• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include "priv.h"
23 #include "chan.h"
24 #include "hdmi.h"
25 #include "head.h"
26 #include "ior.h"
27 #include "outp.h"
28 
29 #include <core/client.h>
30 #include <core/gpuobj.h>
31 #include <core/ramht.h>
32 #include <subdev/timer.h>
33 
34 #include <nvif/class.h>
35 #include <nvif/unpack.h>
36 
37 static void
gv100_sor_hda_device_entry(struct nvkm_ior * ior,int head)38 gv100_sor_hda_device_entry(struct nvkm_ior *ior, int head)
39 {
40 	struct nvkm_device *device = ior->disp->engine.subdev.device;
41 	const u32 hoff = 0x800 * head;
42 
43 	nvkm_mask(device, 0x616528 + hoff, 0x00000070, head << 4);
44 }
45 
46 const struct nvkm_ior_func_hda
47 gv100_sor_hda = {
48 	.hpd = gf119_sor_hda_hpd,
49 	.eld = gf119_sor_hda_eld,
50 	.device_entry = gv100_sor_hda_device_entry,
51 };
52 
53 void
gv100_sor_dp_watermark(struct nvkm_ior * sor,int head,u8 watermark)54 gv100_sor_dp_watermark(struct nvkm_ior *sor, int head, u8 watermark)
55 {
56 	struct nvkm_device *device = sor->disp->engine.subdev.device;
57 	const u32 hoff = head * 0x800;
58 
59 	nvkm_mask(device, 0x616550 + hoff, 0x0c00003f, 0x08000000 | watermark);
60 }
61 
62 void
gv100_sor_dp_audio_sym(struct nvkm_ior * sor,int head,u16 h,u32 v)63 gv100_sor_dp_audio_sym(struct nvkm_ior *sor, int head, u16 h, u32 v)
64 {
65 	struct nvkm_device *device = sor->disp->engine.subdev.device;
66 	const u32 hoff = head * 0x800;
67 
68 	nvkm_mask(device, 0x616568 + hoff, 0x0000ffff, h);
69 	nvkm_mask(device, 0x61656c + hoff, 0x00ffffff, v);
70 }
71 
72 void
gv100_sor_dp_audio(struct nvkm_ior * sor,int head,bool enable)73 gv100_sor_dp_audio(struct nvkm_ior *sor, int head, bool enable)
74 {
75 	struct nvkm_device *device = sor->disp->engine.subdev.device;
76 	const u32 hoff = 0x800 * head;
77 	const u32 data = 0x80000000 | (0x00000001 * enable);
78 	const u32 mask = 0x8000000d;
79 
80 	nvkm_mask(device, 0x616560 + hoff, mask, data);
81 	nvkm_msec(device, 2000,
82 		if (!(nvkm_rd32(device, 0x616560 + hoff) & 0x80000000))
83 			break;
84 	);
85 }
86 
87 static const struct nvkm_ior_func_dp
88 gv100_sor_dp = {
89 	.lanes = { 0, 1, 2, 3 },
90 	.links = gf119_sor_dp_links,
91 	.power = g94_sor_dp_power,
92 	.pattern = gm107_sor_dp_pattern,
93 	.drive = gm200_sor_dp_drive,
94 	.audio = gv100_sor_dp_audio,
95 	.audio_sym = gv100_sor_dp_audio_sym,
96 	.watermark = gv100_sor_dp_watermark,
97 };
98 
99 void
gv100_sor_hdmi_ctrl(struct nvkm_ior * ior,int head,bool enable,u8 max_ac_packet,u8 rekey,u8 * avi,u8 avi_size,u8 * vendor,u8 vendor_size)100 gv100_sor_hdmi_ctrl(struct nvkm_ior *ior, int head, bool enable, u8 max_ac_packet,
101 		    u8 rekey, u8 *avi, u8 avi_size, u8 *vendor, u8 vendor_size)
102 {
103 	struct nvkm_device *device = ior->disp->engine.subdev.device;
104 	const u32 ctrl = 0x40000000 * enable |
105 			 max_ac_packet << 16 |
106 			 rekey;
107 	const u32 hoff = head * 0x800;
108 	const u32 hdmi = head * 0x400;
109 	struct packed_hdmi_infoframe avi_infoframe;
110 	struct packed_hdmi_infoframe vendor_infoframe;
111 
112 	pack_hdmi_infoframe(&avi_infoframe, avi, avi_size);
113 	pack_hdmi_infoframe(&vendor_infoframe, vendor, vendor_size);
114 
115 	if (!(ctrl & 0x40000000)) {
116 		nvkm_mask(device, 0x6165c0 + hoff, 0x40000000, 0x00000000);
117 		nvkm_mask(device, 0x6f0100 + hdmi, 0x00000001, 0x00000000);
118 		nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000000);
119 		nvkm_mask(device, 0x6f0000 + hdmi, 0x00000001, 0x00000000);
120 		return;
121 	}
122 
123 	/* AVI InfoFrame (AVI). */
124 	nvkm_mask(device, 0x6f0000 + hdmi, 0x00000001, 0x00000000);
125 	if (avi_size) {
126 		nvkm_wr32(device, 0x6f0008 + hdmi, avi_infoframe.header);
127 		nvkm_wr32(device, 0x6f000c + hdmi, avi_infoframe.subpack0_low);
128 		nvkm_wr32(device, 0x6f0010 + hdmi, avi_infoframe.subpack0_high);
129 		nvkm_wr32(device, 0x6f0014 + hdmi, avi_infoframe.subpack1_low);
130 		nvkm_wr32(device, 0x6f0018 + hdmi, avi_infoframe.subpack1_high);
131 		nvkm_mask(device, 0x6f0000 + hdmi, 0x00000001, 0x00000001);
132 	}
133 
134 	/* Vendor-specific InfoFrame (VSI). */
135 	nvkm_mask(device, 0x6f0100 + hdmi, 0x00010001, 0x00000000);
136 	if (vendor_size) {
137 		nvkm_wr32(device, 0x6f0108 + hdmi, vendor_infoframe.header);
138 		nvkm_wr32(device, 0x6f010c + hdmi, vendor_infoframe.subpack0_low);
139 		nvkm_wr32(device, 0x6f0110 + hdmi, vendor_infoframe.subpack0_high);
140 		nvkm_wr32(device, 0x6f0114 + hdmi, 0x00000000);
141 		nvkm_wr32(device, 0x6f0118 + hdmi, 0x00000000);
142 		nvkm_wr32(device, 0x6f011c + hdmi, 0x00000000);
143 		nvkm_wr32(device, 0x6f0120 + hdmi, 0x00000000);
144 		nvkm_wr32(device, 0x6f0124 + hdmi, 0x00000000);
145 		nvkm_mask(device, 0x6f0100 + hdmi, 0x00000001, 0x00000001);
146 	}
147 
148 
149 	/* General Control (GCP). */
150 	nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000000);
151 	nvkm_wr32(device, 0x6f00cc + hdmi, 0x00000010);
152 	nvkm_mask(device, 0x6f00c0 + hdmi, 0x00000001, 0x00000001);
153 
154 	/* Audio Clock Regeneration (ACR). */
