read(inode) & ~PAGE_MASK)
3327 		return false;
3328 
3329 	if (!f2fs_is_time_consistent(inode))
3330 		return false;
3331 
3332 	spin_lock(&F2FS_I(inode)->i_size_lock);
3333 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3334 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3335 
3336 	return ret;
3337 }
3338 
f2fs_readonly(struct super_block * sb)3339 static inline bool f2fs_readonly(struct super_block *sb)
3340 {
3341 	return sb_rdonly(sb);
3342 }
3343 
f2fs_cp_error(struct f2fs_sb_info * sbi)3344 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3345 {
3346 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3347 }
3348 
is_dot_dotdot(const u8 * name,size_t len)3349 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3350 {
3351 	if (len == 1 && name[0] == '.')
3352 		return true;
3353 
3354 	if (len == 2 && name[0] == '.' && name[1] == '.')
3355 		return true;
3356 
3357 	return false;
3358 }
3359 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3360 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3361 					size_t size, gfp_t flags)
3362 {
3363 	if (time_to_inject(sbi, FAULT_KMALLOC))
3364 		return NULL;
3365 
3366 	return kmalloc(size, flags);
3367 }
3368 
f2fs_getname(struct f2fs_sb_info * sbi)3369 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3370 {
3371 	if (time_to_inject(sbi, FAULT_KMALLOC))
3372 		return NULL;
3373 
3374 	return __getname();
3375 }
3376 
f2fs_putname(char * buf)3377 static inline void f2fs_putname(char *buf)
3378 {
3379 	__putname(buf);
3380 }
3381 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3382 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3383 					size_t size, gfp_t flags)
3384 {
3385 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3386 }
3387 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3388 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3389 					size_t size, gfp_t flags)
3390 {
3391 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3392 		return NULL;
3393 
3394 	return kvmalloc(size, flags);
3395 }
3396 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3397 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3398 					size_t size, gfp_t flags)
3399 {
3400 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3401 }
3402 
get_extra_isize(struct inode * inode)3403 static inline int get_extra_isize(struct inode *inode)
3404 {
3405 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3406 }
3407 
get_inline_xattr_addrs(struct inode * inode)3408 static inline int get_inline_xattr_addrs(struct inode *inode)
3409 {
3410 	return F2FS_I(inode)->i_inline_xattr_size;
3411 }
3412 
3413 #define f2fs_get_inode_mode(i) \
3414 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3415 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3416 
3417 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3418 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3419 	offsetof(struct f2fs_inode, i_extra_isize))	\
3420 
3421 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3422 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3423 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3424 		sizeof((f2fs_inode)->field))			\
3425 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3426 
3427 #define __is_large_section(sbi)		((sbi)->segs_per_sec > 1)
3428 
3429 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3430 
3431 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3432 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3433 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3434 					block_t blkaddr, int type)
3435 {
3436 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3437 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3438 			 blkaddr, type);
3439 }
3440 
__is_valid_data_blkaddr(block_t blkaddr)3441 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3442 {
3443 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3444 			blkaddr == COMPRESS_ADDR)
3445 		return false;
3446 	return true;
3447 }
3448 
3449 /*
3450  * file.c
3451  */
3452 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3453 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3454 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3455 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3456 int f2fs_truncate(struct inode *inode);
3457 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3458 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3459 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3460 		 struct iattr *attr);
3461 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3462 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3463 int f2fs_precache_extents(struct inode *inode);
3464 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3465 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3466 		      struct dentry *dentry, struct fileattr *fa);
3467 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3468 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3469 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3470 int f2fs_pin_file_control(struct inode *inode, bool inc);
3471 
3472 /*
3473  * inode.c
3474  */
3475 void f2fs_set_inode_flags(struct inode *inode);
3476 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3477 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3478 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3479 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3480 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3481 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3482 void f2fs_update_inode_page(struct inode *inode);
3483 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3484 void f2fs_evict_inode(struct inode *inode);
3485 void f2fs_handle_failed_inode(struct inode *inode);
3486 
3487 /*
3488  * namei.c
3489  */
3490 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3491 							bool hot, bool set);
3492 struct dentry *f2fs_get_parent(struct dentry *child);
3493 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3494 		     struct inode **new_inode);
3495 
3496 /*
3497  * dir.c
3498  */
3499 int f2fs_init_casefolded_name(const struct inode *dir,
3500 			      struct f2fs_filename *fname);
3501 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3502 			int lookup, struct f2fs_filename *fname);
3503 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3504 			struct f2fs_filename *fname);
3505 void f2fs_free_filename(struct f2fs_filename *fname);
3506 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3507 			const struct f2fs_filename *fname, int *max_slots);
