1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40
41 #include <generated/utsrelease.h>
42
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50
51 struct firmware_cache {
52 /* firmware_buf instance will be added into the below list */
53 spinlock_t lock;
54 struct list_head head;
55 int state;
56
57 #ifdef CONFIG_FW_CACHE
58 /*
59 * Names of firmware images which have been cached successfully
60 * will be added into the below list so that device uncache
61 * helper can trace which firmware images have been cached
62 * before.
63 */
64 spinlock_t name_lock;
65 struct list_head fw_names;
66
67 struct delayed_work work;
68
69 struct notifier_block pm_notify;
70 #endif
71 };
72
73 struct fw_cache_entry {
74 struct list_head list;
75 const char *name;
76 };
77
78 struct fw_name_devm {
79 unsigned long magic;
80 const char *name;
81 };
82
to_fw_priv(struct kref * ref)83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85 return container_of(ref, struct fw_priv, ref);
86 }
87
88 #define FW_LOADER_NO_CACHE 0
89 #define FW_LOADER_START_CACHE 1
90
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94
95 struct firmware_cache fw_cache;
96
fw_state_init(struct fw_priv * fw_priv)97 void fw_state_init(struct fw_priv *fw_priv)
98 {
99 struct fw_state *fw_st = &fw_priv->fw_st;
100
101 init_completion(&fw_st->completion);
102 fw_st->status = FW_STATUS_UNKNOWN;
103 }
104
fw_state_wait(struct fw_priv * fw_priv)105 static inline int fw_state_wait(struct fw_priv *fw_priv)
106 {
107 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
108 }
109
110 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
111
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)112 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
113 struct firmware_cache *fwc,
114 void *dbuf,
115 size_t size,
116 size_t offset,
117 u32 opt_flags)
118 {
119 struct fw_priv *fw_priv;
120
121 /* For a partial read, the buffer must be preallocated. */
122 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
123 return NULL;
124
125 /* Only partial reads are allowed to use an offset. */
126 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
127 return NULL;
128
129 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
130 if (!fw_priv)
131 return NULL;
132
133 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
134 if (!fw_priv->fw_name) {
135 kfree(fw_priv);
136 return NULL;
137 }
138
139 kref_init(&fw_priv->ref);
140 fw_priv->fwc = fwc;
141 fw_priv->data = dbuf;
142 fw_priv->allocated_size = size;
143 fw_priv->offset = offset;
144 fw_priv->opt_flags = opt_flags;
145 fw_state_init(fw_priv);
146 #ifdef CONFIG_FW_LOADER_USER_HELPER
147 INIT_LIST_HEAD(&fw_priv->pending_list);
148 #endif
149
150 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
151
152 return fw_priv;
153 }
154
__lookup_fw_priv(const char * fw_name)155 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
156 {
157 struct fw_priv *tmp;
158 struct firmware_cache *fwc = &fw_cache;
159
160 list_for_each_entry(tmp, &fwc->head, list)
161 if (!strcmp(tmp->fw_name, fw_name))
162 return tmp;
163 return NULL;
164 }
165
166 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)167 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
168 struct fw_priv **fw_priv, void *dbuf, size_t size,
169 size_t offset, u32 opt_flags)
170 {
171 struct fw_priv *tmp;
172
173 spin_lock(&fwc->lock);
174 /*
175 * Do not merge requests that are marked to be non-cached or
176 * are performing partial reads.
177 */
178 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
179 tmp = __lookup_fw_priv(fw_name);
180 if (tmp) {
181 kref_get(&tmp->ref);
182 spin_unlock(&fwc->lock);
183 *fw_priv = tmp;
184 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
185 return 1;
186 }
187 }
188
189 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
190 if (tmp) {
191 INIT_LIST_HEAD(&tmp->list);
192 if (!(opt_flags & FW_OPT_NOCACHE))
193 list_add(&tmp->list, &fwc->head);
194 }
195 spin_unlock(&fwc->lock);
196
197 *fw_priv = tmp;
198
199 return tmp ? 0 : -ENOMEM;
200 }
201
__free_fw_priv(struct kref * ref)202 static void __free_fw_priv(struct kref *ref)
203 __releases(&fwc->lock)
204 {
205 struct fw_priv *fw_priv = to_fw_priv(ref);
206 struct firmware_cache *fwc = fw_priv->fwc;
207
208 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
209 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
210 (unsigned int)fw_priv->size);
211
212 list_del(&fw_priv->list);
213 spin_unlock(&fwc->lock);
214
215 if (fw_is_paged_buf(fw_priv))
216 fw_free_paged_buf(fw_priv);
217 else if (!fw_priv->allocated_size)
218 vfree(fw_priv->data);
219
220 kfree_const(fw_priv->fw_name);
221 kfree(fw_priv);
222 }
223
free_fw_priv(struct fw_priv * fw_priv)224 void free_fw_priv(struct fw_priv *fw_priv)
225 {
226 struct firmware_cache *fwc = fw_priv->fwc;
227 spin_lock(&fwc->lock);
228 if (!kref_put(&fw_priv->ref, __free_fw_priv))
229 spin_unlock(&fwc->lock);
230 }
231
232 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)233 bool fw_is_paged_buf(struct fw_priv *fw_priv)
234 {
235 return fw_priv->is_paged_buf;
236 }
237
fw_free_paged_buf(struct fw_priv * fw_priv)238 void fw_free_paged_buf(struct fw_priv *fw_priv)
239 {
240 int i;
241
242 if (!fw_priv->pages)
243 return;
244
245 vunmap(fw_priv->data);
246
247 for (i = 0; i < fw_priv->nr_pages; i++)
248 __free_page(fw_priv->pages[i]);
249 kvfree(fw_priv->pages);
250 fw_priv->pages = NULL;
251 fw_priv->page_array_size = 0;
252 fw_priv->nr_pages = 0;
253 fw_priv->data = NULL;
254 fw_priv->size = 0;
255 }
256
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)257 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
258 {
259 /* If the array of pages is too small, grow it */
260 if (fw_priv->page_array_size < pages_needed) {
261 int new_array_size = max(pages_needed,
