• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3  * Copyright(c) 2020 Cornelis Networks, Inc.
4  * Copyright(c) 2015-2020 Intel Corporation.
5  */
6 
7 #include <linux/poll.h>
8 #include <linux/cdev.h>
9 #include <linux/vmalloc.h>
10 #include <linux/io.h>
11 #include <linux/sched/mm.h>
12 #include <linux/bitmap.h>
13 
14 #include <rdma/ib.h>
15 
16 #include "hfi.h"
17 #include "pio.h"
18 #include "device.h"
19 #include "common.h"
20 #include "trace.h"
21 #include "mmu_rb.h"
22 #include "user_sdma.h"
23 #include "user_exp_rcv.h"
24 #include "aspm.h"
25 
26 #undef pr_fmt
27 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
28 
29 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30 
31 /*
32  * File operation functions
33  */
34 static int hfi1_file_open(struct inode *inode, struct file *fp);
35 static int hfi1_file_close(struct inode *inode, struct file *fp);
36 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39 
40 static u64 kvirt_to_phys(void *addr);
41 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 			  const struct hfi1_user_info *uinfo);
44 static int init_user_ctxt(struct hfi1_filedata *fd,
45 			  struct hfi1_ctxtdata *uctxt);
46 static void user_init(struct hfi1_ctxtdata *uctxt);
47 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 			      u32 len);
51 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 			      u32 len);
53 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 				u32 len);
55 static int setup_base_ctxt(struct hfi1_filedata *fd,
56 			   struct hfi1_ctxtdata *uctxt);
57 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58 
59 static int find_sub_ctxt(struct hfi1_filedata *fd,
60 			 const struct hfi1_user_info *uinfo);
61 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 			 struct hfi1_user_info *uinfo,
63 			 struct hfi1_ctxtdata **cd);
64 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 			  unsigned long arg);
69 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 		       unsigned long arg);
73 static vm_fault_t vma_fault(struct vm_fault *vmf);
74 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 			    unsigned long arg);
76 
77 static const struct file_operations hfi1_file_ops = {
78 	.owner = THIS_MODULE,
79 	.write_iter = hfi1_write_iter,
80 	.open = hfi1_file_open,
81 	.release = hfi1_file_close,
82 	.unlocked_ioctl = hfi1_file_ioctl,
83 	.poll = hfi1_poll,
84 	.mmap = hfi1_file_mmap,
85 	.llseek = noop_llseek,
86 };
87 
88 static const struct vm_operations_struct vm_ops = {
89 	.fault = vma_fault,
90 };
91 
92 /*
93  * Types of memories mapped into user processes' space
94  */
95 enum mmap_types {
96 	PIO_BUFS = 1,
97 	PIO_BUFS_SOP,
98 	PIO_CRED,
99 	RCV_HDRQ,
100 	RCV_EGRBUF,
101 	UREGS,
102 	EVENTS,
103 	STATUS,
104 	RTAIL,
105 	SUBCTXT_UREGS,
106 	SUBCTXT_RCV_HDRQ,
107 	SUBCTXT_EGRBUF,
108 	SDMA_COMP
109 };
110 
111 /*
112  * Masks and offsets defining the mmap tokens
113  */
114 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
115 #define HFI1_MMAP_OFFSET_SHIFT  0
116 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
117 #define HFI1_MMAP_SUBCTXT_SHIFT 12
118 #define HFI1_MMAP_CTXT_MASK     0xffULL
119 #define HFI1_MMAP_CTXT_SHIFT    16
120 #define HFI1_MMAP_TYPE_MASK     0xfULL
121 #define HFI1_MMAP_TYPE_SHIFT    24
122 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
123 #define HFI1_MMAP_MAGIC_SHIFT   32
124 
125 #define HFI1_MMAP_MAGIC         0xdabbad00
126 
127 #define HFI1_MMAP_TOKEN_SET(field, val)	\
128 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129 #define HFI1_MMAP_TOKEN_GET(field, token) \
130 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
132 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137 
138 #define dbg(fmt, ...)				\
139 	pr_info(fmt, ##__VA_ARGS__)
140 
is_valid_mmap(u64 token)141 static inline int is_valid_mmap(u64 token)
142 {
143 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144 }
145 
hfi1_file_open(struct inode * inode,struct file * fp)146 static int hfi1_file_open(struct inode *inode, struct file *fp)
147 {
148 	struct hfi1_filedata *fd;
149 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 					       struct hfi1_devdata,
151 					       user_cdev);
152 
153 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 		return -EINVAL;
155 
156 	if (!refcount_inc_not_zero(&dd->user_refcount))
157 		return -ENXIO;
158 
159 	/* The real work is performed later in assign_ctxt() */
160 
161 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
162 
163 	if (!fd || init_srcu_struct(&fd->pq_srcu))
164 		goto nomem;
165 	spin_lock_init(&fd->pq_rcu_lock);
166 	spin_lock_init(&fd->tid_lock);
167 	spin_lock_init(&fd->invalid_lock);
168 	fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 	fd->dd = dd;
170 	fp->private_data = fd;
171 	return 0;
172 nomem:
173 	kfree(fd);
174 	fp->private_data = NULL;
175 	if (refcount_dec_and_test(&dd->user_refcount))
176 		complete(&dd->user_comp);
177 	return -ENOMEM;
178 }
179 
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)180 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 			    unsigned long arg)
182 {
183 	struct hfi1_filedata *fd = fp->private_data;
184 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 	int ret = 0;
186 	int uval = 0;
187 
188 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 	    cmd != HFI1_IOCTL_GET_VERS &&
191 	    !uctxt)
192 		return -EINVAL;
193 
194 	switch (cmd) {
195 	case HFI1_IOCTL_ASSIGN_CTXT:
196 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 		break;
198 
199 	case HFI1_IOCTL_CTXT_INFO:
200 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 		break;
202 
203 	case HFI1_IOCTL_USER_INFO:
204 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 		break;
206 
207 	case HFI1_IOCTL_CREDIT_UPD:
208 		if (uctxt)
209 			sc_return_credits(uctxt->sc);
210 		break;
211 
212 	case HFI1_IOCTL_TID_UPDATE:
213 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 		break;
215 
216 	case HFI1_IOCTL_TID_FREE:
217 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 		break;
219 
220 	case HFI1_IOCTL_TID_INVAL_READ:
