1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/part_stat.h>
27 #include <crypto/hash.h>
28
29 #include <linux/fscrypt.h>
30 #include <linux/fsverity.h>
31
32 struct pagevec;
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (WARN_ON(condition)) \
40 set_sbi_flag(sbi, SBI_NEED_FSCK); \
41 } while (0)
42 #endif
43
44 enum {
45 FAULT_KMALLOC,
46 FAULT_KVMALLOC,
47 FAULT_PAGE_ALLOC,
48 FAULT_PAGE_GET,
49 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_READ_IO,
57 FAULT_CHECKPOINT,
58 FAULT_DISCARD,
59 FAULT_WRITE_IO,
60 FAULT_SLAB_ALLOC,
61 FAULT_DQUOT_INIT,
62 FAULT_LOCK_OP,
63 FAULT_BLKADDR_VALIDITY,
64 FAULT_BLKADDR_CONSISTENCE,
65 FAULT_MAX,
66 };
67
68 #ifdef CONFIG_F2FS_FAULT_INJECTION
69 #define F2FS_ALL_FAULT_TYPE (GENMASK(FAULT_MAX - 1, 0))
70
71 struct f2fs_fault_info {
72 atomic_t inject_ops;
73 unsigned int inject_rate;
74 unsigned int inject_type;
75 };
76
77 extern const char *f2fs_fault_name[FAULT_MAX];
78 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
79 #endif
80
81 /*
82 * For mount options
83 */
84 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
85 #define F2FS_MOUNT_DISCARD 0x00000004
86 #define F2FS_MOUNT_NOHEAP 0x00000008
87 #define F2FS_MOUNT_XATTR_USER 0x00000010
88 #define F2FS_MOUNT_POSIX_ACL 0x00000020
89 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
90 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
91 #define F2FS_MOUNT_INLINE_DATA 0x00000100
92 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
93 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
94 #define F2FS_MOUNT_NOBARRIER 0x00000800
95 #define F2FS_MOUNT_FASTBOOT 0x00001000
96 #define F2FS_MOUNT_READ_EXTENT_CACHE 0x00002000
97 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
98 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
99 #define F2FS_MOUNT_USRQUOTA 0x00080000
100 #define F2FS_MOUNT_GRPQUOTA 0x00100000
101 #define F2FS_MOUNT_PRJQUOTA 0x00200000
102 #define F2FS_MOUNT_QUOTA 0x00400000
103 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
104 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
105 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
106 #define F2FS_MOUNT_NORECOVERY 0x04000000
107 #define F2FS_MOUNT_ATGC 0x08000000
108 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
109 #define F2FS_MOUNT_GC_MERGE 0x20000000
110 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000
111 #define F2FS_MOUNT_AGE_EXTENT_CACHE 0x80000000
112
113 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
114 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
115 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
116 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
117
118 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
119 typecheck(unsigned long long, b) && \
120 ((long long)((a) - (b)) > 0))
121
122 typedef u32 block_t; /*
123 * should not change u32, since it is the on-disk block
124 * address format, __le32.
125 */
126 typedef u32 nid_t;
127
128 #define COMPRESS_EXT_NUM 16
129
130 /*
131 * An implementation of an rwsem that is explicitly unfair to readers. This
132 * prevents priority inversion when a low-priority reader acquires the read lock
133 * while sleeping on the write lock but the write lock is needed by
134 * higher-priority clients.
135 */
136
137 struct f2fs_rwsem {
138 struct rw_semaphore internal_rwsem;
139 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
140 wait_queue_head_t read_waiters;
141 #endif
142 };
143
144 struct f2fs_mount_info {
145 unsigned int opt;
146 int write_io_size_bits; /* Write IO size bits */
147 block_t root_reserved_blocks; /* root reserved blocks */
148 kuid_t s_resuid; /* reserved blocks for uid */
149 kgid_t s_resgid; /* reserved blocks for gid */
150 int active_logs; /* # of active logs */
151 int inline_xattr_size; /* inline xattr size */
152 #ifdef CONFIG_F2FS_FAULT_INJECTION
153 struct f2fs_fault_info fault_info; /* For fault injection */
154 #endif
155 #ifdef CONFIG_QUOTA
156 /* Names of quota files with journalled quota */
157 char *s_qf_names[MAXQUOTAS];
158 int s_jquota_fmt; /* Format of quota to use */
159 #endif
160 /* For which write hints are passed down to block layer */
161 int alloc_mode; /* segment allocation policy */
162 int fsync_mode; /* fsync policy */
163 int fs_mode; /* fs mode: LFS or ADAPTIVE */
164 int bggc_mode; /* bggc mode: off, on or sync */
165 int memory_mode; /* memory mode */
166 int discard_unit; /*
167 * discard command's offset/size should
168 * be aligned to this unit: block,
169 * segment or section
170 */
171 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
172 block_t unusable_cap_perc; /* percentage for cap */
173 block_t unusable_cap; /* Amount of space allowed to be
174 * unusable when disabling checkpoint
175 */
176
177 /* For compression */
178 unsigned char compress_algorithm; /* algorithm type */
179 unsigned char compress_log_size; /* cluster log size */
180 unsigned char compress_level; /* compress level */
181 bool compress_chksum; /* compressed data chksum */
182 unsigned char compress_ext_cnt; /* extension count */
183 unsigned char nocompress_ext_cnt; /* nocompress extension count */
184 int compress_mode; /* compression mode */
185 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
186 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
187 };
188
189 #define F2FS_FEATURE_ENCRYPT 0x0001
190 #define F2FS_FEATURE_BLKZONED 0x0002
191 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
192 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
193 #define F2FS_FEATURE_PRJQUOTA 0x0010
194 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
195 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
196 #define F2FS_FEATURE_QUOTA_INO 0x0080
197 #define F2FS_FEATURE_INODE_CRTIME 0x0100
198 #define F2FS_FEATURE_LOST_FOUND 0x0200
199 #define F2FS_FEATURE_VERITY 0x0400
200 #define F2FS_FEATURE_SB_CHKSUM 0x0800
201 #define F2FS_FEATURE_CASEFOLD 0x1000
202 #define F2FS_FEATURE_COMPRESSION 0x2000
203 #define F2FS_FEATURE_RO 0x4000
204
205 #define __F2FS_HAS_FEATURE(raw_super, mask) \
206 ((raw_super->feature & cpu_to_le32(mask)) != 0)
207 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
208
209 /*
210 * Default values for user and/or group using reserved blocks
211 */
212 #define F2FS_DEF_RESUID 0
213 #define F2FS_DEF_RESGID 0
214
215 /*
216 * For checkpoint manager
217 */
218 enum {
219 NAT_BITMAP,
220 SIT_BITMAP
221 };
222
223 #define CP_UMOUNT 0x00000001
224 #define CP_FASTBOOT 0x00000002
225 #define CP_SYNC 0x00000004
226 #define CP_RECOVERY 0x00000008
227 #define CP_DISCARD 0x00000010
228 #define CP_TRIMMED 0x00000020
229 #define CP_PAUSE 0x00000040
230 #define CP_RESIZE 0x00000080
231
232 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
237 #define DEF_CP_INTERVAL 60 /* 60 secs */
238 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
239 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
242
243 struct cp_control {
244 int reason;
245 __u64 trim_start;
246 __u64 trim_end;
247 __u64 trim_minlen;
248 };
249
250 /*
251 * indicate meta/data type
252 */
253 enum {
254 META_CP,
255 META_NAT,
256 META_SIT,
257 META_SSA,
258 META_MAX,
259 META_POR,
260 DATA_GENERIC, /* check range only */
261 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
262 DATA_GENERIC_ENHANCE_READ, /*
263 * strong check on range and segment
264 * bitmap but no warning due to race
265 * condition of read on truncated area
266 * by extent_cache
267 */
268 DATA_GENERIC_ENHANCE_UPDATE, /*
269 * strong check on range and segment
270 * bitmap for update case
271 */
272 META_GENERIC,
273 };
274
275 /* for the list of ino */
276 enum {
277 ORPHAN_INO, /* for orphan ino list */
278 APPEND_INO, /* for append ino list */
279 UPDATE_INO, /* for update ino list */
280 TRANS_DIR_INO, /* for transactions dir ino list */
281 FLUSH_INO, /* for multiple device flushing */
282 MAX_INO_ENTRY, /* max. list */
283 };
284
285 struct ino_entry {
286 struct list_head list; /* list head */
287 nid_t ino; /* inode number */
288 unsigned int dirty_device; /* dirty device bitmap */
289 };
290
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 struct list_head list; /* list head */
294 struct inode *inode; /* vfs inode pointer */
295 };
296
297 struct fsync_node_entry {
298 struct list_head list; /* list head */
299 struct page *page; /* warm node page pointer */
300 unsigned int seq_id; /* sequence id */
301 };
302
303 struct ckpt_req {
304 struct completion wait; /* completion for checkpoint done */
305 struct llist_node llnode; /* llist_node to be linked in wait queue */
306 int ret; /* return code of checkpoint */
307 ktime_t queue_time; /* request queued time */
308 };
309
310 struct ckpt_req_control {
311 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
312 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
313 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
314 atomic_t issued_ckpt; /* # of actually issued ckpts */
315 atomic_t total_ckpt; /* # of total ckpts */
316 atomic_t queued_ckpt; /* # of queued ckpts */
317 struct llist_head issue_list; /* list for command issue */
318 spinlock_t stat_lock; /* lock for below checkpoint time stats */
319 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
320 unsigned int peak_time; /* peak wait time in msec until now */
321 };
322
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 struct list_head list; /* list head */
326 block_t start_blkaddr; /* start blockaddr of current segment */
327 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
328 };
329
330 /* minimum discard granularity, unit: block count */
331 #define MIN_DISCARD_GRANULARITY 1
332 /* default discard granularity of inner discard thread, unit: block count */
333 #define DEFAULT_DISCARD_GRANULARITY 16
334 /* default maximum discard granularity of ordered discard, unit: block count */
335 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY 16
336
337 /* max discard pend list number */
338 #define MAX_PLIST_NUM 512
339 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
340 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
341
342 enum {
343 D_PREP, /* initial */
344 D_PARTIAL, /* partially submitted */
345 D_SUBMIT, /* all submitted */
346 D_DONE, /* finished */
347 };
348
349 struct discard_info {
350 block_t lstart; /* logical start address */
351 block_t len; /* length */
352 block_t start; /* actual start address in dev */
353 };
354
355 struct discard_cmd {
356 struct rb_node rb_node; /* rb node located in rb-tree */
357 struct discard_info di; /* discard info */
358 struct list_head list; /* command list */
359 struct completion wait; /* compleation */
360 struct block_device *bdev; /* bdev */
361 unsigned short ref; /* reference count */
362 unsigned char state; /* state */
363 unsigned char queued; /* queued discard */
364 int error; /* bio error */
365 spinlock_t lock; /* for state/bio_ref updating */
366 unsigned short bio_ref; /* bio reference count */
367 };
368
369 enum {
370 DPOLICY_BG,
371 DPOLICY_FORCE,
372 DPOLICY_FSTRIM,
373 DPOLICY_UMOUNT,
374 MAX_DPOLICY,
375 };
376
377 struct discard_policy {
378 int type; /* type of discard */
379 unsigned int min_interval; /* used for candidates exist */
380 unsigned int mid_interval; /* used for device busy */
381 unsigned int max_interval; /* used for candidates not exist */
382 unsigned int max_requests; /* # of discards issued per round */
383 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
384 bool io_aware; /* issue discard in idle time */
385 bool sync; /* submit discard with REQ_SYNC flag */
386 bool ordered; /* issue discard by lba order */
387 bool timeout; /* discard timeout for put_super */
388 unsigned int granularity; /* discard granularity */
389 };
390
391 struct discard_cmd_control {
392 struct task_struct *f2fs_issue_discard; /* discard thread */
393 struct list_head entry_list; /* 4KB discard entry list */
394 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
395 struct list_head wait_list; /* store on-flushing entries */
396 struct list_head fstrim_list; /* in-flight discard from fstrim */
397 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
398 struct mutex cmd_lock;
399 unsigned int nr_discards; /* # of discards in the list */
400 unsigned int max_discards; /* max. discards to be issued */
401 unsigned int max_discard_request; /* max. discard request per round */
402 unsigned int min_discard_issue_time; /* min. interval between discard issue */
403 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
404 unsigned int max_discard_issue_time; /* max. interval between discard issue */
405 unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
406 unsigned int discard_urgent_util; /* utilization which issue discard proactively */
407 unsigned int discard_granularity; /* discard granularity */
408 unsigned int max_ordered_discard; /* maximum discard granularity issued by lba order */
409 unsigned int undiscard_blks; /* # of undiscard blocks */
410 unsigned int next_pos; /* next discard position */
411 atomic_t issued_discard; /* # of issued discard */
412 atomic_t queued_discard; /* # of queued discard */
413 atomic_t discard_cmd_cnt; /* # of cached cmd count */
414 struct rb_root_cached root; /* root of discard rb-tree */
415 bool rbtree_check; /* config for consistence check */
416 bool discard_wake; /* to wake up discard thread */
417 };
418
419 /* for the list of fsync inodes, used only during recovery */
420 struct fsync_inode_entry {
421 struct list_head list; /* list head */
422 struct inode *inode; /* vfs inode pointer */
423 block_t blkaddr; /* block address locating the last fsync */
424 block_t last_dentry; /* block address locating the last dentry */
425 };
426
427 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
428 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
429
430 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
431 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
432 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
433 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
434
435 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
436 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
437
update_nats_in_cursum(struct f2fs_journal * journal,int i)438 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
439 {
440 int before = nats_in_cursum(journal);
441
442 journal->n_nats = cpu_to_le16(before + i);
443 return before;
444 }
445
update_sits_in_cursum(struct f2fs_journal * journal,int i)446 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
447 {
448 int before = sits_in_cursum(journal);
449
450 journal->n_sits = cpu_to_le16(before + i);
451 return before;
452 }
453
__has_cursum_space(struct f2fs_journal * journal,int size,int type)454 static inline bool __has_cursum_space(struct f2fs_journal *journal,
455 int size, int type)
456 {
457 if (type == NAT_JOURNAL)
458 return size <= MAX_NAT_JENTRIES(journal);
459 return size <= MAX_SIT_JENTRIES(journal);
460 }
461
462 /* for inline stuff */
463 #define DEF_INLINE_RESERVED_SIZE 1
464 static inline int get_extra_isize(struct inode *inode);
465 static inline int get_inline_xattr_addrs(struct inode *inode);
466 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
467 (CUR_ADDRS_PER_INODE(inode) - \
468 get_inline_xattr_addrs(inode) - \
469 DEF_INLINE_RESERVED_SIZE))
470
471 /* for inline dir */
472 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
473 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
474 BITS_PER_BYTE + 1))
475 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
476 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
477 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
478 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
479 NR_INLINE_DENTRY(inode) + \
480 INLINE_DENTRY_BITMAP_SIZE(inode)))
481
482 /*
483 * For INODE and NODE manager
484 */
485 /* for directory operations */
486
487 struct f2fs_filename {
488 /*
489 * The filename the user specified. This is NULL for some
490 * filesystem-internal operations, e.g. converting an inline directory
491 * to a non-inline one, or roll-forward recovering an encrypted dentry.
492 */
493 const struct qstr *usr_fname;
494
495 /*
496 * The on-disk filename. For encrypted directories, this is encrypted.
497 * This may be NULL for lookups in an encrypted dir without the key.
498 */
499 struct fscrypt_str disk_name;
500
501 /* The dirhash of this filename */
502 f2fs_hash_t hash;
503
504 #ifdef CONFIG_FS_ENCRYPTION
505 /*
506 * For lookups in encrypted directories: either the buffer backing
507 * disk_name, or a buffer that holds the decoded no-key name.
508 */
509 struct fscrypt_str crypto_buf;
510 #endif
511 #if IS_ENABLED(CONFIG_UNICODE)
512 /*
513 * For casefolded directories: the casefolded name, but it's left NULL
514 * if the original name is not valid Unicode, if the original name is
515 * "." or "..", if the directory is both casefolded and encrypted and
516 * its encryption key is unavailable, or if the filesystem is doing an
517 * internal operation where usr_fname is also NULL. In all these cases
518 * we fall back to treating the name as an opaque byte sequence.
519 */
520 struct fscrypt_str cf_name;
521 #endif
522 };
523
524 struct f2fs_dentry_ptr {
525 struct inode *inode;
526 void *bitmap;
527 struct f2fs_dir_entry *dentry;
528 __u8 (*filename)[F2FS_SLOT_LEN];
529 int max;
530 int nr_bitmap;
531 };
532
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)533 static inline void make_dentry_ptr_block(struct inode *inode,
534 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
535 {
536 d->inode = inode;
537 d->max = NR_DENTRY_IN_BLOCK;
538 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
539 d->bitmap = t->dentry_bitmap;
540 d->dentry = t->dentry;
541 d->filename = t->filename;
542 }
543
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)544 static inline void make_dentry_ptr_inline(struct inode *inode,
545 struct f2fs_dentry_ptr *d, void *t)
546 {
547 int entry_cnt = NR_INLINE_DENTRY(inode);
548 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
549 int reserved_size = INLINE_RESERVED_SIZE(inode);
550
551 d->inode = inode;
552 d->max = entry_cnt;
553 d->nr_bitmap = bitmap_size;
554 d->bitmap = t;
555 d->dentry = t + bitmap_size + reserved_size;
556 d->filename = t + bitmap_size + reserved_size +
557 SIZE_OF_DIR_ENTRY * entry_cnt;
558 }
559
560 /*
561 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
562 * as its node offset to distinguish from index node blocks.
563 * But some bits are used to mark the node block.
