1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/random.h>
16 #include <linux/sysfs.h>
17
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21 #include <trace/hooks/mmc.h>
22
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
31
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
33 #define MIN_CACHE_EN_TIMEOUT_MS 1600
34 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
35
36 static const unsigned int tran_exp[] = {
37 10000, 100000, 1000000, 10000000,
38 0, 0, 0, 0
39 };
40
41 static const unsigned char tran_mant[] = {
42 0, 10, 12, 13, 15, 20, 25, 30,
43 35, 40, 45, 50, 55, 60, 70, 80,
44 };
45
46 static const unsigned int taac_exp[] = {
47 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
48 };
49
50 static const unsigned int taac_mant[] = {
51 0, 10, 12, 13, 15, 20, 25, 30,
52 35, 40, 45, 50, 55, 60, 70, 80,
53 };
54
55 #define UNSTUFF_BITS(resp,start,size) \
56 ({ \
57 const int __size = size; \
58 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
59 const int __off = 3 - ((start) / 32); \
60 const int __shft = (start) & 31; \
61 u32 __res; \
62 \
63 __res = resp[__off] >> __shft; \
64 if (__size + __shft > 32) \
65 __res |= resp[__off-1] << ((32 - __shft) % 32); \
66 __res & __mask; \
67 })
68
69 /*
70 * Given the decoded CSD structure, decode the raw CID to our CID structure.
71 */
mmc_decode_cid(struct mmc_card * card)72 static int mmc_decode_cid(struct mmc_card *card)
73 {
74 u32 *resp = card->raw_cid;
75
76 /*
77 * Add the raw card ID (cid) data to the entropy pool. It doesn't
78 * matter that not all of it is unique, it's just bonus entropy.
79 */
80 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
81
82 /*
83 * The selection of the format here is based upon published
84 * specs from sandisk and from what people have reported.
85 */
86 switch (card->csd.mmca_vsn) {
87 case 0: /* MMC v1.0 - v1.2 */
88 case 1: /* MMC v1.4 */
89 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
90 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
91 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
92 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
93 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
94 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
95 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
96 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
97 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
98 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
99 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
100 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
101 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
102 break;
103
104 case 2: /* MMC v2.0 - v2.2 */
105 case 3: /* MMC v3.1 - v3.3 */
106 case 4: /* MMC v4 */
107 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
108 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
109 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
110 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
111 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
112 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
113 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
114 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
115 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
116 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
117 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
118 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
119 break;
120
121 default:
122 pr_err("%s: card has unknown MMCA version %d\n",
123 mmc_hostname(card->host), card->csd.mmca_vsn);
124 return -EINVAL;
125 }
126
127 return 0;
128 }
129
mmc_set_erase_size(struct mmc_card * card)130 static void mmc_set_erase_size(struct mmc_card *card)
131 {
132 if (card->ext_csd.erase_group_def & 1)
133 card->erase_size = card->ext_csd.hc_erase_size;
134 else
135 card->erase_size = card->csd.erase_size;
136
137 mmc_init_erase(card);
138 }
139
140 /*
141 * Given a 128-bit response, decode to our card CSD structure.
142 */
mmc_decode_csd(struct mmc_card * card)143 static int mmc_decode_csd(struct mmc_card *card)
144 {
145 struct mmc_csd *csd = &card->csd;
146 unsigned int e, m, a, b;
147 u32 *resp = card->raw_csd;
148
149 /*
150 * We only understand CSD structure v1.1 and v1.2.
151 * v1.2 has extra information in bits 15, 11 and 10.
152 * We also support eMMC v4.4 & v4.41.
153 */
154 csd->structure = UNSTUFF_BITS(resp, 126, 2);
155 if (csd->structure == 0) {
156 pr_err("%s: unrecognised CSD structure version %d\n",
157 mmc_hostname(card->host), csd->structure);
158 return -EINVAL;
159 }
160
161 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
162 m = UNSTUFF_BITS(resp, 115, 4);
163 e = UNSTUFF_BITS(resp, 112, 3);
164 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
165 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
166
167 m = UNSTUFF_BITS(resp, 99, 4);
168 e = UNSTUFF_BITS(resp, 96, 3);
169 csd->max_dtr = tran_exp[e] * tran_mant[m];
170 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
171
172 e = UNSTUFF_BITS(resp, 47, 3);
173 m = UNSTUFF_BITS(resp, 62, 12);
174 csd->capacity = (1 + m) << (e + 2);
175
176 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
177 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
178 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
179 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
180 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
181 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
182 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
183 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
184
185 if (csd->write_blkbits >= 9) {
186 a = UNSTUFF_BITS(resp, 42, 5);
187 b = UNSTUFF_BITS(resp, 37, 5);
188 csd->erase_size = (a + 1) * (b + 1);
189 csd->erase_size <<= csd->write_blkbits - 9;
190 }
191
192 return 0;
193 }
194
mmc_select_card_type(struct mmc_card * card)195 static void mmc_select_card_type(struct mmc_card *card)
196 {
197 struct mmc_host *host = card->host;
198 u8 card_type = card->ext_csd.raw_card_type;
199 u32 caps = host->caps, caps2 = host->caps2;
200 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
201 unsigned int avail_type = 0;
202
203 if (caps & MMC_CAP_MMC_HIGHSPEED &&
204 card_type & EXT_CSD_CARD_TYPE_HS_26) {
205 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
206 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
207 }
208
209 if (caps & MMC_CAP_MMC_HIGHSPEED &&
210 card_type & EXT_CSD_CARD_TYPE_HS_52) {
211 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
212 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
213 }
214
215 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
216 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
217 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
218 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
219 }
220
221 if (caps & MMC_CAP_1_2V_DDR &&
222 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
223 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
224 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
225 }
226
227 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
228 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
229 hs200_max_dtr = MMC_HS200_MAX_DTR;
230 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
231 }
232
233 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
234 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
235 hs200_max_dtr = MMC_HS200_MAX_DTR;
236 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
237 }
238
239 if (caps2 & MMC_CAP2_HS400_1_8V &&
240 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
241 hs200_max_dtr = MMC_HS200_MAX_DTR;
242 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
243 }
244
245 if (caps2 & MMC_CAP2_HS400_1_2V &&
246 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
247 hs200_max_dtr = MMC_HS200_MAX_DTR;
248 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
249 }
250
251 if ((caps2 & MMC_CAP2_HS400_ES) &&
252 card->ext_csd.strobe_support &&
253 (avail_type & EXT_CSD_CARD_TYPE_HS400))
254 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
255
256 card->ext_csd.hs_max_dtr = hs_max_dtr;
257 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
258 card->mmc_avail_type = avail_type;
259 }
260
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)261 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
262 {
263 u8 hc_erase_grp_sz, hc_wp_grp_sz;
264
265 /*
266 * Disable these attributes by default
267 */
268 card->ext_csd.enhanced_area_offset = -EINVAL;
269 card->ext_csd.enhanced_area_size = -EINVAL;
270
271 /*
272 * Enhanced area feature support -- check whether the eMMC
273 * card has the Enhanced area enabled. If so, export enhanced
274 * area offset and size to user by adding sysfs interface.
275 */
276 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
277 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
278 if (card->ext_csd.partition_setting_completed) {
279 hc_erase_grp_sz =
280 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
281 hc_wp_grp_sz =
282 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
283
284 /*
285 * calculate the enhanced data area offset, in bytes
286 */
287 card->ext_csd.enhanced_area_offset =
288 (((unsigned long long)ext_csd[139]) << 24) +
289 (((unsigned long long)ext_csd[138]) << 16) +
290 (((unsigned long long)ext_csd[137]) << 8) +
291 (((unsigned long long)ext_csd[136]));
292 if (mmc_card_blockaddr(card))
293 card->ext_csd.enhanced_area_offset <<= 9;
294 /*
295 * calculate the enhanced data area size, in kilobytes
296 */
297 card->ext_csd.enhanced_area_size =
298 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
299 ext_csd[140];
300 card->ext_csd.enhanced_area_size *=
301 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
302 card->ext_csd.enhanced_area_size <<= 9;
303 } else {
304 pr_warn("%s: defines enhanced area without partition setting complete\n",
305 mmc_hostname(card->host));
306 }
307 }
308 }
309
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)310 static void mmc_part_add(struct mmc_card *card, u64 size,
311 unsigned int part_cfg, char *name, int idx, bool ro,
312 int area_type)
313 {
314 card->part[card->nr_parts].size = size;
315 card->part[card->nr_parts].part_cfg = part_cfg;
316 sprintf(card->part[card->nr_parts].name, name, idx);
317 card->part[card->nr_parts].force_ro = ro;
318 card->part[card->nr_parts].area_type = area_type;
319 card->nr_parts++;
320 }
321
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)322 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
323 {
324 int idx;
325 u8 hc_erase_grp_sz, hc_wp_grp_sz;
326 u64 part_size;
327
328 /*
329 * General purpose partition feature support --
330 * If ext_csd has the size of general purpose partitions,
331 * set size, part_cfg, partition name in mmc_part.
