1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7 #define INCLUDE_VERMAGIC
8
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/fs.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/elf.h>
23 #include <linux/seq_file.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/rcupdate.h>
27 #include <linux/capability.h>
28 #include <linux/cpu.h>
29 #include <linux/moduleparam.h>
30 #include <linux/errno.h>
31 #include <linux/err.h>
32 #include <linux/vermagic.h>
33 #include <linux/notifier.h>
34 #include <linux/sched.h>
35 #include <linux/device.h>
36 #include <linux/string.h>
37 #include <linux/mutex.h>
38 #include <linux/rculist.h>
39 #include <linux/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <linux/set_memory.h>
42 #include <asm/mmu_context.h>
43 #include <linux/license.h>
44 #include <asm/sections.h>
45 #include <linux/tracepoint.h>
46 #include <linux/ftrace.h>
47 #include <linux/livepatch.h>
48 #include <linux/async.h>
49 #include <linux/percpu.h>
50 #include <linux/kmemleak.h>
51 #include <linux/jump_label.h>
52 #include <linux/pfn.h>
53 #include <linux/bsearch.h>
54 #include <linux/dynamic_debug.h>
55 #include <linux/audit.h>
56 #include <linux/cfi.h>
57 #include <uapi/linux/module.h>
58 #include "internal.h"
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/module.h>
62
63 #undef CREATE_TRACE_POINTS
64 #include <trace/hooks/module.h>
65
66 /*
67 * Mutex protects:
68 * 1) List of modules (also safely readable with preempt_disable),
69 * 2) module_use links,
70 * 3) mod_tree.addr_min/mod_tree.addr_max.
71 * (delete and add uses RCU list operations).
72 */
73 DEFINE_MUTEX(module_mutex);
74 LIST_HEAD(modules);
75
76 /* Work queue for freeing init sections in success case */
77 static void do_free_init(struct work_struct *w);
78 static DECLARE_WORK(init_free_wq, do_free_init);
79 static LLIST_HEAD(init_free_list);
80
81 struct mod_tree_root mod_tree __cacheline_aligned = {
82 .addr_min = -1UL,
83 };
84
85 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
86 struct mod_tree_root mod_data_tree __cacheline_aligned = {
87 .addr_min = -1UL,
88 };
89 #endif
90
91 #define module_addr_min mod_tree.addr_min
92 #define module_addr_max mod_tree.addr_max
93
94 struct symsearch {
95 const struct kernel_symbol *start, *stop;
96 const s32 *crcs;
97 enum mod_license license;
98 };
99
100 /*
101 * Bounds of module text, for speeding up __module_address.
102 * Protected by module_mutex.
103 */
__mod_update_bounds(void * base,unsigned int size,struct mod_tree_root * tree)104 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree)
105 {
106 unsigned long min = (unsigned long)base;
107 unsigned long max = min + size;
108
109 if (min < tree->addr_min)
110 tree->addr_min = min;
111 if (max > tree->addr_max)
112 tree->addr_max = max;
113 }
114
mod_update_bounds(struct module * mod)115 static void mod_update_bounds(struct module *mod)
116 {
117 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree);
118 if (mod->init_layout.size)
119 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree);
120 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
121 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree);
122 #endif
123 }
124
125 /* Block module loading/unloading? */
126 int modules_disabled;
127 core_param(nomodule, modules_disabled, bint, 0);
128
129 /* Waiting for a module to finish initializing? */
130 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
131
132 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
133
register_module_notifier(struct notifier_block * nb)134 int register_module_notifier(struct notifier_block *nb)
135 {
136 return blocking_notifier_chain_register(&module_notify_list, nb);
137 }
138 EXPORT_SYMBOL(register_module_notifier);
139
unregister_module_notifier(struct notifier_block * nb)140 int unregister_module_notifier(struct notifier_block *nb)
141 {
142 return blocking_notifier_chain_unregister(&module_notify_list, nb);
143 }
144 EXPORT_SYMBOL(unregister_module_notifier);
145
146 /*
147 * We require a truly strong try_module_get(): 0 means success.
148 * Otherwise an error is returned due to ongoing or failed
149 * initialization etc.
150 */
strong_try_module_get(struct module * mod)151 static inline int strong_try_module_get(struct module *mod)
152 {
153 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
154 if (mod && mod->state == MODULE_STATE_COMING)
155 return -EBUSY;
156 if (try_module_get(mod))
157 return 0;
158 else
159 return -ENOENT;
160 }
161
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)162 static inline void add_taint_module(struct module *mod, unsigned flag,
163 enum lockdep_ok lockdep_ok)
164 {
165 add_taint(flag, lockdep_ok);
166 set_bit(flag, &mod->taints);
167 }
168
169 /*
170 * A thread that wants to hold a reference to a module only while it
171 * is running can call this to safely exit.
172 */
__module_put_and_kthread_exit(struct module * mod,long code)173 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
174 {
175 module_put(mod);
176 kthread_exit(code);
177 }
178 EXPORT_SYMBOL(__module_put_and_kthread_exit);
179
180 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)181 static unsigned int find_sec(const struct load_info *info, const char *name)
182 {
183 unsigned int i;
184
185 for (i = 1; i < info->hdr->e_shnum; i++) {
186 Elf_Shdr *shdr = &info->sechdrs[i];
187 /* Alloc bit cleared means "ignore it." */
188 if ((shdr->sh_flags & SHF_ALLOC)
189 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
190 return i;
191 }
192 return 0;
193 }
194
195 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)196 static void *section_addr(const struct load_info *info, const char *name)
197 {
198 /* Section 0 has sh_addr 0. */
199 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
200 }
201
202 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)203 static void *section_objs(const struct load_info *info,
204 const char *name,
205 size_t object_size,
206 unsigned int *num)
207 {
208 unsigned int sec = find_sec(info, name);
209
210 /* Section 0 has sh_addr 0 and sh_size 0. */
211 *num = info->sechdrs[sec].sh_size / object_size;
212 return (void *)info->sechdrs[sec].sh_addr;
213 }
214
215 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)216 static unsigned int find_any_sec(const struct load_info *info, const char *name)
217 {
218 unsigned int i;
219
220 for (i = 1; i < info->hdr->e_shnum; i++) {
221 Elf_Shdr *shdr = &info->sechdrs[i];
222 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
223 return i;
224 }
225 return 0;
226 }
227
228 /*
229 * Find a module section, or NULL. Fill in number of "objects" in section.
230 * Ignores SHF_ALLOC flag.
231 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)232 static __maybe_unused void *any_section_objs(const struct load_info *info,
233 const char *name,
234 size_t object_size,
235 unsigned int *num)
236 {
237 unsigned int sec = find_any_sec(info, name);
238
239 /* Section 0 has sh_addr 0 and sh_size 0. */
240 *num = info->sechdrs[sec].sh_size / object_size;
241 return (void *)info->sechdrs[sec].sh_addr;
242 }
243
244 #ifndef CONFIG_MODVERSIONS
245 #define symversion(base, idx) NULL
246 #else
247 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
248 #endif
249
kernel_symbol_name(const struct kernel_symbol * sym)250 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
251 {
252 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
253 return offset_to_ptr(&sym->name_offset);
254 #else
255 return sym->name;
256 #endif
257 }
258
kernel_symbol_namespace(const struct kernel_symbol * sym)259 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
260 {
261 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
262 if (!sym->namespace_offset)
263 return NULL;
264 return offset_to_ptr(&sym->namespace_offset);
265 #else
266 return sym->namespace;
267 #endif
268 }
269
cmp_name(const void * name,const void * sym)270 int cmp_name(const void *name, const void *sym)
271 {
272 return strcmp(name, kernel_symbol_name(sym));
273 }
274
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)275 static bool find_exported_symbol_in_section(const struct symsearch *syms,
276 struct module *owner,
277 struct find_symbol_arg *fsa)
278 {
279 struct kernel_symbol *sym;
280
281 if (!fsa->gplok && syms->license == GPL_ONLY)
282 return false;
283
284 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
285 sizeof(struct kernel_symbol), cmp_name);
286 if (!sym)
287 return false;
288
289 fsa->owner = owner;
290 fsa->crc = symversion(syms->crcs, sym - syms->start);
291 fsa->sym = sym;
292 fsa->license = syms->license;
293
294 return true;
295 }
296
297 /*
298 * Find an exported symbol and return it, along with, (optional) crc and
299 * (optional) module which owns it. Needs preempt disabled or module_mutex.
300 */
find_symbol(struct find_symbol_arg * fsa)301 bool find_symbol(struct find_symbol_arg *fsa)
302 {
303 static const struct symsearch arr[] = {
304 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
305 NOT_GPL_ONLY },
306 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
307 __start___kcrctab_gpl,
308 GPL_ONLY },
309 };
310 struct module *mod;
311 unsigned int i;
312
313 module_assert_mutex_or_preempt();
314
315 for (i = 0; i < ARRAY_SIZE(arr); i++)
316 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
317 return true;
318
319 list_for_each_entry_rcu(mod, &modules, list,
320 lockdep_is_held(&module_mutex)) {
321 struct symsearch arr[] = {
322 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
323 NOT_GPL_ONLY },
324 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
325 mod->gpl_crcs,
326 GPL_ONLY },
327 };
328
329 if (mod->state == MODULE_STATE_UNFORMED)
330 continue;
331
332 for (i = 0; i < ARRAY_SIZE(arr); i++)
333 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
334 return true;
335 }
336
337 pr_debug("Failed to find symbol %s\n", fsa->name);
338 return false;
339 }
340
341 /*
342 * Search for module by name: must hold module_mutex (or preempt disabled
343 * for read-only access).
344 */
find_module_all(const char * name,size_t len,bool even_unformed)345 struct module *find_module_all(const char *name, size_t len,
346 bool even_unformed)
347 {
348 struct module *mod;
349
350 module_assert_mutex_or_preempt();
351
352 list_for_each_entry_rcu(mod, &modules, list,
353 lockdep_is_held(&module_mutex)) {
354 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
355 continue;
356 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
357 return mod;
358 }
359 return NULL;
360 }
361
find_module(const char * name)362 struct module *find_module(const char *name)
363 {
364 return find_module_all(name, strlen(name), false);
365 }
366
367 #ifdef CONFIG_SMP
368
mod_percpu(struct module * mod)369 static inline void __percpu *mod_percpu(struct module *mod)
370 {
371 return mod->percpu;
372 }
373
percpu_modalloc(struct module * mod,struct load_info * info)374 static int percpu_modalloc(struct module *mod, struct load_info *info)
375 {
376 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
377 unsigned long align = pcpusec->sh_addralign;
378
379 if (!pcpusec->sh_size)
380 return 0;
381
382 if (align > PAGE_SIZE) {
383 pr_warn("%s: per-cpu alignment %li > %li\n",
384 mod->name, align, PAGE_SIZE);
385 align = PAGE_SIZE;
386 }
387
388 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
389 if (!mod->percpu) {
390 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
391 mod->name, (unsigned long)pcpusec->sh_size);
392 return -ENOMEM;
393 }
394 mod->percpu_size = pcpusec->sh_size;
395 return 0;
396 }
397
percpu_modfree(struct module * mod)398 static void percpu_modfree(struct module *mod)
399 {
400 free_percpu(mod->percpu);
401 }
402
find_pcpusec(struct load_info * info)403 static unsigned int find_pcpusec(struct load_info *info)
404 {
405 return find_sec(info, ".data..percpu");
406 }
407
percpu_modcopy(struct module * mod,const void * from,unsigned long size)408 static void percpu_modcopy(struct module *mod,
409 const void *from, unsigned long size)
410 {
411 int cpu;
412
413 for_each_possible_cpu(cpu)
414 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
415 }
416
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)417 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
418 {
419 struct module *mod;
420 unsigned int cpu;
421
422 preempt_disable();
423
424 list_for_each_entry_rcu(mod, &modules, list) {
425 if (mod->state == MODULE_STATE_UNFORMED)
426 continue;
427 if (!mod->percpu_size)
428 continue;
429 for_each_possible_cpu(cpu) {
430 void *start = per_cpu_ptr(mod->percpu, cpu);
431 void *va = (void *)addr;
432
433 if (va >= start && va < start + mod->percpu_size) {
434 if (can_addr) {
435 *can_addr = (unsigned long) (va - start);
436 *can_addr += (unsigned long)
437 per_cpu_ptr(mod->percpu,
438 get_boot_cpu_id());
439 }
440 preempt_enable();
441 return true;
442 }
443 }
444 }
445
446 preempt_enable();
447 return false;
448 }
449
450 /**
451 * is_module_percpu_address() - test whether address is from module static percpu
452 * @addr: address to test
453 *
454 * Test whether @addr belongs to module static percpu area.
