• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101 
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t mtd_type_show(struct device *dev,
106 		struct device_attribute *attr, char *buf)
107 {
108 	struct mtd_info *mtd = dev_get_drvdata(dev);
109 	char *type;
110 
111 	switch (mtd->type) {
112 	case MTD_ABSENT:
113 		type = "absent";
114 		break;
115 	case MTD_RAM:
116 		type = "ram";
117 		break;
118 	case MTD_ROM:
119 		type = "rom";
120 		break;
121 	case MTD_NORFLASH:
122 		type = "nor";
123 		break;
124 	case MTD_NANDFLASH:
125 		type = "nand";
126 		break;
127 	case MTD_DATAFLASH:
128 		type = "dataflash";
129 		break;
130 	case MTD_UBIVOLUME:
131 		type = "ubi";
132 		break;
133 	case MTD_MLCNANDFLASH:
134 		type = "mlc-nand";
135 		break;
136 	default:
137 		type = "unknown";
138 	}
139 
140 	return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t mtd_flags_show(struct device *dev,
145 		struct device_attribute *attr, char *buf)
146 {
147 	struct mtd_info *mtd = dev_get_drvdata(dev);
148 
149 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)153 static ssize_t mtd_size_show(struct device *dev,
154 		struct device_attribute *attr, char *buf)
155 {
156 	struct mtd_info *mtd = dev_get_drvdata(dev);
157 
158 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t mtd_erasesize_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_writesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185 
186 	return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t mtd_oobsize_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198 
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_oobavail_show(struct device *dev,
200 				 struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)217 static ssize_t mtd_name_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 				     struct device_attribute *attr, char *buf)
228 {
229 	struct mtd_info *mtd = dev_get_drvdata(dev);
230 
231 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 					  struct device_attribute *attr,
237 					  char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 					   struct device_attribute *attr,
246 					   const char *buf, size_t count)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 	unsigned int bitflip_threshold;
250 	int retval;
251 
252 	retval = kstrtouint(buf, 0, &bitflip_threshold);
253 	if (retval)
254 		return retval;
255 
256 	mtd->bitflip_threshold = bitflip_threshold;
257 	return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 		struct device_attribute *attr, char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267 
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270 
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276 
277 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
280 
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
290 
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300 
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310 
311 static struct attribute *mtd_attrs[] = {
312 	&dev_attr_type.attr,
313 	&dev_attr_flags.attr,
314 	&dev_attr_size.attr,
315 	&dev_attr_erasesize.attr,
316 	&dev_attr_writesize.attr,
317 	&dev_attr_subpagesize.attr,
318 	&dev_attr_oobsize.attr,
319 	&dev_attr_oobavail.attr,
320 	&dev_attr_numeraseregions.attr,
321 	&dev_attr_name.attr,
322 	&dev_attr_ecc_strength.attr,
323 	&dev_attr_ecc_step_size.attr,
324 	&dev_attr_corrected_bits.attr,
325 	&dev_attr_ecc_failures.attr,
326 	&dev_attr_bad_blocks.attr,
327 	&dev_attr_bbt_blocks.attr,
328 	&dev_attr_bitflip_threshold.attr,
329 	NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332 
333 static const struct device_type mtd_devtype = {
334 	.name		= "mtd",
335 	.groups		= mtd_groups,
336 	.release	= mtd_release,
337 };
338 
339 static bool mtd_expert_analysis_mode;
340 
341 #ifdef CONFIG_DEBUG_FS
mtd_check_expert_analysis_mode(void)342 bool mtd_check_expert_analysis_mode(void)
343 {
344 	const char *mtd_expert_analysis_warning =
345 		"Bad block checks have been entirely disabled.\n"
346 		"This is only reserved for post-mortem forensics and debug purposes.\n"
347 		"Never enable this mode if you do not know what you are doing!\n";
348 
349 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350 }
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352 #endif
353 
354 static struct dentry *dfs_dir_mtd;
355 
mtd_debugfs_populate(struct mtd_info * mtd)356 static void mtd_debugfs_populate(struct mtd_info *mtd)
357 {
358 	struct device *dev = &mtd->dev;
359 
360 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 		return;
362 
363 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364 }
365 
366 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368 {
369 	switch (mtd->type) {
370 	case MTD_RAM:
371 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 	case MTD_ROM:
374 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 			NOMMU_MAP_READ;
376 	default:
377 		return NOMMU_MAP_COPY;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381 #endif
382 
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 			       void *cmd)
385 {
386 	struct mtd_info *mtd;
387 
388 	mtd = container_of(n, struct mtd_info, reboot_notifier);
389 	mtd->_reboot(mtd);
390 
391 	return NOTIFY_DONE;
392 }
393 
394 /**
395  * mtd_wunit_to_pairing_info - get pairing information of a wunit
396  * @mtd: pointer to new MTD device info structure
397  * @wunit: write unit we are interested in
398  * @info: returned pairing information
399  *
400  * Retrieve pairing information associated to the wunit.
401  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402  * paired together, and where programming a page may influence the page it is
403  * paired with.
404  * The notion of page is replaced by the term wunit (write-unit) to stay
405  * consistent with the ->writesize field.
406  *
407  * The @wunit argument can be extracted from an absolute offset using
408  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409  * to @wunit.
410  *
411  * From the pairing info the MTD user can find all the wunits paired with
412  * @wunit using the following loop:
413  *
414  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415  *	info.pair = i;
416  *	mtd_pairing_info_to_wunit(mtd, &info);
417  *	...
418  * }
419  */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 			      struct mtd_pairing_info *info)
422 {
423 	struct mtd_info *master = mtd_get_master(mtd);
424 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425 
426 	if (wunit < 0 || wunit >= npairs)
427 		return -EINVAL;
428 
429 	if (master->pairing && master->pairing->get_info)
430 		return master->pairing->get_info(master, wunit, info);
431 
432 	info->group = 0;
433 	info->pair = wunit;
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438 
439 /**
440  * mtd_pairing_info_to_wunit - get wunit from pairing information
441  * @mtd: pointer to new MTD device info structure
442  * @info: pairing information struct
443  *
444  * Returns a positive number representing the wunit associated to the info
445  * struct, or a negative error code.
446  *
447  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449  * doc).
450  *
451  * It can also be used to only program the first page of each pair (i.e.
452  * page attached to group 0), which allows one to use an MLC NAND in
453  * software-emulated SLC mode:
454  *
455  * info.group = 0;
456  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457  * for (info.pair = 0; info.pair < npairs; info.pair++) {
458  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
459  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
461  * }
462  */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 			      const struct mtd_pairing_info *info)
465 {
466 	struct mtd_info *master = mtd_get_master(mtd);
467 	int ngroups = mtd_pairing_groups(master);
468 	int npairs = mtd_wunit_per_eb(master) / ngroups;
469 
470 	if (!info || info->pair < 0 || info->pair >= npairs ||
471 	    info->group < 0 || info->group >= ngroups)
472 		return -EINVAL;
473 
474 	if (master->pairing && master->pairing->get_wunit)
475 		return mtd->pairing->get_wunit(master, info);
476 
477 	return info->pair;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480 
481 /**
482  * mtd_pairing_groups - get the number of pairing groups
483  * @mtd: pointer to new MTD device info structure
484  *
485  * Returns the number of pairing groups.
486  *
487  * This number is usually equal to the number of bits exposed by a single
488  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489  * to iterate over all pages of a given pair.
