1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 /*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26
27 #include "fscrypt_private.h"
28
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 /*
32 * Lock that protects ->key_hashtable. It does *not* protect the
33 * fscrypt_master_key structs themselves.
34 */
35 spinlock_t lock;
36
37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 struct hlist_head key_hashtable[128];
39 };
40
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 fscrypt_destroy_hkdf(&secret->hkdf);
44 memzero_explicit(secret, sizeof(*secret));
45 }
46
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 struct fscrypt_master_key_secret *src)
49 {
50 memcpy(dst, src, sizeof(*dst));
51 memzero_explicit(src, sizeof(*src));
52 }
53
fscrypt_free_master_key(struct rcu_head * head)54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 struct fscrypt_master_key *mk =
57 container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 /*
59 * The master key secret and any embedded subkeys should have already
60 * been wiped when the last active reference to the fscrypt_master_key
61 * struct was dropped; doing it here would be unnecessarily late.
62 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 */
64 kfree_sensitive(mk);
65 }
66
fscrypt_put_master_key(struct fscrypt_master_key * mk)67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 return;
71 /*
72 * No structural references left, so free ->mk_users, and also free the
73 * fscrypt_master_key struct itself after an RCU grace period ensures
74 * that concurrent keyring lookups can no longer find it.
75 */
76 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77 key_put(mk->mk_users);
78 mk->mk_users = NULL;
79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)82 void fscrypt_put_master_key_activeref(struct super_block *sb,
83 struct fscrypt_master_key *mk)
84 {
85 size_t i;
86
87 if (!refcount_dec_and_test(&mk->mk_active_refs))
88 return;
89 /*
90 * No active references left, so complete the full removal of this
91 * fscrypt_master_key struct by removing it from the keyring and
92 * destroying any subkeys embedded in it.
93 */
94
95 if (WARN_ON_ONCE(!sb->s_master_keys))
96 return;
97 spin_lock(&sb->s_master_keys->lock);
98 hlist_del_rcu(&mk->mk_node);
99 spin_unlock(&sb->s_master_keys->lock);
100
101 /*
102 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
103 * that ->mk_decrypted_inodes is empty.
104 */
105 WARN_ON_ONCE(is_master_key_secret_present(&mk->mk_secret));
106 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
107
108 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
109 fscrypt_destroy_prepared_key(
110 sb, &mk->mk_direct_keys[i]);
111 fscrypt_destroy_prepared_key(
112 sb, &mk->mk_iv_ino_lblk_64_keys[i]);
113 fscrypt_destroy_prepared_key(
114 sb, &mk->mk_iv_ino_lblk_32_keys[i]);
115 }
116 memzero_explicit(&mk->mk_ino_hash_key,
117 sizeof(mk->mk_ino_hash_key));
118 mk->mk_ino_hash_key_initialized = false;
119
120 /* Drop the structural ref associated with the active refs. */
121 fscrypt_put_master_key(mk);
122 }
123
valid_key_spec(const struct fscrypt_key_specifier * spec)124 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
125 {
126 if (spec->__reserved)
127 return false;
128 return master_key_spec_len(spec) != 0;
129 }
130
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)131 static int fscrypt_user_key_instantiate(struct key *key,
132 struct key_preparsed_payload *prep)
133 {
134 /*
135 * We just charge FSCRYPT_MAX_STANDARD_KEY_SIZE bytes to the user's key
136 * quota for each key, regardless of the exact key size. The amount of
137 * memory actually used is greater than the size of the raw key anyway.
138 */
139 return key_payload_reserve(key, FSCRYPT_MAX_STANDARD_KEY_SIZE);
140 }
141
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)142 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
143 {
144 seq_puts(m, key->description);
145 }
146
147 /*
148 * Type of key in ->mk_users. Each key of this type represents a particular
149 * user who has added a particular master key.
150 *
151 * Note that the name of this key type really should be something like
152 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
153 * mainly for simplicity of presentation in /proc/keys when read by a non-root
154 * user. And it is expected to be rare that a key is actually added by multiple
155 * users, since users should keep their encryption keys confidential.
156 */
157 static struct key_type key_type_fscrypt_user = {
158 .name = ".fscrypt",
159 .instantiate = fscrypt_user_key_instantiate,
160 .describe = fscrypt_user_key_describe,
161 };
162
163 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
164 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
165 CONST_STRLEN("-users") + 1)
166
167 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
168 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
169
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])170 static void format_mk_users_keyring_description(
171 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
172 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
173 {
174 sprintf(description, "fscrypt-%*phN-users",
175 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
176 }
177
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])178 static void format_mk_user_description(
179 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
180 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
181 {
182
183 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
184 mk_identifier, __kuid_val(current_fsuid()));
185 }
186
187 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)188 static int allocate_filesystem_keyring(struct super_block *sb)
189 {
190 struct fscrypt_keyring *keyring;
191
192 if (sb->s_master_keys)
193 return 0;
194
195 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
196 if (!keyring)
197 return -ENOMEM;
198 spin_lock_init(&keyring->lock);
199 /*
200 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
201 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
202 * concurrent tasks can ACQUIRE it.