3508 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3509 			unsigned int start_pos, struct fscrypt_str *fstr);
3510 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3511 			struct f2fs_dentry_ptr *d);
3512 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3513 			const struct f2fs_filename *fname, struct page *dpage);
3514 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3515 			unsigned int current_depth);
3516 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3517 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3518 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3519 					 const struct f2fs_filename *fname,
3520 					 struct page **res_page);
3521 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3522 			const struct qstr *child, struct page **res_page);
3523 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3524 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3525 			struct page **page);
3526 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3527 			struct page *page, struct inode *inode);
3528 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3529 			  const struct f2fs_filename *fname);
3530 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3531 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3532 			unsigned int bit_pos);
3533 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3534 			struct inode *inode, nid_t ino, umode_t mode);
3535 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3536 			struct inode *inode, nid_t ino, umode_t mode);
3537 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3538 			struct inode *inode, nid_t ino, umode_t mode);
3539 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3540 			struct inode *dir, struct inode *inode);
3541 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3542 bool f2fs_empty_dir(struct inode *dir);
3543 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3544 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3545 {
3546 	if (fscrypt_is_nokey_name(dentry))
3547 		return -ENOKEY;
3548 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3549 				inode, inode->i_ino, inode->i_mode);
3550 }
3551 
3552 /*
3553  * super.c
3554  */
3555 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3556 void f2fs_inode_synced(struct inode *inode);
3557 int f2fs_dquot_initialize(struct inode *inode);
3558 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3559 int f2fs_quota_sync(struct super_block *sb, int type);
3560 loff_t max_file_blocks(struct inode *inode);
3561 void f2fs_quota_off_umount(struct super_block *sb);
3562 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3563 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3564 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3565 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3566 int f2fs_sync_fs(struct super_block *sb, int sync);
3567 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3568 
3569 /*
3570  * hash.c
3571  */
3572 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3573 
3574 /*
3575  * node.c
3576  */
3577 struct node_info;
3578 
3579 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3580 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3581 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3582 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3583 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3584 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3585 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3586 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3587 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3588 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3589 				struct node_info *ni, bool checkpoint_context);
3590 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3591 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3592 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3593 int f2fs_truncate_xattr_node(struct inode *inode);
3594 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3595 					unsigned int seq_id);
3596 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3597 int f2fs_remove_inode_page(struct inode *inode);
3598 struct page *f2fs_new_inode_page(struct inode *inode);
3599 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3600 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3601 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3602 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3603 int f2fs_move_node_page(struct page *node_page, int gc_type);
3604 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3605 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3606 			struct writeback_control *wbc, bool atomic,
3607 			unsigned int *seq_id);
3608 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3609 			struct writeback_control *wbc,
3610 			bool do_balance, enum iostat_type io_type);
3611 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3612 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3613 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3614 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3615 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3616 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3617 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3618 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3619 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3620 			unsigned int segno, struct f2fs_summary_block *sum);
3621 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3622 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3623 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3624 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3625 int __init f2fs_create_node_manager_caches(void);
3626 void f2fs_destroy_node_manager_caches(void);
3627 
3628 /*
3629  * segment.c
3630  */
3631 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3632 int f2fs_commit_atomic_write(struct inode *inode);
3633 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3634 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3635 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3636 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3638 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3639 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3640 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3641 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3642 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3643 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3644 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3645 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3646 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3647 					struct cp_control *cpc);