221 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 		break;
223 
224 	case HFI1_IOCTL_RECV_CTRL:
225 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
226 		break;
227 
228 	case HFI1_IOCTL_POLL_TYPE:
229 		if (get_user(uval, (int __user *)arg))
230 			return -EFAULT;
231 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 		break;
233 
234 	case HFI1_IOCTL_ACK_EVENT:
235 		ret = user_event_ack(uctxt, fd->subctxt, arg);
236 		break;
237 
238 	case HFI1_IOCTL_SET_PKEY:
239 		ret = set_ctxt_pkey(uctxt, arg);
240 		break;
241 
242 	case HFI1_IOCTL_CTXT_RESET:
243 		ret = ctxt_reset(uctxt);
244 		break;
245 
246 	case HFI1_IOCTL_GET_VERS:
247 		uval = HFI1_USER_SWVERSION;
248 		if (put_user(uval, (int __user *)arg))
249 			return -EFAULT;
250 		break;
251 
252 	default:
253 		return -EINVAL;
254 	}
255 
256 	return ret;
257 }
258 
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)259 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260 {
261 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 	struct hfi1_user_sdma_pkt_q *pq;
263 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 	int done = 0, reqs = 0;
265 	unsigned long dim = from->nr_segs;
266 	int idx;
267 
268 	if (!HFI1_CAP_IS_KSET(SDMA))
269 		return -EINVAL;
270 	idx = srcu_read_lock(&fd->pq_srcu);
271 	pq = srcu_dereference(fd->pq, &fd->pq_srcu);
272 	if (!cq || !pq) {
273 		srcu_read_unlock(&fd->pq_srcu, idx);
274 		return -EIO;
275 	}
276 
277 	if (!iter_is_iovec(from) || !dim) {
278 		srcu_read_unlock(&fd->pq_srcu, idx);
279 		return -EINVAL;
280 	}
281 
282 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
283 
284 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
285 		srcu_read_unlock(&fd->pq_srcu, idx);
286 		return -ENOSPC;
287 	}
288 
289 	while (dim) {
290 		int ret;
291 		unsigned long count = 0;
292 
293 		ret = hfi1_user_sdma_process_request(
294 			fd, (struct iovec *)(from->iov + done),
295 			dim, &count);
296 		if (ret) {
297 			reqs = ret;
298 			break;
299 		}
300 		dim -= count;
301 		done += count;
302 		reqs++;
303 	}
304 
305 	srcu_read_unlock(&fd->pq_srcu, idx);
306 	return reqs;
307 }
308 
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)309 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
310 {
311 	struct hfi1_filedata *fd = fp->private_data;
312 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
313 	struct hfi1_devdata *dd;
314 	unsigned long flags;
315 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
316 		memaddr = 0;
317 	void *memvirt = NULL;
318 	u8 subctxt, mapio = 0, vmf = 0, type;
319 	ssize_t memlen = 0;
320 	int ret = 0;
321 	u16 ctxt;
322 
323 	if (!is_valid_mmap(token) || !uctxt ||
324 	    !(vma->vm_flags & VM_SHARED)) {
325 		ret = -EINVAL;
326 		goto done;
327 	}
328 	dd = uctxt->dd;
329 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
330 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
331 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
332 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
333 		ret = -EINVAL;
334 		goto done;
335 	}
336 
337 	flags = vma->vm_flags;
338 
339 	switch (type) {
340 	case PIO_BUFS:
341 	case PIO_BUFS_SOP:
342 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
343 				/* chip pio base */
344 			   (uctxt->sc->hw_context * BIT(16))) +
345 				/* 64K PIO space / ctxt */
346 			(type == PIO_BUFS_SOP ?
347 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
348 		/*
349 		 * Map only the amount allocated to the context, not the
350 		 * entire available context's PIO space.
351 		 */
352 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
353 		flags &= ~VM_MAYREAD;
354 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
355 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
356 		mapio = 1;
357 		break;
358 	case PIO_CRED:
359 		if (flags & VM_WRITE) {
360 			ret = -EPERM;
361 			goto done;
362 		}
363 		/*
364 		 * The credit return location for this context could be on the
365 		 * second or third page allocated for credit returns (if number
366 		 * of enabled contexts > 64 and 128 respectively).
367 		 */
368 		memvirt = dd->cr_base[uctxt->numa_id].va;
369 		memaddr = virt_to_phys(memvirt) +
370 			(((u64)uctxt->sc->hw_free -
371 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
372 		memlen = PAGE_SIZE;
373 		flags &= ~VM_MAYWRITE;
374 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
375 		/*
376 		 * The driver has already allocated memory for credit
377 		 * returns and programmed it into the chip. Has that
378 		 * memory been flagged as non-cached?
379 		 */
380 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
381 		mapio = 1;
382 		break;
383 	case RCV_HDRQ:
384 		memlen = rcvhdrq_size(uctxt);
385 		memvirt = uctxt->rcvhdrq;
386 		break;
387 	case RCV_EGRBUF: {
388 		unsigned long addr;
389 		int i;
390 		/*
391 		 * The RcvEgr buffer need to be handled differently
392 		 * as multiple non-contiguous pages need to be mapped
393 		 * into the user process.
394 		 */
395 		memlen = uctxt->egrbufs.size;
396 		if ((vma->vm_end - vma->vm_start) != memlen) {
397 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
398 				   (vma->vm_end - vma->vm_start), memlen);
399 			ret = -EINVAL;
400 			goto done;
401 		}
402 		if (vma->vm_flags & VM_WRITE) {
403 			ret = -EPERM;
404 			goto done;
405 		}
406 		vm_flags_clear(vma, VM_MAYWRITE);
407 		addr = vma->vm_start;
408 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
409 			memlen = uctxt->egrbufs.buffers[i].len;
410 			memvirt = uctxt->egrbufs.buffers[i].addr;
411 			ret = remap_pfn_range(
412 				vma, addr,
413 				/*
414 				 * virt_to_pfn() does the same, but
415 				 * it's not available on x86_64
416 				 * when CONFIG_MMU is enabled.
417 				 */
418 				PFN_DOWN(__pa(memvirt)),
419 				memlen,
420 				vma->vm_page_prot);
421 			if (ret < 0)
422 				goto done;
423 			addr += memlen;
424 		}
425 		ret = 0;
426 		goto done;
427 	}
428 	case UREGS:
429 		/*
430 		 * Map only the page that contains this context's user
431 		 * registers.