490  */
mtd_pairing_groups(struct mtd_info * mtd)491 int mtd_pairing_groups(struct mtd_info *mtd)
492 {
493 	struct mtd_info *master = mtd_get_master(mtd);
494 
495 	if (!master->pairing || !master->pairing->ngroups)
496 		return 1;
497 
498 	return master->pairing->ngroups;
499 }
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501 
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 			      void *val, size_t bytes)
504 {
505 	struct mtd_info *mtd = priv;
506 	size_t retlen;
507 	int err;
508 
509 	err = mtd_read(mtd, offset, bytes, &retlen, val);
510 	if (err && err != -EUCLEAN)
511 		return err;
512 
513 	return retlen == bytes ? 0 : -EIO;
514 }
515 
mtd_nvmem_add(struct mtd_info * mtd)516 static int mtd_nvmem_add(struct mtd_info *mtd)
517 {
518 	struct device_node *node = mtd_get_of_node(mtd);
519 	struct nvmem_config config = {};
520 
521 	config.id = -1;
522 	config.dev = &mtd->dev;
523 	config.name = dev_name(&mtd->dev);
524 	config.owner = THIS_MODULE;
525 	config.reg_read = mtd_nvmem_reg_read;
526 	config.size = mtd->size;
527 	config.word_size = 1;
528 	config.stride = 1;
529 	config.read_only = true;
530 	config.root_only = true;
531 	config.ignore_wp = true;
532 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 	config.priv = mtd;
534 
535 	mtd->nvmem = nvmem_register(&config);
536 	if (IS_ERR(mtd->nvmem)) {
537 		/* Just ignore if there is no NVMEM support in the kernel */
538 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
539 			mtd->nvmem = NULL;
540 		} else {
541 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 			return PTR_ERR(mtd->nvmem);
543 		}
544 	}
545 
546 	return 0;
547 }
548 
mtd_check_of_node(struct mtd_info * mtd)549 static void mtd_check_of_node(struct mtd_info *mtd)
550 {
551 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 	const char *pname, *prefix = "partition-";
553 	int plen, mtd_name_len, offset, prefix_len;
554 	struct mtd_info *parent;
555 	bool found = false;
556 
557 	/* Check if MTD already has a device node */
558 	if (dev_of_node(&mtd->dev))
559 		return;
560 
561 	/* Check if a partitions node exist */
562 	if (!mtd_is_partition(mtd))
563 		return;
564 	parent = mtd->parent;
565 	parent_dn = of_node_get(dev_of_node(&parent->dev));
566 	if (!parent_dn)
567 		return;
568 
569 	partitions = of_get_child_by_name(parent_dn, "partitions");
570 	if (!partitions)
571 		goto exit_parent;
572 
573 	prefix_len = strlen(prefix);
574 	mtd_name_len = strlen(mtd->name);
575 
576 	/* Search if a partition is defined with the same name */
577 	for_each_child_of_node(partitions, mtd_dn) {
578 		offset = 0;
579 
580 		/* Skip partition with no/wrong prefix */
581 		if (!of_node_name_prefix(mtd_dn, "partition-"))
582 			continue;
583 
584 		/* Label have priority. Check that first */
585 		if (of_property_read_string(mtd_dn, "label", &pname)) {
586 			of_property_read_string(mtd_dn, "name", &pname);
587 			offset = prefix_len;
588 		}
589 
590 		plen = strlen(pname) - offset;
591 		if (plen == mtd_name_len &&
592 		    !strncmp(mtd->name, pname + offset, plen)) {
593 			found = true;
594 			break;
595 		}
596 	}
597 
598 	if (!found)
599 		goto exit_partitions;
600 
601 	/* Set of_node only for nvmem */
602 	if (of_device_is_compatible(mtd_dn, "nvmem-cells"))
603 		mtd_set_of_node(mtd, mtd_dn);
604 
605 exit_partitions:
606 	of_node_put(partitions);
607 exit_parent:
608 	of_node_put(parent_dn);
609 }
610 
611 /**
612  *	add_mtd_device - register an MTD device
613  *	@mtd: pointer to new MTD device info structure
614  *
615  *	Add a device to the list of MTD devices present in the system, and
616  *	notify each currently active MTD 'user' of its arrival. Returns
617  *	zero on success or non-zero on failure.
618  */
619 
add_mtd_device(struct mtd_info * mtd)620 int add_mtd_device(struct mtd_info *mtd)
621 {
622 	struct device_node *np = mtd_get_of_node(mtd);
623 	struct mtd_info *master = mtd_get_master(mtd);
624 	struct mtd_notifier *not;
625 	int i, error, ofidx;
626 
627 	/*
628 	 * May occur, for instance, on buggy drivers which call
629 	 * mtd_device_parse_register() multiple times on the same master MTD,
630 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
631 	 */
632 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
633 		return -EEXIST;
634 
635 	BUG_ON(mtd->writesize == 0);
636 
637 	/*
638 	 * MTD drivers should implement ->_{write,read}() or
639 	 * ->_{write,read}_oob(), but not both.
640 	 */
641 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
642 		    (mtd->_read && mtd->_read_oob)))
643 		return -EINVAL;
644 
645 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
646 		    !(mtd->flags & MTD_NO_ERASE)))
647 		return -EINVAL;
648 
649 	/*
650 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
651 	 * master is an MLC NAND and has a proper pairing scheme defined.
652 	 * We also reject masters that implement ->_writev() for now, because
653 	 * NAND controller drivers don't implement this hook, and adding the
654 	 * SLC -> MLC address/length conversion to this path is useless if we
655 	 * don't have a user.
656 	 */
657 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
658 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
659 	     !master->pairing || master->_writev))
660 		return -EINVAL;
661 
662 	mutex_lock(&mtd_table_mutex);
663 
664 	ofidx = -1;
665 	if (np)
666 		ofidx = of_alias_get_id(np, "mtd");
667 	if (ofidx >= 0)
668 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
669 	else
670 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
671 	if (i < 0) {
672 		error = i;
673 		goto fail_locked;
674 	}
675 
676 	mtd->index = i;
677 	mtd->usecount = 0;
678 
679 	/* default value if not set by driver */
680 	if (mtd->bitflip_threshold == 0)
681 		mtd->bitflip_threshold = mtd->ecc_strength;
682 
683 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
684 		int ngroups = mtd_pairing_groups(master);
685 
686 		mtd->erasesize /= ngroups;
687 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
688 			    mtd->erasesize;
689 	}
690 
691 	if (is_power_of_2(mtd->erasesize))
692 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
693 	else
694 		mtd->erasesize_shift = 0;
695 
696 	if (is_power_of_2(mtd->writesize))
697 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
698 	else
699 		mtd->writesize_shift = 0;
700 
701 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
702 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
703 
704 	/* Some chips always power up locked. Unlock them now */
705 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
706 		error = mtd_unlock(mtd, 0, mtd->size);
707 		if (error && error != -EOPNOTSUPP)
708 			printk(KERN_WARNING
709 			       "%s: unlock failed, writes may not work\n",
710 			       mtd->name);
711 		/* Ignore unlock failures? */
712 		error = 0;
713 	}
714 
715 	/* Caller should have set dev.parent to match the
716 	 * physical device, if appropriate.
717 	 */
718 	mtd->dev.type = &mtd_devtype;
719 	mtd->dev.class = &mtd_class;
720 	mtd->dev.devt = MTD_DEVT(i);
721 	dev_set_name(&mtd->dev, "mtd%d", i);
722 	dev_set_drvdata(&mtd->dev, mtd);
723 	mtd_check_of_node(mtd);
724 	of_node_get(mtd_get_of_node(mtd));
725 	error = device_register(&mtd->dev);
726 	if (error) {
727 		put_device(&mtd->dev);
728 		goto fail_added;
729 	}
730 
731 	/* Add the nvmem provider */
732 	error = mtd_nvmem_add(mtd);
733 	if (error)
734 		goto fail_nvmem_add;
735 
736 	mtd_debugfs_populate(mtd);
737 
738 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
739 		      "mtd%dro", i);
740 
741 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
742 	/* No need to get a refcount on the module containing
743 	   the notifier, since we hold the mtd_table_mutex */
744 	list_for_each_entry(not, &mtd_notifiers, list)
745 		not->add(mtd);
746 
747 	mutex_unlock(&mtd_table_mutex);
748 	/* We _know_ we aren't being removed, because
749 	   our caller is still holding us here. So none
750 	   of this try_ nonsense, and no bitching about it
751 	   either. :) */
752 	__module_get(THIS_MODULE);
753 	return 0;
754 
755 fail_nvmem_add:
756 	device_unregister(&mtd->dev);
757 fail_added:
758 	of_node_put(mtd_get_of_node(mtd));
759 	idr_remove(&mtd_idr, i);
760 fail_locked:
761 	mutex_unlock(&mtd_table_mutex);
762 	return error;
763 }
764 
765 /**
766  *	del_mtd_device - unregister an MTD device
767  *	@mtd: pointer to MTD device info structure
768  *
769  *	Remove a device from the list of MTD devices present in the system,
770  *	and notify each currently active MTD 'user' of its departure.
771  *	Returns zero on success or 1 on failure, which currently will happen
772  *	if the requested device does not appear to be present in the list.
