1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device tree based initialization code for reserved memory.
4 *
5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7 * http://www.samsung.com
8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9 * Author: Josh Cartwright <joshc@codeaurora.org>
10 */
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25 #include <linux/cma.h>
26
27 #include "of_private.h"
28
29 #define MAX_RESERVED_REGIONS 128
30 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
31 static int reserved_mem_count;
32
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)33 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
34 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
35 phys_addr_t *res_base)
36 {
37 phys_addr_t base;
38 int err = 0;
39
40 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
41 align = !align ? SMP_CACHE_BYTES : align;
42 base = memblock_phys_alloc_range(size, align, start, end);
43 if (!base)
44 return -ENOMEM;
45
46 *res_base = base;
47 if (nomap) {
48 err = memblock_mark_nomap(base, size);
49 if (err)
50 memblock_phys_free(base, size);
51 }
52
53 kmemleak_ignore_phys(base);
54
55 return err;
56 }
57
58 /*
59 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
60 */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)61 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
62 phys_addr_t base, phys_addr_t size)
63 {
64 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
65
66 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
67 pr_err("not enough space for all defined regions.\n");
68 return;
69 }
70
71 rmem->fdt_node = node;
72 rmem->name = uname;
73 rmem->base = base;
74 rmem->size = size;
75
76 reserved_mem_count++;
77 return;
78 }
79
80 /*
81 * __reserved_mem_alloc_size() - allocate reserved memory described by
82 * 'size', 'alignment' and 'alloc-ranges' properties.
83 */
__reserved_mem_alloc_size(unsigned long node,const char * uname,phys_addr_t * res_base,phys_addr_t * res_size)84 static int __init __reserved_mem_alloc_size(unsigned long node,
85 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
86 {
87 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
88 phys_addr_t start = 0, end = 0;
89 phys_addr_t base = 0, align = 0, size;
90 int len;
91 const __be32 *prop;
92 bool nomap;
93 int ret;
94
95 prop = of_get_flat_dt_prop(node, "size", &len);
96 if (!prop)
97 return -EINVAL;
98
99 if (len != dt_root_size_cells * sizeof(__be32)) {
100 pr_err("invalid size property in '%s' node.\n", uname);
101 return -EINVAL;
102 }
103 size = dt_mem_next_cell(dt_root_size_cells, &prop);
104
105 prop = of_get_flat_dt_prop(node, "alignment", &len);
106 if (prop) {
107 if (len != dt_root_addr_cells * sizeof(__be32)) {
108 pr_err("invalid alignment property in '%s' node.\n",
109 uname);
110 return -EINVAL;
111 }
112 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
113 }
114
115 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
116
117 /* Need adjust the alignment to satisfy the CMA requirement */
118 if (IS_ENABLED(CONFIG_CMA)
119 && of_flat_dt_is_compatible(node, "shared-dma-pool")
120 && of_get_flat_dt_prop(node, "reusable", NULL)
121 && !nomap)
122 align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
123
124 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
125 if (prop) {
126
127 if (len % t_len != 0) {
128 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
129 uname);
130 return -EINVAL;
131 }
132
133 base = 0;
134
135 while (len > 0) {
136 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
137 end = start + dt_mem_next_cell(dt_root_size_cells,
138 &prop);
139
140 ret = early_init_dt_alloc_reserved_memory_arch(size,
141 align, start, end, nomap, &base);
142 if (ret == 0) {
143 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
144 uname, &base,
145 (unsigned long)(size / SZ_1M));
146 break;
147 }
148 len -= t_len;
149 }
150
151 } else {
152 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
153 0, 0, nomap, &base);
154 if (ret == 0)
155 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
156 uname, &base, (unsigned long)(size / SZ_1M));
157 }
158
159 if (base == 0) {
160 pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
161 uname, (unsigned long)(size / SZ_1M));
162 return -ENOMEM;
163 }
164
165 *res_base = base;
166 *res_size = size;
167
168 return 0;
169 }
170
171 static const struct of_device_id __rmem_of_table_sentinel
172 __used __section("__reservedmem_of_table_end");
173
174 /*
175 * __reserved_mem_init_node() - call region specific reserved memory init code
176 */
__reserved_mem_init_node(struct reserved_mem * rmem)177 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
178 {
179 extern const struct of_device_id __reservedmem_of_table[];
180 const struct of_device_id *i;
181 int ret = -ENOENT;
182
183 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
184 reservedmem_of_init_fn initfn = i->data;
185 const char *compat = i->compatible;
186
187 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
188 continue;
189
190 ret = initfn(rmem);
191 if (ret == 0) {
192 pr_info("initialized node %s, compatible id %s\n",
193 rmem->name, compat);
194 break;
195 }
196 }
197 return ret;
198 }
199
__rmem_cmp(const void * a,const void * b)200 static int __init __rmem_cmp(const void *a, const void *b)
201 {
202 const struct reserved_mem *ra = a, *rb = b;
203
204 if (ra->base < rb->base)
205 return -1;
206
207 if (ra->base > rb->base)
208 return 1;
209
210 /*
211 * Put the dynamic allocations (address == 0, size == 0) before static
212 * allocations at address 0x0 so that overlap detection works
213 * correctly.
