• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  HID support for Linux
4  *
5  *  Copyright (c) 1999 Andreas Gal
6  *  Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7  *  Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8  *  Copyright (c) 2006-2012 Jiri Kosina
9  */
10 
11 /*
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30 
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35 #include <linux/uhid.h>
36 
37 #include "hid-ids.h"
38 
39 /*
40  * Version Information
41  */
42 
43 #define DRIVER_DESC "HID core driver"
44 
45 int hid_debug = 0;
46 module_param_named(debug, hid_debug, int, 0600);
47 MODULE_PARM_DESC(debug, "toggle HID debugging messages");
48 EXPORT_SYMBOL_GPL(hid_debug);
49 
50 static int hid_ignore_special_drivers = 0;
51 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
52 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
53 
54 /*
55  * Register a new report for a device.
56  */
57 
hid_register_report(struct hid_device * device,enum hid_report_type type,unsigned int id,unsigned int application)58 struct hid_report *hid_register_report(struct hid_device *device,
59 				       enum hid_report_type type, unsigned int id,
60 				       unsigned int application)
61 {
62 	struct hid_report_enum *report_enum = device->report_enum + type;
63 	struct hid_report *report;
64 
65 	if (id >= HID_MAX_IDS)
66 		return NULL;
67 	if (report_enum->report_id_hash[id])
68 		return report_enum->report_id_hash[id];
69 
70 	report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
71 	if (!report)
72 		return NULL;
73 
74 	if (id != 0)
75 		report_enum->numbered = 1;
76 
77 	report->id = id;
78 	report->type = type;
79 	report->size = 0;
80 	report->device = device;
81 	report->application = application;
82 	report_enum->report_id_hash[id] = report;
83 
84 	list_add_tail(&report->list, &report_enum->report_list);
85 	INIT_LIST_HEAD(&report->field_entry_list);
86 
87 	return report;
88 }
89 EXPORT_SYMBOL_GPL(hid_register_report);
90 
91 /*
92  * Register a new field for this report.
93  */
94 
hid_register_field(struct hid_report * report,unsigned usages)95 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
96 {
97 	struct hid_field *field;
98 
99 	if (report->maxfield == HID_MAX_FIELDS) {
100 		hid_err(report->device, "too many fields in report\n");
101 		return NULL;
102 	}
103 
104 	field = kzalloc((sizeof(struct hid_field) +
105 			 usages * sizeof(struct hid_usage) +
106 			 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
107 	if (!field)
108 		return NULL;
109 
110 	field->index = report->maxfield++;
111 	report->field[field->index] = field;
112 	field->usage = (struct hid_usage *)(field + 1);
113 	field->value = (s32 *)(field->usage + usages);
114 	field->new_value = (s32 *)(field->value + usages);
115 	field->usages_priorities = (s32 *)(field->new_value + usages);
116 	field->report = report;
117 
118 	return field;
119 }
120 
121 /*
122  * Open a collection. The type/usage is pushed on the stack.
123  */
124 
open_collection(struct hid_parser * parser,unsigned type)125 static int open_collection(struct hid_parser *parser, unsigned type)
126 {
127 	struct hid_collection *collection;
128 	unsigned usage;
129 	int collection_index;
130 
131 	usage = parser->local.usage[0];
132 
133 	if (parser->collection_stack_ptr == parser->collection_stack_size) {
134 		unsigned int *collection_stack;
135 		unsigned int new_size = parser->collection_stack_size +
136 					HID_COLLECTION_STACK_SIZE;
137 
138 		collection_stack = krealloc(parser->collection_stack,
139 					    new_size * sizeof(unsigned int),
140 					    GFP_KERNEL);
141 		if (!collection_stack)
142 			return -ENOMEM;
143 
144 		parser->collection_stack = collection_stack;
145 		parser->collection_stack_size = new_size;
146 	}
147 
148 	if (parser->device->maxcollection == parser->device->collection_size) {
149 		collection = kmalloc(
150 				array3_size(sizeof(struct hid_collection),
151 					    parser->device->collection_size,
152 					    2),
153 				GFP_KERNEL);
154 		if (collection == NULL) {
155 			hid_err(parser->device, "failed to reallocate collection array\n");
156 			return -ENOMEM;
157 		}
158 		memcpy(collection, parser->device->collection,
159 			sizeof(struct hid_collection) *
160 			parser->device->collection_size);
161 		memset(collection + parser->device->collection_size, 0,
162 			sizeof(struct hid_collection) *
163 			parser->device->collection_size);
164 		kfree(parser->device->collection);
165 		parser->device->collection = collection;
166 		parser->device->collection_size *= 2;
167 	}
168 
169 	parser->collection_stack[parser->collection_stack_ptr++] =
170 		parser->device->maxcollection;
171 
172 	collection_index = parser->device->maxcollection++;
173 	collection = parser->device->collection + collection_index;
174 	collection->type = type;
175 	collection->usage = usage;
176 	collection->level = parser->collection_stack_ptr - 1;
177 	collection->parent_idx = (collection->level == 0) ? -1 :
178 		parser->collection_stack[collection->level - 1];
179 
180 	if (type == HID_COLLECTION_APPLICATION)
181 		parser->device->maxapplication++;
182 
183 	return 0;
184 }
185 
186 /*
187  * Close a collection.
188  */
189 
close_collection(struct hid_parser * parser)190 static int close_collection(struct hid_parser *parser)
191 {
192 	if (!parser->collection_stack_ptr) {
193 		hid_err(parser->device, "collection stack underflow\n");
194 		return -EINVAL;
195 	}
196 	parser->collection_stack_ptr--;
197 	return 0;
198 }
199 
200 /*
201  * Climb up the stack, search for the specified collection type
202  * and return the usage.
203  */
204 
hid_lookup_collection(struct hid_parser * parser,unsigned type)205 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
206 {
207 	struct hid_collection *collection = parser->device->collection;
208 	int n;
209 
210 	for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
211 		unsigned index = parser->collection_stack[n];
212 		if (collection[index].type == type)
213 			return collection[index].usage;
214 	}
215 	return 0; /* we know nothing about this usage type */
216 }
217 
218 /*
219  * Concatenate usage which defines 16 bits or less with the
220  * currently defined usage page to form a 32 bit usage
221  */
222 
complete_usage(struct hid_parser * parser,unsigned int index)223 static void complete_usage(struct hid_parser *parser, unsigned int index)
224 {
225 	parser->local.usage[index] &= 0xFFFF;
226 	parser->local.usage[index] |=
227 		(parser->global.usage_page & 0xFFFF) << 16;
228 }
229 
230 /*
231  * Add a usage to the temporary parser table.
232  */
233 
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)234 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
235 {
236 	if (parser->local.usage_index >= HID_MAX_USAGES) {
237 		hid_err(parser->device, "usage index exceeded\n");
238 		return -1;
239 	}
240 	parser->local.usage[parser->local.usage_index] = usage;
241 
242 	/*
243 	 * If Usage item only includes usage id, concatenate it with
244 	 * currently defined usage page
245 	 */
246 	if (size <= 2)
247 		complete_usage(parser, parser->local.usage_index);
248 
249 	parser->local.usage_size[parser->local.usage_index] = size;
250 	parser->local.collection_index[parser->local.usage_index] =
251 		parser->collection_stack_ptr ?
252 		parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
253 	parser->local.usage_index++;
254 	return 0;
255 }
256 
257 /*
258  * Register a new field for this report.
259  */
260 
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)261 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
262 {
263 	struct hid_report *report;
264 	struct hid_field *field;
265 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
266 	unsigned int usages;
267 	unsigned int offset;
268 	unsigned int i;
269 	unsigned int application;
270 
271 	application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
272 
273 	report = hid_register_report(parser->device, report_type,
274 				     parser->global.report_id, application);
275 	if (!report) {
276 		hid_err(parser->device, "hid_register_report failed\n");
277 		return -1;
278 	}
279 
280 	/* Handle both signed and unsigned cases properly */
281 	if ((parser->global.logical_minimum < 0 &&
282 		parser->global.logical_maximum <
283 		parser->global.logical_minimum) ||
284 		(parser->global.logical_minimum >= 0 &&
285 		(__u32)parser->global.logical_maximum <
286 		(__u32)parser->global.logical_minimum)) {
287 		dbg_hid("logical range invalid 0x%x 0x%x\n",
288 			parser->global.logical_minimum,
289 			parser->global.logical_maximum);
290 		return -1;
291 	}
292 
293 	offset = report->size;
294 	report->size += parser->global.report_size * parser->global.report_count;
295 
296 	if (IS_ENABLED(CONFIG_UHID) && parser->device->ll_driver == &uhid_hid_driver)
297 		max_buffer_size = UHID_DATA_MAX;
298 
299 	/* Total size check: Allow for possible report index byte */
300 	if (report->size > (max_buffer_size - 1) << 3) {
301 		hid_err(parser->device, "report is too long\n");
302 		return -1;
303 	}
304 
305 	if (!parser->local.usage_index) /* Ignore padding fields */
306 		return 0;
307 
308 	usages = max_t(unsigned, parser->local.usage_index,
309 				 parser->global.report_count);
310 
311 	field = hid_register_field(report, usages);
312 	if (!field)
313 		return 0;
314 
315 	field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
316 	field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
317 	field->application = application;
318 
319 	for (i = 0; i < usages; i++) {
320 		unsigned j = i;
321 		/* Duplicate the last usage we parsed if we have excess values */
322 		if (i >= parser->local.usage_index)
323 			j = parser->local.usage_index - 1;
324 		field->usage[i].hid = parser->local.usage[j];
325 		field->usage[i].collection_index =
326 			parser->local.collection_index[j];
327 		field->usage[i].usage_index = i;
328 		field->usage[i].resolution_multiplier = 1;
329 	}
330 
331 	field->maxusage = usages;
332 	field->flags = flags;
333 	field->report_offset = offset;
334 	field->report_type = report_type;
335 	field->report_size = parser->global.report_size;
336 	field->report_count = parser->global.report_count;
337 	field->logical_minimum = parser->global.logical_minimum;
338 	field->logical_maximum = parser->global.logical_maximum;
339 	field->physical_minimum = parser->global.physical_minimum;
340 	field->physical_maximum = parser->global.physical_maximum;
341 	field->unit_exponent = parser->global.unit_exponent;
342 	field->unit = parser->global.unit;
343 
344 	return 0;
345 }
346 
347 /*
348  * Read data value from item.
349  */
350 
item_udata(struct hid_item * item)351 static u32 item_udata(struct hid_item *item)
352 {
353 	switch (item->size) {
354 	case 1: return item->data.u8;
355 	case 2: return item->data.u16;
356 	case 4: return item->data.u32;
357 	}
358 	return 0;
359 }
360 
item_sdata(struct hid_item * item)361 static s32 item_sdata(struct hid_item *item)
362 {
363 	switch (item->size) {
364 	case 1: return item->data.s8;
365 	case 2: return item->data.s16;
366 	case 4: return item->data.s32;
367 	}
368 	return 0;
369 }
370 
371 /*
372  * Process a global item.
