1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "../include/hw_ip/mmu/mmu_general.h"
11
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pci-p2pdma.h>
16
17 MODULE_IMPORT_NS(DMA_BUF);
18
19 #define HL_MMU_DEBUG 0
20
21 /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22 #define DRAM_POOL_PAGE_SIZE SZ_8M
23
24 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
25 struct hl_mem_in *args, u64 *handle);
26
set_alloc_page_size(struct hl_device * hdev,struct hl_mem_in * args,u32 * page_size)27 static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
28 {
29 struct asic_fixed_properties *prop = &hdev->asic_prop;
30 u64 psize;
31
32 /*
33 * for ASIC that supports setting the allocation page size by user we will address
34 * user's choice only if it is not 0 (as 0 means taking the default page size)
35 */
36 if (prop->supports_user_set_page_size && args->alloc.page_size) {
37 psize = args->alloc.page_size;
38
39 if (!is_power_of_2(psize)) {
40 dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
41 return -EINVAL;
42 }
43 } else {
44 psize = prop->device_mem_alloc_default_page_size;
45 }
46
47 *page_size = psize;
48
49 return 0;
50 }
51
52 /*
53 * The va ranges in context object contain a list with the available chunks of
54 * device virtual memory.
55 * There is one range for host allocations and one for DRAM allocations.
56 *
57 * On initialization each range contains one chunk of all of its available
58 * virtual range which is a half of the total device virtual range.
59 *
60 * On each mapping of physical pages, a suitable virtual range chunk (with a
61 * minimum size) is selected from the list. If the chunk size equals the
62 * requested size, the chunk is returned. Otherwise, the chunk is split into
63 * two chunks - one to return as result and a remainder to stay in the list.
64 *
65 * On each Unmapping of a virtual address, the relevant virtual chunk is
66 * returned to the list. The chunk is added to the list and if its edges match
67 * the edges of the adjacent chunks (means a contiguous chunk can be created),
68 * the chunks are merged.
69 *
70 * On finish, the list is checked to have only one chunk of all the relevant
71 * virtual range (which is a half of the device total virtual range).
72 * If not (means not all mappings were unmapped), a warning is printed.
73 */
74
75 /*
76 * alloc_device_memory() - allocate device memory.
77 * @ctx: pointer to the context structure.
78 * @args: host parameters containing the requested size.
79 * @ret_handle: result handle.
80 *
81 * This function does the following:
82 * - Allocate the requested size rounded up to 'dram_page_size' pages.
83 * - Return unique handle for later map/unmap/free.
84 */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)85 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
86 u32 *ret_handle)
87 {
88 struct hl_device *hdev = ctx->hdev;
89 struct hl_vm *vm = &hdev->vm;
90 struct hl_vm_phys_pg_pack *phys_pg_pack;
91 u64 paddr = 0, total_size, num_pgs, i;
92 u32 num_curr_pgs, page_size;
93 bool contiguous;
94 int handle, rc;
95
96 num_curr_pgs = 0;
97
98 rc = set_alloc_page_size(hdev, args, &page_size);
99 if (rc)
100 return rc;
101
102 num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
103 total_size = num_pgs * page_size;
104
105 if (!total_size) {
106 dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
107 return -EINVAL;
108 }
109
110 contiguous = args->flags & HL_MEM_CONTIGUOUS;
111
112 if (contiguous) {
113 if (is_power_of_2(page_size))
114 paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
115 total_size, NULL, page_size);
116 else
117 paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
118 if (!paddr) {
119 dev_err(hdev->dev,
120 "Cannot allocate %llu contiguous pages with total size of %llu\n",
121 num_pgs, total_size);
122 return -ENOMEM;
123 }
124 }
125
126 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
127 if (!phys_pg_pack) {
128 rc = -ENOMEM;
129 goto pages_pack_err;
130 }
131
132 phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
133 phys_pg_pack->asid = ctx->asid;
134 phys_pg_pack->npages = num_pgs;
135 phys_pg_pack->page_size = page_size;
136 phys_pg_pack->total_size = total_size;
137 phys_pg_pack->flags = args->flags;
138 phys_pg_pack->contiguous = contiguous;
139
140 phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
141 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
142 rc = -ENOMEM;
143 goto pages_arr_err;
144 }
145
146 if (phys_pg_pack->contiguous) {
147 for (i = 0 ; i < num_pgs ; i++)
148 phys_pg_pack->pages[i] = paddr + i * page_size;
149 } else {
150 for (i = 0 ; i < num_pgs ; i++) {
151 if (is_power_of_2(page_size))
152 phys_pg_pack->pages[i] =
153 (uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
154 page_size, NULL,
155 page_size);
156 else
157 phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
158 page_size);
159
160 if (!phys_pg_pack->pages[i]) {
161 dev_err(hdev->dev,
162 "Cannot allocate device memory (out of memory)\n");
163 rc = -ENOMEM;
164 goto page_err;
165 }
166
167 num_curr_pgs++;
168 }
169 }
170
171 spin_lock(&vm->idr_lock);
172 handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
173 GFP_ATOMIC);
174 spin_unlock(&vm->idr_lock);
175
176 if (handle < 0) {
177 dev_err(hdev->dev, "Failed to get handle for page\n");
178 rc = -EFAULT;
179 goto idr_err;
180 }
181
182 for (i = 0 ; i < num_pgs ; i++)
183 kref_get(&vm->dram_pg_pool_refcount);
184
185 phys_pg_pack->handle = handle;
186
187 atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
188 atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
189
190 *ret_handle = handle;
191
192 return 0;
193
194 idr_err:
195 page_err:
196 if (!phys_pg_pack->contiguous)
197 for (i = 0 ; i < num_curr_pgs ; i++)
198 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
199 page_size);
200
201 kvfree(phys_pg_pack->pages);
202 pages_arr_err:
203 kfree(phys_pg_pack);
204 pages_pack_err:
205 if (contiguous)
206 gen_pool_free(vm->dram_pg_pool, paddr, total_size);
207
208 return rc;
209 }
210
211 /**
212 * dma_map_host_va() - DMA mapping of the given host virtual address.
213 * @hdev: habanalabs device structure.
214 * @addr: the host virtual address of the memory area.
215 * @size: the size of the memory area.
216 * @p_userptr: pointer to result userptr structure.
217 *
218 * This function does the following:
219 * - Allocate userptr structure.
220 * - Pin the given host memory using the userptr structure.
221 * - Perform DMA mapping to have the DMA addresses of the pages.
222 */
dma_map_host_va(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr ** p_userptr)223 static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
224 struct hl_userptr **p_userptr)
225 {
226 struct hl_userptr *userptr;
227 int rc;
228
229 userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
230 if (!userptr) {
231 rc = -ENOMEM;
232 goto userptr_err;
233 }
234
235 rc = hl_pin_host_memory(hdev, addr, size, userptr);
236 if (rc) {
237 dev_err(hdev->dev, "Failed to pin host memory\n");
238 goto pin_err;
239 }
240
241 userptr->dma_mapped = true;
242 userptr->dir = DMA_BIDIRECTIONAL;
243 userptr->vm_type = VM_TYPE_USERPTR;
244
245 *p_userptr = userptr;
246
247 rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248 if (rc) {
249 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250 goto dma_map_err;
251 }
252
253 return 0;
254
255 dma_map_err:
256 hl_unpin_host_memory(hdev, userptr);
257 pin_err:
258 kfree(userptr);
259 userptr_err:
260
261 return rc;
262 }
263
264 /**
265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266 * @hdev: habanalabs device structure.
267 * @userptr: userptr to free.
268 *
269 * This function does the following:
270 * - Unpins the physical pages.
271 * - Frees the userptr structure.
272 */
dma_unmap_host_va(struct hl_device * hdev,struct hl_userptr * userptr)273 static void dma_unmap_host_va(struct hl_device *hdev,
274 struct hl_userptr *userptr)
275 {
276 hl_unpin_host_memory(hdev, userptr);
277 kfree(userptr);
278 }
279
280 /**
281 * dram_pg_pool_do_release() - free DRAM pages pool
282 * @ref: pointer to reference object.
283 *
284 * This function does the following:
285 * - Frees the idr structure of physical pages handles.
286 * - Frees the generic pool of DRAM physical pages.
287 */
dram_pg_pool_do_release(struct kref * ref)288 static void dram_pg_pool_do_release(struct kref *ref)
289 {
290 struct hl_vm *vm = container_of(ref, struct hl_vm,
291 dram_pg_pool_refcount);
292
293 /*
294 * free the idr here as only here we know for sure that there are no
295 * allocated physical pages and hence there are no handles in use
296 */
297 idr_destroy(&vm->phys_pg_pack_handles);
298 gen_pool_destroy(vm->dram_pg_pool);
299 }
300
301 /**
302 * free_phys_pg_pack() - free physical page pack.
303 * @hdev: habanalabs device structure.
304 * @phys_pg_pack: physical page pack to free.
305 *
306 * This function does the following:
307 * - For DRAM memory only
308 * - iterate over the pack, free each physical block structure by
309 * returning it to the general pool.
310 * - Free the hl_vm_phys_pg_pack structure.
311 */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)312 static void free_phys_pg_pack(struct hl_device *hdev,
313 struct hl_vm_phys_pg_pack *phys_pg_pack)
314 {
315 struct hl_vm *vm = &hdev->vm;
316 u64 i;
317
318 if (phys_pg_pack->created_from_userptr)
319 goto end;
320
321 if (phys_pg_pack->contiguous) {
322 gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323 phys_pg_pack->total_size);
324
325 for (i = 0; i < phys_pg_pack->npages ; i++)
326 kref_put(&vm->dram_pg_pool_refcount,
327 dram_pg_pool_do_release);
328 } else {
329 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330 gen_pool_free(vm->dram_pg_pool,
331 phys_pg_pack->pages[i],
332 phys_pg_pack->page_size);
333 kref_put(&vm->dram_pg_pool_refcount,
334 dram_pg_pool_do_release);
335 }
336 }
337
338 end:
339 kvfree(phys_pg_pack->pages);
340 kfree(phys_pg_pack);
341
342 return;
343 }
344
345 /**
346 * free_device_memory() - free device memory.
347 * @ctx: pointer to the context structure.
348 * @args: host parameters containing the requested size.
349 *
350 * This function does the following:
351 * - Free the device memory related to the given handle.
352 */
free_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args)353 static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354 {
355 struct hl_device *hdev = ctx->hdev;
356 struct hl_vm *vm = &hdev->vm;
357 struct hl_vm_phys_pg_pack *phys_pg_pack;
358 u32 handle = args->free.handle;
359
360 spin_lock(&vm->idr_lock);
361 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362 if (!phys_pg_pack) {
363 spin_unlock(&vm->idr_lock);
364 dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365 return -EINVAL;
366 }
367
368 if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369 spin_unlock(&vm->idr_lock);
370 dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371 return -EINVAL;
372 }
373
374 if (phys_pg_pack->exporting_cnt) {
375 spin_unlock(&vm->idr_lock);
376 dev_dbg(hdev->dev, "handle %u is exported, cannot free\n", handle);
377 return -EINVAL;
378 }
379
380 /* must remove from idr before the freeing of the physical pages as the refcount of the pool
381 * is also the trigger of the idr destroy
382 */
383 idr_remove(&vm->phys_pg_pack_handles, handle);
384 spin_unlock(&vm->idr_lock);
385
386 atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
387 atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
388
389 free_phys_pg_pack(hdev, phys_pg_pack);
390
391 return 0;
392 }
393
394 /**
395 * clear_va_list_locked() - free virtual addresses list.