214 */
215 if (ra->size < rb->size)
216 return -1;
217 if (ra->size > rb->size)
218 return 1;
219
220 return 0;
221 }
222
__rmem_check_for_overlap(void)223 static void __init __rmem_check_for_overlap(void)
224 {
225 int i;
226
227 if (reserved_mem_count < 2)
228 return;
229
230 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
231 __rmem_cmp, NULL);
232 for (i = 0; i < reserved_mem_count - 1; i++) {
233 struct reserved_mem *this, *next;
234
235 this = &reserved_mem[i];
236 next = &reserved_mem[i + 1];
237
238 if (this->base + this->size > next->base) {
239 phys_addr_t this_end, next_end;
240
241 this_end = this->base + this->size;
242 next_end = next->base + next->size;
243 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
244 this->name, &this->base, &this_end,
245 next->name, &next->base, &next_end);
246 }
247 }
248 }
249
250 /**
251 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
252 */
fdt_init_reserved_mem(void)253 void __init fdt_init_reserved_mem(void)
254 {
255 int i;
256
257 /* check for overlapping reserved regions */
258 __rmem_check_for_overlap();
259
260 for (i = 0; i < reserved_mem_count; i++) {
261 struct reserved_mem *rmem = &reserved_mem[i];
262 unsigned long node = rmem->fdt_node;
263 int len;
264 const __be32 *prop;
265 int err = 0;
266 bool nomap;
267
268 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
269 prop = of_get_flat_dt_prop(node, "phandle", &len);
270 if (!prop)
271 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
272 if (prop)
273 rmem->phandle = of_read_number(prop, len/4);
274
275 if (rmem->size == 0)
276 err = __reserved_mem_alloc_size(node, rmem->name,
277 &rmem->base, &rmem->size);
278 if (err == 0) {
279 err = __reserved_mem_init_node(rmem);
280 if (err != 0 && err != -ENOENT) {
281 pr_info("node %s compatible matching fail\n",
282 rmem->name);
283 if (nomap)
284 memblock_clear_nomap(rmem->base, rmem->size);
285 else
286 memblock_phys_free(rmem->base,
287 rmem->size);
288 } else {
289 phys_addr_t end = rmem->base + rmem->size - 1;
290 bool reusable =
291 (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
292
293 pr_info("%pa..%pa ( %lu KB ) %s %s %s\n",
294 &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
295 nomap ? "nomap" : "map",
296 reusable ? "reusable" : "non-reusable",
297 rmem->name ? rmem->name : "unknown");
298 }
299 }
300 }
301 }
302
__find_rmem(struct device_node * node)303 static inline struct reserved_mem *__find_rmem(struct device_node *node)
304 {
305 unsigned int i;
306
307 if (!node->phandle)
308 return NULL;
309
310 for (i = 0; i < reserved_mem_count; i++)
311 if (reserved_mem[i].phandle == node->phandle)
312 return &reserved_mem[i];
313 return NULL;
314 }
315
316 struct rmem_assigned_device {
317 struct device *dev;
318 struct reserved_mem *rmem;
319 struct list_head list;
320 };
321
322 static LIST_HEAD(of_rmem_assigned_device_list);
323 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
324
325 /**
326 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
327 * given device
328 * @dev: Pointer to the device to configure
329 * @np: Pointer to the device_node with 'reserved-memory' property
330 * @idx: Index of selected region
331 *
332 * This function assigns respective DMA-mapping operations based on reserved
333 * memory region specified by 'memory-region' property in @np node to the @dev
334 * device. When driver needs to use more than one reserved memory region, it
335 * should allocate child devices and initialize regions by name for each of
336 * child device.