203 */
204 smp_store_release(&sb->s_master_keys, keyring);
205 return 0;
206 }
207
208 /*
209 * Release all encryption keys that have been added to the filesystem, along
210 * with the keyring that contains them.
211 *
212 * This is called at unmount time, after all potentially-encrypted inodes have
213 * been evicted. The filesystem's underlying block device(s) are still
214 * available at this time; this is important because after user file accesses
215 * have been allowed, this function may need to evict keys from the keyslots of
216 * an inline crypto engine, which requires the block device(s).
217 */
fscrypt_destroy_keyring(struct super_block * sb)218 void fscrypt_destroy_keyring(struct super_block *sb)
219 {
220 struct fscrypt_keyring *keyring = sb->s_master_keys;
221 size_t i;
222
223 if (!keyring)
224 return;
225
226 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
227 struct hlist_head *bucket = &keyring->key_hashtable[i];
228 struct fscrypt_master_key *mk;
229 struct hlist_node *tmp;
230
231 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
232 /*
233 * Since all potentially-encrypted inodes were already
234 * evicted, every key remaining in the keyring should
235 * have an empty inode list, and should only still be in
236 * the keyring due to the single active ref associated
237 * with ->mk_secret. There should be no structural refs
238 * beyond the one associated with the active ref.
239 */
240 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
241 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
242 WARN_ON_ONCE(!is_master_key_secret_present(&mk->mk_secret));
243 wipe_master_key_secret(&mk->mk_secret);
244 fscrypt_put_master_key_activeref(sb, mk);
245 }
246 }
247 kfree_sensitive(keyring);
248 sb->s_master_keys = NULL;
249 }
250
251 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)252 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
253 const struct fscrypt_key_specifier *mk_spec)
254 {
255 /*
256 * Since key specifiers should be "random" values, it is sufficient to
257 * use a trivial hash function that just takes the first several bits of
258 * the key specifier.
259 */
260 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
261
262 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
263 }
264
265 /*
266 * Find the specified master key struct in ->s_master_keys and take a structural
267 * ref to it. The structural ref guarantees that the key struct continues to
268 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
269 * the key struct. The structural ref needs to be dropped by
270 * fscrypt_put_master_key(). Returns NULL if the key struct is not found.
271 */
272 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)273 fscrypt_find_master_key(struct super_block *sb,
274 const struct fscrypt_key_specifier *mk_spec)
275 {
276 struct fscrypt_keyring *keyring;
277 struct hlist_head *bucket;
278 struct fscrypt_master_key *mk;
279
280 /*
281 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
282 * I.e., another task can publish ->s_master_keys concurrently,
283 * executing a RELEASE barrier. We need to use smp_load_acquire() here
284 * to safely ACQUIRE the memory the other task published.
285 */
286 keyring = smp_load_acquire(&sb->s_master_keys);
287 if (keyring == NULL)
288 return NULL; /* No keyring yet, so no keys yet. */
289
290 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
291 rcu_read_lock();
292 switch (mk_spec->type) {
293 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
294 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
295 if (mk->mk_spec.type ==
296 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
297 memcmp(mk->mk_spec.u.descriptor,
298 mk_spec->u.descriptor,
299 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
300 refcount_inc_not_zero(&mk->mk_struct_refs))
301 goto out;
302 }
303 break;
304 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
305 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
306 if (mk->mk_spec.type ==
307 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
308 memcmp(mk->mk_spec.u.identifier,
309 mk_spec->u.identifier,
310 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
311 refcount_inc_not_zero(&mk->mk_struct_refs))
312 goto out;
313 }
314 break;
315 }
316 mk = NULL;
317 out:
318 rcu_read_unlock();
319 return mk;
320 }
321
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)322 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
323 {
324 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
325 struct key *keyring;
326
327 format_mk_users_keyring_description(description,
328 mk->mk_spec.u.identifier);
329 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
330 current_cred(), KEY_POS_SEARCH |
331 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
332 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
333 if (IS_ERR(keyring))
334 return PTR_ERR(keyring);
335
336 mk->mk_users = keyring;
337 return 0;
338 }
339
340 /*
341 * Find the current user's "key" in the master key's ->mk_users.
342 * Returns ERR_PTR(-ENOKEY) if not found.
343 */
find_master_key_user(struct fscrypt_master_key * mk)344 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
345 {
346 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
347 key_ref_t keyref;
348
349 format_mk_user_description(description, mk->mk_spec.u.identifier);
350
351 /*
352 * We need to mark the keyring reference as "possessed" so that we
353 * acquire permission to search it, via the KEY_POS_SEARCH permission.