3648 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3649 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3650 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3651 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3652 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3653 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3654 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3655 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3656 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3657 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3658 			unsigned int *newseg, bool new_sec, int dir);
3659 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3660 					unsigned int start, unsigned int end);
3661 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3662 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3663 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3664 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3665 					struct cp_control *cpc);
3666 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3667 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3668 					block_t blk_addr);
3669 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3670 						enum iostat_type io_type);
3671 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3672 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3673 			struct f2fs_io_info *fio);
3674 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3675 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3676 			block_t old_blkaddr, block_t new_blkaddr,
3677 			bool recover_curseg, bool recover_newaddr,
3678 			bool from_gc);
3679 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3680 			block_t old_addr, block_t new_addr,
3681 			unsigned char version, bool recover_curseg,
3682 			bool recover_newaddr);
3683 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3684 			block_t old_blkaddr, block_t *new_blkaddr,
3685 			struct f2fs_summary *sum, int type,
3686 			struct f2fs_io_info *fio);
3687 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3688 					block_t blkaddr, unsigned int blkcnt);
3689 void f2fs_wait_on_page_writeback(struct page *page,
3690 			enum page_type type, bool ordered, bool locked);
3691 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3692 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3693 								block_t len);
3694 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3695 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3696 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3697 			unsigned int val, int alloc);
3698 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3699 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3700 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3701 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3702 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3703 int __init f2fs_create_segment_manager_caches(void);
3704 void f2fs_destroy_segment_manager_caches(void);
3705 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3706 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3707 			unsigned int segno);
3708 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3709 			unsigned int segno);
3710 
3711 #define DEF_FRAGMENT_SIZE	4
3712 #define MIN_FRAGMENT_SIZE	1
3713 #define MAX_FRAGMENT_SIZE	512
3714 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3715 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3716 {
3717 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3718 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3719 }
3720 
3721 /*
3722  * checkpoint.c
3723  */
3724 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3725 							unsigned char reason);
3726 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3727 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3728 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3729 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3730 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3731 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3732 					block_t blkaddr, int type);
3733 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3734 					block_t blkaddr, int type);
3735 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3736 			int type, bool sync);
3737 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3738 							unsigned int ra_blocks);
3739 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3740 			long nr_to_write, enum iostat_type io_type);
3741 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3742 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3743 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3744 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3745 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3746 					unsigned int devidx, int type);
3747 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3748 					unsigned int devidx, int type);
3749 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3750 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3751 void f2fs_add_orphan_inode(struct inode *inode);
3752 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3753 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3754 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3755 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3756 void f2fs_remove_dirty_inode(struct inode *inode);
3757 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3758 								bool from_cp);
3759 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3760 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3761 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3762 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3763 int __init f2fs_create_checkpoint_caches(void);
3764 void f2fs_destroy_checkpoint_caches(void);
3765 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3766 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3767 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3768 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3769 
3770 /*
3771  * data.c
3772  */
3773 int __init f2fs_init_bioset(void);
3774 void f2fs_destroy_bioset(void);
3775 bool f2fs_is_cp_guaranteed(struct page *page);
3776 int f2fs_init_bio_entry_cache(void);
