1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <linux/slab.h>
9
10 #include "../habanalabs.h"
11
12 #include <trace/events/habanalabs.h>
13
14 /**
15 * hl_mmu_get_funcs() - get MMU functions structure
16 * @hdev: habanalabs device structure.
17 * @pgt_residency: page table residency.
18 * @is_dram_addr: true if we need HMMU functions
19 *
20 * @return appropriate MMU functions structure
21 */
hl_mmu_get_funcs(struct hl_device * hdev,int pgt_residency,bool is_dram_addr)22 static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
23 bool is_dram_addr)
24 {
25 return &hdev->mmu_func[pgt_residency];
26 }
27
hl_is_dram_va(struct hl_device * hdev,u64 virt_addr)28 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
29 {
30 struct asic_fixed_properties *prop = &hdev->asic_prop;
31
32 return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
33 prop->dmmu.start_addr,
34 prop->dmmu.end_addr);
35 }
36
37 /**
38 * hl_mmu_init() - initialize the MMU module.
39 * @hdev: habanalabs device structure.
40 *
41 * Return: 0 for success, non-zero for failure.
42 */
hl_mmu_init(struct hl_device * hdev)43 int hl_mmu_init(struct hl_device *hdev)
44 {
45 int rc = -EOPNOTSUPP;
46
47 if (!hdev->mmu_enable)
48 return 0;
49
50 mutex_init(&hdev->mmu_lock);
51
52 if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
53 rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
54 if (rc)
55 return rc;
56 }
57
58 if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
59 rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
60 if (rc)
61 goto fini_dr_mmu;
62 }
63
64 return 0;
65
66 fini_dr_mmu:
67 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
68 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
69
70 return rc;
71 }
72
73 /**
74 * hl_mmu_fini() - release the MMU module.
75 * @hdev: habanalabs device structure.
76 *
77 * This function does the following:
78 * - Disable MMU in H/W.
79 * - Free the pgt_infos pool.
80 *
81 * All contexts should be freed before calling this function.
82 */
hl_mmu_fini(struct hl_device * hdev)83 void hl_mmu_fini(struct hl_device *hdev)
84 {
85 if (!hdev->mmu_enable)
86 return;
87
88 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
89 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
90
91 if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
92 hdev->mmu_func[MMU_HR_PGT].fini(hdev);
93
94 mutex_destroy(&hdev->mmu_lock);
95 }
96
97 /**
98 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
99 * @ctx: pointer to the context structure to initialize.
100 *
101 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
102 * page tables hops related to this context.
103 * Return: 0 on success, non-zero otherwise.
104 */
hl_mmu_ctx_init(struct hl_ctx * ctx)105 int hl_mmu_ctx_init(struct hl_ctx *ctx)
106 {
107 struct hl_device *hdev = ctx->hdev;
108 int rc = -EOPNOTSUPP;
109
110 if (!hdev->mmu_enable)
111 return 0;
112
113 if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
114 rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
115 if (rc)
116 return rc;
117 }
118
119 if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
120 rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
121 if (rc)
122 goto fini_dr_ctx;
123 }
124
125 return 0;
126
127 fini_dr_ctx:
128 if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
129 hdev->mmu_func[MMU_DR_PGT].fini(hdev);
130
131 return rc;
132 }
133
134 /*
135 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
136 *
137 * @ctx: pointer to the context structure
138 *
139 * This function does the following:
140 * - Free any pgts which were not freed yet
141 * - Free the mutex
142 * - Free DRAM default page mapping hops
143 */
hl_mmu_ctx_fini(struct hl_ctx * ctx)144 void hl_mmu_ctx_fini(struct hl_ctx *ctx)
145 {
146 struct hl_device *hdev = ctx->hdev;
147
148 if (!hdev->mmu_enable)
149 return;
150
151 if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
152 hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
153
154 if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
155 hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
156 }
157
158 /*
159 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
160 *
161 * @hdev: pointer to device data.
162 * @mmu_prop: MMU properties.
163 * @page_size: page size
164 * @real_page_size: set here the actual page size to use for the operation
165 * @is_dram_addr: true if DRAM address, otherwise false.
166 *
167 * @return 0 on success, otherwise non 0 error code
168 *
169 * note that this is general implementation that can fit most MMU arch. but as this is used as an
170 * MMU function:
171 * 1. it shall not be called directly- only from mmu_func structure instance
172 * 2. each MMU may modify the implementation internally
173 */
hl_mmu_get_real_page_size(struct hl_device * hdev,struct hl_mmu_properties * mmu_prop,u32 page_size,u32 * real_page_size,bool is_dram_addr)174 int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
175 u32 page_size, u32 *real_page_size, bool is_dram_addr)
176 {
177 /*
178 * The H/W handles mapping of specific page sizes. Hence if the page
179 * size is bigger, we break it to sub-pages and map them separately.