155 	nvkm_wr32(device, 0x6f0080 + hdmi, 0x82000000);
156 
157 	/* NV_PDISP_SF_HDMI_CTRL. */
158 	nvkm_mask(device, 0x6165c0 + hoff, 0x401f007f, ctrl);
159 }
160 
161 void
gv100_sor_state(struct nvkm_ior * sor,struct nvkm_ior_state * state)162 gv100_sor_state(struct nvkm_ior *sor, struct nvkm_ior_state *state)
163 {
164 	struct nvkm_device *device = sor->disp->engine.subdev.device;
165 	const u32 coff = (state == &sor->arm) * 0x8000 + sor->id * 0x20;
166 	u32 ctrl = nvkm_rd32(device, 0x680300 + coff);
167 
168 	state->proto_evo = (ctrl & 0x00000f00) >> 8;
169 	switch (state->proto_evo) {
170 	case 0: state->proto = LVDS; state->link = 1; break;
171 	case 1: state->proto = TMDS; state->link = 1; break;
172 	case 2: state->proto = TMDS; state->link = 2; break;
173 	case 5: state->proto = TMDS; state->link = 3; break;
174 	case 8: state->proto =   DP; state->link = 1; break;
175 	case 9: state->proto =   DP; state->link = 2; break;
176 	default:
177 		state->proto = UNKNOWN;
178 		break;
179 	}
180 
181 	state->head = ctrl & 0x000000ff;
182 }
183 
184 static const struct nvkm_ior_func
185 gv100_sor = {
186 	.route = {
187 		.get = gm200_sor_route_get,
188 		.set = gm200_sor_route_set,
189 	},
190 	.state = gv100_sor_state,
191 	.power = nv50_sor_power,
192 	.clock = gf119_sor_clock,
193 	.hdmi = {
194 		.ctrl = gv100_sor_hdmi_ctrl,
195 		.scdc = gm200_sor_hdmi_scdc,
196 	},
197 	.dp = &gv100_sor_dp,
198 	.hda = &gv100_sor_hda,
199 };
200 
201 static int
gv100_sor_new(struct nvkm_disp * disp,int id)202 gv100_sor_new(struct nvkm_disp *disp, int id)
203 {
204 	struct nvkm_device *device = disp->engine.subdev.device;
205 	u32 hda;
206 
207 	if (!((hda = nvkm_rd32(device, 0x08a15c)) & 0x40000000))
208 		hda = nvkm_rd32(device, 0x118fb0) >> 8;
209 
210 	return nvkm_ior_new_(&gv100_sor, disp, SOR, id, hda & BIT(id));
211 }
212 
213 int
gv100_sor_cnt(struct nvkm_disp * disp,unsigned long * pmask)214 gv100_sor_cnt(struct nvkm_disp *disp, unsigned long *pmask)
215 {
216 	struct nvkm_device *device = disp->engine.subdev.device;
217 
218 	*pmask = (nvkm_rd32(device, 0x610060) & 0x0000ff00) >> 8;
219 	return (nvkm_rd32(device, 0x610074) & 0x00000f00) >> 8;
220 }
221 
222 static void
gv100_head_vblank_put(struct nvkm_head * head)223 gv100_head_vblank_put(struct nvkm_head *head)
224 {
225 	struct nvkm_device *device = head->disp->engine.subdev.device;
226 	nvkm_mask(device, 0x611d80 + (head->id * 4), 0x00000004, 0x00000000);
227 }
228 
229 static void
gv100_head_vblank_get(struct nvkm_head * head)230 gv100_head_vblank_get(struct nvkm_head *head)
231 {
232 	struct nvkm_device *device = head->disp->engine.subdev.device;
233 	nvkm_mask(device, 0x611d80 + (head->id * 4), 0x00000004, 0x00000004);
234 }
235 
236 static void
gv100_head_rgpos(struct nvkm_head * head,u16 * hline,u16 * vline)237 gv100_head_rgpos(struct nvkm_head *head, u16 *hline, u16 *vline)
238 {
239 	struct nvkm_device *device = head->disp->engine.subdev.device;
240 	const u32 hoff = head->id * 0x800;
241 	/* vline read locks hline. */
242 	*vline = nvkm_rd32(device, 0x616330 + hoff) & 0x0000ffff;
243 	*hline = nvkm_rd32(device, 0x616334 + hoff) & 0x0000ffff;
244 }
245 
246 static void
gv100_head_state(struct nvkm_head * head,struct nvkm_head_state * state)247 gv100_head_state(struct nvkm_head *head, struct nvkm_head_state *state)
248 {
249 	struct nvkm_device *device = head->disp->engine.subdev.device;
250 	const u32 hoff = (state == &head->arm) * 0x8000 + head->id * 0x400;
251 	u32 data;
252 
253 	data = nvkm_rd32(device, 0x682064 + hoff);
254 	state->vtotal = (data & 0xffff0000) >> 16;
255 	state->htotal = (data & 0x0000ffff);
256 	data = nvkm_rd32(device, 0x682068 + hoff);
257 	state->vsynce = (data & 0xffff0000) >> 16;
258 	state->hsynce = (data & 0x0000ffff);
259 	data = nvkm_rd32(device, 0x68206c + hoff);
260 	state->vblanke = (data & 0xffff0000) >> 16;
261 	state->hblanke = (data & 0x0000ffff);
262 	data = nvkm_rd32(device, 0x682070 + hoff);
263 	state->vblanks = (data & 0xffff0000) >> 16;
264 	state->hblanks = (data & 0x0000ffff);
265 	state->hz = nvkm_rd32(device, 0x68200c + hoff);
266 
267 	data = nvkm_rd32(device, 0x682004 + hoff);
268 	switch ((data & 0x000000f0) >> 4) {
269 	case 5: state->or.depth = 30; break;
270 	case 4: state->or.depth = 24; break;
271 	case 1: state->or.depth = 18; break;
272 	default:
273 		state->or.depth = 18;
274 		WARN_ON(1);
275 		break;
276 	}
277 }
278 
279 static const struct nvkm_head_func
280 gv100_head = {
281 	.state = gv100_head_state,
282 	.rgpos = gv100_head_rgpos,
283 	.rgclk = gf119_head_rgclk,
284 	.vblank_get = gv100_head_vblank_get,
285 	.vblank_put = gv100_head_vblank_put,
286 };
287 
288 int
gv100_head_new(struct nvkm_disp * disp,int id)289 gv100_head_new(struct nvkm_disp *disp, int id)
290 {
291 	struct nvkm_device *device = disp->engine.subdev.device;
292 
293 	if (!(nvkm_rd32(device, 0x610060) & (0x00000001 << id)))
294 		return 0;
295 
296 	return nvkm_head_new_(&gv100_head, disp, id);
297 }
298 
