1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "habanalabs.h"
9
10 #include <linux/slab.h>
11
12 /**
13 * struct hl_eqe_work - This structure is used to schedule work of EQ
14 * entry and cpucp_reset event
15 *
16 * @eq_work: workqueue object to run when EQ entry is received
17 * @hdev: pointer to device structure
18 * @eq_entry: copy of the EQ entry
19 */
20 struct hl_eqe_work {
21 struct work_struct eq_work;
22 struct hl_device *hdev;
23 struct hl_eq_entry eq_entry;
24 };
25
26 /**
27 * hl_cq_inc_ptr - increment ci or pi of cq
28 *
29 * @ptr: the current ci or pi value of the completion queue
30 *
31 * Increment ptr by 1. If it reaches the number of completion queue
32 * entries, set it to 0
33 */
hl_cq_inc_ptr(u32 ptr)34 inline u32 hl_cq_inc_ptr(u32 ptr)
35 {
36 ptr++;
37 if (unlikely(ptr == HL_CQ_LENGTH))
38 ptr = 0;
39 return ptr;
40 }
41
42 /**
43 * hl_eq_inc_ptr - increment ci of eq
44 *
45 * @ptr: the current ci value of the event queue
46 *
47 * Increment ptr by 1. If it reaches the number of event queue
48 * entries, set it to 0
49 */
hl_eq_inc_ptr(u32 ptr)50 static inline u32 hl_eq_inc_ptr(u32 ptr)
51 {
52 ptr++;
53 if (unlikely(ptr == HL_EQ_LENGTH))
54 ptr = 0;
55 return ptr;
56 }
57
irq_handle_eqe(struct work_struct * work)58 static void irq_handle_eqe(struct work_struct *work)
59 {
60 struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
61 eq_work);
62 struct hl_device *hdev = eqe_work->hdev;
63
64 hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
65
66 kfree(eqe_work);
67 }
68
69 /**
70 * job_finish - queue job finish work
71 *
72 * @hdev: pointer to device structure
73 * @cs_seq: command submission sequence
74 * @cq: completion queue
75 *
76 */
job_finish(struct hl_device * hdev,u32 cs_seq,struct hl_cq * cq)77 static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq)
78 {
79 struct hl_hw_queue *queue;
80 struct hl_cs_job *job;
81
82 queue = &hdev->kernel_queues[cq->hw_queue_id];
83 job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
84 queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
85
86 atomic_inc(&queue->ci);
87 }
88
89 /**
90 * cs_finish - queue all cs jobs finish work
91 *
92 * @hdev: pointer to device structure
93 * @cs_seq: command submission sequence
94 *
95 */
cs_finish(struct hl_device * hdev,u16 cs_seq)96 static void cs_finish(struct hl_device *hdev, u16 cs_seq)
97 {
98 struct asic_fixed_properties *prop = &hdev->asic_prop;
99 struct hl_hw_queue *queue;
100 struct hl_cs *cs;
101 struct hl_cs_job *job;
102
103 cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
104 if (!cs) {
105 dev_warn(hdev->dev,
106 "No pointer to CS in shadow array at index %d\n",
107 cs_seq);
108 return;
109 }
110
111 list_for_each_entry(job, &cs->job_list, cs_node) {
112 queue = &hdev->kernel_queues[job->hw_queue_id];
113 atomic_inc(&queue->ci);
114 }
115
116 queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
117 }
118
119 /**
120 * hl_irq_handler_cq - irq handler for completion queue
121 *
122 * @irq: irq number
123 * @arg: pointer to completion queue structure
124 *
125 */
hl_irq_handler_cq(int irq,void * arg)126 irqreturn_t hl_irq_handler_cq(int irq, void *arg)
127 {
128 struct hl_cq *cq = arg;
129 struct hl_device *hdev = cq->hdev;
130 bool shadow_index_valid, entry_ready;
131 u16 shadow_index;
132 struct hl_cq_entry *cq_entry, *cq_base;
133
134 if (hdev->disabled) {
135 dev_dbg(hdev->dev,
136 "Device disabled but received IRQ %d for CQ %d\n",
137 irq, cq->hw_queue_id);
138 return IRQ_HANDLED;
139 }
140
141 cq_base = cq->kernel_address;
142
143 while (1) {
144 cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
145
146 entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
147 le32_to_cpu(cq_entry->data));
148 if (!entry_ready)
149 break;
150
151 /* Make sure we read CQ entry contents after we've
152 * checked the ownership bit.