180 */
181 if ((page_size % mmu_prop->page_size) == 0) {
182 *real_page_size = mmu_prop->page_size;
183 return 0;
184 }
185
186 dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
187 page_size, mmu_prop->page_size >> 10);
188
189 return -EFAULT;
190 }
191
hl_mmu_get_prop(struct hl_device * hdev,u32 page_size,bool is_dram_addr)192 static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
193 bool is_dram_addr)
194 {
195 struct asic_fixed_properties *prop = &hdev->asic_prop;
196
197 if (is_dram_addr)
198 return &prop->dmmu;
199 else if ((page_size % prop->pmmu_huge.page_size) == 0)
200 return &prop->pmmu_huge;
201
202 return &prop->pmmu;
203 }
204
205 /*
206 * hl_mmu_unmap_page - unmaps a virtual addr
207 *
208 * @ctx: pointer to the context structure
209 * @virt_addr: virt addr to map from
210 * @page_size: size of the page to unmap
211 * @flush_pte: whether to do a PCI flush
212 *
213 * This function does the following:
214 * - Check that the virt addr is mapped
215 * - Unmap the virt addr and frees pgts if possible
216 * - Returns 0 on success, -EINVAL if the given addr is not mapped
217 *
218 * Because this function changes the page tables in the device and because it
219 * changes the MMU hash, it must be protected by a lock.
220 * However, because it maps only a single page, the lock should be implemented
221 * in a higher level in order to protect the entire mapping of the memory area
222 *
223 * For optimization reasons PCI flush may be requested once after unmapping of
224 * large area.
225 */
hl_mmu_unmap_page(struct hl_ctx * ctx,u64 virt_addr,u32 page_size,bool flush_pte)226 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
227 {
228 struct hl_device *hdev = ctx->hdev;
229 struct hl_mmu_properties *mmu_prop;
230 struct hl_mmu_funcs *mmu_funcs;
231 int i, pgt_residency, rc = 0;
232 u32 real_page_size, npages;
233 u64 real_virt_addr;
234 bool is_dram_addr;
235
236 if (!hdev->mmu_enable)
237 return 0;
238
239 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
240 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
241
242 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
243 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
244
245 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
246 is_dram_addr);
247 if (rc)
248 return rc;
249
250 npages = page_size / real_page_size;
251 real_virt_addr = virt_addr;
252
253 for (i = 0 ; i < npages ; i++) {
254 rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
255 if (rc)
256 break;
257
258 real_virt_addr += real_page_size;
259 }
260
261 if (flush_pte)
262 mmu_funcs->flush(ctx);
263
264 if (trace_habanalabs_mmu_unmap_enabled() && !rc)
265 trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
266
267 return rc;
268 }
269
270 /*
271 * hl_mmu_map_page - maps a virtual addr to physical addr
272 *
273 * @ctx: pointer to the context structure
274 * @virt_addr: virt addr to map from
275 * @phys_addr: phys addr to map to
276 * @page_size: physical page size
277 * @flush_pte: whether to do a PCI flush
278 *
279 * This function does the following:
280 * - Check that the virt addr is not mapped
281 * - Allocate pgts as necessary in order to map the virt addr to the phys
282 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
283 *
284 * Because this function changes the page tables in the device and because it
285 * changes the MMU hash, it must be protected by a lock.
286 * However, because it maps only a single page, the lock should be implemented
287 * in a higher level in order to protect the entire mapping of the memory area
288 *
289 * For optimization reasons PCI flush may be requested once after mapping of
290 * large area.