332 */
333 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
334 EXT_CSD_PART_SUPPORT_PART_EN) {
335 hc_erase_grp_sz =
336 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
337 hc_wp_grp_sz =
338 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
339
340 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
341 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
342 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
343 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
344 continue;
345 if (card->ext_csd.partition_setting_completed == 0) {
346 pr_warn("%s: has partition size defined without partition complete\n",
347 mmc_hostname(card->host));
348 break;
349 }
350 part_size =
351 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
352 << 16) +
353 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
354 << 8) +
355 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
356 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
357 mmc_part_add(card, part_size << 19,
358 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
359 "gp%d", idx, false,
360 MMC_BLK_DATA_AREA_GP);
361 }
362 }
363 }
364
365 /* Minimum partition switch timeout in milliseconds */
366 #define MMC_MIN_PART_SWITCH_TIME 300
367
368 /*
369 * Decode extended CSD.
370 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)371 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
372 {
373 int err = 0, idx;
374 u64 part_size;
375 struct device_node *np;
376 bool broken_hpi = false;
377
378 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
379 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
380 if (card->csd.structure == 3) {
381 if (card->ext_csd.raw_ext_csd_structure > 2) {
382 pr_err("%s: unrecognised EXT_CSD structure "
383 "version %d\n", mmc_hostname(card->host),
384 card->ext_csd.raw_ext_csd_structure);
385 err = -EINVAL;
386 goto out;
387 }
388 }
389
390 np = mmc_of_find_child_device(card->host, 0);
391 if (np && of_device_is_compatible(np, "mmc-card"))
392 broken_hpi = of_property_read_bool(np, "broken-hpi");
393 of_node_put(np);
394
395 /*
396 * The EXT_CSD format is meant to be forward compatible. As long
397 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
398 * are authorized, see JEDEC JESD84-B50 section B.8.
399 */
400 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
401
402 /* fixup device after ext_csd revision field is updated */
403 mmc_fixup_device(card, mmc_ext_csd_fixups);
404
405 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
406 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
407 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
408 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
409 if (card->ext_csd.rev >= 2) {
410 card->ext_csd.sectors =
411 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
412 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
413 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
414 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
415
416 /* Cards with density > 2GiB are sector addressed */
417 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
418 mmc_card_set_blockaddr(card);
419 }
420
421 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
422 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
423 mmc_select_card_type(card);
424
425 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
426 card->ext_csd.raw_erase_timeout_mult =
427 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
428 card->ext_csd.raw_hc_erase_grp_size =
429 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
430 card->ext_csd.raw_boot_mult =
431 ext_csd[EXT_CSD_BOOT_MULT];
432 if (card->ext_csd.rev >= 3) {
433 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
434 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
435
436 /* EXT_CSD value is in units of 10ms, but we store in ms */
437 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
438
439 /* Sleep / awake timeout in 100ns units */
440 if (sa_shift > 0 && sa_shift <= 0x17)
441 card->ext_csd.sa_timeout =
442 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
443 card->ext_csd.erase_group_def =
444 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
445 card->ext_csd.hc_erase_timeout = 300 *
446 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
447 card->ext_csd.hc_erase_size =
448 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
449
450 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
451
452 /*
453 * There are two boot regions of equal size, defined in
454 * multiples of 128K.
455 */
456 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
457 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
458 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
459 mmc_part_add(card, part_size,
460 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
461 "boot%d", idx, true,
462 MMC_BLK_DATA_AREA_BOOT);
463 }
464 }
465 }
466
467 card->ext_csd.raw_hc_erase_gap_size =
468 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
469 card->ext_csd.raw_sec_trim_mult =
470 ext_csd[EXT_CSD_SEC_TRIM_MULT];
471 card->ext_csd.raw_sec_erase_mult =
472 ext_csd[EXT_CSD_SEC_ERASE_MULT];
473 card->ext_csd.raw_sec_feature_support =
474 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
475 card->ext_csd.raw_trim_mult =
476 ext_csd[EXT_CSD_TRIM_MULT];
477 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
478 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
479 if (card->ext_csd.rev >= 4) {
480 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
481 EXT_CSD_PART_SETTING_COMPLETED)
482 card->ext_csd.partition_setting_completed = 1;
483 else
484 card->ext_csd.partition_setting_completed = 0;
485
486 mmc_manage_enhanced_area(card, ext_csd);
487
488 mmc_manage_gp_partitions(card, ext_csd);
489
490 card->ext_csd.sec_trim_mult =
491 ext_csd[EXT_CSD_SEC_TRIM_MULT];
492 card->ext_csd.sec_erase_mult =
493 ext_csd[EXT_CSD_SEC_ERASE_MULT];
494 card->ext_csd.sec_feature_support =
495 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
496 card->ext_csd.trim_timeout = 300 *
497 ext_csd[EXT_CSD_TRIM_MULT];
498
499 /*
500 * Note that the call to mmc_part_add above defaults to read
501 * only. If this default assumption is changed, the call must
502 * take into account the value of boot_locked below.
503 */
504 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
505 card->ext_csd.boot_ro_lockable = true;
506
507 /* Save power class values */
508 card->ext_csd.raw_pwr_cl_52_195 =
509 ext_csd[EXT_CSD_PWR_CL_52_195];
510 card->ext_csd.raw_pwr_cl_26_195 =
511 ext_csd[EXT_CSD_PWR_CL_26_195];
512 card->ext_csd.raw_pwr_cl_52_360 =
513 ext_csd[EXT_CSD_PWR_CL_52_360];
514 card->ext_csd.raw_pwr_cl_26_360 =
515 ext_csd[EXT_CSD_PWR_CL_26_360];
516 card->ext_csd.raw_pwr_cl_200_195 =
517 ext_csd[EXT_CSD_PWR_CL_200_195];
518 card->ext_csd.raw_pwr_cl_200_360 =
519 ext_csd[EXT_CSD_PWR_CL_200_360];
520 card->ext_csd.raw_pwr_cl_ddr_52_195 =
521 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
522 card->ext_csd.raw_pwr_cl_ddr_52_360 =
523 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
524 card->ext_csd.raw_pwr_cl_ddr_200_360 =
525 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
526 }
527
528 if (card->ext_csd.rev >= 5) {
529 /* Adjust production date as per JEDEC JESD84-B451 */
530 if (card->cid.year < 2010)
531 card->cid.year += 16;
532
533 /* check whether the eMMC card supports BKOPS */
534 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
535 card->ext_csd.bkops = 1;
536 card->ext_csd.man_bkops_en =
537 (ext_csd[EXT_CSD_BKOPS_EN] &
538 EXT_CSD_MANUAL_BKOPS_MASK);
539 card->ext_csd.raw_bkops_status =
540 ext_csd[EXT_CSD_BKOPS_STATUS];
541 if (card->ext_csd.man_bkops_en)
542 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
543 mmc_hostname(card->host));
544 card->ext_csd.auto_bkops_en =
545 (ext_csd[EXT_CSD_BKOPS_EN] &
546 EXT_CSD_AUTO_BKOPS_MASK);
547 if (card->ext_csd.auto_bkops_en)
548 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
549 mmc_hostname(card->host));
550 }
551
552 /* check whether the eMMC card supports HPI */
553 if (!mmc_card_broken_hpi(card) &&
554 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
555 card->ext_csd.hpi = 1;
556 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
557 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
558 else
559 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
560 /*
561 * Indicate the maximum timeout to close
562 * a command interrupted by HPI
563 */
564 card->ext_csd.out_of_int_time =
565 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
566 }
567
568 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
569 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
570
571 /*
572 * RPMB regions are defined in multiples of 128K.
573 */
574 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
575 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
576 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
577 EXT_CSD_PART_CONFIG_ACC_RPMB,
578 "rpmb", 0, false,
579 MMC_BLK_DATA_AREA_RPMB);
580 }
581 }
582
583 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
584 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
585 card->erased_byte = 0xFF;
586 else
587 card->erased_byte = 0x0;
588
589 /* eMMC v4.5 or later */
590 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
591 if (card->ext_csd.rev >= 6) {
592 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
593
594 card->ext_csd.generic_cmd6_time = 10 *
595 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
596 card->ext_csd.power_off_longtime = 10 *
597 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
598
599 card->ext_csd.cache_size =
600 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
601 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
602 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
603 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
604
605 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
606 card->ext_csd.data_sector_size = 4096;
607 else
608 card->ext_csd.data_sector_size = 512;
609
610 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
611 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
612 card->ext_csd.data_tag_unit_size =
613 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
614 (card->ext_csd.data_sector_size);
615 } else {
616 card->ext_csd.data_tag_unit_size = 0;
617 }
618
619 card->ext_csd.max_packed_writes =
620 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
621 card->ext_csd.max_packed_reads =
622 ext_csd[EXT_CSD_MAX_PACKED_READS];
623 } else {
624 card->ext_csd.data_sector_size = 512;
625 }
626
627 /*
628 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
629 * when accessing a specific field", so use it here if there is no
630 * PARTITION_SWITCH_TIME.