455 *
456 * Return: %true if @addr is from module static percpu area
457 */
is_module_percpu_address(unsigned long addr)458 bool is_module_percpu_address(unsigned long addr)
459 {
460 return __is_module_percpu_address(addr, NULL);
461 }
462
463 #else /* ... !CONFIG_SMP */
464
mod_percpu(struct module * mod)465 static inline void __percpu *mod_percpu(struct module *mod)
466 {
467 return NULL;
468 }
percpu_modalloc(struct module * mod,struct load_info * info)469 static int percpu_modalloc(struct module *mod, struct load_info *info)
470 {
471 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
472 if (info->sechdrs[info->index.pcpu].sh_size != 0)
473 return -ENOMEM;
474 return 0;
475 }
percpu_modfree(struct module * mod)476 static inline void percpu_modfree(struct module *mod)
477 {
478 }
find_pcpusec(struct load_info * info)479 static unsigned int find_pcpusec(struct load_info *info)
480 {
481 return 0;
482 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)483 static inline void percpu_modcopy(struct module *mod,
484 const void *from, unsigned long size)
485 {
486 /* pcpusec should be 0, and size of that section should be 0. */
487 BUG_ON(size != 0);
488 }
is_module_percpu_address(unsigned long addr)489 bool is_module_percpu_address(unsigned long addr)
490 {
491 return false;
492 }
493
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)494 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
495 {
496 return false;
497 }
498
499 #endif /* CONFIG_SMP */
500
501 #define MODINFO_ATTR(field) \
502 static void setup_modinfo_##field(struct module *mod, const char *s) \
503 { \
504 mod->field = kstrdup(s, GFP_KERNEL); \
505 } \
506 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
507 struct module_kobject *mk, char *buffer) \
508 { \
509 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
510 } \
511 static int modinfo_##field##_exists(struct module *mod) \
512 { \
513 return mod->field != NULL; \
514 } \
515 static void free_modinfo_##field(struct module *mod) \
516 { \
517 kfree(mod->field); \
518 mod->field = NULL; \
519 } \
520 static struct module_attribute modinfo_##field = { \
521 .attr = { .name = __stringify(field), .mode = 0444 }, \
522 .show = show_modinfo_##field, \
523 .setup = setup_modinfo_##field, \
524 .test = modinfo_##field##_exists, \
525 .free = free_modinfo_##field, \
526 };
527
528 MODINFO_ATTR(version);
529 MODINFO_ATTR(srcversion);
530 MODINFO_ATTR(scmversion);
531
532 static struct {
533 char name[MODULE_NAME_LEN + 1];
534 char taints[MODULE_FLAGS_BUF_SIZE];
535 } last_unloaded_module;
536
537 #ifdef CONFIG_MODULE_UNLOAD
538
539 EXPORT_TRACEPOINT_SYMBOL(module_get);
540
541 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
542 #define MODULE_REF_BASE 1
543
544 /* Init the unload section of the module. */
module_unload_init(struct module * mod)545 static int module_unload_init(struct module *mod)
546 {
547 /*
548 * Initialize reference counter to MODULE_REF_BASE.
549 * refcnt == 0 means module is going.
550 */
551 atomic_set(&mod->refcnt, MODULE_REF_BASE);
552
553 INIT_LIST_HEAD(&mod->source_list);
554 INIT_LIST_HEAD(&mod->target_list);
555
556 /* Hold reference count during initialization. */
557 atomic_inc(&mod->refcnt);
558
559 return 0;
560 }
561
562 /* Does a already use b? */
already_uses(struct module * a,struct module * b)563 static int already_uses(struct module *a, struct module *b)
564 {
565 struct module_use *use;
566
567 list_for_each_entry(use, &b->source_list, source_list) {
568 if (use->source == a) {
569 pr_debug("%s uses %s!\n", a->name, b->name);
570 return 1;
571 }
572 }
573 pr_debug("%s does not use %s!\n", a->name, b->name);
574 return 0;
575 }
576
577 /*
578 * Module a uses b
579 * - we add 'a' as a "source", 'b' as a "target" of module use
580 * - the module_use is added to the list of 'b' sources (so
581 * 'b' can walk the list to see who sourced them), and of 'a'
582 * targets (so 'a' can see what modules it targets).
583 */
add_module_usage(struct module * a,struct module * b)584 static int add_module_usage(struct module *a, struct module *b)
585 {
586 struct module_use *use;
587
588 pr_debug("Allocating new usage for %s.\n", a->name);
589 use = kmalloc(sizeof(*use), GFP_ATOMIC);
590 if (!use)
591 return -ENOMEM;
592
593 use->source = a;
594 use->target = b;
595 list_add(&use->source_list, &b->source_list);
596 list_add(&use->target_list, &a->target_list);
597 return 0;
598 }
599
600 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)601 static int ref_module(struct module *a, struct module *b)
602 {
603 int err;
604
605 if (b == NULL || already_uses(a, b))
606 return 0;
607
608 /* If module isn't available, we fail. */
609 err = strong_try_module_get(b);
610 if (err)
611 return err;
612
613 err = add_module_usage(a, b);
614 if (err) {
615 module_put(b);
616 return err;
617 }
618 return 0;
619 }
620
621 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)622 static void module_unload_free(struct module *mod)
623 {
624 struct module_use *use, *tmp;
625
626 mutex_lock(&module_mutex);
627 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
628 struct module *i = use->target;
629 pr_debug("%s unusing %s\n", mod->name, i->name);
630 module_put(i);
631 list_del(&use->source_list);
632 list_del(&use->target_list);
633 kfree(use);
634 }
635 mutex_unlock(&module_mutex);
636 }
637
638 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)639 static inline int try_force_unload(unsigned int flags)
640 {
641 int ret = (flags & O_TRUNC);
642 if (ret)
643 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
644 return ret;
645 }
646 #else
try_force_unload(unsigned int flags)647 static inline int try_force_unload(unsigned int flags)
648 {
649 return 0;
650 }
651 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
652
653 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)654 static int try_release_module_ref(struct module *mod)
655 {
656 int ret;
657
658 /* Try to decrement refcnt which we set at loading */
659 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
660 BUG_ON(ret < 0);
661 if (ret)
662 /* Someone can put this right now, recover with checking */
663 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
664
665 return ret;
666 }
667
try_stop_module(struct module * mod,int flags,int * forced)668 static int try_stop_module(struct module *mod, int flags, int *forced)
669 {
670 /* If it's not unused, quit unless we're forcing. */
671 if (try_release_module_ref(mod) != 0) {
672 *forced = try_force_unload(flags);
673 if (!(*forced))
674 return -EWOULDBLOCK;
675 }
676
677 /* Mark it as dying. */
678 mod->state = MODULE_STATE_GOING;
679
680 return 0;
681 }
682
683 /**
684 * module_refcount() - return the refcount or -1 if unloading
685 * @mod: the module we're checking
686 *
687 * Return:
688 * -1 if the module is in the process of unloading
689 * otherwise the number of references in the kernel to the module
690 */
module_refcount(struct module * mod)691 int module_refcount(struct module *mod)
692 {
693 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
694 }
695 EXPORT_SYMBOL(module_refcount);
696
697 /* This exists whether we can unload or not */
698 static void free_module(struct module *mod);
699
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)700 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
701 unsigned int, flags)
702 {
703 struct module *mod;
704 char name[MODULE_NAME_LEN];
705 char buf[MODULE_FLAGS_BUF_SIZE];
706 int ret, forced = 0;
707
708 if (!capable(CAP_SYS_MODULE) || modules_disabled)
709 return -EPERM;
710
711 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
712 return -EFAULT;
713 name[MODULE_NAME_LEN-1] = '\0';
714
715 audit_log_kern_module(name);
716
717 if (mutex_lock_interruptible(&module_mutex) != 0)
718 return -EINTR;
719
720 mod = find_module(name);
721 if (!mod) {
722 ret = -ENOENT;
723 goto out;
724 }
725
726 if (!list_empty(&mod->source_list)) {
727 /* Other modules depend on us: get rid of them first. */
728 ret = -EWOULDBLOCK;
729 goto out;
730 }
731
732 /* Doing init or already dying? */
733 if (mod->state != MODULE_STATE_LIVE) {
734 /* FIXME: if (force), slam module count damn the torpedoes */
735 pr_debug("%s already dying\n", mod->name);
736 ret = -EBUSY;
737 goto out;
738 }
739
740 /* If it has an init func, it must have an exit func to unload */
741 if (mod->init && !mod->exit) {
742 forced = try_force_unload(flags);
743 if (!forced) {
744 /* This module can't be removed */
745 ret = -EBUSY;
746 goto out;
747 }
748 }
749
750 ret = try_stop_module(mod, flags, &forced);
751 if (ret != 0)
752 goto out;
753
754 mutex_unlock(&module_mutex);
755 /* Final destruction now no one is using it. */
756 if (mod->exit != NULL)
757 mod->exit();
758 blocking_notifier_call_chain(&module_notify_list,
759 MODULE_STATE_GOING, mod);
760 klp_module_going(mod);
761 ftrace_release_mod(mod);
762
763 async_synchronize_full();
764
765 /* Store the name and taints of the last unloaded module for diagnostic purposes */
766 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
767 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
768
769 free_module(mod);
770 /* someone could wait for the module in add_unformed_module() */
771 wake_up_all(&module_wq);
772 return 0;
773 out:
774 mutex_unlock(&module_mutex);
775 return ret;
776 }
777
__symbol_put(const char * symbol)778 void __symbol_put(const char *symbol)
779 {
780 struct find_symbol_arg fsa = {
781 .name = symbol,
782 .gplok = true,
783 };
784
785 preempt_disable();
786 BUG_ON(!find_symbol(&fsa));
787 module_put(fsa.owner);
788 preempt_enable();
789 }
790 EXPORT_SYMBOL(__symbol_put);
791
792 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)793 void symbol_put_addr(void *addr)
794 {
795 struct module *modaddr;
796 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
797
798 if (core_kernel_text(a))
799 return;
800
801 /*
802 * Even though we hold a reference on the module; we still need to
803 * disable preemption in order to safely traverse the data structure.