432 		 */
433 		memaddr = (unsigned long)
434 			(dd->physaddr + RXE_PER_CONTEXT_USER)
435 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
436 		/*
437 		 * TidFlow table is on the same page as the rest of the
438 		 * user registers.
439 		 */
440 		memlen = PAGE_SIZE;
441 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
442 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
443 		mapio = 1;
444 		break;
445 	case EVENTS:
446 		/*
447 		 * Use the page where this context's flags are. User level
448 		 * knows where it's own bitmap is within the page.
449 		 */
450 		memaddr = (unsigned long)
451 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
452 		memlen = PAGE_SIZE;
453 		/*
454 		 * v3.7 removes VM_RESERVED but the effect is kept by
455 		 * using VM_IO.
456 		 */
457 		flags |= VM_IO | VM_DONTEXPAND;
458 		vmf = 1;
459 		break;
460 	case STATUS:
461 		if (flags & VM_WRITE) {
462 			ret = -EPERM;
463 			goto done;
464 		}
465 		memaddr = kvirt_to_phys((void *)dd->status);
466 		memlen = PAGE_SIZE;
467 		flags |= VM_IO | VM_DONTEXPAND;
468 		break;
469 	case RTAIL:
470 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
471 			/*
472 			 * If the memory allocation failed, the context alloc
473 			 * also would have failed, so we would never get here
474 			 */
475 			ret = -EINVAL;
476 			goto done;
477 		}
478 		if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
479 			ret = -EPERM;
480 			goto done;
481 		}
482 		memlen = PAGE_SIZE;
483 		memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
484 		flags &= ~VM_MAYWRITE;
485 		break;
486 	case SUBCTXT_UREGS:
487 		memaddr = (u64)uctxt->subctxt_uregbase;
488 		memlen = PAGE_SIZE;
489 		flags |= VM_IO | VM_DONTEXPAND;
490 		vmf = 1;
491 		break;
492 	case SUBCTXT_RCV_HDRQ:
493 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
494 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
495 		flags |= VM_IO | VM_DONTEXPAND;
496 		vmf = 1;
497 		break;
498 	case SUBCTXT_EGRBUF:
499 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
500 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
501 		flags |= VM_IO | VM_DONTEXPAND;
502 		flags &= ~VM_MAYWRITE;
503 		vmf = 1;
504 		break;
505 	case SDMA_COMP: {
506 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
507 
508 		if (!cq) {
509 			ret = -EFAULT;
510 			goto done;
511 		}
512 		memaddr = (u64)cq->comps;
513 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
514 		flags |= VM_IO | VM_DONTEXPAND;
515 		vmf = 1;
516 		break;
517 	}
518 	default:
519 		ret = -EINVAL;
520 		break;
521 	}
522 
523 	if ((vma->vm_end - vma->vm_start) != memlen) {
524 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
525 			  uctxt->ctxt, fd->subctxt,
526 			  (vma->vm_end - vma->vm_start), memlen);
527 		ret = -EINVAL;
528 		goto done;
529 	}
530 
531 	vm_flags_reset(vma, flags);
532 	hfi1_cdbg(PROC,
533 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
534 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
535 		    vma->vm_end - vma->vm_start, vma->vm_flags);
536 	if (vmf) {
537 		vma->vm_pgoff = PFN_DOWN(memaddr);
538 		vma->vm_ops = &vm_ops;
539 		ret = 0;
540 	} else if (mapio) {
541 		ret = io_remap_pfn_range(vma, vma->vm_start,
542 					 PFN_DOWN(memaddr),
543 					 memlen,
544 					 vma->vm_page_prot);
545 	} else if (memvirt) {
546 		ret = remap_pfn_range(vma, vma->vm_start,
547 				      PFN_DOWN(__pa(memvirt)),
548 				      memlen,
549 				      vma->vm_page_prot);
550 	} else {
551 		ret = remap_pfn_range(vma, vma->vm_start,
552 				      PFN_DOWN(memaddr),
553 				      memlen,
554 				      vma->vm_page_prot);
555 	}
556 done:
557 	return ret;
558 }
559 
560 /*
561  * Local (non-chip) user memory is not mapped right away but as it is
562  * accessed by the user-level code.
563  */
vma_fault(struct vm_fault * vmf)564 static vm_fault_t vma_fault(struct vm_fault *vmf)
565 {
566 	struct page *page;
567 
568 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
569 	if (!page)
570 		return VM_FAULT_SIGBUS;
571 
572 	get_page(page);
573 	vmf->page = page;
574 
575 	return 0;
576 }
577 
hfi1_poll(struct file * fp,struct poll_table_struct * pt)578 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
579 {
580 	struct hfi1_ctxtdata *uctxt;
581 	__poll_t pollflag;
582 
583 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
584 	if (!uctxt)
585 		pollflag = EPOLLERR;
586 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
587 		pollflag = poll_urgent(fp, pt);
588 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
589 		pollflag = poll_next(fp, pt);
590 	else /* invalid */
591 		pollflag = EPOLLERR;
592 
593 	return pollflag;
594 }
595 
hfi1_file_close(struct inode * inode,struct file * fp)596 static int hfi1_file_close(struct inode *inode, struct file *fp)
597 {
598 	struct hfi1_filedata *fdata = fp->private_data;
599 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
600 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
601 					       struct hfi1_devdata,
602 					       user_cdev);
603 	unsigned long flags, *ev;
604 
605 	fp->private_data = NULL;
606 
607 	if (!uctxt)
608 		goto done;
609 
610 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
611 
612 	flush_wc();
613 	/* drain user sdma queue */
614 	hfi1_user_sdma_free_queues(fdata, uctxt);
615 
616 	/* release the cpu */
617 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
618 
619 	/* clean up rcv side */
620 	hfi1_user_exp_rcv_free(fdata);
621 
622 	/*
623 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
624 	 * removed until here.
625 	 */
626 	fdata->uctxt = NULL;
627 	hfi1_rcd_put(uctxt);
628 
629 	/*
630 	 * Clear any left over, unhandled events so the next process that
631 	 * gets this context doesn't get confused.