373  */
374 
hid_parser_global(struct hid_parser * parser,struct hid_item * item)375 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
376 {
377 	__s32 raw_value;
378 	switch (item->tag) {
379 	case HID_GLOBAL_ITEM_TAG_PUSH:
380 
381 		if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
382 			hid_err(parser->device, "global environment stack overflow\n");
383 			return -1;
384 		}
385 
386 		memcpy(parser->global_stack + parser->global_stack_ptr++,
387 			&parser->global, sizeof(struct hid_global));
388 		return 0;
389 
390 	case HID_GLOBAL_ITEM_TAG_POP:
391 
392 		if (!parser->global_stack_ptr) {
393 			hid_err(parser->device, "global environment stack underflow\n");
394 			return -1;
395 		}
396 
397 		memcpy(&parser->global, parser->global_stack +
398 			--parser->global_stack_ptr, sizeof(struct hid_global));
399 		return 0;
400 
401 	case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
402 		parser->global.usage_page = item_udata(item);
403 		return 0;
404 
405 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
406 		parser->global.logical_minimum = item_sdata(item);
407 		return 0;
408 
409 	case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
410 		if (parser->global.logical_minimum < 0)
411 			parser->global.logical_maximum = item_sdata(item);
412 		else
413 			parser->global.logical_maximum = item_udata(item);
414 		return 0;
415 
416 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
417 		parser->global.physical_minimum = item_sdata(item);
418 		return 0;
419 
420 	case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
421 		if (parser->global.physical_minimum < 0)
422 			parser->global.physical_maximum = item_sdata(item);
423 		else
424 			parser->global.physical_maximum = item_udata(item);
425 		return 0;
426 
427 	case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
428 		/* Many devices provide unit exponent as a two's complement
429 		 * nibble due to the common misunderstanding of HID
430 		 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
431 		 * both this and the standard encoding. */
432 		raw_value = item_sdata(item);
433 		if (!(raw_value & 0xfffffff0))
434 			parser->global.unit_exponent = hid_snto32(raw_value, 4);
435 		else
436 			parser->global.unit_exponent = raw_value;
437 		return 0;
438 
439 	case HID_GLOBAL_ITEM_TAG_UNIT:
440 		parser->global.unit = item_udata(item);
441 		return 0;
442 
443 	case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
444 		parser->global.report_size = item_udata(item);
445 		if (parser->global.report_size > 256) {
446 			hid_err(parser->device, "invalid report_size %d\n",
447 					parser->global.report_size);
448 			return -1;
449 		}
450 		return 0;
451 
452 	case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
453 		parser->global.report_count = item_udata(item);
454 		if (parser->global.report_count > HID_MAX_USAGES) {
455 			hid_err(parser->device, "invalid report_count %d\n",
456 					parser->global.report_count);
457 			return -1;
458 		}
459 		return 0;
460 
461 	case HID_GLOBAL_ITEM_TAG_REPORT_ID:
462 		parser->global.report_id = item_udata(item);
463 		if (parser->global.report_id == 0 ||
464 		    parser->global.report_id >= HID_MAX_IDS) {
465 			hid_err(parser->device, "report_id %u is invalid\n",
466 				parser->global.report_id);
467 			return -1;
468 		}
469 		return 0;
470 
471 	default:
472 		hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
473 		return -1;
474 	}
475 }
476 
477 /*
478  * Process a local item.
479  */
480 
hid_parser_local(struct hid_parser * parser,struct hid_item * item)481 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
482 {
483 	__u32 data;
484 	unsigned n;
485 	__u32 count;
486 
487 	data = item_udata(item);
488 
489 	switch (item->tag) {
490 	case HID_LOCAL_ITEM_TAG_DELIMITER:
491 
492 		if (data) {
493 			/*
494 			 * We treat items before the first delimiter
495 			 * as global to all usage sets (branch 0).
496 			 * In the moment we process only these global
497 			 * items and the first delimiter set.
498 			 */
499 			if (parser->local.delimiter_depth != 0) {
500 				hid_err(parser->device, "nested delimiters\n");
501 				return -1;
502 			}
503 			parser->local.delimiter_depth++;
504 			parser->local.delimiter_branch++;
505 		} else {
506 			if (parser->local.delimiter_depth < 1) {
507 				hid_err(parser->device, "bogus close delimiter\n");
508 				return -1;
509 			}
510 			parser->local.delimiter_depth--;
511 		}
512 		return 0;
513 
514 	case HID_LOCAL_ITEM_TAG_USAGE:
515 
516 		if (parser->local.delimiter_branch > 1) {
517 			dbg_hid("alternative usage ignored\n");
518 			return 0;
519 		}
520 
521 		return hid_add_usage(parser, data, item->size);
522 
523 	case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
524 
525 		if (parser->local.delimiter_branch > 1) {
526 			dbg_hid("alternative usage ignored\n");
527 			return 0;
528 		}
529 
530 		parser->local.usage_minimum = data;
531 		return 0;
532 
533 	case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
534 
535 		if (parser->local.delimiter_branch > 1) {
536 			dbg_hid("alternative usage ignored\n");
537 			return 0;
538 		}
539 
540 		count = data - parser->local.usage_minimum;
541 		if (count + parser->local.usage_index >= HID_MAX_USAGES) {
542 			/*
543 			 * We do not warn if the name is not set, we are
544 			 * actually pre-scanning the device.
545 			 */
546 			if (dev_name(&parser->device->dev))
547 				hid_warn(parser->device,
548 					 "ignoring exceeding usage max\n");
549 			data = HID_MAX_USAGES - parser->local.usage_index +
550 				parser->local.usage_minimum - 1;
551 			if (data <= 0) {
552 				hid_err(parser->device,
553 					"no more usage index available\n");
554 				return -1;
555 			}
556 		}
557 
558 		for (n = parser->local.usage_minimum; n <= data; n++)
559 			if (hid_add_usage(parser, n, item->size)) {
560 				dbg_hid("hid_add_usage failed\n");
561 				return -1;
562 			}
563 		return 0;
564 
565 	default:
566 
567 		dbg_hid("unknown local item tag 0x%x\n", item->tag);
568 		return 0;
569 	}
570 	return 0;
571 }
572 
573 /*
574  * Concatenate Usage Pages into Usages where relevant:
575  * As per specification, 6.2.2.8: "When the parser encounters a main item it
576  * concatenates the last declared Usage Page with a Usage to form a complete
577  * usage value."
578  */
579 
hid_concatenate_last_usage_page(struct hid_parser * parser)580 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
581 {
582 	int i;
583 	unsigned int usage_page;
584 	unsigned int current_page;
585 
586 	if (!parser->local.usage_index)
587 		return;
588 
589 	usage_page = parser->global.usage_page;
590 
591 	/*
592 	 * Concatenate usage page again only if last declared Usage Page
593 	 * has not been already used in previous usages concatenation
594 	 */
595 	for (i = parser->local.usage_index - 1; i >= 0; i--) {
596 		if (parser->local.usage_size[i] > 2)
597 			/* Ignore extended usages */
598 			continue;
599 
600 		current_page = parser->local.usage[i] >> 16;
601 		if (current_page == usage_page)
602 			break;
603 
604 		complete_usage(parser, i);
605 	}
606 }
607 
608 /*
609  * Process a main item.
610  */
611 
hid_parser_main(struct hid_parser * parser,struct hid_item * item)612 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
613 {
614 	__u32 data;
615 	int ret;
616 
617 	hid_concatenate_last_usage_page(parser);
618 
619 	data = item_udata(item);
620 
621 	switch (item->tag) {
622 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
623 		ret = open_collection(parser, data & 0xff);
624 		break;
625 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
626 		ret = close_collection(parser);
627 		break;
628 	case HID_MAIN_ITEM_TAG_INPUT:
629 		ret = hid_add_field(parser, HID_INPUT_REPORT, data);
630 		break;
631 	case HID_MAIN_ITEM_TAG_OUTPUT:
632 		ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
633 		break;
634 	case HID_MAIN_ITEM_TAG_FEATURE:
635 		ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
636 		break;
637 	default:
638 		hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
639 		ret = 0;
640 	}
641 
642 	memset(&parser->local, 0, sizeof(parser->local));	/* Reset the local parser environment */
643 
644 	return ret;
645 }
646 
647 /*
648  * Process a reserved item.
649  */
650 
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)651 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
652 {
653 	dbg_hid("reserved item type, tag 0x%x\n", item->tag);
654 	return 0;
655 }
656 
657 /*
658  * Free a report and all registered fields. The field->usage and
659  * field->value table's are allocated behind the field, so we need
660  * only to free(field) itself.
661  */
662 
hid_free_report(struct hid_report * report)663 static void hid_free_report(struct hid_report *report)
664 {
665 	unsigned n;
666 
667 	kfree(report->field_entries);
668 
669 	for (n = 0; n < report->maxfield; n++)
670 		kfree(report->field[n]);
671 	kfree(report);
672 }
673 
674 /*
675  * Close report. This function returns the device
676  * state to the point prior to hid_open_report().
677  */
hid_close_report(struct hid_device * device)678 static void hid_close_report(struct hid_device *device)
679 {
680 	unsigned i, j;
681 
682 	for (i = 0; i < HID_REPORT_TYPES; i++) {
683 		struct hid_report_enum *report_enum = device->report_enum + i;
684 
685 		for (j = 0; j < HID_MAX_IDS; j++) {
686 			struct hid_report *report = report_enum->report_id_hash[j];
687 			if (report)
688 				hid_free_report(report);
689 		}
690 		memset(report_enum, 0, sizeof(*report_enum));
691 		INIT_LIST_HEAD(&report_enum->report_list);
692 	}
693 
694 	kfree(device->rdesc);
695 	device->rdesc = NULL;
696 	device->rsize = 0;
697 
698 	kfree(device->collection);
699 	device->collection = NULL;
700 	device->collection_size = 0;
701 	device->maxcollection = 0;
702 	device->maxapplication = 0;
703 
704 	device->status &= ~HID_STAT_PARSED;
705 }
706 
707 /*
708  * Free a device structure, all reports, and all fields.
709  */
710 
hid_device_release(struct device * dev)711 static void hid_device_release(struct device *dev)
712 {
713 	struct hid_device *hid = to_hid_device(dev);
714 
715 	hid_close_report(hid);
716 	kfree(hid->dev_rdesc);
717 	kfree(hid);
718 }
719 
720 /*
721  * Fetch a report description item from the data stream. We support long
722  * items, though they are not used yet.
723  */
724 
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)725 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
726 {
727 	u8 b;
728 
729 	if ((end - start) <= 0)
730 		return NULL;
731 
732 	b = *start++;
733 
734 	item->type = (b >> 2) & 3;
735 	item->tag  = (b >> 4) & 15;
736 
737 	if (item->tag == HID_ITEM_TAG_LONG) {
738 
739 		item->format = HID_ITEM_FORMAT_LONG;
740 
741 		if ((end - start) < 2)
742 			return NULL;
743 
744 		item->size = *start++;
745 		item->tag  = *start++;
746 
747 		if ((end - start) < item->size)
748 			return NULL;
749 
750 		item->data.longdata = start;
751 		start += item->size;
752 		return start;
753 	}
754 
755 	item->format = HID_ITEM_FORMAT_SHORT;
756 	item->size = b & 3;
757 
758 	switch (item->size) {
759 	case 0:
760 		return start;
761 
762 	case 1:
763 		if ((end - start) < 1)
764 			return NULL;
765 		item->data.u8 = *start++;
766 		return start;
767 
768 	case 2:
769 		if ((end - start) < 2)
770 			return NULL;
771 		item->data.u16 = get_unaligned_le16(start);
772 		start = (__u8 *)((__le16 *)start + 1);
773 		return start;
774 
775 	case 3:
776 		item->size++;
777 		if ((end - start) < 4)
778 			return NULL;
779 		item->data.u32 = get_unaligned_le32(start);
780 		start = (__u8 *)((__le32 *)start + 1);
781 		return start;
782 	}
783 
784 	return NULL;
785 }
786 
hid_scan_input_usage(struct hid_parser * parser,u32 usage)787 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
788 {
789 	struct hid_device *hid = parser->device;
790 
791 	if (usage == HID_DG_CONTACTID)
792 		hid->group = HID_GROUP_MULTITOUCH;
793 }
794 
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)795 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
796 {
797 	if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
798 	    parser->global.report_size == 8)
799 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
800 
801 	if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
802 	    parser->global.report_size == 8)
803 		parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
804 }
805 
hid_scan_collection(struct hid_parser * parser,unsigned type)806 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
807 {
808 	struct hid_device *hid = parser->device;
809 	int i;
810 
811 	if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
812 	    type == HID_COLLECTION_PHYSICAL)
813 		hid->group = HID_GROUP_SENSOR_HUB;
814 
815 	if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
816 	    hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
817 	    hid->group == HID_GROUP_MULTITOUCH)
818 		hid->group = HID_GROUP_GENERIC;
819 
820 	if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
821 		for (i = 0; i < parser->local.usage_index; i++)
822 			if (parser->local.usage[i] == HID_GD_POINTER)
823 				parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
824 
825 	if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
826 		parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
827 
828 	if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
829 		for (i = 0; i < parser->local.usage_index; i++)
830 			if (parser->local.usage[i] ==
831 					(HID_UP_GOOGLEVENDOR | 0x0001))
832 				parser->device->group =
833 					HID_GROUP_VIVALDI;
834 }
835 
hid_scan_main(struct hid_parser * parser,struct hid_item * item)836 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
837 {
838 	__u32 data;
839 	int i;
840 
841 	hid_concatenate_last_usage_page(parser);
842 
843 	data = item_udata(item);
844 
845 	switch (item->tag) {
846 	case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
847 		hid_scan_collection(parser, data & 0xff);
848 		break;
849 	case HID_MAIN_ITEM_TAG_END_COLLECTION:
850 		break;
851 	case HID_MAIN_ITEM_TAG_INPUT:
852 		/* ignore constant inputs, they will be ignored by hid-input */
853 		if (data & HID_MAIN_ITEM_CONSTANT)
854 			break;
855 		for (i = 0; i < parser->local.usage_index; i++)
856 			hid_scan_input_usage(parser, parser->local.usage[i]);
857 		break;
858 	case HID_MAIN_ITEM_TAG_OUTPUT:
859 		break;
860 	case HID_MAIN_ITEM_TAG_FEATURE:
861 		for (i = 0; i < parser->local.usage_index; i++)
862 			hid_scan_feature_usage(parser, parser->local.usage[i]);
863 		break;
864 	}
865 
866 	/* Reset the local parser environment */
867 	memset(&parser->local, 0, sizeof(parser->local));
868 
869 	return 0;
870 }
871 
872 /*
873  * Scan a report descriptor before the device is added to the bus.