773  */
774 
del_mtd_device(struct mtd_info * mtd)775 int del_mtd_device(struct mtd_info *mtd)
776 {
777 	int ret;
778 	struct mtd_notifier *not;
779 	struct device_node *mtd_of_node;
780 
781 	mutex_lock(&mtd_table_mutex);
782 
783 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
784 		ret = -ENODEV;
785 		goto out_error;
786 	}
787 
788 	/* No need to get a refcount on the module containing
789 		the notifier, since we hold the mtd_table_mutex */
790 	list_for_each_entry(not, &mtd_notifiers, list)
791 		not->remove(mtd);
792 
793 	if (mtd->usecount) {
794 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
795 		       mtd->index, mtd->name, mtd->usecount);
796 		ret = -EBUSY;
797 	} else {
798 		mtd_of_node = mtd_get_of_node(mtd);
799 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
800 
801 		/* Try to remove the NVMEM provider */
802 		nvmem_unregister(mtd->nvmem);
803 
804 		device_unregister(&mtd->dev);
805 
806 		/* Clear dev so mtd can be safely re-registered later if desired */
807 		memset(&mtd->dev, 0, sizeof(mtd->dev));
808 
809 		idr_remove(&mtd_idr, mtd->index);
810 		of_node_put(mtd_of_node);
811 
812 		module_put(THIS_MODULE);
813 		ret = 0;
814 	}
815 
816 out_error:
817 	mutex_unlock(&mtd_table_mutex);
818 	return ret;
819 }
820 
821 /*
822  * Set a few defaults based on the parent devices, if not provided by the
823  * driver
824  */
mtd_set_dev_defaults(struct mtd_info * mtd)825 static void mtd_set_dev_defaults(struct mtd_info *mtd)
826 {
827 	if (mtd->dev.parent) {
828 		if (!mtd->owner && mtd->dev.parent->driver)
829 			mtd->owner = mtd->dev.parent->driver->owner;
830 		if (!mtd->name)
831 			mtd->name = dev_name(mtd->dev.parent);
832 	} else {
833 		pr_debug("mtd device won't show a device symlink in sysfs\n");
834 	}
835 
836 	INIT_LIST_HEAD(&mtd->partitions);
837 	mutex_init(&mtd->master.partitions_lock);
838 	mutex_init(&mtd->master.chrdev_lock);
839 }
840 
mtd_otp_size(struct mtd_info * mtd,bool is_user)841 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
842 {
843 	struct otp_info *info;
844 	ssize_t size = 0;
845 	unsigned int i;
846 	size_t retlen;
847 	int ret;
848 
849 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
850 	if (!info)
851 		return -ENOMEM;
852 
853 	if (is_user)
854 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
855 	else
856 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
857 	if (ret)
858 		goto err;
859 
860 	for (i = 0; i < retlen / sizeof(*info); i++)
861 		size += info[i].length;
862 
863 	kfree(info);
864 	return size;
865 
866 err:
867 	kfree(info);
868 
869 	/* ENODATA means there is no OTP region. */
870 	return ret == -ENODATA ? 0 : ret;
871 }
872 
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)873 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
874 						   const char *compatible,
875 						   int size,
876 						   nvmem_reg_read_t reg_read)
877 {
878 	struct nvmem_device *nvmem = NULL;
879 	struct nvmem_config config = {};
880 	struct device_node *np;
881 
882 	/* DT binding is optional */
883 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
884 
885 	/* OTP nvmem will be registered on the physical device */
886 	config.dev = mtd->dev.parent;
887 	config.name = compatible;
888 	config.id = NVMEM_DEVID_AUTO;
889 	config.owner = THIS_MODULE;
890 	config.type = NVMEM_TYPE_OTP;
891 	config.root_only = true;
892 	config.ignore_wp = true;
893 	config.reg_read = reg_read;
894 	config.size = size;
895 	config.of_node = np;
896 	config.priv = mtd;
897 
898 	nvmem = nvmem_register(&config);
899 	/* Just ignore if there is no NVMEM support in the kernel */
900 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
901 		nvmem = NULL;
902 
903 	of_node_put(np);
904 
905 	return nvmem;
906 }
907 
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)908 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
909 				       void *val, size_t bytes)
910 {
911 	struct mtd_info *mtd = priv;
912 	size_t retlen;
913 	int ret;
914 
915 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
916 	if (ret)
917 		return ret;
918 
919 	return retlen == bytes ? 0 : -EIO;
920 }
921 
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)922 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
923 				       void *val, size_t bytes)
924 {
925 	struct mtd_info *mtd = priv;
926 	size_t retlen;
927 	int ret;
928 
929 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
930 	if (ret)
931 		return ret;
932 
933 	return retlen == bytes ? 0 : -EIO;
934 }
935 
mtd_otp_nvmem_add(struct mtd_info * mtd)936 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
937 {
938 	struct device *dev = mtd->dev.parent;
939 	struct nvmem_device *nvmem;
940 	ssize_t size;
941 	int err;
942 
943 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
944 		size = mtd_otp_size(mtd, true);
945 		if (size < 0)
946 			return size;
947 
948 		if (size > 0) {
949 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
950 						       mtd_nvmem_user_otp_reg_read);
951 			if (IS_ERR(nvmem)) {
952 				dev_err(dev, "Failed to register OTP NVMEM device\n");
953 				return PTR_ERR(nvmem);
954 			}
955 			mtd->otp_user_nvmem = nvmem;
956 		}
957 	}
958 
959 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
960 		size = mtd_otp_size(mtd, false);
961 		if (size < 0) {
962 			err = size;
963 			goto err;
964 		}
965 
966 		if (size > 0) {
967 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
968 						       mtd_nvmem_fact_otp_reg_read);
969 			if (IS_ERR(nvmem)) {
970 				dev_err(dev, "Failed to register OTP NVMEM device\n");
971 				err = PTR_ERR(nvmem);
972 				goto err;
973 			}
974 			mtd->otp_factory_nvmem = nvmem;
975 		}
976 	}
977 
978 	return 0;
979 
980 err:
981 	nvmem_unregister(mtd->otp_user_nvmem);
982 	return err;
983 }
984 
985 /**
986  * mtd_device_parse_register - parse partitions and register an MTD device.
987  *
988  * @mtd: the MTD device to register
989  * @types: the list of MTD partition probes to try, see
990  *         'parse_mtd_partitions()' for more information
991  * @parser_data: MTD partition parser-specific data
992  * @parts: fallback partition information to register, if parsing fails;
993  *         only valid if %nr_parts > %0
994  * @nr_parts: the number of partitions in parts, if zero then the full
995  *            MTD device is registered if no partition info is found
996  *
997  * This function aggregates MTD partitions parsing (done by
998  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
999  * basically follows the most common pattern found in many MTD drivers:
1000  *
1001  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1002  *   registered first.
1003  * * Then It tries to probe partitions on MTD device @mtd using parsers
1004  *   specified in @types (if @types is %NULL, then the default list of parsers
1005  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1006  *   found this functions tries to fallback to information specified in
1007  *   @parts/@nr_parts.
1008  * * If no partitions were found this function just registers the MTD device
1009  *   @mtd and exits.
1010  *
1011  * Returns zero in case of success and a negative error code in case of failure.
1012  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)1013 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1014 			      struct mtd_part_parser_data *parser_data,
1015 			      const struct mtd_partition *parts,
1016 			      int nr_parts)
1017 {
1018 	int ret;
1019 
1020 	mtd_set_dev_defaults(mtd);
1021 
1022 	ret = mtd_otp_nvmem_add(mtd);
1023 	if (ret)
1024 		goto out;
1025 
1026 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1027 		ret = add_mtd_device(mtd);
1028 		if (ret)
1029 			goto out;
1030 	}
1031 
1032 	/* Prefer parsed partitions over driver-provided fallback */
1033 	ret = parse_mtd_partitions(mtd, types, parser_data);
1034 	if (ret == -EPROBE_DEFER)
1035 		goto out;
1036 
1037 	if (ret > 0)
1038 		ret = 0;
1039 	else if (nr_parts)
1040 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1041 	else if (!device_is_registered(&mtd->dev))
1042 		ret = add_mtd_device(mtd);
1043 	else
1044 		ret = 0;
1045 
1046 	if (ret)
1047 		goto out;
1048 
1049 	/*
1050 	 * FIXME: some drivers unfortunately call this function more than once.
1051 	 * So we have to check if we've already assigned the reboot notifier.
1052 	 *
1053 	 * Generally, we can make multiple calls work for most cases, but it
1054 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1055 	 * cmdlineparts will register partitions more than once).
1056 	 */
1057 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1058 		  "MTD already registered\n");
1059 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1060 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1061 		register_reboot_notifier(&mtd->reboot_notifier);
1062 	}
1063 
1064 out:
1065 	if (ret) {
1066 		nvmem_unregister(mtd->otp_user_nvmem);
1067 		nvmem_unregister(mtd->otp_factory_nvmem);
1068 	}
1069 
1070 	if (ret && device_is_registered(&mtd->dev))
1071 		del_mtd_device(mtd);
1072 
1073 	return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1076 
1077 /**
1078  * mtd_device_unregister - unregister an existing MTD device.