291 */
hl_mmu_map_page(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 page_size,bool flush_pte)292 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
293 bool flush_pte)
294 {
295 int i, rc, pgt_residency, mapped_cnt = 0;
296 struct hl_device *hdev = ctx->hdev;
297 struct hl_mmu_properties *mmu_prop;
298 u64 real_virt_addr, real_phys_addr;
299 struct hl_mmu_funcs *mmu_funcs;
300 u32 real_page_size, npages;
301 bool is_dram_addr;
302
303
304 if (!hdev->mmu_enable)
305 return 0;
306
307 is_dram_addr = hl_is_dram_va(hdev, virt_addr);
308 mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
309
310 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
311 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
312
313 rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
314 is_dram_addr);
315 if (rc)
316 return rc;
317
318 /*
319 * Verify that the phys and virt addresses are aligned with the
320 * MMU page size (in dram this means checking the address and MMU
321 * after scrambling)
322 */
323 if ((is_dram_addr &&
324 ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
325 (mmu_prop->page_size - 1)) ||
326 (hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
327 (mmu_prop->page_size - 1)))) ||
328 (!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
329 (virt_addr & (real_page_size - 1)))))
330 dev_crit(hdev->dev,
331 "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
332 phys_addr, virt_addr, real_page_size);
333
334 npages = page_size / real_page_size;
335 real_virt_addr = virt_addr;
336 real_phys_addr = phys_addr;
337
338 for (i = 0 ; i < npages ; i++) {
339 rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
340 is_dram_addr);
341 if (rc)
342 goto err;
343
344 real_virt_addr += real_page_size;
345 real_phys_addr += real_page_size;
346 mapped_cnt++;
347 }
348
349 if (flush_pte)
350 mmu_funcs->flush(ctx);
351
352 trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
353
354 return 0;
355
356 err:
357 real_virt_addr = virt_addr;
358 for (i = 0 ; i < mapped_cnt ; i++) {
359 if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
360 dev_warn_ratelimited(hdev->dev,
361 "failed to unmap va: 0x%llx\n", real_virt_addr);
362
363 real_virt_addr += real_page_size;
364 }
365
366 mmu_funcs->flush(ctx);
367
368 return rc;
369 }
370
371 /*
372 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
373 * for mapping contiguous physical memory
374 *
375 * @ctx: pointer to the context structure
376 * @virt_addr: virt addr to map from
377 * @phys_addr: phys addr to map to
378 * @size: size to map
379 *
380 */
hl_mmu_map_contiguous(struct hl_ctx * ctx,u64 virt_addr,u64 phys_addr,u32 size)381 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
382 u64 phys_addr, u32 size)
383 {
384 struct hl_device *hdev = ctx->hdev;
385 struct asic_fixed_properties *prop = &hdev->asic_prop;
386 u64 curr_va, curr_pa;
387 u32 page_size;
388 bool flush_pte;
389 int rc = 0, off;
390
391 if (hl_mem_area_inside_range(virt_addr, size,
392 prop->dmmu.start_addr, prop->dmmu.end_addr))
393 page_size = prop->dmmu.page_size;
394 else if (hl_mem_area_inside_range(virt_addr, size,
395 prop->pmmu.start_addr, prop->pmmu.end_addr))
396 page_size = prop->pmmu.page_size;
397 else if (hl_mem_area_inside_range(virt_addr, size,
398 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
399 page_size = prop->pmmu_huge.page_size;
400 else
401 return -EINVAL;
402
403 for (off = 0 ; off < size ; off += page_size) {
404 curr_va = virt_addr + off;
405 curr_pa = phys_addr + off;
406 flush_pte = (off + page_size) >= size;
407 rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
408 flush_pte);
409 if (rc) {
410 dev_err(hdev->dev,
411 "Map failed for va 0x%llx to pa 0x%llx\n",
412 curr_va, curr_pa);
413 /* last mapping failed so don't try to unmap it - reduce off by page_size */
414 off -= page_size;
415 goto unmap;
416 }
417 }
418
419 return rc;
420
421 unmap:
422 for (; off >= 0 ; off -= page_size) {
423 curr_va = virt_addr + off;
424 flush_pte = (off - (s32) page_size) < 0;
425 if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
426 dev_warn_ratelimited(hdev->dev,
427 "failed to unmap va 0x%llx\n", curr_va);
428 }
429
430 return rc;
431 }
432
433 /*
434 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
435 * for unmapping contiguous physical memory
436 *
437 * @ctx: pointer to the context structure
438 * @virt_addr: virt addr to unmap
439 * @size: size to unmap
440 *
441 */
hl_mmu_unmap_contiguous(struct hl_ctx * ctx,u64 virt_addr,u32 size)442 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
443 {
444 struct hl_device *hdev = ctx->hdev;
445 struct asic_fixed_properties *prop = &hdev->asic_prop;
446 u64 curr_va;
447 u32 page_size;
448 bool flush_pte;
449 int rc = 0, off;
450
451 if (hl_mem_area_inside_range(virt_addr, size,
452 prop->dmmu.start_addr, prop->dmmu.end_addr))
453 page_size = prop->dmmu.page_size;
454 else if (hl_mem_area_inside_range(virt_addr, size,
455 prop->pmmu.start_addr, prop->pmmu.end_addr))
456 page_size = prop->pmmu.page_size;
457 else if (hl_mem_area_inside_range(virt_addr, size,
458 prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
459 page_size = prop->pmmu_huge.page_size;
460 else
461 return -EINVAL;
462
463 for (off = 0 ; off < size ; off += page_size) {
464 curr_va = virt_addr + off;
465 flush_pte = (off + page_size) >= size;
466 rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
467 if (rc)
468 dev_warn_ratelimited(hdev->dev,
469 "Unmap failed for va 0x%llx\n", curr_va);