153 */
154 dma_rmb();
155
156 shadow_index_valid =
157 !!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
158 le32_to_cpu(cq_entry->data));
159
160 shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
161 le32_to_cpu(cq_entry->data));
162
163 /*
164 * CQ interrupt handler has 2 modes of operation:
165 * 1. Interrupt per CS completion: (Single CQ for all queues)
166 * CQ entry represents a completed CS
167 *
168 * 2. Interrupt per CS job completion in queue: (CQ per queue)
169 * CQ entry represents a completed job in a certain queue
170 */
171 if (shadow_index_valid && !hdev->disabled) {
172 if (hdev->asic_prop.completion_mode ==
173 HL_COMPLETION_MODE_CS)
174 cs_finish(hdev, shadow_index);
175 else
176 job_finish(hdev, shadow_index, cq);
177 }
178
179 /* Clear CQ entry ready bit */
180 cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
181 ~CQ_ENTRY_READY_MASK);
182
183 cq->ci = hl_cq_inc_ptr(cq->ci);
184
185 /* Increment free slots */
186 atomic_inc(&cq->free_slots_cnt);
187 }
188
189 return IRQ_HANDLED;
190 }
191
192 /*
193 * hl_ts_free_objects - handler of the free objects workqueue.
194 * This function should put refcount to objects that the registration node
195 * took refcount to them.
196 * @work: workqueue object pointer
197 */
hl_ts_free_objects(struct work_struct * work)198 static void hl_ts_free_objects(struct work_struct *work)
199 {
200 struct timestamp_reg_work_obj *job =
201 container_of(work, struct timestamp_reg_work_obj, free_obj);
202 struct timestamp_reg_free_node *free_obj, *temp_free_obj;
203 struct list_head *free_list_head = job->free_obj_head;
204 struct hl_device *hdev = job->hdev;
205
206 list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
207 dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
208 free_obj->buf,
209 free_obj->cq_cb);
210
211 hl_mmap_mem_buf_put(free_obj->buf);
212 hl_cb_put(free_obj->cq_cb);
213 kfree(free_obj);
214 }
215
216 kfree(free_list_head);
217 kfree(job);
218 }
219
220 /*
221 * This function called with spin_lock of wait_list_lock taken
222 * This function will set timestamp and delete the registration node from the
223 * wait_list_lock.
224 * and since we're protected with spin_lock here, so we cannot just put the refcount
225 * for the objects here, since the release function may be called and it's also a long
226 * logic (which might sleep also) that cannot be handled in irq context.
227 * so here we'll be filling a list with nodes of "put" jobs and then will send this
228 * list to a dedicated workqueue to do the actual put.
229 */
handle_registration_node(struct hl_device * hdev,struct hl_user_pending_interrupt * pend,struct list_head ** free_list)230 static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
231 struct list_head **free_list)
232 {
233 struct timestamp_reg_free_node *free_node;
234 u64 timestamp;
235
236 if (!(*free_list)) {
237 /* Alloc/Init the timestamp registration free objects list */
238 *free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
239 if (!(*free_list))
240 return -ENOMEM;
241
242 INIT_LIST_HEAD(*free_list);
243 }
244
245 free_node = kmalloc(sizeof(*free_node), GFP_ATOMIC);
246 if (!free_node)
247 return -ENOMEM;
248
249 timestamp = ktime_get_ns();
250
251 *pend->ts_reg_info.timestamp_kernel_addr = timestamp;
252
253 dev_dbg(hdev->dev, "Timestamp is set to ts cb address (%p), ts: 0x%llx\n",
254 pend->ts_reg_info.timestamp_kernel_addr,
255 *(u64 *)pend->ts_reg_info.timestamp_kernel_addr);
256
257 list_del(&pend->wait_list_node);
258
259 /* Mark kernel CB node as free */
260 pend->ts_reg_info.in_use = 0;
261
262 /* Putting the refcount for ts_buff and cq_cb objects will be handled
263 * in workqueue context, just add job to free_list.
264 */
265 free_node->buf = pend->ts_reg_info.buf;
266 free_node->cq_cb = pend->ts_reg_info.cq_cb;
267 list_add(&free_node->free_objects_node, *free_list);
268
269 return 0;
270 }
271
handle_user_interrupt(struct hl_device * hdev,struct hl_user_interrupt * intr)272 static void handle_user_interrupt(struct hl_device *hdev, struct hl_user_interrupt *intr)
273 {
274 struct hl_user_pending_interrupt *pend, *temp_pend;
275 struct list_head *ts_reg_free_list_head = NULL;
276 struct timestamp_reg_work_obj *job;
277 bool reg_node_handle_fail = false;
278 ktime_t now = ktime_get();
279 int rc;
280
281 /* For registration nodes:
282 * As part of handling the registration nodes, we should put refcount to
283 * some objects. the problem is that we cannot do that under spinlock
284 * or in irq handler context at all (since release functions are long and
285 * might sleep), so we will need to handle that part in workqueue context.