396 * @hdev: habanalabs device structure.
397 * @va_list: list of virtual addresses to free.
398 *
399 * This function does the following:
400 * - Iterate over the list and free each virtual addresses block.
401 *
402 * This function should be called only when va_list lock is taken.
403 */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)404 static void clear_va_list_locked(struct hl_device *hdev,
405 struct list_head *va_list)
406 {
407 struct hl_vm_va_block *va_block, *tmp;
408
409 list_for_each_entry_safe(va_block, tmp, va_list, node) {
410 list_del(&va_block->node);
411 kfree(va_block);
412 }
413 }
414
415 /**
416 * print_va_list_locked() - print virtual addresses list.
417 * @hdev: habanalabs device structure.
418 * @va_list: list of virtual addresses to print.
419 *
420 * This function does the following:
421 * - Iterate over the list and print each virtual addresses block.
422 *
423 * This function should be called only when va_list lock is taken.
424 */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)425 static void print_va_list_locked(struct hl_device *hdev,
426 struct list_head *va_list)
427 {
428 #if HL_MMU_DEBUG
429 struct hl_vm_va_block *va_block;
430
431 dev_dbg(hdev->dev, "print va list:\n");
432
433 list_for_each_entry(va_block, va_list, node)
434 dev_dbg(hdev->dev,
435 "va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
436 va_block->start, va_block->end, va_block->size);
437 #endif
438 }
439
440 /**
441 * merge_va_blocks_locked() - merge a virtual block if possible.
442 * @hdev: pointer to the habanalabs device structure.
443 * @va_list: pointer to the virtual addresses block list.
444 * @va_block: virtual block to merge with adjacent blocks.
445 *
446 * This function does the following:
447 * - Merge the given blocks with the adjacent blocks if their virtual ranges
448 * create a contiguous virtual range.
449 *
450 * This Function should be called only when va_list lock is taken.
451 */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)452 static void merge_va_blocks_locked(struct hl_device *hdev,
453 struct list_head *va_list, struct hl_vm_va_block *va_block)
454 {
455 struct hl_vm_va_block *prev, *next;
456
457 prev = list_prev_entry(va_block, node);
458 if (&prev->node != va_list && prev->end + 1 == va_block->start) {
459 prev->end = va_block->end;
460 prev->size = prev->end - prev->start + 1;
461 list_del(&va_block->node);
462 kfree(va_block);
463 va_block = prev;
464 }
465
466 next = list_next_entry(va_block, node);
467 if (&next->node != va_list && va_block->end + 1 == next->start) {
468 next->start = va_block->start;
469 next->size = next->end - next->start + 1;
470 list_del(&va_block->node);
471 kfree(va_block);
472 }
473 }
474
475 /**
476 * add_va_block_locked() - add a virtual block to the virtual addresses list.
477 * @hdev: pointer to the habanalabs device structure.
478 * @va_list: pointer to the virtual addresses block list.
479 * @start: start virtual address.
480 * @end: end virtual address.
481 *
482 * This function does the following:
483 * - Add the given block to the virtual blocks list and merge with other blocks
484 * if a contiguous virtual block can be created.
485 *
486 * This Function should be called only when va_list lock is taken.
487 */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)488 static int add_va_block_locked(struct hl_device *hdev,
489 struct list_head *va_list, u64 start, u64 end)
490 {
491 struct hl_vm_va_block *va_block, *res = NULL;
492 u64 size = end - start + 1;
493
494 print_va_list_locked(hdev, va_list);
495
496 list_for_each_entry(va_block, va_list, node) {
497 /* TODO: remove upon matureness */
498 if (hl_mem_area_crosses_range(start, size, va_block->start,
499 va_block->end)) {
500 dev_err(hdev->dev,
501 "block crossing ranges at start 0x%llx, end 0x%llx\n",
502 va_block->start, va_block->end);
503 return -EINVAL;
504 }
505
506 if (va_block->end < start)
507 res = va_block;
508 }
509
510 va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
511 if (!va_block)
512 return -ENOMEM;
513
514 va_block->start = start;
515 va_block->end = end;
516 va_block->size = size;
517
518 if (!res)
519 list_add(&va_block->node, va_list);
520 else
521 list_add(&va_block->node, &res->node);
522
523 merge_va_blocks_locked(hdev, va_list, va_block);
524
525 print_va_list_locked(hdev, va_list);
526
527 return 0;
528 }
529
530 /**
531 * add_va_block() - wrapper for add_va_block_locked.
532 * @hdev: pointer to the habanalabs device structure.
533 * @va_range: pointer to the virtual addresses range object.
534 * @start: start virtual address.
535 * @end: end virtual address.
536 *
537 * This function does the following:
538 * - Takes the list lock and calls add_va_block_locked.
539 */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)540 static inline int add_va_block(struct hl_device *hdev,
541 struct hl_va_range *va_range, u64 start, u64 end)
542 {
543 int rc;
544
545 mutex_lock(&va_range->lock);
546 rc = add_va_block_locked(hdev, &va_range->list, start, end);
547 mutex_unlock(&va_range->lock);
548
549 return rc;
550 }
551
552 /**
553 * is_hint_crossing_range() - check if hint address crossing specified reserved.
554 * @range_type: virtual space range type.
555 * @start_addr: start virtual address.
556 * @size: block size.
557 * @prop: asic properties structure to retrieve reserved ranges from.
558 */
is_hint_crossing_range(enum hl_va_range_type range_type,u64 start_addr,u32 size,struct asic_fixed_properties * prop)559 static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
560 u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
561 bool range_cross;
562
563 if (range_type == HL_VA_RANGE_TYPE_DRAM)
564 range_cross =
565 hl_mem_area_crosses_range(start_addr, size,
566 prop->hints_dram_reserved_va_range.start_addr,
567 prop->hints_dram_reserved_va_range.end_addr);
568 else if (range_type == HL_VA_RANGE_TYPE_HOST)
569 range_cross =
570 hl_mem_area_crosses_range(start_addr, size,
571 prop->hints_host_reserved_va_range.start_addr,
572 prop->hints_host_reserved_va_range.end_addr);
573 else
574 range_cross =
575 hl_mem_area_crosses_range(start_addr, size,
576 prop->hints_host_hpage_reserved_va_range.start_addr,
577 prop->hints_host_hpage_reserved_va_range.end_addr);
578
579 return range_cross;
580 }
581
582 /**
583 * get_va_block() - get a virtual block for the given size and alignment.
584 *
585 * @hdev: pointer to the habanalabs device structure.
586 * @va_range: pointer to the virtual addresses range.
587 * @size: requested block size.
588 * @hint_addr: hint for requested address by the user.
589 * @va_block_align: required alignment of the virtual block start address.
590 * @range_type: va range type (host, dram)
591 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
592 *
593 * This function does the following:
594 * - Iterate on the virtual block list to find a suitable virtual block for the
595 * given size, hint address and alignment.
596 * - Reserve the requested block and update the list.
597 * - Return the start address of the virtual block.
598 */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,u32 va_block_align,enum hl_va_range_type range_type,u32 flags)599 static u64 get_va_block(struct hl_device *hdev,
600 struct hl_va_range *va_range,
601 u64 size, u64 hint_addr, u32 va_block_align,
602 enum hl_va_range_type range_type,
603 u32 flags)
604 {
605 struct hl_vm_va_block *va_block, *new_va_block = NULL;
606 struct asic_fixed_properties *prop = &hdev->asic_prop;
607 u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
608 align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
609 dram_hint_mask = prop->dram_hints_align_mask;
610 bool add_prev = false;
611 bool is_align_pow_2 = is_power_of_2(va_range->page_size);
612 bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
613 bool force_hint = flags & HL_MEM_FORCE_HINT;
614
615 if (is_align_pow_2)
616 align_mask = ~((u64)va_block_align - 1);
617 else
618 /*
619 * with non-power-of-2 range we work only with page granularity
620 * and the start address is page aligned,
621 * so no need for alignment checking.
622 */
623 size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
624 va_range->page_size;
625
626 tmp_hint_addr = hint_addr & ~dram_hint_mask;
627
628 /* Check if we need to ignore hint address */
629 if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
630 (!is_align_pow_2 && is_hint_dram_addr &&
631 do_div(tmp_hint_addr, va_range->page_size))) {
632
633 if (force_hint) {
634 /* Hint must be respected, so here we just fail */
635 dev_err(hdev->dev,
636 "Hint address 0x%llx is not page aligned - cannot be respected\n",
637 hint_addr);
638 return 0;
639 }
640
641 dev_dbg(hdev->dev,
642 "Hint address 0x%llx will be ignored because it is not aligned\n",
643 hint_addr);
644 hint_addr = 0;
645 }
646
647 mutex_lock(&va_range->lock);
648
649 print_va_list_locked(hdev, &va_range->list);
650
651 list_for_each_entry(va_block, &va_range->list, node) {
652 /* Calc the first possible aligned addr */
653 valid_start = va_block->start;
654
655 if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
656 valid_start &= align_mask;
657 valid_start += va_block_align;
658 if (valid_start > va_block->end)
659 continue;
660 }
661
662 valid_size = va_block->end - valid_start + 1;
663 if (valid_size < size)
664 continue;
665
666 /*
667 * In case hint address is 0, and hints_range_reservation
668 * property enabled, then avoid allocating va blocks from the
669 * range reserved for hint addresses
670 */
671 if (prop->hints_range_reservation && !hint_addr)
672 if (is_hint_crossing_range(range_type, valid_start,
673 size, prop))
674 continue;
675
676 /* Pick the minimal length block which has the required size */
677 if (!new_va_block || (valid_size < reserved_valid_size)) {
678 new_va_block = va_block;
679 reserved_valid_start = valid_start;
680 reserved_valid_size = valid_size;
681 }
682
683 if (hint_addr && hint_addr >= valid_start &&
684 (hint_addr + size) <= va_block->end) {
685 new_va_block = va_block;
686 reserved_valid_start = hint_addr;
687 reserved_valid_size = valid_size;
688 break;
689 }
690 }
691
692 if (!new_va_block) {
693 dev_err(hdev->dev, "no available va block for size %llu\n",
694 size);
695 goto out;
696 }
697
698 if (force_hint && reserved_valid_start != hint_addr) {
699 /* Hint address must be respected. If we are here - this means
700 * we could not respect it.
701 */
702 dev_err(hdev->dev,
703 "Hint address 0x%llx could not be respected\n",
704 hint_addr);
705 reserved_valid_start = 0;
706 goto out;
707 }
708
709 /*
710 * Check if there is some leftover range due to reserving the new
711 * va block, then return it to the main virtual addresses list.
712 */
713 if (reserved_valid_start > new_va_block->start) {
714 prev_start = new_va_block->start;
715 prev_end = reserved_valid_start - 1;
716
717 new_va_block->start = reserved_valid_start;
718 new_va_block->size = reserved_valid_size;
719
720 add_prev = true;
721 }
722
723 if (new_va_block->size > size) {
724 new_va_block->start += size;
725 new_va_block->size = new_va_block->end - new_va_block->start + 1;
726 } else {
727 list_del(&new_va_block->node);
728 kfree(new_va_block);
729 }
730
731 if (add_prev)
732 add_va_block_locked(hdev, &va_range->list, prev_start,
733 prev_end);
734
735 print_va_list_locked(hdev, &va_range->list);
736 out:
737 mutex_unlock(&va_range->lock);
738
739 return reserved_valid_start;
740 }
741
742 /*
743 * hl_reserve_va_block() - reserve a virtual block of a given size.
