• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
4  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5  */
6 
7 /* Lightweight memory registration using Fast Registration Work
8  * Requests (FRWR).
9  *
10  * FRWR features ordered asynchronous registration and invalidation
11  * of arbitrarily-sized memory regions. This is the fastest and safest
12  * but most complex memory registration mode.
13  */
14 
15 /* Normal operation
16  *
17  * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
18  * Work Request (frwr_map). When the RDMA operation is finished, this
19  * Memory Region is invalidated using a LOCAL_INV Work Request
20  * (frwr_unmap_async and frwr_unmap_sync).
21  *
22  * Typically FAST_REG Work Requests are not signaled, and neither are
23  * RDMA Send Work Requests (with the exception of signaling occasionally
24  * to prevent provider work queue overflows). This greatly reduces HCA
25  * interrupt workload.
26  */
27 
28 /* Transport recovery
29  *
30  * frwr_map and frwr_unmap_* cannot run at the same time the transport
31  * connect worker is running. The connect worker holds the transport
32  * send lock, just as ->send_request does. This prevents frwr_map and
33  * the connect worker from running concurrently. When a connection is
34  * closed, the Receive completion queue is drained before the allowing
35  * the connect worker to get control. This prevents frwr_unmap and the
36  * connect worker from running concurrently.
37  *
38  * When the underlying transport disconnects, MRs that are in flight
39  * are flushed and are likely unusable. Thus all MRs are destroyed.
40  * New MRs are created on demand.
41  */
42 
43 #include <linux/sunrpc/svc_rdma.h>
44 
45 #include "xprt_rdma.h"
46 #include <trace/events/rpcrdma.h>
47 
frwr_cid_init(struct rpcrdma_ep * ep,struct rpcrdma_mr * mr)48 static void frwr_cid_init(struct rpcrdma_ep *ep,
49 			  struct rpcrdma_mr *mr)
50 {
51 	struct rpc_rdma_cid *cid = &mr->mr_cid;
52 
53 	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
54 	cid->ci_completion_id = mr->mr_ibmr->res.id;
55 }
56 
frwr_mr_unmap(struct rpcrdma_xprt * r_xprt,struct rpcrdma_mr * mr)57 static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
58 {
59 	if (mr->mr_device) {
60 		trace_xprtrdma_mr_unmap(mr);
61 		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
62 				mr->mr_dir);
63 		mr->mr_device = NULL;
64 	}
65 }
66 
67 /**
68  * frwr_mr_release - Destroy one MR
69  * @mr: MR allocated by frwr_mr_init
70  *
71  */
frwr_mr_release(struct rpcrdma_mr * mr)72 void frwr_mr_release(struct rpcrdma_mr *mr)
73 {
74 	int rc;
75 
76 	frwr_mr_unmap(mr->mr_xprt, mr);
77 
78 	rc = ib_dereg_mr(mr->mr_ibmr);
79 	if (rc)
80 		trace_xprtrdma_frwr_dereg(mr, rc);
81 	kfree(mr->mr_sg);
82 	kfree(mr);
83 }
84 
frwr_mr_put(struct rpcrdma_mr * mr)85 static void frwr_mr_put(struct rpcrdma_mr *mr)
86 {
87 	frwr_mr_unmap(mr->mr_xprt, mr);
88 
89 	/* The MR is returned to the req's MR free list instead
90 	 * of to the xprt's MR free list. No spinlock is needed.
91 	 */
92 	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
93 }
94 
95 /* frwr_reset - Place MRs back on the free list
96  * @req: request to reset
97  *
98  * Used after a failed marshal. For FRWR, this means the MRs
99  * don't have to be fully released and recreated.
100  *
101  * NB: This is safe only as long as none of @req's MRs are
102  * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
103  * Work Request.
104  */
frwr_reset(struct rpcrdma_req * req)105 void frwr_reset(struct rpcrdma_req *req)
106 {
107 	struct rpcrdma_mr *mr;
108 
109 	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
110 		frwr_mr_put(mr);
111 }
112 
113 /**
114  * frwr_mr_init - Initialize one MR
115  * @r_xprt: controlling transport instance
116  * @mr: generic MR to prepare for FRWR
117  *
118  * Returns zero if successful. Otherwise a negative errno
119  * is returned.