286 * To avoid handling kmalloc failure which compels us rolling back actions
287 * and move nodes hanged on the free list back to the interrupt wait list
288 * we always alloc the job of the WQ at the beginning.
289 */
290 job = kmalloc(sizeof(*job), GFP_ATOMIC);
291 if (!job)
292 return;
293
294 spin_lock(&intr->wait_list_lock);
295 list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, wait_list_node) {
296 if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
297 !pend->cq_kernel_addr) {
298 if (pend->ts_reg_info.buf) {
299 if (!reg_node_handle_fail) {
300 rc = handle_registration_node(hdev, pend,
301 &ts_reg_free_list_head);
302 if (rc)
303 reg_node_handle_fail = true;
304 }
305 } else {
306 /* Handle wait target value node */
307 pend->fence.timestamp = now;
308 complete_all(&pend->fence.completion);
309 }
310 }
311 }
312 spin_unlock(&intr->wait_list_lock);
313
314 if (ts_reg_free_list_head) {
315 INIT_WORK(&job->free_obj, hl_ts_free_objects);
316 job->free_obj_head = ts_reg_free_list_head;
317 job->hdev = hdev;
318 queue_work(hdev->ts_free_obj_wq, &job->free_obj);
319 } else {
320 kfree(job);
321 }
322 }
323
324 /**
325 * hl_irq_handler_user_interrupt - irq handler for user interrupts
326 *
327 * @irq: irq number
328 * @arg: pointer to user interrupt structure
329 *
330 */
hl_irq_handler_user_interrupt(int irq,void * arg)331 irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg)
332 {
333 struct hl_user_interrupt *user_int = arg;
334 struct hl_device *hdev = user_int->hdev;
335
336 if (user_int->is_decoder)
337 handle_user_interrupt(hdev, &hdev->common_decoder_interrupt);
338 else
339 handle_user_interrupt(hdev, &hdev->common_user_cq_interrupt);
340
341 /* Handle user cq or decoder interrupts registered on this specific irq */
342 handle_user_interrupt(hdev, user_int);
343
344 return IRQ_HANDLED;
345 }
346
347 /**
348 * hl_irq_handler_default - default irq handler
349 *
350 * @irq: irq number
351 * @arg: pointer to user interrupt structure
352 *
353 */
hl_irq_handler_default(int irq,void * arg)354 irqreturn_t hl_irq_handler_default(int irq, void *arg)
355 {
356 struct hl_user_interrupt *user_interrupt = arg;
357 struct hl_device *hdev = user_interrupt->hdev;
358 u32 interrupt_id = user_interrupt->interrupt_id;
359
360 dev_err(hdev->dev, "got invalid user interrupt %u", interrupt_id);
361
362 return IRQ_HANDLED;
363 }
364
365 /**
366 * hl_irq_handler_eq - irq handler for event queue
367 *
368 * @irq: irq number
369 * @arg: pointer to event queue structure
370 *
371 */
hl_irq_handler_eq(int irq,void * arg)372 irqreturn_t hl_irq_handler_eq(int irq, void *arg)
373 {
374 struct hl_eq *eq = arg;
375 struct hl_device *hdev = eq->hdev;
376 struct hl_eq_entry *eq_entry;
377 struct hl_eq_entry *eq_base;
378 struct hl_eqe_work *handle_eqe_work;
379 bool entry_ready;
380 u32 cur_eqe;
381 u16 cur_eqe_index;
382
383 eq_base = eq->kernel_address;
384
385 while (1) {
386 cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
387 entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
388
389 if (!entry_ready)
390 break;
391
392 cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
393 if ((hdev->event_queue.check_eqe_index) &&
394 (((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK)
395 != cur_eqe_index)) {
396 dev_dbg(hdev->dev,
397 "EQE 0x%x in queue is ready but index does not match %d!=%d",
398 eq_base[eq->ci].hdr.ctl,
399 ((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
400 cur_eqe_index);
401 break;
402 }
403
404 eq->prev_eqe_index++;
405
406 eq_entry = &eq_base[eq->ci];
407
408 /*
409 * Make sure we read EQ entry contents after we've
410 * checked the ownership bit.