804 */
805 preempt_disable();
806 modaddr = __module_text_address(a);
807 BUG_ON(!modaddr);
808 module_put(modaddr);
809 preempt_enable();
810 }
811 EXPORT_SYMBOL_GPL(symbol_put_addr);
812
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)813 static ssize_t show_refcnt(struct module_attribute *mattr,
814 struct module_kobject *mk, char *buffer)
815 {
816 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
817 }
818
819 static struct module_attribute modinfo_refcnt =
820 __ATTR(refcnt, 0444, show_refcnt, NULL);
821
__module_get(struct module * module)822 void __module_get(struct module *module)
823 {
824 if (module) {
825 preempt_disable();
826 atomic_inc(&module->refcnt);
827 trace_module_get(module, _RET_IP_);
828 preempt_enable();
829 }
830 }
831 EXPORT_SYMBOL(__module_get);
832
try_module_get(struct module * module)833 bool try_module_get(struct module *module)
834 {
835 bool ret = true;
836
837 if (module) {
838 preempt_disable();
839 /* Note: here, we can fail to get a reference */
840 if (likely(module_is_live(module) &&
841 atomic_inc_not_zero(&module->refcnt) != 0))
842 trace_module_get(module, _RET_IP_);
843 else
844 ret = false;
845
846 preempt_enable();
847 }
848 return ret;
849 }
850 EXPORT_SYMBOL(try_module_get);
851
module_put(struct module * module)852 void module_put(struct module *module)
853 {
854 int ret;
855
856 if (module) {
857 preempt_disable();
858 ret = atomic_dec_if_positive(&module->refcnt);
859 WARN_ON(ret < 0); /* Failed to put refcount */
860 trace_module_put(module, _RET_IP_);
861 preempt_enable();
862 }
863 }
864 EXPORT_SYMBOL(module_put);
865
866 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)867 static inline void module_unload_free(struct module *mod)
868 {
869 }
870
ref_module(struct module * a,struct module * b)871 static int ref_module(struct module *a, struct module *b)
872 {
873 return strong_try_module_get(b);
874 }
875
module_unload_init(struct module * mod)876 static inline int module_unload_init(struct module *mod)
877 {
878 return 0;
879 }
880 #endif /* CONFIG_MODULE_UNLOAD */
881
module_flags_taint(unsigned long taints,char * buf)882 size_t module_flags_taint(unsigned long taints, char *buf)
883 {
884 size_t l = 0;
885 int i;
886
887 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
888 if (taint_flags[i].module && test_bit(i, &taints))
889 buf[l++] = taint_flags[i].c_true;
890 }
891
892 return l;
893 }
894
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)895 static ssize_t show_initstate(struct module_attribute *mattr,
896 struct module_kobject *mk, char *buffer)
897 {
898 const char *state = "unknown";
899
900 switch (mk->mod->state) {
901 case MODULE_STATE_LIVE:
902 state = "live";
903 break;
904 case MODULE_STATE_COMING:
905 state = "coming";
906 break;
907 case MODULE_STATE_GOING:
908 state = "going";
909 break;
910 default:
911 BUG();
912 }
913 return sprintf(buffer, "%s\n", state);
914 }
915
916 static struct module_attribute modinfo_initstate =
917 __ATTR(initstate, 0444, show_initstate, NULL);
918
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)919 static ssize_t store_uevent(struct module_attribute *mattr,
920 struct module_kobject *mk,
921 const char *buffer, size_t count)
922 {
923 int rc;
924
925 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
926 return rc ? rc : count;
927 }
928
929 struct module_attribute module_uevent =
930 __ATTR(uevent, 0200, NULL, store_uevent);
931
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)932 static ssize_t show_coresize(struct module_attribute *mattr,
933 struct module_kobject *mk, char *buffer)
934 {
935 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
936 }
937
938 static struct module_attribute modinfo_coresize =
939 __ATTR(coresize, 0444, show_coresize, NULL);
940
941 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)942 static ssize_t show_datasize(struct module_attribute *mattr,
943 struct module_kobject *mk, char *buffer)
944 {
945 return sprintf(buffer, "%u\n", mk->mod->data_layout.size);
946 }
947
948 static struct module_attribute modinfo_datasize =
949 __ATTR(datasize, 0444, show_datasize, NULL);
950 #endif
951
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)952 static ssize_t show_initsize(struct module_attribute *mattr,
953 struct module_kobject *mk, char *buffer)
954 {
955 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
956 }
957
958 static struct module_attribute modinfo_initsize =
959 __ATTR(initsize, 0444, show_initsize, NULL);
960
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)961 static ssize_t show_taint(struct module_attribute *mattr,
962 struct module_kobject *mk, char *buffer)
963 {
964 size_t l;
965
966 l = module_flags_taint(mk->mod->taints, buffer);
967 buffer[l++] = '\n';
968 return l;
969 }
970
971 static struct module_attribute modinfo_taint =
972 __ATTR(taint, 0444, show_taint, NULL);
973
974 struct module_attribute *modinfo_attrs[] = {
975 &module_uevent,
976 &modinfo_version,
977 &modinfo_srcversion,
978 &modinfo_scmversion,
979 &modinfo_initstate,
980 &modinfo_coresize,
981 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
982 &modinfo_datasize,
983 #endif
984 &modinfo_initsize,
985 &modinfo_taint,
986 #ifdef CONFIG_MODULE_UNLOAD
987 &modinfo_refcnt,
988 #endif
989 NULL,
990 };
991
992 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
993
994 static const char vermagic[] = VERMAGIC_STRING;
995
try_to_force_load(struct module * mod,const char * reason)996 int try_to_force_load(struct module *mod, const char *reason)
997 {
998 #ifdef CONFIG_MODULE_FORCE_LOAD
999 if (!test_taint(TAINT_FORCED_MODULE))
1000 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1001 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1002 return 0;
1003 #else
1004 return -ENOEXEC;
1005 #endif
1006 }
1007
1008 static char *get_modinfo(const struct load_info *info, const char *tag);
1009 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1010 char *prev);
1011
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1012 static int verify_namespace_is_imported(const struct load_info *info,
1013 const struct kernel_symbol *sym,
1014 struct module *mod)
1015 {
1016 const char *namespace;
1017 char *imported_namespace;
1018
1019 namespace = kernel_symbol_namespace(sym);
1020 if (namespace && namespace[0]) {
1021 imported_namespace = get_modinfo(info, "import_ns");
1022 while (imported_namespace) {
1023 if (strcmp(namespace, imported_namespace) == 0)
1024 return 0;
1025 imported_namespace = get_next_modinfo(
1026 info, "import_ns", imported_namespace);
1027 }
1028 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1029 pr_warn(
1030 #else
1031 pr_err(
1032 #endif
1033 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1034 mod->name, kernel_symbol_name(sym), namespace);
1035 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1036 return -EINVAL;
1037 #endif
1038 }
1039 return 0;
1040 }
1041
inherit_taint(struct module * mod,struct module * owner,const char * name)1042 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1043 {
1044 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1045 return true;
1046
1047 if (mod->using_gplonly_symbols) {
1048 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1049 mod->name, name, owner->name);
1050 return false;
1051 }
1052
1053 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1054 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1055 mod->name, name, owner->name);
1056 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1057 }
1058 return true;
1059 }
1060
1061 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1062 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1063 const struct load_info *info,
1064 const char *name,
1065 char ownername[])
1066 {
1067 struct find_symbol_arg fsa = {
1068 .name = name,
1069 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1070 .warn = true,
1071 };
1072 int err;
1073
1074 /*
1075 * The module_mutex should not be a heavily contended lock;
1076 * if we get the occasional sleep here, we'll go an extra iteration
1077 * in the wait_event_interruptible(), which is harmless.
1078 */
1079 sched_annotate_sleep();
1080 mutex_lock(&module_mutex);
1081 if (!find_symbol(&fsa))
1082 goto unlock;
1083
1084 if (fsa.license == GPL_ONLY)
1085 mod->using_gplonly_symbols = true;
1086
1087 if (!inherit_taint(mod, fsa.owner, name)) {
1088 fsa.sym = NULL;
1089 goto getname;
1090 }
1091
1092 if (!check_version(info, name, mod, fsa.crc)) {
1093 fsa.sym = ERR_PTR(-EINVAL);
1094 goto getname;
1095 }
1096
1097 err = verify_namespace_is_imported(info, fsa.sym, mod);
1098 if (err) {
1099 fsa.sym = ERR_PTR(err);
1100 goto getname;
1101 }
1102
1103 /*
1104 * ANDROID: GKI:
1105 * In case of an unsigned module symbol resolves only if:
1106 * 1. Symbol is in the list of unprotected symbol list OR
1107 * 2. If symbol owner is not NULL i.e. owner is another module;
1108 * it has to be an unsigned module and not signed GKI module
1109 * to protect symbols exported by signed GKI modules.
1110 */
1111 if (!mod->sig_ok &&
1112 !gki_is_module_unprotected_symbol(name) &&
1113 fsa.owner && fsa.owner->sig_ok) {
1114 fsa.sym = ERR_PTR(-EACCES);
1115 goto getname;
1116 }
1117
1118 err = ref_module(mod, fsa.owner);
1119 if (err) {
1120 fsa.sym = ERR_PTR(err);
1121 goto getname;
1122 }
1123
1124 getname:
1125 /* We must make copy under the lock if we failed to get ref. */
1126 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1127 unlock:
1128 mutex_unlock(&module_mutex);
1129 return fsa.sym;
1130 }
1131
1132 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1133 resolve_symbol_wait(struct module *mod,
1134 const struct load_info *info,
1135 const char *name)
1136 {
1137 const struct kernel_symbol *ksym;
1138 char owner[MODULE_NAME_LEN];
1139
1140 if (wait_event_interruptible_timeout(module_wq,
1141 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1142 || PTR_ERR(ksym) != -EBUSY,
1143 30 * HZ) <= 0) {
1144 pr_warn("%s: gave up waiting for init of module %s.\n",
1145 mod->name, owner);
1146 }
1147 return ksym;
1148 }
1149
module_memfree(void * module_region)1150 void __weak module_memfree(void *module_region)
1151 {
1152 /*
1153 * This memory may be RO, and freeing RO memory in an interrupt is not
1154 * supported by vmalloc.
1155 */
1156 WARN_ON(in_interrupt());
1157 vfree(module_region);
1158 }
1159
module_arch_cleanup(struct module * mod)1160 void __weak module_arch_cleanup(struct module *mod)
1161 {
1162 }
1163
module_arch_freeing_init(struct module * mod)1164 void __weak module_arch_freeing_init(struct module *mod)
1165 {
1166 }
1167
1168 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1169 static void free_module(struct module *mod)
1170 {
1171 trace_module_free(mod);
1172
1173 mod_sysfs_teardown(mod);
1174
1175 /*
1176 * We leave it in list to prevent duplicate loads, but make sure
1177 * that noone uses it while it's being deconstructed.
1178 */
1179 mutex_lock(&module_mutex);
1180 mod->state = MODULE_STATE_UNFORMED;
1181 mutex_unlock(&module_mutex);
1182
1183 /* Remove dynamic debug info */
1184 ddebug_remove_module(mod->name);
1185
1186 /* Arch-specific cleanup. */
1187 module_arch_cleanup(mod);
1188
1189 /* Module unload stuff */
1190 module_unload_free(mod);
1191
1192 /* Free any allocated parameters. */
1193 destroy_params(mod->kp, mod->num_kp);
1194
1195 if (is_livepatch_module(mod))
1196 free_module_elf(mod);
1197
1198 /* Now we can delete it from the lists */
1199 mutex_lock(&module_mutex);
1200 /* Unlink carefully: kallsyms could be walking list. */
1201 list_del_rcu(&mod->list);
1202 mod_tree_remove(mod);
1203 /* Remove this module from bug list, this uses list_del_rcu */
1204 module_bug_cleanup(mod);
1205 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1206 synchronize_rcu();
1207 if (try_add_tainted_module(mod))
1208 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1209 mod->name);
1210 mutex_unlock(&module_mutex);
1211
1212 /* This may be empty, but that's OK */
1213 module_arch_freeing_init(mod);
1214 trace_android_rvh_set_module_init_rw_nx(mod);
1215 module_memfree(mod->init_layout.base);
1216 kfree(mod->args);
1217 percpu_modfree(mod);
1218
1219 /* Free lock-classes; relies on the preceding sync_rcu(). */
1220 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
1221
1222 /* Finally, free the core (containing the module structure) */
1223 trace_android_rvh_set_module_core_rw_nx(mod);
1224 module_memfree(mod->core_layout.base);
1225 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1226 vfree(mod->data_layout.base);
1227 #endif
1228 }
1229
__symbol_get(const char * symbol)1230 void *__symbol_get(const char *symbol)
1231 {
1232 struct find_symbol_arg fsa = {
1233 .name = symbol,
1234 .gplok = true,
1235 .warn = true,
1236 };
1237
1238 preempt_disable();
1239 if (!find_symbol(&fsa))
1240 goto fail;
1241 if (fsa.license != GPL_ONLY) {
1242 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1243 symbol);
1244 goto fail;
1245 }
1246 if (strong_try_module_get(fsa.owner))
1247 goto fail;
1248 preempt_enable();
1249 return (void *)kernel_symbol_value(fsa.sym);
1250 fail:
1251 preempt_enable();
1252 return NULL;
1253 }
1254 EXPORT_SYMBOL_GPL(__symbol_get);
1255
1256 /*
1257 * Ensure that an exported symbol [global namespace] does not already exist
1258 * in the kernel or in some other module's exported symbol table.