874  * Sets device groups and other properties that determine what driver
875  * to load.
876  */
hid_scan_report(struct hid_device * hid)877 static int hid_scan_report(struct hid_device *hid)
878 {
879 	struct hid_parser *parser;
880 	struct hid_item item;
881 	__u8 *start = hid->dev_rdesc;
882 	__u8 *end = start + hid->dev_rsize;
883 	static int (*dispatch_type[])(struct hid_parser *parser,
884 				      struct hid_item *item) = {
885 		hid_scan_main,
886 		hid_parser_global,
887 		hid_parser_local,
888 		hid_parser_reserved
889 	};
890 
891 	parser = vzalloc(sizeof(struct hid_parser));
892 	if (!parser)
893 		return -ENOMEM;
894 
895 	parser->device = hid;
896 	hid->group = HID_GROUP_GENERIC;
897 
898 	/*
899 	 * The parsing is simpler than the one in hid_open_report() as we should
900 	 * be robust against hid errors. Those errors will be raised by
901 	 * hid_open_report() anyway.
902 	 */
903 	while ((start = fetch_item(start, end, &item)) != NULL)
904 		dispatch_type[item.type](parser, &item);
905 
906 	/*
907 	 * Handle special flags set during scanning.
908 	 */
909 	if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
910 	    (hid->group == HID_GROUP_MULTITOUCH))
911 		hid->group = HID_GROUP_MULTITOUCH_WIN_8;
912 
913 	/*
914 	 * Vendor specific handlings
915 	 */
916 	switch (hid->vendor) {
917 	case USB_VENDOR_ID_WACOM:
918 		hid->group = HID_GROUP_WACOM;
919 		break;
920 	case USB_VENDOR_ID_SYNAPTICS:
921 		if (hid->group == HID_GROUP_GENERIC)
922 			if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
923 			    && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
924 				/*
925 				 * hid-rmi should take care of them,
926 				 * not hid-generic
927 				 */
928 				hid->group = HID_GROUP_RMI;
929 		break;
930 	}
931 
932 	kfree(parser->collection_stack);
933 	vfree(parser);
934 	return 0;
935 }
936 
937 /**
938  * hid_parse_report - parse device report
939  *
940  * @hid: hid device
941  * @start: report start
942  * @size: report size
943  *
944  * Allocate the device report as read by the bus driver. This function should
945  * only be called from parse() in ll drivers.
946  */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)947 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
948 {
949 	hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
950 	if (!hid->dev_rdesc)
951 		return -ENOMEM;
952 	hid->dev_rsize = size;
953 	return 0;
954 }
955 EXPORT_SYMBOL_GPL(hid_parse_report);
956 
957 static const char * const hid_report_names[] = {
958 	"HID_INPUT_REPORT",
959 	"HID_OUTPUT_REPORT",
960 	"HID_FEATURE_REPORT",
961 };
962 /**
963  * hid_validate_values - validate existing device report's value indexes
964  *
965  * @hid: hid device
966  * @type: which report type to examine
967  * @id: which report ID to examine (0 for first)
968  * @field_index: which report field to examine
969  * @report_counts: expected number of values
970  *
971  * Validate the number of values in a given field of a given report, after
972  * parsing.
973  */
hid_validate_values(struct hid_device * hid,enum hid_report_type type,unsigned int id,unsigned int field_index,unsigned int report_counts)974 struct hid_report *hid_validate_values(struct hid_device *hid,
975 				       enum hid_report_type type, unsigned int id,
976 				       unsigned int field_index,
977 				       unsigned int report_counts)
978 {
979 	struct hid_report *report;
980 
981 	if (type > HID_FEATURE_REPORT) {
982 		hid_err(hid, "invalid HID report type %u\n", type);
983 		return NULL;
984 	}
985 
986 	if (id >= HID_MAX_IDS) {
987 		hid_err(hid, "invalid HID report id %u\n", id);
988 		return NULL;
989 	}
990 
991 	/*
992 	 * Explicitly not using hid_get_report() here since it depends on
993 	 * ->numbered being checked, which may not always be the case when
994 	 * drivers go to access report values.
995 	 */
996 	if (id == 0) {
997 		/*
998 		 * Validating on id 0 means we should examine the first
999 		 * report in the list.
1000 		 */
1001 		report = list_first_entry_or_null(
1002 				&hid->report_enum[type].report_list,
1003 				struct hid_report, list);
1004 	} else {
1005 		report = hid->report_enum[type].report_id_hash[id];
1006 	}
1007 	if (!report) {
1008 		hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1009 		return NULL;
1010 	}
1011 	if (report->maxfield <= field_index) {
1012 		hid_err(hid, "not enough fields in %s %u\n",
1013 			hid_report_names[type], id);
1014 		return NULL;
1015 	}
1016 	if (report->field[field_index]->report_count < report_counts) {
1017 		hid_err(hid, "not enough values in %s %u field %u\n",
1018 			hid_report_names[type], id, field_index);
1019 		return NULL;
1020 	}
1021 	return report;
1022 }
1023 EXPORT_SYMBOL_GPL(hid_validate_values);
1024 
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1025 static int hid_calculate_multiplier(struct hid_device *hid,
1026 				     struct hid_field *multiplier)
1027 {
1028 	int m;
1029 	__s32 v = *multiplier->value;
1030 	__s32 lmin = multiplier->logical_minimum;
1031 	__s32 lmax = multiplier->logical_maximum;
1032 	__s32 pmin = multiplier->physical_minimum;
1033 	__s32 pmax = multiplier->physical_maximum;
1034 
1035 	/*
1036 	 * "Because OS implementations will generally divide the control's
1037 	 * reported count by the Effective Resolution Multiplier, designers
1038 	 * should take care not to establish a potential Effective
1039 	 * Resolution Multiplier of zero."
1040 	 * HID Usage Table, v1.12, Section 4.3.1, p31
1041 	 */
1042 	if (lmax - lmin == 0)
1043 		return 1;
1044 	/*
1045 	 * Handling the unit exponent is left as an exercise to whoever
1046 	 * finds a device where that exponent is not 0.
1047 	 */
1048 	m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1049 	if (unlikely(multiplier->unit_exponent != 0)) {
1050 		hid_warn(hid,
1051 			 "unsupported Resolution Multiplier unit exponent %d\n",
1052 			 multiplier->unit_exponent);
1053 	}
1054 
1055 	/* There are no devices with an effective multiplier > 255 */
1056 	if (unlikely(m == 0 || m > 255 || m < -255)) {
1057 		hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1058 		m = 1;
1059 	}
1060 
1061 	return m;
1062 }
1063 
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1064 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1065 					  struct hid_field *field,
1066 					  struct hid_collection *multiplier_collection,
1067 					  int effective_multiplier)
1068 {
1069 	struct hid_collection *collection;
1070 	struct hid_usage *usage;
1071 	int i;
1072 
1073 	/*
1074 	 * If multiplier_collection is NULL, the multiplier applies
1075 	 * to all fields in the report.
1076 	 * Otherwise, it is the Logical Collection the multiplier applies to
1077 	 * but our field may be in a subcollection of that collection.
1078 	 */
1079 	for (i = 0; i < field->maxusage; i++) {
1080 		usage = &field->usage[i];
1081 
1082 		collection = &hid->collection[usage->collection_index];
1083 		while (collection->parent_idx != -1 &&
1084 		       collection != multiplier_collection)
1085 			collection = &hid->collection[collection->parent_idx];
1086 
1087 		if (collection->parent_idx != -1 ||
1088 		    multiplier_collection == NULL)
1089 			usage->resolution_multiplier = effective_multiplier;
1090 
1091 	}
1092 }
1093 
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1094 static void hid_apply_multiplier(struct hid_device *hid,
1095 				 struct hid_field *multiplier)
1096 {
1097 	struct hid_report_enum *rep_enum;
1098 	struct hid_report *rep;
1099 	struct hid_field *field;
1100 	struct hid_collection *multiplier_collection;
1101 	int effective_multiplier;
1102 	int i;
1103 
1104 	/*
1105 	 * "The Resolution Multiplier control must be contained in the same
1106 	 * Logical Collection as the control(s) to which it is to be applied.
1107 	 * If no Resolution Multiplier is defined, then the Resolution
1108 	 * Multiplier defaults to 1.  If more than one control exists in a
1109 	 * Logical Collection, the Resolution Multiplier is associated with
1110 	 * all controls in the collection. If no Logical Collection is
1111 	 * defined, the Resolution Multiplier is associated with all
1112 	 * controls in the report."
1113 	 * HID Usage Table, v1.12, Section 4.3.1, p30
1114 	 *
1115 	 * Thus, search from the current collection upwards until we find a
1116 	 * logical collection. Then search all fields for that same parent
1117 	 * collection. Those are the fields the multiplier applies to.
1118 	 *
1119 	 * If we have more than one multiplier, it will overwrite the
1120 	 * applicable fields later.
1121 	 */
1122 	multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1123 	while (multiplier_collection->parent_idx != -1 &&
1124 	       multiplier_collection->type != HID_COLLECTION_LOGICAL)
1125 		multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1126 
1127 	effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1128 
1129 	rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1130 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1131 		for (i = 0; i < rep->maxfield; i++) {
1132 			field = rep->field[i];
1133 			hid_apply_multiplier_to_field(hid, field,
1134 						      multiplier_collection,
1135 						      effective_multiplier);
1136 		}
1137 	}
1138 }
1139 
1140 /*
1141  * hid_setup_resolution_multiplier - set up all resolution multipliers
1142  *
1143  * @device: hid device
1144  *
1145  * Search for all Resolution Multiplier Feature Reports and apply their
1146  * value to all matching Input items. This only updates the internal struct
1147  * fields.
1148  *
1149  * The Resolution Multiplier is applied by the hardware. If the multiplier
1150  * is anything other than 1, the hardware will send pre-multiplied events
1151  * so that the same physical interaction generates an accumulated
1152  *	accumulated_value = value * * multiplier
1153  * This may be achieved by sending
1154  * - "value * multiplier" for each event, or
1155  * - "value" but "multiplier" times as frequently, or
1156  * - a combination of the above
1157  * The only guarantee is that the same physical interaction always generates
1158  * an accumulated 'value * multiplier'.