470 }
471
472 return rc;
473 }
474
475 /*
476 * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out
477 *
478 * @ctx: pointer to the context structure
479 *
480 */
hl_mmu_swap_out(struct hl_ctx * ctx)481 void hl_mmu_swap_out(struct hl_ctx *ctx)
482 {
483 struct hl_device *hdev = ctx->hdev;
484
485 if (!hdev->mmu_enable)
486 return;
487
488 if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL)
489 hdev->mmu_func[MMU_DR_PGT].swap_out(ctx);
490
491 if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL)
492 hdev->mmu_func[MMU_HR_PGT].swap_out(ctx);
493 }
494
495 /*
496 * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in
497 *
498 * @ctx: pointer to the context structure
499 *
500 */
hl_mmu_swap_in(struct hl_ctx * ctx)501 void hl_mmu_swap_in(struct hl_ctx *ctx)
502 {
503 struct hl_device *hdev = ctx->hdev;
504
505 if (!hdev->mmu_enable)
506 return;
507
508 if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL)
509 hdev->mmu_func[MMU_DR_PGT].swap_in(ctx);
510
511 if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL)
512 hdev->mmu_func[MMU_HR_PGT].swap_in(ctx);
513 }
514
hl_mmu_pa_page_with_offset(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,u64 * phys_addr)515 static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
516 struct hl_mmu_hop_info *hops,
517 u64 *phys_addr)
518 {
519 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
520 u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
521 struct hl_mmu_properties *mmu_prop;
522
523 /* last hop holds the phys address and flags */
524 if (hops->unscrambled_paddr)
525 tmp_phys_addr = hops->unscrambled_paddr;
526 else
527 tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
528
529 if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
530 mmu_prop = &prop->pmmu_huge;
531 else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
532 mmu_prop = &prop->pmmu;
533 else /* HL_VA_RANGE_TYPE_DRAM */
534 mmu_prop = &prop->dmmu;
535
536 if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
537 !is_power_of_2(prop->dram_page_size)) {
538 u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
539 page_id, page_start;
540 u32 page_off;
541
542 /*
543 * Bit arithmetics cannot be used for non power of two page
544 * sizes. In addition, since bit arithmetics is not used,
545 * we cannot ignore dram base. All that shall be considered.
546 */
547
548 dram_page_size = prop->dram_page_size;
549 dram_base = prop->dram_base_address;
550 abs_phys_addr = tmp_phys_addr - dram_base;
551 abs_virt_addr = virt_addr - dram_base;
552 page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
553 page_start = page_id * dram_page_size;
554 div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
555
556 *phys_addr = page_start + page_off + dram_base;
557 } else {
558 /*
559 * find the correct hop shift field in hl_mmu_properties
560 * structure in order to determine the right masks
561 * for the page offset.
562 */
563 hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
564 offset_mask = (1ull << hop_shift) - 1;
565 addr_mask = ~(offset_mask);
566 *phys_addr = (tmp_phys_addr & addr_mask) |
567 (virt_addr & offset_mask);
568 }
569 }
570
hl_mmu_va_to_pa(struct hl_ctx * ctx,u64 virt_addr,u64 * phys_addr)571 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
572 {
573 struct hl_mmu_hop_info hops;
574 int rc;
575
576 memset(&hops, 0, sizeof(hops));
577
578 rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
579 if (rc)
580 return rc;
581
582 hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr);
583
584 return 0;
585 }
586
hl_mmu_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops)587 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
588 struct hl_mmu_hop_info *hops)
589 {
590 struct hl_device *hdev = ctx->hdev;
591 struct asic_fixed_properties *prop;
592 struct hl_mmu_properties *mmu_prop;
593 struct hl_mmu_funcs *mmu_funcs;
594 int pgt_residency, rc;
595 bool is_dram_addr;
596
597 if (!hdev->mmu_enable)
598 return -EOPNOTSUPP;
599
600 prop = &hdev->asic_prop;
601 hops->scrambled_vaddr = virt_addr; /* assume no scrambling */
602
603 is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
604 prop->dmmu.start_addr,
605 prop->dmmu.end_addr);
606
607 /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
608 mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
609 pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
610 mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
611
612 mutex_lock(&hdev->mmu_lock);
613 rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
614 mutex_unlock(&hdev->mmu_lock);
615
616 if (rc)
617 return rc;
618
619 /* add page offset to physical address */
620 if (hops->unscrambled_paddr)
621 hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
622
623 return 0;
624 }
625
hl_mmu_if_set_funcs(struct hl_device * hdev)626 int hl_mmu_if_set_funcs(struct hl_device *hdev)
627 {
628 if (!hdev->mmu_enable)
629 return 0;
630
631 switch (hdev->asic_type) {
632 case ASIC_GOYA:
633 case ASIC_GAUDI:
634 case ASIC_GAUDI_SEC:
635 hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
636 break;
637 case ASIC_GAUDI2:
638 case ASIC_GAUDI2_SEC:
639 /* MMUs in Gaudi2 are always host resident */
640 hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
641 break;
642 default:
643 dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
644 hdev->asic_type);
645 return -EOPNOTSUPP;
646 }
647
648 return 0;
649 }
650
651 /**
652 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
653 * @hdev: pointer to device data.