262 fw_priv->page_array_size * 2);
263 struct page **new_pages;
264
265 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
266 GFP_KERNEL);
267 if (!new_pages)
268 return -ENOMEM;
269 memcpy(new_pages, fw_priv->pages,
270 fw_priv->page_array_size * sizeof(void *));
271 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
272 (new_array_size - fw_priv->page_array_size));
273 kvfree(fw_priv->pages);
274 fw_priv->pages = new_pages;
275 fw_priv->page_array_size = new_array_size;
276 }
277
278 while (fw_priv->nr_pages < pages_needed) {
279 fw_priv->pages[fw_priv->nr_pages] =
280 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
281
282 if (!fw_priv->pages[fw_priv->nr_pages])
283 return -ENOMEM;
284 fw_priv->nr_pages++;
285 }
286
287 return 0;
288 }
289
fw_map_paged_buf(struct fw_priv * fw_priv)290 int fw_map_paged_buf(struct fw_priv *fw_priv)
291 {
292 /* one pages buffer should be mapped/unmapped only once */
293 if (!fw_priv->pages)
294 return 0;
295
296 vunmap(fw_priv->data);
297 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
298 PAGE_KERNEL_RO);
299 if (!fw_priv->data)
300 return -ENOMEM;
301
302 return 0;
303 }
304 #endif
305
306 /*
307 * ZSTD-compressed firmware support
308 */
309 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
fw_decompress_zstd(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)310 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
311 size_t in_size, const void *in_buffer)
312 {
313 size_t len, out_size, workspace_size;
314 void *workspace, *out_buf;
315 zstd_dctx *ctx;
316 int err;
317
318 if (fw_priv->allocated_size) {
319 out_size = fw_priv->allocated_size;
320 out_buf = fw_priv->data;
321 } else {
322 zstd_frame_header params;
323
324 if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
325 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
326 dev_dbg(dev, "%s: invalid zstd header\n", __func__);
327 return -EINVAL;
328 }
329 out_size = params.frameContentSize;
330 out_buf = vzalloc(out_size);
331 if (!out_buf)
332 return -ENOMEM;
333 }
334
335 workspace_size = zstd_dctx_workspace_bound();
336 workspace = kvzalloc(workspace_size, GFP_KERNEL);
337 if (!workspace) {
338 err = -ENOMEM;
339 goto error;
340 }
341
342 ctx = zstd_init_dctx(workspace, workspace_size);
343 if (!ctx) {
344 dev_dbg(dev, "%s: failed to initialize context\n", __func__);
345 err = -EINVAL;
346 goto error;
347 }
348
349 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
350 if (zstd_is_error(len)) {
351 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
352 zstd_get_error_code(len));
353 err = -EINVAL;
354 goto error;
355 }
356
357 if (!fw_priv->allocated_size)
358 fw_priv->data = out_buf;
359 fw_priv->size = len;
360 err = 0;
361
362 error:
363 kvfree(workspace);
364 if (err && !fw_priv->allocated_size)
365 vfree(out_buf);
366 return err;
367 }
368 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
369
370 /*
371 * XZ-compressed firmware support
372 */
373 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
374 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)375 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
376 {
377 if (xz_ret != XZ_STREAM_END) {
378 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
379 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
380 }
381 return 0;
382 }
383
384 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)385 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
386 size_t in_size, const void *in_buffer)
387 {
388 struct xz_dec *xz_dec;
389 struct xz_buf xz_buf;
390 enum xz_ret xz_ret;
391
392 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
393 if (!xz_dec)
394 return -ENOMEM;
395
396 xz_buf.in_size = in_size;
397 xz_buf.in = in_buffer;
398 xz_buf.in_pos = 0;
399 xz_buf.out_size = fw_priv->allocated_size;
400 xz_buf.out = fw_priv->data;
401 xz_buf.out_pos = 0;
402
403 xz_ret = xz_dec_run(xz_dec, &xz_buf);
404 xz_dec_end(xz_dec);
405
406 fw_priv->size = xz_buf.out_pos;
407 return fw_decompress_xz_error(dev, xz_ret);
408 }
409
410 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)411 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
412 size_t in_size, const void *in_buffer)
413 {
414 struct xz_dec *xz_dec;
415 struct xz_buf xz_buf;
416 enum xz_ret xz_ret;
417 struct page *page;
418 int err = 0;
419
420 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
421 if (!xz_dec)
422 return -ENOMEM;
423
424 xz_buf.in_size = in_size;
425 xz_buf.in = in_buffer;
426 xz_buf.in_pos = 0;
427
428 fw_priv->is_paged_buf = true;
429 fw_priv->size = 0;
430 do {
431 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
432 err = -ENOMEM;
433 goto out;
434 }
435
436 /* decompress onto the new allocated page */
437 page = fw_priv->pages[fw_priv->nr_pages - 1];
438 xz_buf.out = kmap_local_page(page);
439 xz_buf.out_pos = 0;
440 xz_buf.out_size = PAGE_SIZE;
441 xz_ret = xz_dec_run(xz_dec, &xz_buf);
442 kunmap_local(xz_buf.out);
443 fw_priv->size += xz_buf.out_pos;
444 /* partial decompression means either end or error */
445 if (xz_buf.out_pos != PAGE_SIZE)
446 break;
447 } while (xz_ret == XZ_OK);
448
449 err = fw_decompress_xz_error(dev, xz_ret);
450 if (!err)
451 err = fw_map_paged_buf(fw_priv);
452
453 out:
454 xz_dec_end(xz_dec);
455 return err;
456 }
457
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)458 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
459 size_t in_size, const void *in_buffer)
460 {
461 /* if the buffer is pre-allocated, we can perform in single-shot mode */
462 if (fw_priv->data)
463 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
464 else
465 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
466 }
467 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
468
469 /* direct firmware loading support */
470 #define CUSTOM_FW_PATH_COUNT 10
471 #define PATH_SIZE 255