354 */
355 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
356 &key_type_fscrypt_user, description, false);
357 if (IS_ERR(keyref)) {
358 if (PTR_ERR(keyref) == -EAGAIN || /* not found */
359 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
360 keyref = ERR_PTR(-ENOKEY);
361 return ERR_CAST(keyref);
362 }
363 return key_ref_to_ptr(keyref);
364 }
365
366 /*
367 * Give the current user a "key" in ->mk_users. This charges the user's quota
368 * and marks the master key as added by the current user, so that it cannot be
369 * removed by another user with the key. Either ->mk_sem must be held for
370 * write, or the master key must be still undergoing initialization.
371 */
add_master_key_user(struct fscrypt_master_key * mk)372 static int add_master_key_user(struct fscrypt_master_key *mk)
373 {
374 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
375 struct key *mk_user;
376 int err;
377
378 format_mk_user_description(description, mk->mk_spec.u.identifier);
379 mk_user = key_alloc(&key_type_fscrypt_user, description,
380 current_fsuid(), current_gid(), current_cred(),
381 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
382 if (IS_ERR(mk_user))
383 return PTR_ERR(mk_user);
384
385 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
386 key_put(mk_user);
387 return err;
388 }
389
390 /*
391 * Remove the current user's "key" from ->mk_users.
392 * ->mk_sem must be held for write.
393 *
394 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
395 */
remove_master_key_user(struct fscrypt_master_key * mk)396 static int remove_master_key_user(struct fscrypt_master_key *mk)
397 {
398 struct key *mk_user;
399 int err;
400
401 mk_user = find_master_key_user(mk);
402 if (IS_ERR(mk_user))
403 return PTR_ERR(mk_user);
404 err = key_unlink(mk->mk_users, mk_user);
405 key_put(mk_user);
406 return err;
407 }
408
409 /*
410 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
411 * insert it into sb->s_master_keys.
412 */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)413 static int add_new_master_key(struct super_block *sb,
414 struct fscrypt_master_key_secret *secret,
415 const struct fscrypt_key_specifier *mk_spec)
416 {
417 struct fscrypt_keyring *keyring = sb->s_master_keys;
418 struct fscrypt_master_key *mk;
419 int err;
420
421 mk = kzalloc(sizeof(*mk), GFP_KERNEL);
422 if (!mk)
423 return -ENOMEM;
424
425 init_rwsem(&mk->mk_sem);
426 refcount_set(&mk->mk_struct_refs, 1);
427 mk->mk_spec = *mk_spec;
428
429 INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
430 spin_lock_init(&mk->mk_decrypted_inodes_lock);
431
432 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
433 err = allocate_master_key_users_keyring(mk);
434 if (err)
435 goto out_put;
436 err = add_master_key_user(mk);
437 if (err)
438 goto out_put;
439 }
440
441 move_master_key_secret(&mk->mk_secret, secret);
442 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
443
444 spin_lock(&keyring->lock);
445 hlist_add_head_rcu(&mk->mk_node,
446 fscrypt_mk_hash_bucket(keyring, mk_spec));
447 spin_unlock(&keyring->lock);
448 return 0;
449
450 out_put:
451 fscrypt_put_master_key(mk);
452 return err;
453 }
454
455 #define KEY_DEAD 1
456
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)457 static int add_existing_master_key(struct fscrypt_master_key *mk,
458 struct fscrypt_master_key_secret *secret)
459 {
460 int err;
461
462 /*
463 * If the current user is already in ->mk_users, then there's nothing to
464 * do. Otherwise, we need to add the user to ->mk_users. (Neither is
465 * applicable for v1 policy keys, which have NULL ->mk_users.)
466 */
467 if (mk->mk_users) {
468 struct key *mk_user = find_master_key_user(mk);
469
470 if (mk_user != ERR_PTR(-ENOKEY)) {
471 if (IS_ERR(mk_user))
472 return PTR_ERR(mk_user);
473 key_put(mk_user);
474 return 0;
475 }
476 err = add_master_key_user(mk);
477 if (err)
478 return err;
479 }
480
481 /* Re-add the secret if needed. */
482 if (!is_master_key_secret_present(&mk->mk_secret)) {
483 if (!refcount_inc_not_zero(&mk->mk_active_refs))
484 return KEY_DEAD;
485 move_master_key_secret(&mk->mk_secret, secret);
486 }
487
488 return 0;
489 }
490
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)491 static int do_add_master_key(struct super_block *sb,
492 struct fscrypt_master_key_secret *secret,
493 const struct fscrypt_key_specifier *mk_spec)
494 {
495 static DEFINE_MUTEX(fscrypt_add_key_mutex);
496 struct fscrypt_master_key *mk;
497 int err;
498
499 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
500
501 mk = fscrypt_find_master_key(sb, mk_spec);
502 if (!mk) {
503 /* Didn't find the key in ->s_master_keys. Add it. */
504 err = allocate_filesystem_keyring(sb);
505 if (!err)
506 err = add_new_master_key(sb, secret, mk_spec);
507 } else {
508 /*
509 * Found the key in ->s_master_keys. Re-add the secret if
510 * needed, and add the user to ->mk_users if needed.