744 * @hdev: pointer to the habanalabs device structure.
745 * @ctx: current context
746 * @type: virtual addresses range type.
747 * @size: requested block size.
748 * @alignment: required alignment in bytes of the virtual block start address,
749 * 0 means no alignment.
750 *
751 * This function does the following:
752 * - Iterate on the virtual block list to find a suitable virtual block for the
753 * given size and alignment.
754 * - Reserve the requested block and update the list.
755 * - Return the start address of the virtual block.
756 */
hl_reserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_va_range_type type,u64 size,u32 alignment)757 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
758 enum hl_va_range_type type, u64 size, u32 alignment)
759 {
760 return get_va_block(hdev, ctx->va_range[type], size, 0,
761 max(alignment, ctx->va_range[type]->page_size),
762 type, 0);
763 }
764
765 /**
766 * hl_get_va_range_type() - get va_range type for the given address and size.
767 * @ctx: context to fetch va_range from.
768 * @address: the start address of the area we want to validate.
769 * @size: the size in bytes of the area we want to validate.
770 * @type: returned va_range type.
771 *
772 * Return: true if the area is inside a valid range, false otherwise.
773 */
hl_get_va_range_type(struct hl_ctx * ctx,u64 address,u64 size,enum hl_va_range_type * type)774 static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
775 enum hl_va_range_type *type)
776 {
777 int i;
778
779 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
780 if (hl_mem_area_inside_range(address, size,
781 ctx->va_range[i]->start_addr,
782 ctx->va_range[i]->end_addr)) {
783 *type = i;
784 return 0;
785 }
786 }
787
788 return -EINVAL;
789 }
790
791 /**
792 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
793 * @hdev: pointer to the habanalabs device structure
794 * @ctx: pointer to the context structure.
795 * @start_addr: start virtual address.
796 * @size: number of bytes to unreserve.
797 *
798 * This function does the following:
799 * - Takes the list lock and calls add_va_block_locked.
800 */
hl_unreserve_va_block(struct hl_device * hdev,struct hl_ctx * ctx,u64 start_addr,u64 size)801 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
802 u64 start_addr, u64 size)
803 {
804 enum hl_va_range_type type;
805 int rc;
806
807 rc = hl_get_va_range_type(ctx, start_addr, size, &type);
808 if (rc) {
809 dev_err(hdev->dev,
810 "cannot find va_range for va %#llx size %llu",
811 start_addr, size);
812 return rc;
813 }
814
815 rc = add_va_block(hdev, ctx->va_range[type], start_addr,
816 start_addr + size - 1);
817 if (rc)
818 dev_warn(hdev->dev,
819 "add va block failed for vaddr: 0x%llx\n", start_addr);
820
821 return rc;
822 }
823
824 /**
825 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
826 * memory
827 * @ctx: pointer to the context structure.
828 * @userptr: userptr to initialize from.
829 * @pphys_pg_pack: result pointer.
830 * @force_regular_page: tell the function to ignore huge page optimization,
831 * even if possible. Needed for cases where the device VA
832 * is allocated before we know the composition of the
833 * physical pages
834 *
835 * This function does the following:
836 * - Pin the physical pages related to the given virtual block.
837 * - Create a physical page pack from the physical pages related to the given
838 * virtual block.
839 */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack,bool force_regular_page)840 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
841 struct hl_userptr *userptr,
842 struct hl_vm_phys_pg_pack **pphys_pg_pack,
843 bool force_regular_page)
844 {
845 u32 npages, page_size = PAGE_SIZE,
846 huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
847 u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
848 struct hl_vm_phys_pg_pack *phys_pg_pack;
849 bool first = true, is_huge_page_opt;
850 u64 page_mask, total_npages;
851 struct scatterlist *sg;
852 dma_addr_t dma_addr;
853 int rc, i, j;
854
855 phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
856 if (!phys_pg_pack)
857 return -ENOMEM;
858
859 phys_pg_pack->vm_type = userptr->vm_type;
860 phys_pg_pack->created_from_userptr = true;
861 phys_pg_pack->asid = ctx->asid;
862 atomic_set(&phys_pg_pack->mapping_cnt, 1);
863
864 is_huge_page_opt = (force_regular_page ? false : true);
865
866 /* Only if all dma_addrs are aligned to 2MB and their
867 * sizes is at least 2MB, we can use huge page mapping.
868 * We limit the 2MB optimization to this condition,
869 * since later on we acquire the related VA range as one
870 * consecutive block.
871 */
872 total_npages = 0;
873 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
874 npages = hl_get_sg_info(sg, &dma_addr);
875
876 total_npages += npages;
877
878 if ((npages % pgs_in_huge_page) ||
879 (dma_addr & (huge_page_size - 1)))
880 is_huge_page_opt = false;
881 }
882
883 if (is_huge_page_opt) {
884 page_size = huge_page_size;
885 do_div(total_npages, pgs_in_huge_page);
886 }
887
888 page_mask = ~(((u64) page_size) - 1);
889
890 phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
891 GFP_KERNEL);
892 if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
893 rc = -ENOMEM;
894 goto page_pack_arr_mem_err;
895 }
896
897 phys_pg_pack->npages = total_npages;
898 phys_pg_pack->page_size = page_size;
899 phys_pg_pack->total_size = total_npages * page_size;
900
901 j = 0;
902 for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
903 npages = hl_get_sg_info(sg, &dma_addr);
904
905 /* align down to physical page size and save the offset */
906 if (first) {
907 first = false;
908 phys_pg_pack->offset = dma_addr & (page_size - 1);
909 dma_addr &= page_mask;
910 }
911
912 while (npages) {
913 phys_pg_pack->pages[j++] = dma_addr;
914 dma_addr += page_size;
915
916 if (is_huge_page_opt)
917 npages -= pgs_in_huge_page;
918 else
919 npages--;
920 }
921 }
922
923 *pphys_pg_pack = phys_pg_pack;
924
925 return 0;
926
927 page_pack_arr_mem_err:
928 kfree(phys_pg_pack);
929
930 return rc;
931 }
932
933 /**
934 * map_phys_pg_pack() - maps the physical page pack..
935 * @ctx: pointer to the context structure.
936 * @vaddr: start address of the virtual area to map from.
937 * @phys_pg_pack: the pack of physical pages to map to.
938 *
939 * This function does the following:
940 * - Maps each chunk of virtual memory to matching physical chunk.
941 * - Stores number of successful mappings in the given argument.
942 * - Returns 0 on success, error code otherwise.
943 */
map_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)944 static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
945 struct hl_vm_phys_pg_pack *phys_pg_pack)
946 {
947 struct hl_device *hdev = ctx->hdev;
948 u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
949 u32 page_size = phys_pg_pack->page_size;
950 int rc = 0;
951 bool is_host_addr;
952
953 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
954 paddr = phys_pg_pack->pages[i];
955
956 rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
957 (i + 1) == phys_pg_pack->npages);
958 if (rc) {
959 dev_err(hdev->dev,
960 "map failed for handle %u, npages: %llu, mapped: %llu",
961 phys_pg_pack->handle, phys_pg_pack->npages,
962 mapped_pg_cnt);
963 goto err;
964 }
965
966 mapped_pg_cnt++;
967 next_vaddr += page_size;
968 }
969
970 return 0;
971
972 err:
973 is_host_addr = !hl_is_dram_va(hdev, vaddr);
974
975 next_vaddr = vaddr;
976 for (i = 0 ; i < mapped_pg_cnt ; i++) {
977 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
978 (i + 1) == mapped_pg_cnt))
979 dev_warn_ratelimited(hdev->dev,
980 "failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
981 phys_pg_pack->handle, next_vaddr,
982 phys_pg_pack->pages[i], page_size);
983
984 next_vaddr += page_size;
985
986 /*
987 * unmapping on Palladium can be really long, so avoid a CPU
988 * soft lockup bug by sleeping a little between unmapping pages
989 *
990 * In addition, on host num of pages could be huge,
991 * because page size could be 4KB, so when unmapping host
992 * pages sleep every 32K pages to avoid soft lockup
993 */
994 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
995 usleep_range(50, 200);
996 }
997
998 return rc;
999 }
1000
1001 /**
1002 * unmap_phys_pg_pack() - unmaps the physical page pack.
1003 * @ctx: pointer to the context structure.
1004 * @vaddr: start address of the virtual area to unmap.
1005 * @phys_pg_pack: the pack of physical pages to unmap.
1006 */
unmap_phys_pg_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)1007 static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1008 struct hl_vm_phys_pg_pack *phys_pg_pack)
1009 {
1010 struct hl_device *hdev = ctx->hdev;
1011 u64 next_vaddr, i;
1012 bool is_host_addr;
1013 u32 page_size;
1014
1015 is_host_addr = !hl_is_dram_va(hdev, vaddr);
1016 page_size = phys_pg_pack->page_size;
1017 next_vaddr = vaddr;
1018
1019 for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1020 if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1021 (i + 1) == phys_pg_pack->npages))
1022 dev_warn_ratelimited(hdev->dev,
1023 "unmap failed for vaddr: 0x%llx\n", next_vaddr);
1024
1025 /*
1026 * unmapping on Palladium can be really long, so avoid a CPU
1027 * soft lockup bug by sleeping a little between unmapping pages
1028 *
1029 * In addition, on host num of pages could be huge,
1030 * because page size could be 4KB, so when unmapping host
1031 * pages sleep every 32K pages to avoid soft lockup
1032 */
1033 if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1034 usleep_range(50, 200);
1035 }
1036 }
1037
get_paddr_from_handle(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * paddr)1038 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
1039 u64 *paddr)
1040 {
1041 struct hl_device *hdev = ctx->hdev;
1042 struct hl_vm *vm = &hdev->vm;
1043 struct hl_vm_phys_pg_pack *phys_pg_pack;
1044 u32 handle;
1045
1046 handle = lower_32_bits(args->map_device.handle);
1047 spin_lock(&vm->idr_lock);
1048 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1049 if (!phys_pg_pack) {
1050 spin_unlock(&vm->idr_lock);
1051 dev_err(hdev->dev, "no match for handle %u\n", handle);
1052 return -EINVAL;
1053 }
1054
1055 *paddr = phys_pg_pack->pages[0];
1056
1057 spin_unlock(&vm->idr_lock);
1058
1059 return 0;
1060 }
1061
1062 /**
1063 * map_device_va() - map the given memory.
1064 * @ctx: pointer to the context structure.
1065 * @args: host parameters with handle/host virtual address.
1066 * @device_addr: pointer to result device virtual address.
1067 *
1068 * This function does the following:
1069 * - If given a physical device memory handle, map to a device virtual block
1070 * and return the start address of this block.
1071 * - If given a host virtual address and size, find the related physical pages,
1072 * map a device virtual block to this pages and return the start address of
1073 * this block.