3777 void f2fs_destroy_bio_entry_cache(void);
3778 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3779 			  enum page_type type);
3780 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3781 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3782 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3783 				struct inode *inode, struct page *page,
3784 				nid_t ino, enum page_type type);
3785 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3786 					struct bio **bio, struct page *page);
3787 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3788 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3789 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3790 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3791 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3792 		block_t blk_addr, sector_t *sector);
3793 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3794 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3795 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3796 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3797 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3798 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3799 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3800 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3801 			blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3802 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3803 							pgoff_t *next_pgofs);
3804 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3805 			bool for_write);
3806 struct page *f2fs_get_new_data_page(struct inode *inode,
3807 			struct page *ipage, pgoff_t index, bool new_i_size);
3808 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3809 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3810 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3811 			u64 start, u64 len);
3812 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3813 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3814 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3815 int f2fs_write_single_data_page(struct page *page, int *submitted,
3816 				struct bio **bio, sector_t *last_block,
3817 				struct writeback_control *wbc,
3818 				enum iostat_type io_type,
3819 				int compr_blocks, bool allow_balance);
3820 void f2fs_write_failed(struct inode *inode, loff_t to);
3821 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3822 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3823 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3824 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3825 int f2fs_init_post_read_processing(void);
3826 void f2fs_destroy_post_read_processing(void);
3827 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3828 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3829 extern const struct iomap_ops f2fs_iomap_ops;
3830 
3831 /*
3832  * gc.c
3833  */
3834 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3835 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3836 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3837 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3838 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3839 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3840 int __init f2fs_create_garbage_collection_cache(void);
3841 void f2fs_destroy_garbage_collection_cache(void);
3842 /* victim selection function for cleaning and SSR */
3843 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3844 			int gc_type, int type, char alloc_mode,
3845 			unsigned long long age);
3846 
3847 /*
3848  * recovery.c
3849  */
3850 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3851 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3852 int __init f2fs_create_recovery_cache(void);
3853 void f2fs_destroy_recovery_cache(void);
3854 
3855 /*
3856  * debug.c
3857  */
3858 #ifdef CONFIG_F2FS_STAT_FS
3859 struct f2fs_stat_info {
3860 	struct list_head stat_list;
3861 	struct f2fs_sb_info *sbi;
3862 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3863 	int main_area_segs, main_area_sections, main_area_zones;
3864 	unsigned long long hit_cached[NR_EXTENT_CACHES];
3865 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3866 	unsigned long long total_ext[NR_EXTENT_CACHES];
3867 	unsigned long long hit_total[NR_EXTENT_CACHES];
3868 	int ext_tree[NR_EXTENT_CACHES];
3869 	int zombie_tree[NR_EXTENT_CACHES];
3870 	int ext_node[NR_EXTENT_CACHES];
3871 	/* to count memory footprint */
3872 	unsigned long long ext_mem[NR_EXTENT_CACHES];
3873 	/* for read extent cache */
3874 	unsigned long long hit_largest;
3875 	/* for block age extent cache */
3876 	unsigned long long allocated_data_blocks;
3877 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3878 	int ndirty_data, ndirty_qdata;
3879 	unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3880 	int nats, dirty_nats, sits, dirty_sits;
3881 	int free_nids, avail_nids, alloc_nids;
3882 	int total_count, utilization;
3883 	int bg_gc, nr_wb_cp_data, nr_wb_data;
3884 	int nr_rd_data, nr_rd_node, nr_rd_meta;
3885 	int nr_dio_read, nr_dio_write;
3886 	unsigned int io_skip_bggc, other_skip_bggc;
3887 	int nr_flushing, nr_flushed, flush_list_empty;
3888 	int nr_discarding, nr_discarded;
3889 	int nr_discard_cmd;
3890 	unsigned int undiscard_blks;
3891 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3892 	unsigned int cur_ckpt_time, peak_ckpt_time;
3893 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3894 	int compr_inode, swapfile_inode;
3895 	unsigned long long compr_blocks;
3896 	int aw_cnt, max_aw_cnt;
3897 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3898 	unsigned int bimodal, avg_vblocks;
3899 	int util_free, util_valid, util_invalid;
3900 	int rsvd_segs, overp_segs;
3901 	int dirty_count, node_pages, meta_pages, compress_pages;
3902 	int compress_page_hit;
3903 	int prefree_count, call_count, cp_count, bg_cp_count;
3904 	int tot_segs, node_segs, data_segs, free_segs, free_secs;
3905 	int bg_node_segs, bg_data_segs;
3906 	int tot_blks, data_blks, node_blks;
3907 	int bg_data_blks, bg_node_blks;
3908 	int curseg[NR_CURSEG_TYPE];
3909 	int cursec[NR_CURSEG_TYPE];
3910 	int curzone[NR_CURSEG_TYPE];
3911 	unsigned int dirty_seg[NR_CURSEG_TYPE];
3912 	unsigned int full_seg[NR_CURSEG_TYPE];
3913 	unsigned int valid_blks[NR_CURSEG_TYPE];
3914 
3915 	unsigned int meta_count[META_MAX];
3916 	unsigned int segment_count[2];
3917 	unsigned int block_count[2];
3918 	unsigned int inplace_count;
3919 	unsigned long long base_mem, cache_mem, page_mem;