1259 *
1260 * You must hold the module_mutex.
1261 */
verify_exported_symbols(struct module * mod)1262 static int verify_exported_symbols(struct module *mod)
1263 {
1264 unsigned int i;
1265 const struct kernel_symbol *s;
1266 struct {
1267 const struct kernel_symbol *sym;
1268 unsigned int num;
1269 } arr[] = {
1270 { mod->syms, mod->num_syms },
1271 { mod->gpl_syms, mod->num_gpl_syms },
1272 };
1273
1274 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1275 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1276 struct find_symbol_arg fsa = {
1277 .name = kernel_symbol_name(s),
1278 .gplok = true,
1279 };
1280
1281 if (!mod->sig_ok && gki_is_module_protected_export(
1282 kernel_symbol_name(s))) {
1283 pr_err("%s: exports protected symbol %s\n",
1284 mod->name, kernel_symbol_name(s));
1285 return -EACCES;
1286 }
1287
1288 if (find_symbol(&fsa)) {
1289 pr_err("%s: exports duplicate symbol %s"
1290 " (owned by %s)\n",
1291 mod->name, kernel_symbol_name(s),
1292 module_name(fsa.owner));
1293 return -ENOEXEC;
1294 }
1295 }
1296 }
1297 return 0;
1298 }
1299
ignore_undef_symbol(Elf_Half emachine,const char * name)1300 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1301 {
1302 /*
1303 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1304 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1305 * i386 has a similar problem but may not deserve a fix.
1306 *
1307 * If we ever have to ignore many symbols, consider refactoring the code to
1308 * only warn if referenced by a relocation.
1309 */
1310 if (emachine == EM_386 || emachine == EM_X86_64)
1311 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1312 return false;
1313 }
1314
1315 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1316 static int simplify_symbols(struct module *mod, const struct load_info *info)
1317 {
1318 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1319 Elf_Sym *sym = (void *)symsec->sh_addr;
1320 unsigned long secbase;
1321 unsigned int i;
1322 int ret = 0;
1323 const struct kernel_symbol *ksym;
1324
1325 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1326 const char *name = info->strtab + sym[i].st_name;
1327
1328 switch (sym[i].st_shndx) {
1329 case SHN_COMMON:
1330 /* Ignore common symbols */
1331 if (!strncmp(name, "__gnu_lto", 9))
1332 break;
1333
1334 /*
1335 * We compiled with -fno-common. These are not
1336 * supposed to happen.
1337 */
1338 pr_debug("Common symbol: %s\n", name);
1339 pr_warn("%s: please compile with -fno-common\n",
1340 mod->name);
1341 ret = -ENOEXEC;
1342 break;
1343
1344 case SHN_ABS:
1345 /* Don't need to do anything */
1346 pr_debug("Absolute symbol: 0x%08lx\n",
1347 (long)sym[i].st_value);
1348 break;
1349
1350 case SHN_LIVEPATCH:
1351 /* Livepatch symbols are resolved by livepatch */
1352 break;
1353
1354 case SHN_UNDEF:
1355 ksym = resolve_symbol_wait(mod, info, name);
1356 /* Ok if resolved. */
1357 if (ksym && !IS_ERR(ksym)) {
1358 sym[i].st_value = kernel_symbol_value(ksym);
1359 break;
1360 }
1361
1362 /* Ok if weak or ignored. */
1363 if (!ksym &&
1364 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1365 ignore_undef_symbol(info->hdr->e_machine, name)))
1366 break;
1367
1368 if (PTR_ERR(ksym) == -EACCES) {
1369 ret = -EACCES;
1370 pr_warn("%s: Protected symbol: %s (err %d)\n",
1371 mod->name, name, ret);
1372 } else {
1373 ret = PTR_ERR(ksym) ?: -ENOENT;
1374 pr_warn("%s: Unknown symbol %s (err %d)\n",
1375 mod->name, name, ret);
1376 }
1377 break;
1378
1379 default:
1380 /* Divert to percpu allocation if a percpu var. */
1381 if (sym[i].st_shndx == info->index.pcpu)
1382 secbase = (unsigned long)mod_percpu(mod);
1383 else
1384 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1385 sym[i].st_value += secbase;
1386 break;
1387 }
1388 }
1389
1390 return ret;
1391 }
1392
apply_relocations(struct module * mod,const struct load_info * info)1393 static int apply_relocations(struct module *mod, const struct load_info *info)
1394 {
1395 unsigned int i;
1396 int err = 0;
1397
1398 /* Now do relocations. */
1399 for (i = 1; i < info->hdr->e_shnum; i++) {
1400 unsigned int infosec = info->sechdrs[i].sh_info;
1401
1402 /* Not a valid relocation section? */
1403 if (infosec >= info->hdr->e_shnum)
1404 continue;
1405
1406 /* Don't bother with non-allocated sections */
1407 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1408 continue;
1409
1410 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1411 err = klp_apply_section_relocs(mod, info->sechdrs,
1412 info->secstrings,
1413 info->strtab,
1414 info->index.sym, i,
1415 NULL);
1416 else if (info->sechdrs[i].sh_type == SHT_REL)
1417 err = apply_relocate(info->sechdrs, info->strtab,
1418 info->index.sym, i, mod);
1419 else if (info->sechdrs[i].sh_type == SHT_RELA)
1420 err = apply_relocate_add(info->sechdrs, info->strtab,
1421 info->index.sym, i, mod);
1422 if (err < 0)
1423 break;
1424 }
1425 return err;
1426 }
1427
1428 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1429 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1430 unsigned int section)
1431 {
1432 /* default implementation just returns zero */
1433 return 0;
1434 }
1435
1436 /* Update size with this section: return offset. */
module_get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)1437 long module_get_offset(struct module *mod, unsigned int *size,
1438 Elf_Shdr *sechdr, unsigned int section)
1439 {
1440 long ret;
1441
1442 *size += arch_mod_section_prepend(mod, section);
1443 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1444 *size = ret + sechdr->sh_size;
1445 return ret;
1446 }
1447
module_init_layout_section(const char * sname)1448 bool module_init_layout_section(const char *sname)
1449 {
1450 #ifndef CONFIG_MODULE_UNLOAD
1451 if (module_exit_section(sname))
1452 return true;
1453 #endif
1454 return module_init_section(sname);
1455 }
1456
1457 /*
1458 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1459 * might -- code, read-only data, read-write data, small data. Tally
1460 * sizes, and place the offsets into sh_entsize fields: high bit means it
1461 * belongs in init.
1462 */
layout_sections(struct module * mod,struct load_info * info)1463 static void layout_sections(struct module *mod, struct load_info *info)
1464 {
1465 static unsigned long const masks[][2] = {
1466 /*
1467 * NOTE: all executable code must be the first section
1468 * in this array; otherwise modify the text_size
1469 * finder in the two loops below
1470 */
1471 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1472 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1473 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1474 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1475 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1476 };
1477 unsigned int m, i;
1478
1479 for (i = 0; i < info->hdr->e_shnum; i++)
1480 info->sechdrs[i].sh_entsize = ~0UL;
1481
1482 pr_debug("Core section allocation order:\n");
1483 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1484 for (i = 0; i < info->hdr->e_shnum; ++i) {
1485 Elf_Shdr *s = &info->sechdrs[i];
1486 const char *sname = info->secstrings + s->sh_name;
1487 unsigned int *sizep;
1488
1489 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1490 || (s->sh_flags & masks[m][1])
1491 || s->sh_entsize != ~0UL
1492 || module_init_layout_section(sname))
1493 continue;
1494 sizep = m ? &mod->data_layout.size : &mod->core_layout.size;
1495 s->sh_entsize = module_get_offset(mod, sizep, s, i);
1496 pr_debug("\t%s\n", sname);
1497 }
1498 switch (m) {
1499 case 0: /* executable */
1500 mod->core_layout.size = strict_align(mod->core_layout.size);
1501 mod->core_layout.text_size = mod->core_layout.size;
1502 break;
1503 case 1: /* RO: text and ro-data */
1504 mod->data_layout.size = strict_align(mod->data_layout.size);
1505 mod->data_layout.ro_size = mod->data_layout.size;
1506 break;
1507 case 2: /* RO after init */
1508 mod->data_layout.size = strict_align(mod->data_layout.size);
1509 mod->data_layout.ro_after_init_size = mod->data_layout.size;
1510 break;
1511 case 4: /* whole core */
1512 mod->data_layout.size = strict_align(mod->data_layout.size);
1513 break;
1514 }
1515 }
1516
1517 pr_debug("Init section allocation order:\n");
1518 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1519 for (i = 0; i < info->hdr->e_shnum; ++i) {
1520 Elf_Shdr *s = &info->sechdrs[i];
1521 const char *sname = info->secstrings + s->sh_name;
1522
1523 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1524 || (s->sh_flags & masks[m][1])
1525 || s->sh_entsize != ~0UL
1526 || !module_init_layout_section(sname))
1527 continue;
1528 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i)
1529 | INIT_OFFSET_MASK);
1530 pr_debug("\t%s\n", sname);
1531 }
1532 switch (m) {
1533 case 0: /* executable */
1534 mod->init_layout.size = strict_align(mod->init_layout.size);
1535 mod->init_layout.text_size = mod->init_layout.size;
1536 break;
1537 case 1: /* RO: text and ro-data */
1538 mod->init_layout.size = strict_align(mod->init_layout.size);
1539 mod->init_layout.ro_size = mod->init_layout.size;
1540 break;
1541 case 2:
1542 /*
1543 * RO after init doesn't apply to init_layout (only
1544 * core_layout), so it just takes the value of ro_size.
1545 */
1546 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
1547 break;
1548 case 4: /* whole init */
1549 mod->init_layout.size = strict_align(mod->init_layout.size);
1550 break;
1551 }
1552 }
1553 }
1554
set_license(struct module * mod,const char * license)1555 static void set_license(struct module *mod, const char *license)
1556 {
1557 if (!license)
1558 license = "unspecified";
1559
1560 if (!license_is_gpl_compatible(license)) {
1561 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1562 pr_warn("%s: module license '%s' taints kernel.\n",
1563 mod->name, license);
1564 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1565 LOCKDEP_NOW_UNRELIABLE);
1566 }
1567 }
1568
1569 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)1570 static char *next_string(char *string, unsigned long *secsize)
1571 {
1572 /* Skip non-zero chars */
1573 while (string[0]) {
1574 string++;
1575 if ((*secsize)-- <= 1)
1576 return NULL;
1577 }
1578
1579 /* Skip any zero padding. */
1580 while (!string[0]) {
1581 string++;
1582 if ((*secsize)-- <= 1)
1583 return NULL;
1584 }
1585 return string;
1586 }
1587
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1588 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1589 char *prev)
1590 {
1591 char *p;
1592 unsigned int taglen = strlen(tag);
1593 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1594 unsigned long size = infosec->sh_size;
1595
1596 /*
1597 * get_modinfo() calls made before rewrite_section_headers()
1598 * must use sh_offset, as sh_addr isn't set!