1079  *
1080  * @master: the MTD device to unregister.  This will unregister both the master
1081  *          and any partitions if registered.
1082  */
mtd_device_unregister(struct mtd_info * master)1083 int mtd_device_unregister(struct mtd_info *master)
1084 {
1085 	int err;
1086 
1087 	if (master->_reboot) {
1088 		unregister_reboot_notifier(&master->reboot_notifier);
1089 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1090 	}
1091 
1092 	nvmem_unregister(master->otp_user_nvmem);
1093 	nvmem_unregister(master->otp_factory_nvmem);
1094 
1095 	err = del_mtd_partitions(master);
1096 	if (err)
1097 		return err;
1098 
1099 	if (!device_is_registered(&master->dev))
1100 		return 0;
1101 
1102 	return del_mtd_device(master);
1103 }
1104 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1105 
1106 /**
1107  *	register_mtd_user - register a 'user' of MTD devices.
1108  *	@new: pointer to notifier info structure
1109  *
1110  *	Registers a pair of callbacks function to be called upon addition
1111  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1112  *	invoked for each MTD device currently present in the system.
1113  */
register_mtd_user(struct mtd_notifier * new)1114 void register_mtd_user (struct mtd_notifier *new)
1115 {
1116 	struct mtd_info *mtd;
1117 
1118 	mutex_lock(&mtd_table_mutex);
1119 
1120 	list_add(&new->list, &mtd_notifiers);
1121 
1122 	__module_get(THIS_MODULE);
1123 
1124 	mtd_for_each_device(mtd)
1125 		new->add(mtd);
1126 
1127 	mutex_unlock(&mtd_table_mutex);
1128 }
1129 EXPORT_SYMBOL_GPL(register_mtd_user);
1130 
1131 /**
1132  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1133  *	@old: pointer to notifier info structure
1134  *
1135  *	Removes a callback function pair from the list of 'users' to be
1136  *	notified upon addition or removal of MTD devices. Causes the
1137  *	'remove' callback to be immediately invoked for each MTD device
1138  *	currently present in the system.
1139  */
unregister_mtd_user(struct mtd_notifier * old)1140 int unregister_mtd_user (struct mtd_notifier *old)
1141 {
1142 	struct mtd_info *mtd;
1143 
1144 	mutex_lock(&mtd_table_mutex);
1145 
1146 	module_put(THIS_MODULE);
1147 
1148 	mtd_for_each_device(mtd)
1149 		old->remove(mtd);
1150 
1151 	list_del(&old->list);
1152 	mutex_unlock(&mtd_table_mutex);
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1156 
1157 /**
1158  *	get_mtd_device - obtain a validated handle for an MTD device
1159  *	@mtd: last known address of the required MTD device
1160  *	@num: internal device number of the required MTD device
1161  *
1162  *	Given a number and NULL address, return the num'th entry in the device
1163  *	table, if any.	Given an address and num == -1, search the device table
1164  *	for a device with that address and return if it's still present. Given
1165  *	both, return the num'th driver only if its address matches. Return
1166  *	error code if not.
1167  */
get_mtd_device(struct mtd_info * mtd,int num)1168 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1169 {
1170 	struct mtd_info *ret = NULL, *other;
1171 	int err = -ENODEV;
1172 
1173 	mutex_lock(&mtd_table_mutex);
1174 
1175 	if (num == -1) {
1176 		mtd_for_each_device(other) {
1177 			if (other == mtd) {
1178 				ret = mtd;
1179 				break;
1180 			}
1181 		}
1182 	} else if (num >= 0) {
1183 		ret = idr_find(&mtd_idr, num);
1184 		if (mtd && mtd != ret)
1185 			ret = NULL;
1186 	}
1187 
1188 	if (!ret) {
1189 		ret = ERR_PTR(err);
1190 		goto out;
1191 	}
1192 
1193 	err = __get_mtd_device(ret);
1194 	if (err)
1195 		ret = ERR_PTR(err);
1196 out:
1197 	mutex_unlock(&mtd_table_mutex);
1198 	return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(get_mtd_device);
1201 
1202 
__get_mtd_device(struct mtd_info * mtd)1203 int __get_mtd_device(struct mtd_info *mtd)
1204 {
1205 	struct mtd_info *master = mtd_get_master(mtd);
1206 	int err;
1207 
1208 	if (!try_module_get(master->owner))
1209 		return -ENODEV;
1210 
1211 	if (master->_get_device) {
1212 		err = master->_get_device(mtd);
1213 
1214 		if (err) {
1215 			module_put(master->owner);
1216 			return err;
1217 		}
1218 	}
1219 
1220 	master->usecount++;
1221 
1222 	while (mtd->parent) {
1223 		mtd->usecount++;
1224 		mtd = mtd->parent;
1225 	}
1226 
1227 	return 0;
1228 }
1229 EXPORT_SYMBOL_GPL(__get_mtd_device);
1230 
1231 /**
1232  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1233  *
1234  * @np: device tree node
1235  */
of_get_mtd_device_by_node(struct device_node * np)1236 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1237 {
1238 	struct mtd_info *mtd = NULL;
1239 	struct mtd_info *tmp;
1240 	int err;
1241 
1242 	mutex_lock(&mtd_table_mutex);
1243 
1244 	err = -EPROBE_DEFER;
1245 	mtd_for_each_device(tmp) {
1246 		if (mtd_get_of_node(tmp) == np) {
1247 			mtd = tmp;
1248 			err = __get_mtd_device(mtd);
1249 			break;
1250 		}
1251 	}
1252 
1253 	mutex_unlock(&mtd_table_mutex);
1254 
1255 	return err ? ERR_PTR(err) : mtd;
1256 }
1257 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1258 
1259 /**
1260  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1261  *	device name
1262  *	@name: MTD device name to open
1263  *
1264  * 	This function returns MTD device description structure in case of
1265  * 	success and an error code in case of failure.
1266  */
get_mtd_device_nm(const char * name)1267 struct mtd_info *get_mtd_device_nm(const char *name)
1268 {
1269 	int err = -ENODEV;
1270 	struct mtd_info *mtd = NULL, *other;
1271 
1272 	mutex_lock(&mtd_table_mutex);
1273 
1274 	mtd_for_each_device(other) {
1275 		if (!strcmp(name, other->name)) {
1276 			mtd = other;
1277 			break;
1278 		}
1279 	}
1280 
1281 	if (!mtd)
1282 		goto out_unlock;
1283 
1284 	err = __get_mtd_device(mtd);
1285 	if (err)
1286 		goto out_unlock;
1287 
1288 	mutex_unlock(&mtd_table_mutex);
1289 	return mtd;
1290 
1291 out_unlock:
1292 	mutex_unlock(&mtd_table_mutex);
1293 	return ERR_PTR(err);
1294 }
1295 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1296 
put_mtd_device(struct mtd_info * mtd)1297 void put_mtd_device(struct mtd_info *mtd)
1298 {
1299 	mutex_lock(&mtd_table_mutex);
1300 	__put_mtd_device(mtd);
1301 	mutex_unlock(&mtd_table_mutex);
1302 
1303 }
1304 EXPORT_SYMBOL_GPL(put_mtd_device);
1305 
__put_mtd_device(struct mtd_info * mtd)1306 void __put_mtd_device(struct mtd_info *mtd)
1307 {
1308 	struct mtd_info *master = mtd_get_master(mtd);
1309 
1310 	while (mtd->parent) {
1311 		--mtd->usecount;
1312 		BUG_ON(mtd->usecount < 0);
1313 		mtd = mtd->parent;
1314 	}
1315 
1316 	master->usecount--;
1317 
1318 	if (master->_put_device)
1319 		master->_put_device(master);
1320 
1321 	module_put(master->owner);
1322 }
1323 EXPORT_SYMBOL_GPL(__put_mtd_device);
1324 
1325 /*
1326  * Erase is an synchronous operation. Device drivers are epected to return a
1327  * negative error code if the operation failed and update instr->fail_addr
1328  * to point the portion that was not properly erased.