631 */
632 if (!card->ext_csd.part_time)
633 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
634 /* Some eMMC set the value too low so set a minimum */
635 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
636 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
637
638 /* eMMC v5 or later */
639 if (card->ext_csd.rev >= 7) {
640 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
641 MMC_FIRMWARE_LEN);
642 card->ext_csd.ffu_capable =
643 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
644 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
645
646 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
647 card->ext_csd.device_life_time_est_typ_a =
648 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
649 card->ext_csd.device_life_time_est_typ_b =
650 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
651 }
652
653 /* eMMC v5.1 or later */
654 if (card->ext_csd.rev >= 8) {
655 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
656 EXT_CSD_CMDQ_SUPPORTED;
657 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
658 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
659 /* Exclude inefficiently small queue depths */
660 if (card->ext_csd.cmdq_depth <= 2) {
661 card->ext_csd.cmdq_support = false;
662 card->ext_csd.cmdq_depth = 0;
663 }
664 if (card->ext_csd.cmdq_support) {
665 pr_debug("%s: Command Queue supported depth %u\n",
666 mmc_hostname(card->host),
667 card->ext_csd.cmdq_depth);
668 }
669 card->ext_csd.enhanced_rpmb_supported =
670 (card->ext_csd.rel_param &
671 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
672 }
673 out:
674 return err;
675 }
676
mmc_read_ext_csd(struct mmc_card * card)677 static int mmc_read_ext_csd(struct mmc_card *card)
678 {
679 u8 *ext_csd;
680 int err;
681
682 if (!mmc_can_ext_csd(card))
683 return 0;
684
685 err = mmc_get_ext_csd(card, &ext_csd);
686 if (err) {
687 /* If the host or the card can't do the switch,
688 * fail more gracefully. */
689 if ((err != -EINVAL)
690 && (err != -ENOSYS)
691 && (err != -EFAULT))
692 return err;
693
694 /*
695 * High capacity cards should have this "magic" size
696 * stored in their CSD.
697 */
698 if (card->csd.capacity == (4096 * 512)) {
699 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
700 mmc_hostname(card->host));
701 } else {
702 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
703 mmc_hostname(card->host));
704 err = 0;
705 }
706
707 return err;
708 }
709
710 err = mmc_decode_ext_csd(card, ext_csd);
711 kfree(ext_csd);
712 return err;
713 }
714
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)715 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
716 {
717 u8 *bw_ext_csd;
718 int err;
719
720 if (bus_width == MMC_BUS_WIDTH_1)
721 return 0;
722
723 err = mmc_get_ext_csd(card, &bw_ext_csd);
724 if (err)
725 return err;
726
727 /* only compare read only fields */
728 err = !((card->ext_csd.raw_partition_support ==
729 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
730 (card->ext_csd.raw_erased_mem_count ==
731 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
732 (card->ext_csd.rev ==
733 bw_ext_csd[EXT_CSD_REV]) &&
734 (card->ext_csd.raw_ext_csd_structure ==
735 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
736 (card->ext_csd.raw_card_type ==
737 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
738 (card->ext_csd.raw_s_a_timeout ==
739 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
740 (card->ext_csd.raw_hc_erase_gap_size ==
741 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
742 (card->ext_csd.raw_erase_timeout_mult ==
743 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
744 (card->ext_csd.raw_hc_erase_grp_size ==
745 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
746 (card->ext_csd.raw_sec_trim_mult ==
747 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
748 (card->ext_csd.raw_sec_erase_mult ==
749 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
750 (card->ext_csd.raw_sec_feature_support ==
751 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
752 (card->ext_csd.raw_trim_mult ==
753 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
754 (card->ext_csd.raw_sectors[0] ==
755 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
756 (card->ext_csd.raw_sectors[1] ==
757 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
758 (card->ext_csd.raw_sectors[2] ==
759 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
760 (card->ext_csd.raw_sectors[3] ==
761 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
762 (card->ext_csd.raw_pwr_cl_52_195 ==
763 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
764 (card->ext_csd.raw_pwr_cl_26_195 ==
765 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
766 (card->ext_csd.raw_pwr_cl_52_360 ==
767 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
768 (card->ext_csd.raw_pwr_cl_26_360 ==
769 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
770 (card->ext_csd.raw_pwr_cl_200_195 ==
771 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
772 (card->ext_csd.raw_pwr_cl_200_360 ==
773 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
774 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
775 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
776 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
777 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
778 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
779 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
780
781 if (err)
782 err = -EINVAL;
783
784 kfree(bw_ext_csd);
785 return err;
786 }
787
788 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
789 card->raw_cid[2], card->raw_cid[3]);
790 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
791 card->raw_csd[2], card->raw_csd[3]);
792 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
793 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
794 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
795 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
796 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
797 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
798 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
799 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
800 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
801 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
802 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
803 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
804 card->ext_csd.device_life_time_est_typ_a,
805 card->ext_csd.device_life_time_est_typ_b);
806 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
807 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
808 card->ext_csd.enhanced_area_offset);
809 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
810 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
811 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
812 card->ext_csd.enhanced_rpmb_supported);
813 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
814 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
815 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
816 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
817
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)818 static ssize_t mmc_fwrev_show(struct device *dev,
819 struct device_attribute *attr,
820 char *buf)
821 {
822 struct mmc_card *card = mmc_dev_to_card(dev);
823
824 if (card->ext_csd.rev < 7)
825 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
826 else
827 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
828 card->ext_csd.fwrev);
829 }
830
831 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
832
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)833 static ssize_t mmc_dsr_show(struct device *dev,
834 struct device_attribute *attr,
835 char *buf)
836 {
837 struct mmc_card *card = mmc_dev_to_card(dev);
838 struct mmc_host *host = card->host;
839
840 if (card->csd.dsr_imp && host->dsr_req)
841 return sysfs_emit(buf, "0x%x\n", host->dsr);
842 else
843 /* return default DSR value */
844 return sysfs_emit(buf, "0x%x\n", 0x404);
845 }
846
847 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
848
849 static struct attribute *mmc_std_attrs[] = {
850 &dev_attr_cid.attr,
851 &dev_attr_csd.attr,
852 &dev_attr_date.attr,
853 &dev_attr_erase_size.attr,
854 &dev_attr_preferred_erase_size.attr,
855 &dev_attr_fwrev.attr,
856 &dev_attr_ffu_capable.attr,
857 &dev_attr_hwrev.attr,
858 &dev_attr_manfid.attr,
859 &dev_attr_name.attr,
860 &dev_attr_oemid.attr,
861 &dev_attr_prv.attr,
862 &dev_attr_rev.attr,
863 &dev_attr_pre_eol_info.attr,
864 &dev_attr_life_time.attr,
865 &dev_attr_serial.attr,
866 &dev_attr_enhanced_area_offset.attr,
867 &dev_attr_enhanced_area_size.attr,
868 &dev_attr_raw_rpmb_size_mult.attr,
869 &dev_attr_enhanced_rpmb_supported.attr,
870 &dev_attr_rel_sectors.attr,
871 &dev_attr_ocr.attr,
872 &dev_attr_rca.attr,
873 &dev_attr_dsr.attr,
874 &dev_attr_cmdq_en.attr,
875 NULL,
876 };
877 ATTRIBUTE_GROUPS(mmc_std);
878
879 static struct device_type mmc_type = {
880 .groups = mmc_std_groups,
881 };
882
883 /*
884 * Select the PowerClass for the current bus width
885 * If power class is defined for 4/8 bit bus in the
886 * extended CSD register, select it by executing the
887 * mmc_switch command.