1599 */
1600 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1601
1602 if (prev) {
1603 size -= prev - modinfo;
1604 modinfo = next_string(prev, &size);
1605 }
1606
1607 for (p = modinfo; p; p = next_string(p, &size)) {
1608 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1609 return p + taglen + 1;
1610 }
1611 return NULL;
1612 }
1613
get_modinfo(const struct load_info * info,const char * tag)1614 static char *get_modinfo(const struct load_info *info, const char *tag)
1615 {
1616 return get_next_modinfo(info, tag, NULL);
1617 }
1618
setup_modinfo(struct module * mod,struct load_info * info)1619 static void setup_modinfo(struct module *mod, struct load_info *info)
1620 {
1621 struct module_attribute *attr;
1622 int i;
1623
1624 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1625 if (attr->setup)
1626 attr->setup(mod, get_modinfo(info, attr->attr.name));
1627 }
1628 }
1629
free_modinfo(struct module * mod)1630 static void free_modinfo(struct module *mod)
1631 {
1632 struct module_attribute *attr;
1633 int i;
1634
1635 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1636 if (attr->free)
1637 attr->free(mod);
1638 }
1639 }
1640
dynamic_debug_setup(struct module * mod,struct _ddebug_info * dyndbg)1641 static void dynamic_debug_setup(struct module *mod, struct _ddebug_info *dyndbg)
1642 {
1643 if (!dyndbg->num_descs)
1644 return;
1645 ddebug_add_module(dyndbg, mod->name);
1646 }
1647
dynamic_debug_remove(struct module * mod,struct _ddebug_info * dyndbg)1648 static void dynamic_debug_remove(struct module *mod, struct _ddebug_info *dyndbg)
1649 {
1650 if (dyndbg->num_descs)
1651 ddebug_remove_module(mod->name);
1652 }
1653
module_alloc(unsigned long size)1654 void * __weak module_alloc(unsigned long size)
1655 {
1656 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
1657 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
1658 NUMA_NO_NODE, __builtin_return_address(0));
1659 }
1660
module_init_section(const char * name)1661 bool __weak module_init_section(const char *name)
1662 {
1663 return strstarts(name, ".init");
1664 }
1665
module_exit_section(const char * name)1666 bool __weak module_exit_section(const char *name)
1667 {
1668 return strstarts(name, ".exit");
1669 }
1670
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)1671 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1672 {
1673 #if defined(CONFIG_64BIT)
1674 unsigned long long secend;
1675 #else
1676 unsigned long secend;
1677 #endif
1678
1679 /*
1680 * Check for both overflow and offset/size being
1681 * too large.
1682 */
1683 secend = shdr->sh_offset + shdr->sh_size;
1684 if (secend < shdr->sh_offset || secend > info->len)
1685 return -ENOEXEC;
1686
1687 return 0;
1688 }
1689
1690 /*
1691 * Sanity checks against invalid binaries, wrong arch, weird elf version.
1692 *
1693 * Also do basic validity checks against section offsets and sizes, the
1694 * section name string table, and the indices used for it (sh_name).
1695 */
elf_validity_check(struct load_info * info)1696 static int elf_validity_check(struct load_info *info)
1697 {
1698 unsigned int i;
1699 Elf_Shdr *shdr, *strhdr;
1700 int err;
1701
1702 if (info->len < sizeof(*(info->hdr))) {
1703 pr_err("Invalid ELF header len %lu\n", info->len);
1704 goto no_exec;
1705 }
1706
1707 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1708 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1709 goto no_exec;
1710 }
1711 if (info->hdr->e_type != ET_REL) {
1712 pr_err("Invalid ELF header type: %u != %u\n",
1713 info->hdr->e_type, ET_REL);
1714 goto no_exec;
1715 }
1716 if (!elf_check_arch(info->hdr)) {
1717 pr_err("Invalid architecture in ELF header: %u\n",
1718 info->hdr->e_machine);
1719 goto no_exec;
1720 }
1721 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1722 pr_err("Invalid ELF section header size\n");
1723 goto no_exec;
1724 }
1725
1726 /*
1727 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1728 * known and small. So e_shnum * sizeof(Elf_Shdr)
1729 * will not overflow unsigned long on any platform.
1730 */
1731 if (info->hdr->e_shoff >= info->len
1732 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1733 info->len - info->hdr->e_shoff)) {
1734 pr_err("Invalid ELF section header overflow\n");
1735 goto no_exec;
1736 }
1737
1738 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1739
1740 /*
1741 * Verify if the section name table index is valid.
1742 */
1743 if (info->hdr->e_shstrndx == SHN_UNDEF
1744 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1745 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1746 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1747 info->hdr->e_shnum);
1748 goto no_exec;
1749 }
1750
1751 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1752 err = validate_section_offset(info, strhdr);
1753 if (err < 0) {
1754 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1755 return err;
1756 }
1757
1758 /*
1759 * The section name table must be NUL-terminated, as required
1760 * by the spec. This makes strcmp and pr_* calls that access
1761 * strings in the section safe.
1762 */
1763 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1764 if (strhdr->sh_size == 0) {
1765 pr_err("empty section name table\n");
1766 goto no_exec;
1767 }
1768 if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1769 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1770 goto no_exec;
1771 }
1772
1773 /*
1774 * The code assumes that section 0 has a length of zero and
1775 * an addr of zero, so check for it.
1776 */
1777 if (info->sechdrs[0].sh_type != SHT_NULL
1778 || info->sechdrs[0].sh_size != 0
1779 || info->sechdrs[0].sh_addr != 0) {
1780 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1781 info->sechdrs[0].sh_type);
1782 goto no_exec;
1783 }
1784
1785 for (i = 1; i < info->hdr->e_shnum; i++) {
1786 shdr = &info->sechdrs[i];
1787 switch (shdr->sh_type) {
1788 case SHT_NULL:
1789 case SHT_NOBITS:
1790 continue;
1791 case SHT_SYMTAB:
1792 if (shdr->sh_link == SHN_UNDEF
1793 || shdr->sh_link >= info->hdr->e_shnum) {
1794 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1795 shdr->sh_link, shdr->sh_link,
1796 info->hdr->e_shnum);
1797 goto no_exec;
1798 }
1799 fallthrough;
1800 default:
1801 err = validate_section_offset(info, shdr);
1802 if (err < 0) {
1803 pr_err("Invalid ELF section in module (section %u type %u)\n",
1804 i, shdr->sh_type);
1805 return err;
1806 }
1807
1808 if (shdr->sh_flags & SHF_ALLOC) {
1809 if (shdr->sh_name >= strhdr->sh_size) {
1810 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1811 i, shdr->sh_type);
1812 return -ENOEXEC;
1813 }
1814 }
1815 break;
1816 }
1817 }
1818
1819 return 0;
1820
1821 no_exec:
1822 return -ENOEXEC;
1823 }
1824
1825 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1826
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)1827 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1828 {
1829 do {
1830 unsigned long n = min(len, COPY_CHUNK_SIZE);
1831
1832 if (copy_from_user(dst, usrc, n) != 0)
1833 return -EFAULT;
1834 cond_resched();
1835 dst += n;
1836 usrc += n;
1837 len -= n;
1838 } while (len);
1839 return 0;
1840 }
1841
check_modinfo_livepatch(struct module * mod,struct load_info * info)1842 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1843 {
1844 if (!get_modinfo(info, "livepatch"))
1845 /* Nothing more to do */
1846 return 0;
1847
1848 if (set_livepatch_module(mod)) {
1849 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
1850 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
1851 mod->name);
1852 return 0;
1853 }
1854
1855 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1856 mod->name);
1857 return -ENOEXEC;
1858 }
1859
check_modinfo_retpoline(struct module * mod,struct load_info * info)1860 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1861 {
1862 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1863 return;
1864
1865 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1866 mod->name);
1867 }
1868
1869 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)1870 static int copy_module_from_user(const void __user *umod, unsigned long len,
1871 struct load_info *info)
1872 {
1873 int err;
1874
1875 info->len = len;
1876 if (info->len < sizeof(*(info->hdr)))
1877 return -ENOEXEC;
1878
1879 err = security_kernel_load_data(LOADING_MODULE, true);
1880 if (err)
1881 return err;
1882
1883 /* Suck in entire file: we'll want most of it. */
1884 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1885 if (!info->hdr)
1886 return -ENOMEM;
1887
1888 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1889 err = -EFAULT;
1890 goto out;
1891 }
1892
1893 err = security_kernel_post_load_data((char *)info->hdr, info->len,
1894 LOADING_MODULE, "init_module");
1895 out:
1896 if (err)
1897 vfree(info->hdr);
1898
1899 return err;
1900 }
1901
free_copy(struct load_info * info,int flags)1902 static void free_copy(struct load_info *info, int flags)
1903 {
1904 if (flags & MODULE_INIT_COMPRESSED_FILE)
1905 module_decompress_cleanup(info);
1906 else
1907 vfree(info->hdr);
1908 }
1909
rewrite_section_headers(struct load_info * info,int flags)1910 static int rewrite_section_headers(struct load_info *info, int flags)
1911 {
1912 unsigned int i;
1913
1914 /* This should always be true, but let's be sure. */
1915 info->sechdrs[0].sh_addr = 0;
1916
1917 for (i = 1; i < info->hdr->e_shnum; i++) {
1918 Elf_Shdr *shdr = &info->sechdrs[i];
1919
1920 /*
1921 * Mark all sections sh_addr with their address in the
1922 * temporary image.
1923 */
1924 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
1925
1926 }
1927
1928 /* Track but don't keep modinfo and version sections. */
1929 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
1930 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
1931
1932 return 0;
1933 }
1934
1935 /*
1936 * Set up our basic convenience variables (pointers to section headers,
1937 * search for module section index etc), and do some basic section
1938 * verification.
1939 *
1940 * Set info->mod to the temporary copy of the module in info->hdr. The final one
1941 * will be allocated in move_module().
1942 */
setup_load_info(struct load_info * info,int flags)1943 static int setup_load_info(struct load_info *info, int flags)
1944 {
1945 unsigned int i;
1946
1947 /* Try to find a name early so we can log errors with a module name */
1948 info->index.info = find_sec(info, ".modinfo");
1949 if (info->index.info)
1950 info->name = get_modinfo(info, "name");
1951
1952 /* Find internal symbols and strings. */
1953 for (i = 1; i < info->hdr->e_shnum; i++) {
1954 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
1955 info->index.sym = i;
1956 info->index.str = info->sechdrs[i].sh_link;
1957 info->strtab = (char *)info->hdr
1958 + info->sechdrs[info->index.str].sh_offset;
1959 break;
1960 }
1961 }
1962
1963 if (info->index.sym == 0) {
1964 pr_warn("%s: module has no symbols (stripped?)\n",
1965 info->name ?: "(missing .modinfo section or name field)");
1966 return -ENOEXEC;
1967 }
1968
1969 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
1970 if (!info->index.mod) {
1971 pr_warn("%s: No module found in object\n",
1972 info->name ?: "(missing .modinfo section or name field)");
1973 return -ENOEXEC;
1974 }
1975 /* This is temporary: point mod into copy of data. */
1976 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
1977
1978 /*
1979 * If we didn't load the .modinfo 'name' field earlier, fall back to
1980 * on-disk struct mod 'name' field.
1981 */
1982 if (!info->name)
1983 info->name = info->mod->name;
1984
1985 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1986 info->index.vers = 0; /* Pretend no __versions section! */
1987 else
1988 info->index.vers = find_sec(info, "__versions");
1989
1990 info->index.pcpu = find_pcpusec(info);
1991
1992 return 0;
1993 }
1994
check_modinfo(struct module * mod,struct load_info * info,int flags)1995 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
1996 {
1997 const char *modmagic = get_modinfo(info, "vermagic");
1998 int err;
1999
2000 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2001 modmagic = NULL;
2002
2003 /* This is allowed: modprobe --force will invalidate it. */
2004 if (!modmagic) {
2005 err = try_to_force_load(mod, "bad vermagic");
2006 if (err)
2007 return err;
2008 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2009 pr_err("%s: version magic '%s' should be '%s'\n",
2010 info->name, modmagic, vermagic);
2011 return -ENOEXEC;
2012 }
2013
2014 if (!get_modinfo(info, "intree")) {
2015 if (!test_taint(TAINT_OOT_MODULE))
2016 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2017 mod->name);
2018 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2019 }
2020
2021 check_modinfo_retpoline(mod, info);
2022
2023 if (get_modinfo(info, "staging")) {
2024 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2025 pr_warn("%s: module is from the staging directory, the quality "
2026 "is unknown, you have been warned.\n", mod->name);
2027 }
2028
2029 err = check_modinfo_livepatch(mod, info);
2030 if (err)
2031 return err;
2032
2033 /* Set up license info based on the info section */
2034 set_license(mod, get_modinfo(info, "license"));
2035
2036 if (get_modinfo(info, "test")) {
2037 if (!test_taint(TAINT_TEST))
2038 pr_warn("%s: loading test module taints kernel.\n",
2039 mod->name);
2040 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2041 }
2042
2043 return 0;
2044 }
2045
find_module_sections(struct module * mod,struct load_info * info)2046 static int find_module_sections(struct module *mod, struct load_info *info)
2047 {
2048 mod->kp = section_objs(info, "__param",
2049 sizeof(*mod->kp), &mod->num_kp);
2050 mod->syms = section_objs(info, "__ksymtab",
2051 sizeof(*mod->syms), &mod->num_syms);
2052 mod->crcs = section_addr(info, "__kcrctab");
2053 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2054 sizeof(*mod->gpl_syms),
2055 &mod->num_gpl_syms);
2056 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2057
2058 #ifdef CONFIG_CONSTRUCTORS
2059 mod->ctors = section_objs(info, ".ctors",
2060 sizeof(*mod->ctors), &mod->num_ctors);
2061 if (!mod->ctors)
2062 mod->ctors = section_objs(info, ".init_array",
2063 sizeof(*mod->ctors), &mod->num_ctors);
2064 else if (find_sec(info, ".init_array")) {
2065 /*
2066 * This shouldn't happen with same compiler and binutils
2067 * building all parts of the module.