472 static char fw_path_para[CUSTOM_FW_PATH_COUNT][PATH_SIZE];
473 static const char * const fw_path[] = {
474 fw_path_para[0],
475 fw_path_para[1],
476 fw_path_para[2],
477 fw_path_para[3],
478 fw_path_para[4],
479 fw_path_para[5],
480 fw_path_para[6],
481 fw_path_para[7],
482 fw_path_para[8],
483 fw_path_para[9],
484 "/lib/firmware/updates/" UTS_RELEASE,
485 "/lib/firmware/updates",
486 "/lib/firmware/" UTS_RELEASE,
487 "/lib/firmware"
488 };
489
490 static char strpath[PATH_SIZE * CUSTOM_FW_PATH_COUNT];
firmware_param_path_set(const char * val,const struct kernel_param * kp)491 static int firmware_param_path_set(const char *val, const struct kernel_param *kp)
492 {
493 int i;
494 char *path, *end;
495
496 strscpy(strpath, val, sizeof(strpath));
497 /* Remove leading and trailing spaces from path */
498 path = strim(strpath);
499 for (i = 0; path && i < CUSTOM_FW_PATH_COUNT; i++) {
500 end = strchr(path, ',');
501
502 /* Skip continuous token case, for example ',,,' */
503 if (end == path) {
504 i--;
505 path = ++end;
506 continue;
507 }
508
509 if (end != NULL)
510 *end = '\0';
511 else {
512 /* end of the string reached and no other tockens ',' */
513 strscpy(fw_path_para[i], path, PATH_SIZE);
514 break;
515 }
516
517 strscpy(fw_path_para[i], path, PATH_SIZE);
518 path = ++end;
519 }
520
521 return 0;
522 }
523
firmware_param_path_get(char * buffer,const struct kernel_param * kp)524 static int firmware_param_path_get(char *buffer, const struct kernel_param *kp)
525 {
526 int count = 0, i;
527
528 for (i = 0; i < CUSTOM_FW_PATH_COUNT; i++)
529 if (strlen(fw_path_para[i]) != 0)
530 count += sysfs_emit_at(buffer, count, "%s,", fw_path_para[i]);
531
532 return count;
533 }
534 /*
535 * Typical usage is that passing 'firmware_class.path=/vendor,/firwmare_mnt'
536 * from kernel command line because firmware_class is generally built in
537 * kernel instead of module. ',' is used as delimiter for setting 10
538 * custom paths for firmware loader.
539 */
540
541 static const struct kernel_param_ops firmware_param_ops = {
542 .set = firmware_param_path_set,
543 .get = firmware_param_path_get,
544 };
545 module_param_cb(path, &firmware_param_ops, NULL, 0644);
546 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
547
548 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))549 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
550 const char *suffix,
551 int (*decompress)(struct device *dev,
552 struct fw_priv *fw_priv,
553 size_t in_size,
554 const void *in_buffer))
555 {
556 size_t size;
557 int i, len;
558 int rc = -ENOENT;
559 char *path;
560 size_t msize = INT_MAX;
561 void *buffer = NULL;
562
563 /* Already populated data member means we're loading into a buffer */
564 if (!decompress && fw_priv->data) {
565 buffer = fw_priv->data;
566 msize = fw_priv->allocated_size;
567 }
568
569 path = __getname();
570 if (!path)
571 return -ENOMEM;
572
573 wait_for_initramfs();
574 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
575 size_t file_size = 0;
576 size_t *file_size_ptr = NULL;
577
578 /* skip the unset customized path */
579 if (!fw_path[i][0])
580 continue;
581
582 len = snprintf(path, PATH_MAX, "%s/%s%s",
583 fw_path[i], fw_priv->fw_name, suffix);
584 if (len >= PATH_MAX) {
585 rc = -ENAMETOOLONG;
586 break;
587 }
588
589 fw_priv->size = 0;
590
591 /*
592 * The total file size is only examined when doing a partial
593 * read; the "full read" case needs to fail if the whole
594 * firmware was not completely loaded.
595 */
596 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
597 file_size_ptr = &file_size;
598
599 /* load firmware files from the mount namespace of init */
600 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
601 &buffer, msize,
602 file_size_ptr,
603 READING_FIRMWARE);
604 if (rc < 0) {
605 if (rc != -ENOENT)
606 dev_warn(device, "loading %s failed with error %d\n",
607 path, rc);
608 else
609 dev_dbg(device, "loading %s failed for no such file or directory.\n",
610 path);
611 continue;
612 }
613 size = rc;
614 rc = 0;
615
616 dev_dbg(device, "Loading firmware from %s\n", path);
617 if (decompress) {
618 dev_dbg(device, "f/w decompressing %s\n",
619 fw_priv->fw_name);
620 rc = decompress(device, fw_priv, size, buffer);
621 /* discard the superfluous original content */
622 vfree(buffer);
623 buffer = NULL;
624 if (rc) {
625 fw_free_paged_buf(fw_priv);
626 continue;
627 }
628 } else {
629 dev_dbg(device, "direct-loading %s\n",
630 fw_priv->fw_name);
631 if (!fw_priv->data)
632 fw_priv->data = buffer;
633 fw_priv->size = size;
634 }
635 fw_state_done(fw_priv);
636 break;
637 }
638 __putname(path);
639
640 return rc;
641 }
642
643 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)644 static void firmware_free_data(const struct firmware *fw)
645 {
646 /* Loaded directly? */
647 if (!fw->priv) {
648 vfree(fw->data);
649 return;
650 }
651 free_fw_priv(fw->priv);
652 }
653
654 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)655 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
656 {
657 fw->priv = fw_priv;
658 fw->size = fw_priv->size;
659 fw->data = fw_priv->data;
660
661 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
662 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
663 (unsigned int)fw_priv->size);
664 }
665
666 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)667 static void fw_name_devm_release(struct device *dev, void *res)
668 {
669 struct fw_name_devm *fwn = res;
670
671 if (fwn->magic == (unsigned long)&fw_cache)
672 pr_debug("%s: fw_name-%s devm-%p released\n",
673 __func__, fwn->name, res);
674 kfree_const(fwn->name);
675 }
676
fw_devm_match(struct device * dev,void * res,void * match_data)677 static int fw_devm_match(struct device *dev, void *res,
678 void *match_data)
679 {
680 struct fw_name_devm *fwn = res;