1074 */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)1075 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1076 {
1077 struct hl_vm_phys_pg_pack *phys_pg_pack;
1078 enum hl_va_range_type va_range_type = 0;
1079 struct hl_device *hdev = ctx->hdev;
1080 struct hl_userptr *userptr = NULL;
1081 u32 handle = 0, va_block_align;
1082 struct hl_vm_hash_node *hnode;
1083 struct hl_vm *vm = &hdev->vm;
1084 struct hl_va_range *va_range;
1085 bool is_userptr, do_prefetch;
1086 u64 ret_vaddr, hint_addr;
1087 enum vm_type *vm_type;
1088 int rc;
1089
1090 /* set map flags */
1091 is_userptr = args->flags & HL_MEM_USERPTR;
1092 do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1093
1094 /* Assume failure */
1095 *device_addr = 0;
1096
1097 if (is_userptr) {
1098 u64 addr = args->map_host.host_virt_addr,
1099 size = args->map_host.mem_size;
1100 u32 page_size = hdev->asic_prop.pmmu.page_size,
1101 huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1102
1103 rc = dma_map_host_va(hdev, addr, size, &userptr);
1104 if (rc) {
1105 dev_err(hdev->dev, "failed to get userptr from va\n");
1106 return rc;
1107 }
1108
1109 rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1110 &phys_pg_pack, false);
1111 if (rc) {
1112 dev_err(hdev->dev,
1113 "unable to init page pack for vaddr 0x%llx\n",
1114 addr);
1115 goto init_page_pack_err;
1116 }
1117
1118 vm_type = (enum vm_type *) userptr;
1119 hint_addr = args->map_host.hint_addr;
1120 handle = phys_pg_pack->handle;
1121
1122 /* get required alignment */
1123 if (phys_pg_pack->page_size == page_size) {
1124 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1125 va_range_type = HL_VA_RANGE_TYPE_HOST;
1126 /*
1127 * huge page alignment may be needed in case of regular
1128 * page mapping, depending on the host VA alignment
1129 */
1130 if (addr & (huge_page_size - 1))
1131 va_block_align = page_size;
1132 else
1133 va_block_align = huge_page_size;
1134 } else {
1135 /*
1136 * huge page alignment is needed in case of huge page
1137 * mapping
1138 */
1139 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1140 va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1141 va_block_align = huge_page_size;
1142 }
1143 } else {
1144 handle = lower_32_bits(args->map_device.handle);
1145
1146 spin_lock(&vm->idr_lock);
1147 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1148 if (!phys_pg_pack) {
1149 spin_unlock(&vm->idr_lock);
1150 dev_err(hdev->dev,
1151 "no match for handle %u\n", handle);
1152 return -EINVAL;
1153 }
1154
1155 /* increment now to avoid freeing device memory while mapping */
1156 atomic_inc(&phys_pg_pack->mapping_cnt);
1157
1158 spin_unlock(&vm->idr_lock);
1159
1160 vm_type = (enum vm_type *) phys_pg_pack;
1161
1162 hint_addr = args->map_device.hint_addr;
1163
1164 /* DRAM VA alignment is the same as the MMU page size */
1165 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1166 va_range_type = HL_VA_RANGE_TYPE_DRAM;
1167 va_block_align = hdev->asic_prop.dmmu.page_size;
1168 }
1169
1170 /*
1171 * relevant for mapping device physical memory only, as host memory is
1172 * implicitly shared
1173 */
1174 if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1175 phys_pg_pack->asid != ctx->asid) {
1176 dev_err(hdev->dev,
1177 "Failed to map memory, handle %u is not shared\n",
1178 handle);
1179 rc = -EPERM;
1180 goto shared_err;
1181 }
1182
1183 hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1184 if (!hnode) {
1185 rc = -ENOMEM;
1186 goto hnode_err;
1187 }
1188
1189 if (hint_addr && phys_pg_pack->offset) {
1190 if (args->flags & HL_MEM_FORCE_HINT) {
1191 /* Fail if hint must be respected but it can't be */
1192 dev_err(hdev->dev,
1193 "Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1194 hint_addr, phys_pg_pack->offset);
1195 rc = -EINVAL;
1196 goto va_block_err;
1197 }
1198 dev_dbg(hdev->dev,
1199 "Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1200 hint_addr, phys_pg_pack->offset);
1201 }
1202
1203 ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1204 hint_addr, va_block_align,
1205 va_range_type, args->flags);
1206 if (!ret_vaddr) {
1207 dev_err(hdev->dev, "no available va block for handle %u\n",
1208 handle);
1209 rc = -ENOMEM;
1210 goto va_block_err;
1211 }
1212
1213 mutex_lock(&hdev->mmu_lock);
1214
1215 rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1216 if (rc) {
1217 dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
1218 mutex_unlock(&hdev->mmu_lock);
1219 goto map_err;
1220 }
1221
1222 rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1223 ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1224 mutex_unlock(&hdev->mmu_lock);
1225 if (rc)
1226 goto map_err;
1227
1228 /*
1229 * prefetch is done upon user's request. it is performed in WQ as and so can
1230 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1231 */
1232 if (do_prefetch) {
1233 rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1234 phys_pg_pack->total_size);
1235 if (rc)
1236 goto map_err;
1237 }
1238
1239 ret_vaddr += phys_pg_pack->offset;
1240
1241 hnode->ptr = vm_type;
1242 hnode->vaddr = ret_vaddr;
1243
1244 mutex_lock(&ctx->mem_hash_lock);
1245 hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1246 mutex_unlock(&ctx->mem_hash_lock);
1247
1248 *device_addr = ret_vaddr;
1249
1250 if (is_userptr)
1251 free_phys_pg_pack(hdev, phys_pg_pack);
1252
1253 return rc;
1254
1255 map_err:
1256 if (add_va_block(hdev, va_range, ret_vaddr,
1257 ret_vaddr + phys_pg_pack->total_size - 1))
1258 dev_warn(hdev->dev,
1259 "release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1260 handle, ret_vaddr);
1261
1262 va_block_err:
1263 kfree(hnode);
1264 hnode_err:
1265 shared_err:
1266 atomic_dec(&phys_pg_pack->mapping_cnt);
1267 if (is_userptr)
1268 free_phys_pg_pack(hdev, phys_pg_pack);
1269 init_page_pack_err:
1270 if (is_userptr)
1271 dma_unmap_host_va(hdev, userptr);
1272
1273 return rc;
1274 }
1275
1276 /**
1277 * unmap_device_va() - unmap the given device virtual address.
1278 * @ctx: pointer to the context structure.
1279 * @args: host parameters with device virtual address to unmap.
1280 * @ctx_free: true if in context free flow, false otherwise.
1281 *
1282 * This function does the following:
1283 * - unmap the physical pages related to the given virtual address.
1284 * - return the device virtual block to the virtual block list.
1285 */
unmap_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,bool ctx_free)1286 static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1287 bool ctx_free)
1288 {
1289 struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1290 u64 vaddr = args->unmap.device_virt_addr;
1291 struct hl_vm_hash_node *hnode = NULL;
1292 struct asic_fixed_properties *prop;
1293 struct hl_device *hdev = ctx->hdev;
1294 struct hl_userptr *userptr = NULL;
1295 struct hl_va_range *va_range;
1296 enum vm_type *vm_type;
1297 bool is_userptr;
1298 int rc = 0;
1299
1300 prop = &hdev->asic_prop;
1301
1302 /* protect from double entrance */
1303 mutex_lock(&ctx->mem_hash_lock);
1304 hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
1305 if (vaddr == hnode->vaddr)
1306 break;
1307
1308 if (!hnode) {
1309 mutex_unlock(&ctx->mem_hash_lock);
1310 dev_err(hdev->dev,
1311 "unmap failed, no mem hnode for vaddr 0x%llx\n",
1312 vaddr);
1313 return -EINVAL;
1314 }
1315
1316 hash_del(&hnode->node);
1317 mutex_unlock(&ctx->mem_hash_lock);
1318
1319 vm_type = hnode->ptr;
1320
1321 if (*vm_type == VM_TYPE_USERPTR) {
1322 is_userptr = true;
1323 userptr = hnode->ptr;
1324
1325 rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1326 false);
1327 if (rc) {
1328 dev_err(hdev->dev,
1329 "unable to init page pack for vaddr 0x%llx\n",
1330 vaddr);
1331 goto vm_type_err;
1332 }
1333
1334 if (phys_pg_pack->page_size ==
1335 hdev->asic_prop.pmmu.page_size)
1336 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1337 else
1338 va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1339 } else if (*vm_type == VM_TYPE_PHYS_PACK) {
1340 is_userptr = false;
1341 va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1342 phys_pg_pack = hnode->ptr;
1343 } else {
1344 dev_warn(hdev->dev,
1345 "unmap failed, unknown vm desc for vaddr 0x%llx\n",
1346 vaddr);
1347 rc = -EFAULT;
1348 goto vm_type_err;
1349 }
1350
1351 if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1352 dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1353 rc = -EINVAL;
1354 goto mapping_cnt_err;
1355 }
1356
1357 if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1358 vaddr = prop->dram_base_address +
1359 DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1360 phys_pg_pack->page_size) *
1361 phys_pg_pack->page_size;
1362 else
1363 vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1364
1365 mutex_lock(&hdev->mmu_lock);
1366
1367 unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1368
1369 /*
1370 * During context free this function is called in a loop to clean all
1371 * the context mappings. Hence the cache invalidation can be called once
1372 * at the loop end rather than for each iteration
1373 */
1374 if (!ctx_free)
1375 rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1376 phys_pg_pack->total_size);
1377
1378 mutex_unlock(&hdev->mmu_lock);
1379
1380 /*
1381 * If the context is closing we don't need to check for the MMU cache
1382 * invalidation return code and update the VA free list as in this flow
1383 * we invalidate the MMU cache outside of this unmap function and the VA
1384 * free list will be freed anyway.
1385 */
1386 if (!ctx_free) {
1387 int tmp_rc;
1388
1389 tmp_rc = add_va_block(hdev, va_range, vaddr,
1390 vaddr + phys_pg_pack->total_size - 1);
1391 if (tmp_rc) {
1392 dev_warn(hdev->dev,
1393 "add va block failed for vaddr: 0x%llx\n",
1394 vaddr);
1395 if (!rc)
1396 rc = tmp_rc;
1397 }
1398 }
1399
1400 atomic_dec(&phys_pg_pack->mapping_cnt);
1401 kfree(hnode);
1402
1403 if (is_userptr) {
1404 free_phys_pg_pack(hdev, phys_pg_pack);
1405 dma_unmap_host_va(hdev, userptr);
1406 }
1407
1408 return rc;
1409
1410 mapping_cnt_err:
1411 if (is_userptr)
1412 free_phys_pg_pack(hdev, phys_pg_pack);
1413 vm_type_err:
1414 mutex_lock(&ctx->mem_hash_lock);
1415 hash_add(ctx->mem_hash, &hnode->node, vaddr);
1416 mutex_unlock(&ctx->mem_hash_lock);
1417
1418 return rc;
1419 }
1420
map_block(struct hl_device * hdev,u64 address,u64 * handle,u32 * size)1421 static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1422 {
1423 u32 block_id;
1424 int rc;
1425
1426 *handle = 0;
1427 if (size)
1428 *size = 0;
1429
1430 rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1431 if (rc)
1432 return rc;
1433
1434 *handle = block_id | HL_MMAP_TYPE_BLOCK;
1435 *handle <<= PAGE_SHIFT;
1436
1437 return 0;
1438 }
1439
hw_block_vm_close(struct vm_area_struct * vma)1440 static void hw_block_vm_close(struct vm_area_struct *vma)
1441 {
1442 struct hl_vm_hw_block_list_node *lnode =
1443 (struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1444 struct hl_ctx *ctx = lnode->ctx;
1445 long new_mmap_size;
1446
1447 new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1448 if (new_mmap_size > 0) {
1449 lnode->mapped_size = new_mmap_size;
1450 return;
1451 }
1452
1453 mutex_lock(&ctx->hw_block_list_lock);
1454 list_del(&lnode->node);
1455 mutex_unlock(&ctx->hw_block_list_lock);
1456 hl_ctx_put(ctx);
1457 kfree(lnode);
1458 vma->vm_private_data = NULL;
1459 }
1460
1461 static const struct vm_operations_struct hw_block_vm_ops = {
1462 .close = hw_block_vm_close
1463 };
1464
1465 /**
1466 * hl_hw_block_mmap() - mmap a hw block to user.