2068 */
2069 pr_warn("%s: has both .ctors and .init_array.\n",
2070 mod->name);
2071 return -EINVAL;
2072 }
2073 #endif
2074
2075 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2076 &mod->noinstr_text_size);
2077
2078 #ifdef CONFIG_TRACEPOINTS
2079 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2080 sizeof(*mod->tracepoints_ptrs),
2081 &mod->num_tracepoints);
2082 #endif
2083 #ifdef CONFIG_TREE_SRCU
2084 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2085 sizeof(*mod->srcu_struct_ptrs),
2086 &mod->num_srcu_structs);
2087 #endif
2088 #ifdef CONFIG_BPF_EVENTS
2089 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2090 sizeof(*mod->bpf_raw_events),
2091 &mod->num_bpf_raw_events);
2092 #endif
2093 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2094 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2095 #endif
2096 #ifdef CONFIG_JUMP_LABEL
2097 mod->jump_entries = section_objs(info, "__jump_table",
2098 sizeof(*mod->jump_entries),
2099 &mod->num_jump_entries);
2100 #endif
2101 #ifdef CONFIG_EVENT_TRACING
2102 mod->trace_events = section_objs(info, "_ftrace_events",
2103 sizeof(*mod->trace_events),
2104 &mod->num_trace_events);
2105 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2106 sizeof(*mod->trace_evals),
2107 &mod->num_trace_evals);
2108 #endif
2109 #ifdef CONFIG_TRACING
2110 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2111 sizeof(*mod->trace_bprintk_fmt_start),
2112 &mod->num_trace_bprintk_fmt);
2113 #endif
2114 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2115 /* sechdrs[0].sh_size is always zero */
2116 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2117 sizeof(*mod->ftrace_callsites),
2118 &mod->num_ftrace_callsites);
2119 #endif
2120 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2121 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2122 sizeof(*mod->ei_funcs),
2123 &mod->num_ei_funcs);
2124 #endif
2125 #ifdef CONFIG_KPROBES
2126 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2127 &mod->kprobes_text_size);
2128 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2129 sizeof(unsigned long),
2130 &mod->num_kprobe_blacklist);
2131 #endif
2132 #ifdef CONFIG_PRINTK_INDEX
2133 mod->printk_index_start = section_objs(info, ".printk_index",
2134 sizeof(*mod->printk_index_start),
2135 &mod->printk_index_size);
2136 #endif
2137 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2138 mod->static_call_sites = section_objs(info, ".static_call_sites",
2139 sizeof(*mod->static_call_sites),
2140 &mod->num_static_call_sites);
2141 #endif
2142 #if IS_ENABLED(CONFIG_KUNIT)
2143 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2144 sizeof(*mod->kunit_suites),
2145 &mod->num_kunit_suites);
2146 #endif
2147
2148 mod->extable = section_objs(info, "__ex_table",
2149 sizeof(*mod->extable), &mod->num_exentries);
2150
2151 if (section_addr(info, "__obsparm"))
2152 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2153
2154 info->dyndbg.descs = section_objs(info, "__dyndbg",
2155 sizeof(*info->dyndbg.descs), &info->dyndbg.num_descs);
2156 info->dyndbg.classes = section_objs(info, "__dyndbg_classes",
2157 sizeof(*info->dyndbg.classes), &info->dyndbg.num_classes);
2158
2159 return 0;
2160 }
2161
move_module(struct module * mod,struct load_info * info)2162 static int move_module(struct module *mod, struct load_info *info)
2163 {
2164 int i;
2165 void *ptr;
2166
2167 /* Do the allocs. */
2168 ptr = module_alloc(mod->core_layout.size);
2169 /*
2170 * The pointer to this block is stored in the module structure
2171 * which is inside the block. Just mark it as not being a
2172 * leak.
2173 */
2174 kmemleak_not_leak(ptr);
2175 if (!ptr)
2176 return -ENOMEM;
2177
2178 memset(ptr, 0, mod->core_layout.size);
2179 mod->core_layout.base = ptr;
2180
2181 if (mod->init_layout.size) {
2182 ptr = module_alloc(mod->init_layout.size);
2183 /*
2184 * The pointer to this block is stored in the module structure
2185 * which is inside the block. This block doesn't need to be
2186 * scanned as it contains data and code that will be freed
2187 * after the module is initialized.
2188 */
2189 kmemleak_ignore(ptr);
2190 if (!ptr) {
2191 module_memfree(mod->core_layout.base);
2192 return -ENOMEM;
2193 }
2194 memset(ptr, 0, mod->init_layout.size);
2195 mod->init_layout.base = ptr;
2196 } else
2197 mod->init_layout.base = NULL;
2198
2199 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2200 /* Do the allocs. */
2201 ptr = vzalloc(mod->data_layout.size);
2202 /*
2203 * The pointer to this block is stored in the module structure
2204 * which is inside the block. Just mark it as not being a
2205 * leak.
2206 */
2207 kmemleak_not_leak(ptr);
2208 if (!ptr) {
2209 module_memfree(mod->core_layout.base);
2210 module_memfree(mod->init_layout.base);
2211 return -ENOMEM;
2212 }
2213
2214 mod->data_layout.base = ptr;
2215 #endif
2216 /* Transfer each section which specifies SHF_ALLOC */
2217 pr_debug("final section addresses:\n");
2218 for (i = 0; i < info->hdr->e_shnum; i++) {
2219 void *dest;
2220 Elf_Shdr *shdr = &info->sechdrs[i];
2221
2222 if (!(shdr->sh_flags & SHF_ALLOC))
2223 continue;
2224
2225 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2226 dest = mod->init_layout.base
2227 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2228 else if (!(shdr->sh_flags & SHF_EXECINSTR))
2229 dest = mod->data_layout.base + shdr->sh_entsize;
2230 else
2231 dest = mod->core_layout.base + shdr->sh_entsize;
2232
2233 if (shdr->sh_type != SHT_NOBITS)
2234 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2235 /* Update sh_addr to point to copy in image. */
2236 shdr->sh_addr = (unsigned long)dest;
2237 pr_debug("\t0x%lx %s\n",
2238 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2239 }
2240
2241 return 0;
2242 }
2243
check_module_license_and_versions(struct module * mod)2244 static int check_module_license_and_versions(struct module *mod)
2245 {
2246 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2247
2248 /*
2249 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2250 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2251 * using GPL-only symbols it needs.
2252 */
2253 if (strcmp(mod->name, "ndiswrapper") == 0)
2254 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2255
2256 /* driverloader was caught wrongly pretending to be under GPL */
2257 if (strcmp(mod->name, "driverloader") == 0)
2258 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2259 LOCKDEP_NOW_UNRELIABLE);
2260
2261 /* lve claims to be GPL but upstream won't provide source */
2262 if (strcmp(mod->name, "lve") == 0)
2263 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2264 LOCKDEP_NOW_UNRELIABLE);
2265
2266 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2267 pr_warn("%s: module license taints kernel.\n", mod->name);
2268
2269 #ifdef CONFIG_MODVERSIONS
2270 if ((mod->num_syms && !mod->crcs) ||
2271 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2272 return try_to_force_load(mod,
2273 "no versions for exported symbols");
2274 }
2275 #endif
2276 return 0;
2277 }
2278
flush_module_icache(const struct module * mod)2279 static void flush_module_icache(const struct module *mod)
2280 {
2281 /*
2282 * Flush the instruction cache, since we've played with text.
2283 * Do it before processing of module parameters, so the module
2284 * can provide parameter accessor functions of its own.
2285 */
2286 if (mod->init_layout.base)
2287 flush_icache_range((unsigned long)mod->init_layout.base,
2288 (unsigned long)mod->init_layout.base
2289 + mod->init_layout.size);
2290 flush_icache_range((unsigned long)mod->core_layout.base,
2291 (unsigned long)mod->core_layout.base + mod->core_layout.size);
2292 }
2293
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2294 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2295 Elf_Shdr *sechdrs,
2296 char *secstrings,
2297 struct module *mod)
2298 {
2299 return 0;
2300 }
2301
2302 /* module_blacklist is a comma-separated list of module names */
2303 static char *module_blacklist;
blacklisted(const char * module_name)2304 static bool blacklisted(const char *module_name)
2305 {
2306 const char *p;
2307 size_t len;
2308
2309 if (!module_blacklist)
2310 return false;
2311
2312 for (p = module_blacklist; *p; p += len) {
2313 len = strcspn(p, ",");
2314 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2315 return true;
2316 if (p[len] == ',')
2317 len++;
2318 }
2319 return false;
2320 }
2321 core_param(module_blacklist, module_blacklist, charp, 0400);
2322
layout_and_allocate(struct load_info * info,int flags)2323 static struct module *layout_and_allocate(struct load_info *info, int flags)
2324 {
2325 struct module *mod;
2326 unsigned int ndx;
2327 int err;
2328
2329 err = check_modinfo(info->mod, info, flags);
2330 if (err)
2331 return ERR_PTR(err);
2332
2333 /* Allow arches to frob section contents and sizes. */
2334 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2335 info->secstrings, info->mod);
2336 if (err < 0)
2337 return ERR_PTR(err);
2338
2339 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2340 info->secstrings, info->mod);
2341 if (err < 0)
2342 return ERR_PTR(err);
2343
2344 /* We will do a special allocation for per-cpu sections later. */
2345 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2346
2347 /*
2348 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2349 * layout_sections() can put it in the right place.
2350 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2351 */
2352 ndx = find_sec(info, ".data..ro_after_init");
2353 if (ndx)
2354 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2355 /*
2356 * Mark the __jump_table section as ro_after_init as well: these data
2357 * structures are never modified, with the exception of entries that
2358 * refer to code in the __init section, which are annotated as such
2359 * at module load time.
2360 */
2361 ndx = find_sec(info, "__jump_table");
2362 if (ndx)
2363 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2364
2365 /*
2366 * Determine total sizes, and put offsets in sh_entsize. For now
2367 * this is done generically; there doesn't appear to be any
2368 * special cases for the architectures.
2369 */
2370 layout_sections(info->mod, info);
2371 layout_symtab(info->mod, info);
2372
2373 /* Allocate and move to the final place */
2374 err = move_module(info->mod, info);
2375 if (err)
2376 return ERR_PTR(err);
2377
2378 /* Module has been copied to its final place now: return it. */
2379 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2380 kmemleak_load_module(mod, info);
2381 return mod;
2382 }
2383
2384 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2385 static void module_deallocate(struct module *mod, struct load_info *info)
2386 {
2387 percpu_modfree(mod);
2388 module_arch_freeing_init(mod);
2389 trace_android_rvh_set_module_init_rw_nx(mod);
2390 module_memfree(mod->init_layout.base);
2391 trace_android_rvh_set_module_core_rw_nx(mod);
2392 module_memfree(mod->core_layout.base);
2393 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
2394 vfree(mod->data_layout.base);
2395 #endif
2396 }
2397
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2398 int __weak module_finalize(const Elf_Ehdr *hdr,
2399 const Elf_Shdr *sechdrs,
2400 struct module *me)
2401 {
2402 return 0;
2403 }
2404
post_relocation(struct module * mod,const struct load_info * info)2405 static int post_relocation(struct module *mod, const struct load_info *info)
2406 {
2407 /* Sort exception table now relocations are done. */
2408 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2409
2410 /* Copy relocated percpu area over. */
2411 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2412 info->sechdrs[info->index.pcpu].sh_size);
2413
2414 /* Setup kallsyms-specific fields. */
2415 add_kallsyms(mod, info);
2416
2417 /* Arch-specific module finalizing. */
2418 return module_finalize(info->hdr, info->sechdrs, mod);
2419 }
2420
2421 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)2422 static bool finished_loading(const char *name)
2423 {
2424 struct module *mod;
2425 bool ret;
2426
2427 /*
2428 * The module_mutex should not be a heavily contended lock;
2429 * if we get the occasional sleep here, we'll go an extra iteration
2430 * in the wait_event_interruptible(), which is harmless.