632 	 */
633 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
634 	*ev = 0;
635 
636 	spin_lock_irqsave(&dd->uctxt_lock, flags);
637 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
638 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
639 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
640 		goto done;
641 	}
642 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
643 
644 	/*
645 	 * Disable receive context and interrupt available, reset all
646 	 * RcvCtxtCtrl bits to default values.
647 	 */
648 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
649 		     HFI1_RCVCTRL_TIDFLOW_DIS |
650 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
651 		     HFI1_RCVCTRL_TAILUPD_DIS |
652 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
653 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
654 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS |
655 		     HFI1_RCVCTRL_URGENT_DIS, uctxt);
656 	/* Clear the context's J_KEY */
657 	hfi1_clear_ctxt_jkey(dd, uctxt);
658 	/*
659 	 * If a send context is allocated, reset context integrity
660 	 * checks to default and disable the send context.
661 	 */
662 	if (uctxt->sc) {
663 		sc_disable(uctxt->sc);
664 		set_pio_integrity(uctxt->sc);
665 	}
666 
667 	hfi1_free_ctxt_rcv_groups(uctxt);
668 	hfi1_clear_ctxt_pkey(dd, uctxt);
669 
670 	uctxt->event_flags = 0;
671 
672 	deallocate_ctxt(uctxt);
673 done:
674 
675 	if (refcount_dec_and_test(&dd->user_refcount))
676 		complete(&dd->user_comp);
677 
678 	cleanup_srcu_struct(&fdata->pq_srcu);
679 	kfree(fdata);
680 	return 0;
681 }
682 
683 /*
684  * Convert kernel *virtual* addresses to physical addresses.
685  * This is used to vmalloc'ed addresses.
686  */
kvirt_to_phys(void * addr)687 static u64 kvirt_to_phys(void *addr)
688 {
689 	struct page *page;
690 	u64 paddr = 0;
691 
692 	page = vmalloc_to_page(addr);
693 	if (page)
694 		paddr = page_to_pfn(page) << PAGE_SHIFT;
695 
696 	return paddr;
697 }
698 
699 /**
700  * complete_subctxt - complete sub-context info
701  * @fd: valid filedata pointer
702  *
703  * Sub-context info can only be set up after the base context
704  * has been completed.  This is indicated by the clearing of the
705  * HFI1_CTXT_BASE_UINIT bit.
706  *
707  * Wait for the bit to be cleared, and then complete the subcontext
708  * initialization.
709  *
710  */
complete_subctxt(struct hfi1_filedata * fd)711 static int complete_subctxt(struct hfi1_filedata *fd)
712 {
713 	int ret;
714 	unsigned long flags;
715 
716 	/*
717 	 * sub-context info can only be set up after the base context
718 	 * has been completed.
719 	 */
720 	ret = wait_event_interruptible(
721 		fd->uctxt->wait,
722 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
723 
724 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
725 		ret = -ENOMEM;
726 
727 	/* Finish the sub-context init */
728 	if (!ret) {
729 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
730 		ret = init_user_ctxt(fd, fd->uctxt);
731 	}
732 
733 	if (ret) {
734 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
735 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
736 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
737 		hfi1_rcd_put(fd->uctxt);
738 		fd->uctxt = NULL;
739 	}
740 
741 	return ret;
742 }
743 
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)744 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
745 {
746 	int ret;
747 	unsigned int swmajor;
748 	struct hfi1_ctxtdata *uctxt = NULL;
749 	struct hfi1_user_info uinfo;
750 
751 	if (fd->uctxt)
752 		return -EINVAL;
753 
754 	if (sizeof(uinfo) != len)
755 		return -EINVAL;
756 
757 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
758 		return -EFAULT;
759 
760 	swmajor = uinfo.userversion >> 16;
761 	if (swmajor != HFI1_USER_SWMAJOR)
762 		return -ENODEV;
763 
764 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
765 		return -EINVAL;
766 
767 	/*
768 	 * Acquire the mutex to protect against multiple creations of what
769 	 * could be a shared base context.
770 	 */
771 	mutex_lock(&hfi1_mutex);
772 	/*
773 	 * Get a sub context if available  (fd->uctxt will be set).
774 	 * ret < 0 error, 0 no context, 1 sub-context found
775 	 */
776 	ret = find_sub_ctxt(fd, &uinfo);
777 
778 	/*
779 	 * Allocate a base context if context sharing is not required or a
780 	 * sub context wasn't found.
781 	 */
782 	if (!ret)
783 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
784 
785 	mutex_unlock(&hfi1_mutex);
786 
787 	/* Depending on the context type, finish the appropriate init */
788 	switch (ret) {
789 	case 0:
790 		ret = setup_base_ctxt(fd, uctxt);
791 		if (ret)
792 			deallocate_ctxt(uctxt);
793 		break;
794 	case 1:
795 		ret = complete_subctxt(fd);
796 		break;
797 	default:
798 		break;
799 	}
800 
801 	return ret;
802 }
803 
804 /**
805  * match_ctxt - match context
806  * @fd: valid filedata pointer
807  * @uinfo: user info to compare base context with
808  * @uctxt: context to compare uinfo to.
809  *
810  * Compare the given context with the given information to see if it
811  * can be used for a sub context.
812  */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)813 static int match_ctxt(struct hfi1_filedata *fd,
814 		      const struct hfi1_user_info *uinfo,
815 		      struct hfi1_ctxtdata *uctxt)
816 {
817 	struct hfi1_devdata *dd = fd->dd;
818 	unsigned long flags;
819 	u16 subctxt;
820 
821 	/* Skip dynamically allocated kernel contexts */
822 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
823 		return 0;
824 
825 	/* Skip ctxt if it doesn't match the requested one */
826 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
827 	    uctxt->jkey != generate_jkey(current_uid()) ||
828 	    uctxt->subctxt_id != uinfo->subctxt_id ||
829 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
830 		return 0;
831 
832 	/* Verify the sharing process matches the base */
833 	if (uctxt->userversion != uinfo->userversion)
834 		return -EINVAL;
835 
836 	/* Find an unused sub context */
837 	spin_lock_irqsave(&dd->uctxt_lock, flags);
838 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
839 		/* context is being closed, do not use */
840 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
841 		return 0;
842 	}
843 
844 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
845 				      HFI1_MAX_SHARED_CTXTS);
846 	if (subctxt >= uctxt->subctxt_cnt) {
847 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
848 		return -EBUSY;
849 	}
850 
851 	fd->subctxt = subctxt;
852 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
853 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
854 
855 	fd->uctxt = uctxt;
856 	hfi1_rcd_get(uctxt);
857 
858 	return 1;
859 }
860 
861 /**
862  * find_sub_ctxt - fund sub-context
863  * @fd: valid filedata pointer
864  * @uinfo: matching info to use to find a possible context to share.