1329  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1330 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1331 {
1332 	struct mtd_info *master = mtd_get_master(mtd);
1333 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1334 	struct erase_info adjinstr;
1335 	int ret;
1336 
1337 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1338 	adjinstr = *instr;
1339 
1340 	if (!mtd->erasesize || !master->_erase)
1341 		return -ENOTSUPP;
1342 
1343 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1344 		return -EINVAL;
1345 	if (!(mtd->flags & MTD_WRITEABLE))
1346 		return -EROFS;
1347 
1348 	if (!instr->len)
1349 		return 0;
1350 
1351 	ledtrig_mtd_activity();
1352 
1353 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1354 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1355 				master->erasesize;
1356 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1357 				master->erasesize) -
1358 			       adjinstr.addr;
1359 	}
1360 
1361 	adjinstr.addr += mst_ofs;
1362 
1363 	ret = master->_erase(master, &adjinstr);
1364 
1365 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1366 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1367 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1368 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1369 							 master);
1370 			instr->fail_addr *= mtd->erasesize;
1371 		}
1372 	}
1373 
1374 	return ret;
1375 }
1376 EXPORT_SYMBOL_GPL(mtd_erase);
1377 
1378 /*
1379  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1380  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1381 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1382 	      void **virt, resource_size_t *phys)
1383 {
1384 	struct mtd_info *master = mtd_get_master(mtd);
1385 
1386 	*retlen = 0;
1387 	*virt = NULL;
1388 	if (phys)
1389 		*phys = 0;
1390 	if (!master->_point)
1391 		return -EOPNOTSUPP;
1392 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1393 		return -EINVAL;
1394 	if (!len)
1395 		return 0;
1396 
1397 	from = mtd_get_master_ofs(mtd, from);
1398 	return master->_point(master, from, len, retlen, virt, phys);
1399 }
1400 EXPORT_SYMBOL_GPL(mtd_point);
1401 
1402 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1403 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1404 {
1405 	struct mtd_info *master = mtd_get_master(mtd);
1406 
1407 	if (!master->_unpoint)
1408 		return -EOPNOTSUPP;
1409 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1410 		return -EINVAL;
1411 	if (!len)
1412 		return 0;
1413 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1414 }
1415 EXPORT_SYMBOL_GPL(mtd_unpoint);
1416 
1417 /*
1418  * Allow NOMMU mmap() to directly map the device (if not NULL)
1419  * - return the address to which the offset maps
1420  * - return -ENOSYS to indicate refusal to do the mapping
1421  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1422 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1423 				    unsigned long offset, unsigned long flags)
1424 {
1425 	size_t retlen;
1426 	void *virt;
1427 	int ret;
1428 
1429 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1430 	if (ret)
1431 		return ret;
1432 	if (retlen != len) {
1433 		mtd_unpoint(mtd, offset, retlen);
1434 		return -ENOSYS;
1435 	}
1436 	return (unsigned long)virt;
1437 }
1438 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1439 
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1440 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1441 				 const struct mtd_ecc_stats *old_stats)
1442 {
1443 	struct mtd_ecc_stats diff;
1444 
1445 	if (master == mtd)
1446 		return;
1447 
1448 	diff = master->ecc_stats;
1449 	diff.failed -= old_stats->failed;
1450 	diff.corrected -= old_stats->corrected;
1451 
1452 	while (mtd->parent) {
1453 		mtd->ecc_stats.failed += diff.failed;
1454 		mtd->ecc_stats.corrected += diff.corrected;
1455 		mtd = mtd->parent;
1456 	}
1457 }
1458 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1459 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1460 	     u_char *buf)
1461 {
1462 	struct mtd_oob_ops ops = {
1463 		.len = len,
1464 		.datbuf = buf,
1465 	};
1466 	int ret;
1467 
1468 	ret = mtd_read_oob(mtd, from, &ops);
1469 	*retlen = ops.retlen;
1470 
1471 	return ret;
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_read);
1474 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1475 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1476 	      const u_char *buf)
1477 {
1478 	struct mtd_oob_ops ops = {
1479 		.len = len,
1480 		.datbuf = (u8 *)buf,
1481 	};
1482 	int ret;
1483 
1484 	ret = mtd_write_oob(mtd, to, &ops);
1485 	*retlen = ops.retlen;
1486 
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(mtd_write);
1490 
1491 /*
1492  * In blackbox flight recorder like scenarios we want to make successful writes
1493  * in interrupt context. panic_write() is only intended to be called when its
1494  * known the kernel is about to panic and we need the write to succeed. Since
1495  * the kernel is not going to be running for much longer, this function can
1496  * break locks and delay to ensure the write succeeds (but not sleep).
1497  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1498 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1499 		    const u_char *buf)
1500 {
1501 	struct mtd_info *master = mtd_get_master(mtd);
1502 
1503 	*retlen = 0;
1504 	if (!master->_panic_write)
1505 		return -EOPNOTSUPP;
1506 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1507 		return -EINVAL;
1508 	if (!(mtd->flags & MTD_WRITEABLE))
1509 		return -EROFS;
1510 	if (!len)
1511 		return 0;
1512 	if (!master->oops_panic_write)
1513 		master->oops_panic_write = true;
1514 
1515 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1516 				    retlen, buf);
1517 }
1518 EXPORT_SYMBOL_GPL(mtd_panic_write);
1519 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1520 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1521 			     struct mtd_oob_ops *ops)
1522 {
1523 	/*
1524 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1525 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1526 	 *  this case.
1527 	 */
1528 	if (!ops->datbuf)
1529 		ops->len = 0;
1530 
1531 	if (!ops->oobbuf)
1532 		ops->ooblen = 0;
1533 
1534 	if (offs < 0 || offs + ops->len > mtd->size)
1535 		return -EINVAL;
1536 
1537 	if (ops->ooblen) {
1538 		size_t maxooblen;
1539 
1540 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1541 			return -EINVAL;
1542 
1543 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1544 				      mtd_div_by_ws(offs, mtd)) *
1545 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1546 		if (ops->ooblen > maxooblen)
1547 			return -EINVAL;
1548 	}
1549 
1550 	return 0;
1551 }
1552 
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1553 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1554 			    struct mtd_oob_ops *ops)
1555 {
1556 	struct mtd_info *master = mtd_get_master(mtd);
1557 	int ret;
1558 
1559 	from = mtd_get_master_ofs(mtd, from);
1560 	if (master->_read_oob)
1561 		ret = master->_read_oob(master, from, ops);
1562 	else
1563 		ret = master->_read(master, from, ops->len, &ops->retlen,
1564 				    ops->datbuf);
1565 
1566 	return ret;
1567 }
1568 
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1569 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1570 			     struct mtd_oob_ops *ops)
1571 {
1572 	struct mtd_info *master = mtd_get_master(mtd);
1573 	int ret;
1574 
1575 	to = mtd_get_master_ofs(mtd, to);
1576 	if (master->_write_oob)
1577 		ret = master->_write_oob(master, to, ops);
1578 	else
1579 		ret = master->_write(master, to, ops->len, &ops->retlen,
1580 				     ops->datbuf);
1581 
1582 	return ret;
1583 }
1584 
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1585 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1586 			       struct mtd_oob_ops *ops)
1587 {
1588 	struct mtd_info *master = mtd_get_master(mtd);
1589 	int ngroups = mtd_pairing_groups(master);
1590 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1591 	struct mtd_oob_ops adjops = *ops;
1592 	unsigned int wunit, oobavail;
1593 	struct mtd_pairing_info info;
1594 	int max_bitflips = 0;
1595 	u32 ebofs, pageofs;
1596 	loff_t base, pos;
1597 
1598 	ebofs = mtd_mod_by_eb(start, mtd);
1599 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1600 	info.group = 0;
1601 	info.pair = mtd_div_by_ws(ebofs, mtd);
1602 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1603 	oobavail = mtd_oobavail(mtd, ops);
1604 
1605 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1606 		int ret;
1607 
1608 		if (info.pair >= npairs) {
1609 			info.pair = 0;
1610 			base += master->erasesize;
1611 		}
1612 
1613 		wunit = mtd_pairing_info_to_wunit(master, &info);
1614 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1615 
1616 		adjops.len = ops->len - ops->retlen;
1617 		if (adjops.len > mtd->writesize - pageofs)
1618 			adjops.len = mtd->writesize - pageofs;
1619 
1620 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1621 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1622 			adjops.ooblen = oobavail - adjops.ooboffs;
1623 
1624 		if (read) {
1625 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1626 			if (ret > 0)
1627 				max_bitflips = max(max_bitflips, ret);
1628 		} else {
1629 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1630 		}
1631 
1632 		if (ret < 0)
1633 			return ret;
1634 
1635 		max_bitflips = max(max_bitflips, ret);