654 * @addr: The address to scramble.
655 *
656 * Return: The scrambled address.
657 */
hl_mmu_scramble_addr(struct hl_device * hdev,u64 addr)658 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
659 {
660 return addr;
661 }
662
663 /**
664 * hl_mmu_descramble_addr() - The generic mmu address descrambling
665 * routine.
666 * @hdev: pointer to device data.
667 * @addr: The address to descramble.
668 *
669 * Return: The un-scrambled address.
670 */
hl_mmu_descramble_addr(struct hl_device * hdev,u64 addr)671 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
672 {
673 return addr;
674 }
675
hl_mmu_invalidate_cache(struct hl_device * hdev,bool is_hard,u32 flags)676 int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
677 {
678 int rc;
679
680 rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
681 if (rc)
682 dev_err_ratelimited(hdev->dev, "MMU cache invalidation failed\n");
683
684 return rc;
685 }
686
hl_mmu_invalidate_cache_range(struct hl_device * hdev,bool is_hard,u32 flags,u32 asid,u64 va,u64 size)687 int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
688 u32 flags, u32 asid, u64 va, u64 size)
689 {
690 int rc;
691
692 rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
693 asid, va, size);
694 if (rc)
695 dev_err_ratelimited(hdev->dev, "MMU cache range invalidation failed\n");
696
697 return rc;
698 }
699
hl_mmu_prefetch_work_function(struct work_struct * work)700 static void hl_mmu_prefetch_work_function(struct work_struct *work)
701 {
702 struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, pf_work);
703 struct hl_ctx *ctx = pfw->ctx;
704 struct hl_device *hdev = ctx->hdev;
705
706 if (!hl_device_operational(hdev, NULL))
707 goto put_ctx;
708
709 mutex_lock(&hdev->mmu_lock);
710
711 hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
712
713 mutex_unlock(&hdev->mmu_lock);
714
715 put_ctx:
716 /*
717 * context was taken in the common mmu prefetch function- see comment there about
718 * context handling.
719 */
720 hl_ctx_put(ctx);
721 kfree(pfw);
722 }
723
hl_mmu_prefetch_cache_range(struct hl_ctx * ctx,u32 flags,u32 asid,u64 va,u64 size)724 int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
725 {
726 struct hl_prefetch_work *handle_pf_work;
727
728 handle_pf_work = kmalloc(sizeof(*handle_pf_work), GFP_KERNEL);
729 if (!handle_pf_work)
730 return -ENOMEM;
731
732 INIT_WORK(&handle_pf_work->pf_work, hl_mmu_prefetch_work_function);
733 handle_pf_work->ctx = ctx;
734 handle_pf_work->va = va;
735 handle_pf_work->size = size;
736 handle_pf_work->flags = flags;
737 handle_pf_work->asid = asid;
738
739 /*
740 * as actual prefetch is done in a WQ we must get the context (and put it
741 * at the end of the work function)
742 */
743 hl_ctx_get(ctx);
744 queue_work(ctx->hdev->pf_wq, &handle_pf_work->pf_work);
745
746 return 0;
747 }
748
hl_mmu_get_next_hop_addr(struct hl_ctx * ctx,u64 curr_pte)749 u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
750 {
751 return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
752 }
753
754 /**
755 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
756 * @ctx: pointer to the context structure to initialize.
757 * @mmu_prop: MMU properties.
758 * @hop_idx: HOP index.
759 * @hop_addr: HOP address.
760 * @virt_addr: virtual address fro the translation.
761 *
762 * @return the matching PTE value on success, otherwise U64_MAX.
763 */
hl_mmu_get_hop_pte_phys_addr(struct hl_ctx * ctx,struct hl_mmu_properties * mmu_prop,u8 hop_idx,u64 hop_addr,u64 virt_addr)764 u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
765 u8 hop_idx, u64 hop_addr, u64 virt_addr)
766 {
767 u64 mask, shift;
768
769 if (hop_idx >= mmu_prop->num_hops) {
770 dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
771 return U64_MAX;
772 }
773
774 shift = mmu_prop->hop_shifts[hop_idx];
775 mask = mmu_prop->hop_masks[hop_idx];
776
777 return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
778 }
779
mmu_dma_mem_free_from_chunk(struct gen_pool * pool,struct gen_pool_chunk * chunk,void * data)780 static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
781 struct gen_pool_chunk *chunk,
782 void *data)
783 {
784 struct hl_device *hdev = (struct hl_device *)data;
785
786 hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
787 (void *)chunk->start_addr, chunk->phys_addr);
788 }
789
hl_mmu_hr_flush(struct hl_ctx * ctx)790 void hl_mmu_hr_flush(struct hl_ctx *ctx)
791 {
792 /* a flush operation requires memory barrier */
793 mb();
794 }
795
796 /**
797 * hl_mmu_hr_pool_destroy() - destroy genpool
798 * @hdev: habanalabs device structure.