888 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)889 static int __mmc_select_powerclass(struct mmc_card *card,
890 unsigned int bus_width)
891 {
892 struct mmc_host *host = card->host;
893 struct mmc_ext_csd *ext_csd = &card->ext_csd;
894 unsigned int pwrclass_val = 0;
895 int err = 0;
896
897 switch (1 << host->ios.vdd) {
898 case MMC_VDD_165_195:
899 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
900 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
901 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
902 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
903 ext_csd->raw_pwr_cl_52_195 :
904 ext_csd->raw_pwr_cl_ddr_52_195;
905 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
906 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
907 break;
908 case MMC_VDD_27_28:
909 case MMC_VDD_28_29:
910 case MMC_VDD_29_30:
911 case MMC_VDD_30_31:
912 case MMC_VDD_31_32:
913 case MMC_VDD_32_33:
914 case MMC_VDD_33_34:
915 case MMC_VDD_34_35:
916 case MMC_VDD_35_36:
917 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
918 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
919 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
920 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
921 ext_csd->raw_pwr_cl_52_360 :
922 ext_csd->raw_pwr_cl_ddr_52_360;
923 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
924 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
925 ext_csd->raw_pwr_cl_ddr_200_360 :
926 ext_csd->raw_pwr_cl_200_360;
927 break;
928 default:
929 pr_warn("%s: Voltage range not supported for power class\n",
930 mmc_hostname(host));
931 return -EINVAL;
932 }
933
934 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
935 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
936 EXT_CSD_PWR_CL_8BIT_SHIFT;
937 else
938 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
939 EXT_CSD_PWR_CL_4BIT_SHIFT;
940
941 /* If the power class is different from the default value */
942 if (pwrclass_val > 0) {
943 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
944 EXT_CSD_POWER_CLASS,
945 pwrclass_val,
946 card->ext_csd.generic_cmd6_time);
947 }
948
949 return err;
950 }
951
mmc_select_powerclass(struct mmc_card * card)952 static int mmc_select_powerclass(struct mmc_card *card)
953 {
954 struct mmc_host *host = card->host;
955 u32 bus_width, ext_csd_bits;
956 int err, ddr;
957
958 /* Power class selection is supported for versions >= 4.0 */
959 if (!mmc_can_ext_csd(card))
960 return 0;
961
962 bus_width = host->ios.bus_width;
963 /* Power class values are defined only for 4/8 bit bus */
964 if (bus_width == MMC_BUS_WIDTH_1)
965 return 0;
966
967 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
968 if (ddr)
969 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
970 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
971 else
972 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
973 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
974
975 err = __mmc_select_powerclass(card, ext_csd_bits);
976 if (err)
977 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
978 mmc_hostname(host), 1 << bus_width, ddr);
979
980 return err;
981 }
982
983 /*
984 * Set the bus speed for the selected speed mode.
985 */
mmc_set_bus_speed(struct mmc_card * card)986 static void mmc_set_bus_speed(struct mmc_card *card)
987 {
988 unsigned int max_dtr = (unsigned int)-1;
989
990 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
991 max_dtr > card->ext_csd.hs200_max_dtr)
992 max_dtr = card->ext_csd.hs200_max_dtr;
993 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
994 max_dtr = card->ext_csd.hs_max_dtr;
995 else if (max_dtr > card->csd.max_dtr)
996 max_dtr = card->csd.max_dtr;
997
998 mmc_set_clock(card->host, max_dtr);
999 }
1000
1001 /*
1002 * Select the bus width amoung 4-bit and 8-bit(SDR).
1003 * If the bus width is changed successfully, return the selected width value.
1004 * Zero is returned instead of error value if the wide width is not supported.
1005 */
mmc_select_bus_width(struct mmc_card * card)1006 int mmc_select_bus_width(struct mmc_card *card)
1007 {
1008 static unsigned ext_csd_bits[] = {
1009 EXT_CSD_BUS_WIDTH_8,
1010 EXT_CSD_BUS_WIDTH_4,
1011 };
1012 static unsigned bus_widths[] = {
1013 MMC_BUS_WIDTH_8,
1014 MMC_BUS_WIDTH_4,
1015 };
1016 struct mmc_host *host = card->host;
1017 unsigned idx, bus_width = 0;
1018 int err = 0;
1019
1020 if (!mmc_can_ext_csd(card) ||
1021 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1022 return 0;
1023
1024 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1025
1026 /*
1027 * Unlike SD, MMC cards dont have a configuration register to notify
1028 * supported bus width. So bus test command should be run to identify
1029 * the supported bus width or compare the ext csd values of current
1030 * bus width and ext csd values of 1 bit mode read earlier.
1031 */
1032 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1033 /*
1034 * Host is capable of 8bit transfer, then switch
1035 * the device to work in 8bit transfer mode. If the
1036 * mmc switch command returns error then switch to
1037 * 4bit transfer mode. On success set the corresponding
1038 * bus width on the host.
1039 */
1040 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1041 EXT_CSD_BUS_WIDTH,
1042 ext_csd_bits[idx],
1043 card->ext_csd.generic_cmd6_time);
1044 if (err)
1045 continue;
1046
1047 bus_width = bus_widths[idx];
1048 mmc_set_bus_width(host, bus_width);
1049
1050 /*
1051 * If controller can't handle bus width test,
1052 * compare ext_csd previously read in 1 bit mode
1053 * against ext_csd at new bus width
1054 */
1055 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1056 err = mmc_compare_ext_csds(card, bus_width);
1057 else
1058 err = mmc_bus_test(card, bus_width);
1059
1060 if (!err) {
1061 err = bus_width;
1062 break;
1063 } else {
1064 pr_warn("%s: switch to bus width %d failed\n",
1065 mmc_hostname(host), 1 << bus_width);
1066 }
1067 }
1068
1069 return err;
1070 }
1071 EXPORT_SYMBOL_GPL(mmc_select_bus_width);
1072
1073 /*
1074 * Switch to the high-speed mode
1075 */
mmc_select_hs(struct mmc_card * card)1076 int mmc_select_hs(struct mmc_card *card)
1077 {
1078 int err;
1079
1080 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1081 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1082 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1083 true, true, MMC_CMD_RETRIES);
1084 if (err)
1085 pr_warn("%s: switch to high-speed failed, err:%d\n",
1086 mmc_hostname(card->host), err);
1087
1088 return err;
1089 }
1090 EXPORT_SYMBOL_GPL(mmc_select_hs);
1091
1092 /*
1093 * Activate wide bus and DDR if supported.
1094 */
mmc_select_hs_ddr(struct mmc_card * card)1095 int mmc_select_hs_ddr(struct mmc_card *card)
1096 {
1097 struct mmc_host *host = card->host;
1098 u32 bus_width, ext_csd_bits;
1099 int err = 0;
1100
1101 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1102 return 0;
1103
1104 bus_width = host->ios.bus_width;
1105 if (bus_width == MMC_BUS_WIDTH_1)
1106 return 0;
1107
1108 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1109 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1110
1111 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1112 EXT_CSD_BUS_WIDTH,
1113 ext_csd_bits,
1114 card->ext_csd.generic_cmd6_time,
1115 MMC_TIMING_MMC_DDR52,
1116 true, true, MMC_CMD_RETRIES);
1117 if (err) {
1118 pr_err("%s: switch to bus width %d ddr failed\n",
1119 mmc_hostname(host), 1 << bus_width);
1120 return err;
1121 }
1122
1123 /*
1124 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1125 * signaling.
1126 *
1127 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1128 *
1129 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1130 * in the JEDEC spec for DDR.
1131 *
1132 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1133 * host controller can support this, like some of the SDHCI
1134 * controller which connect to an eMMC device. Some of these
1135 * host controller still needs to use 1.8v vccq for supporting
1136 * DDR mode.
1137 *
1138 * So the sequence will be:
1139 * if (host and device can both support 1.2v IO)
1140 * use 1.2v IO;
1141 * else if (host and device can both support 1.8v IO)
1142 * use 1.8v IO;
1143 * so if host and device can only support 3.3v IO, this is the
1144 * last choice.