1636 		ops->retlen += adjops.retlen;
1637 		ops->oobretlen += adjops.oobretlen;
1638 		adjops.datbuf += adjops.retlen;
1639 		adjops.oobbuf += adjops.oobretlen;
1640 		adjops.ooboffs = 0;
1641 		pageofs = 0;
1642 		info.pair++;
1643 	}
1644 
1645 	return max_bitflips;
1646 }
1647 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1648 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1649 {
1650 	struct mtd_info *master = mtd_get_master(mtd);
1651 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1652 	int ret_code;
1653 
1654 	ops->retlen = ops->oobretlen = 0;
1655 
1656 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1657 	if (ret_code)
1658 		return ret_code;
1659 
1660 	ledtrig_mtd_activity();
1661 
1662 	/* Check the validity of a potential fallback on mtd->_read */
1663 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1664 		return -EOPNOTSUPP;
1665 
1666 	if (ops->stats)
1667 		memset(ops->stats, 0, sizeof(*ops->stats));
1668 
1669 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1670 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1671 	else
1672 		ret_code = mtd_read_oob_std(mtd, from, ops);
1673 
1674 	mtd_update_ecc_stats(mtd, master, &old_stats);
1675 
1676 	/*
1677 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1678 	 * similar to mtd->_read(), returning a non-negative integer
1679 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1680 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1681 	 */
1682 	if (unlikely(ret_code < 0))
1683 		return ret_code;
1684 	if (mtd->ecc_strength == 0)
1685 		return 0;	/* device lacks ecc */
1686 	if (ops->stats)
1687 		ops->stats->max_bitflips = ret_code;
1688 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1689 }
1690 EXPORT_SYMBOL_GPL(mtd_read_oob);
1691 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1692 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1693 				struct mtd_oob_ops *ops)
1694 {
1695 	struct mtd_info *master = mtd_get_master(mtd);
1696 	int ret;
1697 
1698 	ops->retlen = ops->oobretlen = 0;
1699 
1700 	if (!(mtd->flags & MTD_WRITEABLE))
1701 		return -EROFS;
1702 
1703 	ret = mtd_check_oob_ops(mtd, to, ops);
1704 	if (ret)
1705 		return ret;
1706 
1707 	ledtrig_mtd_activity();
1708 
1709 	/* Check the validity of a potential fallback on mtd->_write */
1710 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1711 		return -EOPNOTSUPP;
1712 
1713 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1714 		return mtd_io_emulated_slc(mtd, to, false, ops);
1715 
1716 	return mtd_write_oob_std(mtd, to, ops);
1717 }
1718 EXPORT_SYMBOL_GPL(mtd_write_oob);
1719 
1720 /**
1721  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1722  * @mtd: MTD device structure
1723  * @section: ECC section. Depending on the layout you may have all the ECC
1724  *	     bytes stored in a single contiguous section, or one section
1725  *	     per ECC chunk (and sometime several sections for a single ECC
1726  *	     ECC chunk)
1727  * @oobecc: OOB region struct filled with the appropriate ECC position
1728  *	    information
1729  *
1730  * This function returns ECC section information in the OOB area. If you want
1731  * to get all the ECC bytes information, then you should call
1732  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1733  *
1734  * Returns zero on success, a negative error code otherwise.
1735  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1736 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1737 		      struct mtd_oob_region *oobecc)
1738 {
1739 	struct mtd_info *master = mtd_get_master(mtd);
1740 
1741 	memset(oobecc, 0, sizeof(*oobecc));
1742 
1743 	if (!master || section < 0)
1744 		return -EINVAL;
1745 
1746 	if (!master->ooblayout || !master->ooblayout->ecc)
1747 		return -ENOTSUPP;
1748 
1749 	return master->ooblayout->ecc(master, section, oobecc);
1750 }
1751 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1752 
1753 /**
1754  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1755  *			section
1756  * @mtd: MTD device structure
1757  * @section: Free section you are interested in. Depending on the layout
1758  *	     you may have all the free bytes stored in a single contiguous
1759  *	     section, or one section per ECC chunk plus an extra section
1760  *	     for the remaining bytes (or other funky layout).
1761  * @oobfree: OOB region struct filled with the appropriate free position
1762  *	     information
1763  *
1764  * This function returns free bytes position in the OOB area. If you want
1765  * to get all the free bytes information, then you should call
1766  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1767  *
1768  * Returns zero on success, a negative error code otherwise.
1769  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1770 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1771 		       struct mtd_oob_region *oobfree)
1772 {
1773 	struct mtd_info *master = mtd_get_master(mtd);
1774 
1775 	memset(oobfree, 0, sizeof(*oobfree));
1776 
1777 	if (!master || section < 0)
1778 		return -EINVAL;
1779 
1780 	if (!master->ooblayout || !master->ooblayout->free)
1781 		return -ENOTSUPP;
1782 
1783 	return master->ooblayout->free(master, section, oobfree);
1784 }
1785 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1786 
1787 /**
1788  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1789  * @mtd: mtd info structure
1790  * @byte: the byte we are searching for
1791  * @sectionp: pointer where the section id will be stored
1792  * @oobregion: used to retrieve the ECC position
1793  * @iter: iterator function. Should be either mtd_ooblayout_free or
1794  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1795  *
1796  * This function returns the section id and oobregion information of a
1797  * specific byte. For example, say you want to know where the 4th ECC byte is
1798  * stored, you'll use:
1799  *
1800  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1801  *
1802  * Returns zero on success, a negative error code otherwise.
1803  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1804 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1805 				int *sectionp, struct mtd_oob_region *oobregion,
1806 				int (*iter)(struct mtd_info *,
1807 					    int section,
1808 					    struct mtd_oob_region *oobregion))
1809 {
1810 	int pos = 0, ret, section = 0;
1811 
1812 	memset(oobregion, 0, sizeof(*oobregion));
1813 
1814 	while (1) {
1815 		ret = iter(mtd, section, oobregion);
1816 		if (ret)
1817 			return ret;
1818 
1819 		if (pos + oobregion->length > byte)
1820 			break;
1821 
1822 		pos += oobregion->length;
1823 		section++;
1824 	}
1825 
1826 	/*
1827 	 * Adjust region info to make it start at the beginning at the
1828 	 * 'start' ECC byte.
1829 	 */
1830 	oobregion->offset += byte - pos;
1831 	oobregion->length -= byte - pos;
1832 	*sectionp = section;
1833 
1834 	return 0;
1835 }
1836 
1837 /**
1838  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1839  *				  ECC byte
1840  * @mtd: mtd info structure
1841  * @eccbyte: the byte we are searching for
1842  * @section: pointer where the section id will be stored
1843  * @oobregion: OOB region information
1844  *
1845  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1846  * byte.
1847  *
1848  * Returns zero on success, a negative error code otherwise.
1849  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1850 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1851 				 int *section,
1852 				 struct mtd_oob_region *oobregion)
1853 {
1854 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1855 					 mtd_ooblayout_ecc);
1856 }
1857 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1858 
1859 /**
1860  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1861  * @mtd: mtd info structure
1862  * @buf: destination buffer to store OOB bytes
1863  * @oobbuf: OOB buffer
1864  * @start: first byte to retrieve
1865  * @nbytes: number of bytes to retrieve
1866  * @iter: section iterator
1867  *
1868  * Extract bytes attached to a specific category (ECC or free)
1869  * from the OOB buffer and copy them into buf.
1870  *
1871  * Returns zero on success, a negative error code otherwise.
1872  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1873 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1874 				const u8 *oobbuf, int start, int nbytes,
1875 				int (*iter)(struct mtd_info *,
1876 					    int section,
1877 					    struct mtd_oob_region *oobregion))
1878 {
1879 	struct mtd_oob_region oobregion;
1880 	int section, ret;
1881 
1882 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1883 					&oobregion, iter);
1884 
1885 	while (!ret) {
1886 		int cnt;
1887 
1888 		cnt = min_t(int, nbytes, oobregion.length);
1889 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1890 		buf += cnt;
1891 		nbytes -= cnt;
1892 
1893 		if (!nbytes)
1894 			break;
1895 
1896 		ret = iter(mtd, ++section, &oobregion);
1897 	}
1898 
1899 	return ret;
1900 }
1901 
1902 /**
1903  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1904  * @mtd: mtd info structure
1905  * @buf: source buffer to get OOB bytes from
1906  * @oobbuf: OOB buffer
1907  * @start: first OOB byte to set
1908  * @nbytes: number of OOB bytes to set
1909  * @iter: section iterator
1910  *
1911  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1912  * is selected by passing the appropriate iterator.