337 *
338 * Returns error code or zero on success.
339 */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)340 int of_reserved_mem_device_init_by_idx(struct device *dev,
341 struct device_node *np, int idx)
342 {
343 struct rmem_assigned_device *rd;
344 struct device_node *target;
345 struct reserved_mem *rmem;
346 int ret;
347
348 if (!np || !dev)
349 return -EINVAL;
350
351 target = of_parse_phandle(np, "memory-region", idx);
352 if (!target)
353 return -ENODEV;
354
355 if (!of_device_is_available(target)) {
356 of_node_put(target);
357 return 0;
358 }
359
360 rmem = __find_rmem(target);
361 of_node_put(target);
362
363 if (!rmem || !rmem->ops || !rmem->ops->device_init)
364 return -EINVAL;
365
366 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
367 if (!rd)
368 return -ENOMEM;
369
370 ret = rmem->ops->device_init(rmem, dev);
371 if (ret == 0) {
372 rd->dev = dev;
373 rd->rmem = rmem;
374
375 mutex_lock(&of_rmem_assigned_device_mutex);
376 list_add(&rd->list, &of_rmem_assigned_device_list);
377 mutex_unlock(&of_rmem_assigned_device_mutex);
378
379 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
380 } else {
381 kfree(rd);
382 }
383
384 return ret;
385 }
386 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
387
388 /**
389 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
390 * to given device
391 * @dev: pointer to the device to configure
392 * @np: pointer to the device node with 'memory-region' property
393 * @name: name of the selected memory region
394 *
395 * Returns: 0 on success or a negative error-code on failure.
396 */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)397 int of_reserved_mem_device_init_by_name(struct device *dev,
398 struct device_node *np,
399 const char *name)
400 {
401 int idx = of_property_match_string(np, "memory-region-names", name);
402
403 return of_reserved_mem_device_init_by_idx(dev, np, idx);
404 }
405 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
406
407 /**
408 * of_reserved_mem_device_release() - release reserved memory device structures
409 * @dev: Pointer to the device to deconfigure
410 *
411 * This function releases structures allocated for memory region handling for
412 * the given device.
413 */
of_reserved_mem_device_release(struct device * dev)414 void of_reserved_mem_device_release(struct device *dev)
415 {
416 struct rmem_assigned_device *rd, *tmp;
417 LIST_HEAD(release_list);
418
419 mutex_lock(&of_rmem_assigned_device_mutex);
420 list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
421 if (rd->dev == dev)
422 list_move_tail(&rd->list, &release_list);
423 }
424 mutex_unlock(&of_rmem_assigned_device_mutex);
425
426 list_for_each_entry_safe(rd, tmp, &release_list, list) {
427 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
428 rd->rmem->ops->device_release(rd->rmem, dev);
429
430 kfree(rd);
431 }
432 }
433 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
434
435 /**
436 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
437 * @np: node pointer of the desired reserved-memory region
438 *
439 * This function allows drivers to acquire a reference to the reserved_mem
440 * struct based on a device node handle.
441 *
442 * Returns a reserved_mem reference, or NULL on error.
443 */
of_reserved_mem_lookup(struct device_node * np)444 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
445 {
446 const char *name;
447 int i;
448
449 if (!np->full_name)
450 return NULL;
451
452 name = kbasename(np->full_name);
453 for (i = 0; i < reserved_mem_count; i++)
454 if (!strcmp(reserved_mem[i].name, name))
455 return &reserved_mem[i];
456
457 return NULL;
458 }
459 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
460