511 */
512 down_write(&mk->mk_sem);
513 err = add_existing_master_key(mk, secret);
514 up_write(&mk->mk_sem);
515 if (err == KEY_DEAD) {
516 /*
517 * We found a key struct, but it's already been fully
518 * removed. Ignore the old struct and add a new one.
519 * fscrypt_add_key_mutex means we don't need to worry
520 * about concurrent adds.
521 */
522 err = add_new_master_key(sb, secret, mk_spec);
523 }
524 fscrypt_put_master_key(mk);
525 }
526 mutex_unlock(&fscrypt_add_key_mutex);
527 return err;
528 }
529
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)530 static int add_master_key(struct super_block *sb,
531 struct fscrypt_master_key_secret *secret,
532 struct fscrypt_key_specifier *key_spec)
533 {
534 int err;
535
536 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
537 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
538 u8 *kdf_key = secret->raw;
539 unsigned int kdf_key_size = secret->size;
540 u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER;
541
542 /*
543 * For standard keys, the fscrypt master key is used directly as
544 * the fscrypt KDF key. For hardware-wrapped keys, we have to
545 * pass the master key to the hardware to derive the KDF key,
546 * which is then only used to derive non-file-contents subkeys.
547 */
548 if (secret->is_hw_wrapped) {
549 err = fscrypt_derive_sw_secret(sb, secret->raw,
550 secret->size, sw_secret);
551 if (err)
552 return err;
553 kdf_key = sw_secret;
554 kdf_key_size = sizeof(sw_secret);
555 }
556 err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
557 /*
558 * Now that the KDF context is initialized, the raw KDF key is
559 * no longer needed.
560 */
561 memzero_explicit(kdf_key, kdf_key_size);
562 if (err)
563 return err;
564
565 /* Calculate the key identifier */
566 err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
567 key_spec->u.identifier,
568 FSCRYPT_KEY_IDENTIFIER_SIZE);
569 if (err)
570 return err;
571 }
572 return do_add_master_key(sb, secret, key_spec);
573 }
574
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)575 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
576 {
577 const struct fscrypt_provisioning_key_payload *payload = prep->data;
578
579 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
580 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_ANY_KEY_SIZE)
581 return -EINVAL;
582
583 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
584 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
585 return -EINVAL;
586
587 if (payload->__reserved)
588 return -EINVAL;
589
590 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
591 if (!prep->payload.data[0])
592 return -ENOMEM;
593
594 prep->quotalen = prep->datalen;
595 return 0;
596 }
597
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)598 static void fscrypt_provisioning_key_free_preparse(
599 struct key_preparsed_payload *prep)
600 {
601 kfree_sensitive(prep->payload.data[0]);
602 }
603
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)604 static void fscrypt_provisioning_key_describe(const struct key *key,
605 struct seq_file *m)
606 {
607 seq_puts(m, key->description);
608 if (key_is_positive(key)) {
609 const struct fscrypt_provisioning_key_payload *payload =
610 key->payload.data[0];
611
612 seq_printf(m, ": %u [%u]", key->datalen, payload->type);
613 }
614 }
615
fscrypt_provisioning_key_destroy(struct key * key)616 static void fscrypt_provisioning_key_destroy(struct key *key)
617 {
618 kfree_sensitive(key->payload.data[0]);
619 }
620
621 static struct key_type key_type_fscrypt_provisioning = {
622 .name = "fscrypt-provisioning",
623 .preparse = fscrypt_provisioning_key_preparse,
624 .free_preparse = fscrypt_provisioning_key_free_preparse,
625 .instantiate = generic_key_instantiate,
626 .describe = fscrypt_provisioning_key_describe,
627 .destroy = fscrypt_provisioning_key_destroy,
628 };
629
630 /*
631 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
632 * store it into 'secret'.
633 *
634 * The key must be of type "fscrypt-provisioning" and must have the field
635 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
636 * only usable with fscrypt with the particular KDF version identified by
637 * 'type'. We don't use the "logon" key type because there's no way to
638 * completely restrict the use of such keys; they can be used by any kernel API
639 * that accepts "logon" keys and doesn't require a specific service prefix.
640 *
641 * The ability to specify the key via Linux keyring key is intended for cases
642 * where userspace needs to re-add keys after the filesystem is unmounted and
643 * re-mounted. Most users should just provide the raw key directly instead.