3920 };
3921 
F2FS_STAT(struct f2fs_sb_info * sbi)3922 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3923 {
3924 	return (struct f2fs_stat_info *)sbi->stat_info;
3925 }
3926 
3927 #define stat_inc_cp_count(si)		((si)->cp_count++)
3928 #define stat_inc_bg_cp_count(si)	((si)->bg_cp_count++)
3929 #define stat_inc_call_count(si)		((si)->call_count++)
3930 #define stat_inc_bggc_count(si)		((si)->bg_gc++)
3931 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
3932 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
3933 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
3934 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
3935 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
3936 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3937 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
3938 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
3939 #define stat_inc_inline_xattr(inode)					\
3940 	do {								\
3941 		if (f2fs_has_inline_xattr(inode))			\
3942 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
3943 	} while (0)
3944 #define stat_dec_inline_xattr(inode)					\
3945 	do {								\
3946 		if (f2fs_has_inline_xattr(inode))			\
3947 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
3948 	} while (0)
3949 #define stat_inc_inline_inode(inode)					\
3950 	do {								\
3951 		if (f2fs_has_inline_data(inode))			\
3952 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
3953 	} while (0)
3954 #define stat_dec_inline_inode(inode)					\
3955 	do {								\
3956 		if (f2fs_has_inline_data(inode))			\
3957 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
3958 	} while (0)
3959 #define stat_inc_inline_dir(inode)					\
3960 	do {								\
3961 		if (f2fs_has_inline_dentry(inode))			\
3962 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
3963 	} while (0)
3964 #define stat_dec_inline_dir(inode)					\
3965 	do {								\
3966 		if (f2fs_has_inline_dentry(inode))			\
3967 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
3968 	} while (0)
3969 #define stat_inc_compr_inode(inode)					\
3970 	do {								\
3971 		if (f2fs_compressed_file(inode))			\
3972 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
3973 	} while (0)
3974 #define stat_dec_compr_inode(inode)					\
3975 	do {								\
3976 		if (f2fs_compressed_file(inode))			\
3977 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
3978 	} while (0)
3979 #define stat_add_compr_blocks(inode, blocks)				\
3980 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3981 #define stat_sub_compr_blocks(inode, blocks)				\
3982 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3983 #define stat_inc_swapfile_inode(inode)					\
3984 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3985 #define stat_dec_swapfile_inode(inode)					\
3986 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3987 #define stat_inc_atomic_inode(inode)					\
3988 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3989 #define stat_dec_atomic_inode(inode)					\
3990 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3991 #define stat_inc_meta_count(sbi, blkaddr)				\
3992 	do {								\
3993 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
3994 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
3995 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
3996 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
3997 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
3998 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
3999 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4000 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4001 	} while (0)
4002 #define stat_inc_seg_type(sbi, curseg)					\
4003 		((sbi)->segment_count[(curseg)->alloc_type]++)
4004 #define stat_inc_block_count(sbi, curseg)				\
4005 		((sbi)->block_count[(curseg)->alloc_type]++)
4006 #define stat_inc_inplace_blocks(sbi)					\
4007 		(atomic_inc(&(sbi)->inplace_count))
4008 #define stat_update_max_atomic_write(inode)				\
4009 	do {								\
4010 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4011 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4012 		if (cur > max)						\
4013 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4014 	} while (0)
4015 #define stat_inc_seg_count(sbi, type, gc_type)				\
4016 	do {								\
4017 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4018 		si->tot_segs++;						\
4019 		if ((type) == SUM_TYPE_DATA) {				\
4020 			si->data_segs++;				\
4021 			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
4022 		} else {						\
4023 			si->node_segs++;				\
4024 			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
4025 		}							\
4026 	} while (0)
4027 
4028 #define stat_inc_tot_blk_count(si, blks)				\
4029 	((si)->tot_blks += (blks))
4030 
4031 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4032 	do {								\
4033 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4034 		stat_inc_tot_blk_count(si, blks);			\
4035 		si->data_blks += (blks);				\
4036 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4037 	} while (0)
4038 
4039 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4040 	do {								\
4041 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4042 		stat_inc_tot_blk_count(si, blks);			\
4043 		si->node_blks += (blks);				\
4044 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4045 	} while (0)
4046 
4047 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4048 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4049 void __init f2fs_create_root_stats(void);
4050 void f2fs_destroy_root_stats(void);
4051 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4052 #else
4053 #define stat_inc_cp_count(si)				do { } while (0)
4054 #define stat_inc_bg_cp_count(si)			do { } while (0)
4055 #define stat_inc_call_count(si)				do { } while (0)
4056 #define stat_inc_bggc_count(si)				do { } while (0)
4057 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4058 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4059 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4060 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4061 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4062 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4063 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4064 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4065 #define stat_inc_inline_xattr(inode)			do { } while (0)
4066 #define stat_dec_inline_xattr(inode)			do { } while (0)
4067 #define stat_inc_inline_inode(inode)			do { } while (0)