299 int
gv100_head_cnt(struct nvkm_disp * disp,unsigned long * pmask)300 gv100_head_cnt(struct nvkm_disp *disp, unsigned long *pmask)
301 {
302 	struct nvkm_device *device = disp->engine.subdev.device;
303 
304 	*pmask = nvkm_rd32(device, 0x610060) & 0x000000ff;
305 	return nvkm_rd32(device, 0x610074) & 0x0000000f;
306 }
307 
308 const struct nvkm_event_func
309 gv100_disp_chan_uevent = {
310 };
311 
312 u64
gv100_disp_chan_user(struct nvkm_disp_chan * chan,u64 * psize)313 gv100_disp_chan_user(struct nvkm_disp_chan *chan, u64 *psize)
314 {
315 	*psize = 0x1000;
316 	return 0x690000 + ((chan->chid.user - 1) * 0x1000);
317 }
318 
319 static int
gv100_disp_dmac_idle(struct nvkm_disp_chan * chan)320 gv100_disp_dmac_idle(struct nvkm_disp_chan *chan)
321 {
322 	struct nvkm_device *device = chan->disp->engine.subdev.device;
323 	const u32 soff = (chan->chid.ctrl - 1) * 0x04;
324 	nvkm_msec(device, 2000,
325 		u32 stat = nvkm_rd32(device, 0x610664 + soff);
326 		if ((stat & 0x000f0000) == 0x00040000)
327 			return 0;
328 	);
329 	return -EBUSY;
330 }
331 
332 int
gv100_disp_dmac_bind(struct nvkm_disp_chan * chan,struct nvkm_object * object,u32 handle)333 gv100_disp_dmac_bind(struct nvkm_disp_chan *chan,
334 		     struct nvkm_object *object, u32 handle)
335 {
336 	return nvkm_ramht_insert(chan->disp->ramht, object, chan->chid.user, -9, handle,
337 				 chan->chid.user << 25 | 0x00000040);
338 }
339 
340 void
gv100_disp_dmac_fini(struct nvkm_disp_chan * chan)341 gv100_disp_dmac_fini(struct nvkm_disp_chan *chan)
342 {
343 	struct nvkm_device *device = chan->disp->engine.subdev.device;
344 	const u32 uoff = (chan->chid.ctrl - 1) * 0x1000;
345 	const u32 coff = chan->chid.ctrl * 0x04;
346 	nvkm_mask(device, 0x6104e0 + coff, 0x00000010, 0x00000000);
347 	gv100_disp_dmac_idle(chan);
348 	nvkm_mask(device, 0x6104e0 + coff, 0x00000002, 0x00000000);
349 	chan->suspend_put = nvkm_rd32(device, 0x690000 + uoff);
350 }
351 
352 int
gv100_disp_dmac_init(struct nvkm_disp_chan * chan)353 gv100_disp_dmac_init(struct nvkm_disp_chan *chan)
354 {
355 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
356 	struct nvkm_device *device = subdev->device;
357 	const u32 uoff = (chan->chid.ctrl - 1) * 0x1000;
358 	const u32 poff = chan->chid.ctrl * 0x10;
359 	const u32 coff = chan->chid.ctrl * 0x04;
360 
361 	nvkm_wr32(device, 0x610b24 + poff, lower_32_bits(chan->push));
362 	nvkm_wr32(device, 0x610b20 + poff, upper_32_bits(chan->push));
363 	nvkm_wr32(device, 0x610b28 + poff, 0x00000001);
364 	nvkm_wr32(device, 0x610b2c + poff, 0x00000040);
365 
366 	nvkm_mask(device, 0x6104e0 + coff, 0x00000010, 0x00000010);
367 	nvkm_wr32(device, 0x690000 + uoff, chan->suspend_put);
368 	nvkm_wr32(device, 0x6104e0 + coff, 0x00000013);
369 	return gv100_disp_dmac_idle(chan);
370 }
371 
372 static void
gv100_disp_wimm_intr(struct nvkm_disp_chan * chan,bool en)373 gv100_disp_wimm_intr(struct nvkm_disp_chan *chan, bool en)
374 {
375 	struct nvkm_device *device = chan->disp->engine.subdev.device;
376 	const u32 mask = 0x00000001 << chan->head;
377 	const u32 data = en ? mask : 0;
378 	nvkm_mask(device, 0x611da8, mask, data);
379 }
380 
381 static const struct nvkm_disp_chan_func
382 gv100_disp_wimm_func = {
383 	.push = nv50_disp_dmac_push,
384 	.init = gv100_disp_dmac_init,
385 	.fini = gv100_disp_dmac_fini,
386 	.intr = gv100_disp_wimm_intr,
387 	.user = gv100_disp_chan_user,
388 };
389 
390 const struct nvkm_disp_chan_user
391 gv100_disp_wimm = {
392 	.func = &gv100_disp_wimm_func,
393 	.ctrl = 33,
394 	.user = 33,
395 };
396 
397 static const struct nvkm_disp_mthd_list
398 gv100_disp_wndw_mthd_base = {
399 	.mthd = 0x0000,
400 	.addr = 0x000000,
401 	.data = {
402 		{ 0x0200, 0x690200 },
403 		{ 0x020c, 0x69020c },
404 		{ 0x0210, 0x690210 },
405 		{ 0x0214, 0x690214 },
406 		{ 0x0218, 0x690218 },
407 		{ 0x021c, 0x69021c },
408 		{ 0x0220, 0x690220 },
409 		{ 0x0224, 0x690224 },
410 		{ 0x0228, 0x690228 },
411 		{ 0x022c, 0x69022c },
412 		{ 0x0230, 0x690230 },
413 		{ 0x0234, 0x690234 },
414 		{ 0x0238, 0x690238 },
415 		{ 0x0240, 0x690240 },
416 		{ 0x0244, 0x690244 },
417 		{ 0x0248, 0x690248 },
418 		{ 0x024c, 0x69024c },
419 		{ 0x0250, 0x690250 },
420 		{ 0x0254, 0x690254 },
421 		{ 0x0260, 0x690260 },
422 		{ 0x0264, 0x690264 },
423 		{ 0x0268, 0x690268 },
424 		{ 0x026c, 0x69026c },
425 		{ 0x0270, 0x690270 },
426 		{ 0x0274, 0x690274 },
427 		{ 0x0280, 0x690280 },
428 		{ 0x0284, 0x690284 },
429 		{ 0x0288, 0x690288 },
430 		{ 0x028c, 0x69028c },
431 		{ 0x0290, 0x690290 },
432 		{ 0x0298, 0x690298 },
433 		{ 0x029c, 0x69029c },
434 		{ 0x02a0, 0x6902a0 },
435 		{ 0x02a4, 0x6902a4 },
436 		{ 0x02a8, 0x6902a8 },
437 		{ 0x02ac, 0x6902ac },
438 		{ 0x02b0, 0x6902b0 },
439 		{ 0x02b4, 0x6902b4 },
440 		{ 0x02b8, 0x6902b8 },
441 		{ 0x02bc, 0x6902bc },
442 		{ 0x02c0, 0x6902c0 },
443 		{ 0x02c4, 0x6902c4 },
444 		{ 0x02c8, 0x6902c8 },
445 		{ 0x02cc, 0x6902cc },
446 		{ 0x02d0, 0x6902d0 },
447 		{ 0x02d4, 0x6902d4 },
448 		{ 0x02d8, 0x6902d8 },