865  *
866  * The hfi1_mutex must be held when this function is called.  It is
867  * necessary to ensure serialized creation of shared contexts.
868  *
869  * Return:
870  *    0      No sub-context found
871  *    1      Subcontext found and allocated
872  *    errno  EINVAL (incorrect parameters)
873  *           EBUSY (all sub contexts in use)
874  */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)875 static int find_sub_ctxt(struct hfi1_filedata *fd,
876 			 const struct hfi1_user_info *uinfo)
877 {
878 	struct hfi1_ctxtdata *uctxt;
879 	struct hfi1_devdata *dd = fd->dd;
880 	u16 i;
881 	int ret;
882 
883 	if (!uinfo->subctxt_cnt)
884 		return 0;
885 
886 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
887 		uctxt = hfi1_rcd_get_by_index(dd, i);
888 		if (uctxt) {
889 			ret = match_ctxt(fd, uinfo, uctxt);
890 			hfi1_rcd_put(uctxt);
891 			/* value of != 0 will return */
892 			if (ret)
893 				return ret;
894 		}
895 	}
896 
897 	return 0;
898 }
899 
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)900 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
901 			 struct hfi1_user_info *uinfo,
902 			 struct hfi1_ctxtdata **rcd)
903 {
904 	struct hfi1_ctxtdata *uctxt;
905 	int ret, numa;
906 
907 	if (dd->flags & HFI1_FROZEN) {
908 		/*
909 		 * Pick an error that is unique from all other errors
910 		 * that are returned so the user process knows that
911 		 * it tried to allocate while the SPC was frozen.  It
912 		 * it should be able to retry with success in a short
913 		 * while.
914 		 */
915 		return -EIO;
916 	}
917 
918 	if (!dd->freectxts)
919 		return -EBUSY;
920 
921 	/*
922 	 * If we don't have a NUMA node requested, preference is towards
923 	 * device NUMA node.
924 	 */
925 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
926 	if (fd->rec_cpu_num != -1)
927 		numa = cpu_to_node(fd->rec_cpu_num);
928 	else
929 		numa = numa_node_id();
930 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
931 	if (ret < 0) {
932 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
933 		return ret;
934 	}
935 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
936 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
937 		  uctxt->numa_id);
938 
939 	/*
940 	 * Allocate and enable a PIO send context.
941 	 */
942 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
943 	if (!uctxt->sc) {
944 		ret = -ENOMEM;
945 		goto ctxdata_free;
946 	}
947 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
948 		  uctxt->sc->hw_context);
949 	ret = sc_enable(uctxt->sc);
950 	if (ret)
951 		goto ctxdata_free;
952 
953 	/*
954 	 * Setup sub context information if the user-level has requested
955 	 * sub contexts.
956 	 * This has to be done here so the rest of the sub-contexts find the
957 	 * proper base context.
958 	 * NOTE: _set_bit() can be used here because the context creation is
959 	 * protected by the mutex (rather than the spin_lock), and will be the
960 	 * very first instance of this context.
961 	 */
962 	__set_bit(0, uctxt->in_use_ctxts);
963 	if (uinfo->subctxt_cnt)
964 		init_subctxts(uctxt, uinfo);
965 	uctxt->userversion = uinfo->userversion;
966 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
967 	init_waitqueue_head(&uctxt->wait);
968 	strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
969 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
970 	uctxt->jkey = generate_jkey(current_uid());
971 	hfi1_stats.sps_ctxts++;
972 	/*
973 	 * Disable ASPM when there are open user/PSM contexts to avoid
974 	 * issues with ASPM L1 exit latency
975 	 */
976 	if (dd->freectxts-- == dd->num_user_contexts)
977 		aspm_disable_all(dd);
978 
979 	*rcd = uctxt;
980 
981 	return 0;
982 
983 ctxdata_free:
984 	hfi1_free_ctxt(uctxt);
985 	return ret;
986 }
987 
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)988 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
989 {
990 	mutex_lock(&hfi1_mutex);
991 	hfi1_stats.sps_ctxts--;
992 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
993 		aspm_enable_all(uctxt->dd);
994 	mutex_unlock(&hfi1_mutex);
995 
996 	hfi1_free_ctxt(uctxt);
997 }
998 
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)999 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1000 			  const struct hfi1_user_info *uinfo)
1001 {
1002 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1003 	uctxt->subctxt_id = uinfo->subctxt_id;
1004 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1005 }
1006 
setup_subctxt(struct hfi1_ctxtdata * uctxt)1007 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1008 {
1009 	int ret = 0;
1010 	u16 num_subctxts = uctxt->subctxt_cnt;
1011 
1012 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1013 	if (!uctxt->subctxt_uregbase)
1014 		return -ENOMEM;
1015 
1016 	/* We can take the size of the RcvHdr Queue from the master */
1017 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1018 						  num_subctxts);
1019 	if (!uctxt->subctxt_rcvhdr_base) {
1020 		ret = -ENOMEM;
1021 		goto bail_ureg;
1022 	}
1023 
1024 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1025 						num_subctxts);
1026 	if (!uctxt->subctxt_rcvegrbuf) {
1027 		ret = -ENOMEM;
1028 		goto bail_rhdr;
1029 	}
1030 
1031 	return 0;
1032 
1033 bail_rhdr:
1034 	vfree(uctxt->subctxt_rcvhdr_base);
1035 	uctxt->subctxt_rcvhdr_base = NULL;
1036 bail_ureg:
1037 	vfree(uctxt->subctxt_uregbase);
1038 	uctxt->subctxt_uregbase = NULL;
1039 
1040 	return ret;
1041 }
1042 
user_init(struct hfi1_ctxtdata * uctxt)1043 static void user_init(struct hfi1_ctxtdata *uctxt)
1044 {
1045 	unsigned int rcvctrl_ops = 0;
1046 
1047 	/* initialize poll variables... */
1048 	uctxt->urgent = 0;
1049 	uctxt->urgent_poll = 0;
1050 
1051 	/*
1052 	 * Now enable the ctxt for receive.