1467 * @hpriv: pointer to the private data of the fd
1468 * @vma: pointer to vm_area_struct of the process
1469 *
1470 * Driver increments context reference for every HW block mapped in order
1471 * to prevent user from closing FD without unmapping first
1472 */
hl_hw_block_mmap(struct hl_fpriv * hpriv,struct vm_area_struct * vma)1473 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1474 {
1475 struct hl_vm_hw_block_list_node *lnode;
1476 struct hl_device *hdev = hpriv->hdev;
1477 struct hl_ctx *ctx = hpriv->ctx;
1478 u32 block_id, block_size;
1479 int rc;
1480
1481 /* We use the page offset to hold the block id and thus we need to clear
1482 * it before doing the mmap itself
1483 */
1484 block_id = vma->vm_pgoff;
1485 vma->vm_pgoff = 0;
1486
1487 /* Driver only allows mapping of a complete HW block */
1488 block_size = vma->vm_end - vma->vm_start;
1489
1490 if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1491 dev_err(hdev->dev,
1492 "user pointer is invalid - 0x%lx\n",
1493 vma->vm_start);
1494
1495 return -EINVAL;
1496 }
1497
1498 lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1499 if (!lnode)
1500 return -ENOMEM;
1501
1502 rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1503 if (rc) {
1504 kfree(lnode);
1505 return rc;
1506 }
1507
1508 hl_ctx_get(ctx);
1509
1510 lnode->ctx = ctx;
1511 lnode->vaddr = vma->vm_start;
1512 lnode->block_size = block_size;
1513 lnode->mapped_size = lnode->block_size;
1514 lnode->id = block_id;
1515
1516 vma->vm_private_data = lnode;
1517 vma->vm_ops = &hw_block_vm_ops;
1518
1519 mutex_lock(&ctx->hw_block_list_lock);
1520 list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1521 mutex_unlock(&ctx->hw_block_list_lock);
1522
1523 vma->vm_pgoff = block_id;
1524
1525 return 0;
1526 }
1527
set_dma_sg(struct scatterlist * sg,u64 bar_address,u64 chunk_size,struct device * dev,enum dma_data_direction dir)1528 static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1529 struct device *dev, enum dma_data_direction dir)
1530 {
1531 dma_addr_t addr;
1532 int rc;
1533
1534 addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1535 DMA_ATTR_SKIP_CPU_SYNC);
1536 rc = dma_mapping_error(dev, addr);
1537 if (rc)
1538 return rc;
1539
1540 sg_set_page(sg, NULL, chunk_size, 0);
1541 sg_dma_address(sg) = addr;
1542 sg_dma_len(sg) = chunk_size;
1543
1544 return 0;
1545 }
1546
alloc_sgt_from_device_pages(struct hl_device * hdev,u64 * pages,u64 npages,u64 page_size,struct device * dev,enum dma_data_direction dir)1547 static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1548 u64 page_size, struct device *dev,
1549 enum dma_data_direction dir)
1550 {
1551 u64 chunk_size, bar_address, dma_max_seg_size;
1552 struct asic_fixed_properties *prop;
1553 int rc, i, j, nents, cur_page;
1554 struct scatterlist *sg;
1555 struct sg_table *sgt;
1556
1557 prop = &hdev->asic_prop;
1558
1559 dma_max_seg_size = dma_get_max_seg_size(dev);
1560
1561 /* We would like to align the max segment size to PAGE_SIZE, so the
1562 * SGL will contain aligned addresses that can be easily mapped to
1563 * an MMU
1564 */
1565 dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
1566 if (dma_max_seg_size < PAGE_SIZE) {
1567 dev_err_ratelimited(hdev->dev,
1568 "dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1569 dma_max_seg_size);
1570 return ERR_PTR(-EINVAL);
1571 }
1572
1573 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1574 if (!sgt)
1575 return ERR_PTR(-ENOMEM);
1576
1577 /* If the size of each page is larger than the dma max segment size,
1578 * then we can't combine pages and the number of entries in the SGL
1579 * will just be the
1580 * <number of pages> * <chunks of max segment size in each page>
1581 */
1582 if (page_size > dma_max_seg_size)
1583 nents = npages * DIV_ROUND_UP_ULL(page_size, dma_max_seg_size);
1584 else
1585 /* Get number of non-contiguous chunks */
1586 for (i = 1, nents = 1, chunk_size = page_size ; i < npages ; i++) {
1587 if (pages[i - 1] + page_size != pages[i] ||
1588 chunk_size + page_size > dma_max_seg_size) {
1589 nents++;
1590 chunk_size = page_size;
1591 continue;
1592 }
1593
1594 chunk_size += page_size;
1595 }
1596
1597 rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1598 if (rc)
1599 goto error_free;
1600
1601 cur_page = 0;
1602
1603 if (page_size > dma_max_seg_size) {
1604 u64 size_left, cur_device_address = 0;
1605
1606 size_left = page_size;
1607
1608 /* Need to split each page into the number of chunks of
1609 * dma_max_seg_size
1610 */
1611 for_each_sgtable_dma_sg(sgt, sg, i) {
1612 if (size_left == page_size)
1613 cur_device_address =
1614 pages[cur_page] - prop->dram_base_address;
1615 else
1616 cur_device_address += dma_max_seg_size;
1617
1618 chunk_size = min(size_left, dma_max_seg_size);
1619
1620 bar_address = hdev->dram_pci_bar_start + cur_device_address;
1621
1622 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1623 if (rc)
1624 goto error_unmap;
1625
1626 if (size_left > dma_max_seg_size) {
1627 size_left -= dma_max_seg_size;
1628 } else {
1629 cur_page++;
1630 size_left = page_size;
1631 }
1632 }
1633 } else {
1634 /* Merge pages and put them into the scatterlist */
1635 for_each_sgtable_dma_sg(sgt, sg, i) {
1636 chunk_size = page_size;
1637 for (j = cur_page + 1 ; j < npages ; j++) {
1638 if (pages[j - 1] + page_size != pages[j] ||
1639 chunk_size + page_size > dma_max_seg_size)
1640 break;
1641
1642 chunk_size += page_size;
1643 }
1644
1645 bar_address = hdev->dram_pci_bar_start +
1646 (pages[cur_page] - prop->dram_base_address);
1647
1648 rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1649 if (rc)
1650 goto error_unmap;
1651
1652 cur_page = j;
1653 }
1654 }
1655
1656 /* Because we are not going to include a CPU list we want to have some
1657 * chance that other users will detect this by setting the orig_nents
1658 * to 0 and using only nents (length of DMA list) when going over the
1659 * sgl
1660 */
1661 sgt->orig_nents = 0;
1662
1663 return sgt;
1664
1665 error_unmap:
1666 for_each_sgtable_dma_sg(sgt, sg, i) {
1667 if (!sg_dma_len(sg))
1668 continue;
1669
1670 dma_unmap_resource(dev, sg_dma_address(sg),
1671 sg_dma_len(sg), dir,
1672 DMA_ATTR_SKIP_CPU_SYNC);
1673 }
1674
1675 sg_free_table(sgt);
1676
1677 error_free:
1678 kfree(sgt);
1679 return ERR_PTR(rc);
1680 }
1681
hl_dmabuf_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)1682 static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1683 struct dma_buf_attachment *attachment)
1684 {
1685 struct hl_dmabuf_priv *hl_dmabuf;
1686 struct hl_device *hdev;
1687 int rc;
1688
1689 hl_dmabuf = dmabuf->priv;
1690 hdev = hl_dmabuf->ctx->hdev;
1691
1692 rc = pci_p2pdma_distance_many(hdev->pdev, &attachment->dev, 1, true);
1693
1694 if (rc < 0)
1695 attachment->peer2peer = false;
1696 return 0;
1697 }
1698
hl_map_dmabuf(struct dma_buf_attachment * attachment,enum dma_data_direction dir)1699 static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1700 enum dma_data_direction dir)
1701 {
1702 struct dma_buf *dma_buf = attachment->dmabuf;
1703 struct hl_vm_phys_pg_pack *phys_pg_pack;
1704 struct hl_dmabuf_priv *hl_dmabuf;
1705 struct hl_device *hdev;
1706 struct sg_table *sgt;
1707
1708 hl_dmabuf = dma_buf->priv;
1709 hdev = hl_dmabuf->ctx->hdev;
1710 phys_pg_pack = hl_dmabuf->phys_pg_pack;
1711
1712 if (!attachment->peer2peer) {
1713 dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1714 return ERR_PTR(-EPERM);
1715 }
1716
1717 if (phys_pg_pack)
1718 sgt = alloc_sgt_from_device_pages(hdev,
1719 phys_pg_pack->pages,
1720 phys_pg_pack->npages,
1721 phys_pg_pack->page_size,
1722 attachment->dev,
1723 dir);
1724 else
1725 sgt = alloc_sgt_from_device_pages(hdev,
1726 &hl_dmabuf->device_address,
1727 1,
1728 hl_dmabuf->dmabuf->size,
1729 attachment->dev,
1730 dir);
1731
1732 if (IS_ERR(sgt))
1733 dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1734
1735 return sgt;
1736 }
1737
hl_unmap_dmabuf(struct dma_buf_attachment * attachment,struct sg_table * sgt,enum dma_data_direction dir)1738 static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1739 struct sg_table *sgt,
1740 enum dma_data_direction dir)
1741 {
1742 struct scatterlist *sg;
1743 int i;
1744
1745 /* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1746 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1747 * device memory).