449 		{ 0x02dc, 0x6902dc },
450 		{ 0x02e0, 0x6902e0 },
451 		{ 0x02e4, 0x6902e4 },
452 		{ 0x02e8, 0x6902e8 },
453 		{ 0x02ec, 0x6902ec },
454 		{ 0x02f0, 0x6902f0 },
455 		{ 0x02f4, 0x6902f4 },
456 		{ 0x02f8, 0x6902f8 },
457 		{ 0x02fc, 0x6902fc },
458 		{ 0x0300, 0x690300 },
459 		{ 0x0304, 0x690304 },
460 		{ 0x0308, 0x690308 },
461 		{ 0x0310, 0x690310 },
462 		{ 0x0314, 0x690314 },
463 		{ 0x0318, 0x690318 },
464 		{ 0x031c, 0x69031c },
465 		{ 0x0320, 0x690320 },
466 		{ 0x0324, 0x690324 },
467 		{ 0x0328, 0x690328 },
468 		{ 0x032c, 0x69032c },
469 		{ 0x033c, 0x69033c },
470 		{ 0x0340, 0x690340 },
471 		{ 0x0344, 0x690344 },
472 		{ 0x0348, 0x690348 },
473 		{ 0x034c, 0x69034c },
474 		{ 0x0350, 0x690350 },
475 		{ 0x0354, 0x690354 },
476 		{ 0x0358, 0x690358 },
477 		{ 0x0364, 0x690364 },
478 		{ 0x0368, 0x690368 },
479 		{ 0x036c, 0x69036c },
480 		{ 0x0370, 0x690370 },
481 		{ 0x0374, 0x690374 },
482 		{ 0x0380, 0x690380 },
483 		{}
484 	}
485 };
486 
487 static const struct nvkm_disp_chan_mthd
488 gv100_disp_wndw_mthd = {
489 	.name = "Window",
490 	.addr = 0x001000,
491 	.prev = 0x000800,
492 	.data = {
493 		{ "Global", 1, &gv100_disp_wndw_mthd_base },
494 		{}
495 	}
496 };
497 
498 static void
gv100_disp_wndw_intr(struct nvkm_disp_chan * chan,bool en)499 gv100_disp_wndw_intr(struct nvkm_disp_chan *chan, bool en)
500 {
501 	struct nvkm_device *device = chan->disp->engine.subdev.device;
502 	const u32 mask = 0x00000001 << chan->head;
503 	const u32 data = en ? mask : 0;
504 	nvkm_mask(device, 0x611da4, mask, data);
505 }
506 
507 static const struct nvkm_disp_chan_func
508 gv100_disp_wndw_func = {
509 	.push = nv50_disp_dmac_push,
510 	.init = gv100_disp_dmac_init,
511 	.fini = gv100_disp_dmac_fini,
512 	.intr = gv100_disp_wndw_intr,
513 	.user = gv100_disp_chan_user,
514 	.bind = gv100_disp_dmac_bind,
515 };
516 
517 const struct nvkm_disp_chan_user
518 gv100_disp_wndw = {
519 	.func = &gv100_disp_wndw_func,
520 	.ctrl = 1,
521 	.user = 1,
522 	.mthd = &gv100_disp_wndw_mthd,
523 };
524 
525 int
gv100_disp_wndw_cnt(struct nvkm_disp * disp,unsigned long * pmask)526 gv100_disp_wndw_cnt(struct nvkm_disp *disp, unsigned long *pmask)
527 {
528 	struct nvkm_device *device = disp->engine.subdev.device;
529 
530 	*pmask = nvkm_rd32(device, 0x610064);
531 	return (nvkm_rd32(device, 0x610074) & 0x03f00000) >> 20;
532 }
533 
534 static int
gv100_disp_curs_idle(struct nvkm_disp_chan * chan)535 gv100_disp_curs_idle(struct nvkm_disp_chan *chan)
536 {
537 	struct nvkm_device *device = chan->disp->engine.subdev.device;
538 	const u32 soff = (chan->chid.ctrl - 1) * 0x04;
539 	nvkm_msec(device, 2000,
540 		u32 stat = nvkm_rd32(device, 0x610664 + soff);
541 		if ((stat & 0x00070000) == 0x00040000)
542 			return 0;
543 	);
544 	return -EBUSY;
545 }
546 
547 static void
gv100_disp_curs_intr(struct nvkm_disp_chan * chan,bool en)548 gv100_disp_curs_intr(struct nvkm_disp_chan *chan, bool en)
549 {
550 	struct nvkm_device *device = chan->disp->engine.subdev.device;
551 	const u32 mask = 0x00010000 << chan->head;
552 	const u32 data = en ? mask : 0;
553 	nvkm_mask(device, 0x611dac, mask, data);
554 }
555 
556 static void
gv100_disp_curs_fini(struct nvkm_disp_chan * chan)557 gv100_disp_curs_fini(struct nvkm_disp_chan *chan)
558 {
559 	struct nvkm_device *device = chan->disp->engine.subdev.device;
560 	const u32 hoff = chan->chid.ctrl * 4;
561 	nvkm_mask(device, 0x6104e0 + hoff, 0x00000010, 0x00000010);
562 	gv100_disp_curs_idle(chan);
563 	nvkm_mask(device, 0x6104e0 + hoff, 0x00000001, 0x00000000);
564 }
565 
566 static int
gv100_disp_curs_init(struct nvkm_disp_chan * chan)567 gv100_disp_curs_init(struct nvkm_disp_chan *chan)
568 {
569 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
570 	struct nvkm_device *device = subdev->device;
571 	nvkm_wr32(device, 0x6104e0 + chan->chid.ctrl * 4, 0x00000001);
572 	return gv100_disp_curs_idle(chan);
573 }
574 
575 static const struct nvkm_disp_chan_func
576 gv100_disp_curs_func = {
577 	.init = gv100_disp_curs_init,
578 	.fini = gv100_disp_curs_fini,
579 	.intr = gv100_disp_curs_intr,
580 	.user = gv100_disp_chan_user,
581 };
582 
583 const struct nvkm_disp_chan_user
584 gv100_disp_curs = {
585 	.func = &gv100_disp_curs_func,
586 	.ctrl = 73,
587 	.user = 73,
588 };
589 
590 const struct nvkm_disp_mthd_list
591 gv100_disp_core_mthd_base = {
592 	.mthd = 0x0000,
593 	.addr = 0x000000,
594 	.data = {
595 		{ 0x0200, 0x680200 },
596 		{ 0x0208, 0x680208 },
597 		{ 0x020c, 0x68020c },
598 		{ 0x0210, 0x680210 },
599 		{ 0x0214, 0x680214 },
600 		{ 0x0218, 0x680218 },
601 		{ 0x021c, 0x68021c },
602 		{}
603 	}
604 };
605 
606 static const struct nvkm_disp_mthd_list
607 gv100_disp_core_mthd_sor = {
608 	.mthd = 0x0020,
609 	.addr = 0x000020,
610 	.data = {
611 		{ 0x0300, 0x680300 },
612 		{ 0x0304, 0x680304 },
613 		{ 0x0308, 0x680308 },
614 		{ 0x030c, 0x68030c },
615 		{}
616 	}
617 };
618 
619 static const struct nvkm_disp_mthd_list
620 gv100_disp_core_mthd_wndw = {
621 	.mthd = 0x0080,