1159  *
1160  * This function must be called before any event processing and after
1161  * any SetRequest to the Resolution Multiplier.
1162  */
hid_setup_resolution_multiplier(struct hid_device * hid)1163 void hid_setup_resolution_multiplier(struct hid_device *hid)
1164 {
1165 	struct hid_report_enum *rep_enum;
1166 	struct hid_report *rep;
1167 	struct hid_usage *usage;
1168 	int i, j;
1169 
1170 	rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1171 	list_for_each_entry(rep, &rep_enum->report_list, list) {
1172 		for (i = 0; i < rep->maxfield; i++) {
1173 			/* Ignore if report count is out of bounds. */
1174 			if (rep->field[i]->report_count < 1)
1175 				continue;
1176 
1177 			for (j = 0; j < rep->field[i]->maxusage; j++) {
1178 				usage = &rep->field[i]->usage[j];
1179 				if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1180 					hid_apply_multiplier(hid,
1181 							     rep->field[i]);
1182 			}
1183 		}
1184 	}
1185 }
1186 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1187 
1188 /**
1189  * hid_open_report - open a driver-specific device report
1190  *
1191  * @device: hid device
1192  *
1193  * Parse a report description into a hid_device structure. Reports are
1194  * enumerated, fields are attached to these reports.
1195  * 0 returned on success, otherwise nonzero error value.
1196  *
1197  * This function (or the equivalent hid_parse() macro) should only be
1198  * called from probe() in drivers, before starting the device.
1199  */
hid_open_report(struct hid_device * device)1200 int hid_open_report(struct hid_device *device)
1201 {
1202 	struct hid_parser *parser;
1203 	struct hid_item item;
1204 	unsigned int size;
1205 	__u8 *start;
1206 	__u8 *buf;
1207 	__u8 *end;
1208 	__u8 *next;
1209 	int ret;
1210 	int i;
1211 	static int (*dispatch_type[])(struct hid_parser *parser,
1212 				      struct hid_item *item) = {
1213 		hid_parser_main,
1214 		hid_parser_global,
1215 		hid_parser_local,
1216 		hid_parser_reserved
1217 	};
1218 
1219 	if (WARN_ON(device->status & HID_STAT_PARSED))
1220 		return -EBUSY;
1221 
1222 	start = device->dev_rdesc;
1223 	if (WARN_ON(!start))
1224 		return -ENODEV;
1225 	size = device->dev_rsize;
1226 
1227 	buf = kmemdup(start, size, GFP_KERNEL);
1228 	if (buf == NULL)
1229 		return -ENOMEM;
1230 
1231 	if (device->driver->report_fixup)
1232 		start = device->driver->report_fixup(device, buf, &size);
1233 	else
1234 		start = buf;
1235 
1236 	start = kmemdup(start, size, GFP_KERNEL);
1237 	kfree(buf);
1238 	if (start == NULL)
1239 		return -ENOMEM;
1240 
1241 	device->rdesc = start;
1242 	device->rsize = size;
1243 
1244 	parser = vzalloc(sizeof(struct hid_parser));
1245 	if (!parser) {
1246 		ret = -ENOMEM;
1247 		goto alloc_err;
1248 	}
1249 
1250 	parser->device = device;
1251 
1252 	end = start + size;
1253 
1254 	device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1255 				     sizeof(struct hid_collection), GFP_KERNEL);
1256 	if (!device->collection) {
1257 		ret = -ENOMEM;
1258 		goto err;
1259 	}
1260 	device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1261 	for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1262 		device->collection[i].parent_idx = -1;
1263 
1264 	ret = -EINVAL;
1265 	while ((next = fetch_item(start, end, &item)) != NULL) {
1266 		start = next;
1267 
1268 		if (item.format != HID_ITEM_FORMAT_SHORT) {
1269 			hid_err(device, "unexpected long global item\n");
1270 			goto err;
1271 		}
1272 
1273 		if (dispatch_type[item.type](parser, &item)) {
1274 			hid_err(device, "item %u %u %u %u parsing failed\n",
1275 				item.format, (unsigned)item.size,
1276 				(unsigned)item.type, (unsigned)item.tag);
1277 			goto err;
1278 		}
1279 
1280 		if (start == end) {
1281 			if (parser->collection_stack_ptr) {
1282 				hid_err(device, "unbalanced collection at end of report description\n");
1283 				goto err;
1284 			}
1285 			if (parser->local.delimiter_depth) {
1286 				hid_err(device, "unbalanced delimiter at end of report description\n");
1287 				goto err;
1288 			}
1289 
1290 			/*
1291 			 * fetch initial values in case the device's
1292 			 * default multiplier isn't the recommended 1
1293 			 */
1294 			hid_setup_resolution_multiplier(device);
1295 
1296 			kfree(parser->collection_stack);
1297 			vfree(parser);
1298 			device->status |= HID_STAT_PARSED;
1299 
1300 			return 0;
1301 		}
1302 	}
1303 
1304 	hid_err(device, "item fetching failed at offset %u/%u\n",
1305 		size - (unsigned int)(end - start), size);
1306 err:
1307 	kfree(parser->collection_stack);
1308 alloc_err:
1309 	vfree(parser);
1310 	hid_close_report(device);
1311 	return ret;
1312 }
1313 EXPORT_SYMBOL_GPL(hid_open_report);
1314 
1315 /*
1316  * Convert a signed n-bit integer to signed 32-bit integer. Common
1317  * cases are done through the compiler, the screwed things has to be
1318  * done by hand.
1319  */
1320 
snto32(__u32 value,unsigned n)1321 static s32 snto32(__u32 value, unsigned n)
1322 {
1323 	if (!value || !n)
1324 		return 0;
1325 
1326 	if (n > 32)
1327 		n = 32;
1328 
1329 	switch (n) {
1330 	case 8:  return ((__s8)value);
1331 	case 16: return ((__s16)value);
1332 	case 32: return ((__s32)value);
1333 	}
1334 	return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1335 }
1336 
hid_snto32(__u32 value,unsigned n)1337 s32 hid_snto32(__u32 value, unsigned n)
1338 {
1339 	return snto32(value, n);
1340 }
1341 EXPORT_SYMBOL_GPL(hid_snto32);
1342 
1343 /*
1344  * Convert a signed 32-bit integer to a signed n-bit integer.
1345  */
1346 
s32ton(__s32 value,unsigned n)1347 static u32 s32ton(__s32 value, unsigned n)
1348 {
1349 	s32 a = value >> (n - 1);
1350 	if (a && a != -1)
1351 		return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1352 	return value & ((1 << n) - 1);
1353 }
1354 
1355 /*
1356  * Extract/implement a data field from/to a little endian report (bit array).
1357  *
1358  * Code sort-of follows HID spec:
1359  *     http://www.usb.org/developers/hidpage/HID1_11.pdf
1360  *
1361  * While the USB HID spec allows unlimited length bit fields in "report
1362  * descriptors", most devices never use more than 16 bits.
1363  * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1364  * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1365  */
1366 
__extract(u8 * report,unsigned offset,int n)1367 static u32 __extract(u8 *report, unsigned offset, int n)
1368 {
1369 	unsigned int idx = offset / 8;
1370 	unsigned int bit_nr = 0;
1371 	unsigned int bit_shift = offset % 8;
1372 	int bits_to_copy = 8 - bit_shift;
1373 	u32 value = 0;
1374 	u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1375 
1376 	while (n > 0) {
1377 		value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1378 		n -= bits_to_copy;
1379 		bit_nr += bits_to_copy;
1380 		bits_to_copy = 8;
1381 		bit_shift = 0;
1382 		idx++;
1383 	}
1384 
1385 	return value & mask;
1386 }
1387 
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1388 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1389 			unsigned offset, unsigned n)
1390 {
1391 	if (n > 32) {
1392 		hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1393 			      __func__, n, current->comm);
1394 		n = 32;
1395 	}
1396 
1397 	return __extract(report, offset, n);
1398 }
1399 EXPORT_SYMBOL_GPL(hid_field_extract);
1400 
1401 /*
1402  * "implement" : set bits in a little endian bit stream.
1403  * Same concepts as "extract" (see comments above).
1404  * The data mangled in the bit stream remains in little endian
1405  * order the whole time. It make more sense to talk about
1406  * endianness of register values by considering a register
1407  * a "cached" copy of the little endian bit stream.
1408  */
1409 
__implement(u8 * report,unsigned offset,int n,u32 value)1410 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1411 {
1412 	unsigned int idx = offset / 8;
1413 	unsigned int bit_shift = offset % 8;
1414 	int bits_to_set = 8 - bit_shift;
1415 
1416 	while (n - bits_to_set >= 0) {
1417 		report[idx] &= ~(0xff << bit_shift);
1418 		report[idx] |= value << bit_shift;
1419 		value >>= bits_to_set;
1420 		n -= bits_to_set;
1421 		bits_to_set = 8;
1422 		bit_shift = 0;
1423 		idx++;
1424 	}
1425 
1426 	/* last nibble */
1427 	if (n) {
1428 		u8 bit_mask = ((1U << n) - 1);
1429 		report[idx] &= ~(bit_mask << bit_shift);
1430 		report[idx] |= value << bit_shift;
1431 	}
1432 }
1433 
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1434 static void implement(const struct hid_device *hid, u8 *report,
1435 		      unsigned offset, unsigned n, u32 value)
1436 {
1437 	if (unlikely(n > 32)) {
1438 		hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1439 			 __func__, n, current->comm);
1440 		n = 32;
1441 	} else if (n < 32) {
1442 		u32 m = (1U << n) - 1;
1443 
1444 		if (unlikely(value > m)) {
1445 			hid_warn(hid,
1446 				 "%s() called with too large value %d (n: %d)! (%s)\n",
1447 				 __func__, value, n, current->comm);
1448 			WARN_ON(1);
1449 			value &= m;
1450 		}
1451 	}
1452 
1453 	__implement(report, offset, n, value);
1454 }
1455 
1456 /*
1457  * Search an array for a value.
1458  */
1459 
search(__s32 * array,__s32 value,unsigned n)1460 static int search(__s32 *array, __s32 value, unsigned n)
1461 {
1462 	while (n--) {
1463 		if (*array++ == value)
1464 			return 0;
1465 	}
1466 	return -1;
1467 }
1468 
1469 /**
1470  * hid_match_report - check if driver's raw_event should be called
1471  *
1472  * @hid: hid device
1473  * @report: hid report to match against
1474  *
1475  * compare hid->driver->report_table->report_type to report->type
1476  */
hid_match_report(struct hid_device * hid,struct hid_report * report)1477 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1478 {
1479 	const struct hid_report_id *id = hid->driver->report_table;
1480 
1481 	if (!id) /* NULL means all */
1482 		return 1;
1483 
1484 	for (; id->report_type != HID_TERMINATOR; id++)
1485 		if (id->report_type == HID_ANY_ID ||
1486 				id->report_type == report->type)
1487 			return 1;
1488 	return 0;
1489 }
1490 
1491 /**
1492  * hid_match_usage - check if driver's event should be called
1493  *
1494  * @hid: hid device
1495  * @usage: usage to match against
1496  *
1497  * compare hid->driver->usage_table->usage_{type,code} to
1498  * usage->usage_{type,code}
1499  */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1500 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1501 {
1502 	const struct hid_usage_id *id = hid->driver->usage_table;
1503 
1504 	if (!id) /* NULL means all */
1505 		return 1;
1506 
1507 	for (; id->usage_type != HID_ANY_ID - 1; id++)
1508 		if ((id->usage_hid == HID_ANY_ID ||
1509 				id->usage_hid == usage->hid) &&
1510 				(id->usage_type == HID_ANY_ID ||
1511 				id->usage_type == usage->type) &&
1512 				(id->usage_code == HID_ANY_ID ||
1513 				 id->usage_code == usage->code))
1514 			return 1;
1515 	return 0;
1516 }
1517 
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1518 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1519 		struct hid_usage *usage, __s32 value, int interrupt)
1520 {
1521 	struct hid_driver *hdrv = hid->driver;
1522 	int ret;
1523 
1524 	if (!list_empty(&hid->debug_list))
1525 		hid_dump_input(hid, usage, value);
1526 
1527 	if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1528 		ret = hdrv->event(hid, field, usage, value);
1529 		if (ret != 0) {
1530 			if (ret < 0)
1531 				hid_err(hid, "%s's event failed with %d\n",
1532 						hdrv->name, ret);
1533 			return;
1534 		}
1535 	}
1536 
1537 	if (hid->claimed & HID_CLAIMED_INPUT)
1538 		hidinput_hid_event(hid, field, usage, value);
1539 	if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1540 		hid->hiddev_hid_event(hid, field, usage, value);
1541 }
1542 
1543 /*
1544  * Checks if the given value is valid within this field
1545  */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1546 static inline int hid_array_value_is_valid(struct hid_field *field,
1547 					   __s32 value)
1548 {
1549 	__s32 min = field->logical_minimum;
1550 
1551 	/*
1552 	 * Value needs to be between logical min and max, and
1553 	 * (value - min) is used as an index in the usage array.