644 */
get_keyring_key(u32 key_id,u32 type,struct fscrypt_master_key_secret * secret)645 static int get_keyring_key(u32 key_id, u32 type,
646 struct fscrypt_master_key_secret *secret)
647 {
648 key_ref_t ref;
649 struct key *key;
650 const struct fscrypt_provisioning_key_payload *payload;
651 int err;
652
653 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
654 if (IS_ERR(ref))
655 return PTR_ERR(ref);
656 key = key_ref_to_ptr(ref);
657
658 if (key->type != &key_type_fscrypt_provisioning)
659 goto bad_key;
660 payload = key->payload.data[0];
661
662 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
663 if (payload->type != type)
664 goto bad_key;
665
666 secret->size = key->datalen - sizeof(*payload);
667 memcpy(secret->raw, payload->raw, secret->size);
668 err = 0;
669 goto out_put;
670
671 bad_key:
672 err = -EKEYREJECTED;
673 out_put:
674 key_ref_put(ref);
675 return err;
676 }
677
678 /*
679 * Add a master encryption key to the filesystem, causing all files which were
680 * encrypted with it to appear "unlocked" (decrypted) when accessed.
681 *
682 * When adding a key for use by v1 encryption policies, this ioctl is
683 * privileged, and userspace must provide the 'key_descriptor'.
684 *
685 * When adding a key for use by v2+ encryption policies, this ioctl is
686 * unprivileged. This is needed, in general, to allow non-root users to use
687 * encryption without encountering the visibility problems of process-subscribed
688 * keyrings and the inability to properly remove keys. This works by having
689 * each key identified by its cryptographically secure hash --- the
690 * 'key_identifier'. The cryptographic hash ensures that a malicious user
691 * cannot add the wrong key for a given identifier. Furthermore, each added key
692 * is charged to the appropriate user's quota for the keyrings service, which
693 * prevents a malicious user from adding too many keys. Finally, we forbid a
694 * user from removing a key while other users have added it too, which prevents
695 * a user who knows another user's key from causing a denial-of-service by
696 * removing it at an inopportune time. (We tolerate that a user who knows a key
697 * can prevent other users from removing it.)
698 *
699 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
700 * Documentation/filesystems/fscrypt.rst.
701 */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)702 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
703 {
704 struct super_block *sb = file_inode(filp)->i_sb;
705 struct fscrypt_add_key_arg __user *uarg = _uarg;
706 struct fscrypt_add_key_arg arg;
707 struct fscrypt_master_key_secret secret;
708 int err;
709
710 if (copy_from_user(&arg, uarg, sizeof(arg)))
711 return -EFAULT;
712
713 if (!valid_key_spec(&arg.key_spec))
714 return -EINVAL;
715
716 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
717 return -EINVAL;
718
719 /*
720 * Only root can add keys that are identified by an arbitrary descriptor
721 * rather than by a cryptographic hash --- since otherwise a malicious
722 * user could add the wrong key.
723 */
724 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
725 !capable(CAP_SYS_ADMIN))
726 return -EACCES;
727
728 memset(&secret, 0, sizeof(secret));
729
730 if (arg.__flags) {
731 if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
732 return -EINVAL;
733 if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
734 return -EINVAL;
735 secret.is_hw_wrapped = true;
736 }
737
738 if (arg.key_id) {
739 if (arg.raw_size != 0)
740 return -EINVAL;
741 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
742 if (err)
743 goto out_wipe_secret;
744 err = -EINVAL;
745 if (secret.size > FSCRYPT_MAX_STANDARD_KEY_SIZE &&
746 !secret.is_hw_wrapped)
747 goto out_wipe_secret;
748 } else {
749 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
750 arg.raw_size > (secret.is_hw_wrapped ?
751 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
752 FSCRYPT_MAX_STANDARD_KEY_SIZE))
753 return -EINVAL;
754 secret.size = arg.raw_size;
755 err = -EFAULT;
756 if (copy_from_user(secret.raw, uarg->raw, secret.size))
757 goto out_wipe_secret;
758 }
759
760 err = add_master_key(sb, &secret, &arg.key_spec);
761 if (err)
762 goto out_wipe_secret;
763
764 /* Return the key identifier to userspace, if applicable */
765 err = -EFAULT;
766 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
767 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
768 FSCRYPT_KEY_IDENTIFIER_SIZE))
769 goto out_wipe_secret;
770 err = 0;
771 out_wipe_secret:
772 wipe_master_key_secret(&secret);
773 return err;
774 }
775 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
776
777 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)778 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
779 {
780 static u8 test_key[FSCRYPT_MAX_STANDARD_KEY_SIZE];
781
782 get_random_once(test_key, sizeof(test_key));
783
784 memset(secret, 0, sizeof(*secret));
785 secret->size = sizeof(test_key);
786 memcpy(secret->raw, test_key, sizeof(test_key));
787 }
788
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])789 int fscrypt_get_test_dummy_key_identifier(
790 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
791 {
792 struct fscrypt_master_key_secret secret;
793 int err;
794
795 fscrypt_get_test_dummy_secret(&secret);
796
797 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
798 if (err)
799 goto out;
800 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
801 NULL, 0, key_identifier,
802 FSCRYPT_KEY_IDENTIFIER_SIZE);
803 out:
804 wipe_master_key_secret(&secret);
805 return err;
806 }
807
808 /**
809 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
810 * @sb: the filesystem instance to add the key to
811 * @key_spec: the key specifier of the test dummy encryption key
812 *
813 * Add the key for the test_dummy_encryption mount option to the filesystem. To
814 * prevent misuse of this mount option, a per-boot random key is used instead of
815 * a hardcoded one. This makes it so that any encrypted files created using
816 * this option won't be accessible after a reboot.