564 */
565 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
566 >> OFFSET_BIT_SHIFT)
567 enum {
568 ALLOC_NODE, /* allocate a new node page if needed */
569 LOOKUP_NODE, /* look up a node without readahead */
570 LOOKUP_NODE_RA, /*
571 * look up a node with readahead called
572 * by get_data_block.
573 */
574 };
575
576 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
577
578 /* congestion wait timeout value, default: 20ms */
579 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
580
581 /* maximum retry quota flush count */
582 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
583
584 /* maximum retry of EIO'ed page */
585 #define MAX_RETRY_PAGE_EIO 100
586
587 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
588
589 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
590
591 /* dirty segments threshold for triggering CP */
592 #define DEFAULT_DIRTY_THRESHOLD 4
593
594 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
595 #define RECOVERY_MIN_RA_BLOCKS 1
596
597 #define F2FS_ONSTACK_PAGES 16 /* nr of onstack pages */
598
599 /* for in-memory extent cache entry */
600 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
601
602 /* number of extent info in extent cache we try to shrink */
603 #define READ_EXTENT_CACHE_SHRINK_NUMBER 128
604
605 /* number of age extent info in extent cache we try to shrink */
606 #define AGE_EXTENT_CACHE_SHRINK_NUMBER 128
607 #define LAST_AGE_WEIGHT 30
608 #define SAME_AGE_REGION 1024
609
610 /*
611 * Define data block with age less than 1GB as hot data
612 * define data block with age less than 10GB but more than 1GB as warm data
613 */
614 #define DEF_HOT_DATA_AGE_THRESHOLD 262144
615 #define DEF_WARM_DATA_AGE_THRESHOLD 2621440
616
617 /* extent cache type */
618 enum extent_type {
619 EX_READ,
620 EX_BLOCK_AGE,
621 NR_EXTENT_CACHES,
622 };
623
624 struct extent_info {
625 unsigned int fofs; /* start offset in a file */
626 unsigned int len; /* length of the extent */
627 union {
628 /* read extent_cache */
629 struct {
630 /* start block address of the extent */
631 block_t blk;
632 #ifdef CONFIG_F2FS_FS_COMPRESSION
633 /* physical extent length of compressed blocks */
634 unsigned int c_len;
635 #endif
636 };
637 /* block age extent_cache */
638 struct {
639 /* block age of the extent */
640 unsigned long long age;
641 /* last total blocks allocated */
642 unsigned long long last_blocks;
643 };
644 };
645 };
646
647 struct extent_node {
648 struct rb_node rb_node; /* rb node located in rb-tree */
649 struct extent_info ei; /* extent info */
650 struct list_head list; /* node in global extent list of sbi */
651 struct extent_tree *et; /* extent tree pointer */
652 };
653
654 struct extent_tree {
655 nid_t ino; /* inode number */
656 enum extent_type type; /* keep the extent tree type */
657 struct rb_root_cached root; /* root of extent info rb-tree */
658 struct extent_node *cached_en; /* recently accessed extent node */
659 struct list_head list; /* to be used by sbi->zombie_list */
660 rwlock_t lock; /* protect extent info rb-tree */
661 atomic_t node_cnt; /* # of extent node in rb-tree*/
662 bool largest_updated; /* largest extent updated */
663 struct extent_info largest; /* largest cached extent for EX_READ */
664 };
665
666 struct extent_tree_info {
667 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
668 struct mutex extent_tree_lock; /* locking extent radix tree */
669 struct list_head extent_list; /* lru list for shrinker */
670 spinlock_t extent_lock; /* locking extent lru list */
671 atomic_t total_ext_tree; /* extent tree count */
672 struct list_head zombie_list; /* extent zombie tree list */
673 atomic_t total_zombie_tree; /* extent zombie tree count */
674 atomic_t total_ext_node; /* extent info count */
675 };
676
677 /*
678 * State of block returned by f2fs_map_blocks.
679 */
680 #define F2FS_MAP_NEW (1U << 0)
681 #define F2FS_MAP_MAPPED (1U << 1)
682 #define F2FS_MAP_DELALLOC (1U << 2)
683 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
684 F2FS_MAP_DELALLOC)
685
686 struct f2fs_map_blocks {
687 struct block_device *m_bdev; /* for multi-device dio */
688 block_t m_pblk;
689 block_t m_lblk;
690 unsigned int m_len;
691 unsigned int m_flags;
692 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
693 pgoff_t *m_next_extent; /* point to next possible extent */
694 int m_seg_type;
695 bool m_may_create; /* indicate it is from write path */
696 bool m_multidev_dio; /* indicate it allows multi-device dio */
697 };
698
699 /* for flag in get_data_block */
700 enum {
701 F2FS_GET_BLOCK_DEFAULT,
702 F2FS_GET_BLOCK_FIEMAP,
703 F2FS_GET_BLOCK_BMAP,
704 F2FS_GET_BLOCK_DIO,
705 F2FS_GET_BLOCK_PRE_DIO,
706 F2FS_GET_BLOCK_PRE_AIO,
707 F2FS_GET_BLOCK_PRECACHE,
708 };
709
710 /*
711 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
712 */
713 #define FADVISE_COLD_BIT 0x01
714 #define FADVISE_LOST_PINO_BIT 0x02
715 #define FADVISE_ENCRYPT_BIT 0x04
716 #define FADVISE_ENC_NAME_BIT 0x08
717 #define FADVISE_KEEP_SIZE_BIT 0x10
718 #define FADVISE_HOT_BIT 0x20
719 #define FADVISE_VERITY_BIT 0x40
720 #define FADVISE_TRUNC_BIT 0x80
721
722 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
723
724 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
725 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
726 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
727
728 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
729 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
730 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
731
732 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
733 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
734
735 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
736 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
737
738 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
739 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
740
741 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
742 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
743 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
744
745 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
746 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
747
748 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
749 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
750 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
751
752 #define DEF_DIR_LEVEL 0
753
754 enum {
755 GC_FAILURE_PIN,
756 MAX_GC_FAILURE
757 };
758
759 /* used for f2fs_inode_info->flags */
760 enum {
761 FI_NEW_INODE, /* indicate newly allocated inode */
762 FI_DIRTY_INODE, /* indicate inode is dirty or not */
763 FI_AUTO_RECOVER, /* indicate inode is recoverable */
764 FI_DIRTY_DIR, /* indicate directory has dirty pages */
765 FI_INC_LINK, /* need to increment i_nlink */
766 FI_ACL_MODE, /* indicate acl mode */
767 FI_NO_ALLOC, /* should not allocate any blocks */
768 FI_FREE_NID, /* free allocated nide */
769 FI_NO_EXTENT, /* not to use the extent cache */
770 FI_INLINE_XATTR, /* used for inline xattr */
771 FI_INLINE_DATA, /* used for inline data*/
772 FI_INLINE_DENTRY, /* used for inline dentry */
773 FI_APPEND_WRITE, /* inode has appended data */
774 FI_UPDATE_WRITE, /* inode has in-place-update data */
775 FI_NEED_IPU, /* used for ipu per file */
776 FI_ATOMIC_FILE, /* indicate atomic file */
777 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
778 FI_DROP_CACHE, /* drop dirty page cache */
779 FI_DATA_EXIST, /* indicate data exists */
780 FI_INLINE_DOTS, /* indicate inline dot dentries */
781 FI_SKIP_WRITES, /* should skip data page writeback */
782 FI_OPU_WRITE, /* used for opu per file */
783 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
784 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
785 FI_HOT_DATA, /* indicate file is hot */
786 FI_EXTRA_ATTR, /* indicate file has extra attribute */
787 FI_PROJ_INHERIT, /* indicate file inherits projectid */
788 FI_PIN_FILE, /* indicate file should not be gced */
789 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
790 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
791 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
792 FI_MMAP_FILE, /* indicate file was mmapped */
793 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
794 FI_COMPRESS_RELEASED, /* compressed blocks were released */
795 FI_ALIGNED_WRITE, /* enable aligned write */
796 FI_COW_FILE, /* indicate COW file */
797 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
798 FI_ATOMIC_REPLACE, /* indicate atomic replace */
799 FI_MAX, /* max flag, never be used */
800 };
801
802 struct f2fs_inode_info {
803 struct inode vfs_inode; /* serve a vfs inode */
804 unsigned long i_flags; /* keep an inode flags for ioctl */
805 unsigned char i_advise; /* use to give file attribute hints */
806 unsigned char i_dir_level; /* use for dentry level for large dir */
807 unsigned int i_current_depth; /* only for directory depth */
808 /* for gc failure statistic */
809 unsigned int i_gc_failures[MAX_GC_FAILURE];
810 unsigned int i_pino; /* parent inode number */
811 umode_t i_acl_mode; /* keep file acl mode temporarily */
812
813 /* Use below internally in f2fs*/
814 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
815 struct f2fs_rwsem i_sem; /* protect fi info */
816 atomic_t dirty_pages; /* # of dirty pages */
817 f2fs_hash_t chash; /* hash value of given file name */
818 unsigned int clevel; /* maximum level of given file name */
819 struct task_struct *task; /* lookup and create consistency */
820 struct task_struct *cp_task; /* separate cp/wb IO stats*/
821 struct task_struct *wb_task; /* indicate inode is in context of writeback */
822 nid_t i_xattr_nid; /* node id that contains xattrs */
823 loff_t last_disk_size; /* lastly written file size */
824 spinlock_t i_size_lock; /* protect last_disk_size */
825
826 #ifdef CONFIG_QUOTA
827 struct dquot *i_dquot[MAXQUOTAS];
828
829 /* quota space reservation, managed internally by quota code */
830 qsize_t i_reserved_quota;
831 #endif
832 struct list_head dirty_list; /* dirty list for dirs and files */
833 struct list_head gdirty_list; /* linked in global dirty list */
834 struct task_struct *atomic_write_task; /* store atomic write task */
835 struct extent_tree *extent_tree[NR_EXTENT_CACHES];
836 /* cached extent_tree entry */
837 struct inode *cow_inode; /* copy-on-write inode for atomic write */
838
839 /* avoid racing between foreground op and gc */
840 struct f2fs_rwsem i_gc_rwsem[2];
841 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
842
843 int i_extra_isize; /* size of extra space located in i_addr */
844 kprojid_t i_projid; /* id for project quota */
845 int i_inline_xattr_size; /* inline xattr size */
846 struct timespec64 i_crtime; /* inode creation time */
847 struct timespec64 i_disk_time[3];/* inode disk times */
848
849 /* for file compress */
850 atomic_t i_compr_blocks; /* # of compressed blocks */
851 unsigned char i_compress_algorithm; /* algorithm type */
852 unsigned char i_log_cluster_size; /* log of cluster size */
853 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
854 unsigned char i_compress_flag; /* compress flag */
855 unsigned int i_cluster_size; /* cluster size */
856
857 unsigned int atomic_write_cnt;
858 loff_t original_i_size; /* original i_size before atomic write */
859 };
860
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)861 static inline void get_read_extent_info(struct extent_info *ext,
862 struct f2fs_extent *i_ext)
863 {
864 ext->fofs = le32_to_cpu(i_ext->fofs);
865 ext->blk = le32_to_cpu(i_ext->blk);
866 ext->len = le32_to_cpu(i_ext->len);
867 }
868
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)869 static inline void set_raw_read_extent(struct extent_info *ext,
870 struct f2fs_extent *i_ext)
871 {
872 i_ext->fofs = cpu_to_le32(ext->fofs);
873 i_ext->blk = cpu_to_le32(ext->blk);
874 i_ext->len = cpu_to_le32(ext->len);
875 }
876
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)877 static inline bool __is_discard_mergeable(struct discard_info *back,
878 struct discard_info *front, unsigned int max_len)
879 {
880 return (back->lstart + back->len == front->lstart) &&
881 (back->len + front->len <= max_len);
882 }
883
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)884 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
885 struct discard_info *back, unsigned int max_len)
886 {
887 return __is_discard_mergeable(back, cur, max_len);
888 }
889
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)890 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
891 struct discard_info *front, unsigned int max_len)
892 {
893 return __is_discard_mergeable(cur, front, max_len);
894 }
895
896 /*
897 * For free nid management
898 */
899 enum nid_state {
900 FREE_NID, /* newly added to free nid list */
901 PREALLOC_NID, /* it is preallocated */
902 MAX_NID_STATE,
903 };
904
905 enum nat_state {
906 TOTAL_NAT,
907 DIRTY_NAT,
908 RECLAIMABLE_NAT,
909 MAX_NAT_STATE,
910 };
911
912 struct f2fs_nm_info {
913 block_t nat_blkaddr; /* base disk address of NAT */
914 nid_t max_nid; /* maximum possible node ids */
915 nid_t available_nids; /* # of available node ids */
916 nid_t next_scan_nid; /* the next nid to be scanned */
917 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
918 unsigned int ram_thresh; /* control the memory footprint */
919 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
920 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
921
922 /* NAT cache management */
923 struct radix_tree_root nat_root;/* root of the nat entry cache */
924 struct radix_tree_root nat_set_root;/* root of the nat set cache */
925 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
926 struct list_head nat_entries; /* cached nat entry list (clean) */
927 spinlock_t nat_list_lock; /* protect clean nat entry list */
928 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
929 unsigned int nat_blocks; /* # of nat blocks */
930
931 /* free node ids management */
932 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
933 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
934 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
935 spinlock_t nid_list_lock; /* protect nid lists ops */
936 struct mutex build_lock; /* lock for build free nids */
937 unsigned char **free_nid_bitmap;
938 unsigned char *nat_block_bitmap;
939 unsigned short *free_nid_count; /* free nid count of NAT block */
940
941 /* for checkpoint */
942 char *nat_bitmap; /* NAT bitmap pointer */
943
944 unsigned int nat_bits_blocks; /* # of nat bits blocks */
945 unsigned char *nat_bits; /* NAT bits blocks */
946 unsigned char *full_nat_bits; /* full NAT pages */
947 unsigned char *empty_nat_bits; /* empty NAT pages */
948 #ifdef CONFIG_F2FS_CHECK_FS
949 char *nat_bitmap_mir; /* NAT bitmap mirror */
950 #endif
951 int bitmap_size; /* bitmap size */
952 };
953
954 /*
955 * this structure is used as one of function parameters.
956 * all the information are dedicated to a given direct node block determined
957 * by the data offset in a file.
958 */
959 struct dnode_of_data {
960 struct inode *inode; /* vfs inode pointer */
961 struct page *inode_page; /* its inode page, NULL is possible */
962 struct page *node_page; /* cached direct node page */
963 nid_t nid; /* node id of the direct node block */
964 unsigned int ofs_in_node; /* data offset in the node page */
965 bool inode_page_locked; /* inode page is locked or not */
966 bool node_changed; /* is node block changed */
967 char cur_level; /* level of hole node page */
968 char max_level; /* level of current page located */
969 block_t data_blkaddr; /* block address of the node block */
970 };
971
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)972 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
973 struct page *ipage, struct page *npage, nid_t nid)
974 {
975 memset(dn, 0, sizeof(*dn));
976 dn->inode = inode;
977 dn->inode_page = ipage;
978 dn->node_page = npage;
979 dn->nid = nid;
980 }
981
982 /*
983 * For SIT manager
984 *
985 * By default, there are 6 active log areas across the whole main area.
986 * When considering hot and cold data separation to reduce cleaning overhead,
987 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
988 * respectively.
989 * In the current design, you should not change the numbers intentionally.
990 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
991 * logs individually according to the underlying devices. (default: 6)
992 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
993 * data and 8 for node logs.
994 */
995 #define NR_CURSEG_DATA_TYPE (3)
996 #define NR_CURSEG_NODE_TYPE (3)
997 #define NR_CURSEG_INMEM_TYPE (2)
998 #define NR_CURSEG_RO_TYPE (2)
999 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1000 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1001
1002 enum {
1003 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1004 CURSEG_WARM_DATA, /* data blocks */
1005 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1006 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1007 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1008 CURSEG_COLD_NODE, /* indirect node blocks */
1009 NR_PERSISTENT_LOG, /* number of persistent log */
1010 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1011 /* pinned file that needs consecutive block address */
1012 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1013 NO_CHECK_TYPE, /* number of persistent & inmem log */
1014 };
1015
1016 struct flush_cmd {
1017 struct completion wait;
1018 struct llist_node llnode;
1019 nid_t ino;
1020 int ret;
1021 };
1022
1023 struct flush_cmd_control {
1024 struct task_struct *f2fs_issue_flush; /* flush thread */
1025 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1026 atomic_t issued_flush; /* # of issued flushes */
1027 atomic_t queued_flush; /* # of queued flushes */
1028 struct llist_head issue_list; /* list for command issue */
1029 struct llist_node *dispatch_list; /* list for command dispatch */
1030 };
1031
1032 struct f2fs_sm_info {
1033 struct sit_info *sit_info; /* whole segment information */
1034 struct free_segmap_info *free_info; /* free segment information */
1035 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1036 struct curseg_info *curseg_array; /* active segment information */
1037
1038 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1039
1040 block_t seg0_blkaddr; /* block address of 0'th segment */
1041 block_t main_blkaddr; /* start block address of main area */
1042 block_t ssa_blkaddr; /* start block address of SSA area */
1043
1044 unsigned int segment_count; /* total # of segments */
1045 unsigned int main_segments; /* # of segments in main area */
1046 unsigned int reserved_segments; /* # of reserved segments */
1047 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1048 unsigned int ovp_segments; /* # of overprovision segments */
1049
1050 /* a threshold to reclaim prefree segments */
1051 unsigned int rec_prefree_segments;
1052
1053 struct list_head sit_entry_set; /* sit entry set list */
1054
1055 unsigned int ipu_policy; /* in-place-update policy */
1056 unsigned int min_ipu_util; /* in-place-update threshold */
1057 unsigned int min_fsync_blocks; /* threshold for fsync */
1058 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1059 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1060 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1061
1062 /* for flush command control */
1063 struct flush_cmd_control *fcc_info;
1064
1065 /* for discard command control */
1066 struct discard_cmd_control *dcc_info;
1067 };
1068
1069 /*
1070 * For superblock
1071 */
1072 /*
1073 * COUNT_TYPE for monitoring
1074 *
1075 * f2fs monitors the number of several block types such as on-writeback,
1076 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1077 */
1078 #define WB_DATA_TYPE(p, f) \
1079 (f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1080 enum count_type {
1081 F2FS_DIRTY_DENTS,
1082 F2FS_DIRTY_DATA,
1083 F2FS_DIRTY_QDATA,
1084 F2FS_DIRTY_NODES,
1085 F2FS_DIRTY_META,
1086 F2FS_DIRTY_IMETA,
1087 F2FS_WB_CP_DATA,
1088 F2FS_WB_DATA,
1089 F2FS_RD_DATA,
1090 F2FS_RD_NODE,
1091 F2FS_RD_META,
1092 F2FS_DIO_WRITE,
1093 F2FS_DIO_READ,
1094 NR_COUNT_TYPE,
1095 };
1096
1097 /*
1098 * The below are the page types of bios used in submit_bio().