1554 	 * This array is of size field->maxusage
1555 	 */
1556 	return value >= min &&
1557 	       value <= field->logical_maximum &&
1558 	       value - min < field->maxusage;
1559 }
1560 
1561 /*
1562  * Fetch the field from the data. The field content is stored for next
1563  * report processing (we do differential reporting to the layer).
1564  */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1565 static void hid_input_fetch_field(struct hid_device *hid,
1566 				  struct hid_field *field,
1567 				  __u8 *data)
1568 {
1569 	unsigned n;
1570 	unsigned count = field->report_count;
1571 	unsigned offset = field->report_offset;
1572 	unsigned size = field->report_size;
1573 	__s32 min = field->logical_minimum;
1574 	__s32 *value;
1575 
1576 	value = field->new_value;
1577 	memset(value, 0, count * sizeof(__s32));
1578 	field->ignored = false;
1579 
1580 	for (n = 0; n < count; n++) {
1581 
1582 		value[n] = min < 0 ?
1583 			snto32(hid_field_extract(hid, data, offset + n * size,
1584 			       size), size) :
1585 			hid_field_extract(hid, data, offset + n * size, size);
1586 
1587 		/* Ignore report if ErrorRollOver */
1588 		if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1589 		    hid_array_value_is_valid(field, value[n]) &&
1590 		    field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1591 			field->ignored = true;
1592 			return;
1593 		}
1594 	}
1595 }
1596 
1597 /*
1598  * Process a received variable field.
1599  */
1600 
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1601 static void hid_input_var_field(struct hid_device *hid,
1602 				struct hid_field *field,
1603 				int interrupt)
1604 {
1605 	unsigned int count = field->report_count;
1606 	__s32 *value = field->new_value;
1607 	unsigned int n;
1608 
1609 	for (n = 0; n < count; n++)
1610 		hid_process_event(hid,
1611 				  field,
1612 				  &field->usage[n],
1613 				  value[n],
1614 				  interrupt);
1615 
1616 	memcpy(field->value, value, count * sizeof(__s32));
1617 }
1618 
1619 /*
1620  * Process a received array field. The field content is stored for
1621  * next report processing (we do differential reporting to the layer).
1622  */
1623 
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1624 static void hid_input_array_field(struct hid_device *hid,
1625 				  struct hid_field *field,
1626 				  int interrupt)
1627 {
1628 	unsigned int n;
1629 	unsigned int count = field->report_count;
1630 	__s32 min = field->logical_minimum;
1631 	__s32 *value;
1632 
1633 	value = field->new_value;
1634 
1635 	/* ErrorRollOver */
1636 	if (field->ignored)
1637 		return;
1638 
1639 	for (n = 0; n < count; n++) {
1640 		if (hid_array_value_is_valid(field, field->value[n]) &&
1641 		    search(value, field->value[n], count))
1642 			hid_process_event(hid,
1643 					  field,
1644 					  &field->usage[field->value[n] - min],
1645 					  0,
1646 					  interrupt);
1647 
1648 		if (hid_array_value_is_valid(field, value[n]) &&
1649 		    search(field->value, value[n], count))
1650 			hid_process_event(hid,
1651 					  field,
1652 					  &field->usage[value[n] - min],
1653 					  1,
1654 					  interrupt);
1655 	}
1656 
1657 	memcpy(field->value, value, count * sizeof(__s32));
1658 }
1659 
1660 /*
1661  * Analyse a received report, and fetch the data from it. The field
1662  * content is stored for next report processing (we do differential
1663  * reporting to the layer).
1664  */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1665 static void hid_process_report(struct hid_device *hid,
1666 			       struct hid_report *report,
1667 			       __u8 *data,
1668 			       int interrupt)
1669 {
1670 	unsigned int a;
1671 	struct hid_field_entry *entry;
1672 	struct hid_field *field;
1673 
1674 	/* first retrieve all incoming values in data */
1675 	for (a = 0; a < report->maxfield; a++)
1676 		hid_input_fetch_field(hid, report->field[a], data);
1677 
1678 	if (!list_empty(&report->field_entry_list)) {
1679 		/* INPUT_REPORT, we have a priority list of fields */
1680 		list_for_each_entry(entry,
1681 				    &report->field_entry_list,
1682 				    list) {
1683 			field = entry->field;
1684 
1685 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1686 				hid_process_event(hid,
1687 						  field,
1688 						  &field->usage[entry->index],
1689 						  field->new_value[entry->index],
1690 						  interrupt);
1691 			else
1692 				hid_input_array_field(hid, field, interrupt);
1693 		}
1694 
1695 		/* we need to do the memcpy at the end for var items */
1696 		for (a = 0; a < report->maxfield; a++) {
1697 			field = report->field[a];
1698 
1699 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1700 				memcpy(field->value, field->new_value,
1701 				       field->report_count * sizeof(__s32));
1702 		}
1703 	} else {
1704 		/* FEATURE_REPORT, regular processing */
1705 		for (a = 0; a < report->maxfield; a++) {
1706 			field = report->field[a];
1707 
1708 			if (field->flags & HID_MAIN_ITEM_VARIABLE)
1709 				hid_input_var_field(hid, field, interrupt);
1710 			else
1711 				hid_input_array_field(hid, field, interrupt);
1712 		}
1713 	}
1714 }
1715 
1716 /*
1717  * Insert a given usage_index in a field in the list
1718  * of processed usages in the report.
1719  *
1720  * The elements of lower priority score are processed
1721  * first.
1722  */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1723 static void __hid_insert_field_entry(struct hid_device *hid,
1724 				     struct hid_report *report,
1725 				     struct hid_field_entry *entry,
1726 				     struct hid_field *field,
1727 				     unsigned int usage_index)
1728 {
1729 	struct hid_field_entry *next;
1730 
1731 	entry->field = field;
1732 	entry->index = usage_index;
1733 	entry->priority = field->usages_priorities[usage_index];
1734 
1735 	/* insert the element at the correct position */
1736 	list_for_each_entry(next,
1737 			    &report->field_entry_list,
1738 			    list) {
1739 		/*
1740 		 * the priority of our element is strictly higher
1741 		 * than the next one, insert it before
1742 		 */
1743 		if (entry->priority > next->priority) {
1744 			list_add_tail(&entry->list, &next->list);
1745 			return;
1746 		}
1747 	}
1748 
1749 	/* lowest priority score: insert at the end */
1750 	list_add_tail(&entry->list, &report->field_entry_list);
1751 }
1752 
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1753 static void hid_report_process_ordering(struct hid_device *hid,
1754 					struct hid_report *report)
1755 {
1756 	struct hid_field *field;
1757 	struct hid_field_entry *entries;
1758 	unsigned int a, u, usages;
1759 	unsigned int count = 0;
1760 
1761 	/* count the number of individual fields in the report */
1762 	for (a = 0; a < report->maxfield; a++) {
1763 		field = report->field[a];
1764 
1765 		if (field->flags & HID_MAIN_ITEM_VARIABLE)
1766 			count += field->report_count;
1767 		else
1768 			count++;
1769 	}
1770 
1771 	/* allocate the memory to process the fields */
1772 	entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1773 	if (!entries)
1774 		return;
1775 
1776 	report->field_entries = entries;
1777 
1778 	/*
1779 	 * walk through all fields in the report and
1780 	 * store them by priority order in report->field_entry_list
1781 	 *
1782 	 * - Var elements are individualized (field + usage_index)
1783 	 * - Arrays are taken as one, we can not chose an order for them
1784 	 */
1785 	usages = 0;
1786 	for (a = 0; a < report->maxfield; a++) {
1787 		field = report->field[a];
1788 
1789 		if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1790 			for (u = 0; u < field->report_count; u++) {
1791 				__hid_insert_field_entry(hid, report,
1792 							 &entries[usages],
1793 							 field, u);
1794 				usages++;
1795 			}
1796 		} else {
1797 			__hid_insert_field_entry(hid, report, &entries[usages],
1798 						 field, 0);
1799 			usages++;
1800 		}
1801 	}
1802 }
1803 
hid_process_ordering(struct hid_device * hid)1804 static void hid_process_ordering(struct hid_device *hid)
1805 {
1806 	struct hid_report *report;
1807 	struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1808 
1809 	list_for_each_entry(report, &report_enum->report_list, list)
1810 		hid_report_process_ordering(hid, report);
1811 }
1812 
1813 /*
1814  * Output the field into the report.
1815  */
1816 
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1817 static void hid_output_field(const struct hid_device *hid,
1818 			     struct hid_field *field, __u8 *data)
1819 {
1820 	unsigned count = field->report_count;
1821 	unsigned offset = field->report_offset;
1822 	unsigned size = field->report_size;
1823 	unsigned n;
1824 
1825 	for (n = 0; n < count; n++) {
1826 		if (field->logical_minimum < 0)	/* signed values */
1827 			implement(hid, data, offset + n * size, size,
1828 				  s32ton(field->value[n], size));
1829 		else				/* unsigned values */
1830 			implement(hid, data, offset + n * size, size,
1831 				  field->value[n]);
1832 	}
1833 }
1834 
1835 /*
1836  * Compute the size of a report.
1837  */
hid_compute_report_size(struct hid_report * report)1838 static size_t hid_compute_report_size(struct hid_report *report)
1839 {
1840 	if (report->size)
1841 		return ((report->size - 1) >> 3) + 1;
1842 
1843 	return 0;
1844 }
1845 
1846 /*
1847  * Create a report. 'data' has to be allocated using
1848  * hid_alloc_report_buf() so that it has proper size.
1849  */
1850 
hid_output_report(struct hid_report * report,__u8 * data)1851 void hid_output_report(struct hid_report *report, __u8 *data)
1852 {
1853 	unsigned n;
1854 
1855 	if (report->id > 0)
1856 		*data++ = report->id;
1857 
1858 	memset(data, 0, hid_compute_report_size(report));
1859 	for (n = 0; n < report->maxfield; n++)
1860 		hid_output_field(report->device, report->field[n], data);
1861 }
1862 EXPORT_SYMBOL_GPL(hid_output_report);
1863 
1864 /*
1865  * Allocator for buffer that is going to be passed to hid_output_report()
1866  */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1867 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1868 {
1869 	/*
1870 	 * 7 extra bytes are necessary to achieve proper functionality
1871 	 * of implement() working on 8 byte chunks
1872 	 */
1873 
1874 	u32 len = hid_report_len(report) + 7;
1875 
1876 	return kmalloc(len, flags);
1877 }
1878 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1879 
1880 /*
1881  * Set a field value. The report this field belongs to has to be
1882  * created and transferred to the device, to set this value in the
1883  * device.