1913  *
1914  * Returns zero on success, a negative error code otherwise.
1915  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1916 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1917 				u8 *oobbuf, int start, int nbytes,
1918 				int (*iter)(struct mtd_info *,
1919 					    int section,
1920 					    struct mtd_oob_region *oobregion))
1921 {
1922 	struct mtd_oob_region oobregion;
1923 	int section, ret;
1924 
1925 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1926 					&oobregion, iter);
1927 
1928 	while (!ret) {
1929 		int cnt;
1930 
1931 		cnt = min_t(int, nbytes, oobregion.length);
1932 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1933 		buf += cnt;
1934 		nbytes -= cnt;
1935 
1936 		if (!nbytes)
1937 			break;
1938 
1939 		ret = iter(mtd, ++section, &oobregion);
1940 	}
1941 
1942 	return ret;
1943 }
1944 
1945 /**
1946  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1947  * @mtd: mtd info structure
1948  * @iter: category iterator
1949  *
1950  * Count the number of bytes in a given category.
1951  *
1952  * Returns a positive value on success, a negative error code otherwise.
1953  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1954 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1955 				int (*iter)(struct mtd_info *,
1956 					    int section,
1957 					    struct mtd_oob_region *oobregion))
1958 {
1959 	struct mtd_oob_region oobregion;
1960 	int section = 0, ret, nbytes = 0;
1961 
1962 	while (1) {
1963 		ret = iter(mtd, section++, &oobregion);
1964 		if (ret) {
1965 			if (ret == -ERANGE)
1966 				ret = nbytes;
1967 			break;
1968 		}
1969 
1970 		nbytes += oobregion.length;
1971 	}
1972 
1973 	return ret;
1974 }
1975 
1976 /**
1977  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1978  * @mtd: mtd info structure
1979  * @eccbuf: destination buffer to store ECC bytes
1980  * @oobbuf: OOB buffer
1981  * @start: first ECC byte to retrieve
1982  * @nbytes: number of ECC bytes to retrieve
1983  *
1984  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1985  *
1986  * Returns zero on success, a negative error code otherwise.
1987  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1988 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1989 			       const u8 *oobbuf, int start, int nbytes)
1990 {
1991 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1992 				       mtd_ooblayout_ecc);
1993 }
1994 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1995 
1996 /**
1997  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1998  * @mtd: mtd info structure
1999  * @eccbuf: source buffer to get ECC bytes from
2000  * @oobbuf: OOB buffer
2001  * @start: first ECC byte to set
2002  * @nbytes: number of ECC bytes to set
2003  *
2004  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2005  *
2006  * Returns zero on success, a negative error code otherwise.
2007  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)2008 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2009 			       u8 *oobbuf, int start, int nbytes)
2010 {
2011 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2012 				       mtd_ooblayout_ecc);
2013 }
2014 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2015 
2016 /**
2017  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2018  * @mtd: mtd info structure
2019  * @databuf: destination buffer to store ECC bytes
2020  * @oobbuf: OOB buffer
2021  * @start: first ECC byte to retrieve
2022  * @nbytes: number of ECC bytes to retrieve
2023  *
2024  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2025  *
2026  * Returns zero on success, a negative error code otherwise.
2027  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)2028 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2029 				const u8 *oobbuf, int start, int nbytes)
2030 {
2031 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2032 				       mtd_ooblayout_free);
2033 }
2034 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2035 
2036 /**
2037  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2038  * @mtd: mtd info structure
2039  * @databuf: source buffer to get data bytes from
2040  * @oobbuf: OOB buffer
2041  * @start: first ECC byte to set
2042  * @nbytes: number of ECC bytes to set
2043  *
2044  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2045  *
2046  * Returns zero on success, a negative error code otherwise.
2047  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)2048 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2049 				u8 *oobbuf, int start, int nbytes)
2050 {
2051 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2052 				       mtd_ooblayout_free);
2053 }
2054 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2055 
2056 /**
2057  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2058  * @mtd: mtd info structure
2059  *
2060  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2061  *
2062  * Returns zero on success, a negative error code otherwise.
2063  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)2064 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2065 {
2066 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2067 }
2068 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2069 
2070 /**
2071  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2072  * @mtd: mtd info structure
2073  *
2074  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2075  *
2076  * Returns zero on success, a negative error code otherwise.
2077  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)2078 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2079 {
2080 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2081 }
2082 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2083 
2084 /*
2085  * Method to access the protection register area, present in some flash
2086  * devices. The user data is one time programmable but the factory data is read
2087  * only.
2088  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2089 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2090 			   struct otp_info *buf)
2091 {
2092 	struct mtd_info *master = mtd_get_master(mtd);
2093 
2094 	if (!master->_get_fact_prot_info)
2095 		return -EOPNOTSUPP;
2096 	if (!len)
2097 		return 0;
2098 	return master->_get_fact_prot_info(master, len, retlen, buf);
2099 }
2100 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2101 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2102 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2103 			   size_t *retlen, u_char *buf)
2104 {
2105 	struct mtd_info *master = mtd_get_master(mtd);
2106 
2107 	*retlen = 0;
2108 	if (!master->_read_fact_prot_reg)
2109 		return -EOPNOTSUPP;
2110 	if (!len)
2111 		return 0;
2112 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2113 }
2114 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2115 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2116 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2117 			   struct otp_info *buf)
2118 {
2119 	struct mtd_info *master = mtd_get_master(mtd);
2120 
2121 	if (!master->_get_user_prot_info)
2122 		return -EOPNOTSUPP;
2123 	if (!len)
2124 		return 0;
2125 	return master->_get_user_prot_info(master, len, retlen, buf);
2126 }
2127 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2128 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2129 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2130 			   size_t *retlen, u_char *buf)
2131 {
2132 	struct mtd_info *master = mtd_get_master(mtd);
2133 
2134 	*retlen = 0;
2135 	if (!master->_read_user_prot_reg)
2136 		return -EOPNOTSUPP;
2137 	if (!len)
2138 		return 0;
2139 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2140 }
2141 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2142 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2143 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2144 			    size_t *retlen, const u_char *buf)
2145 {
2146 	struct mtd_info *master = mtd_get_master(mtd);
2147 	int ret;
2148 
2149 	*retlen = 0;
2150 	if (!master->_write_user_prot_reg)
2151 		return -EOPNOTSUPP;
2152 	if (!len)
2153 		return 0;
2154 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2155 	if (ret)
2156 		return ret;
2157 
2158 	/*
2159 	 * If no data could be written at all, we are out of memory and
2160 	 * must return -ENOSPC.
2161 	 */
2162 	return (*retlen) ? 0 : -ENOSPC;
2163 }
2164 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2165 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2166 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2167 {
2168 	struct mtd_info *master = mtd_get_master(mtd);
2169 
2170 	if (!master->_lock_user_prot_reg)
2171 		return -EOPNOTSUPP;
2172 	if (!len)
2173 		return 0;
2174 	return master->_lock_user_prot_reg(master, from, len);
2175 }
2176 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2177 
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2178 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2179 {
2180 	struct mtd_info *master = mtd_get_master(mtd);
2181 
2182 	if (!master->_erase_user_prot_reg)
2183 		return -EOPNOTSUPP;
2184 	if (!len)
2185 		return 0;
2186 	return master->_erase_user_prot_reg(master, from, len);
2187 }
2188 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2189 
2190 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2191 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2192 {
2193 	struct mtd_info *master = mtd_get_master(mtd);
2194 
2195 	if (!master->_lock)
2196 		return -EOPNOTSUPP;
2197 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2198 		return -EINVAL;
2199 	if (!len)
2200 		return 0;
2201 
2202 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2203 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2204 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2205 	}
2206 
2207 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2208 }
2209 EXPORT_SYMBOL_GPL(mtd_lock);
2210 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2211 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2212 {
2213 	struct mtd_info *master = mtd_get_master(mtd);
2214 
2215 	if (!master->_unlock)
2216 		return -EOPNOTSUPP;
2217 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2218 		return -EINVAL;
2219 	if (!len)
2220 		return 0;
2221 
2222 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2223 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2224 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2225 	}
2226 
2227 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2228 }
2229 EXPORT_SYMBOL_GPL(mtd_unlock);
2230 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2231 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2232 {
2233 	struct mtd_info *master = mtd_get_master(mtd);
2234 
2235 	if (!master->_is_locked)
2236 		return -EOPNOTSUPP;
2237 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2238 		return -EINVAL;
2239 	if (!len)
2240 		return 0;
2241 
2242 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2243 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2244 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2245 	}
2246 
2247 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2248 }
2249 EXPORT_SYMBOL_GPL(mtd_is_locked);
2250 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2251 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2252 {
2253 	struct mtd_info *master = mtd_get_master(mtd);
2254 
2255 	if (ofs < 0 || ofs >= mtd->size)
2256 		return -EINVAL;
2257 	if (!master->_block_isreserved)
2258 		return 0;
2259 
2260 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2261 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2262 
2263 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2264 }
2265 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2266 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2267 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2268 {
2269 	struct mtd_info *master = mtd_get_master(mtd);
2270 
2271 	if (ofs < 0 || ofs >= mtd->size)
2272 		return -EINVAL;
2273 	if (!master->_block_isbad)
2274 		return 0;
2275 
2276 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2277 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2278 
2279 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2280 }
2281 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2282 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2283 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2284 {
2285 	struct mtd_info *master = mtd_get_master(mtd);
2286 	int ret;
2287 
2288 	if (!master->_block_markbad)
2289 		return -EOPNOTSUPP;
2290 	if (ofs < 0 || ofs >= mtd->size)
2291 		return -EINVAL;
2292 	if (!(mtd->flags & MTD_WRITEABLE))
2293 		return -EROFS;
2294 
2295 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2296 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2297 
2298 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2299 	if (ret)
2300 		return ret;
2301 
2302 	while (mtd->parent) {
2303 		mtd->ecc_stats.badblocks++;
2304 		mtd = mtd->parent;
2305 	}
2306 
2307 	return 0;
2308 }
2309 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2310 
2311 /*
2312  * default_mtd_writev - the default writev method
2313  * @mtd: mtd device description object pointer
2314  * @vecs: the vectors to write
2315  * @count: count of vectors in @vecs
2316  * @to: the MTD device offset to write to
2317  * @retlen: on exit contains the count of bytes written to the MTD device.