2431 */
2432 sched_annotate_sleep();
2433 mutex_lock(&module_mutex);
2434 mod = find_module_all(name, strlen(name), true);
2435 ret = !mod || mod->state == MODULE_STATE_LIVE
2436 || mod->state == MODULE_STATE_GOING;
2437 mutex_unlock(&module_mutex);
2438
2439 return ret;
2440 }
2441
2442 /* Call module constructors. */
do_mod_ctors(struct module * mod)2443 static void do_mod_ctors(struct module *mod)
2444 {
2445 #ifdef CONFIG_CONSTRUCTORS
2446 unsigned long i;
2447
2448 for (i = 0; i < mod->num_ctors; i++)
2449 mod->ctors[i]();
2450 #endif
2451 }
2452
2453 /* For freeing module_init on success, in case kallsyms traversing */
2454 struct mod_initfree {
2455 struct llist_node node;
2456 void *module_init;
2457 };
2458
do_free_init(struct work_struct * w)2459 static void do_free_init(struct work_struct *w)
2460 {
2461 struct llist_node *pos, *n, *list;
2462 struct mod_initfree *initfree;
2463
2464 list = llist_del_all(&init_free_list);
2465
2466 synchronize_rcu();
2467
2468 llist_for_each_safe(pos, n, list) {
2469 initfree = container_of(pos, struct mod_initfree, node);
2470 module_memfree(initfree->module_init);
2471 kfree(initfree);
2472 }
2473 }
2474
2475 #undef MODULE_PARAM_PREFIX
2476 #define MODULE_PARAM_PREFIX "module."
2477 /* Default value for module->async_probe_requested */
2478 static bool async_probe;
2479 module_param(async_probe, bool, 0644);
2480
2481 /*
2482 * This is where the real work happens.
2483 *
2484 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2485 * helper command 'lx-symbols'.
2486 */
do_init_module(struct module * mod)2487 static noinline int do_init_module(struct module *mod)
2488 {
2489 int ret = 0;
2490 struct mod_initfree *freeinit;
2491
2492 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2493 if (!freeinit) {
2494 ret = -ENOMEM;
2495 goto fail;
2496 }
2497 freeinit->module_init = mod->init_layout.base;
2498
2499 do_mod_ctors(mod);
2500 /* Start the module */
2501 if (mod->init != NULL)
2502 ret = do_one_initcall(mod->init);
2503 if (ret < 0) {
2504 goto fail_free_freeinit;
2505 }
2506 if (ret > 0) {
2507 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2508 "follow 0/-E convention\n"
2509 "%s: loading module anyway...\n",
2510 __func__, mod->name, ret, __func__);
2511 dump_stack();
2512 }
2513
2514 /* Now it's a first class citizen! */
2515 mod->state = MODULE_STATE_LIVE;
2516 blocking_notifier_call_chain(&module_notify_list,
2517 MODULE_STATE_LIVE, mod);
2518
2519 /* Delay uevent until module has finished its init routine */
2520 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2521
2522 /*
2523 * We need to finish all async code before the module init sequence
2524 * is done. This has potential to deadlock if synchronous module
2525 * loading is requested from async (which is not allowed!).
2526 *
2527 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2528 * request_module() from async workers") for more details.
2529 */
2530 if (!mod->async_probe_requested)
2531 async_synchronize_full();
2532
2533 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
2534 mod->init_layout.size);
2535 mutex_lock(&module_mutex);
2536 /* Drop initial reference. */
2537 module_put(mod);
2538 trim_init_extable(mod);
2539 #ifdef CONFIG_KALLSYMS
2540 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2541 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2542 #endif
2543 module_enable_ro(mod, true);
2544 trace_android_rvh_set_module_permit_after_init(mod);
2545 mod_tree_remove_init(mod);
2546 module_arch_freeing_init(mod);
2547 trace_android_rvh_set_module_init_rw_nx(mod);
2548 mod->init_layout.base = NULL;
2549 mod->init_layout.size = 0;
2550 mod->init_layout.ro_size = 0;
2551 mod->init_layout.ro_after_init_size = 0;
2552 mod->init_layout.text_size = 0;
2553 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2554 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
2555 mod->btf_data = NULL;
2556 #endif
2557 /*
2558 * We want to free module_init, but be aware that kallsyms may be
2559 * walking this with preempt disabled. In all the failure paths, we
2560 * call synchronize_rcu(), but we don't want to slow down the success
2561 * path. module_memfree() cannot be called in an interrupt, so do the
2562 * work and call synchronize_rcu() in a work queue.
2563 *
2564 * Note that module_alloc() on most architectures creates W+X page
2565 * mappings which won't be cleaned up until do_free_init() runs. Any
2566 * code such as mark_rodata_ro() which depends on those mappings to
2567 * be cleaned up needs to sync with the queued work - ie
2568 * rcu_barrier()
2569 */
2570 if (llist_add(&freeinit->node, &init_free_list))
2571 schedule_work(&init_free_wq);
2572
2573 mutex_unlock(&module_mutex);
2574 wake_up_all(&module_wq);
2575
2576 return 0;
2577
2578 fail_free_freeinit:
2579 kfree(freeinit);
2580 fail:
2581 /* Try to protect us from buggy refcounters. */
2582 mod->state = MODULE_STATE_GOING;
2583 synchronize_rcu();
2584 module_put(mod);
2585 blocking_notifier_call_chain(&module_notify_list,
2586 MODULE_STATE_GOING, mod);
2587 klp_module_going(mod);
2588 ftrace_release_mod(mod);
2589 free_module(mod);
2590 wake_up_all(&module_wq);
2591 return ret;
2592 }
2593
may_init_module(void)2594 static int may_init_module(void)
2595 {
2596 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2597 return -EPERM;
2598
2599 return 0;
2600 }
2601
2602 /*
2603 * We try to place it in the list now to make sure it's unique before
2604 * we dedicate too many resources. In particular, temporary percpu
2605 * memory exhaustion.
2606 */
add_unformed_module(struct module * mod)2607 static int add_unformed_module(struct module *mod)
2608 {
2609 int err;
2610 struct module *old;
2611
2612 mod->state = MODULE_STATE_UNFORMED;
2613
2614 mutex_lock(&module_mutex);
2615 old = find_module_all(mod->name, strlen(mod->name), true);
2616 if (old != NULL) {
2617 if (old->state == MODULE_STATE_COMING
2618 || old->state == MODULE_STATE_UNFORMED) {
2619 /* Wait in case it fails to load. */
2620 mutex_unlock(&module_mutex);
2621 err = wait_event_interruptible(module_wq,
2622 finished_loading(mod->name));
2623 if (err)
2624 goto out_unlocked;
2625
2626 /* The module might have gone in the meantime. */
2627 mutex_lock(&module_mutex);
2628 old = find_module_all(mod->name, strlen(mod->name),
2629 true);
2630 }
2631
2632 /*
2633 * We are here only when the same module was being loaded. Do
2634 * not try to load it again right now. It prevents long delays
2635 * caused by serialized module load failures. It might happen
2636 * when more devices of the same type trigger load of
2637 * a particular module.
2638 */
2639 if (old && old->state == MODULE_STATE_LIVE)
2640 err = -EEXIST;
2641 else
2642 err = -EBUSY;
2643 goto out;
2644 }
2645 mod_update_bounds(mod);
2646 list_add_rcu(&mod->list, &modules);
2647 mod_tree_insert(mod);
2648 err = 0;
2649
2650 out:
2651 mutex_unlock(&module_mutex);
2652 out_unlocked:
2653 return err;
2654 }
2655
complete_formation(struct module * mod,struct load_info * info)2656 static int complete_formation(struct module *mod, struct load_info *info)
2657 {
2658 int err;
2659
2660 mutex_lock(&module_mutex);
2661
2662 /* Find duplicate symbols (must be called under lock). */
2663 err = verify_exported_symbols(mod);
2664 if (err < 0)
2665 goto out;
2666
2667 /* These rely on module_mutex for list integrity. */
2668 module_bug_finalize(info->hdr, info->sechdrs, mod);
2669 module_cfi_finalize(info->hdr, info->sechdrs, mod);
2670
2671 if (module_check_misalignment(mod))
2672 goto out_misaligned;
2673
2674 module_enable_ro(mod, false);
2675 module_enable_nx(mod);
2676 module_enable_x(mod);
2677 trace_android_rvh_set_module_permit_before_init(mod);
2678
2679 /*
2680 * Mark state as coming so strong_try_module_get() ignores us,
2681 * but kallsyms etc. can see us.
2682 */
2683 mod->state = MODULE_STATE_COMING;
2684 mutex_unlock(&module_mutex);
2685
2686 return 0;
2687
2688 out_misaligned:
2689 err = -EINVAL;
2690 out:
2691 mutex_unlock(&module_mutex);
2692 return err;
2693 }
2694
prepare_coming_module(struct module * mod)2695 static int prepare_coming_module(struct module *mod)
2696 {
2697 int err;
2698
2699 ftrace_module_enable(mod);
2700 err = klp_module_coming(mod);
2701 if (err)
2702 return err;
2703
2704 err = blocking_notifier_call_chain_robust(&module_notify_list,
2705 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2706 err = notifier_to_errno(err);
2707 if (err)
2708 klp_module_going(mod);
2709
2710 return err;
2711 }
2712
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)2713 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2714 void *arg)
2715 {
2716 struct module *mod = arg;
2717 int ret;
2718
2719 if (strcmp(param, "async_probe") == 0) {
2720 if (strtobool(val, &mod->async_probe_requested))
2721 mod->async_probe_requested = true;
2722 return 0;
2723 }
2724
2725 /* Check for magic 'dyndbg' arg */
2726 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2727 if (ret != 0)
2728 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2729 return 0;
2730 }
2731
2732 /*
2733 * Allocate and load the module: note that size of section 0 is always
2734 * zero, and we rely on this for optional sections.
2735 */
load_module(struct load_info * info,const char __user * uargs,int flags)2736 static int load_module(struct load_info *info, const char __user *uargs,
2737 int flags)
2738 {
2739 struct module *mod;
2740 long err = 0;
2741 char *after_dashes;
2742
2743 /*
2744 * Do the signature check (if any) first. All that
2745 * the signature check needs is info->len, it does
2746 * not need any of the section info. That can be
2747 * set up later. This will minimize the chances
2748 * of a corrupt module causing problems before
2749 * we even get to the signature check.
2750 *
2751 * The check will also adjust info->len by stripping
2752 * off the sig length at the end of the module, making
2753 * checks against info->len more correct.
2754 */
2755 err = module_sig_check(info, flags);
2756 if (err)
2757 goto free_copy;
2758
2759 /*
2760 * Do basic sanity checks against the ELF header and
2761 * sections.
2762 */
2763 err = elf_validity_check(info);
2764 if (err)
2765 goto free_copy;
2766
2767 /*
2768 * Everything checks out, so set up the section info
2769 * in the info structure.
2770 */
2771 err = setup_load_info(info, flags);
2772 if (err)
2773 goto free_copy;
2774
2775 /*
2776 * Now that we know we have the correct module name, check
2777 * if it's blacklisted.