1884  */
1885 
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1886 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1887 {
1888 	unsigned size;
1889 
1890 	if (!field)
1891 		return -1;
1892 
1893 	size = field->report_size;
1894 
1895 	hid_dump_input(field->report->device, field->usage + offset, value);
1896 
1897 	if (offset >= field->report_count) {
1898 		hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1899 				offset, field->report_count);
1900 		return -1;
1901 	}
1902 	if (field->logical_minimum < 0) {
1903 		if (value != snto32(s32ton(value, size), size)) {
1904 			hid_err(field->report->device, "value %d is out of range\n", value);
1905 			return -1;
1906 		}
1907 	}
1908 	field->value[offset] = value;
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL_GPL(hid_set_field);
1912 
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1913 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1914 		const u8 *data)
1915 {
1916 	struct hid_report *report;
1917 	unsigned int n = 0;	/* Normally report number is 0 */
1918 
1919 	/* Device uses numbered reports, data[0] is report number */
1920 	if (report_enum->numbered)
1921 		n = *data;
1922 
1923 	report = report_enum->report_id_hash[n];
1924 	if (report == NULL)
1925 		dbg_hid("undefined report_id %u received\n", n);
1926 
1927 	return report;
1928 }
1929 
1930 /*
1931  * Implement a generic .request() callback, using .raw_request()
1932  * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1933  */
__hid_request(struct hid_device * hid,struct hid_report * report,enum hid_class_request reqtype)1934 int __hid_request(struct hid_device *hid, struct hid_report *report,
1935 		enum hid_class_request reqtype)
1936 {
1937 	char *buf;
1938 	int ret;
1939 	u32 len;
1940 
1941 	buf = hid_alloc_report_buf(report, GFP_KERNEL);
1942 	if (!buf)
1943 		return -ENOMEM;
1944 
1945 	len = hid_report_len(report);
1946 
1947 	if (reqtype == HID_REQ_SET_REPORT)
1948 		hid_output_report(report, buf);
1949 
1950 	ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1951 					  report->type, reqtype);
1952 	if (ret < 0) {
1953 		dbg_hid("unable to complete request: %d\n", ret);
1954 		goto out;
1955 	}
1956 
1957 	if (reqtype == HID_REQ_GET_REPORT)
1958 		hid_input_report(hid, report->type, buf, ret, 0);
1959 
1960 	ret = 0;
1961 
1962 out:
1963 	kfree(buf);
1964 	return ret;
1965 }
1966 EXPORT_SYMBOL_GPL(__hid_request);
1967 
hid_report_raw_event(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)1968 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1969 			 int interrupt)
1970 {
1971 	struct hid_report_enum *report_enum = hid->report_enum + type;
1972 	struct hid_report *report;
1973 	struct hid_driver *hdrv;
1974 	int max_buffer_size = HID_MAX_BUFFER_SIZE;
1975 	u32 rsize, csize = size;
1976 	u8 *cdata = data;
1977 	int ret = 0;
1978 
1979 	report = hid_get_report(report_enum, data);
1980 	if (!report)
1981 		goto out;
1982 
1983 	if (report_enum->numbered) {
1984 		cdata++;
1985 		csize--;
1986 	}
1987 
1988 	rsize = hid_compute_report_size(report);
1989 
1990 	if (IS_ENABLED(CONFIG_UHID) && hid->ll_driver == &uhid_hid_driver)
1991 		max_buffer_size = UHID_DATA_MAX;
1992 
1993 	if (report_enum->numbered && rsize >= max_buffer_size)
1994 		rsize = max_buffer_size - 1;
1995 	else if (rsize > max_buffer_size)
1996 		rsize = max_buffer_size;
1997 
1998 	if (csize < rsize) {
1999 		dbg_hid("report %d is too short, (%d < %d)\n", report->id,
2000 				csize, rsize);
2001 		memset(cdata + csize, 0, rsize - csize);
2002 	}
2003 
2004 	if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2005 		hid->hiddev_report_event(hid, report);
2006 	if (hid->claimed & HID_CLAIMED_HIDRAW) {
2007 		ret = hidraw_report_event(hid, data, size);
2008 		if (ret)
2009 			goto out;
2010 	}
2011 
2012 	if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2013 		hid_process_report(hid, report, cdata, interrupt);
2014 		hdrv = hid->driver;
2015 		if (hdrv && hdrv->report)
2016 			hdrv->report(hid, report);
2017 	}
2018 
2019 	if (hid->claimed & HID_CLAIMED_INPUT)
2020 		hidinput_report_event(hid, report);
2021 out:
2022 	return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2025 
2026 /**
2027  * hid_input_report - report data from lower layer (usb, bt...)
2028  *
2029  * @hid: hid device
2030  * @type: HID report type (HID_*_REPORT)
2031  * @data: report contents
2032  * @size: size of data parameter
2033  * @interrupt: distinguish between interrupt and control transfers
2034  *
2035  * This is data entry for lower layers.
2036  */
hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2037 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2038 		     int interrupt)
2039 {
2040 	struct hid_report_enum *report_enum;
2041 	struct hid_driver *hdrv;
2042 	struct hid_report *report;
2043 	int ret = 0;
2044 
2045 	if (!hid)
2046 		return -ENODEV;
2047 
2048 	if (down_trylock(&hid->driver_input_lock))
2049 		return -EBUSY;
2050 
2051 	if (!hid->driver) {
2052 		ret = -ENODEV;
2053 		goto unlock;
2054 	}
2055 	report_enum = hid->report_enum + type;
2056 	hdrv = hid->driver;
2057 
2058 	if (!size) {
2059 		dbg_hid("empty report\n");
2060 		ret = -1;
2061 		goto unlock;
2062 	}
2063 
2064 	/* Avoid unnecessary overhead if debugfs is disabled */
2065 	if (!list_empty(&hid->debug_list))
2066 		hid_dump_report(hid, type, data, size);
2067 
2068 	report = hid_get_report(report_enum, data);
2069 
2070 	if (!report) {
2071 		ret = -1;
2072 		goto unlock;
2073 	}
2074 
2075 	if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2076 		ret = hdrv->raw_event(hid, report, data, size);
2077 		if (ret < 0)
2078 			goto unlock;
2079 	}
2080 
2081 	ret = hid_report_raw_event(hid, type, data, size, interrupt);
2082 
2083 unlock:
2084 	up(&hid->driver_input_lock);
2085 	return ret;
2086 }
2087 EXPORT_SYMBOL_GPL(hid_input_report);
2088 
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2089 bool hid_match_one_id(const struct hid_device *hdev,
2090 		      const struct hid_device_id *id)
2091 {
2092 	return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2093 		(id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2094 		(id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2095 		(id->product == HID_ANY_ID || id->product == hdev->product);
2096 }
2097 
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2098 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2099 		const struct hid_device_id *id)
2100 {
2101 	for (; id->bus; id++)
2102 		if (hid_match_one_id(hdev, id))
2103 			return id;
2104 
2105 	return NULL;
2106 }
2107 EXPORT_SYMBOL_GPL(hid_match_id);
2108 
2109 static const struct hid_device_id hid_hiddev_list[] = {
2110 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2111 	{ HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2112 	{ }
2113 };
2114 
hid_hiddev(struct hid_device * hdev)2115 static bool hid_hiddev(struct hid_device *hdev)
2116 {
2117 	return !!hid_match_id(hdev, hid_hiddev_list);
2118 }
2119 
2120 
2121 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)2122 read_report_descriptor(struct file *filp, struct kobject *kobj,
2123 		struct bin_attribute *attr,
2124 		char *buf, loff_t off, size_t count)
2125 {
2126 	struct device *dev = kobj_to_dev(kobj);
2127 	struct hid_device *hdev = to_hid_device(dev);
2128 
2129 	if (off >= hdev->rsize)
2130 		return 0;
2131 
2132 	if (off + count > hdev->rsize)
2133 		count = hdev->rsize - off;
2134 
2135 	memcpy(buf, hdev->rdesc + off, count);
2136 
2137 	return count;
2138 }
2139 
2140 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)2141 show_country(struct device *dev, struct device_attribute *attr,
2142 		char *buf)
2143 {
2144 	struct hid_device *hdev = to_hid_device(dev);
2145 
2146 	return sprintf(buf, "%02x\n", hdev->country & 0xff);
2147 }
2148 
2149 static struct bin_attribute dev_bin_attr_report_desc = {
2150 	.attr = { .name = "report_descriptor", .mode = 0444 },
2151 	.read = read_report_descriptor,
2152 	.size = HID_MAX_DESCRIPTOR_SIZE,
2153 };
2154 
2155 static const struct device_attribute dev_attr_country = {
2156 	.attr = { .name = "country", .mode = 0444 },
2157 	.show = show_country,
2158 };
2159 
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2160 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2161 {
2162 	static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2163 		"Joystick", "Gamepad", "Keyboard", "Keypad",
2164 		"Multi-Axis Controller"
2165 	};
2166 	const char *type, *bus;
2167 	char buf[64] = "";
2168 	unsigned int i;
2169 	int len;
2170 	int ret;
2171 
2172 	if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2173 		connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2174 	if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2175 		connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2176 	if (hdev->bus != BUS_USB)
2177 		connect_mask &= ~HID_CONNECT_HIDDEV;
2178 	if (hid_hiddev(hdev))
2179 		connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2180 
2181 	if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2182 				connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2183 		hdev->claimed |= HID_CLAIMED_INPUT;
2184 
2185 	if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2186 			!hdev->hiddev_connect(hdev,
2187 				connect_mask & HID_CONNECT_HIDDEV_FORCE))
2188 		hdev->claimed |= HID_CLAIMED_HIDDEV;
2189 	if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2190 		hdev->claimed |= HID_CLAIMED_HIDRAW;
2191 
2192 	if (connect_mask & HID_CONNECT_DRIVER)
2193 		hdev->claimed |= HID_CLAIMED_DRIVER;
2194 
2195 	/* Drivers with the ->raw_event callback set are not required to connect
2196 	 * to any other listener. */
2197 	if (!hdev->claimed && !hdev->driver->raw_event) {
2198 		hid_err(hdev, "device has no listeners, quitting\n");
2199 		return -ENODEV;
2200 	}
2201 
2202 	hid_process_ordering(hdev);
2203 
2204 	if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2205 			(connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2206 		hdev->ff_init(hdev);
2207 
2208 	len = 0;
2209 	if (hdev->claimed & HID_CLAIMED_INPUT)
2210 		len += sprintf(buf + len, "input");
2211 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2212 		len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2213 				((struct hiddev *)hdev->hiddev)->minor);
2214 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2215 		len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2216 				((struct hidraw *)hdev->hidraw)->minor);
2217 
2218 	type = "Device";
2219 	for (i = 0; i < hdev->maxcollection; i++) {
2220 		struct hid_collection *col = &hdev->collection[i];
2221 		if (col->type == HID_COLLECTION_APPLICATION &&
2222 		   (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2223 		   (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2224 			type = types[col->usage & 0xffff];
2225 			break;
2226 		}
2227 	}
2228 
2229 	switch (hdev->bus) {
2230 	case BUS_USB:
2231 		bus = "USB";
2232 		break;
2233 	case BUS_BLUETOOTH:
2234 		bus = "BLUETOOTH";
2235 		break;
2236 	case BUS_I2C:
2237 		bus = "I2C";
2238 		break;
2239 	case BUS_VIRTUAL:
2240 		bus = "VIRTUAL";
2241 		break;
2242 	case BUS_INTEL_ISHTP:
2243 	case BUS_AMD_SFH:
2244 		bus = "SENSOR HUB";
2245 		break;
2246 	default:
2247 		bus = "<UNKNOWN>";
2248 	}
2249 
2250 	ret = device_create_file(&hdev->dev, &dev_attr_country);
2251 	if (ret)
2252 		hid_warn(hdev,
2253 			 "can't create sysfs country code attribute err: %d\n", ret);
2254 
2255 	hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2256 		 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2257 		 type, hdev->name, hdev->phys);
2258 
2259 	return 0;
2260 }
2261 EXPORT_SYMBOL_GPL(hid_connect);
2262 
hid_disconnect(struct hid_device * hdev)2263 void hid_disconnect(struct hid_device *hdev)
2264 {
2265 	device_remove_file(&hdev->dev, &dev_attr_country);
2266 	if (hdev->claimed & HID_CLAIMED_INPUT)
2267 		hidinput_disconnect(hdev);
2268 	if (hdev->claimed & HID_CLAIMED_HIDDEV)
2269 		hdev->hiddev_disconnect(hdev);
2270 	if (hdev->claimed & HID_CLAIMED_HIDRAW)
2271 		hidraw_disconnect(hdev);
2272 	hdev->claimed = 0;
2273 }
2274 EXPORT_SYMBOL_GPL(hid_disconnect);
2275 
2276 /**
2277  * hid_hw_start - start underlying HW
2278  * @hdev: hid device
2279  * @connect_mask: which outputs to connect, see HID_CONNECT_*
2280  *
2281  * Call this in probe function *after* hid_parse. This will setup HW
2282  * buffers and start the device (if not defeirred to device open).