1099 * The available types are:
1100 * DATA User data pages. It operates as async mode.
1101 * NODE Node pages. It operates as async mode.
1102 * META FS metadata pages such as SIT, NAT, CP.
1103 * NR_PAGE_TYPE The number of page types.
1104 * META_FLUSH Make sure the previous pages are written
1105 * with waiting the bio's completion
1106 * ... Only can be used with META.
1107 */
1108 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1109 enum page_type {
1110 DATA = 0,
1111 NODE = 1, /* should not change this */
1112 META,
1113 NR_PAGE_TYPE,
1114 META_FLUSH,
1115 IPU, /* the below types are used by tracepoints only. */
1116 OPU,
1117 };
1118
1119 enum temp_type {
1120 HOT = 0, /* must be zero for meta bio */
1121 WARM,
1122 COLD,
1123 NR_TEMP_TYPE,
1124 };
1125
1126 enum need_lock_type {
1127 LOCK_REQ = 0,
1128 LOCK_DONE,
1129 LOCK_RETRY,
1130 };
1131
1132 enum cp_reason_type {
1133 CP_NO_NEEDED,
1134 CP_NON_REGULAR,
1135 CP_COMPRESSED,
1136 CP_HARDLINK,
1137 CP_SB_NEED_CP,
1138 CP_WRONG_PINO,
1139 CP_NO_SPC_ROLL,
1140 CP_NODE_NEED_CP,
1141 CP_FASTBOOT_MODE,
1142 CP_SPEC_LOG_NUM,
1143 CP_RECOVER_DIR,
1144 };
1145
1146 enum iostat_type {
1147 /* WRITE IO */
1148 APP_DIRECT_IO, /* app direct write IOs */
1149 APP_BUFFERED_IO, /* app buffered write IOs */
1150 APP_WRITE_IO, /* app write IOs */
1151 APP_MAPPED_IO, /* app mapped IOs */
1152 APP_BUFFERED_CDATA_IO, /* app buffered write IOs on compressed file */
1153 APP_MAPPED_CDATA_IO, /* app mapped write IOs on compressed file */
1154 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1155 FS_CDATA_IO, /* data IOs from kworker/fsync/reclaimer on compressed file */
1156 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1157 FS_META_IO, /* meta IOs from kworker/reclaimer */
1158 FS_GC_DATA_IO, /* data IOs from forground gc */
1159 FS_GC_NODE_IO, /* node IOs from forground gc */
1160 FS_CP_DATA_IO, /* data IOs from checkpoint */
1161 FS_CP_NODE_IO, /* node IOs from checkpoint */
1162 FS_CP_META_IO, /* meta IOs from checkpoint */
1163
1164 /* READ IO */
1165 APP_DIRECT_READ_IO, /* app direct read IOs */
1166 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1167 APP_READ_IO, /* app read IOs */
1168 APP_MAPPED_READ_IO, /* app mapped read IOs */
1169 APP_BUFFERED_CDATA_READ_IO, /* app buffered read IOs on compressed file */
1170 APP_MAPPED_CDATA_READ_IO, /* app mapped read IOs on compressed file */
1171 FS_DATA_READ_IO, /* data read IOs */
1172 FS_GDATA_READ_IO, /* data read IOs from background gc */
1173 FS_CDATA_READ_IO, /* compressed data read IOs */
1174 FS_NODE_READ_IO, /* node read IOs */
1175 FS_META_READ_IO, /* meta read IOs */
1176
1177 /* other */
1178 FS_DISCARD_IO, /* discard */
1179 FS_FLUSH_IO, /* flush */
1180 NR_IO_TYPE,
1181 };
1182
1183 struct f2fs_io_info {
1184 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1185 nid_t ino; /* inode number */
1186 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1187 enum temp_type temp; /* contains HOT/WARM/COLD */
1188 enum req_op op; /* contains REQ_OP_ */
1189 blk_opf_t op_flags; /* req_flag_bits */
1190 block_t new_blkaddr; /* new block address to be written */
1191 block_t old_blkaddr; /* old block address before Cow */
1192 struct page *page; /* page to be written */
1193 struct page *encrypted_page; /* encrypted page */
1194 struct page *compressed_page; /* compressed page */
1195 struct list_head list; /* serialize IOs */
1196 unsigned int compr_blocks; /* # of compressed block addresses */
1197 unsigned int need_lock:8; /* indicate we need to lock cp_rwsem */
1198 unsigned int version:8; /* version of the node */
1199 unsigned int submitted:1; /* indicate IO submission */
1200 unsigned int in_list:1; /* indicate fio is in io_list */
1201 unsigned int is_por:1; /* indicate IO is from recovery or not */
1202 unsigned int retry:1; /* need to reallocate block address */
1203 unsigned int encrypted:1; /* indicate file is encrypted */
1204 unsigned int post_read:1; /* require post read */
1205 enum iostat_type io_type; /* io type */
1206 struct writeback_control *io_wbc; /* writeback control */
1207 struct bio **bio; /* bio for ipu */
1208 sector_t *last_block; /* last block number in bio */
1209 };
1210
1211 struct bio_entry {
1212 struct bio *bio;
1213 struct list_head list;
1214 };
1215
1216 #define is_read_io(rw) ((rw) == READ)
1217 struct f2fs_bio_info {
1218 struct f2fs_sb_info *sbi; /* f2fs superblock */
1219 struct bio *bio; /* bios to merge */
1220 sector_t last_block_in_bio; /* last block number */
1221 struct f2fs_io_info fio; /* store buffered io info. */
1222 #ifdef CONFIG_BLK_DEV_ZONED
1223 struct completion zone_wait; /* condition value for the previous open zone to close */
1224 struct bio *zone_pending_bio; /* pending bio for the previous zone */
1225 void *bi_private; /* previous bi_private for pending bio */
1226 #endif
1227 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1228 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1229 struct list_head io_list; /* track fios */
1230 struct list_head bio_list; /* bio entry list head */
1231 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1232 };
1233
1234 #define FDEV(i) (sbi->devs[i])
1235 #define RDEV(i) (raw_super->devs[i])
1236 struct f2fs_dev_info {
1237 struct block_device *bdev;
1238 char path[MAX_PATH_LEN];
1239 unsigned int total_segments;
1240 block_t start_blk;
1241 block_t end_blk;
1242 #ifdef CONFIG_BLK_DEV_ZONED
1243 unsigned int nr_blkz; /* Total number of zones */
1244 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1245 #endif
1246 };
1247
1248 enum inode_type {
1249 DIR_INODE, /* for dirty dir inode */
1250 FILE_INODE, /* for dirty regular/symlink inode */
1251 DIRTY_META, /* for all dirtied inode metadata */
1252 NR_INODE_TYPE,
1253 };
1254
1255 /* for inner inode cache management */
1256 struct inode_management {
1257 struct radix_tree_root ino_root; /* ino entry array */
1258 spinlock_t ino_lock; /* for ino entry lock */
1259 struct list_head ino_list; /* inode list head */
1260 unsigned long ino_num; /* number of entries */
1261 };
1262
1263 /* for GC_AT */
1264 struct atgc_management {
1265 bool atgc_enabled; /* ATGC is enabled or not */
1266 struct rb_root_cached root; /* root of victim rb-tree */
1267 struct list_head victim_list; /* linked with all victim entries */
1268 unsigned int victim_count; /* victim count in rb-tree */
1269 unsigned int candidate_ratio; /* candidate ratio */
1270 unsigned int max_candidate_count; /* max candidate count */
1271 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1272 unsigned long long age_threshold; /* age threshold */
1273 };
1274
1275 struct f2fs_gc_control {
1276 unsigned int victim_segno; /* target victim segment number */
1277 int init_gc_type; /* FG_GC or BG_GC */
1278 bool no_bg_gc; /* check the space and stop bg_gc */
1279 bool should_migrate_blocks; /* should migrate blocks */
1280 bool err_gc_skipped; /* return EAGAIN if GC skipped */
1281 unsigned int nr_free_secs; /* # of free sections to do GC */
1282 };
1283
1284 /*
1285 * For s_flag in struct f2fs_sb_info
1286 * Modification on enum should be synchronized with s_flag array
1287 */
1288 enum {
1289 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1290 SBI_IS_CLOSE, /* specify unmounting */
1291 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1292 SBI_POR_DOING, /* recovery is doing or not */
1293 SBI_NEED_SB_WRITE, /* need to recover superblock */
1294 SBI_NEED_CP, /* need to checkpoint */
1295 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1296 SBI_IS_RECOVERED, /* recovered orphan/data */
1297 SBI_CP_DISABLED, /* CP was disabled last mount */
1298 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1299 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1300 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1301 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1302 SBI_IS_RESIZEFS, /* resizefs is in process */
1303 SBI_IS_FREEZING, /* freezefs is in process */
1304 SBI_IS_WRITABLE, /* remove ro mountoption transiently */
1305 MAX_SBI_FLAG,
1306 };
1307
1308 enum {
1309 CP_TIME,
1310 REQ_TIME,
1311 DISCARD_TIME,
1312 GC_TIME,
1313 DISABLE_TIME,
1314 UMOUNT_DISCARD_TIMEOUT,
1315 MAX_TIME,
1316 };
1317
1318 /* Note that you need to keep synchronization with this gc_mode_names array */
1319 enum {
1320 GC_NORMAL,
1321 GC_IDLE_CB,
1322 GC_IDLE_GREEDY,
1323 GC_IDLE_AT,
1324 GC_URGENT_HIGH,
1325 GC_URGENT_LOW,
1326 GC_URGENT_MID,
1327 MAX_GC_MODE,
1328 };
1329
1330 enum {
1331 BGGC_MODE_ON, /* background gc is on */
1332 BGGC_MODE_OFF, /* background gc is off */
1333 BGGC_MODE_SYNC, /*
1334 * background gc is on, migrating blocks
1335 * like foreground gc
1336 */
1337 };
1338
1339 enum {
1340 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1341 FS_MODE_LFS, /* use lfs allocation only */
1342 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1343 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1344 };
1345
1346 enum {
1347 ALLOC_MODE_DEFAULT, /* stay default */
1348 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1349 };
1350
1351 enum fsync_mode {
1352 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1353 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1354 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1355 };
1356
1357 enum {
1358 COMPR_MODE_FS, /*
1359 * automatically compress compression
1360 * enabled files
1361 */
1362 COMPR_MODE_USER, /*
1363 * automatical compression is disabled.
1364 * user can control the file compression
1365 * using ioctls
1366 */
1367 };
1368
1369 enum {
1370 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1371 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1372 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1373 };
1374
1375 enum {
1376 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1377 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1378 };
1379
1380 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1381 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1382 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1383
1384 /*
1385 * Layout of f2fs page.private:
1386 *
1387 * Layout A: lowest bit should be 1
1388 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1389 * bit 0 PAGE_PRIVATE_NOT_POINTER
1390 * bit 1 PAGE_PRIVATE_DUMMY_WRITE
1391 * bit 2 PAGE_PRIVATE_ONGOING_MIGRATION
1392 * bit 3 PAGE_PRIVATE_INLINE_INODE
1393 * bit 4 PAGE_PRIVATE_REF_RESOURCE
1394 * bit 5- f2fs private data
1395 *
1396 * Layout B: lowest bit should be 0
1397 * page.private is a wrapped pointer.
1398 */
1399 enum {
1400 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1401 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1402 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1403 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1404 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1405 PAGE_PRIVATE_MAX
1406 };
1407
1408 /* For compression */
1409 enum compress_algorithm_type {
1410 COMPRESS_LZO,
1411 COMPRESS_LZ4,
1412 COMPRESS_ZSTD,
1413 COMPRESS_LZORLE,
1414 COMPRESS_MAX,
1415 };
1416
1417 enum compress_flag {
1418 COMPRESS_CHKSUM,
1419 COMPRESS_MAX_FLAG,
1420 };
1421
1422 #define COMPRESS_WATERMARK 20
1423 #define COMPRESS_PERCENT 20
1424
1425 #define COMPRESS_DATA_RESERVED_SIZE 4
1426 struct compress_data {
1427 __le32 clen; /* compressed data size */
1428 __le32 chksum; /* compressed data chksum */
1429 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1430 u8 cdata[]; /* compressed data */
1431 };
1432
1433 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1434
1435 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1436
1437 #define F2FS_ZSTD_DEFAULT_CLEVEL 1
1438
1439 #define COMPRESS_LEVEL_OFFSET 8
1440
1441 /* compress context */
1442 struct compress_ctx {
1443 struct inode *inode; /* inode the context belong to */
1444 pgoff_t cluster_idx; /* cluster index number */
1445 unsigned int cluster_size; /* page count in cluster */
1446 unsigned int log_cluster_size; /* log of cluster size */
1447 struct page **rpages; /* pages store raw data in cluster */
1448 unsigned int nr_rpages; /* total page number in rpages */
1449 struct page **cpages; /* pages store compressed data in cluster */
1450 unsigned int nr_cpages; /* total page number in cpages */
1451 unsigned int valid_nr_cpages; /* valid page number in cpages */
1452 void *rbuf; /* virtual mapped address on rpages */
1453 struct compress_data *cbuf; /* virtual mapped address on cpages */
1454 size_t rlen; /* valid data length in rbuf */
1455 size_t clen; /* valid data length in cbuf */
1456 void *private; /* payload buffer for specified compression algorithm */
1457 void *private2; /* extra payload buffer */
1458 };
1459
1460 /* compress context for write IO path */
1461 struct compress_io_ctx {
1462 u32 magic; /* magic number to indicate page is compressed */
1463 struct inode *inode; /* inode the context belong to */
1464 struct page **rpages; /* pages store raw data in cluster */
1465 unsigned int nr_rpages; /* total page number in rpages */
1466 atomic_t pending_pages; /* in-flight compressed page count */
1467 };
1468
1469 /* Context for decompressing one cluster on the read IO path */
1470 struct decompress_io_ctx {
1471 u32 magic; /* magic number to indicate page is compressed */
1472 struct inode *inode; /* inode the context belong to */
1473 pgoff_t cluster_idx; /* cluster index number */
1474 unsigned int cluster_size; /* page count in cluster */
1475 unsigned int log_cluster_size; /* log of cluster size */
1476 struct page **rpages; /* pages store raw data in cluster */
1477 unsigned int nr_rpages; /* total page number in rpages */
1478 struct page **cpages; /* pages store compressed data in cluster */
1479 unsigned int nr_cpages; /* total page number in cpages */
1480 struct page **tpages; /* temp pages to pad holes in cluster */
1481 void *rbuf; /* virtual mapped address on rpages */
1482 struct compress_data *cbuf; /* virtual mapped address on cpages */
1483 size_t rlen; /* valid data length in rbuf */
1484 size_t clen; /* valid data length in cbuf */
1485
1486 /*
1487 * The number of compressed pages remaining to be read in this cluster.
1488 * This is initially nr_cpages. It is decremented by 1 each time a page
1489 * has been read (or failed to be read). When it reaches 0, the cluster
1490 * is decompressed (or an error is reported).
1491 *
1492 * If an error occurs before all the pages have been submitted for I/O,
1493 * then this will never reach 0. In this case the I/O submitter is
1494 * responsible for calling f2fs_decompress_end_io() instead.
1495 */
1496 atomic_t remaining_pages;
1497
1498 /*
1499 * Number of references to this decompress_io_ctx.
1500 *
1501 * One reference is held for I/O completion. This reference is dropped
1502 * after the pagecache pages are updated and unlocked -- either after
1503 * decompression (and verity if enabled), or after an error.
1504 *
1505 * In addition, each compressed page holds a reference while it is in a
1506 * bio. These references are necessary prevent compressed pages from
1507 * being freed while they are still in a bio.