4068 #define stat_dec_inline_inode(inode)			do { } while (0)
4069 #define stat_inc_inline_dir(inode)			do { } while (0)
4070 #define stat_dec_inline_dir(inode)			do { } while (0)
4071 #define stat_inc_compr_inode(inode)			do { } while (0)
4072 #define stat_dec_compr_inode(inode)			do { } while (0)
4073 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4074 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4075 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4076 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4077 #define stat_inc_atomic_inode(inode)			do { } while (0)
4078 #define stat_dec_atomic_inode(inode)			do { } while (0)
4079 #define stat_update_max_atomic_write(inode)		do { } while (0)
4080 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4081 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4082 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4083 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4084 #define stat_inc_seg_count(sbi, type, gc_type)		do { } while (0)
4085 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4086 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4087 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4088 
f2fs_build_stats(struct f2fs_sb_info * sbi)4089 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4090 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4091 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4092 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4093 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4094 #endif
4095 
4096 extern const struct file_operations f2fs_dir_operations;
4097 extern const struct file_operations f2fs_file_operations;
4098 extern const struct inode_operations f2fs_file_inode_operations;
4099 extern const struct address_space_operations f2fs_dblock_aops;
4100 extern const struct address_space_operations f2fs_node_aops;
4101 extern const struct address_space_operations f2fs_meta_aops;
4102 extern const struct inode_operations f2fs_dir_inode_operations;
4103 extern const struct inode_operations f2fs_symlink_inode_operations;
4104 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4105 extern const struct inode_operations f2fs_special_inode_operations;
4106 extern struct kmem_cache *f2fs_inode_entry_slab;
4107 
4108 /*
4109  * inline.c
4110  */
4111 bool f2fs_may_inline_data(struct inode *inode);
4112 bool f2fs_sanity_check_inline_data(struct inode *inode);
4113 bool f2fs_may_inline_dentry(struct inode *inode);
4114 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4115 void f2fs_truncate_inline_inode(struct inode *inode,
4116 						struct page *ipage, u64 from);
4117 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4118 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4119 int f2fs_convert_inline_inode(struct inode *inode);
4120 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4121 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4122 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4123 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4124 					const struct f2fs_filename *fname,
4125 					struct page **res_page);
4126 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4127 			struct page *ipage);
4128 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4129 			struct inode *inode, nid_t ino, umode_t mode);
4130 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4131 				struct page *page, struct inode *dir,
4132 				struct inode *inode);
4133 bool f2fs_empty_inline_dir(struct inode *dir);
4134 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4135 			struct fscrypt_str *fstr);
4136 int f2fs_inline_data_fiemap(struct inode *inode,
4137 			struct fiemap_extent_info *fieinfo,
4138 			__u64 start, __u64 len);
4139 
4140 /*
4141  * shrinker.c
4142  */
4143 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4144 			struct shrink_control *sc);
4145 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4146 			struct shrink_control *sc);
4147 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4148 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4149 
4150 /*
4151  * extent_cache.c
4152  */
4153 bool sanity_check_extent_cache(struct inode *inode);
4154 void f2fs_init_extent_tree(struct inode *inode);
4155 void f2fs_drop_extent_tree(struct inode *inode);
4156 void f2fs_destroy_extent_node(struct inode *inode);
4157 void f2fs_destroy_extent_tree(struct inode *inode);
4158 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4159 int __init f2fs_create_extent_cache(void);
4160 void f2fs_destroy_extent_cache(void);
4161 
4162 /* read extent cache ops */
4163 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4164 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4165 			struct extent_info *ei);
4166 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4167 			block_t *blkaddr);
4168 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4169 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4170 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4171 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4172 			int nr_shrink);
4173 
4174 /* block age extent cache ops */
4175 void f2fs_init_age_extent_tree(struct inode *inode);
4176 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4177 			struct extent_info *ei);
4178 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4179 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4180 			pgoff_t fofs, unsigned int len);
4181 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4182 			int nr_shrink);
4183 
4184 /*
4185  * sysfs.c
4186  */
4187 #define MIN_RA_MUL	2
4188 #define MAX_RA_MUL	256
4189 
4190 int __init f2fs_init_sysfs(void);
4191 void f2fs_exit_sysfs(void);
4192 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4193 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4194 
4195 /* verity.c */
4196 extern const struct fsverity_operations f2fs_verityops;
4197 
4198 /*
4199  * crypto support
4200  */
f2fs_encrypted_file(struct inode * inode)4201 static inline bool f2fs_encrypted_file(struct inode *inode)
4202 {
4203 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4204 }
4205 
f2fs_set_encrypted_inode(struct inode * inode)4206 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4207 {
4208 #ifdef CONFIG_FS_ENCRYPTION
4209 	file_set_encrypt(inode);
4210 	f2fs_set_inode_flags(inode);
4211 #endif
4212 }
4213 
4214 /*
4215  * Returns true if the reads of the inode's data need to undergo some
4216  * postprocessing step, like decryption or authenticity verification.