681
682 return (fwn->magic == (unsigned long)&fw_cache) &&
683 !strcmp(fwn->name, match_data);
684 }
685
fw_find_devm_name(struct device * dev,const char * name)686 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
687 const char *name)
688 {
689 struct fw_name_devm *fwn;
690
691 fwn = devres_find(dev, fw_name_devm_release,
692 fw_devm_match, (void *)name);
693 return fwn;
694 }
695
fw_cache_is_setup(struct device * dev,const char * name)696 static bool fw_cache_is_setup(struct device *dev, const char *name)
697 {
698 struct fw_name_devm *fwn;
699
700 fwn = fw_find_devm_name(dev, name);
701 if (fwn)
702 return true;
703
704 return false;
705 }
706
707 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)708 static int fw_add_devm_name(struct device *dev, const char *name)
709 {
710 struct fw_name_devm *fwn;
711
712 if (fw_cache_is_setup(dev, name))
713 return 0;
714
715 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
716 GFP_KERNEL);
717 if (!fwn)
718 return -ENOMEM;
719 fwn->name = kstrdup_const(name, GFP_KERNEL);
720 if (!fwn->name) {
721 devres_free(fwn);
722 return -ENOMEM;
723 }
724
725 fwn->magic = (unsigned long)&fw_cache;
726 devres_add(dev, fwn);
727
728 return 0;
729 }
730 #else
fw_cache_is_setup(struct device * dev,const char * name)731 static bool fw_cache_is_setup(struct device *dev, const char *name)
732 {
733 return false;
734 }
735
fw_add_devm_name(struct device * dev,const char * name)736 static int fw_add_devm_name(struct device *dev, const char *name)
737 {
738 return 0;
739 }
740 #endif
741
assign_fw(struct firmware * fw,struct device * device)742 int assign_fw(struct firmware *fw, struct device *device)
743 {
744 struct fw_priv *fw_priv = fw->priv;
745 int ret;
746
747 mutex_lock(&fw_lock);
748 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
749 mutex_unlock(&fw_lock);
750 return -ENOENT;
751 }
752
753 /*
754 * add firmware name into devres list so that we can auto cache
755 * and uncache firmware for device.
756 *
757 * device may has been deleted already, but the problem
758 * should be fixed in devres or driver core.
759 */
760 /* don't cache firmware handled without uevent */
761 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
762 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
763 ret = fw_add_devm_name(device, fw_priv->fw_name);
764 if (ret) {
765 mutex_unlock(&fw_lock);
766 return ret;
767 }
768 }
769
770 /*
771 * After caching firmware image is started, let it piggyback
772 * on request firmware.
773 */
774 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
775 fw_priv->fwc->state == FW_LOADER_START_CACHE)
776 fw_cache_piggyback_on_request(fw_priv);
777
778 /* pass the pages buffer to driver at the last minute */
779 fw_set_page_data(fw_priv, fw);
780 mutex_unlock(&fw_lock);
781 return 0;
782 }
783
784 /* prepare firmware and firmware_buf structs;
785 * return 0 if a firmware is already assigned, 1 if need to load one,
786 * or a negative error code
787 */
788 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)789 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
790 struct device *device, void *dbuf, size_t size,
791 size_t offset, u32 opt_flags)
792 {
793 struct firmware *firmware;
794 struct fw_priv *fw_priv;
795 int ret;
796
797 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
798 if (!firmware) {
799 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
800 __func__);
801 return -ENOMEM;
802 }
803
804 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
805 dev_dbg(device, "using built-in %s\n", name);
806 return 0; /* assigned */
807 }
808
809 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
810 offset, opt_flags);
811
812 /*
813 * bind with 'priv' now to avoid warning in failure path
814 * of requesting firmware.
815 */
816 firmware->priv = fw_priv;
817
818 if (ret > 0) {
819 ret = fw_state_wait(fw_priv);
820 if (!ret) {
821 fw_set_page_data(fw_priv, firmware);
822 return 0; /* assigned */
823 }
824 }
825
826 if (ret < 0)
827 return ret;
828 return 1; /* need to load */
829 }
830
831 /*
832 * Batched requests need only one wake, we need to do this step last due to the
833 * fallback mechanism. The buf is protected with kref_get(), and it won't be
834 * released until the last user calls release_firmware().
835 *
836 * Failed batched requests are possible as well, in such cases we just share
837 * the struct fw_priv and won't release it until all requests are woken
838 * and have gone through this same path.
839 */
fw_abort_batch_reqs(struct firmware * fw)840 static void fw_abort_batch_reqs(struct firmware *fw)
841 {
842 struct fw_priv *fw_priv;
843
844 /* Loaded directly? */
845 if (!fw || !fw->priv)
846 return;
847
848 fw_priv = fw->priv;
849 mutex_lock(&fw_lock);
850 if (!fw_state_is_aborted(fw_priv))
851 fw_state_aborted(fw_priv);
852 mutex_unlock(&fw_lock);
853 }
854
855 /* called from request_firmware() and request_firmware_work_func() */
856 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)857 _request_firmware(const struct firmware **firmware_p, const char *name,
858 struct device *device, void *buf, size_t size,
859 size_t offset, u32 opt_flags)
860 {
861 struct firmware *fw = NULL;
862 struct cred *kern_cred = NULL;
863 const struct cred *old_cred;
864 bool nondirect = false;
865 int ret;
866
867 if (!firmware_p)
868 return -EINVAL;
869
870 if (!name || name[0] == '\0') {
871 ret = -EINVAL;
872 goto out;
873 }
874
875 ret = _request_firmware_prepare(&fw, name, device, buf, size,
876 offset, opt_flags);
877 if (ret <= 0) /* error or already assigned */
878 goto out;
879
880 /*
881 * We are about to try to access the firmware file. Because we may have been
882 * called by a driver when serving an unrelated request from userland, we use
883 * the kernel credentials to read the file.