2318  *
2319  * This function returns zero in case of success and a negative error code in
2320  * case of failure.
2321  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2322 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2323 			      unsigned long count, loff_t to, size_t *retlen)
2324 {
2325 	unsigned long i;
2326 	size_t totlen = 0, thislen;
2327 	int ret = 0;
2328 
2329 	for (i = 0; i < count; i++) {
2330 		if (!vecs[i].iov_len)
2331 			continue;
2332 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2333 				vecs[i].iov_base);
2334 		totlen += thislen;
2335 		if (ret || thislen != vecs[i].iov_len)
2336 			break;
2337 		to += vecs[i].iov_len;
2338 	}
2339 	*retlen = totlen;
2340 	return ret;
2341 }
2342 
2343 /*
2344  * mtd_writev - the vector-based MTD write method
2345  * @mtd: mtd device description object pointer
2346  * @vecs: the vectors to write
2347  * @count: count of vectors in @vecs
2348  * @to: the MTD device offset to write to
2349  * @retlen: on exit contains the count of bytes written to the MTD device.
2350  *
2351  * This function returns zero in case of success and a negative error code in
2352  * case of failure.
2353  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2354 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2355 	       unsigned long count, loff_t to, size_t *retlen)
2356 {
2357 	struct mtd_info *master = mtd_get_master(mtd);
2358 
2359 	*retlen = 0;
2360 	if (!(mtd->flags & MTD_WRITEABLE))
2361 		return -EROFS;
2362 
2363 	if (!master->_writev)
2364 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2365 
2366 	return master->_writev(master, vecs, count,
2367 			       mtd_get_master_ofs(mtd, to), retlen);
2368 }
2369 EXPORT_SYMBOL_GPL(mtd_writev);
2370 
2371 /**
2372  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2373  * @mtd: mtd device description object pointer
2374  * @size: a pointer to the ideal or maximum size of the allocation, points
2375  *        to the actual allocation size on success.
2376  *
2377  * This routine attempts to allocate a contiguous kernel buffer up to
2378  * the specified size, backing off the size of the request exponentially
2379  * until the request succeeds or until the allocation size falls below
2380  * the system page size. This attempts to make sure it does not adversely
2381  * impact system performance, so when allocating more than one page, we
2382  * ask the memory allocator to avoid re-trying, swapping, writing back
2383  * or performing I/O.
2384  *
2385  * Note, this function also makes sure that the allocated buffer is aligned to
2386  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2387  *
2388  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2389  * to handle smaller (i.e. degraded) buffer allocations under low- or
2390  * fragmented-memory situations where such reduced allocations, from a
2391  * requested ideal, are allowed.
2392  *
2393  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2394  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2395 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2396 {
2397 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2398 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2399 	void *kbuf;
2400 
2401 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2402 
2403 	while (*size > min_alloc) {
2404 		kbuf = kmalloc(*size, flags);
2405 		if (kbuf)
2406 			return kbuf;
2407 
2408 		*size >>= 1;
2409 		*size = ALIGN(*size, mtd->writesize);
2410 	}
2411 
2412 	/*
2413 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2414 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2415 	 */
2416 	return kmalloc(*size, GFP_KERNEL);
2417 }
2418 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2419 
2420 #ifdef CONFIG_PROC_FS
2421 
2422 /*====================================================================*/
2423 /* Support for /proc/mtd */
2424 
mtd_proc_show(struct seq_file * m,void * v)2425 static int mtd_proc_show(struct seq_file *m, void *v)
2426 {
2427 	struct mtd_info *mtd;
2428 
2429 	seq_puts(m, "dev:    size   erasesize  name\n");
2430 	mutex_lock(&mtd_table_mutex);
2431 	mtd_for_each_device(mtd) {
2432 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2433 			   mtd->index, (unsigned long long)mtd->size,
2434 			   mtd->erasesize, mtd->name);
2435 	}
2436 	mutex_unlock(&mtd_table_mutex);
2437 	return 0;
2438 }
2439 #endif /* CONFIG_PROC_FS */
2440 
2441 /*====================================================================*/
2442 /* Init code */
2443 
mtd_bdi_init(const char * name)2444 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2445 {
2446 	struct backing_dev_info *bdi;
2447 	int ret;
2448 
2449 	bdi = bdi_alloc(NUMA_NO_NODE);
2450 	if (!bdi)
2451 		return ERR_PTR(-ENOMEM);
2452 	bdi->ra_pages = 0;
2453 	bdi->io_pages = 0;
2454 
2455 	/*
2456 	 * We put '-0' suffix to the name to get the same name format as we
2457 	 * used to get. Since this is called only once, we get a unique name.
2458 	 */
2459 	ret = bdi_register(bdi, "%.28s-0", name);
2460 	if (ret)
2461 		bdi_put(bdi);
2462 
2463 	return ret ? ERR_PTR(ret) : bdi;
2464 }
2465 
2466 static struct proc_dir_entry *proc_mtd;
2467 
init_mtd(void)2468 static int __init init_mtd(void)
2469 {
2470 	int ret;
2471 
2472 	ret = class_register(&mtd_class);
2473 	if (ret)
2474 		goto err_reg;
2475 
2476 	mtd_bdi = mtd_bdi_init("mtd");
2477 	if (IS_ERR(mtd_bdi)) {
2478 		ret = PTR_ERR(mtd_bdi);
2479 		goto err_bdi;
2480 	}
2481 
2482 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2483 
2484 	ret = init_mtdchar();
2485 	if (ret)
2486 		goto out_procfs;
2487 
2488 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2489 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2490 			    &mtd_expert_analysis_mode);
2491 
2492 	return 0;
2493 
2494 out_procfs:
2495 	if (proc_mtd)
2496 		remove_proc_entry("mtd", NULL);
2497 	bdi_unregister(mtd_bdi);
2498 	bdi_put(mtd_bdi);
2499 err_bdi:
2500 	class_unregister(&mtd_class);
2501 err_reg:
2502 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2503 	return ret;
2504 }
2505 
cleanup_mtd(void)2506 static void __exit cleanup_mtd(void)
2507 {
2508 	debugfs_remove_recursive(dfs_dir_mtd);
2509 	cleanup_mtdchar();
2510 	if (proc_mtd)
2511 		remove_proc_entry("mtd", NULL);
2512 	class_unregister(&mtd_class);
2513 	bdi_unregister(mtd_bdi);
2514 	bdi_put(mtd_bdi);
2515 	idr_destroy(&mtd_idr);
2516 }
2517 
2518 module_init(init_mtd);
2519 module_exit(cleanup_mtd);
2520 
2521 MODULE_LICENSE("GPL");
2522 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2523 MODULE_DESCRIPTION("Core MTD registration and access routines");
2524