4217  */
f2fs_post_read_required(struct inode * inode)4218 static inline bool f2fs_post_read_required(struct inode *inode)
4219 {
4220 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4221 		f2fs_compressed_file(inode);
4222 }
4223 
4224 /*
4225  * compress.c
4226  */
4227 #ifdef CONFIG_F2FS_FS_COMPRESSION
4228 bool f2fs_is_compressed_page(struct page *page);
4229 struct page *f2fs_compress_control_page(struct page *page);
4230 int f2fs_prepare_compress_overwrite(struct inode *inode,
4231 			struct page **pagep, pgoff_t index, void **fsdata);
4232 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4233 					pgoff_t index, unsigned copied);
4234 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4235 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4236 bool f2fs_is_compress_backend_ready(struct inode *inode);
4237 bool f2fs_is_compress_level_valid(int alg, int lvl);
4238 int __init f2fs_init_compress_mempool(void);
4239 void f2fs_destroy_compress_mempool(void);
4240 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4241 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4242 				block_t blkaddr, bool in_task);
4243 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4244 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4245 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4246 				int index, int nr_pages, bool uptodate);
4247 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4248 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4249 int f2fs_write_multi_pages(struct compress_ctx *cc,
4250 						int *submitted,
4251 						struct writeback_control *wbc,
4252 						enum iostat_type io_type);
4253 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4254 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4255 				pgoff_t fofs, block_t blkaddr,
4256 				unsigned int llen, unsigned int c_len);
4257 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4258 				unsigned nr_pages, sector_t *last_block_in_bio,
4259 				bool is_readahead, bool for_write);
4260 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4261 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4262 				bool in_task);
4263 void f2fs_put_page_dic(struct page *page, bool in_task);
4264 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4265 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4266 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4267 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4268 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4269 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4270 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4271 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4272 int __init f2fs_init_compress_cache(void);
4273 void f2fs_destroy_compress_cache(void);
4274 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4275 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4276 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4277 						nid_t ino, block_t blkaddr);
4278 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4279 								block_t blkaddr);
4280 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4281 #define inc_compr_inode_stat(inode)					\
4282 	do {								\
4283 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4284 		sbi->compr_new_inode++;					\
4285 	} while (0)
4286 #define add_compr_block_stat(inode, blocks)				\
4287 	do {								\
4288 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4289 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4290 		sbi->compr_written_block += blocks;			\
4291 		sbi->compr_saved_block += diff;				\
4292 	} while (0)
4293 #else
f2fs_is_compressed_page(struct page * page)4294 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4295 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4296 {
4297 	if (!f2fs_compressed_file(inode))
4298 		return true;
4299 	/* not support compression */
4300 	return false;
4301 }
f2fs_is_compress_level_valid(int alg,int lvl)4302 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4303 static inline struct page *f2fs_compress_control_page(struct page *page)
4304 {
4305 	WARN_ON_ONCE(1);
4306 	return ERR_PTR(-EINVAL);
4307 }
f2fs_init_compress_mempool(void)4308 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4309 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4310 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4311 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4312 static inline void f2fs_end_read_compressed_page(struct page *page,
4313 				bool failed, block_t blkaddr, bool in_task)
4314 {
4315 	WARN_ON_ONCE(1);
4316 }
f2fs_put_page_dic(struct page * page,bool in_task)4317 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4318 {
4319 	WARN_ON_ONCE(1);
4320 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4321 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4322 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4323 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4324 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4325 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4326 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4327 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4328 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4329 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4330 				block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4331 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4332 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4333 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4334 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4335 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4336 							nid_t ino) { }
4337 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4338 static inline void f2fs_update_read_extent_tree_range_compressed(
4339 				struct inode *inode,
4340 				pgoff_t fofs, block_t blkaddr,
4341 				unsigned int llen, unsigned int c_len) { }
4342 #endif
4343 
set_compress_context(struct inode * inode)4344 static inline int set_compress_context(struct inode *inode)