884 */
885 kern_cred = prepare_kernel_cred(NULL);
886 if (!kern_cred) {
887 ret = -ENOMEM;
888 goto out;
889 }
890 old_cred = override_creds(kern_cred);
891
892 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
893
894 /* Only full reads can support decompression, platform, and sysfs. */
895 if (!(opt_flags & FW_OPT_PARTIAL))
896 nondirect = true;
897
898 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
899 if (ret == -ENOENT && nondirect)
900 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
901 fw_decompress_zstd);
902 #endif
903 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
904 if (ret == -ENOENT && nondirect)
905 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
906 fw_decompress_xz);
907 #endif
908 if (ret == -ENOENT && nondirect)
909 ret = firmware_fallback_platform(fw->priv);
910
911 if (ret) {
912 if (!(opt_flags & FW_OPT_NO_WARN))
913 dev_warn(device,
914 "Direct firmware load for %s failed with error %d\n",
915 name, ret);
916 if (nondirect)
917 ret = firmware_fallback_sysfs(fw, name, device,
918 opt_flags, ret);
919 } else
920 ret = assign_fw(fw, device);
921
922 revert_creds(old_cred);
923 put_cred(kern_cred);
924
925 out:
926 if (ret < 0) {
927 fw_abort_batch_reqs(fw);
928 release_firmware(fw);
929 fw = NULL;
930 }
931
932 *firmware_p = fw;
933 return ret;
934 }
935
936 /**
937 * request_firmware() - send firmware request and wait for it
938 * @firmware_p: pointer to firmware image
939 * @name: name of firmware file
940 * @device: device for which firmware is being loaded
941 *
942 * @firmware_p will be used to return a firmware image by the name
943 * of @name for device @device.
944 *
945 * Should be called from user context where sleeping is allowed.
946 *
947 * @name will be used as $FIRMWARE in the uevent environment and
948 * should be distinctive enough not to be confused with any other
949 * firmware image for this or any other device.
950 *
951 * Caller must hold the reference count of @device.
952 *
953 * The function can be called safely inside device's suspend and
954 * resume callback.
955 **/
956 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)957 request_firmware(const struct firmware **firmware_p, const char *name,
958 struct device *device)
959 {
960 int ret;
961
962 /* Need to pin this module until return */
963 __module_get(THIS_MODULE);
964 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
965 FW_OPT_UEVENT);
966 module_put(THIS_MODULE);
967 return ret;
968 }
969 EXPORT_SYMBOL(request_firmware);
970
971 /**
972 * firmware_request_nowarn() - request for an optional fw module
973 * @firmware: pointer to firmware image
974 * @name: name of firmware file
975 * @device: device for which firmware is being loaded
976 *
977 * This function is similar in behaviour to request_firmware(), except it
978 * doesn't produce warning messages when the file is not found. The sysfs
979 * fallback mechanism is enabled if direct filesystem lookup fails. However,
980 * failures to find the firmware file with it are still suppressed. It is
981 * therefore up to the driver to check for the return value of this call and to
982 * decide when to inform the users of errors.
983 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)984 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
985 struct device *device)
986 {
987 int ret;
988
989 /* Need to pin this module until return */
990 __module_get(THIS_MODULE);
991 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
992 FW_OPT_UEVENT | FW_OPT_NO_WARN);
993 module_put(THIS_MODULE);
994 return ret;
995 }
996 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
997
998 /**
999 * request_firmware_direct() - load firmware directly without usermode helper
1000 * @firmware_p: pointer to firmware image
1001 * @name: name of firmware file
1002 * @device: device for which firmware is being loaded
1003 *
1004 * This function works pretty much like request_firmware(), but this doesn't
1005 * fall back to usermode helper even if the firmware couldn't be loaded
1006 * directly from fs. Hence it's useful for loading optional firmwares, which
1007 * aren't always present, without extra long timeouts of udev.
1008 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)1009 int request_firmware_direct(const struct firmware **firmware_p,
1010 const char *name, struct device *device)
1011 {
1012 int ret;
1013
1014 __module_get(THIS_MODULE);
1015 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1016 FW_OPT_UEVENT | FW_OPT_NO_WARN |
1017 FW_OPT_NOFALLBACK_SYSFS);
1018 module_put(THIS_MODULE);
1019 return ret;
1020 }
1021 EXPORT_SYMBOL_GPL(request_firmware_direct);
1022
1023 /**
1024 * firmware_request_platform() - request firmware with platform-fw fallback
1025 * @firmware: pointer to firmware image
1026 * @name: name of firmware file
1027 * @device: device for which firmware is being loaded
1028 *
1029 * This function is similar in behaviour to request_firmware, except that if
1030 * direct filesystem lookup fails, it will fallback to looking for a copy of the
1031 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1032 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)1033 int firmware_request_platform(const struct firmware **firmware,
1034 const char *name, struct device *device)
1035 {
1036 int ret;
1037
1038 /* Need to pin this module until return */
1039 __module_get(THIS_MODULE);
1040 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1041 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1042 module_put(THIS_MODULE);
1043 return ret;
1044 }
1045 EXPORT_SYMBOL_GPL(firmware_request_platform);
1046
1047 /**
1048 * firmware_request_cache() - cache firmware for suspend so resume can use it
1049 * @name: name of firmware file
1050 * @device: device for which firmware should be cached for
1051 *
1052 * There are some devices with an optimization that enables the device to not
1053 * require loading firmware on system reboot. This optimization may still
1054 * require the firmware present on resume from suspend. This routine can be
1055 * used to ensure the firmware is present on resume from suspend in these
1056 * situations. This helper is not compatible with drivers which use
1057 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1058 **/
firmware_request_cache(struct device * device,const char * name)1059 int firmware_request_cache(struct device *device, const char *name)
1060 {
1061 int ret;
1062
1063 mutex_lock(&fw_lock);
1064 ret = fw_add_devm_name(device, name);
1065 mutex_unlock(&fw_lock);
1066
1067 return ret;
1068 }
1069 EXPORT_SYMBOL_GPL(firmware_request_cache);
1070
1071 /**
1072 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1073 * @firmware_p: pointer to firmware image
1074 * @name: name of firmware file
1075 * @device: device for which firmware is being loaded and DMA region allocated
1076 * @buf: address of buffer to load firmware into
1077 * @size: size of buffer
1078 *
1079 * This function works pretty much like request_firmware(), but it doesn't
1080 * allocate a buffer to hold the firmware data. Instead, the firmware
1081 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1082 * data member is pointed at @buf.
1083 *
1084 * This function doesn't cache firmware either.