2283  * hid_hw_stop must be called if this was successful.
2284  */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2285 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2286 {
2287 	int error;
2288 
2289 	error = hdev->ll_driver->start(hdev);
2290 	if (error)
2291 		return error;
2292 
2293 	if (connect_mask) {
2294 		error = hid_connect(hdev, connect_mask);
2295 		if (error) {
2296 			hdev->ll_driver->stop(hdev);
2297 			return error;
2298 		}
2299 	}
2300 
2301 	return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(hid_hw_start);
2304 
2305 /**
2306  * hid_hw_stop - stop underlying HW
2307  * @hdev: hid device
2308  *
2309  * This is usually called from remove function or from probe when something
2310  * failed and hid_hw_start was called already.
2311  */
hid_hw_stop(struct hid_device * hdev)2312 void hid_hw_stop(struct hid_device *hdev)
2313 {
2314 	hid_disconnect(hdev);
2315 	hdev->ll_driver->stop(hdev);
2316 }
2317 EXPORT_SYMBOL_GPL(hid_hw_stop);
2318 
2319 /**
2320  * hid_hw_open - signal underlying HW to start delivering events
2321  * @hdev: hid device
2322  *
2323  * Tell underlying HW to start delivering events from the device.
2324  * This function should be called sometime after successful call
2325  * to hid_hw_start().
2326  */
hid_hw_open(struct hid_device * hdev)2327 int hid_hw_open(struct hid_device *hdev)
2328 {
2329 	int ret;
2330 
2331 	ret = mutex_lock_killable(&hdev->ll_open_lock);
2332 	if (ret)
2333 		return ret;
2334 
2335 	if (!hdev->ll_open_count++) {
2336 		ret = hdev->ll_driver->open(hdev);
2337 		if (ret)
2338 			hdev->ll_open_count--;
2339 	}
2340 
2341 	mutex_unlock(&hdev->ll_open_lock);
2342 	return ret;
2343 }
2344 EXPORT_SYMBOL_GPL(hid_hw_open);
2345 
2346 /**
2347  * hid_hw_close - signal underlaying HW to stop delivering events
2348  *
2349  * @hdev: hid device
2350  *
2351  * This function indicates that we are not interested in the events
2352  * from this device anymore. Delivery of events may or may not stop,
2353  * depending on the number of users still outstanding.
2354  */
hid_hw_close(struct hid_device * hdev)2355 void hid_hw_close(struct hid_device *hdev)
2356 {
2357 	mutex_lock(&hdev->ll_open_lock);
2358 	if (!--hdev->ll_open_count)
2359 		hdev->ll_driver->close(hdev);
2360 	mutex_unlock(&hdev->ll_open_lock);
2361 }
2362 EXPORT_SYMBOL_GPL(hid_hw_close);
2363 
2364 /**
2365  * hid_hw_request - send report request to device
2366  *
2367  * @hdev: hid device
2368  * @report: report to send
2369  * @reqtype: hid request type
2370  */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,enum hid_class_request reqtype)2371 void hid_hw_request(struct hid_device *hdev,
2372 		    struct hid_report *report, enum hid_class_request reqtype)
2373 {
2374 	if (hdev->ll_driver->request)
2375 		return hdev->ll_driver->request(hdev, report, reqtype);
2376 
2377 	__hid_request(hdev, report, reqtype);
2378 }
2379 EXPORT_SYMBOL_GPL(hid_hw_request);
2380 
2381 /**
2382  * hid_hw_raw_request - send report request to device
2383  *
2384  * @hdev: hid device
2385  * @reportnum: report ID
2386  * @buf: in/out data to transfer
2387  * @len: length of buf
2388  * @rtype: HID report type
2389  * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2390  *
2391  * Return: count of data transferred, negative if error
2392  *
2393  * Same behavior as hid_hw_request, but with raw buffers instead.
2394  */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype)2395 int hid_hw_raw_request(struct hid_device *hdev,
2396 		       unsigned char reportnum, __u8 *buf,
2397 		       size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2398 {
2399 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2400 
2401 	if (IS_ENABLED(CONFIG_UHID) && hdev->ll_driver == &uhid_hid_driver)
2402 		max_buffer_size = UHID_DATA_MAX;
2403 
2404 	if (len < 1 || len > max_buffer_size || !buf)
2405 		return -EINVAL;
2406 
2407 	return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2408 					    rtype, reqtype);
2409 }
2410 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2411 
2412 /**
2413  * hid_hw_output_report - send output report to device
2414  *
2415  * @hdev: hid device
2416  * @buf: raw data to transfer
2417  * @len: length of buf
2418  *
2419  * Return: count of data transferred, negative if error
2420  */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2421 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2422 {
2423 	unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2424 
2425 	if (IS_ENABLED(CONFIG_UHID) && hdev->ll_driver == &uhid_hid_driver)
2426 		max_buffer_size = UHID_DATA_MAX;
2427 
2428 	if (len < 1 || len > max_buffer_size || !buf)
2429 		return -EINVAL;
2430 
2431 	if (hdev->ll_driver->output_report)
2432 		return hdev->ll_driver->output_report(hdev, buf, len);
2433 
2434 	return -ENOSYS;
2435 }
2436 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2437 
2438 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2439 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2440 {
2441 	if (hdev->driver && hdev->driver->suspend)
2442 		return hdev->driver->suspend(hdev, state);
2443 
2444 	return 0;
2445 }
2446 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2447 
hid_driver_reset_resume(struct hid_device * hdev)2448 int hid_driver_reset_resume(struct hid_device *hdev)
2449 {
2450 	if (hdev->driver && hdev->driver->reset_resume)
2451 		return hdev->driver->reset_resume(hdev);
2452 
2453 	return 0;
2454 }
2455 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2456 
hid_driver_resume(struct hid_device * hdev)2457 int hid_driver_resume(struct hid_device *hdev)
2458 {
2459 	if (hdev->driver && hdev->driver->resume)
2460 		return hdev->driver->resume(hdev);
2461 
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL_GPL(hid_driver_resume);
2465 #endif /* CONFIG_PM */
2466 
2467 struct hid_dynid {
2468 	struct list_head list;
2469 	struct hid_device_id id;
2470 };
2471 
2472 /**
2473  * new_id_store - add a new HID device ID to this driver and re-probe devices
2474  * @drv: target device driver
2475  * @buf: buffer for scanning device ID data
2476  * @count: input size
2477  *
2478  * Adds a new dynamic hid device ID to this driver,
2479  * and causes the driver to probe for all devices again.
2480  */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2481 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2482 		size_t count)
2483 {
2484 	struct hid_driver *hdrv = to_hid_driver(drv);
2485 	struct hid_dynid *dynid;
2486 	__u32 bus, vendor, product;
2487 	unsigned long driver_data = 0;
2488 	int ret;
2489 
2490 	ret = sscanf(buf, "%x %x %x %lx",
2491 			&bus, &vendor, &product, &driver_data);
2492 	if (ret < 3)
2493 		return -EINVAL;
2494 
2495 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2496 	if (!dynid)
2497 		return -ENOMEM;
2498 
2499 	dynid->id.bus = bus;
2500 	dynid->id.group = HID_GROUP_ANY;
2501 	dynid->id.vendor = vendor;
2502 	dynid->id.product = product;
2503 	dynid->id.driver_data = driver_data;
2504 
2505 	spin_lock(&hdrv->dyn_lock);
2506 	list_add_tail(&dynid->list, &hdrv->dyn_list);
2507 	spin_unlock(&hdrv->dyn_lock);
2508 
2509 	ret = driver_attach(&hdrv->driver);
2510 
2511 	return ret ? : count;
2512 }
2513 static DRIVER_ATTR_WO(new_id);
2514 
2515 static struct attribute *hid_drv_attrs[] = {
2516 	&driver_attr_new_id.attr,
2517 	NULL,
2518 };
2519 ATTRIBUTE_GROUPS(hid_drv);
2520 
hid_free_dynids(struct hid_driver * hdrv)2521 static void hid_free_dynids(struct hid_driver *hdrv)
2522 {
2523 	struct hid_dynid *dynid, *n;
2524 
2525 	spin_lock(&hdrv->dyn_lock);
2526 	list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2527 		list_del(&dynid->list);
2528 		kfree(dynid);
2529 	}
2530 	spin_unlock(&hdrv->dyn_lock);
2531 }
2532 
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2533 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2534 					     struct hid_driver *hdrv)
2535 {
2536 	struct hid_dynid *dynid;
2537 
2538 	spin_lock(&hdrv->dyn_lock);
2539 	list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2540 		if (hid_match_one_id(hdev, &dynid->id)) {
2541 			spin_unlock(&hdrv->dyn_lock);
2542 			return &dynid->id;
2543 		}
2544 	}
2545 	spin_unlock(&hdrv->dyn_lock);
2546 
2547 	return hid_match_id(hdev, hdrv->id_table);
2548 }
2549 EXPORT_SYMBOL_GPL(hid_match_device);
2550 
hid_bus_match(struct device * dev,struct device_driver * drv)2551 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2552 {
2553 	struct hid_driver *hdrv = to_hid_driver(drv);
2554 	struct hid_device *hdev = to_hid_device(dev);
2555 
2556 	return hid_match_device(hdev, hdrv) != NULL;
2557 }
2558 
2559 /**
2560  * hid_compare_device_paths - check if both devices share the same path
2561  * @hdev_a: hid device
2562  * @hdev_b: hid device
2563  * @separator: char to use as separator
2564  *
2565  * Check if two devices share the same path up to the last occurrence of
2566  * the separator char. Both paths must exist (i.e., zero-length paths
2567  * don't match).
2568  */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2569 bool hid_compare_device_paths(struct hid_device *hdev_a,
2570 			      struct hid_device *hdev_b, char separator)
2571 {
2572 	int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2573 	int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2574 
2575 	if (n1 != n2 || n1 <= 0 || n2 <= 0)
2576 		return false;
2577 
2578 	return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2579 }
2580 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2581 
hid_device_probe(struct device * dev)2582 static int hid_device_probe(struct device *dev)
2583 {
2584 	struct hid_driver *hdrv = to_hid_driver(dev->driver);
2585 	struct hid_device *hdev = to_hid_device(dev);
2586 	const struct hid_device_id *id;
2587 	int ret = 0;
2588 
2589 	if (down_interruptible(&hdev->driver_input_lock)) {
2590 		ret = -EINTR;
2591 		goto end;
2592 	}
2593 	hdev->io_started = false;
2594 
2595 	clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2596 
2597 	if (!hdev->driver) {
2598 		id = hid_match_device(hdev, hdrv);
2599 		if (id == NULL) {
2600 			ret = -ENODEV;
2601 			goto unlock;
2602 		}
2603 
2604 		if (hdrv->match) {
2605 			if (!hdrv->match(hdev, hid_ignore_special_drivers)) {
2606 				ret = -ENODEV;
2607 				goto unlock;
2608 			}
2609 		} else {
2610 			/*
2611 			 * hid-generic implements .match(), so if
2612 			 * hid_ignore_special_drivers is set, we can safely
2613 			 * return.