120  */
frwr_mr_init(struct rpcrdma_xprt * r_xprt,struct rpcrdma_mr * mr)121 int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
122 {
123 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
124 	unsigned int depth = ep->re_max_fr_depth;
125 	struct scatterlist *sg;
126 	struct ib_mr *frmr;
127 
128 	sg = kcalloc_node(depth, sizeof(*sg), XPRTRDMA_GFP_FLAGS,
129 			  ibdev_to_node(ep->re_id->device));
130 	if (!sg)
131 		return -ENOMEM;
132 
133 	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
134 	if (IS_ERR(frmr))
135 		goto out_mr_err;
136 
137 	mr->mr_xprt = r_xprt;
138 	mr->mr_ibmr = frmr;
139 	mr->mr_device = NULL;
140 	INIT_LIST_HEAD(&mr->mr_list);
141 	init_completion(&mr->mr_linv_done);
142 	frwr_cid_init(ep, mr);
143 
144 	sg_init_table(sg, depth);
145 	mr->mr_sg = sg;
146 	return 0;
147 
148 out_mr_err:
149 	kfree(sg);
150 	trace_xprtrdma_frwr_alloc(mr, PTR_ERR(frmr));
151 	return PTR_ERR(frmr);
152 }
153 
154 /**
155  * frwr_query_device - Prepare a transport for use with FRWR
156  * @ep: endpoint to fill in
157  * @device: RDMA device to query
158  *
159  * On success, sets:
160  *	ep->re_attr
161  *	ep->re_max_requests
162  *	ep->re_max_rdma_segs
163  *	ep->re_max_fr_depth
164  *	ep->re_mrtype
165  *
166  * Return values:
167  *   On success, returns zero.
168  *   %-EINVAL - the device does not support FRWR memory registration
169  *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
170  */
frwr_query_device(struct rpcrdma_ep * ep,const struct ib_device * device)171 int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
172 {
173 	const struct ib_device_attr *attrs = &device->attrs;
174 	int max_qp_wr, depth, delta;
175 	unsigned int max_sge;
176 
177 	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
178 	    attrs->max_fast_reg_page_list_len == 0) {
179 		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
180 		       device->name);
181 		return -EINVAL;
182 	}
183 
184 	max_sge = min_t(unsigned int, attrs->max_send_sge,
185 			RPCRDMA_MAX_SEND_SGES);
186 	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
187 		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
188 		return -ENOMEM;
189 	}
190 	ep->re_attr.cap.max_send_sge = max_sge;
191 	ep->re_attr.cap.max_recv_sge = 1;
192 
193 	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
194 	if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG)
195 		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
196 
197 	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
198 	 * capability, but perform optimally when the MRs are not larger
199 	 * than a page.
200 	 */
201 	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
202 		ep->re_max_fr_depth = attrs->max_sge_rd;
203 	else
204 		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
205 	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
206 		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
207 
208 	/* Add room for frwr register and invalidate WRs.
209 	 * 1. FRWR reg WR for head
210 	 * 2. FRWR invalidate WR for head
211 	 * 3. N FRWR reg WRs for pagelist
212 	 * 4. N FRWR invalidate WRs for pagelist
213 	 * 5. FRWR reg WR for tail
214 	 * 6. FRWR invalidate WR for tail
215 	 * 7. The RDMA_SEND WR
216 	 */
217 	depth = 7;
218 
219 	/* Calculate N if the device max FRWR depth is smaller than
220 	 * RPCRDMA_MAX_DATA_SEGS.