622 	.addr = 0x000080,
623 	.data = {
624 		{ 0x1000, 0x681000 },
625 		{ 0x1004, 0x681004 },
626 		{ 0x1008, 0x681008 },
627 		{ 0x100c, 0x68100c },
628 		{ 0x1010, 0x681010 },
629 		{}
630 	}
631 };
632 
633 static const struct nvkm_disp_mthd_list
634 gv100_disp_core_mthd_head = {
635 	.mthd = 0x0400,
636 	.addr = 0x000400,
637 	.data = {
638 		{ 0x2000, 0x682000 },
639 		{ 0x2004, 0x682004 },
640 		{ 0x2008, 0x682008 },
641 		{ 0x200c, 0x68200c },
642 		{ 0x2014, 0x682014 },
643 		{ 0x2018, 0x682018 },
644 		{ 0x201c, 0x68201c },
645 		{ 0x2020, 0x682020 },
646 		{ 0x2028, 0x682028 },
647 		{ 0x202c, 0x68202c },
648 		{ 0x2030, 0x682030 },
649 		{ 0x2038, 0x682038 },
650 		{ 0x203c, 0x68203c },
651 		{ 0x2048, 0x682048 },
652 		{ 0x204c, 0x68204c },
653 		{ 0x2050, 0x682050 },
654 		{ 0x2054, 0x682054 },
655 		{ 0x2058, 0x682058 },
656 		{ 0x205c, 0x68205c },
657 		{ 0x2060, 0x682060 },
658 		{ 0x2064, 0x682064 },
659 		{ 0x2068, 0x682068 },
660 		{ 0x206c, 0x68206c },
661 		{ 0x2070, 0x682070 },
662 		{ 0x2074, 0x682074 },
663 		{ 0x2078, 0x682078 },
664 		{ 0x207c, 0x68207c },
665 		{ 0x2080, 0x682080 },
666 		{ 0x2088, 0x682088 },
667 		{ 0x2090, 0x682090 },
668 		{ 0x209c, 0x68209c },
669 		{ 0x20a0, 0x6820a0 },
670 		{ 0x20a4, 0x6820a4 },
671 		{ 0x20a8, 0x6820a8 },
672 		{ 0x20ac, 0x6820ac },
673 		{ 0x2180, 0x682180 },
674 		{ 0x2184, 0x682184 },
675 		{ 0x218c, 0x68218c },
676 		{ 0x2194, 0x682194 },
677 		{ 0x2198, 0x682198 },
678 		{ 0x219c, 0x68219c },
679 		{ 0x21a0, 0x6821a0 },
680 		{ 0x21a4, 0x6821a4 },
681 		{ 0x2214, 0x682214 },
682 		{ 0x2218, 0x682218 },
683 		{}
684 	}
685 };
686 
687 static const struct nvkm_disp_chan_mthd
688 gv100_disp_core_mthd = {
689 	.name = "Core",
690 	.addr = 0x000000,
691 	.prev = 0x008000,
692 	.data = {
693 		{ "Global", 1, &gv100_disp_core_mthd_base },
694 		{    "SOR", 4, &gv100_disp_core_mthd_sor  },
695 		{ "WINDOW", 8, &gv100_disp_core_mthd_wndw },
696 		{   "HEAD", 4, &gv100_disp_core_mthd_head },
697 		{}
698 	}
699 };
700 
701 static int
gv100_disp_core_idle(struct nvkm_disp_chan * chan)702 gv100_disp_core_idle(struct nvkm_disp_chan *chan)
703 {
704 	struct nvkm_device *device = chan->disp->engine.subdev.device;
705 	nvkm_msec(device, 2000,
706 		u32 stat = nvkm_rd32(device, 0x610630);
707 		if ((stat & 0x001f0000) == 0x000b0000)
708 			return 0;
709 	);
710 	return -EBUSY;
711 }
712 
713 static u64
gv100_disp_core_user(struct nvkm_disp_chan * chan,u64 * psize)714 gv100_disp_core_user(struct nvkm_disp_chan *chan, u64 *psize)
715 {
716 	*psize = 0x10000;
717 	return 0x680000;
718 }
719 
720 static void
gv100_disp_core_intr(struct nvkm_disp_chan * chan,bool en)721 gv100_disp_core_intr(struct nvkm_disp_chan *chan, bool en)
722 {
723 	struct nvkm_device *device = chan->disp->engine.subdev.device;
724 	const u32 mask = 0x00000001;
725 	const u32 data = en ? mask : 0;
726 	nvkm_mask(device, 0x611dac, mask, data);
727 }
728 
729 static void
gv100_disp_core_fini(struct nvkm_disp_chan * chan)730 gv100_disp_core_fini(struct nvkm_disp_chan *chan)
731 {
732 	struct nvkm_device *device = chan->disp->engine.subdev.device;
733 	nvkm_mask(device, 0x6104e0, 0x00000010, 0x00000000);
734 	gv100_disp_core_idle(chan);
735 	nvkm_mask(device, 0x6104e0, 0x00000002, 0x00000000);
736 	chan->suspend_put = nvkm_rd32(device, 0x680000);
737 }
738 
739 static int
gv100_disp_core_init(struct nvkm_disp_chan * chan)740 gv100_disp_core_init(struct nvkm_disp_chan *chan)
741 {
742 	struct nvkm_subdev *subdev = &chan->disp->engine.subdev;
743 	struct nvkm_device *device = subdev->device;
744 
745 	nvkm_wr32(device, 0x610b24, lower_32_bits(chan->push));
746 	nvkm_wr32(device, 0x610b20, upper_32_bits(chan->push));
747 	nvkm_wr32(device, 0x610b28, 0x00000001);
748 	nvkm_wr32(device, 0x610b2c, 0x00000040);
749 
750 	nvkm_mask(device, 0x6104e0, 0x00000010, 0x00000010);
751 	nvkm_wr32(device, 0x680000, chan->suspend_put);
752 	nvkm_wr32(device, 0x6104e0, 0x00000013);
753 	return gv100_disp_core_idle(chan);
754 }
755 
756 static const struct nvkm_disp_chan_func
757 gv100_disp_core_func = {
758 	.push = nv50_disp_dmac_push,
759 	.init = gv100_disp_core_init,
760 	.fini = gv100_disp_core_fini,
761 	.intr = gv100_disp_core_intr,
762 	.user = gv100_disp_core_user,
763 	.bind = gv100_disp_dmac_bind,
764 };
765 
766 const struct nvkm_disp_chan_user
767 gv100_disp_core = {
768 	.func = &gv100_disp_core_func,
769 	.ctrl = 0,
770 	.user = 0,
771 	.mthd = &gv100_disp_core_mthd,
772 };
773 
774 #define gv100_disp_caps(p) container_of((p), struct gv100_disp_caps, object)
775 
776 struct gv100_disp_caps {
777 	struct nvkm_object object;
778 	struct nvkm_disp *disp;
779 };
780 
781 static int
gv100_disp_caps_map(struct nvkm_object * object,void * argv,u32 argc,enum nvkm_object_map * type,u64 * addr,u64 * size)782 gv100_disp_caps_map(struct nvkm_object *object, void *argv, u32 argc,
783 		    enum nvkm_object_map *type, u64 *addr, u64 *size)
784 {
785 	struct gv100_disp_caps *caps = gv100_disp_caps(object);