1085 */
1086 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1087 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1088 struct device *device, void *buf, size_t size)
1089 {
1090 int ret;
1091
1092 if (fw_cache_is_setup(device, name))
1093 return -EOPNOTSUPP;
1094
1095 __module_get(THIS_MODULE);
1096 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1097 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1098 module_put(THIS_MODULE);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL(request_firmware_into_buf);
1102
1103 /**
1104 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1105 * @firmware_p: pointer to firmware image
1106 * @name: name of firmware file
1107 * @device: device for which firmware is being loaded and DMA region allocated
1108 * @buf: address of buffer to load firmware into
1109 * @size: size of buffer
1110 * @offset: offset into file to read
1111 *
1112 * This function works pretty much like request_firmware_into_buf except
1113 * it allows a partial read of the file.
1114 */
1115 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1116 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1117 const char *name, struct device *device,
1118 void *buf, size_t size, size_t offset)
1119 {
1120 int ret;
1121
1122 if (fw_cache_is_setup(device, name))
1123 return -EOPNOTSUPP;
1124
1125 __module_get(THIS_MODULE);
1126 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1127 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1128 FW_OPT_PARTIAL);
1129 module_put(THIS_MODULE);
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1133
1134 /**
1135 * release_firmware() - release the resource associated with a firmware image
1136 * @fw: firmware resource to release
1137 **/
release_firmware(const struct firmware * fw)1138 void release_firmware(const struct firmware *fw)
1139 {
1140 if (fw) {
1141 if (!firmware_is_builtin(fw))
1142 firmware_free_data(fw);
1143 kfree(fw);
1144 }
1145 }
1146 EXPORT_SYMBOL(release_firmware);
1147
1148 /* Async support */
1149 struct firmware_work {
1150 struct work_struct work;
1151 struct module *module;
1152 const char *name;
1153 struct device *device;
1154 void *context;
1155 void (*cont)(const struct firmware *fw, void *context);
1156 u32 opt_flags;
1157 };
1158
request_firmware_work_func(struct work_struct * work)1159 static void request_firmware_work_func(struct work_struct *work)
1160 {
1161 struct firmware_work *fw_work;
1162 const struct firmware *fw;
1163
1164 fw_work = container_of(work, struct firmware_work, work);
1165
1166 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1167 fw_work->opt_flags);
1168 fw_work->cont(fw, fw_work->context);
1169 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1170
1171 module_put(fw_work->module);
1172 kfree_const(fw_work->name);
1173 kfree(fw_work);
1174 }
1175
1176 /**
1177 * request_firmware_nowait() - asynchronous version of request_firmware
1178 * @module: module requesting the firmware
1179 * @uevent: sends uevent to copy the firmware image if this flag
1180 * is non-zero else the firmware copy must be done manually.
1181 * @name: name of firmware file
1182 * @device: device for which firmware is being loaded
1183 * @gfp: allocation flags
1184 * @context: will be passed over to @cont, and
1185 * @fw may be %NULL if firmware request fails.
1186 * @cont: function will be called asynchronously when the firmware
1187 * request is over.
1188 *
1189 * Caller must hold the reference count of @device.
1190 *
1191 * Asynchronous variant of request_firmware() for user contexts:
1192 * - sleep for as small periods as possible since it may
1193 * increase kernel boot time of built-in device drivers
1194 * requesting firmware in their ->probe() methods, if
1195 * @gfp is GFP_KERNEL.
1196 *
1197 * - can't sleep at all if @gfp is GFP_ATOMIC.
1198 **/
1199 int
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1200 request_firmware_nowait(
1201 struct module *module, bool uevent,
1202 const char *name, struct device *device, gfp_t gfp, void *context,
1203 void (*cont)(const struct firmware *fw, void *context))
1204 {
1205 struct firmware_work *fw_work;
1206
1207 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1208 if (!fw_work)
1209 return -ENOMEM;
1210
1211 fw_work->module = module;
1212 fw_work->name = kstrdup_const(name, gfp);
1213 if (!fw_work->name) {
1214 kfree(fw_work);
1215 return -ENOMEM;
1216 }
1217 fw_work->device = device;
1218 fw_work->context = context;
1219 fw_work->cont = cont;
1220 fw_work->opt_flags = FW_OPT_NOWAIT |
1221 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER);
1222
1223 if (!uevent && fw_cache_is_setup(device, name)) {
1224 kfree_const(fw_work->name);
1225 kfree(fw_work);
1226 return -EOPNOTSUPP;
1227 }
1228
1229 if (!try_module_get(module)) {
1230 kfree_const(fw_work->name);
1231 kfree(fw_work);
1232 return -EFAULT;
1233 }
1234
1235 get_device(fw_work->device);
1236 INIT_WORK(&fw_work->work, request_firmware_work_func);
1237 schedule_work(&fw_work->work);
1238 return 0;
1239 }
1240 EXPORT_SYMBOL(request_firmware_nowait);
1241
1242 #ifdef CONFIG_FW_CACHE
1243 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1244
1245 /**
1246 * cache_firmware() - cache one firmware image in kernel memory space
1247 * @fw_name: the firmware image name
1248 *
1249 * Cache firmware in kernel memory so that drivers can use it when
1250 * system isn't ready for them to request firmware image from userspace.
1251 * Once it returns successfully, driver can use request_firmware or its
1252 * nowait version to get the cached firmware without any interacting
1253 * with userspace
1254 *
1255 * Return 0 if the firmware image has been cached successfully
1256 * Return !0 otherwise
1257 *
1258 */
cache_firmware(const char * fw_name)1259 static int cache_firmware(const char *fw_name)
1260 {
1261 int ret;
1262 const struct firmware *fw;
1263
1264 pr_debug("%s: %s\n", __func__, fw_name);
1265
1266 ret = request_firmware(&fw, fw_name, NULL);
1267 if (!ret)
1268 kfree(fw);
1269
1270 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1271
1272 return ret;
1273 }
1274
lookup_fw_priv(const char * fw_name)1275 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1276 {
1277 struct fw_priv *tmp;
1278 struct firmware_cache *fwc = &fw_cache;
1279
1280 spin_lock(&fwc->lock);
1281 tmp = __lookup_fw_priv(fw_name);
1282 spin_unlock(&fwc->lock);
1283
1284 return tmp;
1285 }
1286
1287 /**
1288 * uncache_firmware() - remove one cached firmware image
1289 * @fw_name: the firmware image name
1290 *
1291 * Uncache one firmware image which has been cached successfully
1292 * before.