221 	 */
222 	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
223 		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
224 		do {
225 			depth += 2; /* FRWR reg + invalidate */
226 			delta -= ep->re_max_fr_depth;
227 		} while (delta > 0);
228 	}
229 
230 	max_qp_wr = attrs->max_qp_wr;
231 	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
232 	max_qp_wr -= 1;
233 	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
234 		return -ENOMEM;
235 	if (ep->re_max_requests > max_qp_wr)
236 		ep->re_max_requests = max_qp_wr;
237 	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
238 	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
239 		ep->re_max_requests = max_qp_wr / depth;
240 		if (!ep->re_max_requests)
241 			return -ENOMEM;
242 		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
243 	}
244 	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
245 	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
246 	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
247 	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
248 	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
249 	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
250 
251 	ep->re_max_rdma_segs =
252 		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
253 	/* Reply chunks require segments for head and tail buffers */
254 	ep->re_max_rdma_segs += 2;
255 	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
256 		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
257 
258 	/* Ensure the underlying device is capable of conveying the
259 	 * largest r/wsize NFS will ask for. This guarantees that
260 	 * failing over from one RDMA device to another will not
261 	 * break NFS I/O.
262 	 */
263 	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
264 		return -ENOMEM;
265 
266 	return 0;
267 }
268 
269 /**
270  * frwr_map - Register a memory region
271  * @r_xprt: controlling transport
272  * @seg: memory region co-ordinates
273  * @nsegs: number of segments remaining
274  * @writing: true when RDMA Write will be used
275  * @xid: XID of RPC using the registered memory
276  * @mr: MR to fill in
277  *
278  * Prepare a REG_MR Work Request to register a memory region
279  * for remote access via RDMA READ or RDMA WRITE.
280  *
281  * Returns the next segment or a negative errno pointer.
282  * On success, @mr is filled in.
283  */
frwr_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_mr_seg * seg,int nsegs,bool writing,__be32 xid,struct rpcrdma_mr * mr)284 struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
285 				struct rpcrdma_mr_seg *seg,
286 				int nsegs, bool writing, __be32 xid,
287 				struct rpcrdma_mr *mr)
288 {
289 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
290 	struct ib_reg_wr *reg_wr;
291 	int i, n, dma_nents;
292 	struct ib_mr *ibmr;
293 	u8 key;
294 
295 	if (nsegs > ep->re_max_fr_depth)
296 		nsegs = ep->re_max_fr_depth;
297 	for (i = 0; i < nsegs;) {
298 		sg_set_page(&mr->mr_sg[i], seg->mr_page,
299 			    seg->mr_len, seg->mr_offset);
300 
301 		++seg;
302 		++i;
303 		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
304 			continue;
305 		if ((i < nsegs && seg->mr_offset) ||
306 		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
307 			break;
308 	}
309 	mr->mr_dir = rpcrdma_data_dir(writing);
310 	mr->mr_nents = i;
311 
312 	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
313 				  mr->mr_dir);
314 	if (!dma_nents)
315 		goto out_dmamap_err;
316 	mr->mr_device = ep->re_id->device;
317 
318 	ibmr = mr->mr_ibmr;
319 	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
320 	if (n != dma_nents)
321 		goto out_mapmr_err;
322 
323 	ibmr->iova &= 0x00000000ffffffff;
324 	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
325 	key = (u8)(ibmr->rkey & 0x000000FF);
326 	ib_update_fast_reg_key(ibmr, ++key);
327 
328 	reg_wr = &mr->mr_regwr;
329 	reg_wr->mr = ibmr;
330 	reg_wr->key = ibmr->rkey;
331 	reg_wr->access = writing ?
332 			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
333 			 IB_ACCESS_REMOTE_READ;
334 
335 	mr->mr_handle = ibmr->rkey;
336 	mr->mr_length = ibmr->length;
337 	mr->mr_offset = ibmr->iova;
338 	trace_xprtrdma_mr_map(mr);
339 
340 	return seg;
341 
342 out_dmamap_err:
343 	trace_xprtrdma_frwr_sgerr(mr, i);
344 	return ERR_PTR(-EIO);
345 
346 out_mapmr_err:
347 	trace_xprtrdma_frwr_maperr(mr, n);
348 	return ERR_PTR(-EIO);
349 }
350 
351 /**
352  * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
353  * @cq: completion queue
354  * @wc: WCE for a completed FastReg WR
355  *
356  * Each flushed MR gets destroyed after the QP has drained.