799 * @hr_priv: MMU HR private data.
800 * @hop_table_size: HOP table size.
801 *
802 * This function does the following:
803 * - free entries allocated for shadow HOP0
804 * - free pool chunks
805 * - free pool
806 */
hl_mmu_hr_pool_destroy(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)807 static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
808 u32 hop_table_size)
809 {
810 struct asic_fixed_properties *prop = &hdev->asic_prop;
811 struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
812 struct pgt_info *hop0_pgt;
813 int asid;
814
815 if (ZERO_OR_NULL_PTR(*pool))
816 return;
817
818 /* Free the Fixed allocation of HOPs0 */
819 if (hr_priv->mmu_asid_hop0) {
820 for (asid = 0 ; asid < prop->max_asid ; asid++) {
821 hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
822 if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
823 continue;
824
825 gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
826 }
827 }
828
829 gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
830 gen_pool_destroy(*pool);
831
832 /* Make sure that if we arrive here again without init was called we
833 * won't cause kernel panic. This can happen for example if we fail
834 * during hard reset code at certain points
835 */
836 *pool = NULL;
837 }
838
839 /**
840 * hl_mmu_hr_init() - initialize the MMU module.
841 * @hdev: habanalabs device structure.
842 * @hr_priv: MMU HR private data.
843 * @hop_table_size: HOP table size.
844 * @pgt_size: memory size allocated for the page table
845 *
846 * @return 0 on success otherwise non-zero error code
847 *
848 * This function does the following:
849 * - Create a pool of pages for pgt_infos.
850 * - Create a shadow table for pgt
851 */
hl_mmu_hr_init(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size,u64 pgt_size)852 int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
853 u64 pgt_size)
854 {
855 struct asic_fixed_properties *prop = &hdev->asic_prop;
856 size_t pool_chunk_size = SZ_4M;
857 struct pgt_info *hop0_pgt;
858 dma_addr_t dma_addr;
859 u64 virt_addr;
860 int i, rc;
861
862 /*
863 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
864 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
865 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
866 * allocations with higher-order alignment restrictions
867 */
868 hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
869 if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
870 dev_err(hdev->dev, "Failed to create hr page pool\n");
871 return -ENOMEM;
872 }
873
874 hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
875 if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
876 dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
877 rc = -ENOMEM;
878 goto destroy_mmu_pgt_pool;
879 }
880
881 for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
882 virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
883 &dma_addr,
884 GFP_KERNEL | __GFP_ZERO);
885 if (ZERO_OR_NULL_PTR(virt_addr)) {
886 dev_err(hdev->dev,
887 "Failed to allocate memory for host-resident page pool\n");
888 rc = -ENOMEM;
889 goto destroy_mmu_pgt_pool;
890 }
891
892 rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
893 pool_chunk_size, -1);
894 if (rc) {
895 dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
896 goto destroy_mmu_pgt_pool;
897 }
898 }
899
900 for (i = 0 ; i < prop->max_asid ; i++) {
901 hop0_pgt = &hr_priv->mmu_asid_hop0[i];
902 hop0_pgt->virt_addr = (uintptr_t)
903 gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
904 hop_table_size,
905 (dma_addr_t *) &hop0_pgt->phys_addr,
906 hop_table_size);
907 if (!hop0_pgt->virt_addr) {
908 dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
909 rc = -ENOMEM;
910 goto destroy_mmu_pgt_pool;
911 }
912 }
913
914 /* MMU H/W init will be done in device hw_init() */
915
916 return 0;
917
918 destroy_mmu_pgt_pool:
919 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
920 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
921 kvfree(hr_priv->mmu_asid_hop0);
922
923 return rc;
924 }
925
926 /**
927 * hl_mmu_hr_fini() - release the MMU module.
928 * @hdev: habanalabs device structure.
929 * @hr_priv: MMU host resident private info.
930 * @hop_table_size: HOP table size
931 *
932 * This function does the following:
933 * - Disable MMU in H/W.
934 * - Free the pgt_infos pool.
935 *
936 * All contexts should be freed before calling this function.
937 */
hl_mmu_hr_fini(struct hl_device * hdev,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)938 void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
939 {
940 /* MMU H/W fini was already done in device hw_fini() */
941
942 hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
943
944 if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
945 kvfree(hr_priv->mmu_asid_hop0);
946
947 /* Make sure that if we arrive here again without init was
948 * called we won't cause kernel panic. This can happen for
949 * example if we fail during hard reset code at certain points
950 */
951 hr_priv->mmu_asid_hop0 = NULL;
952 }
953 }
954
955 /**
956 * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
957 * @pgt_info: page table info structure.
958 * @hr_priv: MMU HR private data.