2614 			 */
2615 			if (hid_ignore_special_drivers) {
2616 				ret = -ENODEV;
2617 				goto unlock;
2618 			}
2619 		}
2620 
2621 		/* reset the quirks that has been previously set */
2622 		hdev->quirks = hid_lookup_quirk(hdev);
2623 		hdev->driver = hdrv;
2624 		if (hdrv->probe) {
2625 			ret = hdrv->probe(hdev, id);
2626 		} else { /* default probe */
2627 			ret = hid_open_report(hdev);
2628 			if (!ret)
2629 				ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2630 		}
2631 		if (ret) {
2632 			hid_close_report(hdev);
2633 			hdev->driver = NULL;
2634 		}
2635 	}
2636 unlock:
2637 	if (!hdev->io_started)
2638 		up(&hdev->driver_input_lock);
2639 end:
2640 	return ret;
2641 }
2642 
hid_device_remove(struct device * dev)2643 static void hid_device_remove(struct device *dev)
2644 {
2645 	struct hid_device *hdev = to_hid_device(dev);
2646 	struct hid_driver *hdrv;
2647 
2648 	down(&hdev->driver_input_lock);
2649 	hdev->io_started = false;
2650 
2651 	hdrv = hdev->driver;
2652 	if (hdrv) {
2653 		if (hdrv->remove)
2654 			hdrv->remove(hdev);
2655 		else /* default remove */
2656 			hid_hw_stop(hdev);
2657 		hid_close_report(hdev);
2658 		hdev->driver = NULL;
2659 	}
2660 
2661 	if (!hdev->io_started)
2662 		up(&hdev->driver_input_lock);
2663 }
2664 
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2665 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2666 			     char *buf)
2667 {
2668 	struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2669 
2670 	return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2671 			 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2672 }
2673 static DEVICE_ATTR_RO(modalias);
2674 
2675 static struct attribute *hid_dev_attrs[] = {
2676 	&dev_attr_modalias.attr,
2677 	NULL,
2678 };
2679 static struct bin_attribute *hid_dev_bin_attrs[] = {
2680 	&dev_bin_attr_report_desc,
2681 	NULL
2682 };
2683 static const struct attribute_group hid_dev_group = {
2684 	.attrs = hid_dev_attrs,
2685 	.bin_attrs = hid_dev_bin_attrs,
2686 };
2687 __ATTRIBUTE_GROUPS(hid_dev);
2688 
hid_uevent(struct device * dev,struct kobj_uevent_env * env)2689 static int hid_uevent(struct device *dev, struct kobj_uevent_env *env)
2690 {
2691 	struct hid_device *hdev = to_hid_device(dev);
2692 
2693 	if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2694 			hdev->bus, hdev->vendor, hdev->product))
2695 		return -ENOMEM;
2696 
2697 	if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2698 		return -ENOMEM;
2699 
2700 	if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2701 		return -ENOMEM;
2702 
2703 	if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2704 		return -ENOMEM;
2705 
2706 	if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2707 			   hdev->bus, hdev->group, hdev->vendor, hdev->product))
2708 		return -ENOMEM;
2709 
2710 	return 0;
2711 }
2712 
2713 struct bus_type hid_bus_type = {
2714 	.name		= "hid",
2715 	.dev_groups	= hid_dev_groups,
2716 	.drv_groups	= hid_drv_groups,
2717 	.match		= hid_bus_match,
2718 	.probe		= hid_device_probe,
2719 	.remove		= hid_device_remove,
2720 	.uevent		= hid_uevent,
2721 };
2722 EXPORT_SYMBOL(hid_bus_type);
2723 
hid_add_device(struct hid_device * hdev)2724 int hid_add_device(struct hid_device *hdev)
2725 {
2726 	static atomic_t id = ATOMIC_INIT(0);
2727 	int ret;
2728 
2729 	if (WARN_ON(hdev->status & HID_STAT_ADDED))
2730 		return -EBUSY;
2731 
2732 	hdev->quirks = hid_lookup_quirk(hdev);
2733 
2734 	/* we need to kill them here, otherwise they will stay allocated to
2735 	 * wait for coming driver */
2736 	if (hid_ignore(hdev))
2737 		return -ENODEV;
2738 
2739 	/*
2740 	 * Check for the mandatory transport channel.
2741 	 */
2742 	 if (!hdev->ll_driver->raw_request) {
2743 		hid_err(hdev, "transport driver missing .raw_request()\n");
2744 		return -EINVAL;
2745 	 }
2746 
2747 	/*
2748 	 * Read the device report descriptor once and use as template
2749 	 * for the driver-specific modifications.
2750 	 */
2751 	ret = hdev->ll_driver->parse(hdev);
2752 	if (ret)
2753 		return ret;
2754 	if (!hdev->dev_rdesc)
2755 		return -ENODEV;
2756 
2757 	/*
2758 	 * Scan generic devices for group information
2759 	 */
2760 	if (hid_ignore_special_drivers) {
2761 		hdev->group = HID_GROUP_GENERIC;
2762 	} else if (!hdev->group &&
2763 		   !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2764 		ret = hid_scan_report(hdev);
2765 		if (ret)
2766 			hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2767 	}
2768 
2769 	hdev->id = atomic_inc_return(&id);
2770 
2771 	/* XXX hack, any other cleaner solution after the driver core
2772 	 * is converted to allow more than 20 bytes as the device name? */
2773 	dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2774 		     hdev->vendor, hdev->product, hdev->id);
2775 
2776 	hid_debug_register(hdev, dev_name(&hdev->dev));
2777 	ret = device_add(&hdev->dev);
2778 	if (!ret)
2779 		hdev->status |= HID_STAT_ADDED;
2780 	else
2781 		hid_debug_unregister(hdev);
2782 
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL_GPL(hid_add_device);
2786 
2787 /**
2788  * hid_allocate_device - allocate new hid device descriptor
2789  *
2790  * Allocate and initialize hid device, so that hid_destroy_device might be
2791  * used to free it.
2792  *
2793  * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2794  * error value.
2795  */
hid_allocate_device(void)2796 struct hid_device *hid_allocate_device(void)
2797 {
2798 	struct hid_device *hdev;
2799 	int ret = -ENOMEM;
2800 
2801 	hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2802 	if (hdev == NULL)
2803 		return ERR_PTR(ret);
2804 
2805 	device_initialize(&hdev->dev);
2806 	hdev->dev.release = hid_device_release;
2807 	hdev->dev.bus = &hid_bus_type;
2808 	device_enable_async_suspend(&hdev->dev);
2809 
2810 	hid_close_report(hdev);
2811 
2812 	init_waitqueue_head(&hdev->debug_wait);
2813 	INIT_LIST_HEAD(&hdev->debug_list);
2814 	spin_lock_init(&hdev->debug_list_lock);
2815 	sema_init(&hdev->driver_input_lock, 1);
2816 	mutex_init(&hdev->ll_open_lock);
2817 
2818 	return hdev;
2819 }
2820 EXPORT_SYMBOL_GPL(hid_allocate_device);
2821 
hid_remove_device(struct hid_device * hdev)2822 static void hid_remove_device(struct hid_device *hdev)
2823 {
2824 	if (hdev->status & HID_STAT_ADDED) {
2825 		device_del(&hdev->dev);
2826 		hid_debug_unregister(hdev);
2827 		hdev->status &= ~HID_STAT_ADDED;
2828 	}
2829 	kfree(hdev->dev_rdesc);
2830 	hdev->dev_rdesc = NULL;
2831 	hdev->dev_rsize = 0;
2832 }
2833 
2834 /**
2835  * hid_destroy_device - free previously allocated device
2836  *
2837  * @hdev: hid device
2838  *
2839  * If you allocate hid_device through hid_allocate_device, you should ever
2840  * free by this function.
2841  */
hid_destroy_device(struct hid_device * hdev)2842 void hid_destroy_device(struct hid_device *hdev)
2843 {
2844 	hid_remove_device(hdev);
2845 	put_device(&hdev->dev);
2846 }
2847 EXPORT_SYMBOL_GPL(hid_destroy_device);
2848 
2849 
__hid_bus_reprobe_drivers(struct device * dev,void * data)2850 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2851 {
2852 	struct hid_driver *hdrv = data;
2853 	struct hid_device *hdev = to_hid_device(dev);
2854 
2855 	if (hdev->driver == hdrv &&
2856 	    !hdrv->match(hdev, hid_ignore_special_drivers) &&
2857 	    !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2858 		return device_reprobe(dev);
2859 
2860 	return 0;
2861 }
2862 
__hid_bus_driver_added(struct device_driver * drv,void * data)2863 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2864 {
2865 	struct hid_driver *hdrv = to_hid_driver(drv);
2866 
2867 	if (hdrv->match) {
2868 		bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2869 				 __hid_bus_reprobe_drivers);
2870 	}
2871 
2872 	return 0;
2873 }
2874 
__bus_removed_driver(struct device_driver * drv,void * data)2875 static int __bus_removed_driver(struct device_driver *drv, void *data)
2876 {
2877 	return bus_rescan_devices(&hid_bus_type);
2878 }
2879 
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2880 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2881 		const char *mod_name)
2882 {
2883 	int ret;
2884 
2885 	hdrv->driver.name = hdrv->name;
2886 	hdrv->driver.bus = &hid_bus_type;
2887 	hdrv->driver.owner = owner;
2888 	hdrv->driver.mod_name = mod_name;
2889 
2890 	INIT_LIST_HEAD(&hdrv->dyn_list);
2891 	spin_lock_init(&hdrv->dyn_lock);
2892 
2893 	ret = driver_register(&hdrv->driver);
2894 
2895 	if (ret == 0)
2896 		bus_for_each_drv(&hid_bus_type, NULL, NULL,
2897 				 __hid_bus_driver_added);
2898 
2899 	return ret;
2900 }
2901 EXPORT_SYMBOL_GPL(__hid_register_driver);
2902 
hid_unregister_driver(struct hid_driver * hdrv)2903 void hid_unregister_driver(struct hid_driver *hdrv)
2904 {
2905 	driver_unregister(&hdrv->driver);
2906 	hid_free_dynids(hdrv);
2907 
2908 	bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2909 }
2910 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2911 
hid_check_keys_pressed(struct hid_device * hid)2912 int hid_check_keys_pressed(struct hid_device *hid)
2913 {
2914 	struct hid_input *hidinput;
2915 	int i;
2916 
2917 	if (!(hid->claimed & HID_CLAIMED_INPUT))
2918 		return 0;
2919 
2920 	list_for_each_entry(hidinput, &hid->inputs, list) {
2921 		for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2922 			if (hidinput->input->key[i])
2923 				return 1;
2924 	}
2925 
2926 	return 0;
2927 }
2928 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2929 
hid_init(void)2930 static int __init hid_init(void)
2931 {
2932 	int ret;
2933 
2934 	if (hid_debug)
2935 		pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2936 			"debugfs is now used for inspecting the device (report descriptor, reports)\n");
2937 
2938 	ret = bus_register(&hid_bus_type);
2939 	if (ret) {
2940 		pr_err("can't register hid bus\n");
2941 		goto err;
2942 	}
2943 
2944 	ret = hidraw_init();
2945 	if (ret)
2946 		goto err_bus;
2947 
2948 	hid_debug_init();
2949 
2950 	return 0;
2951 err_bus:
2952 	bus_unregister(&hid_bus_type);
2953 err:
2954 	return ret;
2955 }
2956 
hid_exit(void)2957 static void __exit hid_exit(void)
2958 {
2959 	hid_debug_exit();
2960 	hidraw_exit();
2961 	bus_unregister(&hid_bus_type);
2962 	hid_quirks_exit(HID_BUS_ANY);
2963 }
2964 
2965 module_init(hid_init);
2966 module_exit(hid_exit);
2967 
2968 MODULE_AUTHOR("Andreas Gal");
2969 MODULE_AUTHOR("Vojtech Pavlik");
2970 MODULE_AUTHOR("Jiri Kosina");
2971 MODULE_LICENSE("GPL");
2972