1145 *
1146 * WARNING: eMMC rules are NOT the same as SD DDR
1147 */
1148 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1149 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1150 if (!err)
1151 return 0;
1152 }
1153
1154 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1155 host->caps & MMC_CAP_1_8V_DDR)
1156 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1157
1158 /* make sure vccq is 3.3v after switching disaster */
1159 if (err)
1160 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1161
1162 return err;
1163 }
1164 EXPORT_SYMBOL_GPL(mmc_select_hs_ddr);
1165
mmc_select_hs400(struct mmc_card * card)1166 int mmc_select_hs400(struct mmc_card *card)
1167 {
1168 struct mmc_host *host = card->host;
1169 unsigned int max_dtr;
1170 int err = 0;
1171 u8 val;
1172
1173 /*
1174 * HS400 mode requires 8-bit bus width
1175 */
1176 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1177 host->ios.bus_width == MMC_BUS_WIDTH_8))
1178 return 0;
1179
1180 /* Switch card to HS mode */
1181 val = EXT_CSD_TIMING_HS;
1182 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1183 EXT_CSD_HS_TIMING, val,
1184 card->ext_csd.generic_cmd6_time, 0,
1185 false, true, MMC_CMD_RETRIES);
1186 if (err) {
1187 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1188 mmc_hostname(host), err);
1189 return err;
1190 }
1191
1192 /* Prepare host to downgrade to HS timing */
1193 if (host->ops->hs400_downgrade)
1194 host->ops->hs400_downgrade(host);
1195
1196 /* Set host controller to HS timing */
1197 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1198
1199 /* Reduce frequency to HS frequency */
1200 max_dtr = card->ext_csd.hs_max_dtr;
1201 mmc_set_clock(host, max_dtr);
1202
1203 err = mmc_switch_status(card, true);
1204 if (err)
1205 goto out_err;
1206
1207 if (host->ops->hs400_prepare_ddr)
1208 host->ops->hs400_prepare_ddr(host);
1209
1210 /* Switch card to DDR */
1211 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1212 EXT_CSD_BUS_WIDTH,
1213 EXT_CSD_DDR_BUS_WIDTH_8,
1214 card->ext_csd.generic_cmd6_time);
1215 if (err) {
1216 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1217 mmc_hostname(host), err);
1218 return err;
1219 }
1220
1221 /* Switch card to HS400 */
1222 val = EXT_CSD_TIMING_HS400 |
1223 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1224 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1225 EXT_CSD_HS_TIMING, val,
1226 card->ext_csd.generic_cmd6_time, 0,
1227 false, true, MMC_CMD_RETRIES);
1228 if (err) {
1229 pr_err("%s: switch to hs400 failed, err:%d\n",
1230 mmc_hostname(host), err);
1231 return err;
1232 }
1233
1234 /* Set host controller to HS400 timing and frequency */
1235 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1236 mmc_set_bus_speed(card);
1237
1238 if (host->ops->execute_hs400_tuning) {
1239 mmc_retune_disable(host);
1240 err = host->ops->execute_hs400_tuning(host, card);
1241 mmc_retune_enable(host);
1242 if (err)
1243 goto out_err;
1244 }
1245
1246 if (host->ops->hs400_complete)
1247 host->ops->hs400_complete(host);
1248
1249 err = mmc_switch_status(card, true);
1250 if (err)
1251 goto out_err;
1252
1253 return 0;
1254
1255 out_err:
1256 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1257 __func__, err);
1258 return err;
1259 }
1260 EXPORT_SYMBOL_GPL(mmc_select_hs400);
1261
mmc_hs200_to_hs400(struct mmc_card * card)1262 int mmc_hs200_to_hs400(struct mmc_card *card)
1263 {
1264 return mmc_select_hs400(card);
1265 }
1266
mmc_hs400_to_hs200(struct mmc_card * card)1267 int mmc_hs400_to_hs200(struct mmc_card *card)
1268 {
1269 struct mmc_host *host = card->host;
1270 unsigned int max_dtr;
1271 int err;
1272 u8 val;
1273
1274 /* Reduce frequency to HS */
1275 max_dtr = card->ext_csd.hs_max_dtr;
1276 mmc_set_clock(host, max_dtr);
1277
1278 /* Switch HS400 to HS DDR */
1279 val = EXT_CSD_TIMING_HS;
1280 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1281 val, card->ext_csd.generic_cmd6_time, 0,
1282 false, true, MMC_CMD_RETRIES);
1283 if (err)
1284 goto out_err;
1285
1286 if (host->ops->hs400_downgrade)
1287 host->ops->hs400_downgrade(host);
1288
1289 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1290
1291 err = mmc_switch_status(card, true);
1292 if (err)
1293 goto out_err;
1294
1295 /* Switch HS DDR to HS */
1296 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1297 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1298 0, false, true, MMC_CMD_RETRIES);
1299 if (err)
1300 goto out_err;
1301
1302 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1303
1304 err = mmc_switch_status(card, true);
1305 if (err)
1306 goto out_err;
1307
1308 /* Switch HS to HS200 */
1309 val = EXT_CSD_TIMING_HS200 |
1310 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1311 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1312 val, card->ext_csd.generic_cmd6_time, 0,
1313 false, true, MMC_CMD_RETRIES);
1314 if (err)
1315 goto out_err;
1316
1317 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1318
1319 /*
1320 * For HS200, CRC errors are not a reliable way to know the switch
1321 * failed. If there really is a problem, we would expect tuning will
1322 * fail and the result ends up the same.
1323 */
1324 err = mmc_switch_status(card, false);
1325 if (err)
1326 goto out_err;
1327
1328 mmc_set_bus_speed(card);
1329
1330 /* Prepare tuning for HS400 mode. */
1331 if (host->ops->prepare_hs400_tuning)
1332 host->ops->prepare_hs400_tuning(host, &host->ios);
1333
1334 return 0;
1335
1336 out_err:
1337 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1338 __func__, err);
1339 return err;
1340 }
1341
mmc_select_driver_type(struct mmc_card * card)1342 static void mmc_select_driver_type(struct mmc_card *card)
1343 {
1344 int card_drv_type, drive_strength, drv_type = 0;
1345 int fixed_drv_type = card->host->fixed_drv_type;
1346
1347 card_drv_type = card->ext_csd.raw_driver_strength |
1348 mmc_driver_type_mask(0);
1349
1350 if (fixed_drv_type >= 0)
1351 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1352 ? fixed_drv_type : 0;
1353 else
1354 drive_strength = mmc_select_drive_strength(card,
1355 card->ext_csd.hs200_max_dtr,
1356 card_drv_type, &drv_type);
1357
1358 card->drive_strength = drive_strength;
1359
1360 if (drv_type)
1361 mmc_set_driver_type(card->host, drv_type);
1362 }
1363
mmc_select_hs400es(struct mmc_card * card)1364 static int mmc_select_hs400es(struct mmc_card *card)
1365 {
1366 struct mmc_host *host = card->host;
1367 int err = -EINVAL;
1368 u8 val;
1369
1370 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1371 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1372
1373 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1374 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1375
1376 /* If fails try again during next card power cycle */
1377 if (err)
1378 goto out_err;
1379
1380 err = mmc_select_bus_width(card);
1381 if (err != MMC_BUS_WIDTH_8) {
1382 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1383 mmc_hostname(host), err);
1384 err = err < 0 ? err : -ENOTSUPP;
1385 goto out_err;
1386 }
1387
1388 /* Switch card to HS mode */
1389 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1390 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1391 card->ext_csd.generic_cmd6_time, 0,
1392 false, true, MMC_CMD_RETRIES);
1393 if (err) {
1394 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1395 mmc_hostname(host), err);
1396 goto out_err;
1397 }
1398
1399 /*
1400 * Bump to HS timing and frequency. Some cards don't handle
1401 * SEND_STATUS reliably at the initial frequency.
1402 */
1403 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1404 mmc_set_bus_speed(card);
1405
1406 err = mmc_switch_status(card, true);
1407 if (err)
1408 goto out_err;
1409
1410 /* Switch card to DDR with strobe bit */
1411 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1412 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1413 EXT_CSD_BUS_WIDTH,
1414 val,
1415 card->ext_csd.generic_cmd6_time);
1416 if (err) {
1417 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1418 mmc_hostname(host), err);
1419 goto out_err;
1420 }
1421
1422 mmc_select_driver_type(card);
1423
1424 /* Switch card to HS400 */
1425 val = EXT_CSD_TIMING_HS400 |
1426 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1427 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1428 EXT_CSD_HS_TIMING, val,
1429 card->ext_csd.generic_cmd6_time, 0,
1430 false, true, MMC_CMD_RETRIES);
1431 if (err) {
1432 pr_err("%s: switch to hs400es failed, err:%d\n",
1433 mmc_hostname(host), err);
1434 goto out_err;
1435 }
1436
1437 /* Set host controller to HS400 timing and frequency */
1438 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1439
1440 /* Controller enable enhanced strobe function */
1441 host->ios.enhanced_strobe = true;
1442 if (host->ops->hs400_enhanced_strobe)
1443 host->ops->hs400_enhanced_strobe(host, &host->ios);
1444
1445 err = mmc_switch_status(card, true);
1446 if (err)
1447 goto out_err;
1448
1449 return 0;
1450
1451 out_err:
1452 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1453 __func__, err);
1454 return err;
1455 }
1456
1457 /*
1458 * For device supporting HS200 mode, the following sequence
1459 * should be done before executing the tuning process.
1460 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1461 * 2. switch to HS200 mode
1462 * 3. set the clock to > 52Mhz and <=200MHz
1463 */
mmc_select_hs200(struct mmc_card * card)1464 static int mmc_select_hs200(struct mmc_card *card)
1465 {
1466 struct mmc_host *host = card->host;
1467 unsigned int old_timing, old_signal_voltage, old_clock;
1468 int err = -EINVAL;
1469 u8 val;
1470
1471 old_signal_voltage = host->ios.signal_voltage;
1472 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1473 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1474
1475 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1476 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1477
1478 /* If fails try again during next card power cycle */
1479 if (err)
1480 return err;
1481
1482 mmc_select_driver_type(card);
1483
1484 /*
1485 * Set the bus width(4 or 8) with host's support and
1486 * switch to HS200 mode if bus width is set successfully.