411 */
412 dma_rmb();
413
414 if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
415 dev_warn(hdev->dev, "Device disabled but received an EQ event\n");
416 goto skip_irq;
417 }
418
419 handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
420 if (handle_eqe_work) {
421 INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
422 handle_eqe_work->hdev = hdev;
423
424 memcpy(&handle_eqe_work->eq_entry, eq_entry,
425 sizeof(*eq_entry));
426
427 queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
428 }
429 skip_irq:
430 /* Clear EQ entry ready bit */
431 eq_entry->hdr.ctl =
432 cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
433 ~EQ_CTL_READY_MASK);
434
435 eq->ci = hl_eq_inc_ptr(eq->ci);
436
437 hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
438 }
439
440 return IRQ_HANDLED;
441 }
442
443 /**
444 * hl_irq_handler_dec_abnrm - Decoder error interrupt handler
445 * @irq: IRQ number
446 * @arg: pointer to decoder structure.
447 */
hl_irq_handler_dec_abnrm(int irq,void * arg)448 irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
449 {
450 struct hl_dec *dec = arg;
451
452 schedule_work(&dec->completion_abnrm_work);
453
454 return IRQ_HANDLED;
455 }
456
457 /**
458 * hl_cq_init - main initialization function for an cq object
459 *
460 * @hdev: pointer to device structure
461 * @q: pointer to cq structure
462 * @hw_queue_id: The H/W queue ID this completion queue belongs to
463 * HL_INVALID_QUEUE if cq is not attached to any specific queue
464 *
465 * Allocate dma-able memory for the completion queue and initialize fields
466 * Returns 0 on success
467 */
hl_cq_init(struct hl_device * hdev,struct hl_cq * q,u32 hw_queue_id)468 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
469 {
470 void *p;
471
472 p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
473 GFP_KERNEL | __GFP_ZERO);
474 if (!p)
475 return -ENOMEM;
476
477 q->hdev = hdev;
478 q->kernel_address = p;
479 q->hw_queue_id = hw_queue_id;
480 q->ci = 0;
481 q->pi = 0;
482
483 atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
484
485 return 0;
486 }
487
488 /**
489 * hl_cq_fini - destroy completion queue
490 *
491 * @hdev: pointer to device structure
492 * @q: pointer to cq structure
493 *
494 * Free the completion queue memory
495 */
hl_cq_fini(struct hl_device * hdev,struct hl_cq * q)496 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
497 {
498 hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
499 }
500
hl_cq_reset(struct hl_device * hdev,struct hl_cq * q)501 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
502 {
503 q->ci = 0;
504 q->pi = 0;
505
506 atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
507
508 /*
509 * It's not enough to just reset the PI/CI because the H/W may have
510 * written valid completion entries before it was halted and therefore
511 * we need to clean the actual queues so we won't process old entries
512 * when the device is operational again
513 */
514
515 memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
516 }
517
518 /**
519 * hl_eq_init - main initialization function for an event queue object
520 *
521 * @hdev: pointer to device structure
522 * @q: pointer to eq structure
523 *
524 * Allocate dma-able memory for the event queue and initialize fields
525 * Returns 0 on success
526 */
hl_eq_init(struct hl_device * hdev,struct hl_eq * q)527 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
528 {
529 void *p;
530
531 p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_EQ_SIZE_IN_BYTES, &q->bus_address);
532 if (!p)
533 return -ENOMEM;
534
535 q->hdev = hdev;
536 q->kernel_address = p;
537 q->ci = 0;
538 q->prev_eqe_index = 0;
539
540 return 0;
541 }
542
543 /**
544 * hl_eq_fini - destroy event queue
545 *
546 * @hdev: pointer to device structure
547 * @q: pointer to eq structure
548 *
549 * Free the event queue memory
550 */
hl_eq_fini(struct hl_device * hdev,struct hl_eq * q)551 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
552 {
553 flush_workqueue(hdev->eq_wq);
554
555 hl_cpu_accessible_dma_pool_free(hdev, HL_EQ_SIZE_IN_BYTES, q->kernel_address);
556 }
557
hl_eq_reset(struct hl_device * hdev,struct hl_eq * q)558 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
559 {
560 q->ci = 0;
561 q->prev_eqe_index = 0;
562
563 /*
564 * It's not enough to just reset the PI/CI because the H/W may have
565 * written valid completion entries before it was halted and therefore
566 * we need to clean the actual queues so we won't process old entries
567 * when the device is operational again
568 */
569
570 memset(q->kernel_address, 0, HL_EQ_SIZE_IN_BYTES);
571 }
572