959 * @hop_table_size: HOP table size.
960 */
hl_mmu_hr_free_hop_remove_pgt(struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)961 void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
962 u32 hop_table_size)
963 {
964 gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
965 hash_del(&pgt_info->node);
966 kfree(pgt_info);
967 }
968
969 /**
970 * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
971 * @ctx: pointer to the context structure
972 * @pgt: pgt_info for the HOP hosting the PTE
973 * @phys_pte_addr: phys address of the PTE
974 * @hop_table_size: HOP table size
975 *
976 * @return PTE virtual address
977 *
978 * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
979 * by adding the PTE offset.
980 */
hl_mmu_hr_pte_phys_to_virt(struct hl_ctx * ctx,struct pgt_info * pgt,u64 phys_pte_addr,u32 hop_table_size)981 u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
982 u64 phys_pte_addr, u32 hop_table_size)
983 {
984 u64 page_mask = (hop_table_size - 1);
985 u64 pte_offset = phys_pte_addr & page_mask;
986
987 return pgt->virt_addr + pte_offset;
988 }
989
990 /**
991 * hl_mmu_hr_write_pte() - write HR PTE
992 * @ctx: pointer to the context structure
993 * @pgt_info: HOP's page table info structure
994 * @phys_pte_addr: phys PTE address
995 * @val: raw PTE data
996 * @hop_table_size: HOP table size
997 */
hl_mmu_hr_write_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u64 val,u32 hop_table_size)998 void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
999 u64 val, u32 hop_table_size)
1000 {
1001 /*
1002 * The value to write is the phys address of the next hop +
1003 * flags at the 12 LSBs.
1004 */
1005 u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
1006
1007 *((u64 *) (uintptr_t) virt_addr) = val;
1008 }
1009
1010 /**
1011 * hl_mmu_hr_clear_pte() - clear HR PTE
1012 * @ctx: pointer to the context structure
1013 * @pgt_info: HOP's page table info structure
1014 * @phys_pte_addr: phys PTE address
1015 * @hop_table_size: HOP table size
1016 */
hl_mmu_hr_clear_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,u64 phys_pte_addr,u32 hop_table_size)1017 void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
1018 u32 hop_table_size)
1019 {
1020 /* no need to transform the value to physical address */
1021 hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
1022 }
1023
1024 /**
1025 * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
1026 * @ctx: pointer to the context structure
1027 * @pgt_info: HOP's page table info structure
1028 * @hr_priv: HR MMU private info
1029 * @hop_table_size: HOP table size
1030 *
1031 * @return number of PTEs still in the HOP
1032 */
hl_mmu_hr_put_pte(struct hl_ctx * ctx,struct pgt_info * pgt_info,struct hl_mmu_hr_priv * hr_priv,u32 hop_table_size)1033 int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
1034 struct hl_mmu_hr_priv *hr_priv,
1035 u32 hop_table_size)
1036 {
1037 int num_of_ptes_left;
1038
1039 pgt_info->num_of_ptes--;
1040
1041 /*
1042 * Need to save the number of ptes left because free_hop might free
1043 * the pgt_info
1044 */
1045 num_of_ptes_left = pgt_info->num_of_ptes;
1046 if (!num_of_ptes_left)
1047 hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1048
1049 return num_of_ptes_left;
1050 }
1051
1052 /**
1053 * hl_mmu_hr_get_pte() - increase PGT PTE count
1054 * @ctx: pointer to the context structure
1055 * @hr_func: host resident functions
1056 * @phys_hop_addr: HOP phys address
1057 */
hl_mmu_hr_get_pte(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 phys_hop_addr)1058 void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1059 {
1060 hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1061 }
1062
1063 /**
1064 * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1065 * @ctx: pointer to the context structure.
1066 * @hr_func: host resident functions.
1067 * @curr_pte: current PTE value.
1068 *
1069 * @return pgt_info structure on success, otherwise NULL.
1070 */
hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx * ctx,struct hl_hr_mmu_funcs * hr_func,u64 curr_pte)1071 struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1072 struct hl_hr_mmu_funcs *hr_func,
1073 u64 curr_pte)
1074 {
1075 u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1076
1077 if (next_hop_phys_addr == ULLONG_MAX)
1078 return NULL;
1079
1080 return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1081 }
1082
1083 /**
1084 * hl_mmu_hr_alloc_hop() - allocate HOP
1085 * @ctx: pointer to the context structure.
1086 * @hr_priv: host resident private info structure.
1087 * @hr_func: host resident functions.
1088 * @mmu_prop: MMU properties.