1487 */
1488 err = mmc_select_bus_width(card);
1489 if (err > 0) {
1490 val = EXT_CSD_TIMING_HS200 |
1491 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1492 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1493 EXT_CSD_HS_TIMING, val,
1494 card->ext_csd.generic_cmd6_time, 0,
1495 false, true, MMC_CMD_RETRIES);
1496 if (err)
1497 goto err;
1498
1499 /*
1500 * Bump to HS timing and frequency. Some cards don't handle
1501 * SEND_STATUS reliably at the initial frequency.
1502 * NB: We can't move to full (HS200) speeds until after we've
1503 * successfully switched over.
1504 */
1505 old_timing = host->ios.timing;
1506 old_clock = host->ios.clock;
1507 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1508 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1509
1510 /*
1511 * For HS200, CRC errors are not a reliable way to know the
1512 * switch failed. If there really is a problem, we would expect
1513 * tuning will fail and the result ends up the same.
1514 */
1515 err = mmc_switch_status(card, false);
1516
1517 /*
1518 * mmc_select_timing() assumes timing has not changed if
1519 * it is a switch error.
1520 */
1521 if (err == -EBADMSG) {
1522 mmc_set_clock(host, old_clock);
1523 mmc_set_timing(host, old_timing);
1524 }
1525 }
1526 err:
1527 if (err) {
1528 /* fall back to the old signal voltage, if fails report error */
1529 if (mmc_set_signal_voltage(host, old_signal_voltage))
1530 err = -EIO;
1531
1532 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1533 __func__, err);
1534 }
1535 return err;
1536 }
1537
1538 /*
1539 * Activate High Speed, HS200 or HS400ES mode if supported.
1540 */
mmc_select_timing(struct mmc_card * card)1541 int mmc_select_timing(struct mmc_card *card)
1542 {
1543 int err = 0;
1544
1545 if (!mmc_can_ext_csd(card))
1546 goto bus_speed;
1547
1548 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1549 err = mmc_select_hs400es(card);
1550 goto out;
1551 }
1552
1553 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1554 err = mmc_select_hs200(card);
1555 if (err == -EBADMSG)
1556 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1557 else
1558 goto out;
1559 }
1560
1561 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1562 err = mmc_select_hs(card);
1563
1564 out:
1565 if (err && err != -EBADMSG)
1566 return err;
1567
1568 bus_speed:
1569 /*
1570 * Set the bus speed to the selected bus timing.
1571 * If timing is not selected, backward compatible is the default.
1572 */
1573 mmc_set_bus_speed(card);
1574 return 0;
1575 }
1576 EXPORT_SYMBOL_GPL(mmc_select_timing);
1577
1578 /*
1579 * Execute tuning sequence to seek the proper bus operating
1580 * conditions for HS200 and HS400, which sends CMD21 to the device.
1581 */
mmc_hs200_tuning(struct mmc_card * card)1582 int mmc_hs200_tuning(struct mmc_card *card)
1583 {
1584 struct mmc_host *host = card->host;
1585
1586 /*
1587 * Timing should be adjusted to the HS400 target
1588 * operation frequency for tuning process
1589 */
1590 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1591 host->ios.bus_width == MMC_BUS_WIDTH_8)
1592 if (host->ops->prepare_hs400_tuning)
1593 host->ops->prepare_hs400_tuning(host, &host->ios);
1594
1595 return mmc_execute_tuning(card);
1596 }
1597 EXPORT_SYMBOL_GPL(mmc_hs200_tuning);
1598
1599 /*
1600 * Handle the detection and initialisation of a card.
1601 *
1602 * In the case of a resume, "oldcard" will contain the card
1603 * we're trying to reinitialise.
1604 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1605 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1606 struct mmc_card *oldcard)
1607 {
1608 struct mmc_card *card;
1609 int err;
1610 u32 cid[4];
1611 u32 rocr;
1612
1613 WARN_ON(!host->claimed);
1614
1615 /* Set correct bus mode for MMC before attempting init */
1616 if (!mmc_host_is_spi(host))
1617 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1618
1619 /*
1620 * Since we're changing the OCR value, we seem to
1621 * need to tell some cards to go back to the idle
1622 * state. We wait 1ms to give cards time to
1623 * respond.
1624 * mmc_go_idle is needed for eMMC that are asleep
1625 */
1626 mmc_go_idle(host);
1627
1628 /* The extra bit indicates that we support high capacity */
1629 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1630 if (err)
1631 goto err;
1632
1633 /*
1634 * For SPI, enable CRC as appropriate.
1635 */
1636 if (mmc_host_is_spi(host)) {
1637 err = mmc_spi_set_crc(host, use_spi_crc);
1638 if (err)
1639 goto err;
1640 }
1641
1642 /*
1643 * Fetch CID from card.
1644 */
1645 err = mmc_send_cid(host, cid);
1646 if (err)
1647 goto err;
1648
1649 if (oldcard) {
1650 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1651 pr_debug("%s: Perhaps the card was replaced\n",
1652 mmc_hostname(host));
1653 err = -ENOENT;
1654 goto err;
1655 }
1656
1657 card = oldcard;
1658 } else {
1659 /*
1660 * Allocate card structure.
1661 */
1662 card = mmc_alloc_card(host, &mmc_type);
1663 if (IS_ERR(card)) {
1664 err = PTR_ERR(card);
1665 goto err;
1666 }
1667
1668 card->ocr = ocr;
1669 card->type = MMC_TYPE_MMC;
1670 card->rca = 1;
1671 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1672 }
1673
1674 /*
1675 * Call the optional HC's init_card function to handle quirks.
1676 */
1677 if (host->ops->init_card)
1678 host->ops->init_card(host, card);
1679
1680 /*
1681 * For native busses: set card RCA and quit open drain mode.
1682 */
1683 if (!mmc_host_is_spi(host)) {
1684 err = mmc_set_relative_addr(card);
1685 if (err)
1686 goto free_card;
1687
1688 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1689 }
1690
1691 if (!oldcard) {
1692 /*
1693 * Fetch CSD from card.
1694 */
1695 err = mmc_send_csd(card, card->raw_csd);
1696 if (err)
1697 goto free_card;
1698
1699 err = mmc_decode_csd(card);
1700 if (err)
1701 goto free_card;
1702 err = mmc_decode_cid(card);
1703 if (err)
1704 goto free_card;
1705 }
1706
1707 /*
1708 * handling only for cards supporting DSR and hosts requesting
1709 * DSR configuration
1710 */
1711 if (card->csd.dsr_imp && host->dsr_req)
1712 mmc_set_dsr(host);
1713
1714 /*
1715 * Select card, as all following commands rely on that.
1716 */
1717 if (!mmc_host_is_spi(host)) {
1718 err = mmc_select_card(card);
1719 if (err)
1720 goto free_card;
1721 }
1722
1723 if (!oldcard) {
1724 /* Read extended CSD. */
1725 err = mmc_read_ext_csd(card);
1726 if (err)
1727 goto free_card;
1728
1729 /*
1730 * If doing byte addressing, check if required to do sector
1731 * addressing. Handle the case of <2GB cards needing sector
1732 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1733 * ocr register has bit 30 set for sector addressing.
1734 */
1735 if (rocr & BIT(30))
1736 mmc_card_set_blockaddr(card);
1737
1738 /* Erase size depends on CSD and Extended CSD */
1739 mmc_set_erase_size(card);
1740 }
1741
1742 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1743 if (card->ext_csd.rev >= 3) {
1744 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1745 EXT_CSD_ERASE_GROUP_DEF, 1,
1746 card->ext_csd.generic_cmd6_time);
1747
1748 if (err && err != -EBADMSG)
1749 goto free_card;
1750
1751 if (err) {
1752 /*
1753 * Just disable enhanced area off & sz
1754 * will try to enable ERASE_GROUP_DEF
1755 * during next time reinit
1756 */
1757 card->ext_csd.enhanced_area_offset = -EINVAL;
1758 card->ext_csd.enhanced_area_size = -EINVAL;
1759 } else {
1760 card->ext_csd.erase_group_def = 1;
1761 /*
1762 * enable ERASE_GRP_DEF successfully.