1508 */
1509 refcount_t refcnt;
1510
1511 bool failed; /* IO error occurred before decompression? */
1512 bool need_verity; /* need fs-verity verification after decompression? */
1513 void *private; /* payload buffer for specified decompression algorithm */
1514 void *private2; /* extra payload buffer */
1515 struct work_struct verity_work; /* work to verify the decompressed pages */
1516 struct work_struct free_work; /* work for late free this structure itself */
1517 };
1518
1519 #define NULL_CLUSTER ((unsigned int)(~0))
1520 #define MIN_COMPRESS_LOG_SIZE 2
1521 #define MAX_COMPRESS_LOG_SIZE 8
1522 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1523
1524 struct f2fs_sb_info {
1525 struct super_block *sb; /* pointer to VFS super block */
1526 struct proc_dir_entry *s_proc; /* proc entry */
1527 struct f2fs_super_block *raw_super; /* raw super block pointer */
1528 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1529 int valid_super_block; /* valid super block no */
1530 unsigned long s_flag; /* flags for sbi */
1531 struct mutex writepages; /* mutex for writepages() */
1532
1533 #ifdef CONFIG_BLK_DEV_ZONED
1534 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1535 #endif
1536
1537 /* for node-related operations */
1538 struct f2fs_nm_info *nm_info; /* node manager */
1539 struct inode *node_inode; /* cache node blocks */
1540
1541 /* for segment-related operations */
1542 struct f2fs_sm_info *sm_info; /* segment manager */
1543
1544 /* for bio operations */
1545 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1546 /* keep migration IO order for LFS mode */
1547 struct f2fs_rwsem io_order_lock;
1548 mempool_t *write_io_dummy; /* Dummy pages */
1549 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1550 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1551
1552 /* for checkpoint */
1553 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1554 int cur_cp_pack; /* remain current cp pack */
1555 spinlock_t cp_lock; /* for flag in ckpt */
1556 struct inode *meta_inode; /* cache meta blocks */
1557 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1558 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1559 struct f2fs_rwsem node_write; /* locking node writes */
1560 struct f2fs_rwsem node_change; /* locking node change */
1561 wait_queue_head_t cp_wait;
1562 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1563 long interval_time[MAX_TIME]; /* to store thresholds */
1564 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1565
1566 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1567
1568 spinlock_t fsync_node_lock; /* for node entry lock */
1569 struct list_head fsync_node_list; /* node list head */
1570 unsigned int fsync_seg_id; /* sequence id */
1571 unsigned int fsync_node_num; /* number of node entries */
1572
1573 /* for orphan inode, use 0'th array */
1574 unsigned int max_orphans; /* max orphan inodes */
1575
1576 /* for inode management */
1577 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1578 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1579 struct mutex flush_lock; /* for flush exclusion */
1580
1581 /* for extent tree cache */
1582 struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1583 atomic64_t allocated_data_blocks; /* for block age extent_cache */
1584
1585 /* The threshold used for hot and warm data seperation*/
1586 unsigned int hot_data_age_threshold;
1587 unsigned int warm_data_age_threshold;
1588 unsigned int last_age_weight;
1589
1590 /* basic filesystem units */
1591 unsigned int log_sectors_per_block; /* log2 sectors per block */
1592 unsigned int log_blocksize; /* log2 block size */
1593 unsigned int blocksize; /* block size */
1594 unsigned int root_ino_num; /* root inode number*/
1595 unsigned int node_ino_num; /* node inode number*/
1596 unsigned int meta_ino_num; /* meta inode number*/
1597 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1598 unsigned int blocks_per_seg; /* blocks per segment */
1599 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1600 unsigned int segs_per_sec; /* segments per section */
1601 unsigned int secs_per_zone; /* sections per zone */
1602 unsigned int total_sections; /* total section count */
1603 unsigned int total_node_count; /* total node block count */
1604 unsigned int total_valid_node_count; /* valid node block count */
1605 int dir_level; /* directory level */
1606 bool readdir_ra; /* readahead inode in readdir */
1607 u64 max_io_bytes; /* max io bytes to merge IOs */
1608
1609 block_t user_block_count; /* # of user blocks */
1610 block_t total_valid_block_count; /* # of valid blocks */
1611 block_t discard_blks; /* discard command candidats */
1612 block_t last_valid_block_count; /* for recovery */
1613 block_t reserved_blocks; /* configurable reserved blocks */
1614 block_t current_reserved_blocks; /* current reserved blocks */
1615
1616 /* Additional tracking for no checkpoint mode */
1617 block_t unusable_block_count; /* # of blocks saved by last cp */
1618
1619 unsigned int nquota_files; /* # of quota sysfile */
1620 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1621
1622 /* # of pages, see count_type */
1623 atomic_t nr_pages[NR_COUNT_TYPE];
1624 /* # of allocated blocks */
1625 struct percpu_counter alloc_valid_block_count;
1626 /* # of node block writes as roll forward recovery */
1627 struct percpu_counter rf_node_block_count;
1628
1629 /* writeback control */
1630 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1631
1632 /* valid inode count */
1633 struct percpu_counter total_valid_inode_count;
1634
1635 struct f2fs_mount_info mount_opt; /* mount options */
1636
1637 /* for cleaning operations */
1638 struct f2fs_rwsem gc_lock; /*
1639 * semaphore for GC, avoid
1640 * race between GC and GC or CP
1641 */
1642 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1643 struct atgc_management am; /* atgc management */
1644 unsigned int cur_victim_sec; /* current victim section num */
1645 unsigned int gc_mode; /* current GC state */
1646 unsigned int next_victim_seg[2]; /* next segment in victim section */
1647 spinlock_t gc_remaining_trials_lock;
1648 /* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1649 unsigned int gc_remaining_trials;
1650
1651 /* for skip statistic */
1652 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1653
1654 /* threshold for gc trials on pinned files */
1655 u64 gc_pin_file_threshold;
1656 struct f2fs_rwsem pin_sem;
1657
1658 /* maximum # of trials to find a victim segment for SSR and GC */
1659 unsigned int max_victim_search;
1660 /* migration granularity of garbage collection, unit: segment */
1661 unsigned int migration_granularity;
1662
1663 /*
1664 * for stat information.
1665 * one is for the LFS mode, and the other is for the SSR mode.
1666 */
1667 #ifdef CONFIG_F2FS_STAT_FS
1668 struct f2fs_stat_info *stat_info; /* FS status information */
1669 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1670 unsigned int segment_count[2]; /* # of allocated segments */
1671 unsigned int block_count[2]; /* # of allocated blocks */
1672 atomic_t inplace_count; /* # of inplace update */
1673 /* # of lookup extent cache */
1674 atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1675 /* # of hit rbtree extent node */
1676 atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1677 /* # of hit cached extent node */
1678 atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1679 /* # of hit largest extent node in read extent cache */
1680 atomic64_t read_hit_largest;
1681 atomic_t inline_xattr; /* # of inline_xattr inodes */
1682 atomic_t inline_inode; /* # of inline_data inodes */
1683 atomic_t inline_dir; /* # of inline_dentry inodes */
1684 atomic_t compr_inode; /* # of compressed inodes */
1685 atomic64_t compr_blocks; /* # of compressed blocks */
1686 atomic_t swapfile_inode; /* # of swapfile inodes */
1687 atomic_t atomic_files; /* # of opened atomic file */
1688 atomic_t max_aw_cnt; /* max # of atomic writes */
1689 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1690 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1691 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1692 #endif
1693 spinlock_t stat_lock; /* lock for stat operations */
1694
1695 /* to attach REQ_META|REQ_FUA flags */
1696 unsigned int data_io_flag;
1697 unsigned int node_io_flag;
1698
1699 /* For sysfs support */
1700 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1701 struct completion s_kobj_unregister;
1702
1703 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1704 struct completion s_stat_kobj_unregister;
1705
1706 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1707 struct completion s_feature_list_kobj_unregister;
1708
1709 /* For shrinker support */
1710 struct list_head s_list;
1711 struct mutex umount_mutex;
1712 unsigned int shrinker_run_no;
1713
1714 /* For multi devices */
1715 int s_ndevs; /* number of devices */
1716 struct f2fs_dev_info *devs; /* for device list */
1717 unsigned int dirty_device; /* for checkpoint data flush */
1718 spinlock_t dev_lock; /* protect dirty_device */
1719 bool aligned_blksize; /* all devices has the same logical blksize */
1720
1721 /* For write statistics */
1722 u64 sectors_written_start;
1723 u64 kbytes_written;
1724
1725 /* Reference to checksum algorithm driver via cryptoapi */
1726 struct crypto_shash *s_chksum_driver;
1727
1728 /* Precomputed FS UUID checksum for seeding other checksums */
1729 __u32 s_chksum_seed;
1730
1731 struct workqueue_struct *post_read_wq; /* post read workqueue */
1732
1733 unsigned char errors[MAX_F2FS_ERRORS]; /* error flags */
1734 spinlock_t error_lock; /* protect errors array */
1735 bool error_dirty; /* errors of sb is dirty */
1736
1737 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1738 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1739
1740 /* For reclaimed segs statistics per each GC mode */
1741 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1742 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1743
1744 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1745
1746 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1747 int max_fragment_hole; /* max hole size for block fragmentation mode */
1748
1749 /* For atomic write statistics */
1750 atomic64_t current_atomic_write;
1751 s64 peak_atomic_write;
1752 u64 committed_atomic_block;
1753 u64 revoked_atomic_block;
1754
1755 #ifdef CONFIG_F2FS_FS_COMPRESSION
1756 struct kmem_cache *page_array_slab; /* page array entry */
1757 unsigned int page_array_slab_size; /* default page array slab size */
1758
1759 /* For runtime compression statistics */
1760 u64 compr_written_block;
1761 u64 compr_saved_block;
1762 u32 compr_new_inode;
1763
1764 /* For compressed block cache */
1765 struct inode *compress_inode; /* cache compressed blocks */
1766 unsigned int compress_percent; /* cache page percentage */
1767 unsigned int compress_watermark; /* cache page watermark */
1768 atomic_t compress_page_hit; /* cache hit count */
1769 #endif
1770
1771 #ifdef CONFIG_F2FS_IOSTAT
1772 /* For app/fs IO statistics */
1773 spinlock_t iostat_lock;
1774 unsigned long long iostat_count[NR_IO_TYPE];
1775 unsigned long long iostat_bytes[NR_IO_TYPE];
1776 unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1777 bool iostat_enable;
1778 unsigned long iostat_next_period;
1779 unsigned int iostat_period_ms;
1780
1781 /* For io latency related statistics info in one iostat period */
1782 spinlock_t iostat_lat_lock;
1783 struct iostat_lat_info *iostat_io_lat;
1784 #endif
1785 };
1786
1787 #ifdef CONFIG_F2FS_FAULT_INJECTION
1788 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__, \
1789 __builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1790 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1791 const char *func, const char *parent_func)
1792 {
1793 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1794
1795 if (!ffi->inject_rate)
1796 return false;
1797
1798 if (!IS_FAULT_SET(ffi, type))
1799 return false;
1800
1801 atomic_inc(&ffi->inject_ops);
1802 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1803 atomic_set(&ffi->inject_ops, 0);
1804 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n",
1805 KERN_INFO, sbi->sb->s_id, f2fs_fault_name[type],
1806 func, parent_func);
1807 return true;
1808 }
1809 return false;
1810 }
1811 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1812 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1813 {
1814 return false;
1815 }
1816 #endif
1817
1818 /*
1819 * Test if the mounted volume is a multi-device volume.
1820 * - For a single regular disk volume, sbi->s_ndevs is 0.
1821 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1822 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1823 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1824 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1825 {
1826 return sbi->s_ndevs > 1;
1827 }
1828
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1829 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1830 {
1831 unsigned long now = jiffies;
1832
1833 sbi->last_time[type] = now;
1834
1835 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1836 if (type == REQ_TIME) {
1837 sbi->last_time[DISCARD_TIME] = now;
1838 sbi->last_time[GC_TIME] = now;
1839 }
1840 }
1841
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1842 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1843 {
1844 unsigned long interval = sbi->interval_time[type] * HZ;
1845
1846 return time_after(jiffies, sbi->last_time[type] + interval);
1847 }
1848
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1849 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1850 int type)
1851 {
1852 unsigned long interval = sbi->interval_time[type] * HZ;
1853 unsigned int wait_ms = 0;
1854 long delta;
1855
1856 delta = (sbi->last_time[type] + interval) - jiffies;
1857 if (delta > 0)
1858 wait_ms = jiffies_to_msecs(delta);
1859
1860 return wait_ms;
1861 }
1862
1863 /*
1864 * Inline functions
1865 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1866 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1867 const void *address, unsigned int length)
1868 {
1869 struct {
1870 struct shash_desc shash;
1871 char ctx[4];
1872 } desc;
1873 int err;
1874
1875 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1876
1877 desc.shash.tfm = sbi->s_chksum_driver;
1878 *(u32 *)desc.ctx = crc;
1879
1880 err = crypto_shash_update(&desc.shash, address, length);
1881 BUG_ON(err);
1882
1883 return *(u32 *)desc.ctx;
1884 }
1885
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1886 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1887 unsigned int length)
1888 {
1889 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1890 }
1891
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1892 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1893 void *buf, size_t buf_size)
1894 {
1895 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1896 }
1897
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1898 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1899 const void *address, unsigned int length)
1900 {
1901 return __f2fs_crc32(sbi, crc, address, length);
1902 }
1903
F2FS_I(struct inode * inode)1904 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1905 {
1906 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1907 }
1908
F2FS_SB(struct super_block * sb)1909 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1910 {
1911 return sb->s_fs_info;
1912 }
1913
F2FS_I_SB(struct inode * inode)1914 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1915 {
1916 return F2FS_SB(inode->i_sb);
1917 }
1918
F2FS_M_SB(struct address_space * mapping)1919 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1920 {
1921 return F2FS_I_SB(mapping->host);
1922 }
1923
F2FS_P_SB(struct page * page)1924 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1925 {
1926 return F2FS_M_SB(page_file_mapping(page));
1927 }
1928
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)1929 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1930 {
1931 return (struct f2fs_super_block *)(sbi->raw_super);
1932 }
1933
F2FS_CKPT(struct f2fs_sb_info * sbi)1934 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1935 {
1936 return (struct f2fs_checkpoint *)(sbi->ckpt);
1937 }
1938
F2FS_NODE(struct page * page)1939 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1940 {
1941 return (struct f2fs_node *)page_address(page);
1942 }
1943
F2FS_INODE(struct page * page)1944 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1945 {
1946 return &((struct f2fs_node *)page_address(page))->i;
1947 }
1948
NM_I(struct f2fs_sb_info * sbi)1949 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1950 {
1951 return (struct f2fs_nm_info *)(sbi->nm_info);
1952 }
1953
SM_I(struct f2fs_sb_info * sbi)1954 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1955 {
1956 return (struct f2fs_sm_info *)(sbi->sm_info);
1957 }
1958
SIT_I(struct f2fs_sb_info * sbi)1959 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1960 {
1961 return (struct sit_info *)(SM_I(sbi)->sit_info);
1962 }
1963
FREE_I(struct f2fs_sb_info * sbi)1964 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1965 {
1966 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1967 }
1968
DIRTY_I(struct f2fs_sb_info * sbi)1969 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1970 {
1971 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1972 }
1973
META_MAPPING(struct f2fs_sb_info * sbi)1974 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1975 {
1976 return sbi->meta_inode->i_mapping;
1977 }
1978
NODE_MAPPING(struct f2fs_sb_info * sbi)1979 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1980 {
1981 return sbi->node_inode->i_mapping;
1982 }
1983
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)1984 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1985 {
1986 return test_bit(type, &sbi->s_flag);
1987 }
1988
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1989 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1990 {
1991 set_bit(type, &sbi->s_flag);
1992 }
1993
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)1994 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1995 {
1996 clear_bit(type, &sbi->s_flag);
1997 }
1998
cur_cp_version(struct f2fs_checkpoint * cp)1999 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2000 {
2001 return le64_to_cpu(cp->checkpoint_ver);
2002 }
2003
f2fs_qf_ino(struct super_block * sb,int type)2004 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2005 {
2006 if (type < F2FS_MAX_QUOTAS)
2007 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2008 return 0;
2009 }
2010
cur_cp_crc(struct f2fs_checkpoint * cp)2011 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2012 {
2013 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2014 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2015 }
2016
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2017 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2018 {
2019 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2020
2021 return ckpt_flags & f;
2022 }
2023
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2024 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2025 {
2026 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2027 }
2028
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2029 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2030 {
2031 unsigned int ckpt_flags;
2032
2033 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2034 ckpt_flags |= f;
2035 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2036 }
2037
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2038 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2039 {
2040 unsigned long flags;
2041
2042 spin_lock_irqsave(&sbi->cp_lock, flags);
2043 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2044 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2045 }
2046
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2047 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2048 {
2049 unsigned int ckpt_flags;
2050
2051 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2052 ckpt_flags &= (~f);
2053 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2054 }
2055
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2056 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2057 {
2058 unsigned long flags;
2059
2060 spin_lock_irqsave(&sbi->cp_lock, flags);
2061 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2062 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2063 }
2064
2065 #define init_f2fs_rwsem(sem) \
2066 do { \
2067 static struct lock_class_key __key; \
2068 \
2069 __init_f2fs_rwsem((sem), #sem, &__key); \
2070 } while (0)
2071
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2072 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2073 const char *sem_name, struct lock_class_key *key)
2074 {
2075 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2076 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2077 init_waitqueue_head(&sem->read_waiters);