1053 	 * For chips that are set to DMA the tail register to memory
1054 	 * when they change (and when the update bit transitions from
1055 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1056 	 * This will (very briefly) affect any other open ctxts, but the
1057 	 * duration is very short, and therefore isn't an issue.  We
1058 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1059 	 * don't have to wait to be sure the DMA update has happened
1060 	 * (chip resets head/tail to 0 on transition to enable).
1061 	 */
1062 	if (hfi1_rcvhdrtail_kvaddr(uctxt))
1063 		clear_rcvhdrtail(uctxt);
1064 
1065 	/* Setup J_KEY before enabling the context */
1066 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1067 
1068 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1069 	rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1070 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1071 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1072 	/*
1073 	 * Ignore the bit in the flags for now until proper
1074 	 * support for multiple packet per rcv array entry is
1075 	 * added.
1076 	 */
1077 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1078 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1079 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1080 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1081 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1082 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1083 	/*
1084 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1085 	 * We can't rely on the correct value to be set from prior
1086 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1087 	 * for both cases.
1088 	 */
1089 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1090 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1091 	else
1092 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1093 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1094 }
1095 
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1096 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1097 {
1098 	struct hfi1_ctxt_info cinfo;
1099 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1100 
1101 	if (sizeof(cinfo) != len)
1102 		return -EINVAL;
1103 
1104 	memset(&cinfo, 0, sizeof(cinfo));
1105 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1106 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1107 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1108 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1109 	/* adjust flag if this fd is not able to cache */
1110 	if (!fd->use_mn)
1111 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1112 
1113 	cinfo.num_active = hfi1_count_active_units();
1114 	cinfo.unit = uctxt->dd->unit;
1115 	cinfo.ctxt = uctxt->ctxt;
1116 	cinfo.subctxt = fd->subctxt;
1117 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1118 				uctxt->dd->rcv_entries.group_size) +
1119 		uctxt->expected_count;
1120 	cinfo.credits = uctxt->sc->credits;
1121 	cinfo.numa_node = uctxt->numa_id;
1122 	cinfo.rec_cpu = fd->rec_cpu_num;
1123 	cinfo.send_ctxt = uctxt->sc->hw_context;
1124 
1125 	cinfo.egrtids = uctxt->egrbufs.alloced;
1126 	cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1127 	cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1128 	cinfo.sdma_ring_size = fd->cq->nentries;
1129 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1130 
1131 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1132 	if (copy_to_user((void __user *)arg, &cinfo, len))
1133 		return -EFAULT;
1134 
1135 	return 0;
1136 }
1137 
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1138 static int init_user_ctxt(struct hfi1_filedata *fd,
1139 			  struct hfi1_ctxtdata *uctxt)
1140 {
1141 	int ret;
1142 
1143 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1144 	if (ret)
1145 		return ret;
1146 
1147 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1148 	if (ret)
1149 		hfi1_user_sdma_free_queues(fd, uctxt);
1150 
1151 	return ret;
1152 }
1153 
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1154 static int setup_base_ctxt(struct hfi1_filedata *fd,
1155 			   struct hfi1_ctxtdata *uctxt)
1156 {
1157 	struct hfi1_devdata *dd = uctxt->dd;
1158 	int ret = 0;
1159 
1160 	hfi1_init_ctxt(uctxt->sc);
1161 
1162 	/* Now allocate the RcvHdr queue and eager buffers. */
1163 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1164 	if (ret)
1165 		goto done;
1166 
1167 	ret = hfi1_setup_eagerbufs(uctxt);
1168 	if (ret)
1169 		goto done;
1170 
1171 	/* If sub-contexts are enabled, do the appropriate setup */
1172 	if (uctxt->subctxt_cnt)
1173 		ret = setup_subctxt(uctxt);
1174 	if (ret)
1175 		goto done;
1176 
1177 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1178 	if (ret)
1179 		goto done;
1180 
1181 	ret = init_user_ctxt(fd, uctxt);
1182 	if (ret) {
1183 		hfi1_free_ctxt_rcv_groups(uctxt);
1184 		goto done;
1185 	}
1186 
1187 	user_init(uctxt);
1188 
1189 	/* Now that the context is set up, the fd can get a reference. */
1190 	fd->uctxt = uctxt;
1191 	hfi1_rcd_get(uctxt);
1192 
1193 done:
1194 	if (uctxt->subctxt_cnt) {
1195 		/*
1196 		 * On error, set the failed bit so sub-contexts will clean up
1197 		 * correctly.
1198 		 */
1199 		if (ret)
1200 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1201 
1202 		/*
1203 		 * Base context is done (successfully or not), notify anybody
1204 		 * using a sub-context that is waiting for this completion.
1205 		 */
1206 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1207 		wake_up(&uctxt->wait);
1208 	}
1209 
1210 	return ret;
1211 }
1212 
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1213 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1214 {
1215 	struct hfi1_base_info binfo;
1216 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1217 	struct hfi1_devdata *dd = uctxt->dd;
1218 	unsigned offset;
1219 
1220 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1221 
1222 	if (sizeof(binfo) != len)
1223 		return -EINVAL;
1224 
1225 	memset(&binfo, 0, sizeof(binfo));
1226 	binfo.hw_version = dd->revision;
1227 	binfo.sw_version = HFI1_USER_SWVERSION;
1228 	binfo.bthqp = RVT_KDETH_QP_PREFIX;
1229 	binfo.jkey = uctxt->jkey;
1230 	/*
1231 	 * If more than 64 contexts are enabled the allocated credit
1232 	 * return will span two or three contiguous pages. Since we only
1233 	 * map the page containing the context's credit return address,
1234 	 * we need to calculate the offset in the proper page.