817 *
818 * Return: 0 on success, -errno on failure
819 */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)820 int fscrypt_add_test_dummy_key(struct super_block *sb,
821 struct fscrypt_key_specifier *key_spec)
822 {
823 struct fscrypt_master_key_secret secret;
824 int err;
825
826 fscrypt_get_test_dummy_secret(&secret);
827 err = add_master_key(sb, &secret, key_spec);
828 wipe_master_key_secret(&secret);
829 return err;
830 }
831
832 /*
833 * Verify that the current user has added a master key with the given identifier
834 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
835 * their files using some other user's key which they don't actually know.
836 * Cryptographically this isn't much of a problem, but the semantics of this
837 * would be a bit weird, so it's best to just forbid it.
838 *
839 * The system administrator (CAP_FOWNER) can override this, which should be
840 * enough for any use cases where encryption policies are being set using keys
841 * that were chosen ahead of time but aren't available at the moment.
842 *
843 * Note that the key may have already removed by the time this returns, but
844 * that's okay; we just care whether the key was there at some point.
845 *
846 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
847 */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])848 int fscrypt_verify_key_added(struct super_block *sb,
849 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
850 {
851 struct fscrypt_key_specifier mk_spec;
852 struct fscrypt_master_key *mk;
853 struct key *mk_user;
854 int err;
855
856 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
857 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
858
859 mk = fscrypt_find_master_key(sb, &mk_spec);
860 if (!mk) {
861 err = -ENOKEY;
862 goto out;
863 }
864 down_read(&mk->mk_sem);
865 mk_user = find_master_key_user(mk);
866 if (IS_ERR(mk_user)) {
867 err = PTR_ERR(mk_user);
868 } else {
869 key_put(mk_user);
870 err = 0;
871 }
872 up_read(&mk->mk_sem);
873 fscrypt_put_master_key(mk);
874 out:
875 if (err == -ENOKEY && capable(CAP_FOWNER))
876 err = 0;
877 return err;
878 }
879
880 /*
881 * Try to evict the inode's dentries from the dentry cache. If the inode is a
882 * directory, then it can have at most one dentry; however, that dentry may be
883 * pinned by child dentries, so first try to evict the children too.
884 */
shrink_dcache_inode(struct inode * inode)885 static void shrink_dcache_inode(struct inode *inode)
886 {
887 struct dentry *dentry;
888
889 if (S_ISDIR(inode->i_mode)) {
890 dentry = d_find_any_alias(inode);
891 if (dentry) {
892 shrink_dcache_parent(dentry);
893 dput(dentry);
894 }
895 }
896 d_prune_aliases(inode);
897 }
898
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)899 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
900 {
901 struct fscrypt_info *ci;
902 struct inode *inode;
903 struct inode *toput_inode = NULL;
904
905 spin_lock(&mk->mk_decrypted_inodes_lock);
906
907 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
908 inode = ci->ci_inode;
909 spin_lock(&inode->i_lock);
910 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
911 spin_unlock(&inode->i_lock);
912 continue;
913 }
914 __iget(inode);
915 spin_unlock(&inode->i_lock);
916 spin_unlock(&mk->mk_decrypted_inodes_lock);
917
918 shrink_dcache_inode(inode);
919 iput(toput_inode);
920 toput_inode = inode;
921
922 spin_lock(&mk->mk_decrypted_inodes_lock);
923 }
924
925 spin_unlock(&mk->mk_decrypted_inodes_lock);
926 iput(toput_inode);
927 }
928
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)929 static int check_for_busy_inodes(struct super_block *sb,
930 struct fscrypt_master_key *mk)
931 {
932 struct list_head *pos;
933 size_t busy_count = 0;
934 unsigned long ino;
935 char ino_str[50] = "";
936
937 spin_lock(&mk->mk_decrypted_inodes_lock);
938
939 list_for_each(pos, &mk->mk_decrypted_inodes)
940 busy_count++;
941
942 if (busy_count == 0) {
943 spin_unlock(&mk->mk_decrypted_inodes_lock);
944 return 0;
945 }
946
947 {
948 /* select an example file to show for debugging purposes */
949 struct inode *inode =
950 list_first_entry(&mk->mk_decrypted_inodes,
951 struct fscrypt_info,
952 ci_master_key_link)->ci_inode;
953 ino = inode->i_ino;
954 }
955 spin_unlock(&mk->mk_decrypted_inodes_lock);
956
957 /* If the inode is currently being created, ino may still be 0. */
958 if (ino)
959 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
960
961 fscrypt_warn(NULL,
962 "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
963 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
964 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
965 ino_str);
966 return -EBUSY;
967 }
968
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)969 static int try_to_lock_encrypted_files(struct super_block *sb,
970 struct fscrypt_master_key *mk)
971 {
972 int err1;
973 int err2;
974
975 /*
976 * An inode can't be evicted while it is dirty or has dirty pages.