2078 #endif
2079 }
2080
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2081 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2082 {
2083 return rwsem_is_locked(&sem->internal_rwsem);
2084 }
2085
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2086 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2087 {
2088 return rwsem_is_contended(&sem->internal_rwsem);
2089 }
2090
f2fs_down_read(struct f2fs_rwsem * sem)2091 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2092 {
2093 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2094 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2095 #else
2096 down_read(&sem->internal_rwsem);
2097 #endif
2098 }
2099
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2100 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2101 {
2102 return down_read_trylock(&sem->internal_rwsem);
2103 }
2104
f2fs_up_read(struct f2fs_rwsem * sem)2105 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2106 {
2107 up_read(&sem->internal_rwsem);
2108 }
2109
f2fs_down_write(struct f2fs_rwsem * sem)2110 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2111 {
2112 down_write(&sem->internal_rwsem);
2113 }
2114
2115 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2116 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2117 {
2118 down_read_nested(&sem->internal_rwsem, subclass);
2119 }
2120
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2121 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2122 {
2123 down_write_nested(&sem->internal_rwsem, subclass);
2124 }
2125 #else
2126 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2127 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2128 #endif
2129
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2130 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2131 {
2132 return down_write_trylock(&sem->internal_rwsem);
2133 }
2134
f2fs_up_write(struct f2fs_rwsem * sem)2135 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2136 {
2137 up_write(&sem->internal_rwsem);
2138 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2139 wake_up_all(&sem->read_waiters);
2140 #endif
2141 }
2142
f2fs_lock_op(struct f2fs_sb_info * sbi)2143 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2144 {
2145 f2fs_down_read(&sbi->cp_rwsem);
2146 }
2147
f2fs_trylock_op(struct f2fs_sb_info * sbi)2148 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2149 {
2150 if (time_to_inject(sbi, FAULT_LOCK_OP))
2151 return 0;
2152 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2153 }
2154
f2fs_unlock_op(struct f2fs_sb_info * sbi)2155 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2156 {
2157 f2fs_up_read(&sbi->cp_rwsem);
2158 }
2159
f2fs_lock_all(struct f2fs_sb_info * sbi)2160 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2161 {
2162 f2fs_down_write(&sbi->cp_rwsem);
2163 }
2164
f2fs_unlock_all(struct f2fs_sb_info * sbi)2165 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2166 {
2167 f2fs_up_write(&sbi->cp_rwsem);
2168 }
2169
__get_cp_reason(struct f2fs_sb_info * sbi)2170 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2171 {
2172 int reason = CP_SYNC;
2173
2174 if (test_opt(sbi, FASTBOOT))
2175 reason = CP_FASTBOOT;
2176 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2177 reason = CP_UMOUNT;
2178 return reason;
2179 }
2180
__remain_node_summaries(int reason)2181 static inline bool __remain_node_summaries(int reason)
2182 {
2183 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2184 }
2185
__exist_node_summaries(struct f2fs_sb_info * sbi)2186 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2187 {
2188 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2189 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2190 }
2191
2192 /*
2193 * Check whether the inode has blocks or not
2194 */
F2FS_HAS_BLOCKS(struct inode * inode)2195 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2196 {
2197 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2198
2199 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2200 }
2201
f2fs_has_xattr_block(unsigned int ofs)2202 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2203 {
2204 return ofs == XATTR_NODE_OFFSET;
2205 }
2206
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2207 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2208 struct inode *inode, bool cap)
2209 {
2210 if (!inode)
2211 return true;
2212 if (!test_opt(sbi, RESERVE_ROOT))
2213 return false;
2214 if (IS_NOQUOTA(inode))
2215 return true;
2216 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2217 return true;
2218 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2219 in_group_p(F2FS_OPTION(sbi).s_resgid))
2220 return true;
2221 if (cap && capable(CAP_SYS_RESOURCE))
2222 return true;
2223 return false;
2224 }
2225
2226 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2227 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2228 struct inode *inode, blkcnt_t *count, bool partial)
2229 {
2230 blkcnt_t diff = 0, release = 0;
2231 block_t avail_user_block_count;
2232 int ret;
2233
2234 ret = dquot_reserve_block(inode, *count);
2235 if (ret)
2236 return ret;
2237
2238 if (time_to_inject(sbi, FAULT_BLOCK)) {
2239 release = *count;
2240 goto release_quota;
2241 }
2242
2243 /*
2244 * let's increase this in prior to actual block count change in order
2245 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2246 */
2247 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2248
2249 spin_lock(&sbi->stat_lock);
2250 sbi->total_valid_block_count += (block_t)(*count);
2251 avail_user_block_count = sbi->user_block_count -
2252 sbi->current_reserved_blocks;
2253
2254 if (!__allow_reserved_blocks(sbi, inode, true))
2255 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2256
2257 if (F2FS_IO_ALIGNED(sbi))
2258 avail_user_block_count -= sbi->blocks_per_seg *
2259 SM_I(sbi)->additional_reserved_segments;
2260
2261 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2262 if (avail_user_block_count > sbi->unusable_block_count)
2263 avail_user_block_count -= sbi->unusable_block_count;
2264 else
2265 avail_user_block_count = 0;
2266 }
2267 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2268 if (!partial) {
2269 spin_unlock(&sbi->stat_lock);
2270 goto enospc;
2271 }
2272
2273 diff = sbi->total_valid_block_count - avail_user_block_count;
2274 if (diff > *count)
2275 diff = *count;
2276 *count -= diff;
2277 release = diff;
2278 sbi->total_valid_block_count -= diff;
2279 if (!*count) {
2280 spin_unlock(&sbi->stat_lock);
2281 goto enospc;
2282 }
2283 }
2284 spin_unlock(&sbi->stat_lock);
2285
2286 if (unlikely(release)) {
2287 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2288 dquot_release_reservation_block(inode, release);
2289 }
2290 f2fs_i_blocks_write(inode, *count, true, true);
2291 return 0;
2292
2293 enospc:
2294 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2295 release_quota:
2296 dquot_release_reservation_block(inode, release);
2297 return -ENOSPC;
2298 }
2299
2300 __printf(2, 3)
2301 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2302
2303 #define f2fs_err(sbi, fmt, ...) \
2304 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2305 #define f2fs_warn(sbi, fmt, ...) \
2306 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2307 #define f2fs_notice(sbi, fmt, ...) \
2308 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2309 #define f2fs_info(sbi, fmt, ...) \
2310 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2311 #define f2fs_debug(sbi, fmt, ...) \
2312 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2313
2314 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2315 static inline bool page_private_##name(struct page *page) \
2316 { \
2317 return PagePrivate(page) && \
2318 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2319 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2320 }
2321
2322 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2323 static inline void set_page_private_##name(struct page *page) \
2324 { \
2325 if (!PagePrivate(page)) \
2326 attach_page_private(page, (void *)0); \
2327 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2328 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2329 }
2330
2331 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2332 static inline void clear_page_private_##name(struct page *page) \
2333 { \
2334 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2335 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2336 detach_page_private(page); \
2337 }
2338
2339 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2340 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2341 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2342 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
2343
2344 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2345 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2346 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2347 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
2348
2349 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2350 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2351 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2352 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
2353
get_page_private_data(struct page * page)2354 static inline unsigned long get_page_private_data(struct page *page)
2355 {
2356 unsigned long data = page_private(page);
2357
2358 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2359 return 0;
2360 return data >> PAGE_PRIVATE_MAX;
2361 }
2362
set_page_private_data(struct page * page,unsigned long data)2363 static inline void set_page_private_data(struct page *page, unsigned long data)
2364 {
2365 if (!PagePrivate(page))
2366 attach_page_private(page, (void *)0);
2367 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2368 page_private(page) |= data << PAGE_PRIVATE_MAX;
2369 }
2370
clear_page_private_data(struct page * page)2371 static inline void clear_page_private_data(struct page *page)
2372 {
2373 page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2374 if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2375 detach_page_private(page);
2376 }
2377
clear_page_private_all(struct page * page)2378 static inline void clear_page_private_all(struct page *page)
2379 {
2380 clear_page_private_data(page);
2381 clear_page_private_reference(page);
2382 clear_page_private_gcing(page);
2383 clear_page_private_inline(page);
2384
2385 f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2386 }
2387
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2388 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2389 struct inode *inode,
2390 block_t count)
2391 {
2392 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2393
2394 spin_lock(&sbi->stat_lock);
2395 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2396 sbi->total_valid_block_count -= (block_t)count;
2397 if (sbi->reserved_blocks &&
2398 sbi->current_reserved_blocks < sbi->reserved_blocks)
2399 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2400 sbi->current_reserved_blocks + count);
2401 spin_unlock(&sbi->stat_lock);
2402 if (unlikely(inode->i_blocks < sectors)) {
2403 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2404 inode->i_ino,
2405 (unsigned long long)inode->i_blocks,
2406 (unsigned long long)sectors);
2407 set_sbi_flag(sbi, SBI_NEED_FSCK);
2408 return;
2409 }
2410 f2fs_i_blocks_write(inode, count, false, true);
2411 }
2412
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2413 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2414 {
2415 atomic_inc(&sbi->nr_pages[count_type]);
2416
2417 if (count_type == F2FS_DIRTY_DENTS ||
2418 count_type == F2FS_DIRTY_NODES ||
2419 count_type == F2FS_DIRTY_META ||
2420 count_type == F2FS_DIRTY_QDATA ||
2421 count_type == F2FS_DIRTY_IMETA)
2422 set_sbi_flag(sbi, SBI_IS_DIRTY);
2423 }
2424
inode_inc_dirty_pages(struct inode * inode)2425 static inline void inode_inc_dirty_pages(struct inode *inode)
2426 {
2427 atomic_inc(&F2FS_I(inode)->dirty_pages);
2428 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2429 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2430 if (IS_NOQUOTA(inode))
2431 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2432 }
2433
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2434 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2435 {
2436 atomic_dec(&sbi->nr_pages[count_type]);
2437 }
2438
inode_dec_dirty_pages(struct inode * inode)2439 static inline void inode_dec_dirty_pages(struct inode *inode)
2440 {
2441 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2442 !S_ISLNK(inode->i_mode))
2443 return;
2444
2445 atomic_dec(&F2FS_I(inode)->dirty_pages);
2446 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2447 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2448 if (IS_NOQUOTA(inode))
2449 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2450 }
2451
inc_atomic_write_cnt(struct inode * inode)2452 static inline void inc_atomic_write_cnt(struct inode *inode)
2453 {
2454 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2455 struct f2fs_inode_info *fi = F2FS_I(inode);
2456 u64 current_write;
2457
2458 fi->atomic_write_cnt++;
2459 atomic64_inc(&sbi->current_atomic_write);
2460 current_write = atomic64_read(&sbi->current_atomic_write);
2461 if (current_write > sbi->peak_atomic_write)
2462 sbi->peak_atomic_write = current_write;
2463 }
2464
release_atomic_write_cnt(struct inode * inode)2465 static inline void release_atomic_write_cnt(struct inode *inode)
2466 {
2467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2468 struct f2fs_inode_info *fi = F2FS_I(inode);
2469
2470 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2471 fi->atomic_write_cnt = 0;
2472 }
2473
get_pages(struct f2fs_sb_info * sbi,int count_type)2474 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2475 {
2476 return atomic_read(&sbi->nr_pages[count_type]);
2477 }
2478
get_dirty_pages(struct inode * inode)2479 static inline int get_dirty_pages(struct inode *inode)
2480 {
2481 return atomic_read(&F2FS_I(inode)->dirty_pages);
2482 }
2483
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2484 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2485 {
2486 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2487 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2488 sbi->log_blocks_per_seg;
2489
2490 return segs / sbi->segs_per_sec;
2491 }
2492
valid_user_blocks(struct f2fs_sb_info * sbi)2493 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2494 {
2495 return sbi->total_valid_block_count;
2496 }
2497
discard_blocks(struct f2fs_sb_info * sbi)2498 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2499 {
2500 return sbi->discard_blks;
2501 }
2502
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2503 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2504 {
2505 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2506
2507 /* return NAT or SIT bitmap */
2508 if (flag == NAT_BITMAP)
2509 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2510 else if (flag == SIT_BITMAP)
2511 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2512
2513 return 0;
2514 }
2515
__cp_payload(struct f2fs_sb_info * sbi)2516 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2517 {
2518 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2519 }
2520
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2521 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2522 {
2523 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2524 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2525 int offset;
2526
2527 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2528 offset = (flag == SIT_BITMAP) ?
2529 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2530 /*
2531 * if large_nat_bitmap feature is enabled, leave checksum
2532 * protection for all nat/sit bitmaps.
2533 */
2534 return tmp_ptr + offset + sizeof(__le32);
2535 }
2536
2537 if (__cp_payload(sbi) > 0) {
2538 if (flag == NAT_BITMAP)
2539 return tmp_ptr;
2540 else
2541 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2542 } else {
2543 offset = (flag == NAT_BITMAP) ?
2544 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2545 return tmp_ptr + offset;
2546 }
2547 }
2548
__start_cp_addr(struct f2fs_sb_info * sbi)2549 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2550 {
2551 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2552
2553 if (sbi->cur_cp_pack == 2)
2554 start_addr += sbi->blocks_per_seg;
2555 return start_addr;
2556 }
2557
__start_cp_next_addr(struct f2fs_sb_info * sbi)2558 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2559 {
2560 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2561
2562 if (sbi->cur_cp_pack == 1)
2563 start_addr += sbi->blocks_per_seg;
2564 return start_addr;
2565 }
2566
__set_cp_next_pack(struct f2fs_sb_info * sbi)2567 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2568 {
2569 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2570 }
2571
__start_sum_addr(struct f2fs_sb_info * sbi)2572 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2573 {
2574 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2575 }
2576
2577 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2578 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2579 struct inode *inode, bool is_inode)
2580 {
2581 block_t valid_block_count;
2582 unsigned int valid_node_count, user_block_count;
2583 int err;
2584
2585 if (is_inode) {
2586 if (inode) {
2587 err = dquot_alloc_inode(inode);
2588 if (err)
2589 return err;
2590 }
2591 } else {
2592 err = dquot_reserve_block(inode, 1);
2593 if (err)
2594 return err;
2595 }
2596
2597 if (time_to_inject(sbi, FAULT_BLOCK))
2598 goto enospc;
2599
2600 spin_lock(&sbi->stat_lock);
2601
2602 valid_block_count = sbi->total_valid_block_count +
2603 sbi->current_reserved_blocks + 1;
2604
2605 if (!__allow_reserved_blocks(sbi, inode, false))
2606 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2607
2608 if (F2FS_IO_ALIGNED(sbi))
2609 valid_block_count += sbi->blocks_per_seg *
2610 SM_I(sbi)->additional_reserved_segments;
2611
2612 user_block_count = sbi->user_block_count;
2613 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2614 user_block_count -= sbi->unusable_block_count;
2615
2616 if (unlikely(valid_block_count > user_block_count)) {
2617 spin_unlock(&sbi->stat_lock);
2618 goto enospc;
2619 }
2620
2621 valid_node_count = sbi->total_valid_node_count + 1;
2622 if (unlikely(valid_node_count > sbi->total_node_count)) {
2623 spin_unlock(&sbi->stat_lock);
2624 goto enospc;
2625 }
2626
2627 sbi->total_valid_node_count++;
2628 sbi->total_valid_block_count++;
2629 spin_unlock(&sbi->stat_lock);
2630
2631 if (inode) {
2632 if (is_inode)
2633 f2fs_mark_inode_dirty_sync(inode, true);
2634 else
2635 f2fs_i_blocks_write(inode, 1, true, true);
2636 }
2637
2638 percpu_counter_inc(&sbi->alloc_valid_block_count);
2639 return 0;
2640
2641 enospc:
2642 if (is_inode) {
2643 if (inode)
2644 dquot_free_inode(inode);
2645 } else {
2646 dquot_release_reservation_block(inode, 1);
2647 }
2648 return -ENOSPC;
2649 }
2650
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2651 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2652 struct inode *inode, bool is_inode)
2653 {
2654 spin_lock(&sbi->stat_lock);
2655
2656 if (unlikely(!sbi->total_valid_block_count ||
2657 !sbi->total_valid_node_count)) {
2658 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2659 sbi->total_valid_block_count,
2660 sbi->total_valid_node_count);
2661 set_sbi_flag(sbi, SBI_NEED_FSCK);
2662 } else {
2663 sbi->total_valid_block_count--;
2664 sbi->total_valid_node_count--;
2665 }
2666
2667 if (sbi->reserved_blocks &&
2668 sbi->current_reserved_blocks < sbi->reserved_blocks)
2669 sbi->current_reserved_blocks++;
2670
2671 spin_unlock(&sbi->stat_lock);
2672
2673 if (is_inode) {
2674 dquot_free_inode(inode);
2675 } else {
2676 if (unlikely(inode->i_blocks == 0)) {
2677 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2678 inode->i_ino,
2679 (unsigned long long)inode->i_blocks);
2680 set_sbi_flag(sbi, SBI_NEED_FSCK);
2681 return;
2682 }
2683 f2fs_i_blocks_write(inode, 1, false, true);
2684 }
2685 }
2686
valid_node_count(struct f2fs_sb_info * sbi)2687 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2688 {
2689 return sbi->total_valid_node_count;
2690 }
2691
inc_valid_inode_count(struct f2fs_sb_info * sbi)2692 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2693 {
2694 percpu_counter_inc(&sbi->total_valid_inode_count);
2695 }
2696
dec_valid_inode_count(struct f2fs_sb_info * sbi)2697 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2698 {
2699 percpu_counter_dec(&sbi->total_valid_inode_count);
2700 }
2701
valid_inode_count(struct f2fs_sb_info * sbi)2702 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2703 {
2704 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2705 }
2706
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2707 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2708 pgoff_t index, bool for_write)