1235 	 */
1236 	offset = ((u64)uctxt->sc->hw_free -
1237 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1238 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1239 						fd->subctxt, offset);
1240 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1241 					    fd->subctxt,
1242 					    uctxt->sc->base_addr);
1243 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1244 						uctxt->ctxt,
1245 						fd->subctxt,
1246 						uctxt->sc->base_addr);
1247 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1248 					       fd->subctxt,
1249 					       uctxt->rcvhdrq);
1250 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1251 					       fd->subctxt,
1252 					       uctxt->egrbufs.rcvtids[0].dma);
1253 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1254 						  fd->subctxt, 0);
1255 	/*
1256 	 * user regs are at
1257 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1258 	 */
1259 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1260 					     fd->subctxt, 0);
1261 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1262 				sizeof(*dd->events));
1263 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1264 					       fd->subctxt,
1265 					       offset);
1266 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1267 					       fd->subctxt,
1268 					       dd->status);
1269 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1270 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1271 							fd->subctxt, 0);
1272 	if (uctxt->subctxt_cnt) {
1273 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1274 							 uctxt->ctxt,
1275 							 fd->subctxt, 0);
1276 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1277 							  uctxt->ctxt,
1278 							  fd->subctxt, 0);
1279 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1280 							  uctxt->ctxt,
1281 							  fd->subctxt, 0);
1282 	}
1283 
1284 	if (copy_to_user((void __user *)arg, &binfo, len))
1285 		return -EFAULT;
1286 
1287 	return 0;
1288 }
1289 
1290 /**
1291  * user_exp_rcv_setup - Set up the given tid rcv list
1292  * @fd: file data of the current driver instance
1293  * @arg: ioctl argumnent for user space information
1294  * @len: length of data structure associated with ioctl command
1295  *
1296  * Wrapper to validate ioctl information before doing _rcv_setup.
1297  *
1298  */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1299 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1300 			      u32 len)
1301 {
1302 	int ret;
1303 	unsigned long addr;
1304 	struct hfi1_tid_info tinfo;
1305 
1306 	if (sizeof(tinfo) != len)
1307 		return -EINVAL;
1308 
1309 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1310 		return -EFAULT;
1311 
1312 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1313 	if (!ret) {
1314 		/*
1315 		 * Copy the number of tidlist entries we used
1316 		 * and the length of the buffer we registered.
1317 		 */
1318 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1319 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1320 				 sizeof(tinfo.tidcnt)))
1321 			ret = -EFAULT;
1322 
1323 		addr = arg + offsetof(struct hfi1_tid_info, length);
1324 		if (!ret && copy_to_user((void __user *)addr, &tinfo.length,
1325 				 sizeof(tinfo.length)))
1326 			ret = -EFAULT;
1327 
1328 		if (ret)
1329 			hfi1_user_exp_rcv_invalid(fd, &tinfo);
1330 	}
1331 
1332 	return ret;
1333 }
1334 
1335 /**
1336  * user_exp_rcv_clear - Clear the given tid rcv list
1337  * @fd: file data of the current driver instance
1338  * @arg: ioctl argumnent for user space information
1339  * @len: length of data structure associated with ioctl command
1340  *
1341  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1342  * of this, we need to use this wrapper to copy the user space information
1343  * before doing the clear.
1344  */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1345 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1346 			      u32 len)
1347 {
1348 	int ret;
1349 	unsigned long addr;
1350 	struct hfi1_tid_info tinfo;
1351 
1352 	if (sizeof(tinfo) != len)
1353 		return -EINVAL;
1354 
1355 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1356 		return -EFAULT;
1357 
1358 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1359 	if (!ret) {
1360 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1361 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1362 				 sizeof(tinfo.tidcnt)))
1363 			return -EFAULT;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /**
1370  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1371  * @fd: file data of the current driver instance
1372  * @arg: ioctl argumnent for user space information
1373  * @len: length of data structure associated with ioctl command
1374  *
1375  * Wrapper to validate ioctl information before doing _rcv_invalid.
1376  *
1377  */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1378 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1379 				u32 len)
1380 {
1381 	int ret;
1382 	unsigned long addr;
1383 	struct hfi1_tid_info tinfo;
1384 
1385 	if (sizeof(tinfo) != len)
1386 		return -EINVAL;
1387 
1388 	if (!fd->invalid_tids)
1389 		return -EINVAL;
1390 
1391 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1392 		return -EFAULT;
1393 
1394 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1395 	if (ret)
1396 		return ret;
1397 
1398 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1399 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1400 			 sizeof(tinfo.tidcnt)))
1401 		ret = -EFAULT;
1402 
1403 	return ret;
1404 }
1405 
poll_urgent(struct file * fp,struct poll_table_struct * pt)1406 static __poll_t poll_urgent(struct file *fp,
1407 				struct poll_table_struct *pt)
1408 {
1409 	struct hfi1_filedata *fd = fp->private_data;
1410 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1411 	struct hfi1_devdata *dd = uctxt->dd;
1412 	__poll_t pollflag;
1413 
1414 	poll_wait(fp, &uctxt->wait, pt);
1415 
1416 	spin_lock_irq(&dd->uctxt_lock);
1417 	if (uctxt->urgent != uctxt->urgent_poll) {
1418 		pollflag = EPOLLIN | EPOLLRDNORM;
1419 		uctxt->urgent_poll = uctxt->urgent;
1420 	} else {
1421 		pollflag = 0;
1422 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1423 	}
1424 	spin_unlock_irq(&dd->uctxt_lock);
1425 
1426 	return pollflag;
1427 }
1428 
poll_next(struct file * fp,struct poll_table_struct * pt)1429 static __poll_t poll_next(struct file *fp,
1430 			      struct poll_table_struct *pt)
1431 {
1432 	struct hfi1_filedata *fd = fp->private_data;
1433 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1434 	struct hfi1_devdata *dd = uctxt->dd;
1435 	__poll_t pollflag;
1436 
1437 	poll_wait(fp, &uctxt->wait, pt);
1438 
1439 	spin_lock_irq(&dd->uctxt_lock);
1440 	if (hdrqempty(uctxt)) {
1441 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1442 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1443 		pollflag = 0;
1444 	} else {
1445 		pollflag = EPOLLIN | EPOLLRDNORM;
1446 	}
1447 	spin_unlock_irq(&dd->uctxt_lock);
1448 
1449 	return pollflag;
1450 }
1451 
1452 /*
1453  * Find all user contexts in use, and set the specified bit in their
1454  * event mask.
1455  * See also find_ctxt() for a similar use, that is specific to send buffers.