786 	struct nvkm_device *device = caps->disp->engine.subdev.device;
787 	*type = NVKM_OBJECT_MAP_IO;
788 	*addr = 0x640000 + device->func->resource_addr(device, 0);
789 	*size = 0x1000;
790 	return 0;
791 }
792 
793 static const struct nvkm_object_func
794 gv100_disp_caps = {
795 	.map = gv100_disp_caps_map,
796 };
797 
798 int
gv100_disp_caps_new(const struct nvkm_oclass * oclass,void * argv,u32 argc,struct nvkm_object ** pobject)799 gv100_disp_caps_new(const struct nvkm_oclass *oclass, void *argv, u32 argc,
800 		    struct nvkm_object **pobject)
801 {
802 	struct nvkm_disp *disp = nvkm_udisp(oclass->parent);
803 	struct gv100_disp_caps *caps;
804 
805 	if (!(caps = kzalloc(sizeof(*caps), GFP_KERNEL)))
806 		return -ENOMEM;
807 	*pobject = &caps->object;
808 
809 	nvkm_object_ctor(&gv100_disp_caps, oclass, &caps->object);
810 	caps->disp = disp;
811 	return 0;
812 }
813 
814 void
gv100_disp_super(struct work_struct * work)815 gv100_disp_super(struct work_struct *work)
816 {
817 	struct nvkm_disp *disp = container_of(work, struct nvkm_disp, super.work);
818 	struct nvkm_subdev *subdev = &disp->engine.subdev;
819 	struct nvkm_device *device = subdev->device;
820 	struct nvkm_head *head;
821 	u32 stat, mask[4];
822 
823 	mutex_lock(&disp->super.mutex);
824 	stat = nvkm_rd32(device, 0x6107a8);
825 
826 	nvkm_debug(subdev, "supervisor %d: %08x\n", ffs(disp->super.pending), stat);
827 	list_for_each_entry(head, &disp->heads, head) {
828 		mask[head->id] = nvkm_rd32(device, 0x6107ac + (head->id * 4));
829 		HEAD_DBG(head, "%08x", mask[head->id]);
830 	}
831 
832 	if (disp->super.pending & 0x00000001) {
833 		nv50_disp_chan_mthd(disp->chan[0], NV_DBG_DEBUG);
834 		nv50_disp_super_1(disp);
835 		list_for_each_entry(head, &disp->heads, head) {
836 			if (!(mask[head->id] & 0x00001000))
837 				continue;
838 			nv50_disp_super_1_0(disp, head);
839 		}
840 	} else
841 	if (disp->super.pending & 0x00000002) {
842 		list_for_each_entry(head, &disp->heads, head) {
843 			if (!(mask[head->id] & 0x00001000))
844 				continue;
845 			nv50_disp_super_2_0(disp, head);
846 		}
847 		nvkm_outp_route(disp);
848 		list_for_each_entry(head, &disp->heads, head) {
849 			if (!(mask[head->id] & 0x00010000))
850 				continue;
851 			nv50_disp_super_2_1(disp, head);
852 		}
853 		list_for_each_entry(head, &disp->heads, head) {
854 			if (!(mask[head->id] & 0x00001000))
855 				continue;
856 			nv50_disp_super_2_2(disp, head);
857 		}
858 	} else
859 	if (disp->super.pending & 0x00000004) {
860 		list_for_each_entry(head, &disp->heads, head) {
861 			if (!(mask[head->id] & 0x00001000))
862 				continue;
863 			nv50_disp_super_3_0(disp, head);
864 		}
865 	}
866 
867 	list_for_each_entry(head, &disp->heads, head)
868 		nvkm_wr32(device, 0x6107ac + (head->id * 4), 0x00000000);
869 
870 	nvkm_wr32(device, 0x6107a8, 0x80000000);
871 	mutex_unlock(&disp->super.mutex);
872 }
873 
874 static void
gv100_disp_exception(struct nvkm_disp * disp,int chid)875 gv100_disp_exception(struct nvkm_disp *disp, int chid)
876 {
877 	struct nvkm_subdev *subdev = &disp->engine.subdev;
878 	struct nvkm_device *device = subdev->device;
879 	u32 stat = nvkm_rd32(device, 0x611020 + (chid * 12));
880 	u32 type = (stat & 0x00007000) >> 12;
881 	u32 mthd = (stat & 0x00000fff) << 2;
882 	const struct nvkm_enum *reason =
883 		nvkm_enum_find(nv50_disp_intr_error_type, type);
884 
885 	/*TODO: Suspect 33->41 are for WRBK channel exceptions, but we
886 	 *      don't support those currently.
887 	 *
888 	 *      CORE+WIN CHIDs map directly to the FE_EXCEPT() slots.
889 	 */
890 	if (chid <= 32) {
891 		u32 data = nvkm_rd32(device, 0x611024 + (chid * 12));
892 		u32 code = nvkm_rd32(device, 0x611028 + (chid * 12));
893 		nvkm_error(subdev, "chid %d stat %08x reason %d [%s] "
894 				   "mthd %04x data %08x code %08x\n",
895 			   chid, stat, type, reason ? reason->name : "",
896 			   mthd, data, code);
897 	} else {
898 		nvkm_error(subdev, "chid %d stat %08x reason %d [%s] "
899 				   "mthd %04x\n",
900 			   chid, stat, type, reason ? reason->name : "", mthd);
901 	}
902 
903 	if (chid < ARRAY_SIZE(disp->chan) && disp->chan[chid]) {
904 		switch (mthd) {
905 		case 0x0200:
906 			nv50_disp_chan_mthd(disp->chan[chid], NV_DBG_ERROR);
907 			break;
908 		default:
909 			break;
910 		}
911 	}
912 
913 	nvkm_wr32(device, 0x611020 + (chid * 12), 0x90000000);
914 }
915 
916 static void
gv100_disp_intr_ctrl_disp(struct nvkm_disp * disp)917 gv100_disp_intr_ctrl_disp(struct nvkm_disp *disp)
918 {
919 	struct nvkm_subdev *subdev = &disp->engine.subdev;
920 	struct nvkm_device *device = subdev->device;
921 	u32 stat = nvkm_rd32(device, 0x611c30);
922 
923 	if (stat & 0x00000007) {
924 		disp->super.pending = (stat & 0x00000007);
925 		queue_work(disp->super.wq, &disp->super.work);
926 		nvkm_wr32(device, 0x611860, disp->super.pending);
927 		stat &= ~0x00000007;
928 	}
929 
930 	/*TODO: I would guess this is VBIOS_RELEASE, however, NFI how to
931 	 *      ACK it, nor does RM appear to bother.