1089 *
1090 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1091 */
hl_mmu_hr_alloc_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop)1092 struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1093 struct hl_hr_mmu_funcs *hr_func,
1094 struct hl_mmu_properties *mmu_prop)
1095 {
1096 struct hl_device *hdev = ctx->hdev;
1097 struct pgt_info *pgt_info;
1098 dma_addr_t phys_addr;
1099 void *virt_addr;
1100 int i, retry = 1;
1101
1102 pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1103 if (!pgt_info)
1104 return NULL;
1105
1106 for (i = 0; i <= retry; i++) {
1107 virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1108 mmu_prop->hop_table_size,
1109 &phys_addr,
1110 mmu_prop->hop_table_size);
1111 if (virt_addr)
1112 break;
1113
1114 /* No memory in pool - get some and try again */
1115 virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1116 GFP_KERNEL | __GFP_ZERO);
1117 if (ZERO_OR_NULL_PTR(virt_addr))
1118 break;
1119
1120 if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1121 phys_addr, SZ_2M, -1)) {
1122 hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1123 virt_addr = NULL;
1124 break;
1125 }
1126 }
1127
1128 if (ZERO_OR_NULL_PTR(virt_addr)) {
1129 dev_err(hdev->dev, "failed to allocate page\n");
1130 goto pool_alloc_err;
1131 }
1132
1133 pgt_info->phys_addr = phys_addr;
1134 pgt_info->shadow_addr = (unsigned long) NULL;
1135 pgt_info->virt_addr = (unsigned long)virt_addr;
1136 pgt_info->ctx = ctx;
1137 pgt_info->num_of_ptes = 0;
1138 hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1139
1140 return pgt_info;
1141
1142 pool_alloc_err:
1143 kfree(pgt_info);
1144
1145 return NULL;
1146 }
1147
1148 /**
1149 * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1150 * @ctx: pointer to the context structure.
1151 * @hr_priv: host resident private info structure.
1152 * @hr_func: host resident functions.
1153 * @mmu_prop: MMU properties.
1154 * @curr_pte: current PTE value.
1155 * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1156 *
1157 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1158 */
hl_mmu_hr_get_alloc_next_hop(struct hl_ctx * ctx,struct hl_mmu_hr_priv * hr_priv,struct hl_hr_mmu_funcs * hr_func,struct hl_mmu_properties * mmu_prop,u64 curr_pte,bool * is_new_hop)1159 struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1160 struct hl_mmu_hr_priv *hr_priv,
1161 struct hl_hr_mmu_funcs *hr_func,
1162 struct hl_mmu_properties *mmu_prop,
1163 u64 curr_pte, bool *is_new_hop)
1164 {
1165 u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1166
1167 if (hop_addr != ULLONG_MAX)
1168 return hr_func->get_pgt_info(ctx, hop_addr);
1169
1170 *is_new_hop = true;
1171 return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1172 }
1173
1174 /**
1175 * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1176 * @ctx: pointer to the context structure.
1177 * @virt_addr: the virt address for which to get info.
1178 * @hops: HOPs info structure.
1179 * @hr_func: host resident functions.
1180 *
1181 * @return 0 on success, otherwise non 0 error code..
1182 */
hl_mmu_hr_get_tlb_info(struct hl_ctx * ctx,u64 virt_addr,struct hl_mmu_hop_info * hops,struct hl_hr_mmu_funcs * hr_func)1183 int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1184 struct hl_hr_mmu_funcs *hr_func)
1185 {
1186 /* using 6 HOPs as this is the maximum number of HOPs */
1187 struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1188 struct hl_device *hdev = ctx->hdev;
1189 struct hl_mmu_properties *mmu_prop;
1190 int rc, i, used_hops;
1191 bool is_huge;
1192
1193 rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1194 if (rc)
1195 return rc;
1196
1197 used_hops = mmu_prop->num_hops;
1198
1199 /* huge pages use one less hop */
1200 if (is_huge)
1201 used_hops--;
1202
1203 hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1204
1205 for (i = 0 ; i < used_hops ; i++) {
1206 if (i == 0)
1207 hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1208 else
1209 hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1210 hops->hop_info[i - 1].hop_pte_val);
1211
1212 if (!hops_pgt_info[i])
1213 return -EFAULT;
1214
1215 hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1216 hops->hop_info[i].hop_pte_addr =
1217 hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1218 hops->hop_info[i].hop_addr,
1219 hops->scrambled_vaddr);
1220 hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1221 hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1222 hops->hop_info[i].hop_pte_addr,
1223 mmu_prop->hop_table_size);
1224
1225 if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1226 return -EFAULT;
1227
1228 if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1229 break;
1230 }
1231
1232 /* if passed over all hops then no last hop was found */
1233 if (i == mmu_prop->num_hops)
1234 return -EFAULT;
1235
1236 if (hops->scrambled_vaddr != virt_addr)
1237 hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1238 (hdev, hops->hop_info[i].hop_pte_val);
1239 else
1240 hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1241
1242 hops->used_hops = i + 1;
1243
1244 return 0;
1245 }
1246
1247