1456  */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1457 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1458 {
1459 	struct hfi1_ctxtdata *uctxt;
1460 	struct hfi1_devdata *dd = ppd->dd;
1461 	u16 ctxt;
1462 
1463 	if (!dd->events)
1464 		return -EINVAL;
1465 
1466 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1467 	     ctxt++) {
1468 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1469 		if (uctxt) {
1470 			unsigned long *evs;
1471 			int i;
1472 			/*
1473 			 * subctxt_cnt is 0 if not shared, so do base
1474 			 * separately, first, then remaining subctxt, if any
1475 			 */
1476 			evs = dd->events + uctxt_offset(uctxt);
1477 			set_bit(evtbit, evs);
1478 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1479 				set_bit(evtbit, evs + i);
1480 			hfi1_rcd_put(uctxt);
1481 		}
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  * manage_rcvq - manage a context's receive queue
1489  * @uctxt: the context
1490  * @subctxt: the sub-context
1491  * @arg: start/stop action to carry out
1492  *
1493  * start_stop == 0 disables receive on the context, for use in queue
1494  * overflow conditions.  start_stop==1 re-enables, to be used to
1495  * re-init the software copy of the head register
1496  */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1497 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1498 		       unsigned long arg)
1499 {
1500 	struct hfi1_devdata *dd = uctxt->dd;
1501 	unsigned int rcvctrl_op;
1502 	int start_stop;
1503 
1504 	if (subctxt)
1505 		return 0;
1506 
1507 	if (get_user(start_stop, (int __user *)arg))
1508 		return -EFAULT;
1509 
1510 	/* atomically clear receive enable ctxt. */
1511 	if (start_stop) {
1512 		/*
1513 		 * On enable, force in-memory copy of the tail register to
1514 		 * 0, so that protocol code doesn't have to worry about
1515 		 * whether or not the chip has yet updated the in-memory
1516 		 * copy or not on return from the system call. The chip
1517 		 * always resets it's tail register back to 0 on a
1518 		 * transition from disabled to enabled.
1519 		 */
1520 		if (hfi1_rcvhdrtail_kvaddr(uctxt))
1521 			clear_rcvhdrtail(uctxt);
1522 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1523 	} else {
1524 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1525 	}
1526 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1527 	/* always; new head should be equal to new tail; see above */
1528 
1529 	return 0;
1530 }
1531 
1532 /*
1533  * clear the event notifier events for this context.
1534  * User process then performs actions appropriate to bit having been
1535  * set, if desired, and checks again in future.
1536  */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1537 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1538 			  unsigned long arg)
1539 {
1540 	int i;
1541 	struct hfi1_devdata *dd = uctxt->dd;
1542 	unsigned long *evs;
1543 	unsigned long events;
1544 
1545 	if (!dd->events)
1546 		return 0;
1547 
1548 	if (get_user(events, (unsigned long __user *)arg))
1549 		return -EFAULT;
1550 
1551 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1552 
1553 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1554 		if (!test_bit(i, &events))
1555 			continue;
1556 		clear_bit(i, evs);
1557 	}
1558 	return 0;
1559 }
1560 
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1561 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1562 {
1563 	int i;
1564 	struct hfi1_pportdata *ppd = uctxt->ppd;
1565 	struct hfi1_devdata *dd = uctxt->dd;
1566 	u16 pkey;
1567 
1568 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1569 		return -EPERM;
1570 
1571 	if (get_user(pkey, (u16 __user *)arg))
1572 		return -EFAULT;
1573 
1574 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1575 		return -EINVAL;
1576 
1577 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1578 		if (pkey == ppd->pkeys[i])
1579 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1580 
1581 	return -ENOENT;
1582 }
1583 
1584 /**
1585  * ctxt_reset - Reset the user context
1586  * @uctxt: valid user context
1587  */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1588 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1589 {
1590 	struct send_context *sc;
1591 	struct hfi1_devdata *dd;
1592 	int ret = 0;
1593 
1594 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1595 		return -EINVAL;
1596 
1597 	/*
1598 	 * There is no protection here. User level has to guarantee that
1599 	 * no one will be writing to the send context while it is being
1600 	 * re-initialized.  If user level breaks that guarantee, it will
1601 	 * break it's own context and no one else's.
1602 	 */
1603 	dd = uctxt->dd;
1604 	sc = uctxt->sc;
1605 
1606 	/*
1607 	 * Wait until the interrupt handler has marked the context as
1608 	 * halted or frozen. Report error if we time out.
1609 	 */
1610 	wait_event_interruptible_timeout(
1611 		sc->halt_wait, (sc->flags & SCF_HALTED),
1612 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1613 	if (!(sc->flags & SCF_HALTED))
1614 		return -ENOLCK;
1615 
1616 	/*
1617 	 * If the send context was halted due to a Freeze, wait until the
1618 	 * device has been "unfrozen" before resetting the context.
1619 	 */
1620 	if (sc->flags & SCF_FROZEN) {
1621 		wait_event_interruptible_timeout(
1622 			dd->event_queue,
1623 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1624 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1625 		if (dd->flags & HFI1_FROZEN)
1626 			return -ENOLCK;
1627 
1628 		if (dd->flags & HFI1_FORCED_FREEZE)
1629 			/*
1630 			 * Don't allow context reset if we are into
1631 			 * forced freeze
1632 			 */
1633 			return -ENODEV;
1634 
1635 		sc_disable(sc);
1636 		ret = sc_enable(sc);
1637 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1638 	} else {
1639 		ret = sc_restart(sc);
1640 	}
1641 	if (!ret)
1642 		sc_return_credits(sc);
1643 
1644 	return ret;
1645 }
1646 
user_remove(struct hfi1_devdata * dd)1647 static void user_remove(struct hfi1_devdata *dd)
1648 {
1649 
1650 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1651 }
1652 
user_add(struct hfi1_devdata * dd)1653 static int user_add(struct hfi1_devdata *dd)
1654 {
1655 	char name[10];
1656 	int ret;
1657 
1658 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1659 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1660 			     &dd->user_cdev, &dd->user_device,
1661 			     true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1662 	if (ret)
1663 		user_remove(dd);
1664 
1665 	return ret;
1666 }
1667 
1668 /*
1669  * Create per-unit files in /dev
1670  */
hfi1_device_create(struct hfi1_devdata * dd)1671 int hfi1_device_create(struct hfi1_devdata *dd)
1672 {
1673 	return user_add(dd);
1674 }
1675 
1676 /*
1677  * Remove per-unit files in /dev
1678  * void, core kernel returns no errors for this stuff
1679  */
hfi1_device_remove(struct hfi1_devdata * dd)1680 void hfi1_device_remove(struct hfi1_devdata *dd)
1681 {
1682 	user_remove(dd);
1683 }
1684