977 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
978 *
979 * Just do it the easy way: call sync_filesystem(). It's overkill, but
980 * it works, and it's more important to minimize the amount of caches we
981 * drop than the amount of data we sync. Also, unprivileged users can
982 * already call sync_filesystem() via sys_syncfs() or sys_sync().
983 */
984 down_read(&sb->s_umount);
985 err1 = sync_filesystem(sb);
986 up_read(&sb->s_umount);
987 /* If a sync error occurs, still try to evict as much as possible. */
988
989 /*
990 * Inodes are pinned by their dentries, so we have to evict their
991 * dentries. shrink_dcache_sb() would suffice, but would be overkill
992 * and inappropriate for use by unprivileged users. So instead go
993 * through the inodes' alias lists and try to evict each dentry.
994 */
995 evict_dentries_for_decrypted_inodes(mk);
996
997 /*
998 * evict_dentries_for_decrypted_inodes() already iput() each inode in
999 * the list; any inodes for which that dropped the last reference will
1000 * have been evicted due to fscrypt_drop_inode() detecting the key
1001 * removal and telling the VFS to evict the inode. So to finish, we
1002 * just need to check whether any inodes couldn't be evicted.
1003 */
1004 err2 = check_for_busy_inodes(sb, mk);
1005
1006 return err1 ?: err2;
1007 }
1008
1009 /*
1010 * Try to remove an fscrypt master encryption key.
1011 *
1012 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1013 * claim to the key, then removes the key itself if no other users have claims.
1014 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1015 * key itself.
1016 *
1017 * To "remove the key itself", first we wipe the actual master key secret, so
1018 * that no more inodes can be unlocked with it. Then we try to evict all cached
1019 * inodes that had been unlocked with the key.
1020 *
1021 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1022 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
1023 * state (without the actual secret key) where it tracks the list of remaining
1024 * inodes. Userspace can execute the ioctl again later to retry eviction, or
1025 * alternatively can re-add the secret key again.
1026 *
1027 * For more details, see the "Removing keys" section of
1028 * Documentation/filesystems/fscrypt.rst.
1029 */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)1030 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1031 {
1032 struct super_block *sb = file_inode(filp)->i_sb;
1033 struct fscrypt_remove_key_arg __user *uarg = _uarg;
1034 struct fscrypt_remove_key_arg arg;
1035 struct fscrypt_master_key *mk;
1036 u32 status_flags = 0;
1037 int err;
1038 bool inodes_remain;
1039
1040 if (copy_from_user(&arg, uarg, sizeof(arg)))
1041 return -EFAULT;
1042
1043 if (!valid_key_spec(&arg.key_spec))
1044 return -EINVAL;
1045
1046 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1047 return -EINVAL;
1048
1049 /*
1050 * Only root can add and remove keys that are identified by an arbitrary
1051 * descriptor rather than by a cryptographic hash.
1052 */
1053 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1054 !capable(CAP_SYS_ADMIN))
1055 return -EACCES;
1056
1057 /* Find the key being removed. */
1058 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1059 if (!mk)
1060 return -ENOKEY;
1061 down_write(&mk->mk_sem);
1062
1063 /* If relevant, remove current user's (or all users) claim to the key */
1064 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1065 if (all_users)
1066 err = keyring_clear(mk->mk_users);
1067 else
1068 err = remove_master_key_user(mk);
1069 if (err) {
1070 up_write(&mk->mk_sem);
1071 goto out_put_key;
1072 }
1073 if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1074 /*
1075 * Other users have still added the key too. We removed
1076 * the current user's claim to the key, but we still
1077 * can't remove the key itself.