1748 *
1749 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1750 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1751 */
1752 for_each_sgtable_dma_sg(sgt, sg, i)
1753 dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1754 sg_dma_len(sg), dir,
1755 DMA_ATTR_SKIP_CPU_SYNC);
1756
1757 /* Need to restore orig_nents because sg_free_table use that field */
1758 sgt->orig_nents = sgt->nents;
1759 sg_free_table(sgt);
1760 kfree(sgt);
1761 }
1762
hl_release_dmabuf(struct dma_buf * dmabuf)1763 static void hl_release_dmabuf(struct dma_buf *dmabuf)
1764 {
1765 struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1766 struct hl_ctx *ctx = hl_dmabuf->ctx;
1767 struct hl_device *hdev = ctx->hdev;
1768 struct hl_vm *vm = &hdev->vm;
1769
1770 if (hl_dmabuf->phys_pg_pack) {
1771 spin_lock(&vm->idr_lock);
1772 hl_dmabuf->phys_pg_pack->exporting_cnt--;
1773 spin_unlock(&vm->idr_lock);
1774 }
1775
1776 hl_ctx_put(hl_dmabuf->ctx);
1777
1778 kfree(hl_dmabuf);
1779 }
1780
1781 static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1782 .attach = hl_dmabuf_attach,
1783 .map_dma_buf = hl_map_dmabuf,
1784 .unmap_dma_buf = hl_unmap_dmabuf,
1785 .release = hl_release_dmabuf,
1786 };
1787
export_dmabuf_common(struct hl_ctx * ctx,struct hl_dmabuf_priv * hl_dmabuf,u64 total_size,int flags,int * dmabuf_fd)1788 static int export_dmabuf_common(struct hl_ctx *ctx,
1789 struct hl_dmabuf_priv *hl_dmabuf,
1790 u64 total_size, int flags, int *dmabuf_fd)
1791 {
1792 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1793 struct hl_device *hdev = ctx->hdev;
1794 int rc, fd;
1795
1796 exp_info.ops = &habanalabs_dmabuf_ops;
1797 exp_info.size = total_size;
1798 exp_info.flags = flags;
1799 exp_info.priv = hl_dmabuf;
1800
1801 hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1802 if (IS_ERR(hl_dmabuf->dmabuf)) {
1803 dev_err(hdev->dev, "failed to export dma-buf\n");
1804 return PTR_ERR(hl_dmabuf->dmabuf);
1805 }
1806
1807 fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1808 if (fd < 0) {
1809 dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf\n");
1810 rc = fd;
1811 goto err_dma_buf_put;
1812 }
1813
1814 hl_dmabuf->ctx = ctx;
1815 hl_ctx_get(hl_dmabuf->ctx);
1816
1817 *dmabuf_fd = fd;
1818
1819 return 0;
1820
1821 err_dma_buf_put:
1822 dma_buf_put(hl_dmabuf->dmabuf);
1823 return rc;
1824 }
1825
1826 /**
1827 * export_dmabuf_from_addr() - export a dma-buf object for the given memory
1828 * address and size.
1829 * @ctx: pointer to the context structure.
1830 * @device_addr: device memory physical address.
1831 * @size: size of device memory.
1832 * @flags: DMA-BUF file/FD flags.
1833 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
1834 *
1835 * Create and export a dma-buf object for an existing memory allocation inside
1836 * the device memory, and return a FD which is associated with the dma-buf
1837 * object.
1838 *
1839 * Return: 0 on success, non-zero for failure.
1840 */
export_dmabuf_from_addr(struct hl_ctx * ctx,u64 device_addr,u64 size,int flags,int * dmabuf_fd)1841 static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 device_addr,
1842 u64 size, int flags, int *dmabuf_fd)
1843 {
1844 struct hl_dmabuf_priv *hl_dmabuf;
1845 struct hl_device *hdev = ctx->hdev;
1846 struct asic_fixed_properties *prop;
1847 u64 bar_address;
1848 int rc;
1849
1850 prop = &hdev->asic_prop;
1851
1852 if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
1853 dev_dbg(hdev->dev,
1854 "exported device memory address 0x%llx should be aligned to 0x%lx\n",
1855 device_addr, PAGE_SIZE);
1856 return -EINVAL;
1857 }
1858
1859 if (size < PAGE_SIZE) {
1860 dev_dbg(hdev->dev,
1861 "exported device memory size %llu should be equal to or greater than %lu\n",
1862 size, PAGE_SIZE);
1863 return -EINVAL;
1864 }
1865
1866 if (device_addr < prop->dram_user_base_address ||
1867 device_addr + size > prop->dram_end_address ||
1868 device_addr + size < device_addr) {
1869 dev_dbg(hdev->dev,
1870 "DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1871 device_addr, size);
1872 return -EINVAL;
1873 }
1874
1875 bar_address = hdev->dram_pci_bar_start +
1876 (device_addr - prop->dram_base_address);
1877
1878 if (bar_address + size >
1879 hdev->dram_pci_bar_start + prop->dram_pci_bar_size ||
1880 bar_address + size < bar_address) {
1881 dev_dbg(hdev->dev,
1882 "DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1883 device_addr, size);
1884 return -EINVAL;
1885 }
1886
1887 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
1888 if (!hl_dmabuf)
1889 return -ENOMEM;
1890
1891 hl_dmabuf->device_address = device_addr;
1892
1893 rc = export_dmabuf_common(ctx, hl_dmabuf, size, flags, dmabuf_fd);
1894 if (rc)
1895 goto err_free_dmabuf_wrapper;
1896
1897 return 0;
1898
1899 err_free_dmabuf_wrapper:
1900 kfree(hl_dmabuf);
1901 return rc;
1902 }
1903
1904 /**
1905 * export_dmabuf_from_handle() - export a dma-buf object for the given memory
1906 * handle.
1907 * @ctx: pointer to the context structure.
1908 * @handle: device memory allocation handle.
1909 * @flags: DMA-BUF file/FD flags.
1910 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
1911 *
1912 * Create and export a dma-buf object for an existing memory allocation inside
1913 * the device memory, and return a FD which is associated with the dma-buf
1914 * object.
1915 *
1916 * Return: 0 on success, non-zero for failure.
1917 */
export_dmabuf_from_handle(struct hl_ctx * ctx,u64 handle,int flags,int * dmabuf_fd)1918 static int export_dmabuf_from_handle(struct hl_ctx *ctx, u64 handle, int flags,
1919 int *dmabuf_fd)
1920 {
1921 struct hl_vm_phys_pg_pack *phys_pg_pack;
1922 struct hl_dmabuf_priv *hl_dmabuf;
1923 struct hl_device *hdev = ctx->hdev;
1924 struct asic_fixed_properties *prop;
1925 struct hl_vm *vm = &hdev->vm;
1926 u64 bar_address;
1927 int rc, i;
1928
1929 prop = &hdev->asic_prop;
1930
1931 if (upper_32_bits(handle)) {
1932 dev_dbg(hdev->dev, "no match for handle 0x%llx\n", handle);
1933 return -EINVAL;
1934 }
1935
1936 spin_lock(&vm->idr_lock);
1937
1938 phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) handle);
1939 if (!phys_pg_pack) {
1940 spin_unlock(&vm->idr_lock);
1941 dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) handle);
1942 return -EINVAL;
1943 }
1944
1945 /* increment now to avoid freeing device memory while exporting */
1946 phys_pg_pack->exporting_cnt++;
1947
1948 spin_unlock(&vm->idr_lock);
1949
1950 if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
1951 dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", handle);
1952 rc = -EINVAL;
1953 goto err_dec_exporting_cnt;
1954 }
1955
1956 for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1957
1958 bar_address = hdev->dram_pci_bar_start +
1959 (phys_pg_pack->pages[i] -
1960 prop->dram_base_address);
1961
1962 if (bar_address + phys_pg_pack->page_size >
1963 hdev->dram_pci_bar_start + prop->dram_pci_bar_size ||
1964 bar_address + phys_pg_pack->page_size < bar_address) {
1965
1966 dev_dbg(hdev->dev,
1967 "DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1968 phys_pg_pack->pages[i],
1969 phys_pg_pack->page_size);
1970
1971 rc = -EINVAL;
1972 goto err_dec_exporting_cnt;
1973 }
1974 }
1975
1976 hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
1977 if (!hl_dmabuf) {
1978 rc = -ENOMEM;
1979 goto err_dec_exporting_cnt;
1980 }
1981
1982 hl_dmabuf->phys_pg_pack = phys_pg_pack;
1983
1984 rc = export_dmabuf_common(ctx, hl_dmabuf, phys_pg_pack->total_size,
1985 flags, dmabuf_fd);
1986 if (rc)
1987 goto err_free_dmabuf_wrapper;
1988
1989 return 0;
1990
1991 err_free_dmabuf_wrapper:
1992 kfree(hl_dmabuf);
1993
1994 err_dec_exporting_cnt:
1995 spin_lock(&vm->idr_lock);
1996 phys_pg_pack->exporting_cnt--;
1997 spin_unlock(&vm->idr_lock);
1998
1999 return rc;
2000 }
2001
mem_ioctl_no_mmu(struct hl_fpriv * hpriv,union hl_mem_args * args)2002 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
2003 {
2004 struct hl_device *hdev = hpriv->hdev;
2005 u64 block_handle, device_addr = 0;
2006 struct hl_ctx *ctx = hpriv->ctx;
2007 u32 handle = 0, block_size;
2008 int rc;
2009
2010 switch (args->in.op) {
2011 case HL_MEM_OP_ALLOC:
2012 if (args->in.alloc.mem_size == 0) {
2013 dev_err(hdev->dev, "alloc size must be larger than 0\n");
2014 rc = -EINVAL;
2015 goto out;
2016 }
2017
2018 /* Force contiguous as there are no real MMU
2019 * translations to overcome physical memory gaps
2020 */
2021 args->in.flags |= HL_MEM_CONTIGUOUS;
2022 rc = alloc_device_memory(ctx, &args->in, &handle);
2023
2024 memset(args, 0, sizeof(*args));
2025 args->out.handle = (__u64) handle;
2026 break;
2027
2028 case HL_MEM_OP_FREE:
2029 rc = free_device_memory(ctx, &args->in);
2030 break;
2031
2032 case HL_MEM_OP_MAP:
2033 if (args->in.flags & HL_MEM_USERPTR) {
2034 dev_err(hdev->dev, "Failed to map host memory when MMU is disabled\n");
2035 rc = -EPERM;
2036 } else {
2037 rc = get_paddr_from_handle(ctx, &args->in, &device_addr);
2038 memset(args, 0, sizeof(*args));
2039 args->out.device_virt_addr = device_addr;
2040 }
2041
2042 break;
2043
2044 case HL_MEM_OP_UNMAP:
2045 rc = 0;
2046 break;
2047
2048 case HL_MEM_OP_MAP_BLOCK:
2049 rc = map_block(hdev, args->in.map_block.block_addr, &block_handle, &block_size);
2050 args->out.block_handle = block_handle;
2051 args->out.block_size = block_size;
2052 break;
2053
2054 case HL_MEM_OP_EXPORT_DMABUF_FD:
2055 dev_err(hdev->dev, "Failed to export dma-buf object when MMU is disabled\n");
2056 rc = -EPERM;
2057 break;
2058
2059 case HL_MEM_OP_TS_ALLOC:
2060 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2061 break;
2062 default:
2063 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2064 rc = -EINVAL;
2065 break;
2066 }
2067
2068 out:
2069 return rc;
2070 }
2071
ts_buff_release(struct hl_mmap_mem_buf * buf)2072 static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2073 {
2074 struct hl_ts_buff *ts_buff = buf->private;
2075
2076 vfree(ts_buff->kernel_buff_address);
2077 vfree(ts_buff->user_buff_address);
2078 kfree(ts_buff);
2079 }
2080
hl_ts_mmap(struct hl_mmap_mem_buf * buf,struct vm_area_struct * vma,void * args)2081 static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2082 {
2083 struct hl_ts_buff *ts_buff = buf->private;
2084
2085 vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2086 return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2087 }
2088
hl_ts_alloc_buf(struct hl_mmap_mem_buf * buf,gfp_t gfp,void * args)2089 static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2090 {
2091 struct hl_ts_buff *ts_buff = NULL;
2092 u32 num_elements;
2093 size_t size;
2094 void *p;
2095
2096 num_elements = *(u32 *)args;
2097
2098 ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2099 if (!ts_buff)
2100 return -ENOMEM;
2101
2102 /* Allocate the user buffer */
2103 size = num_elements * sizeof(u64);
2104 p = vmalloc_user(size);
2105 if (!p)
2106 goto free_mem;
2107
2108 ts_buff->user_buff_address = p;
2109 buf->mappable_size = size;
2110
2111 /* Allocate the internal kernel buffer */
2112 size = num_elements * sizeof(struct hl_user_pending_interrupt);
2113 p = vmalloc(size);
2114 if (!p)
2115 goto free_user_buff;
2116
2117 ts_buff->kernel_buff_address = p;
2118 ts_buff->kernel_buff_size = size;
2119
2120 buf->private = ts_buff;
2121
2122 return 0;
2123
2124 free_user_buff:
2125 vfree(ts_buff->user_buff_address);
2126 free_mem:
2127 kfree(ts_buff);
2128 return -ENOMEM;
2129 }
2130
2131 static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2132 .topic = "TS",
2133 .mem_id = HL_MMAP_TYPE_TS_BUFF,
2134 .mmap = hl_ts_mmap,
2135 .alloc = hl_ts_alloc_buf,
2136 .release = ts_buff_release,
2137 };
2138
2139 /**
2140 * allocate_timestamps_buffers() - allocate timestamps buffers
2141 * This function will allocate ts buffer that will later on be mapped to the user
2142 * in order to be able to read the timestamp.