932 	 */
933 	if (stat & 0x00000008)
934 		stat &= ~0x00000008;
935 
936 	if (stat & 0x00000080) {
937 		u32 error = nvkm_mask(device, 0x611848, 0x00000000, 0x00000000);
938 		nvkm_warn(subdev, "error %08x\n", error);
939 		stat &= ~0x00000080;
940 	}
941 
942 	if (stat & 0x00000100) {
943 		unsigned long wndws = nvkm_rd32(device, 0x611858);
944 		unsigned long other = nvkm_rd32(device, 0x61185c);
945 		int wndw;
946 
947 		nvkm_wr32(device, 0x611858, wndws);
948 		nvkm_wr32(device, 0x61185c, other);
949 
950 		/* AWAKEN_OTHER_CORE. */
951 		if (other & 0x00000001)
952 			nv50_disp_chan_uevent_send(disp, 0);
953 
954 		/* AWAKEN_WIN_CH(n). */
955 		for_each_set_bit(wndw, &wndws, disp->wndw.nr) {
956 			nv50_disp_chan_uevent_send(disp, 1 + wndw);
957 		}
958 	}
959 
960 	if (stat)
961 		nvkm_warn(subdev, "ctrl %08x\n", stat);
962 }
963 
964 static void
gv100_disp_intr_exc_other(struct nvkm_disp * disp)965 gv100_disp_intr_exc_other(struct nvkm_disp *disp)
966 {
967 	struct nvkm_subdev *subdev = &disp->engine.subdev;
968 	struct nvkm_device *device = subdev->device;
969 	u32 stat = nvkm_rd32(device, 0x611854);
970 	unsigned long mask;
971 	int head;
972 
973 	if (stat & 0x00000001) {
974 		nvkm_wr32(device, 0x611854, 0x00000001);
975 		gv100_disp_exception(disp, 0);
976 		stat &= ~0x00000001;
977 	}
978 
979 	if ((mask = (stat & 0x00ff0000) >> 16)) {
980 		for_each_set_bit(head, &mask, disp->wndw.nr) {
981 			nvkm_wr32(device, 0x611854, 0x00010000 << head);
982 			gv100_disp_exception(disp, 73 + head);
983 			stat &= ~(0x00010000 << head);
984 		}
985 	}
986 
987 	if (stat) {
988 		nvkm_warn(subdev, "exception %08x\n", stat);
989 		nvkm_wr32(device, 0x611854, stat);
990 	}
991 }
992 
993 static void
gv100_disp_intr_exc_winim(struct nvkm_disp * disp)994 gv100_disp_intr_exc_winim(struct nvkm_disp *disp)
995 {
996 	struct nvkm_subdev *subdev = &disp->engine.subdev;
997 	struct nvkm_device *device = subdev->device;
998 	unsigned long stat = nvkm_rd32(device, 0x611850);
999 	int wndw;
1000 
1001 	for_each_set_bit(wndw, &stat, disp->wndw.nr) {
1002 		nvkm_wr32(device, 0x611850, BIT(wndw));
1003 		gv100_disp_exception(disp, 33 + wndw);
1004 		stat &= ~BIT(wndw);
1005 	}
1006 
1007 	if (stat) {
1008 		nvkm_warn(subdev, "wimm %08x\n", (u32)stat);
1009 		nvkm_wr32(device, 0x611850, stat);
1010 	}
1011 }
1012 
1013 static void
gv100_disp_intr_exc_win(struct nvkm_disp * disp)1014 gv100_disp_intr_exc_win(struct nvkm_disp *disp)
1015 {
1016 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1017 	struct nvkm_device *device = subdev->device;
1018 	unsigned long stat = nvkm_rd32(device, 0x61184c);
1019 	int wndw;
1020 
1021 	for_each_set_bit(wndw, &stat, disp->wndw.nr) {
1022 		nvkm_wr32(device, 0x61184c, BIT(wndw));
1023 		gv100_disp_exception(disp, 1 + wndw);
1024 		stat &= ~BIT(wndw);
1025 	}
1026 
1027 	if (stat) {
1028 		nvkm_warn(subdev, "wndw %08x\n", (u32)stat);
1029 		nvkm_wr32(device, 0x61184c, stat);
1030 	}
1031 }
1032 
1033 static void
gv100_disp_intr_head_timing(struct nvkm_disp * disp,int head)1034 gv100_disp_intr_head_timing(struct nvkm_disp *disp, int head)
1035 {
1036 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1037 	struct nvkm_device *device = subdev->device;
1038 	u32 stat = nvkm_rd32(device, 0x611800 + (head * 0x04));
1039 
1040 	/* LAST_DATA, LOADV. */
1041 	if (stat & 0x00000003) {
1042 		nvkm_wr32(device, 0x611800 + (head * 0x04), stat & 0x00000003);
1043 		stat &= ~0x00000003;
1044 	}
1045 
1046 	if (stat & 0x00000004) {
1047 		nvkm_disp_vblank(disp, head);
1048 		nvkm_wr32(device, 0x611800 + (head * 0x04), 0x00000004);
1049 		stat &= ~0x00000004;
1050 	}
1051 
1052 	if (stat) {
1053 		nvkm_warn(subdev, "head %08x\n", stat);
1054 		nvkm_wr32(device, 0x611800 + (head * 0x04), stat);
1055 	}
1056 }
1057 
1058 void
gv100_disp_intr(struct nvkm_disp * disp)1059 gv100_disp_intr(struct nvkm_disp *disp)
1060 {
1061 	struct nvkm_subdev *subdev = &disp->engine.subdev;
1062 	struct nvkm_device *device = subdev->device;
1063 	u32 stat = nvkm_rd32(device, 0x611ec0);
1064 	unsigned long mask;
1065 	int head;
1066 
1067 	if ((mask = (stat & 0x000000ff))) {
1068 		for_each_set_bit(head, &mask, 8) {
1069 			gv100_disp_intr_head_timing(disp, head);
1070 			stat &= ~BIT(head);
1071 		}
1072 	}
1073 
1074 	if (stat & 0x00000200) {
1075 		gv100_disp_intr_exc_win(disp);
1076 		stat &= ~0x00000200;
1077 	}
1078 
1079 	if (stat & 0x00000400) {
1080 		gv100_disp_intr_exc_winim(disp);
1081 		stat &= ~0x00000400;
1082 	}
1083 
1084 	if (stat & 0x00000800) {
1085 		gv100_disp_intr_exc_other(disp);
1086 		stat &= ~0x00000800;
1087 	}
1088 
1089 	if (stat & 0x00001000) {
1090 		gv100_disp_intr_ctrl_disp(disp);
1091 		stat &= ~0x00001000;
1092 	}
1093 
1094 	if (stat)
1095 		nvkm_warn(subdev, "intr %08x\n", stat);
1096 }
1097 
1098 void
gv100_disp_fini(struct nvkm_disp * disp)1099 gv100_disp_fini(struct nvkm_disp *disp)