1078 */
1079 status_flags |=
1080 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1081 err = 0;
1082 up_write(&mk->mk_sem);
1083 goto out_put_key;
1084 }
1085 }
1086
1087 /* No user claims remaining. Go ahead and wipe the secret. */
1088 err = -ENOKEY;
1089 if (is_master_key_secret_present(&mk->mk_secret)) {
1090 wipe_master_key_secret(&mk->mk_secret);
1091 fscrypt_put_master_key_activeref(sb, mk);
1092 err = 0;
1093 }
1094 inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1095 up_write(&mk->mk_sem);
1096
1097 if (inodes_remain) {
1098 /* Some inodes still reference this key; try to evict them. */
1099 err = try_to_lock_encrypted_files(sb, mk);
1100 if (err == -EBUSY) {
1101 status_flags |=
1102 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1103 err = 0;
1104 }
1105 }
1106 /*
1107 * We return 0 if we successfully did something: removed a claim to the
1108 * key, wiped the secret, or tried locking the files again. Users need
1109 * to check the informational status flags if they care whether the key
1110 * has been fully removed including all files locked.
1111 */
1112 out_put_key:
1113 fscrypt_put_master_key(mk);
1114 if (err == 0)
1115 err = put_user(status_flags, &uarg->removal_status_flags);
1116 return err;
1117 }
1118
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1119 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1120 {
1121 return do_remove_key(filp, uarg, false);
1122 }
1123 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1124
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1125 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1126 {
1127 if (!capable(CAP_SYS_ADMIN))
1128 return -EACCES;
1129 return do_remove_key(filp, uarg, true);
1130 }
1131 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1132
1133 /*
1134 * Retrieve the status of an fscrypt master encryption key.
1135 *
1136 * We set ->status to indicate whether the key is absent, present, or
1137 * incompletely removed. "Incompletely removed" means that the master key
1138 * secret has been removed, but some files which had been unlocked with it are
1139 * still in use. This field allows applications to easily determine the state
1140 * of an encrypted directory without using a hack such as trying to open a
1141 * regular file in it (which can confuse the "incompletely removed" state with
1142 * absent or present).
1143 *
1144 * In addition, for v2 policy keys we allow applications to determine, via
1145 * ->status_flags and ->user_count, whether the key has been added by the
1146 * current user, by other users, or by both. Most applications should not need
1147 * this, since ordinarily only one user should know a given key. However, if a
1148 * secret key is shared by multiple users, applications may wish to add an
1149 * already-present key to prevent other users from removing it. This ioctl can
1150 * be used to check whether that really is the case before the work is done to
1151 * add the key --- which might e.g. require prompting the user for a passphrase.
1152 *
1153 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1154 * Documentation/filesystems/fscrypt.rst.
1155 */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1156 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1157 {
1158 struct super_block *sb = file_inode(filp)->i_sb;
1159 struct fscrypt_get_key_status_arg arg;
1160 struct fscrypt_master_key *mk;
1161 int err;
1162
1163 if (copy_from_user(&arg, uarg, sizeof(arg)))
1164 return -EFAULT;
1165
1166 if (!valid_key_spec(&arg.key_spec))
1167 return -EINVAL;
1168
1169 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1170 return -EINVAL;
1171
1172 arg.status_flags = 0;
1173 arg.user_count = 0;
1174 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1175
1176 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1177 if (!mk) {
1178 arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1179 err = 0;
1180 goto out;
1181 }
1182 down_read(&mk->mk_sem);
1183
1184 if (!is_master_key_secret_present(&mk->mk_secret)) {
1185 arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1186 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1187 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1188 err = 0;
1189 goto out_release_key;
1190 }
1191
1192 arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1193 if (mk->mk_users) {
1194 struct key *mk_user;
1195
1196 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1197 mk_user = find_master_key_user(mk);
1198 if (!IS_ERR(mk_user)) {
1199 arg.status_flags |=
1200 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1201 key_put(mk_user);
1202 } else if (mk_user != ERR_PTR(-ENOKEY)) {
1203 err = PTR_ERR(mk_user);
1204 goto out_release_key;
1205 }
1206 }
1207 err = 0;
1208 out_release_key:
1209 up_read(&mk->mk_sem);
1210 fscrypt_put_master_key(mk);
1211 out:
1212 if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1213 err = -EFAULT;
1214 return err;
1215 }
1216 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1217
fscrypt_init_keyring(void)1218 int __init fscrypt_init_keyring(void)
1219 {
1220 int err;
1221
1222 err = register_key_type(&key_type_fscrypt_user);
1223 if (err)
1224 return err;
1225
1226 err = register_key_type(&key_type_fscrypt_provisioning);
1227 if (err)
1228 goto err_unregister_fscrypt_user;
1229
1230 return 0;
1231
1232 err_unregister_fscrypt_user:
1233 unregister_key_type(&key_type_fscrypt_user);
1234 return err;
1235 }
1236