4345 {
4346 #ifdef CONFIG_F2FS_FS_COMPRESSION
4347 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4348 
4349 	F2FS_I(inode)->i_compress_algorithm =
4350 			F2FS_OPTION(sbi).compress_algorithm;
4351 	F2FS_I(inode)->i_log_cluster_size =
4352 			F2FS_OPTION(sbi).compress_log_size;
4353 	F2FS_I(inode)->i_compress_flag =
4354 			F2FS_OPTION(sbi).compress_chksum ?
4355 				BIT(COMPRESS_CHKSUM) : 0;
4356 	F2FS_I(inode)->i_cluster_size =
4357 			BIT(F2FS_I(inode)->i_log_cluster_size);
4358 	if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4359 		F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4360 			F2FS_OPTION(sbi).compress_level)
4361 		F2FS_I(inode)->i_compress_level =
4362 				F2FS_OPTION(sbi).compress_level;
4363 	F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4364 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4365 	stat_inc_compr_inode(inode);
4366 	inc_compr_inode_stat(inode);
4367 	f2fs_mark_inode_dirty_sync(inode, true);
4368 	return 0;
4369 #else
4370 	return -EOPNOTSUPP;
4371 #endif
4372 }
4373 
f2fs_disable_compressed_file(struct inode * inode)4374 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4375 {
4376 	struct f2fs_inode_info *fi = F2FS_I(inode);
4377 
4378 	if (!f2fs_compressed_file(inode))
4379 		return true;
4380 	if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4381 		return false;
4382 
4383 	fi->i_flags &= ~F2FS_COMPR_FL;
4384 	stat_dec_compr_inode(inode);
4385 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4386 	f2fs_mark_inode_dirty_sync(inode, true);
4387 	return true;
4388 }
4389 
4390 #define F2FS_FEATURE_FUNCS(name, flagname) \
4391 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4392 { \
4393 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4394 }
4395 
4396 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4397 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4398 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4399 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4400 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4401 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4402 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4403 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4404 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4405 F2FS_FEATURE_FUNCS(verity, VERITY);
4406 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4407 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4408 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4409 F2FS_FEATURE_FUNCS(readonly, RO);
4410 
4411 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4412 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4413 				    block_t blkaddr)
4414 {
4415 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4416 
4417 	return test_bit(zno, FDEV(devi).blkz_seq);
4418 }
4419 #endif
4420 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4421 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4422 {
4423 	return f2fs_sb_has_blkzoned(sbi);
4424 }
4425 
f2fs_bdev_support_discard(struct block_device * bdev)4426 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4427 {
4428 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4429 }
4430 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4431 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4432 {
4433 	int i;
4434 
4435 	if (!f2fs_is_multi_device(sbi))
4436 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4437 
4438 	for (i = 0; i < sbi->s_ndevs; i++)
4439 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4440 			return true;
4441 	return false;
4442 }
4443 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4444 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4445 {
4446 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4447 					f2fs_hw_should_discard(sbi);
4448 }
4449 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4450 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4451 {
4452 	int i;
4453 
4454 	if (!f2fs_is_multi_device(sbi))
4455 		return bdev_read_only(sbi->sb->s_bdev);
4456 
4457 	for (i = 0; i < sbi->s_ndevs; i++)
4458 		if (bdev_read_only(FDEV(i).bdev))
4459 			return true;
4460 	return false;
4461 }
4462 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4463 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4464 {
4465 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4466 }
4467 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4468 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4469 {
4470 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4471 }
4472 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4473 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4474 {
4475 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4476 }
4477 
f2fs_may_compress(struct inode * inode)4478 static inline bool f2fs_may_compress(struct inode *inode)
4479 {
4480 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4481 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4482 		f2fs_is_mmap_file(inode))
4483 		return false;
4484 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4485 }
4486 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4487 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4488 						u64 blocks, bool add)
4489 {
4490 	struct f2fs_inode_info *fi = F2FS_I(inode);
4491 	int diff = fi->i_cluster_size - blocks;
4492 
4493 	/* don't update i_compr_blocks if saved blocks were released */
4494 	if (!add && !atomic_read(&fi->i_compr_blocks))
4495 		return;
4496 
4497 	if (add) {
4498 		atomic_add(diff, &fi->i_compr_blocks);
4499 		stat_add_compr_blocks(inode, diff);
4500 	} else {
4501 		atomic_sub(diff, &fi->i_compr_blocks);
4502 		stat_sub_compr_blocks(inode, diff);
4503 	}
4504 	f2fs_mark_inode_dirty_sync(inode, true);
4505 }
4506 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4507 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4508 								int flag)
4509 {
4510 	if (!f2fs_is_multi_device(sbi))
4511 		return false;
4512 	if (flag != F2FS_GET_BLOCK_DIO)
4513 		return false;
4514 	return sbi->aligned_blksize;
4515 }
4516 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4517 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4518 {
4519 	return fsverity_active(inode) &&
4520 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4521 }
4522 
4523 #ifdef CONFIG_F2FS_FAULT_INJECTION
4524 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4525 							unsigned int type);
4526 #else
4527 #define f2fs_build_fault_attr(sbi, rate, type)		do { } while (0)
4528 #endif
4529 
is_journalled_quota(struct f2fs_sb_info * sbi)4530 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4531 {
4532 #ifdef CONFIG_QUOTA
4533 	if (f2fs_sb_has_quota_ino(sbi))
4534 		return true;
4535 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4536 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4537 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4538 		return true;
4539 #endif
4540 	return false;
4541 }
4542 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4543 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4544 {
4545 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4546 }
4547 
f2fs_io_schedule_timeout(long timeout)4548 static inline void f2fs_io_schedule_timeout(long timeout)
4549 {
4550 	set_current_state(TASK_UNINTERRUPTIBLE);
4551 	io_schedule_timeout(timeout);
4552 }
4553 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4554 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4555 					enum page_type type)
4556 {
4557 	if (unlikely(f2fs_cp_error(sbi)))
4558 		return;
4559 
4560 	if (ofs == sbi->page_eio_ofs[type]) {
4561 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4562 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4563 	} else {
4564 		sbi->page_eio_ofs[type] = ofs;
4565 		sbi->page_eio_cnt[type] = 0;
4566 	}
4567 }
4568 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4569 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4570 {
4571 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4572 }
4573 
4574 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4575 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4576 
4577 #endif /* _LINUX_F2FS_H */
4578