357  */
frwr_wc_fastreg(struct ib_cq * cq,struct ib_wc * wc)358 static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
359 {
360 	struct ib_cqe *cqe = wc->wr_cqe;
361 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
362 
363 	/* WARNING: Only wr_cqe and status are reliable at this point */
364 	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
365 
366 	rpcrdma_flush_disconnect(cq->cq_context, wc);
367 }
368 
369 /**
370  * frwr_send - post Send WRs containing the RPC Call message
371  * @r_xprt: controlling transport instance
372  * @req: prepared RPC Call
373  *
374  * For FRWR, chain any FastReg WRs to the Send WR. Only a
375  * single ib_post_send call is needed to register memory
376  * and then post the Send WR.
377  *
378  * Returns the return code from ib_post_send.
379  *
380  * Caller must hold the transport send lock to ensure that the
381  * pointers to the transport's rdma_cm_id and QP are stable.
382  */
frwr_send(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)383 int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
384 {
385 	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
386 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
387 	struct rpcrdma_mr *mr;
388 	unsigned int num_wrs;
389 	int ret;
390 
391 	num_wrs = 1;
392 	post_wr = send_wr;
393 	list_for_each_entry(mr, &req->rl_registered, mr_list) {
394 		trace_xprtrdma_mr_fastreg(mr);
395 
396 		mr->mr_cqe.done = frwr_wc_fastreg;
397 		mr->mr_regwr.wr.next = post_wr;
398 		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
399 		mr->mr_regwr.wr.num_sge = 0;
400 		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
401 		mr->mr_regwr.wr.send_flags = 0;
402 		post_wr = &mr->mr_regwr.wr;
403 		++num_wrs;
404 	}
405 
406 	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
407 		send_wr->send_flags |= IB_SEND_SIGNALED;
408 		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
409 					  num_wrs - ep->re_send_count);
410 	} else {
411 		send_wr->send_flags &= ~IB_SEND_SIGNALED;
412 		ep->re_send_count -= num_wrs;
413 	}
414 
415 	trace_xprtrdma_post_send(req);
416 	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
417 	if (ret)
418 		trace_xprtrdma_post_send_err(r_xprt, req, ret);
419 	return ret;
420 }
421 
422 /**
423  * frwr_reminv - handle a remotely invalidated mr on the @mrs list
424  * @rep: Received reply
425  * @mrs: list of MRs to check
426  *
427  */
frwr_reminv(struct rpcrdma_rep * rep,struct list_head * mrs)428 void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
429 {
430 	struct rpcrdma_mr *mr;
431 
432 	list_for_each_entry(mr, mrs, mr_list)
433 		if (mr->mr_handle == rep->rr_inv_rkey) {
434 			list_del_init(&mr->mr_list);
435 			trace_xprtrdma_mr_reminv(mr);
436 			frwr_mr_put(mr);
437 			break;	/* only one invalidated MR per RPC */
438 		}
439 }
440 
frwr_mr_done(struct ib_wc * wc,struct rpcrdma_mr * mr)441 static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
442 {
443 	if (likely(wc->status == IB_WC_SUCCESS))
444 		frwr_mr_put(mr);
445 }
446 
447 /**
448  * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
449  * @cq: completion queue
450  * @wc: WCE for a completed LocalInv WR
451  *
452  */
frwr_wc_localinv(struct ib_cq * cq,struct ib_wc * wc)453 static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
454 {
455 	struct ib_cqe *cqe = wc->wr_cqe;
456 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
457 
458 	/* WARNING: Only wr_cqe and status are reliable at this point */
459 	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
460 	frwr_mr_done(wc, mr);
461 
462 	rpcrdma_flush_disconnect(cq->cq_context, wc);
463 }
464 
465 /**
466  * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
467  * @cq: completion queue
468  * @wc: WCE for a completed LocalInv WR
469  *
470  * Awaken anyone waiting for an MR to finish being fenced.