2143 * in additon it'll allocate an extra buffer for registration management.
2144 * since we cannot fail during registration for out-of-memory situation, so
2145 * we'll prepare a pool which will be used as user interrupt nodes and instead
2146 * of dynamically allocating nodes while registration we'll pick the node from
2147 * this pool. in addtion it'll add node to the mapping hash which will be used
2148 * to map user ts buffer to the internal kernel ts buffer.
2149 * @hpriv: pointer to the private data of the fd
2150 * @args: ioctl input
2151 * @handle: user timestamp buffer handle as an output
2152 */
allocate_timestamps_buffers(struct hl_fpriv * hpriv,struct hl_mem_in * args,u64 * handle)2153 static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2154 {
2155 struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2156 struct hl_mmap_mem_buf *buf;
2157
2158 if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2159 dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2160 args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2161 return -EINVAL;
2162 }
2163
2164 buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2165 if (!buf)
2166 return -ENOMEM;
2167
2168 *handle = buf->handle;
2169
2170 return 0;
2171 }
2172
hl_mem_ioctl(struct hl_fpriv * hpriv,void * data)2173 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
2174 {
2175 enum hl_device_status status;
2176 union hl_mem_args *args = data;
2177 struct hl_device *hdev = hpriv->hdev;
2178 struct hl_ctx *ctx = hpriv->ctx;
2179 u64 block_handle, device_addr = 0;
2180 u32 handle = 0, block_size;
2181 int rc, dmabuf_fd = -EBADF;
2182
2183 if (!hl_device_operational(hdev, &status)) {
2184 dev_warn_ratelimited(hdev->dev,
2185 "Device is %s. Can't execute MEMORY IOCTL\n",
2186 hdev->status[status]);
2187 return -EBUSY;
2188 }
2189
2190 if (!hdev->mmu_enable)
2191 return mem_ioctl_no_mmu(hpriv, args);
2192
2193 switch (args->in.op) {
2194 case HL_MEM_OP_ALLOC:
2195 if (args->in.alloc.mem_size == 0) {
2196 dev_err(hdev->dev,
2197 "alloc size must be larger than 0\n");
2198 rc = -EINVAL;
2199 goto out;
2200 }
2201
2202 /* If DRAM does not support virtual memory the driver won't
2203 * handle the allocation/freeing of that memory. However, for
2204 * system administration/monitoring purposes, the driver will
2205 * keep track of the amount of DRAM memory that is allocated
2206 * and freed by the user. Because this code totally relies on
2207 * the user's input, the driver can't ensure the validity
2208 * of this accounting.
2209 */
2210 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2211 atomic64_add(args->in.alloc.mem_size,
2212 &ctx->dram_phys_mem);
2213 atomic64_add(args->in.alloc.mem_size,
2214 &hdev->dram_used_mem);
2215
2216 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2217 rc = 0;
2218
2219 memset(args, 0, sizeof(*args));
2220 args->out.handle = 0;
2221 goto out;
2222 }
2223
2224 rc = alloc_device_memory(ctx, &args->in, &handle);
2225
2226 memset(args, 0, sizeof(*args));
2227 args->out.handle = (__u64) handle;
2228 break;
2229
2230 case HL_MEM_OP_FREE:
2231 /* If DRAM does not support virtual memory the driver won't
2232 * handle the allocation/freeing of that memory. However, for
2233 * system administration/monitoring purposes, the driver will
2234 * keep track of the amount of DRAM memory that is allocated
2235 * and freed by the user. Because this code totally relies on
2236 * the user's input, the driver can't ensure the validity
2237 * of this accounting.
2238 */
2239 if (!hdev->asic_prop.dram_supports_virtual_memory) {
2240 atomic64_sub(args->in.alloc.mem_size,
2241 &ctx->dram_phys_mem);
2242 atomic64_sub(args->in.alloc.mem_size,
2243 &hdev->dram_used_mem);
2244
2245 dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2246 rc = 0;
2247
2248 goto out;
2249 }
2250
2251 rc = free_device_memory(ctx, &args->in);
2252 break;
2253
2254 case HL_MEM_OP_MAP:
2255 rc = map_device_va(ctx, &args->in, &device_addr);
2256
2257 memset(args, 0, sizeof(*args));
2258 args->out.device_virt_addr = device_addr;
2259 break;
2260
2261 case HL_MEM_OP_UNMAP:
2262 rc = unmap_device_va(ctx, &args->in, false);
2263 break;
2264
2265 case HL_MEM_OP_MAP_BLOCK:
2266 rc = map_block(hdev, args->in.map_block.block_addr,
2267 &block_handle, &block_size);
2268 args->out.block_handle = block_handle;
2269 args->out.block_size = block_size;
2270 break;
2271
2272 case HL_MEM_OP_EXPORT_DMABUF_FD:
2273 if (hdev->asic_prop.dram_supports_virtual_memory)
2274 rc = export_dmabuf_from_handle(ctx,
2275 args->in.export_dmabuf_fd.handle,
2276 args->in.flags,
2277 &dmabuf_fd);
2278 else
2279 rc = export_dmabuf_from_addr(ctx,
2280 args->in.export_dmabuf_fd.handle,
2281 args->in.export_dmabuf_fd.mem_size,
2282 args->in.flags,
2283 &dmabuf_fd);
2284 memset(args, 0, sizeof(*args));
2285 args->out.fd = dmabuf_fd;
2286 break;
2287
2288 case HL_MEM_OP_TS_ALLOC:
2289 rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2290 break;
2291 default:
2292 dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2293 rc = -EINVAL;
2294 break;
2295 }
2296
2297 out:
2298 return rc;
2299 }
2300
get_user_memory(struct hl_device * hdev,u64 addr,u64 size,u32 npages,u64 start,u32 offset,struct hl_userptr * userptr)2301 static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2302 u32 npages, u64 start, u32 offset,
2303 struct hl_userptr *userptr)
2304 {
2305 int rc;
2306
2307 if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2308 dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2309 return -EFAULT;
2310 }
2311
2312 userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2313 if (!userptr->pages)
2314 return -ENOMEM;
2315
2316 rc = pin_user_pages_fast(start, npages,
2317 FOLL_FORCE | FOLL_WRITE | FOLL_LONGTERM,
2318 userptr->pages);
2319
2320 if (rc != npages) {
2321 dev_err(hdev->dev,
2322 "Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2323 rc, addr, size, npages);
2324 if (rc < 0)
2325 goto destroy_pages;
2326 npages = rc;
2327 rc = -EFAULT;
2328 goto put_pages;
2329 }
2330 userptr->npages = npages;
2331
2332 rc = sg_alloc_table_from_pages(userptr->sgt,
2333 userptr->pages,
2334 npages, offset, size, GFP_KERNEL);
2335 if (rc < 0) {
2336 dev_err(hdev->dev, "failed to create SG table from pages\n");
2337 goto put_pages;
2338 }
2339
2340 return 0;
2341
2342 put_pages:
2343 unpin_user_pages(userptr->pages, npages);
2344 destroy_pages:
2345 kvfree(userptr->pages);
2346 return rc;
2347 }
2348
2349 /**
2350 * hl_pin_host_memory() - pins a chunk of host memory.
2351 * @hdev: pointer to the habanalabs device structure.
2352 * @addr: the host virtual address of the memory area.
2353 * @size: the size of the memory area.
2354 * @userptr: pointer to hl_userptr structure.
2355 *
2356 * This function does the following:
2357 * - Pins the physical pages.
2358 * - Create an SG list from those pages.
2359 */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)2360 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2361 struct hl_userptr *userptr)
2362 {
2363 u64 start, end;
2364 u32 npages, offset;
2365 int rc;
2366
2367 if (!size) {
2368 dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2369 return -EINVAL;
2370 }
2371
2372 /*
2373 * If the combination of the address and size requested for this memory
2374 * region causes an integer overflow, return error.
2375 */
2376 if (((addr + size) < addr) ||
2377 PAGE_ALIGN(addr + size) < (addr + size)) {
2378 dev_err(hdev->dev,
2379 "user pointer 0x%llx + %llu causes integer overflow\n",
2380 addr, size);
2381 return -EINVAL;
2382 }
2383
2384 userptr->pid = current->pid;
2385 userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2386 if (!userptr->sgt)
2387 return -ENOMEM;
2388
2389 start = addr & PAGE_MASK;
2390 offset = addr & ~PAGE_MASK;
2391 end = PAGE_ALIGN(addr + size);
2392 npages = (end - start) >> PAGE_SHIFT;
2393
2394 userptr->size = size;
2395 userptr->addr = addr;
2396 userptr->dma_mapped = false;
2397 INIT_LIST_HEAD(&userptr->job_node);
2398
2399 rc = get_user_memory(hdev, addr, size, npages, start, offset,
2400 userptr);
2401 if (rc) {
2402 dev_err(hdev->dev,
2403 "failed to get user memory for address 0x%llx\n",
2404 addr);
2405 goto free_sgt;
2406 }
2407
2408 hl_debugfs_add_userptr(hdev, userptr);
2409
2410 return 0;
2411
2412 free_sgt:
2413 kfree(userptr->sgt);
2414 return rc;
2415 }
2416
2417 /*
2418 * hl_unpin_host_memory - unpins a chunk of host memory.
2419 * @hdev: pointer to the habanalabs device structure
2420 * @userptr: pointer to hl_userptr structure
2421 *
2422 * This function does the following:
2423 * - Unpins the physical pages related to the host memory
2424 * - Free the SG list
2425 */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)2426 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2427 {
2428 hl_debugfs_remove_userptr(hdev, userptr);
2429
2430 if (userptr->dma_mapped)
2431 hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2432
2433 unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2434 kvfree(userptr->pages);
2435
2436 list_del(&userptr->job_node);
2437
2438 sg_free_table(userptr->sgt);
2439 kfree(userptr->sgt);
2440 }
2441
2442 /**
2443 * hl_userptr_delete_list() - clear userptr list.
2444 * @hdev: pointer to the habanalabs device structure.
2445 * @userptr_list: pointer to the list to clear.
2446 *
2447 * This function does the following:
2448 * - Iterates over the list and unpins the host memory and frees the userptr
2449 * structure.