2709 {
2710 struct page *page;
2711 unsigned int flags;
2712
2713 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2714 if (!for_write)
2715 page = find_get_page_flags(mapping, index,
2716 FGP_LOCK | FGP_ACCESSED);
2717 else
2718 page = find_lock_page(mapping, index);
2719 if (page)
2720 return page;
2721
2722 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2723 return NULL;
2724 }
2725
2726 if (!for_write)
2727 return grab_cache_page(mapping, index);
2728
2729 flags = memalloc_nofs_save();
2730 page = grab_cache_page_write_begin(mapping, index);
2731 memalloc_nofs_restore(flags);
2732
2733 return page;
2734 }
2735
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2736 static inline struct page *f2fs_pagecache_get_page(
2737 struct address_space *mapping, pgoff_t index,
2738 int fgp_flags, gfp_t gfp_mask)
2739 {
2740 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2741 return NULL;
2742
2743 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2744 }
2745
f2fs_put_page(struct page * page,int unlock)2746 static inline void f2fs_put_page(struct page *page, int unlock)
2747 {
2748 if (!page)
2749 return;
2750
2751 if (unlock) {
2752 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2753 unlock_page(page);
2754 }
2755 put_page(page);
2756 }
2757
f2fs_put_dnode(struct dnode_of_data * dn)2758 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2759 {
2760 if (dn->node_page)
2761 f2fs_put_page(dn->node_page, 1);
2762 if (dn->inode_page && dn->node_page != dn->inode_page)
2763 f2fs_put_page(dn->inode_page, 0);
2764 dn->node_page = NULL;
2765 dn->inode_page = NULL;
2766 }
2767
f2fs_kmem_cache_create(const char * name,size_t size)2768 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2769 size_t size)
2770 {
2771 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2772 }
2773
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2774 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2775 gfp_t flags)
2776 {
2777 void *entry;
2778
2779 entry = kmem_cache_alloc(cachep, flags);
2780 if (!entry)
2781 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2782 return entry;
2783 }
2784
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2785 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2786 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2787 {
2788 if (nofail)
2789 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2790
2791 if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2792 return NULL;
2793
2794 return kmem_cache_alloc(cachep, flags);
2795 }
2796
is_inflight_io(struct f2fs_sb_info * sbi,int type)2797 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2798 {
2799 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2800 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2801 get_pages(sbi, F2FS_WB_CP_DATA) ||
2802 get_pages(sbi, F2FS_DIO_READ) ||
2803 get_pages(sbi, F2FS_DIO_WRITE))
2804 return true;
2805
2806 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2807 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2808 return true;
2809
2810 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2811 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2812 return true;
2813 return false;
2814 }
2815
is_idle(struct f2fs_sb_info * sbi,int type)2816 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2817 {
2818 if (sbi->gc_mode == GC_URGENT_HIGH)
2819 return true;
2820
2821 if (is_inflight_io(sbi, type))
2822 return false;
2823
2824 if (sbi->gc_mode == GC_URGENT_MID)
2825 return true;
2826
2827 if (sbi->gc_mode == GC_URGENT_LOW &&
2828 (type == DISCARD_TIME || type == GC_TIME))
2829 return true;
2830
2831 return f2fs_time_over(sbi, type);
2832 }
2833
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2834 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2835 unsigned long index, void *item)
2836 {
2837 while (radix_tree_insert(root, index, item))
2838 cond_resched();
2839 }
2840
2841 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2842
IS_INODE(struct page * page)2843 static inline bool IS_INODE(struct page *page)
2844 {
2845 struct f2fs_node *p = F2FS_NODE(page);
2846
2847 return RAW_IS_INODE(p);
2848 }
2849
offset_in_addr(struct f2fs_inode * i)2850 static inline int offset_in_addr(struct f2fs_inode *i)
2851 {
2852 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2853 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2854 }
2855
blkaddr_in_node(struct f2fs_node * node)2856 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2857 {
2858 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2859 }
2860
2861 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2862 static inline block_t data_blkaddr(struct inode *inode,
2863 struct page *node_page, unsigned int offset)
2864 {
2865 struct f2fs_node *raw_node;
2866 __le32 *addr_array;
2867 int base = 0;
2868 bool is_inode = IS_INODE(node_page);
2869
2870 raw_node = F2FS_NODE(node_page);
2871
2872 if (is_inode) {
2873 if (!inode)
2874 /* from GC path only */
2875 base = offset_in_addr(&raw_node->i);
2876 else if (f2fs_has_extra_attr(inode))
2877 base = get_extra_isize(inode);
2878 }
2879
2880 addr_array = blkaddr_in_node(raw_node);
2881 return le32_to_cpu(addr_array[base + offset]);
2882 }
2883
f2fs_data_blkaddr(struct dnode_of_data * dn)2884 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2885 {
2886 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2887 }
2888
f2fs_test_bit(unsigned int nr,char * addr)2889 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2890 {
2891 int mask;
2892
2893 addr += (nr >> 3);
2894 mask = BIT(7 - (nr & 0x07));
2895 return mask & *addr;
2896 }
2897
f2fs_set_bit(unsigned int nr,char * addr)2898 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2899 {
2900 int mask;
2901
2902 addr += (nr >> 3);
2903 mask = BIT(7 - (nr & 0x07));
2904 *addr |= mask;
2905 }
2906
f2fs_clear_bit(unsigned int nr,char * addr)2907 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2908 {
2909 int mask;
2910
2911 addr += (nr >> 3);
2912 mask = BIT(7 - (nr & 0x07));
2913 *addr &= ~mask;
2914 }
2915
f2fs_test_and_set_bit(unsigned int nr,char * addr)2916 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2917 {
2918 int mask;
2919 int ret;
2920
2921 addr += (nr >> 3);
2922 mask = BIT(7 - (nr & 0x07));
2923 ret = mask & *addr;
2924 *addr |= mask;
2925 return ret;
2926 }
2927
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2928 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2929 {
2930 int mask;
2931 int ret;
2932
2933 addr += (nr >> 3);
2934 mask = BIT(7 - (nr & 0x07));
2935 ret = mask & *addr;
2936 *addr &= ~mask;
2937 return ret;
2938 }
2939
f2fs_change_bit(unsigned int nr,char * addr)2940 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2941 {
2942 int mask;
2943
2944 addr += (nr >> 3);
2945 mask = BIT(7 - (nr & 0x07));
2946 *addr ^= mask;
2947 }
2948
2949 /*
2950 * On-disk inode flags (f2fs_inode::i_flags)
2951 */
2952 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2953 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2954 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2955 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2956 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2957 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2958 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2959 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2960 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2961 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2962 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2963
2964 /* Flags that should be inherited by new inodes from their parent. */
2965 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2966 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2967 F2FS_CASEFOLD_FL)
2968
2969 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2970 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2971 F2FS_CASEFOLD_FL))
2972
2973 /* Flags that are appropriate for non-directories/regular files. */
2974 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2975
f2fs_mask_flags(umode_t mode,__u32 flags)2976 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2977 {
2978 if (S_ISDIR(mode))
2979 return flags;
2980 else if (S_ISREG(mode))
2981 return flags & F2FS_REG_FLMASK;
2982 else
2983 return flags & F2FS_OTHER_FLMASK;
2984 }
2985
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2986 static inline void __mark_inode_dirty_flag(struct inode *inode,
2987 int flag, bool set)
2988 {
2989 switch (flag) {
2990 case FI_INLINE_XATTR:
2991 case FI_INLINE_DATA:
2992 case FI_INLINE_DENTRY:
2993 case FI_NEW_INODE:
2994 if (set)
2995 return;
2996 fallthrough;
2997 case FI_DATA_EXIST:
2998 case FI_INLINE_DOTS:
2999 case FI_PIN_FILE:
3000 case FI_COMPRESS_RELEASED:
3001 f2fs_mark_inode_dirty_sync(inode, true);
3002 }
3003 }
3004
set_inode_flag(struct inode * inode,int flag)3005 static inline void set_inode_flag(struct inode *inode, int flag)
3006 {
3007 set_bit(flag, F2FS_I(inode)->flags);
3008 __mark_inode_dirty_flag(inode, flag, true);
3009 }
3010
is_inode_flag_set(struct inode * inode,int flag)3011 static inline int is_inode_flag_set(struct inode *inode, int flag)
3012 {
3013 return test_bit(flag, F2FS_I(inode)->flags);
3014 }
3015
clear_inode_flag(struct inode * inode,int flag)3016 static inline void clear_inode_flag(struct inode *inode, int flag)
3017 {
3018 clear_bit(flag, F2FS_I(inode)->flags);
3019 __mark_inode_dirty_flag(inode, flag, false);
3020 }
3021
f2fs_verity_in_progress(struct inode * inode)3022 static inline bool f2fs_verity_in_progress(struct inode *inode)
3023 {
3024 return IS_ENABLED(CONFIG_FS_VERITY) &&
3025 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3026 }
3027
set_acl_inode(struct inode * inode,umode_t mode)3028 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3029 {
3030 F2FS_I(inode)->i_acl_mode = mode;
3031 set_inode_flag(inode, FI_ACL_MODE);
3032 f2fs_mark_inode_dirty_sync(inode, false);
3033 }
3034
f2fs_i_links_write(struct inode * inode,bool inc)3035 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3036 {
3037 if (inc)
3038 inc_nlink(inode);
3039 else
3040 drop_nlink(inode);
3041 f2fs_mark_inode_dirty_sync(inode, true);
3042 }
3043
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3044 static inline void f2fs_i_blocks_write(struct inode *inode,
3045 block_t diff, bool add, bool claim)
3046 {
3047 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3048 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3049
3050 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3051 if (add) {
3052 if (claim)
3053 dquot_claim_block(inode, diff);
3054 else
3055 dquot_alloc_block_nofail(inode, diff);
3056 } else {
3057 dquot_free_block(inode, diff);
3058 }
3059
3060 f2fs_mark_inode_dirty_sync(inode, true);
3061 if (clean || recover)
3062 set_inode_flag(inode, FI_AUTO_RECOVER);
3063 }
3064
3065 static inline bool f2fs_is_atomic_file(struct inode *inode);
3066
f2fs_i_size_write(struct inode * inode,loff_t i_size)3067 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3068 {
3069 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3070 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3071
3072 if (i_size_read(inode) == i_size)
3073 return;
3074
3075 i_size_write(inode, i_size);
3076
3077 if (f2fs_is_atomic_file(inode))
3078 return;
3079
3080 f2fs_mark_inode_dirty_sync(inode, true);
3081 if (clean || recover)
3082 set_inode_flag(inode, FI_AUTO_RECOVER);
3083 }
3084
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3085 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3086 {
3087 F2FS_I(inode)->i_current_depth = depth;
3088 f2fs_mark_inode_dirty_sync(inode, true);
3089 }
3090
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3091 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3092 unsigned int count)
3093 {
3094 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3095 f2fs_mark_inode_dirty_sync(inode, true);
3096 }
3097
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3098 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3099 {
3100 F2FS_I(inode)->i_xattr_nid = xnid;
3101 f2fs_mark_inode_dirty_sync(inode, true);
3102 }
3103
f2fs_i_pino_write(struct inode * inode,nid_t pino)3104 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3105 {
3106 F2FS_I(inode)->i_pino = pino;
3107 f2fs_mark_inode_dirty_sync(inode, true);
3108 }
3109
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3110 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3111 {
3112 struct f2fs_inode_info *fi = F2FS_I(inode);
3113
3114 if (ri->i_inline & F2FS_INLINE_XATTR)
3115 set_bit(FI_INLINE_XATTR, fi->flags);
3116 if (ri->i_inline & F2FS_INLINE_DATA)
3117 set_bit(FI_INLINE_DATA, fi->flags);
3118 if (ri->i_inline & F2FS_INLINE_DENTRY)
3119 set_bit(FI_INLINE_DENTRY, fi->flags);
3120 if (ri->i_inline & F2FS_DATA_EXIST)
3121 set_bit(FI_DATA_EXIST, fi->flags);
3122 if (ri->i_inline & F2FS_INLINE_DOTS)
3123 set_bit(FI_INLINE_DOTS, fi->flags);
3124 if (ri->i_inline & F2FS_EXTRA_ATTR)
3125 set_bit(FI_EXTRA_ATTR, fi->flags);
3126 if (ri->i_inline & F2FS_PIN_FILE)
3127 set_bit(FI_PIN_FILE, fi->flags);
3128 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3129 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3130 }
3131
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3132 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3133 {
3134 ri->i_inline = 0;
3135
3136 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3137 ri->i_inline |= F2FS_INLINE_XATTR;
3138 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3139 ri->i_inline |= F2FS_INLINE_DATA;
3140 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3141 ri->i_inline |= F2FS_INLINE_DENTRY;
3142 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3143 ri->i_inline |= F2FS_DATA_EXIST;
3144 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3145 ri->i_inline |= F2FS_INLINE_DOTS;
3146 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3147 ri->i_inline |= F2FS_EXTRA_ATTR;
3148 if (is_inode_flag_set(inode, FI_PIN_FILE))
3149 ri->i_inline |= F2FS_PIN_FILE;
3150 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3151 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3152 }
3153
f2fs_has_extra_attr(struct inode * inode)3154 static inline int f2fs_has_extra_attr(struct inode *inode)
3155 {
3156 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3157 }
3158
f2fs_has_inline_xattr(struct inode * inode)3159 static inline int f2fs_has_inline_xattr(struct inode *inode)
3160 {
3161 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3162 }
3163
f2fs_compressed_file(struct inode * inode)3164 static inline int f2fs_compressed_file(struct inode *inode)
3165 {
3166 return S_ISREG(inode->i_mode) &&
3167 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3168 }
3169
f2fs_need_compress_data(struct inode * inode)3170 static inline bool f2fs_need_compress_data(struct inode *inode)
3171 {
3172 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3173
3174 if (!f2fs_compressed_file(inode))
3175 return false;
3176
3177 if (compress_mode == COMPR_MODE_FS)
3178 return true;
3179 else if (compress_mode == COMPR_MODE_USER &&
3180 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3181 return true;
3182
3183 return false;
3184 }
3185
addrs_per_inode(struct inode * inode)3186 static inline unsigned int addrs_per_inode(struct inode *inode)
3187 {
3188 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3189 get_inline_xattr_addrs(inode);
3190
3191 if (!f2fs_compressed_file(inode))
3192 return addrs;
3193 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3194 }
3195
addrs_per_block(struct inode * inode)3196 static inline unsigned int addrs_per_block(struct inode *inode)
3197 {
3198 if (!f2fs_compressed_file(inode))
3199 return DEF_ADDRS_PER_BLOCK;
3200 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3201 }
3202
inline_xattr_addr(struct inode * inode,struct page * page)3203 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3204 {
3205 struct f2fs_inode *ri = F2FS_INODE(page);
3206
3207 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3208 get_inline_xattr_addrs(inode)]);
3209 }
3210
inline_xattr_size(struct inode * inode)3211 static inline int inline_xattr_size(struct inode *inode)
3212 {
3213 if (f2fs_has_inline_xattr(inode))
3214 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3215 return 0;
3216 }
3217
3218 /*
3219 * Notice: check inline_data flag without inode page lock is unsafe.
3220 * It could change at any time by f2fs_convert_inline_page().
3221 */
f2fs_has_inline_data(struct inode * inode)3222 static inline int f2fs_has_inline_data(struct inode *inode)
3223 {
3224 return is_inode_flag_set(inode, FI_INLINE_DATA);
3225 }
3226
f2fs_exist_data(struct inode * inode)3227 static inline int f2fs_exist_data(struct inode *inode)
3228 {
3229 return is_inode_flag_set(inode, FI_DATA_EXIST);
3230 }
3231
f2fs_has_inline_dots(struct inode * inode)3232 static inline int f2fs_has_inline_dots(struct inode *inode)
3233 {
3234 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3235 }
3236
f2fs_is_mmap_file(struct inode * inode)3237 static inline int f2fs_is_mmap_file(struct inode *inode)
3238 {
3239 return is_inode_flag_set(inode, FI_MMAP_FILE);
3240 }
3241
f2fs_is_pinned_file(struct inode * inode)3242 static inline bool f2fs_is_pinned_file(struct inode *inode)
3243 {
3244 return is_inode_flag_set(inode, FI_PIN_FILE);
3245 }
3246
f2fs_is_atomic_file(struct inode * inode)3247 static inline bool f2fs_is_atomic_file(struct inode *inode)
3248 {
3249 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3250 }
3251
f2fs_is_cow_file(struct inode * inode)3252 static inline bool f2fs_is_cow_file(struct inode *inode)
3253 {
3254 return is_inode_flag_set(inode, FI_COW_FILE);
3255 }
3256
f2fs_is_first_block_written(struct inode * inode)3257 static inline bool f2fs_is_first_block_written(struct inode *inode)
3258 {
3259 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3260 }
3261
f2fs_is_drop_cache(struct inode * inode)3262 static inline bool f2fs_is_drop_cache(struct inode *inode)
3263 {
3264 return is_inode_flag_set(inode, FI_DROP_CACHE);
3265 }
3266
inline_data_addr(struct inode * inode,struct page * page)3267 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3268 {
3269 struct f2fs_inode *ri = F2FS_INODE(page);
3270 int extra_size = get_extra_isize(inode);
3271
3272 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3273 }
3274
f2fs_has_inline_dentry(struct inode * inode)3275 static inline int f2fs_has_inline_dentry(struct inode *inode)
3276 {
3277 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3278 }
3279
is_file(struct inode * inode,int type)3280 static inline int is_file(struct inode *inode, int type)
3281 {
3282 return F2FS_I(inode)->i_advise & type;
3283 }
3284
set_file(struct inode * inode,int type)3285 static inline void set_file(struct inode *inode, int type)
3286 {
3287 if (is_file(inode, type))
3288 return;
3289 F2FS_I(inode)->i_advise |= type;
3290 f2fs_mark_inode_dirty_sync(inode, true);
3291 }
3292
clear_file(struct inode * inode,int type)3293 static inline void clear_file(struct inode *inode, int type)
3294 {
3295 if (!is_file(inode, type))
3296 return;
3297 F2FS_I(inode)->i_advise &= ~type;
3298 f2fs_mark_inode_dirty_sync(inode, true);
3299 }
3300
f2fs_is_time_consistent(struct inode * inode)3301 static inline bool f2fs_is_time_consistent(struct inode *inode)
3302 {
3303 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3304 return false;
3305 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3306 return false;
3307 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3308 return false;
3309 return true;
3310 }
3311
f2fs_skip_inode_update(struct inode * inode,int dsync)3312 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3313 {
3314 bool ret;
3315
3316 if (dsync) {
3317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318
3319 spin_lock(&sbi->inode_lock[DIRTY_META]);
3320 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3321 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3322 return ret;
3323 }
3324 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3325 file_keep_isize(inode) ||
3326 i_size_read(inode) & ~PAGE_MASK)
3327 return false;
3328
3329 if (!f2fs_is_time_consistent(inode))
3330 return false;
3331
3332 spin_lock(&F2FS_I(inode)->i_size_lock);
3333 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3334 spin_unlock(&F2FS_I(inode)->i_size_lock);
3335
3336 return ret;
3337 }
3338
f2fs_readonly(struct super_block * sb)3339 static inline bool f2fs_readonly(struct super_block *sb)
3340 {
3341 return sb_rdonly(sb);
3342 }
3343
f2fs_cp_error(struct f2fs_sb_info * sbi)3344 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3345 {
3346 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3347 }
3348
is_dot_dotdot(const u8 * name,size_t len)3349 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3350 {
3351 if (len == 1 && name[0] == '.')