471  */
frwr_wc_localinv_wake(struct ib_cq * cq,struct ib_wc * wc)472 static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
473 {
474 	struct ib_cqe *cqe = wc->wr_cqe;
475 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
476 
477 	/* WARNING: Only wr_cqe and status are reliable at this point */
478 	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
479 	frwr_mr_done(wc, mr);
480 	complete(&mr->mr_linv_done);
481 
482 	rpcrdma_flush_disconnect(cq->cq_context, wc);
483 }
484 
485 /**
486  * frwr_unmap_sync - invalidate memory regions that were registered for @req
487  * @r_xprt: controlling transport instance
488  * @req: rpcrdma_req with a non-empty list of MRs to process
489  *
490  * Sleeps until it is safe for the host CPU to access the previously mapped
491  * memory regions. This guarantees that registered MRs are properly fenced
492  * from the server before the RPC consumer accesses the data in them. It
493  * also ensures proper Send flow control: waking the next RPC waits until
494  * this RPC has relinquished all its Send Queue entries.
495  */
frwr_unmap_sync(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)496 void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
497 {
498 	struct ib_send_wr *first, **prev, *last;
499 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
500 	const struct ib_send_wr *bad_wr;
501 	struct rpcrdma_mr *mr;
502 	int rc;
503 
504 	/* ORDER: Invalidate all of the MRs first
505 	 *
506 	 * Chain the LOCAL_INV Work Requests and post them with
507 	 * a single ib_post_send() call.
508 	 */
509 	prev = &first;
510 	mr = rpcrdma_mr_pop(&req->rl_registered);
511 	do {
512 		trace_xprtrdma_mr_localinv(mr);
513 		r_xprt->rx_stats.local_inv_needed++;
514 
515 		last = &mr->mr_invwr;
516 		last->next = NULL;
517 		last->wr_cqe = &mr->mr_cqe;
518 		last->sg_list = NULL;
519 		last->num_sge = 0;
520 		last->opcode = IB_WR_LOCAL_INV;
521 		last->send_flags = IB_SEND_SIGNALED;
522 		last->ex.invalidate_rkey = mr->mr_handle;
523 
524 		last->wr_cqe->done = frwr_wc_localinv;
525 
526 		*prev = last;
527 		prev = &last->next;
528 	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
529 
530 	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
531 
532 	/* Strong send queue ordering guarantees that when the
533 	 * last WR in the chain completes, all WRs in the chain
534 	 * are complete.
535 	 */
536 	last->wr_cqe->done = frwr_wc_localinv_wake;
537 	reinit_completion(&mr->mr_linv_done);
538 
539 	/* Transport disconnect drains the receive CQ before it
540 	 * replaces the QP. The RPC reply handler won't call us
541 	 * unless re_id->qp is a valid pointer.
542 	 */
543 	bad_wr = NULL;
544 	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
545 
546 	/* The final LOCAL_INV WR in the chain is supposed to
547 	 * do the wake. If it was never posted, the wake will
548 	 * not happen, so don't wait in that case.
549 	 */
550 	if (bad_wr != first)
551 		wait_for_completion(&mr->mr_linv_done);
552 	if (!rc)
553 		return;
554 
555 	/* On error, the MRs get destroyed once the QP has drained. */
556 	trace_xprtrdma_post_linv_err(req, rc);
557 
558 	/* Force a connection loss to ensure complete recovery.
559 	 */
560 	rpcrdma_force_disconnect(ep);
561 }
562 
563 /**
564  * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
565  * @cq:	completion queue
566  * @wc:	WCE for a completed LocalInv WR
567  *
568  */
frwr_wc_localinv_done(struct ib_cq * cq,struct ib_wc * wc)569 static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
570 {
571 	struct ib_cqe *cqe = wc->wr_cqe;
572 	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
573 	struct rpcrdma_rep *rep;
574 
575 	/* WARNING: Only wr_cqe and status are reliable at this point */
576 	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
577 
578 	/* Ensure that @rep is generated before the MR is released */
579 	rep = mr->mr_req->rl_reply;
580 	smp_rmb();
581 
582 	if (wc->status != IB_WC_SUCCESS) {
583 		if (rep)
584 			rpcrdma_unpin_rqst(rep);
585 		rpcrdma_flush_disconnect(cq->cq_context, wc);
586 		return;
587 	}
588 	frwr_mr_put(mr);
589 	rpcrdma_complete_rqst(rep);
590 }
591 
592 /**
593  * frwr_unmap_async - invalidate memory regions that were registered for @req
594  * @r_xprt: controlling transport instance
595  * @req: rpcrdma_req with a non-empty list of MRs to process
596  *
597  * This guarantees that registered MRs are properly fenced from the
598  * server before the RPC consumer accesses the data in them. It also
599  * ensures proper Send flow control: waking the next RPC waits until
600  * this RPC has relinquished all its Send Queue entries.