2778 */
2779 if (blacklisted(info->name)) {
2780 err = -EPERM;
2781 pr_err("Module %s is blacklisted\n", info->name);
2782 goto free_copy;
2783 }
2784
2785 err = rewrite_section_headers(info, flags);
2786 if (err)
2787 goto free_copy;
2788
2789 /* Check module struct version now, before we try to use module. */
2790 if (!check_modstruct_version(info, info->mod)) {
2791 err = -ENOEXEC;
2792 goto free_copy;
2793 }
2794
2795 /* Figure out module layout, and allocate all the memory. */
2796 mod = layout_and_allocate(info, flags);
2797 if (IS_ERR(mod)) {
2798 err = PTR_ERR(mod);
2799 goto free_copy;
2800 }
2801
2802 audit_log_kern_module(mod->name);
2803
2804 /* Reserve our place in the list. */
2805 err = add_unformed_module(mod);
2806 if (err)
2807 goto free_module;
2808
2809 #ifdef CONFIG_MODULE_SIG
2810 mod->sig_ok = info->sig_ok;
2811 if (!mod->sig_ok) {
2812 pr_notice_once("%s: module verification failed: signature "
2813 "and/or required key missing - tainting "
2814 "kernel\n", mod->name);
2815 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2816 }
2817 #else
2818 mod->sig_ok = 0;
2819 #endif
2820
2821 /* To avoid stressing percpu allocator, do this once we're unique. */
2822 err = percpu_modalloc(mod, info);
2823 if (err)
2824 goto unlink_mod;
2825
2826 /* Now module is in final location, initialize linked lists, etc. */
2827 err = module_unload_init(mod);
2828 if (err)
2829 goto unlink_mod;
2830
2831 init_param_lock(mod);
2832
2833 /*
2834 * Now we've got everything in the final locations, we can
2835 * find optional sections.
2836 */
2837 err = find_module_sections(mod, info);
2838 if (err)
2839 goto free_unload;
2840
2841 err = check_module_license_and_versions(mod);
2842 if (err)
2843 goto free_unload;
2844
2845 /* Set up MODINFO_ATTR fields */
2846 setup_modinfo(mod, info);
2847
2848 /* Fix up syms, so that st_value is a pointer to location. */
2849 err = simplify_symbols(mod, info);
2850 if (err < 0)
2851 goto free_modinfo;
2852
2853 err = apply_relocations(mod, info);
2854 if (err < 0)
2855 goto free_modinfo;
2856
2857 err = post_relocation(mod, info);
2858 if (err < 0)
2859 goto free_modinfo;
2860
2861 flush_module_icache(mod);
2862
2863 /* Now copy in args */
2864 mod->args = strndup_user(uargs, ~0UL >> 1);
2865 if (IS_ERR(mod->args)) {
2866 err = PTR_ERR(mod->args);
2867 goto free_arch_cleanup;
2868 }
2869
2870 init_build_id(mod, info);
2871 dynamic_debug_setup(mod, &info->dyndbg);
2872
2873 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2874 ftrace_module_init(mod);
2875
2876 /* Finally it's fully formed, ready to start executing. */
2877 err = complete_formation(mod, info);
2878 if (err)
2879 goto ddebug_cleanup;
2880
2881 err = prepare_coming_module(mod);
2882 if (err)
2883 goto bug_cleanup;
2884
2885 mod->async_probe_requested = async_probe;
2886
2887 /* Module is ready to execute: parsing args may do that. */
2888 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2889 -32768, 32767, mod,
2890 unknown_module_param_cb);
2891 if (IS_ERR(after_dashes)) {
2892 err = PTR_ERR(after_dashes);
2893 goto coming_cleanup;
2894 } else if (after_dashes) {
2895 pr_warn("%s: parameters '%s' after `--' ignored\n",
2896 mod->name, after_dashes);
2897 }
2898
2899 /* Link in to sysfs. */
2900 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2901 if (err < 0)
2902 goto coming_cleanup;
2903
2904 if (is_livepatch_module(mod)) {
2905 err = copy_module_elf(mod, info);
2906 if (err < 0)
2907 goto sysfs_cleanup;
2908 }
2909
2910 /* Get rid of temporary copy. */
2911 free_copy(info, flags);
2912
2913 /* Done! */
2914 trace_module_load(mod);
2915
2916 return do_init_module(mod);
2917
2918 sysfs_cleanup:
2919 mod_sysfs_teardown(mod);
2920 coming_cleanup:
2921 mod->state = MODULE_STATE_GOING;
2922 destroy_params(mod->kp, mod->num_kp);
2923 blocking_notifier_call_chain(&module_notify_list,
2924 MODULE_STATE_GOING, mod);
2925 klp_module_going(mod);
2926 bug_cleanup:
2927 mod->state = MODULE_STATE_GOING;
2928 /* module_bug_cleanup needs module_mutex protection */
2929 mutex_lock(&module_mutex);
2930 module_bug_cleanup(mod);
2931 mutex_unlock(&module_mutex);
2932
2933 ddebug_cleanup:
2934 ftrace_release_mod(mod);
2935 dynamic_debug_remove(mod, &info->dyndbg);
2936 synchronize_rcu();
2937 kfree(mod->args);
2938 free_arch_cleanup:
2939 module_arch_cleanup(mod);
2940 free_modinfo:
2941 free_modinfo(mod);
2942 free_unload:
2943 module_unload_free(mod);
2944 unlink_mod:
2945 mutex_lock(&module_mutex);
2946 /* Unlink carefully: kallsyms could be walking list. */
2947 list_del_rcu(&mod->list);
2948 mod_tree_remove(mod);
2949 wake_up_all(&module_wq);
2950 /* Wait for RCU-sched synchronizing before releasing mod->list. */
2951 synchronize_rcu();
2952 mutex_unlock(&module_mutex);
2953 free_module:
2954 /* Free lock-classes; relies on the preceding sync_rcu() */
2955 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size);
2956
2957 module_deallocate(mod, info);
2958 free_copy:
2959 free_copy(info, flags);
2960 return err;
2961 }
2962
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)2963 SYSCALL_DEFINE3(init_module, void __user *, umod,
2964 unsigned long, len, const char __user *, uargs)
2965 {
2966 int err;
2967 struct load_info info = { };
2968
2969 err = may_init_module();
2970 if (err)
2971 return err;
2972
2973 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
2974 umod, len, uargs);
2975
2976 err = copy_module_from_user(umod, len, &info);
2977 if (err)
2978 return err;
2979
2980 return load_module(&info, uargs, 0);
2981 }
2982
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)2983 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
2984 {
2985 struct load_info info = { };
2986 void *buf = NULL;
2987 int len;
2988 int err;
2989
2990 err = may_init_module();
2991 if (err)
2992 return err;
2993
2994 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
2995
2996 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
2997 |MODULE_INIT_IGNORE_VERMAGIC
2998 |MODULE_INIT_COMPRESSED_FILE))
2999 return -EINVAL;
3000
3001 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL,
3002 READING_MODULE);
3003 if (len < 0)
3004 return len;
3005
3006 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3007 err = module_decompress(&info, buf, len);
3008 vfree(buf); /* compressed data is no longer needed */
3009 if (err)
3010 return err;
3011 } else {
3012 info.hdr = buf;
3013 info.len = len;
3014 }
3015
3016 return load_module(&info, uargs, flags);
3017 }
3018
within(unsigned long addr,void * start,unsigned long size)3019 static inline int within(unsigned long addr, void *start, unsigned long size)
3020 {
3021 return ((void *)addr >= start && (void *)addr < start + size);
3022 }
3023
3024 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3025 char *module_flags(struct module *mod, char *buf, bool show_state)
3026 {
3027 int bx = 0;
3028
3029 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3030 if (!mod->taints && !show_state)
3031 goto out;
3032 if (mod->taints ||
3033 mod->state == MODULE_STATE_GOING ||
3034 mod->state == MODULE_STATE_COMING) {
3035 buf[bx++] = '(';
3036 bx += module_flags_taint(mod->taints, buf + bx);
3037 /* Show a - for module-is-being-unloaded */
3038 if (mod->state == MODULE_STATE_GOING && show_state)
3039 buf[bx++] = '-';
3040 /* Show a + for module-is-being-loaded */
3041 if (mod->state == MODULE_STATE_COMING && show_state)
3042 buf[bx++] = '+';
3043 buf[bx++] = ')';
3044 }
3045 out:
3046 buf[bx] = '\0';
3047
3048 return buf;
3049 }
3050
3051 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3052 const struct exception_table_entry *search_module_extables(unsigned long addr)
3053 {
3054 const struct exception_table_entry *e = NULL;
3055 struct module *mod;
3056
3057 preempt_disable();
3058 mod = __module_address(addr);
3059 if (!mod)
3060 goto out;
3061
3062 if (!mod->num_exentries)
3063 goto out;
3064
3065 e = search_extable(mod->extable,
3066 mod->num_exentries,
3067 addr);
3068 out:
3069 preempt_enable();
3070
3071 /*
3072 * Now, if we found one, we are running inside it now, hence
3073 * we cannot unload the module, hence no refcnt needed.
3074 */
3075 return e;
3076 }
3077
3078 /**
3079 * is_module_address() - is this address inside a module?
3080 * @addr: the address to check.
3081 *
3082 * See is_module_text_address() if you simply want to see if the address
3083 * is code (not data).
3084 */
is_module_address(unsigned long addr)3085 bool is_module_address(unsigned long addr)
3086 {
3087 bool ret;
3088
3089 preempt_disable();
3090 ret = __module_address(addr) != NULL;
3091 preempt_enable();
3092
3093 return ret;
3094 }
3095
3096 /**
3097 * __module_address() - get the module which contains an address.
3098 * @addr: the address.
3099 *
3100 * Must be called with preempt disabled or module mutex held so that
3101 * module doesn't get freed during this.
3102 */
__module_address(unsigned long addr)3103 struct module *__module_address(unsigned long addr)
3104 {
3105 struct module *mod;
3106 struct mod_tree_root *tree;
3107
3108 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3109 tree = &mod_tree;
3110 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3111 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max)
3112 tree = &mod_data_tree;
3113 #endif
3114 else
3115 return NULL;
3116
3117 module_assert_mutex_or_preempt();
3118
3119 mod = mod_find(addr, tree);
3120 if (mod) {
3121 BUG_ON(!within_module(addr, mod));
3122 if (mod->state == MODULE_STATE_UNFORMED)
3123 mod = NULL;
3124 }
3125 return mod;
3126 }
3127
3128 /**
3129 * is_module_text_address() - is this address inside module code?
3130 * @addr: the address to check.
3131 *
3132 * See is_module_address() if you simply want to see if the address is
3133 * anywhere in a module. See kernel_text_address() for testing if an
3134 * address corresponds to kernel or module code.
3135 */
is_module_text_address(unsigned long addr)3136 bool is_module_text_address(unsigned long addr)
3137 {
3138 bool ret;
3139
3140 preempt_disable();
3141 ret = __module_text_address(addr) != NULL;
3142 preempt_enable();
3143
3144 return ret;
3145 }
3146
3147 /**
3148 * __module_text_address() - get the module whose code contains an address.
3149 * @addr: the address.
3150 *
3151 * Must be called with preempt disabled or module mutex held so that
3152 * module doesn't get freed during this.
3153 */
__module_text_address(unsigned long addr)3154 struct module *__module_text_address(unsigned long addr)
3155 {
3156 struct module *mod = __module_address(addr);
3157 if (mod) {
3158 /* Make sure it's within the text section. */
3159 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
3160 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
3161 mod = NULL;
3162 }
3163 return mod;
3164 }
3165
3166 /* Don't grab lock, we're oopsing. */
print_modules(void)3167 void print_modules(void)
3168 {
3169 struct module *mod;
3170 char buf[MODULE_FLAGS_BUF_SIZE];
3171
3172 printk(KERN_DEFAULT "Modules linked in:");
3173 /* Most callers should already have preempt disabled, but make sure */
3174 preempt_disable();
3175 list_for_each_entry_rcu(mod, &modules, list) {
3176 if (mod->state == MODULE_STATE_UNFORMED)
3177 continue;
3178 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3179 }
3180
3181 print_unloaded_tainted_modules();
3182 preempt_enable();
3183 if (last_unloaded_module.name[0])
3184 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3185 last_unloaded_module.taints);
3186 pr_cont("\n");
3187 }
3188