3352 return true;
3353
3354 if (len == 2 && name[0] == '.' && name[1] == '.')
3355 return true;
3356
3357 return false;
3358 }
3359
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3360 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3361 size_t size, gfp_t flags)
3362 {
3363 if (time_to_inject(sbi, FAULT_KMALLOC))
3364 return NULL;
3365
3366 return kmalloc(size, flags);
3367 }
3368
f2fs_getname(struct f2fs_sb_info * sbi)3369 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3370 {
3371 if (time_to_inject(sbi, FAULT_KMALLOC))
3372 return NULL;
3373
3374 return __getname();
3375 }
3376
f2fs_putname(char * buf)3377 static inline void f2fs_putname(char *buf)
3378 {
3379 __putname(buf);
3380 }
3381
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3382 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3383 size_t size, gfp_t flags)
3384 {
3385 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3386 }
3387
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3388 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3389 size_t size, gfp_t flags)
3390 {
3391 if (time_to_inject(sbi, FAULT_KVMALLOC))
3392 return NULL;
3393
3394 return kvmalloc(size, flags);
3395 }
3396
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3397 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3398 size_t size, gfp_t flags)
3399 {
3400 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3401 }
3402
get_extra_isize(struct inode * inode)3403 static inline int get_extra_isize(struct inode *inode)
3404 {
3405 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3406 }
3407
get_inline_xattr_addrs(struct inode * inode)3408 static inline int get_inline_xattr_addrs(struct inode *inode)
3409 {
3410 return F2FS_I(inode)->i_inline_xattr_size;
3411 }
3412
3413 #define f2fs_get_inode_mode(i) \
3414 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3415 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3416
3417 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3418 (offsetof(struct f2fs_inode, i_extra_end) - \
3419 offsetof(struct f2fs_inode, i_extra_isize)) \
3420
3421 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3422 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3423 ((offsetof(typeof(*(f2fs_inode)), field) + \
3424 sizeof((f2fs_inode)->field)) \
3425 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3426
3427 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3428
3429 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3430
3431 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3432 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3433 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3434 block_t blkaddr, int type)
3435 {
3436 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3437 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3438 blkaddr, type);
3439 }
3440
__is_valid_data_blkaddr(block_t blkaddr)3441 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3442 {
3443 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3444 blkaddr == COMPRESS_ADDR)
3445 return false;
3446 return true;
3447 }
3448
3449 /*
3450 * file.c
3451 */
3452 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3453 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3454 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3455 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3456 int f2fs_truncate(struct inode *inode);
3457 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3458 struct kstat *stat, u32 request_mask, unsigned int flags);
3459 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3460 struct iattr *attr);
3461 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3462 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3463 int f2fs_precache_extents(struct inode *inode);
3464 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3465 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3466 struct dentry *dentry, struct fileattr *fa);
3467 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3468 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3469 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3470 int f2fs_pin_file_control(struct inode *inode, bool inc);
3471
3472 /*
3473 * inode.c
3474 */
3475 void f2fs_set_inode_flags(struct inode *inode);
3476 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3477 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3478 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3479 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3480 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3481 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3482 void f2fs_update_inode_page(struct inode *inode);
3483 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3484 void f2fs_evict_inode(struct inode *inode);
3485 void f2fs_handle_failed_inode(struct inode *inode);
3486
3487 /*
3488 * namei.c
3489 */
3490 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3491 bool hot, bool set);
3492 struct dentry *f2fs_get_parent(struct dentry *child);
3493 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3494 struct inode **new_inode);
3495
3496 /*
3497 * dir.c
3498 */
3499 int f2fs_init_casefolded_name(const struct inode *dir,
3500 struct f2fs_filename *fname);
3501 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3502 int lookup, struct f2fs_filename *fname);
3503 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3504 struct f2fs_filename *fname);
3505 void f2fs_free_filename(struct f2fs_filename *fname);
3506 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3507 const struct f2fs_filename *fname, int *max_slots);
3508 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3509 unsigned int start_pos, struct fscrypt_str *fstr);
3510 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3511 struct f2fs_dentry_ptr *d);
3512 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3513 const struct f2fs_filename *fname, struct page *dpage);
3514 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3515 unsigned int current_depth);
3516 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3517 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3518 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3519 const struct f2fs_filename *fname,
3520 struct page **res_page);
3521 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3522 const struct qstr *child, struct page **res_page);
3523 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3524 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3525 struct page **page);
3526 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3527 struct page *page, struct inode *inode);
3528 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3529 const struct f2fs_filename *fname);
3530 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3531 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3532 unsigned int bit_pos);
3533 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3534 struct inode *inode, nid_t ino, umode_t mode);
3535 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3536 struct inode *inode, nid_t ino, umode_t mode);
3537 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3538 struct inode *inode, nid_t ino, umode_t mode);
3539 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3540 struct inode *dir, struct inode *inode);
3541 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3542 bool f2fs_empty_dir(struct inode *dir);
3543
f2fs_add_link(struct dentry * dentry,struct inode * inode)3544 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3545 {
3546 if (fscrypt_is_nokey_name(dentry))
3547 return -ENOKEY;
3548 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3549 inode, inode->i_ino, inode->i_mode);
3550 }
3551
3552 /*
3553 * super.c
3554 */
3555 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3556 void f2fs_inode_synced(struct inode *inode);
3557 int f2fs_dquot_initialize(struct inode *inode);
3558 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3559 int f2fs_quota_sync(struct super_block *sb, int type);
3560 loff_t max_file_blocks(struct inode *inode);
3561 void f2fs_quota_off_umount(struct super_block *sb);
3562 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3563 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3564 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3565 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3566 int f2fs_sync_fs(struct super_block *sb, int sync);
3567 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3568
3569 /*
3570 * hash.c
3571 */
3572 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3573
3574 /*
3575 * node.c
3576 */
3577 struct node_info;
3578
3579 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3580 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3581 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3582 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3583 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3584 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3585 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3586 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3587 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3588 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3589 struct node_info *ni, bool checkpoint_context);
3590 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3591 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3592 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3593 int f2fs_truncate_xattr_node(struct inode *inode);
3594 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3595 unsigned int seq_id);
3596 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3597 int f2fs_remove_inode_page(struct inode *inode);
3598 struct page *f2fs_new_inode_page(struct inode *inode);
3599 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3600 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3601 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3602 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3603 int f2fs_move_node_page(struct page *node_page, int gc_type);
3604 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3605 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3606 struct writeback_control *wbc, bool atomic,
3607 unsigned int *seq_id);
3608 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3609 struct writeback_control *wbc,
3610 bool do_balance, enum iostat_type io_type);
3611 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3612 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3613 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3614 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3615 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3616 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3617 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3618 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3619 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3620 unsigned int segno, struct f2fs_summary_block *sum);
3621 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3622 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3623 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3624 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3625 int __init f2fs_create_node_manager_caches(void);
3626 void f2fs_destroy_node_manager_caches(void);
3627
3628 /*
3629 * segment.c
3630 */
3631 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3632 int f2fs_commit_atomic_write(struct inode *inode);
3633 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3634 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3635 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3636 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3638 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3639 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3640 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3641 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3642 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3643 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3644 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3645 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3646 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3647 struct cp_control *cpc);
3648 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3649 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3650 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3651 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3652 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3653 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3654 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3655 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3656 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3657 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3658 unsigned int *newseg, bool new_sec, int dir);
3659 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3660 unsigned int start, unsigned int end);
3661 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3662 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3663 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3664 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3665 struct cp_control *cpc);
3666 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3667 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3668 block_t blk_addr);
3669 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3670 enum iostat_type io_type);
3671 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3672 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3673 struct f2fs_io_info *fio);
3674 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3675 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3676 block_t old_blkaddr, block_t new_blkaddr,
3677 bool recover_curseg, bool recover_newaddr,
3678 bool from_gc);
3679 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3680 block_t old_addr, block_t new_addr,
3681 unsigned char version, bool recover_curseg,
3682 bool recover_newaddr);
3683 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3684 block_t old_blkaddr, block_t *new_blkaddr,
3685 struct f2fs_summary *sum, int type,
3686 struct f2fs_io_info *fio);
3687 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3688 block_t blkaddr, unsigned int blkcnt);
3689 void f2fs_wait_on_page_writeback(struct page *page,
3690 enum page_type type, bool ordered, bool locked);
3691 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3692 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3693 block_t len);
3694 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3695 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3696 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3697 unsigned int val, int alloc);
3698 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3699 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3700 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3701 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3702 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3703 int __init f2fs_create_segment_manager_caches(void);
3704 void f2fs_destroy_segment_manager_caches(void);
3705 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3706 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3707 unsigned int segno);
3708 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3709 unsigned int segno);
3710
3711 #define DEF_FRAGMENT_SIZE 4
3712 #define MIN_FRAGMENT_SIZE 1
3713 #define MAX_FRAGMENT_SIZE 512
3714
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3715 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3716 {
3717 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3718 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3719 }
3720
3721 /*
3722 * checkpoint.c
3723 */
3724 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3725 unsigned char reason);
3726 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3727 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3728 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3729 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3730 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3731 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3732 block_t blkaddr, int type);
3733 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3734 block_t blkaddr, int type);
3735 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3736 int type, bool sync);
3737 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3738 unsigned int ra_blocks);
3739 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3740 long nr_to_write, enum iostat_type io_type);
3741 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3742 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3743 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3744 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3745 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3746 unsigned int devidx, int type);
3747 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3748 unsigned int devidx, int type);
3749 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3750 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3751 void f2fs_add_orphan_inode(struct inode *inode);
3752 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3753 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3754 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3755 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3756 void f2fs_remove_dirty_inode(struct inode *inode);
3757 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3758 bool from_cp);
3759 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3760 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3761 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3762 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3763 int __init f2fs_create_checkpoint_caches(void);
3764 void f2fs_destroy_checkpoint_caches(void);
3765 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3766 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3767 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3768 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3769
3770 /*
3771 * data.c
3772 */
3773 int __init f2fs_init_bioset(void);
3774 void f2fs_destroy_bioset(void);
3775 bool f2fs_is_cp_guaranteed(struct page *page);
3776 int f2fs_init_bio_entry_cache(void);
3777 void f2fs_destroy_bio_entry_cache(void);
3778 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3779 enum page_type type);
3780 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3781 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3782 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3783 struct inode *inode, struct page *page,
3784 nid_t ino, enum page_type type);
3785 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3786 struct bio **bio, struct page *page);
3787 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3788 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3789 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3790 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3791 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3792 block_t blk_addr, sector_t *sector);
3793 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3794 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3795 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3796 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3797 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3798 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3799 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3800 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3801 blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3802 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
3803 pgoff_t *next_pgofs);
3804 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3805 bool for_write);
3806 struct page *f2fs_get_new_data_page(struct inode *inode,
3807 struct page *ipage, pgoff_t index, bool new_i_size);
3808 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3809 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3810 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3811 u64 start, u64 len);
3812 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3813 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3814 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3815 int f2fs_write_single_data_page(struct page *page, int *submitted,
3816 struct bio **bio, sector_t *last_block,
3817 struct writeback_control *wbc,
3818 enum iostat_type io_type,
3819 int compr_blocks, bool allow_balance);
3820 void f2fs_write_failed(struct inode *inode, loff_t to);
3821 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3822 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3823 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3824 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3825 int f2fs_init_post_read_processing(void);
3826 void f2fs_destroy_post_read_processing(void);
3827 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3828 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3829 extern const struct iomap_ops f2fs_iomap_ops;
3830
3831 /*
3832 * gc.c
3833 */
3834 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3835 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3836 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3837 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
3838 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3839 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3840 int __init f2fs_create_garbage_collection_cache(void);
3841 void f2fs_destroy_garbage_collection_cache(void);
3842 /* victim selection function for cleaning and SSR */
3843 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
3844 int gc_type, int type, char alloc_mode,
3845 unsigned long long age);
3846
3847 /*
3848 * recovery.c
3849 */
3850 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3851 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3852 int __init f2fs_create_recovery_cache(void);
3853 void f2fs_destroy_recovery_cache(void);
3854
3855 /*
3856 * debug.c
3857 */
3858 #ifdef CONFIG_F2FS_STAT_FS
3859 struct f2fs_stat_info {
3860 struct list_head stat_list;
3861 struct f2fs_sb_info *sbi;
3862 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3863 int main_area_segs, main_area_sections, main_area_zones;
3864 unsigned long long hit_cached[NR_EXTENT_CACHES];
3865 unsigned long long hit_rbtree[NR_EXTENT_CACHES];
3866 unsigned long long total_ext[NR_EXTENT_CACHES];
3867 unsigned long long hit_total[NR_EXTENT_CACHES];
3868 int ext_tree[NR_EXTENT_CACHES];
3869 int zombie_tree[NR_EXTENT_CACHES];
3870 int ext_node[NR_EXTENT_CACHES];
3871 /* to count memory footprint */
3872 unsigned long long ext_mem[NR_EXTENT_CACHES];
3873 /* for read extent cache */
3874 unsigned long long hit_largest;
3875 /* for block age extent cache */
3876 unsigned long long allocated_data_blocks;
3877 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3878 int ndirty_data, ndirty_qdata;
3879 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3880 int nats, dirty_nats, sits, dirty_sits;
3881 int free_nids, avail_nids, alloc_nids;
3882 int total_count, utilization;
3883 int bg_gc, nr_wb_cp_data, nr_wb_data;
3884 int nr_rd_data, nr_rd_node, nr_rd_meta;
3885 int nr_dio_read, nr_dio_write;
3886 unsigned int io_skip_bggc, other_skip_bggc;
3887 int nr_flushing, nr_flushed, flush_list_empty;
3888 int nr_discarding, nr_discarded;
3889 int nr_discard_cmd;
3890 unsigned int undiscard_blks;
3891 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3892 unsigned int cur_ckpt_time, peak_ckpt_time;
3893 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3894 int compr_inode, swapfile_inode;
3895 unsigned long long compr_blocks;
3896 int aw_cnt, max_aw_cnt;
3897 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3898 unsigned int bimodal, avg_vblocks;
3899 int util_free, util_valid, util_invalid;
3900 int rsvd_segs, overp_segs;
3901 int dirty_count, node_pages, meta_pages, compress_pages;
3902 int compress_page_hit;
3903 int prefree_count, call_count, cp_count, bg_cp_count;
3904 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3905 int bg_node_segs, bg_data_segs;
3906 int tot_blks, data_blks, node_blks;
3907 int bg_data_blks, bg_node_blks;
3908 int curseg[NR_CURSEG_TYPE];
3909 int cursec[NR_CURSEG_TYPE];
3910 int curzone[NR_CURSEG_TYPE];
3911 unsigned int dirty_seg[NR_CURSEG_TYPE];
3912 unsigned int full_seg[NR_CURSEG_TYPE];
3913 unsigned int valid_blks[NR_CURSEG_TYPE];
3914
3915 unsigned int meta_count[META_MAX];
3916 unsigned int segment_count[2];
3917 unsigned int block_count[2];
3918 unsigned int inplace_count;
3919 unsigned long long base_mem, cache_mem, page_mem;
3920 };
3921
F2FS_STAT(struct f2fs_sb_info * sbi)3922 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3923 {
3924 return (struct f2fs_stat_info *)sbi->stat_info;
3925 }
3926
3927 #define stat_inc_cp_count(si) ((si)->cp_count++)
3928 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3929 #define stat_inc_call_count(si) ((si)->call_count++)
3930 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3931 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3932 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3933 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3934 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3935 #define stat_inc_total_hit(sbi, type) (atomic64_inc(&(sbi)->total_hit_ext[type]))
3936 #define stat_inc_rbtree_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_rbtree[type]))
3937 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3938 #define stat_inc_cached_node_hit(sbi, type) (atomic64_inc(&(sbi)->read_hit_cached[type]))