1100 {
1101 	struct nvkm_device *device = disp->engine.subdev.device;
1102 	nvkm_wr32(device, 0x611db0, 0x00000000);
1103 }
1104 
1105 static int
gv100_disp_init(struct nvkm_disp * disp)1106 gv100_disp_init(struct nvkm_disp *disp)
1107 {
1108 	struct nvkm_device *device = disp->engine.subdev.device;
1109 	struct nvkm_head *head;
1110 	int i, j;
1111 	u32 tmp;
1112 
1113 	/* Claim ownership of display. */
1114 	if (nvkm_rd32(device, 0x6254e8) & 0x00000002) {
1115 		nvkm_mask(device, 0x6254e8, 0x00000001, 0x00000000);
1116 		if (nvkm_msec(device, 2000,
1117 			if (!(nvkm_rd32(device, 0x6254e8) & 0x00000002))
1118 				break;
1119 		) < 0)
1120 			return -EBUSY;
1121 	}
1122 
1123 	/* Lock pin capabilities. */
1124 	tmp = nvkm_rd32(device, 0x610068);
1125 	nvkm_wr32(device, 0x640008, tmp);
1126 
1127 	/* SOR capabilities. */
1128 	for (i = 0; i < disp->sor.nr; i++) {
1129 		tmp = nvkm_rd32(device, 0x61c000 + (i * 0x800));
1130 		nvkm_mask(device, 0x640000, 0x00000100 << i, 0x00000100 << i);
1131 		nvkm_wr32(device, 0x640144 + (i * 0x08), tmp);
1132 	}
1133 
1134 	/* Head capabilities. */
1135 	list_for_each_entry(head, &disp->heads, head) {
1136 		const int id = head->id;
1137 
1138 		/* RG. */
1139 		tmp = nvkm_rd32(device, 0x616300 + (id * 0x800));
1140 		nvkm_wr32(device, 0x640048 + (id * 0x020), tmp);
1141 
1142 		/* POSTCOMP. */
1143 		for (j = 0; j < 6 * 4; j += 4) {
1144 			tmp = nvkm_rd32(device, 0x616100 + (id * 0x800) + j);
1145 			nvkm_wr32(device, 0x640030 + (id * 0x20) + j, tmp);
1146 		}
1147 	}
1148 
1149 	/* Window capabilities. */
1150 	for (i = 0; i < disp->wndw.nr; i++) {
1151 		nvkm_mask(device, 0x640004, 1 << i, 1 << i);
1152 		for (j = 0; j < 6 * 4; j += 4) {
1153 			tmp = nvkm_rd32(device, 0x630050 + (i * 0x800) + j);
1154 			nvkm_wr32(device, 0x6401e4 + (i * 0x20) + j, tmp);
1155 		}
1156 	}
1157 
1158 	/* IHUB capabilities. */
1159 	for (i = 0; i < 4; i++) {
1160 		tmp = nvkm_rd32(device, 0x62e000 + (i * 0x04));
1161 		nvkm_wr32(device, 0x640010 + (i * 0x04), tmp);
1162 	}
1163 
1164 	nvkm_mask(device, 0x610078, 0x00000001, 0x00000001);
1165 
1166 	/* Setup instance memory. */
1167 	switch (nvkm_memory_target(disp->inst->memory)) {
1168 	case NVKM_MEM_TARGET_VRAM: tmp = 0x00000001; break;
1169 	case NVKM_MEM_TARGET_NCOH: tmp = 0x00000002; break;
1170 	case NVKM_MEM_TARGET_HOST: tmp = 0x00000003; break;
1171 	default:
1172 		break;
1173 	}
1174 	nvkm_wr32(device, 0x610010, 0x00000008 | tmp);
1175 	nvkm_wr32(device, 0x610014, disp->inst->addr >> 16);
1176 
1177 	/* CTRL_DISP: AWAKEN, ERROR, SUPERVISOR[1-3]. */
1178 	nvkm_wr32(device, 0x611cf0, 0x00000187); /* MSK. */
1179 	nvkm_wr32(device, 0x611db0, 0x00000187); /* EN. */
1180 
1181 	/* EXC_OTHER: CURSn, CORE. */
1182 	nvkm_wr32(device, 0x611cec, disp->head.mask << 16 |
1183 				    0x00000001); /* MSK. */
1184 	nvkm_wr32(device, 0x611dac, 0x00000000); /* EN. */
1185 
1186 	/* EXC_WINIM. */
1187 	nvkm_wr32(device, 0x611ce8, disp->wndw.mask); /* MSK. */
1188 	nvkm_wr32(device, 0x611da8, 0x00000000); /* EN. */
1189 
1190 	/* EXC_WIN. */
1191 	nvkm_wr32(device, 0x611ce4, disp->wndw.mask); /* MSK. */
1192 	nvkm_wr32(device, 0x611da4, 0x00000000); /* EN. */
1193 
1194 	/* HEAD_TIMING(n): VBLANK. */
1195 	list_for_each_entry(head, &disp->heads, head) {
1196 		const u32 hoff = head->id * 4;
1197 		nvkm_wr32(device, 0x611cc0 + hoff, 0x00000004); /* MSK. */
1198 		nvkm_wr32(device, 0x611d80 + hoff, 0x00000000); /* EN. */
1199 	}
1200 
1201 	/* OR. */
1202 	nvkm_wr32(device, 0x611cf4, 0x00000000); /* MSK. */
1203 	nvkm_wr32(device, 0x611db4, 0x00000000); /* EN. */
1204 	return 0;
1205 }
1206 
1207 static const struct nvkm_disp_func
1208 gv100_disp = {
1209 	.oneinit = nv50_disp_oneinit,
1210 	.init = gv100_disp_init,
1211 	.fini = gv100_disp_fini,
1212 	.intr = gv100_disp_intr,
1213 	.super = gv100_disp_super,
1214 	.uevent = &gv100_disp_chan_uevent,
1215 	.wndw = { .cnt = gv100_disp_wndw_cnt },
1216 	.head = { .cnt = gv100_head_cnt, .new = gv100_head_new },
1217 	.sor = { .cnt = gv100_sor_cnt, .new = gv100_sor_new },
1218 	.ramht_size = 0x2000,
1219 	.root = {  0, 0,GV100_DISP },
1220 	.user = {
1221 		{{-1,-1,GV100_DISP_CAPS                  }, gv100_disp_caps_new },
1222 		{{ 0, 0,GV100_DISP_CURSOR                },  nvkm_disp_chan_new, &gv100_disp_curs },
1223 		{{ 0, 0,GV100_DISP_WINDOW_IMM_CHANNEL_DMA},  nvkm_disp_wndw_new, &gv100_disp_wimm },
1224 		{{ 0, 0,GV100_DISP_CORE_CHANNEL_DMA      },  nvkm_disp_core_new, &gv100_disp_core },
1225 		{{ 0, 0,GV100_DISP_WINDOW_CHANNEL_DMA    },  nvkm_disp_wndw_new, &gv100_disp_wndw },
1226 		{}
1227 	},
1228 };
1229 
1230 int
gv100_disp_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_disp ** pdisp)1231 gv100_disp_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
1232 	       struct nvkm_disp **pdisp)
1233 {
1234 	return nvkm_disp_new_(&gv100_disp, device, type, inst, pdisp);
1235 }
1236