1293 *
1294 * Return 0 if the firmware cache has been removed successfully
1295 * Return !0 otherwise
1296 *
1297 */
uncache_firmware(const char * fw_name)1298 static int uncache_firmware(const char *fw_name)
1299 {
1300 struct fw_priv *fw_priv;
1301 struct firmware fw;
1302
1303 pr_debug("%s: %s\n", __func__, fw_name);
1304
1305 if (firmware_request_builtin(&fw, fw_name))
1306 return 0;
1307
1308 fw_priv = lookup_fw_priv(fw_name);
1309 if (fw_priv) {
1310 free_fw_priv(fw_priv);
1311 return 0;
1312 }
1313
1314 return -EINVAL;
1315 }
1316
alloc_fw_cache_entry(const char * name)1317 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1318 {
1319 struct fw_cache_entry *fce;
1320
1321 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1322 if (!fce)
1323 goto exit;
1324
1325 fce->name = kstrdup_const(name, GFP_ATOMIC);
1326 if (!fce->name) {
1327 kfree(fce);
1328 fce = NULL;
1329 goto exit;
1330 }
1331 exit:
1332 return fce;
1333 }
1334
__fw_entry_found(const char * name)1335 static int __fw_entry_found(const char *name)
1336 {
1337 struct firmware_cache *fwc = &fw_cache;
1338 struct fw_cache_entry *fce;
1339
1340 list_for_each_entry(fce, &fwc->fw_names, list) {
1341 if (!strcmp(fce->name, name))
1342 return 1;
1343 }
1344 return 0;
1345 }
1346
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1347 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1348 {
1349 const char *name = fw_priv->fw_name;
1350 struct firmware_cache *fwc = fw_priv->fwc;
1351 struct fw_cache_entry *fce;
1352
1353 spin_lock(&fwc->name_lock);
1354 if (__fw_entry_found(name))
1355 goto found;
1356
1357 fce = alloc_fw_cache_entry(name);
1358 if (fce) {
1359 list_add(&fce->list, &fwc->fw_names);
1360 kref_get(&fw_priv->ref);
1361 pr_debug("%s: fw: %s\n", __func__, name);
1362 }
1363 found:
1364 spin_unlock(&fwc->name_lock);
1365 }
1366
free_fw_cache_entry(struct fw_cache_entry * fce)1367 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1368 {
1369 kfree_const(fce->name);
1370 kfree(fce);
1371 }
1372
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1373 static void __async_dev_cache_fw_image(void *fw_entry,
1374 async_cookie_t cookie)
1375 {
1376 struct fw_cache_entry *fce = fw_entry;
1377 struct firmware_cache *fwc = &fw_cache;
1378 int ret;
1379
1380 ret = cache_firmware(fce->name);
1381 if (ret) {
1382 spin_lock(&fwc->name_lock);
1383 list_del(&fce->list);
1384 spin_unlock(&fwc->name_lock);
1385
1386 free_fw_cache_entry(fce);
1387 }
1388 }
1389
1390 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1391 static void dev_create_fw_entry(struct device *dev, void *res,
1392 void *data)
1393 {
1394 struct fw_name_devm *fwn = res;
1395 const char *fw_name = fwn->name;
1396 struct list_head *head = data;
1397 struct fw_cache_entry *fce;
1398
1399 fce = alloc_fw_cache_entry(fw_name);
1400 if (fce)
1401 list_add(&fce->list, head);
1402 }
1403
devm_name_match(struct device * dev,void * res,void * match_data)1404 static int devm_name_match(struct device *dev, void *res,
1405 void *match_data)
1406 {
1407 struct fw_name_devm *fwn = res;
1408 return (fwn->magic == (unsigned long)match_data);
1409 }
1410
dev_cache_fw_image(struct device * dev,void * data)1411 static void dev_cache_fw_image(struct device *dev, void *data)
1412 {
1413 LIST_HEAD(todo);
1414 struct fw_cache_entry *fce;
1415 struct fw_cache_entry *fce_next;
1416 struct firmware_cache *fwc = &fw_cache;
1417
1418 devres_for_each_res(dev, fw_name_devm_release,
1419 devm_name_match, &fw_cache,
1420 dev_create_fw_entry, &todo);
1421
1422 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1423 list_del(&fce->list);
1424
1425 spin_lock(&fwc->name_lock);
1426 /* only one cache entry for one firmware */
1427 if (!__fw_entry_found(fce->name)) {
1428 list_add(&fce->list, &fwc->fw_names);
1429 } else {
1430 free_fw_cache_entry(fce);
1431 fce = NULL;
1432 }
1433 spin_unlock(&fwc->name_lock);
1434
1435 if (fce)
1436 async_schedule_domain(__async_dev_cache_fw_image,
1437 (void *)fce,
1438 &fw_cache_domain);
1439 }
1440 }
1441
__device_uncache_fw_images(void)1442 static void __device_uncache_fw_images(void)
1443 {
1444 struct firmware_cache *fwc = &fw_cache;
1445 struct fw_cache_entry *fce;
1446
1447 spin_lock(&fwc->name_lock);
1448 while (!list_empty(&fwc->fw_names)) {
1449 fce = list_entry(fwc->fw_names.next,
1450 struct fw_cache_entry, list);
1451 list_del(&fce->list);
1452 spin_unlock(&fwc->name_lock);
1453
1454 uncache_firmware(fce->name);
1455 free_fw_cache_entry(fce);
1456
1457 spin_lock(&fwc->name_lock);
1458 }
1459 spin_unlock(&fwc->name_lock);
1460 }
1461
1462 /**
1463 * device_cache_fw_images() - cache devices' firmware
1464 *
1465 * If one device called request_firmware or its nowait version
1466 * successfully before, the firmware names are recored into the
1467 * device's devres link list, so device_cache_fw_images can call
1468 * cache_firmware() to cache these firmwares for the device,
1469 * then the device driver can load its firmwares easily at
1470 * time when system is not ready to complete loading firmware.