1763 * This will affect the erase size, so
1764 * here need to reset erase size
1765 */
1766 mmc_set_erase_size(card);
1767 }
1768 }
1769
1770 /*
1771 * Ensure eMMC user default partition is enabled
1772 */
1773 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1774 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1775 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1776 card->ext_csd.part_config,
1777 card->ext_csd.part_time);
1778 if (err && err != -EBADMSG)
1779 goto free_card;
1780 }
1781
1782 /*
1783 * Enable power_off_notification byte in the ext_csd register
1784 */
1785 if (card->ext_csd.rev >= 6) {
1786 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1787 EXT_CSD_POWER_OFF_NOTIFICATION,
1788 EXT_CSD_POWER_ON,
1789 card->ext_csd.generic_cmd6_time);
1790 if (err && err != -EBADMSG)
1791 goto free_card;
1792
1793 /*
1794 * The err can be -EBADMSG or 0,
1795 * so check for success and update the flag
1796 */
1797 if (!err)
1798 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1799 }
1800
1801 /* set erase_arg */
1802 if (mmc_can_discard(card))
1803 card->erase_arg = MMC_DISCARD_ARG;
1804 else if (mmc_can_trim(card))
1805 card->erase_arg = MMC_TRIM_ARG;
1806 else
1807 card->erase_arg = MMC_ERASE_ARG;
1808
1809 /*
1810 * Select timing interface
1811 */
1812 err = mmc_select_timing(card);
1813 if (err)
1814 goto free_card;
1815
1816 if (mmc_card_hs200(card)) {
1817 host->doing_init_tune = 1;
1818
1819 err = mmc_hs200_tuning(card);
1820 if (!err)
1821 err = mmc_select_hs400(card);
1822
1823 host->doing_init_tune = 0;
1824
1825 if (err)
1826 goto free_card;
1827
1828 } else if (!mmc_card_hs400es(card)) {
1829 /* Select the desired bus width optionally */
1830 err = mmc_select_bus_width(card);
1831 if (err > 0 && mmc_card_hs(card)) {
1832 err = mmc_select_hs_ddr(card);
1833 if (err)
1834 goto free_card;
1835 }
1836 }
1837
1838 /*
1839 * Choose the power class with selected bus interface
1840 */
1841 mmc_select_powerclass(card);
1842
1843 /*
1844 * Enable HPI feature (if supported)
1845 */
1846 if (card->ext_csd.hpi) {
1847 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1848 EXT_CSD_HPI_MGMT, 1,
1849 card->ext_csd.generic_cmd6_time);
1850 if (err && err != -EBADMSG)
1851 goto free_card;
1852 if (err) {
1853 pr_warn("%s: Enabling HPI failed\n",
1854 mmc_hostname(card->host));
1855 card->ext_csd.hpi_en = 0;
1856 } else {
1857 card->ext_csd.hpi_en = 1;
1858 }
1859 }
1860
1861 /*
1862 * If cache size is higher than 0, this indicates the existence of cache
1863 * and it can be turned on. Note that some eMMCs from Micron has been
1864 * reported to need ~800 ms timeout, while enabling the cache after
1865 * sudden power failure tests. Let's extend the timeout to a minimum of
1866 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1867 */
1868 if (card->ext_csd.cache_size > 0) {
1869 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1870
1871 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1872 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1873 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1874 if (err && err != -EBADMSG)
1875 goto free_card;
1876
1877 /*
1878 * Only if no error, cache is turned on successfully.
1879 */
1880 if (err) {
1881 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1882 mmc_hostname(card->host), err);
1883 card->ext_csd.cache_ctrl = 0;
1884 } else {
1885 card->ext_csd.cache_ctrl = 1;
1886 }
1887 }
1888
1889 /*
1890 * Enable Command Queue if supported. Note that Packed Commands cannot
1891 * be used with Command Queue.
1892 */
1893 card->ext_csd.cmdq_en = false;
1894 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1895 err = mmc_cmdq_enable(card);
1896 if (err && err != -EBADMSG)
1897 goto free_card;
1898 if (err) {
1899 pr_warn("%s: Enabling CMDQ failed\n",
1900 mmc_hostname(card->host));
1901 card->ext_csd.cmdq_support = false;
1902 card->ext_csd.cmdq_depth = 0;
1903 }
1904 }
1905 /*
1906 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1907 * disabled for a time, so a flag is needed to indicate to re-enable the
1908 * Command Queue.
1909 */
1910 card->reenable_cmdq = card->ext_csd.cmdq_en;
1911
1912 if (host->cqe_ops && !host->cqe_enabled) {
1913 err = host->cqe_ops->cqe_enable(host, card);
1914 if (!err) {
1915 host->cqe_enabled = true;
1916
1917 if (card->ext_csd.cmdq_en) {
1918 pr_info("%s: Command Queue Engine enabled\n",
1919 mmc_hostname(host));
1920 } else {
1921 host->hsq_enabled = true;
1922 pr_info("%s: Host Software Queue enabled\n",
1923 mmc_hostname(host));
1924 }
1925 }
1926 }
1927
1928 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1929 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1930 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1931 mmc_hostname(host));
1932 err = -EINVAL;
1933 goto free_card;
1934 }
1935
1936 if (!oldcard)
1937 host->card = card;
1938
1939 return 0;
1940
1941 free_card:
1942 if (!oldcard)
1943 mmc_remove_card(card);
1944 err:
1945 return err;
1946 }
1947
mmc_can_sleep(struct mmc_card * card)1948 static int mmc_can_sleep(struct mmc_card *card)
1949 {
1950 return card->ext_csd.rev >= 3;
1951 }
1952
mmc_sleep_busy_cb(void * cb_data,bool * busy)1953 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1954 {
1955 struct mmc_host *host = cb_data;
1956
1957 *busy = host->ops->card_busy(host);
1958 return 0;
1959 }
1960
mmc_sleep(struct mmc_host * host)1961 static int mmc_sleep(struct mmc_host *host)
1962 {
1963 struct mmc_command cmd = {};
1964 struct mmc_card *card = host->card;
1965 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1966 bool use_r1b_resp;
1967 int err;
1968
1969 /* Re-tuning can't be done once the card is deselected */
1970 mmc_retune_hold(host);
1971
1972 err = mmc_deselect_cards(host);
1973 if (err)
1974 goto out_release;
1975
1976 cmd.opcode = MMC_SLEEP_AWAKE;
1977 cmd.arg = card->rca << 16;
1978 cmd.arg |= 1 << 15;
1979 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1980
1981 err = mmc_wait_for_cmd(host, &cmd, 0);
1982 if (err)
1983 goto out_release;
1984
1985 /*
1986 * If the host does not wait while the card signals busy, then we can
1987 * try to poll, but only if the host supports HW polling, as the
1988 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1989 * to wait the sleep/awake timeout.
1990 */
1991 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1992 goto out_release;
1993
1994 if (!host->ops->card_busy) {
1995 mmc_delay(timeout_ms);
1996 goto out_release;
1997 }
1998
1999 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
2000
2001 out_release:
2002 mmc_retune_release(host);
2003 return err;
2004 }
2005
mmc_can_poweroff_notify(const struct mmc_card * card)2006 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2007 {
2008 return card &&
2009 mmc_card_mmc(card) &&
2010 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2011 }
2012
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)2013 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2014 {
2015 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2016 int err;
2017
2018 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2019 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2020 timeout = card->ext_csd.power_off_longtime;
2021
2022 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2023 EXT_CSD_POWER_OFF_NOTIFICATION,
2024 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2025 if (err)
2026 pr_err("%s: Power Off Notification timed out, %u\n",
2027 mmc_hostname(card->host), timeout);
2028
2029 /* Disable the power off notification after the switch operation. */
2030 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2031
2032 return err;
2033 }
2034
2035 /*
2036 * Host is being removed. Free up the current card.
2037 */
mmc_remove(struct mmc_host * host)2038 static void mmc_remove(struct mmc_host *host)
2039 {
2040 mmc_remove_card(host->card);
2041 host->card = NULL;
2042 }
2043
2044 /*
2045 * Card detection - card is alive.
2046 */
mmc_alive(struct mmc_host * host)2047 static int mmc_alive(struct mmc_host *host)
2048 {
2049 return mmc_send_status(host->card, NULL);
2050 }
2051
2052 /*
2053 * Card detection callback from host.
2054 */
mmc_detect(struct mmc_host * host)2055 static void mmc_detect(struct mmc_host *host)
2056 {
2057 int err;
2058
2059 mmc_get_card(host->card, NULL);
2060
2061 /*
2062 * Just check if our card has been removed.