601  */
frwr_unmap_async(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)602 void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
603 {
604 	struct ib_send_wr *first, *last, **prev;
605 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
606 	struct rpcrdma_mr *mr;
607 	int rc;
608 
609 	/* Chain the LOCAL_INV Work Requests and post them with
610 	 * a single ib_post_send() call.
611 	 */
612 	prev = &first;
613 	mr = rpcrdma_mr_pop(&req->rl_registered);
614 	do {
615 		trace_xprtrdma_mr_localinv(mr);
616 		r_xprt->rx_stats.local_inv_needed++;
617 
618 		last = &mr->mr_invwr;
619 		last->next = NULL;
620 		last->wr_cqe = &mr->mr_cqe;
621 		last->sg_list = NULL;
622 		last->num_sge = 0;
623 		last->opcode = IB_WR_LOCAL_INV;
624 		last->send_flags = IB_SEND_SIGNALED;
625 		last->ex.invalidate_rkey = mr->mr_handle;
626 
627 		last->wr_cqe->done = frwr_wc_localinv;
628 
629 		*prev = last;
630 		prev = &last->next;
631 	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
632 
633 	/* Strong send queue ordering guarantees that when the
634 	 * last WR in the chain completes, all WRs in the chain
635 	 * are complete. The last completion will wake up the
636 	 * RPC waiter.
637 	 */
638 	last->wr_cqe->done = frwr_wc_localinv_done;
639 
640 	/* Transport disconnect drains the receive CQ before it
641 	 * replaces the QP. The RPC reply handler won't call us
642 	 * unless re_id->qp is a valid pointer.
643 	 */
644 	rc = ib_post_send(ep->re_id->qp, first, NULL);
645 	if (!rc)
646 		return;
647 
648 	/* On error, the MRs get destroyed once the QP has drained. */
649 	trace_xprtrdma_post_linv_err(req, rc);
650 
651 	/* The final LOCAL_INV WR in the chain is supposed to
652 	 * do the wake. If it was never posted, the wake does
653 	 * not happen. Unpin the rqst in preparation for its
654 	 * retransmission.
655 	 */
656 	rpcrdma_unpin_rqst(req->rl_reply);
657 
658 	/* Force a connection loss to ensure complete recovery.
659 	 */
660 	rpcrdma_force_disconnect(ep);
661 }
662 
663 /**
664  * frwr_wp_create - Create an MR for padding Write chunks
665  * @r_xprt: transport resources to use
666  *
667  * Return 0 on success, negative errno on failure.
668  */
frwr_wp_create(struct rpcrdma_xprt * r_xprt)669 int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
670 {
671 	struct rpcrdma_ep *ep = r_xprt->rx_ep;
672 	struct rpcrdma_mr_seg seg;
673 	struct rpcrdma_mr *mr;
674 
675 	mr = rpcrdma_mr_get(r_xprt);
676 	if (!mr)
677 		return -EAGAIN;
678 	mr->mr_req = NULL;
679 	ep->re_write_pad_mr = mr;
680 
681 	seg.mr_len = XDR_UNIT;
682 	seg.mr_page = virt_to_page(ep->re_write_pad);
683 	seg.mr_offset = offset_in_page(ep->re_write_pad);
684 	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
685 		return -EIO;
686 	trace_xprtrdma_mr_fastreg(mr);
687 
688 	mr->mr_cqe.done = frwr_wc_fastreg;
689 	mr->mr_regwr.wr.next = NULL;
690 	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
691 	mr->mr_regwr.wr.num_sge = 0;
692 	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
693 	mr->mr_regwr.wr.send_flags = 0;
694 
695 	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
696 }
697