1471 */
device_cache_fw_images(void)1472 static void device_cache_fw_images(void)
1473 {
1474 struct firmware_cache *fwc = &fw_cache;
1475 DEFINE_WAIT(wait);
1476
1477 pr_debug("%s\n", __func__);
1478
1479 /* cancel uncache work */
1480 cancel_delayed_work_sync(&fwc->work);
1481
1482 fw_fallback_set_cache_timeout();
1483
1484 mutex_lock(&fw_lock);
1485 fwc->state = FW_LOADER_START_CACHE;
1486 dpm_for_each_dev(NULL, dev_cache_fw_image);
1487 mutex_unlock(&fw_lock);
1488
1489 /* wait for completion of caching firmware for all devices */
1490 async_synchronize_full_domain(&fw_cache_domain);
1491
1492 fw_fallback_set_default_timeout();
1493 }
1494
1495 /**
1496 * device_uncache_fw_images() - uncache devices' firmware
1497 *
1498 * uncache all firmwares which have been cached successfully
1499 * by device_uncache_fw_images earlier
1500 */
device_uncache_fw_images(void)1501 static void device_uncache_fw_images(void)
1502 {
1503 pr_debug("%s\n", __func__);
1504 __device_uncache_fw_images();
1505 }
1506
device_uncache_fw_images_work(struct work_struct * work)1507 static void device_uncache_fw_images_work(struct work_struct *work)
1508 {
1509 device_uncache_fw_images();
1510 }
1511
1512 /**
1513 * device_uncache_fw_images_delay() - uncache devices firmwares
1514 * @delay: number of milliseconds to delay uncache device firmwares
1515 *
1516 * uncache all devices's firmwares which has been cached successfully
1517 * by device_cache_fw_images after @delay milliseconds.
1518 */
device_uncache_fw_images_delay(unsigned long delay)1519 static void device_uncache_fw_images_delay(unsigned long delay)
1520 {
1521 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1522 msecs_to_jiffies(delay));
1523 }
1524
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1525 static int fw_pm_notify(struct notifier_block *notify_block,
1526 unsigned long mode, void *unused)
1527 {
1528 switch (mode) {
1529 case PM_HIBERNATION_PREPARE:
1530 case PM_SUSPEND_PREPARE:
1531 case PM_RESTORE_PREPARE:
1532 /*
1533 * kill pending fallback requests with a custom fallback
1534 * to avoid stalling suspend.
1535 */
1536 kill_pending_fw_fallback_reqs(true);
1537 device_cache_fw_images();
1538 break;
1539
1540 case PM_POST_SUSPEND:
1541 case PM_POST_HIBERNATION:
1542 case PM_POST_RESTORE:
1543 /*
1544 * In case that system sleep failed and syscore_suspend is
1545 * not called.
1546 */
1547 mutex_lock(&fw_lock);
1548 fw_cache.state = FW_LOADER_NO_CACHE;
1549 mutex_unlock(&fw_lock);
1550
1551 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1552 break;
1553 }
1554
1555 return 0;
1556 }
1557
1558 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1559 static int fw_suspend(void)
1560 {
1561 fw_cache.state = FW_LOADER_NO_CACHE;
1562 return 0;
1563 }
1564
1565 static struct syscore_ops fw_syscore_ops = {
1566 .suspend = fw_suspend,
1567 };
1568
register_fw_pm_ops(void)1569 static int __init register_fw_pm_ops(void)
1570 {
1571 int ret;
1572
1573 spin_lock_init(&fw_cache.name_lock);
1574 INIT_LIST_HEAD(&fw_cache.fw_names);
1575
1576 INIT_DELAYED_WORK(&fw_cache.work,
1577 device_uncache_fw_images_work);
1578
1579 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1580 ret = register_pm_notifier(&fw_cache.pm_notify);
1581 if (ret)
1582 return ret;
1583
1584 register_syscore_ops(&fw_syscore_ops);
1585
1586 return ret;
1587 }
1588
unregister_fw_pm_ops(void)1589 static inline void unregister_fw_pm_ops(void)
1590 {
1591 unregister_syscore_ops(&fw_syscore_ops);
1592 unregister_pm_notifier(&fw_cache.pm_notify);
1593 }
1594 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1595 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1596 {
1597 }
register_fw_pm_ops(void)1598 static inline int register_fw_pm_ops(void)
1599 {
1600 return 0;
1601 }
unregister_fw_pm_ops(void)1602 static inline void unregister_fw_pm_ops(void)
1603 {
1604 }
1605 #endif
1606
fw_cache_init(void)1607 static void __init fw_cache_init(void)
1608 {
1609 spin_lock_init(&fw_cache.lock);
1610 INIT_LIST_HEAD(&fw_cache.head);
1611 fw_cache.state = FW_LOADER_NO_CACHE;
1612 }
1613
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1614 static int fw_shutdown_notify(struct notifier_block *unused1,
1615 unsigned long unused2, void *unused3)
1616 {
1617 /*
1618 * Kill all pending fallback requests to avoid both stalling shutdown,
1619 * and avoid a deadlock with the usermode_lock.
1620 */
1621 kill_pending_fw_fallback_reqs(false);
1622
1623 return NOTIFY_DONE;
1624 }
1625
1626 static struct notifier_block fw_shutdown_nb = {
1627 .notifier_call = fw_shutdown_notify,
1628 };
1629
firmware_class_init(void)1630 static int __init firmware_class_init(void)
1631 {
1632 int ret;
1633
1634 /* No need to unfold these on exit */
1635 fw_cache_init();
1636
1637 ret = register_fw_pm_ops();
1638 if (ret)
1639 return ret;
1640
1641 ret = register_reboot_notifier(&fw_shutdown_nb);
1642 if (ret)
1643 goto out;
1644
1645 return register_sysfs_loader();
1646
1647 out:
1648 unregister_fw_pm_ops();
1649 return ret;
1650 }
1651
firmware_class_exit(void)1652 static void __exit firmware_class_exit(void)
1653 {
1654 unregister_fw_pm_ops();
1655 unregister_reboot_notifier(&fw_shutdown_nb);
1656 unregister_sysfs_loader();
1657 }
1658
1659 fs_initcall(firmware_class_init);
1660 module_exit(firmware_class_exit);
1661