2063 */
2064 err = _mmc_detect_card_removed(host);
2065
2066 mmc_put_card(host->card, NULL);
2067
2068 if (err) {
2069 mmc_remove(host);
2070
2071 mmc_claim_host(host);
2072 mmc_detach_bus(host);
2073 mmc_power_off(host);
2074 mmc_release_host(host);
2075 }
2076 }
2077
_mmc_cache_enabled(struct mmc_host * host)2078 static bool _mmc_cache_enabled(struct mmc_host *host)
2079 {
2080 return host->card->ext_csd.cache_size > 0 &&
2081 host->card->ext_csd.cache_ctrl & 1;
2082 }
2083
2084 /*
2085 * Flush the internal cache of the eMMC to non-volatile storage.
2086 */
_mmc_flush_cache(struct mmc_host * host)2087 static int _mmc_flush_cache(struct mmc_host *host)
2088 {
2089 int err = 0;
2090
2091 if (_mmc_cache_enabled(host)) {
2092 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2093 EXT_CSD_FLUSH_CACHE, 1,
2094 CACHE_FLUSH_TIMEOUT_MS);
2095 if (err)
2096 pr_err("%s: cache flush error %d\n",
2097 mmc_hostname(host), err);
2098 }
2099
2100 return err;
2101 }
2102
_mmc_suspend(struct mmc_host * host,bool is_suspend)2103 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2104 {
2105 int err = 0;
2106 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2107 EXT_CSD_POWER_OFF_LONG;
2108
2109 mmc_claim_host(host);
2110
2111 if (mmc_card_suspended(host->card))
2112 goto out;
2113
2114 err = _mmc_flush_cache(host);
2115 if (err)
2116 goto out;
2117
2118 if (mmc_can_poweroff_notify(host->card) &&
2119 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2120 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2121 err = mmc_poweroff_notify(host->card, notify_type);
2122 else if (mmc_can_sleep(host->card)) {
2123 trace_android_rvh_mmc_suspend(host);
2124 err = mmc_sleep(host);
2125 } else if (!mmc_host_is_spi(host))
2126 err = mmc_deselect_cards(host);
2127
2128 if (!err) {
2129 mmc_power_off(host);
2130 mmc_card_set_suspended(host->card);
2131 }
2132 out:
2133 mmc_release_host(host);
2134 return err;
2135 }
2136
2137 /*
2138 * Suspend callback
2139 */
mmc_suspend(struct mmc_host * host)2140 static int mmc_suspend(struct mmc_host *host)
2141 {
2142 int err;
2143
2144 err = _mmc_suspend(host, true);
2145 if (!err) {
2146 pm_runtime_disable(&host->card->dev);
2147 pm_runtime_set_suspended(&host->card->dev);
2148 }
2149
2150 return err;
2151 }
2152
2153 /*
2154 * This function tries to determine if the same card is still present
2155 * and, if so, restore all state to it.
2156 */
_mmc_resume(struct mmc_host * host)2157 static int _mmc_resume(struct mmc_host *host)
2158 {
2159 int err = 0;
2160 bool resume_success = false;
2161
2162 mmc_claim_host(host);
2163
2164 if (!mmc_card_suspended(host->card))
2165 goto out;
2166
2167 mmc_power_up(host, host->card->ocr);
2168 trace_android_rvh_mmc_resume(host, &resume_success);
2169 if (!resume_success)
2170 err = mmc_init_card(host, host->card->ocr, host->card);
2171 mmc_card_clr_suspended(host->card);
2172
2173 out:
2174 mmc_release_host(host);
2175 return err;
2176 }
2177
2178 /*
2179 * Shutdown callback
2180 */
mmc_shutdown(struct mmc_host * host)2181 static int mmc_shutdown(struct mmc_host *host)
2182 {
2183 int err = 0;
2184
2185 /*
2186 * In a specific case for poweroff notify, we need to resume the card
2187 * before we can shutdown it properly.
2188 */
2189 if (mmc_can_poweroff_notify(host->card) &&
2190 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2191 err = _mmc_resume(host);
2192
2193 if (!err)
2194 err = _mmc_suspend(host, false);
2195
2196 return err;
2197 }
2198
2199 /*
2200 * Callback for resume.
2201 */
mmc_resume(struct mmc_host * host)2202 static int mmc_resume(struct mmc_host *host)
2203 {
2204 pm_runtime_enable(&host->card->dev);
2205 return 0;
2206 }
2207
2208 /*
2209 * Callback for runtime_suspend.
2210 */
mmc_runtime_suspend(struct mmc_host * host)2211 static int mmc_runtime_suspend(struct mmc_host *host)
2212 {
2213 int err;
2214
2215 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2216 return 0;
2217
2218 err = _mmc_suspend(host, true);
2219 if (err)
2220 pr_err("%s: error %d doing aggressive suspend\n",
2221 mmc_hostname(host), err);
2222
2223 return err;
2224 }
2225
2226 /*
2227 * Callback for runtime_resume.
2228 */
mmc_runtime_resume(struct mmc_host * host)2229 static int mmc_runtime_resume(struct mmc_host *host)
2230 {
2231 int err;
2232
2233 err = _mmc_resume(host);
2234 if (err && err != -ENOMEDIUM)
2235 pr_err("%s: error %d doing runtime resume\n",
2236 mmc_hostname(host), err);
2237
2238 return 0;
2239 }
2240
mmc_can_reset(struct mmc_card * card)2241 static int mmc_can_reset(struct mmc_card *card)
2242 {
2243 u8 rst_n_function;
2244
2245 rst_n_function = card->ext_csd.rst_n_function;
2246 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2247 return 0;
2248 return 1;
2249 }
2250
_mmc_hw_reset(struct mmc_host * host)2251 static int _mmc_hw_reset(struct mmc_host *host)
2252 {
2253 struct mmc_card *card = host->card;
2254
2255 /*
2256 * In the case of recovery, we can't expect flushing the cache to work
2257 * always, but we have a go and ignore errors.
2258 */
2259 _mmc_flush_cache(host);
2260
2261 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2262 mmc_can_reset(card)) {
2263 /* If the card accept RST_n signal, send it. */
2264 mmc_set_clock(host, host->f_init);
2265 host->ops->card_hw_reset(host);
2266 /* Set initial state and call mmc_set_ios */
2267 mmc_set_initial_state(host);
2268 } else {
2269 /* Do a brute force power cycle */
2270 mmc_power_cycle(host, card->ocr);
2271 mmc_pwrseq_reset(host);
2272 }
2273 return mmc_init_card(host, card->ocr, card);
2274 }
2275
2276 static const struct mmc_bus_ops mmc_ops = {
2277 .remove = mmc_remove,
2278 .detect = mmc_detect,
2279 .suspend = mmc_suspend,
2280 .resume = mmc_resume,
2281 .runtime_suspend = mmc_runtime_suspend,
2282 .runtime_resume = mmc_runtime_resume,
2283 .alive = mmc_alive,
2284 .shutdown = mmc_shutdown,
2285 .hw_reset = _mmc_hw_reset,
2286 .cache_enabled = _mmc_cache_enabled,
2287 .flush_cache = _mmc_flush_cache,
2288 };
2289
2290 /*
2291 * Starting point for MMC card init.
2292 */
mmc_attach_mmc(struct mmc_host * host)2293 int mmc_attach_mmc(struct mmc_host *host)
2294 {
2295 int err;
2296 u32 ocr, rocr;
2297
2298 WARN_ON(!host->claimed);
2299
2300 /* Set correct bus mode for MMC before attempting attach */
2301 if (!mmc_host_is_spi(host))
2302 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2303
2304 err = mmc_send_op_cond(host, 0, &ocr);
2305 if (err)
2306 return err;
2307
2308 mmc_attach_bus(host, &mmc_ops);
2309 if (host->ocr_avail_mmc)
2310 host->ocr_avail = host->ocr_avail_mmc;
2311
2312 /*
2313 * We need to get OCR a different way for SPI.
2314 */
2315 if (mmc_host_is_spi(host)) {
2316 err = mmc_spi_read_ocr(host, 1, &ocr);
2317 if (err)
2318 goto err;
2319 }
2320
2321 rocr = mmc_select_voltage(host, ocr);
2322
2323 /*
2324 * Can we support the voltage of the card?
2325 */
2326 if (!rocr) {
2327 err = -EINVAL;
2328 goto err;
2329 }
2330
2331 /*
2332 * Detect and init the card.
2333 */
2334 err = mmc_init_card(host, rocr, NULL);
2335 if (err)
2336 goto err;
2337
2338 mmc_release_host(host);
2339 err = mmc_add_card(host->card);
2340 if (err)
2341 goto remove_card;
2342
2343 mmc_claim_host(host);
2344 return 0;
2345
2346 remove_card:
2347 mmc_remove_card(host->card);
2348 mmc_claim_host(host);
2349 host->card = NULL;
2350 err:
2351 mmc_detach_bus(host);
2352
2353 pr_err("%s: error %d whilst initialising MMC card\n",
2354 mmc_hostname(host), err);
2355
2356 return err;
2357 }
2358