3939 #define stat_inc_inline_xattr(inode) \
3940 do { \
3941 if (f2fs_has_inline_xattr(inode)) \
3942 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3943 } while (0)
3944 #define stat_dec_inline_xattr(inode) \
3945 do { \
3946 if (f2fs_has_inline_xattr(inode)) \
3947 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3948 } while (0)
3949 #define stat_inc_inline_inode(inode) \
3950 do { \
3951 if (f2fs_has_inline_data(inode)) \
3952 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3953 } while (0)
3954 #define stat_dec_inline_inode(inode) \
3955 do { \
3956 if (f2fs_has_inline_data(inode)) \
3957 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3958 } while (0)
3959 #define stat_inc_inline_dir(inode) \
3960 do { \
3961 if (f2fs_has_inline_dentry(inode)) \
3962 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3963 } while (0)
3964 #define stat_dec_inline_dir(inode) \
3965 do { \
3966 if (f2fs_has_inline_dentry(inode)) \
3967 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3968 } while (0)
3969 #define stat_inc_compr_inode(inode) \
3970 do { \
3971 if (f2fs_compressed_file(inode)) \
3972 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3973 } while (0)
3974 #define stat_dec_compr_inode(inode) \
3975 do { \
3976 if (f2fs_compressed_file(inode)) \
3977 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3978 } while (0)
3979 #define stat_add_compr_blocks(inode, blocks) \
3980 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3981 #define stat_sub_compr_blocks(inode, blocks) \
3982 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3983 #define stat_inc_swapfile_inode(inode) \
3984 (atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
3985 #define stat_dec_swapfile_inode(inode) \
3986 (atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
3987 #define stat_inc_atomic_inode(inode) \
3988 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3989 #define stat_dec_atomic_inode(inode) \
3990 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3991 #define stat_inc_meta_count(sbi, blkaddr) \
3992 do { \
3993 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3994 atomic_inc(&(sbi)->meta_count[META_CP]); \
3995 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3996 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3997 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3998 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3999 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
4000 atomic_inc(&(sbi)->meta_count[META_SSA]); \
4001 } while (0)
4002 #define stat_inc_seg_type(sbi, curseg) \
4003 ((sbi)->segment_count[(curseg)->alloc_type]++)
4004 #define stat_inc_block_count(sbi, curseg) \
4005 ((sbi)->block_count[(curseg)->alloc_type]++)
4006 #define stat_inc_inplace_blocks(sbi) \
4007 (atomic_inc(&(sbi)->inplace_count))
4008 #define stat_update_max_atomic_write(inode) \
4009 do { \
4010 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
4011 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
4012 if (cur > max) \
4013 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
4014 } while (0)
4015 #define stat_inc_seg_count(sbi, type, gc_type) \
4016 do { \
4017 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4018 si->tot_segs++; \
4019 if ((type) == SUM_TYPE_DATA) { \
4020 si->data_segs++; \
4021 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
4022 } else { \
4023 si->node_segs++; \
4024 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
4025 } \
4026 } while (0)
4027
4028 #define stat_inc_tot_blk_count(si, blks) \
4029 ((si)->tot_blks += (blks))
4030
4031 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4032 do { \
4033 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4034 stat_inc_tot_blk_count(si, blks); \
4035 si->data_blks += (blks); \
4036 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4037 } while (0)
4038
4039 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4040 do { \
4041 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4042 stat_inc_tot_blk_count(si, blks); \
4043 si->node_blks += (blks); \
4044 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4045 } while (0)
4046
4047 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4048 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4049 void __init f2fs_create_root_stats(void);
4050 void f2fs_destroy_root_stats(void);
4051 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4052 #else
4053 #define stat_inc_cp_count(si) do { } while (0)
4054 #define stat_inc_bg_cp_count(si) do { } while (0)
4055 #define stat_inc_call_count(si) do { } while (0)
4056 #define stat_inc_bggc_count(si) do { } while (0)
4057 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4058 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4059 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4060 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4061 #define stat_inc_total_hit(sbi, type) do { } while (0)
4062 #define stat_inc_rbtree_node_hit(sbi, type) do { } while (0)
4063 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4064 #define stat_inc_cached_node_hit(sbi, type) do { } while (0)
4065 #define stat_inc_inline_xattr(inode) do { } while (0)
4066 #define stat_dec_inline_xattr(inode) do { } while (0)
4067 #define stat_inc_inline_inode(inode) do { } while (0)
4068 #define stat_dec_inline_inode(inode) do { } while (0)
4069 #define stat_inc_inline_dir(inode) do { } while (0)
4070 #define stat_dec_inline_dir(inode) do { } while (0)
4071 #define stat_inc_compr_inode(inode) do { } while (0)
4072 #define stat_dec_compr_inode(inode) do { } while (0)
4073 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4074 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4075 #define stat_inc_swapfile_inode(inode) do { } while (0)
4076 #define stat_dec_swapfile_inode(inode) do { } while (0)
4077 #define stat_inc_atomic_inode(inode) do { } while (0)
4078 #define stat_dec_atomic_inode(inode) do { } while (0)
4079 #define stat_update_max_atomic_write(inode) do { } while (0)
4080 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4081 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4082 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4083 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4084 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
4085 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4086 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4087 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4088
f2fs_build_stats(struct f2fs_sb_info * sbi)4089 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4090 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4091 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4092 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4093 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4094 #endif
4095
4096 extern const struct file_operations f2fs_dir_operations;
4097 extern const struct file_operations f2fs_file_operations;
4098 extern const struct inode_operations f2fs_file_inode_operations;
4099 extern const struct address_space_operations f2fs_dblock_aops;
4100 extern const struct address_space_operations f2fs_node_aops;
4101 extern const struct address_space_operations f2fs_meta_aops;
4102 extern const struct inode_operations f2fs_dir_inode_operations;
4103 extern const struct inode_operations f2fs_symlink_inode_operations;
4104 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4105 extern const struct inode_operations f2fs_special_inode_operations;
4106 extern struct kmem_cache *f2fs_inode_entry_slab;
4107
4108 /*
4109 * inline.c
4110 */
4111 bool f2fs_may_inline_data(struct inode *inode);
4112 bool f2fs_sanity_check_inline_data(struct inode *inode);
4113 bool f2fs_may_inline_dentry(struct inode *inode);
4114 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4115 void f2fs_truncate_inline_inode(struct inode *inode,
4116 struct page *ipage, u64 from);
4117 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4118 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4119 int f2fs_convert_inline_inode(struct inode *inode);
4120 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4121 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4122 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4123 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4124 const struct f2fs_filename *fname,
4125 struct page **res_page);
4126 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4127 struct page *ipage);
4128 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4129 struct inode *inode, nid_t ino, umode_t mode);
4130 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4131 struct page *page, struct inode *dir,
4132 struct inode *inode);
4133 bool f2fs_empty_inline_dir(struct inode *dir);
4134 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4135 struct fscrypt_str *fstr);
4136 int f2fs_inline_data_fiemap(struct inode *inode,
4137 struct fiemap_extent_info *fieinfo,
4138 __u64 start, __u64 len);
4139
4140 /*
4141 * shrinker.c
4142 */
4143 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4144 struct shrink_control *sc);
4145 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4146 struct shrink_control *sc);
4147 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4148 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4149
4150 /*
4151 * extent_cache.c
4152 */
4153 bool sanity_check_extent_cache(struct inode *inode);
4154 void f2fs_init_extent_tree(struct inode *inode);
4155 void f2fs_drop_extent_tree(struct inode *inode);
4156 void f2fs_destroy_extent_node(struct inode *inode);
4157 void f2fs_destroy_extent_tree(struct inode *inode);
4158 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4159 int __init f2fs_create_extent_cache(void);
4160 void f2fs_destroy_extent_cache(void);
4161
4162 /* read extent cache ops */
4163 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4164 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4165 struct extent_info *ei);
4166 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4167 block_t *blkaddr);
4168 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4169 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4170 pgoff_t fofs, block_t blkaddr, unsigned int len);
4171 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4172 int nr_shrink);
4173
4174 /* block age extent cache ops */
4175 void f2fs_init_age_extent_tree(struct inode *inode);
4176 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4177 struct extent_info *ei);
4178 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4179 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4180 pgoff_t fofs, unsigned int len);
4181 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4182 int nr_shrink);
4183
4184 /*
4185 * sysfs.c
4186 */
4187 #define MIN_RA_MUL 2
4188 #define MAX_RA_MUL 256
4189
4190 int __init f2fs_init_sysfs(void);
4191 void f2fs_exit_sysfs(void);
4192 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4193 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4194
4195 /* verity.c */
4196 extern const struct fsverity_operations f2fs_verityops;
4197
4198 /*
4199 * crypto support
4200 */
f2fs_encrypted_file(struct inode * inode)4201 static inline bool f2fs_encrypted_file(struct inode *inode)
4202 {
4203 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4204 }
4205
f2fs_set_encrypted_inode(struct inode * inode)4206 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4207 {
4208 #ifdef CONFIG_FS_ENCRYPTION
4209 file_set_encrypt(inode);
4210 f2fs_set_inode_flags(inode);
4211 #endif
4212 }
4213
4214 /*
4215 * Returns true if the reads of the inode's data need to undergo some
4216 * postprocessing step, like decryption or authenticity verification.
4217 */
f2fs_post_read_required(struct inode * inode)4218 static inline bool f2fs_post_read_required(struct inode *inode)
4219 {
4220 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4221 f2fs_compressed_file(inode);
4222 }
4223
4224 /*
4225 * compress.c
4226 */
4227 #ifdef CONFIG_F2FS_FS_COMPRESSION
4228 bool f2fs_is_compressed_page(struct page *page);
4229 struct page *f2fs_compress_control_page(struct page *page);
4230 int f2fs_prepare_compress_overwrite(struct inode *inode,
4231 struct page **pagep, pgoff_t index, void **fsdata);
4232 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4233 pgoff_t index, unsigned copied);
4234 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4235 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4236 bool f2fs_is_compress_backend_ready(struct inode *inode);
4237 bool f2fs_is_compress_level_valid(int alg, int lvl);
4238 int __init f2fs_init_compress_mempool(void);
4239 void f2fs_destroy_compress_mempool(void);
4240 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4241 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4242 block_t blkaddr, bool in_task);
4243 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4244 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4245 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4246 int index, int nr_pages, bool uptodate);
4247 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4248 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4249 int f2fs_write_multi_pages(struct compress_ctx *cc,
4250 int *submitted,
4251 struct writeback_control *wbc,
4252 enum iostat_type io_type);
4253 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4254 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4255 pgoff_t fofs, block_t blkaddr,
4256 unsigned int llen, unsigned int c_len);
4257 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4258 unsigned nr_pages, sector_t *last_block_in_bio,
4259 bool is_readahead, bool for_write);
4260 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4261 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4262 bool in_task);
4263 void f2fs_put_page_dic(struct page *page, bool in_task);
4264 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4265 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4266 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4267 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4268 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4269 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4270 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4271 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4272 int __init f2fs_init_compress_cache(void);
4273 void f2fs_destroy_compress_cache(void);
4274 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4275 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4276 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4277 nid_t ino, block_t blkaddr);
4278 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4279 block_t blkaddr);
4280 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4281 #define inc_compr_inode_stat(inode) \
4282 do { \
4283 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4284 sbi->compr_new_inode++; \
4285 } while (0)
4286 #define add_compr_block_stat(inode, blocks) \
4287 do { \
4288 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4289 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4290 sbi->compr_written_block += blocks; \
4291 sbi->compr_saved_block += diff; \
4292 } while (0)
4293 #else
f2fs_is_compressed_page(struct page * page)4294 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4295 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4296 {
4297 if (!f2fs_compressed_file(inode))
4298 return true;
4299 /* not support compression */
4300 return false;
4301 }
f2fs_is_compress_level_valid(int alg,int lvl)4302 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4303 static inline struct page *f2fs_compress_control_page(struct page *page)
4304 {
4305 WARN_ON_ONCE(1);
4306 return ERR_PTR(-EINVAL);
4307 }
f2fs_init_compress_mempool(void)4308 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4309 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4310 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4311 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4312 static inline void f2fs_end_read_compressed_page(struct page *page,
4313 bool failed, block_t blkaddr, bool in_task)
4314 {
4315 WARN_ON_ONCE(1);
4316 }
f2fs_put_page_dic(struct page * page,bool in_task)4317 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4318 {
4319 WARN_ON_ONCE(1);
4320 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4321 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4322 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4323 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4324 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4325 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4326 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4327 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4328 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4329 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4330 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4331 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4332 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4333 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4334 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4335 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4336 nid_t ino) { }
4337 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4338 static inline void f2fs_update_read_extent_tree_range_compressed(
4339 struct inode *inode,
4340 pgoff_t fofs, block_t blkaddr,
4341 unsigned int llen, unsigned int c_len) { }
4342 #endif
4343
set_compress_context(struct inode * inode)4344 static inline int set_compress_context(struct inode *inode)
4345 {
4346 #ifdef CONFIG_F2FS_FS_COMPRESSION
4347 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4348
4349 F2FS_I(inode)->i_compress_algorithm =
4350 F2FS_OPTION(sbi).compress_algorithm;
4351 F2FS_I(inode)->i_log_cluster_size =
4352 F2FS_OPTION(sbi).compress_log_size;
4353 F2FS_I(inode)->i_compress_flag =
4354 F2FS_OPTION(sbi).compress_chksum ?
4355 BIT(COMPRESS_CHKSUM) : 0;
4356 F2FS_I(inode)->i_cluster_size =
4357 BIT(F2FS_I(inode)->i_log_cluster_size);
4358 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4359 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4360 F2FS_OPTION(sbi).compress_level)
4361 F2FS_I(inode)->i_compress_level =
4362 F2FS_OPTION(sbi).compress_level;
4363 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4364 set_inode_flag(inode, FI_COMPRESSED_FILE);
4365 stat_inc_compr_inode(inode);
4366 inc_compr_inode_stat(inode);
4367 f2fs_mark_inode_dirty_sync(inode, true);
4368 return 0;
4369 #else
4370 return -EOPNOTSUPP;
4371 #endif
4372 }
4373
f2fs_disable_compressed_file(struct inode * inode)4374 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4375 {
4376 struct f2fs_inode_info *fi = F2FS_I(inode);
4377
4378 if (!f2fs_compressed_file(inode))
4379 return true;
4380 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4381 return false;
4382
4383 fi->i_flags &= ~F2FS_COMPR_FL;
4384 stat_dec_compr_inode(inode);
4385 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4386 f2fs_mark_inode_dirty_sync(inode, true);
4387 return true;
4388 }
4389
4390 #define F2FS_FEATURE_FUNCS(name, flagname) \
4391 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4392 { \
4393 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4394 }
4395
4396 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4397 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4398 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4399 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4400 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4401 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4402 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4403 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4404 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4405 F2FS_FEATURE_FUNCS(verity, VERITY);
4406 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4407 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4408 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4409 F2FS_FEATURE_FUNCS(readonly, RO);
4410
4411 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4412 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4413 block_t blkaddr)
4414 {
4415 unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4416
4417 return test_bit(zno, FDEV(devi).blkz_seq);
4418 }
4419 #endif
4420
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4421 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4422 {
4423 return f2fs_sb_has_blkzoned(sbi);
4424 }
4425
f2fs_bdev_support_discard(struct block_device * bdev)4426 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4427 {
4428 return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4429 }
4430
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4431 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4432 {
4433 int i;
4434
4435 if (!f2fs_is_multi_device(sbi))
4436 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4437
4438 for (i = 0; i < sbi->s_ndevs; i++)
4439 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4440 return true;
4441 return false;
4442 }
4443
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4444 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4445 {
4446 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4447 f2fs_hw_should_discard(sbi);
4448 }
4449
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4450 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4451 {
4452 int i;
4453
4454 if (!f2fs_is_multi_device(sbi))
4455 return bdev_read_only(sbi->sb->s_bdev);
4456
4457 for (i = 0; i < sbi->s_ndevs; i++)
4458 if (bdev_read_only(FDEV(i).bdev))
4459 return true;
4460 return false;
4461 }
4462
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4463 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4464 {
4465 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4466 }
4467
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4468 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4469 {
4470 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4471 }
4472
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4473 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4474 {
4475 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4476 }
4477
f2fs_may_compress(struct inode * inode)4478 static inline bool f2fs_may_compress(struct inode *inode)
4479 {
4480 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4481 f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4482 f2fs_is_mmap_file(inode))
4483 return false;
4484 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4485 }
4486
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4487 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4488 u64 blocks, bool add)
4489 {
4490 struct f2fs_inode_info *fi = F2FS_I(inode);
4491 int diff = fi->i_cluster_size - blocks;
4492
4493 /* don't update i_compr_blocks if saved blocks were released */
4494 if (!add && !atomic_read(&fi->i_compr_blocks))
4495 return;
4496
4497 if (add) {
4498 atomic_add(diff, &fi->i_compr_blocks);
4499 stat_add_compr_blocks(inode, diff);
4500 } else {
4501 atomic_sub(diff, &fi->i_compr_blocks);
4502 stat_sub_compr_blocks(inode, diff);
4503 }
4504 f2fs_mark_inode_dirty_sync(inode, true);
4505 }
4506
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4507 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4508 int flag)
4509 {
4510 if (!f2fs_is_multi_device(sbi))
4511 return false;
4512 if (flag != F2FS_GET_BLOCK_DIO)
4513 return false;
4514 return sbi->aligned_blksize;
4515 }
4516
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4517 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4518 {
4519 return fsverity_active(inode) &&
4520 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4521 }
4522
4523 #ifdef CONFIG_F2FS_FAULT_INJECTION
4524 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4525 unsigned int type);
4526 #else
4527 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4528 #endif
4529
is_journalled_quota(struct f2fs_sb_info * sbi)4530 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4531 {
4532 #ifdef CONFIG_QUOTA
4533 if (f2fs_sb_has_quota_ino(sbi))
4534 return true;
4535 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4536 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4537 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4538 return true;
4539 #endif
4540 return false;
4541 }
4542
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4543 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4544 {
4545 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4546 }
4547
f2fs_io_schedule_timeout(long timeout)4548 static inline void f2fs_io_schedule_timeout(long timeout)
4549 {
4550 set_current_state(TASK_UNINTERRUPTIBLE);
4551 io_schedule_timeout(timeout);
4552 }
4553
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4554 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4555 enum page_type type)
4556 {
4557 if (unlikely(f2fs_cp_error(sbi)))
4558 return;
4559
4560 if (ofs == sbi->page_eio_ofs[type]) {
4561 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4562 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4563 } else {
4564 sbi->page_eio_ofs[type] = ofs;
4565 sbi->page_eio_cnt[type] = 0;
4566 }
4567 }
4568
f2fs_is_readonly(struct f2fs_sb_info * sbi)4569 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4570 {
4571 return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4572 }
4573
4574 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4575 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4576
4577 #endif /* _LINUX_F2FS_H */
4578