2450 */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)2451 void hl_userptr_delete_list(struct hl_device *hdev,
2452 struct list_head *userptr_list)
2453 {
2454 struct hl_userptr *userptr, *tmp;
2455
2456 list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2457 hl_unpin_host_memory(hdev, userptr);
2458 kfree(userptr);
2459 }
2460
2461 INIT_LIST_HEAD(userptr_list);
2462 }
2463
2464 /**
2465 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2466 * @hdev: pointer to the habanalabs device structure.
2467 * @addr: user address to check.
2468 * @size: user block size to check.
2469 * @userptr_list: pointer to the list to clear.
2470 * @userptr: pointer to userptr to check.
2471 *
2472 * This function does the following:
2473 * - Iterates over the list and checks if the given userptr is in it, means is
2474 * pinned. If so, returns true, otherwise returns false.
2475 */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)2476 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2477 u32 size, struct list_head *userptr_list,
2478 struct hl_userptr **userptr)
2479 {
2480 list_for_each_entry((*userptr), userptr_list, job_node) {
2481 if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2482 return true;
2483 }
2484
2485 return false;
2486 }
2487
2488 /**
2489 * va_range_init() - initialize virtual addresses range.
2490 * @hdev: pointer to the habanalabs device structure.
2491 * @va_ranges: pointer to va_ranges array.
2492 * @range_type: virtual address range type.
2493 * @start: range start address, inclusive.
2494 * @end: range end address, inclusive.
2495 * @page_size: page size for this va_range.
2496 *
2497 * This function does the following:
2498 * - Initializes the virtual addresses list of the given range with the given
2499 * addresses.
2500 */
va_range_init(struct hl_device * hdev,struct hl_va_range ** va_ranges,enum hl_va_range_type range_type,u64 start,u64 end,u32 page_size)2501 static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2502 enum hl_va_range_type range_type, u64 start,
2503 u64 end, u32 page_size)
2504 {
2505 struct hl_va_range *va_range = va_ranges[range_type];
2506 int rc;
2507
2508 INIT_LIST_HEAD(&va_range->list);
2509
2510 /*
2511 * PAGE_SIZE alignment
2512 * it is the callers responsibility to align the addresses if the
2513 * page size is not a power of 2
2514 */
2515
2516 if (is_power_of_2(page_size)) {
2517 if (start & (PAGE_SIZE - 1)) {
2518 start &= PAGE_MASK;
2519 start += PAGE_SIZE;
2520 }
2521
2522 /*
2523 * The end of the range is inclusive, hence we need to align it
2524 * to the end of the last full page in the range. For example if
2525 * end = 0x3ff5 with page size 0x1000, we need to align it to
2526 * 0x2fff. The remainig 0xff5 bytes do not form a full page.
2527 */
2528 if ((end + 1) & (PAGE_SIZE - 1))
2529 end = ((end + 1) & PAGE_MASK) - 1;
2530 }
2531
2532 if (start >= end) {
2533 dev_err(hdev->dev, "too small vm range for va list\n");
2534 return -EFAULT;
2535 }
2536
2537 rc = add_va_block(hdev, va_range, start, end);
2538
2539 if (rc) {
2540 dev_err(hdev->dev, "Failed to init host va list\n");
2541 return rc;
2542 }
2543
2544 va_range->start_addr = start;
2545 va_range->end_addr = end;
2546 va_range->page_size = page_size;
2547
2548 return 0;
2549 }
2550
2551 /**
2552 * va_range_fini() - clear a virtual addresses range.
2553 * @hdev: pointer to the habanalabs structure.
2554 * @va_range: pointer to virtual addresses range.
2555 *
2556 * This function does the following:
2557 * - Frees the virtual addresses block list and its lock.
2558 */
va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)2559 static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2560 {
2561 mutex_lock(&va_range->lock);
2562 clear_va_list_locked(hdev, &va_range->list);
2563 mutex_unlock(&va_range->lock);
2564
2565 mutex_destroy(&va_range->lock);
2566 kfree(va_range);
2567 }
2568
2569 /**
2570 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2571 * @ctx: pointer to the habanalabs context structure.
2572 * @host_range_start: host virtual addresses range start.
2573 * @host_range_end: host virtual addresses range end.
2574 * @host_page_size: host page size.
2575 * @host_huge_range_start: host virtual addresses range start for memory
2576 * allocated with huge pages.
2577 * @host_huge_range_end: host virtual addresses range end for memory allocated
2578 * with huge pages.
2579 * @host_huge_page_size: host huge page size.
2580 * @dram_range_start: dram virtual addresses range start.
2581 * @dram_range_end: dram virtual addresses range end.
2582 * @dram_page_size: dram page size.
2583 *
2584 * This function initializes the following:
2585 * - MMU for context.
2586 * - Virtual address to area descriptor hashtable.
2587 * - Virtual block list of available virtual memory.
2588 */
vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u32 host_page_size,u64 host_huge_range_start,u64 host_huge_range_end,u32 host_huge_page_size,u64 dram_range_start,u64 dram_range_end,u32 dram_page_size)2589 static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2590 u64 host_range_start,
2591 u64 host_range_end,
2592 u32 host_page_size,
2593 u64 host_huge_range_start,
2594 u64 host_huge_range_end,
2595 u32 host_huge_page_size,
2596 u64 dram_range_start,
2597 u64 dram_range_end,
2598 u32 dram_page_size)
2599 {
2600 struct hl_device *hdev = ctx->hdev;
2601 int i, rc;
2602
2603 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2604 ctx->va_range[i] =
2605 kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2606 if (!ctx->va_range[i]) {
2607 rc = -ENOMEM;
2608 goto free_va_range;
2609 }
2610 }
2611
2612 rc = hl_mmu_ctx_init(ctx);
2613 if (rc) {
2614 dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2615 goto free_va_range;
2616 }
2617
2618 mutex_init(&ctx->mem_hash_lock);
2619 hash_init(ctx->mem_hash);
2620
2621 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2622
2623 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2624 host_range_start, host_range_end, host_page_size);
2625 if (rc) {
2626 dev_err(hdev->dev, "failed to init host vm range\n");
2627 goto mmu_ctx_fini;
2628 }
2629
2630 if (hdev->pmmu_huge_range) {
2631 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2632
2633 rc = va_range_init(hdev,
2634 ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2635 host_huge_range_start, host_huge_range_end,
2636 host_huge_page_size);
2637 if (rc) {
2638 dev_err(hdev->dev,
2639 "failed to init host huge vm range\n");
2640 goto clear_host_va_range;
2641 }
2642 } else {
2643 kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2644 ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2645 ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2646 }
2647
2648 mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2649
2650 rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2651 dram_range_start, dram_range_end, dram_page_size);
2652 if (rc) {
2653 dev_err(hdev->dev, "failed to init dram vm range\n");
2654 goto clear_host_huge_va_range;
2655 }
2656
2657 hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2658
2659 return 0;
2660
2661 clear_host_huge_va_range:
2662 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2663
2664 if (hdev->pmmu_huge_range) {
2665 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2666 clear_va_list_locked(hdev,
2667 &ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2668 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2669 }
2670 clear_host_va_range:
2671 if (hdev->pmmu_huge_range)
2672 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2673 mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2674 clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2675 mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2676 mmu_ctx_fini:
2677 mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2678 mutex_destroy(&ctx->mem_hash_lock);
2679 hl_mmu_ctx_fini(ctx);
2680 free_va_range:
2681 for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2682 kfree(ctx->va_range[i]);
2683
2684 return rc;
2685 }
2686
hl_vm_ctx_init(struct hl_ctx * ctx)2687 int hl_vm_ctx_init(struct hl_ctx *ctx)
2688 {
2689 struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2690 u64 host_range_start, host_range_end, host_huge_range_start,
2691 host_huge_range_end, dram_range_start, dram_range_end;
2692 u32 host_page_size, host_huge_page_size, dram_page_size;
2693
2694 atomic64_set(&ctx->dram_phys_mem, 0);
2695
2696 /*
2697 * - If MMU is enabled, init the ranges as usual.
2698 * - If MMU is disabled, in case of host mapping, the returned address
2699 * is the given one.
2700 * In case of DRAM mapping, the returned address is the physical
2701 * address of the memory related to the given handle.
2702 */
2703 if (!ctx->hdev->mmu_enable)
2704 return 0;
2705
2706 dram_range_start = prop->dmmu.start_addr;
2707 dram_range_end = prop->dmmu.end_addr - 1;
2708 dram_page_size = prop->dram_page_size ?
2709 prop->dram_page_size : prop->dmmu.page_size;
2710 host_range_start = prop->pmmu.start_addr;
2711 host_range_end = prop->pmmu.end_addr - 1;
2712 host_page_size = prop->pmmu.page_size;
2713 host_huge_range_start = prop->pmmu_huge.start_addr;
2714 host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2715 host_huge_page_size = prop->pmmu_huge.page_size;
2716
2717 return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2718 host_page_size, host_huge_range_start,
2719 host_huge_range_end, host_huge_page_size,
2720 dram_range_start, dram_range_end, dram_page_size);
2721 }
2722
2723 /**
2724 * hl_vm_ctx_fini() - virtual memory teardown of context.
2725 * @ctx: pointer to the habanalabs context structure.
2726 *
2727 * This function perform teardown the following:
2728 * - Virtual block list of available virtual memory.
2729 * - Virtual address to area descriptor hashtable.
2730 * - MMU for context.
2731 *
2732 * In addition this function does the following:
2733 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2734 * hashtable should be empty as no valid mappings should exist at this
2735 * point.
2736 * - Frees any existing physical page list from the idr which relates to the
2737 * current context asid.
2738 * - This function checks the virtual block list for correctness. At this point
2739 * the list should contain one element which describes the whole virtual
2740 * memory range of the context. Otherwise, a warning is printed.
2741 */
hl_vm_ctx_fini(struct hl_ctx * ctx)2742 void hl_vm_ctx_fini(struct hl_ctx *ctx)
2743 {
2744 struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2745 struct hl_device *hdev = ctx->hdev;
2746 struct hl_vm_hash_node *hnode;
2747 struct hl_vm *vm = &hdev->vm;
2748 struct hlist_node *tmp_node;
2749 struct list_head free_list;
2750 struct hl_mem_in args;
2751 int i;
2752
2753 if (!hdev->mmu_enable)
2754 return;
2755
2756 hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2757
2758 /*
2759 * Clearly something went wrong on hard reset so no point in printing
2760 * another side effect error
2761 */
2762 if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2763 dev_dbg(hdev->dev,
2764 "user released device without removing its memory mappings\n");
2765
2766 hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2767 dev_dbg(hdev->dev,
2768 "hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2769 hnode->vaddr, ctx->asid);
2770 args.unmap.device_virt_addr = hnode->vaddr;
2771 unmap_device_va(ctx, &args, true);
2772 }
2773
2774 mutex_lock(&hdev->mmu_lock);
2775
2776 /* invalidate the cache once after the unmapping loop */
2777 hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2778 hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2779
2780 mutex_unlock(&hdev->mmu_lock);
2781
2782 INIT_LIST_HEAD(&free_list);
2783
2784 spin_lock(&vm->idr_lock);
2785 idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2786 if (phys_pg_list->asid == ctx->asid) {
2787 dev_dbg(hdev->dev,
2788 "page list 0x%px of asid %d is still alive\n",
2789 phys_pg_list, ctx->asid);
2790
2791 atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2792 idr_remove(&vm->phys_pg_pack_handles, i);
2793 list_add(&phys_pg_list->node, &free_list);
2794 }
2795 spin_unlock(&vm->idr_lock);
2796
2797 list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2798 free_phys_pg_pack(hdev, phys_pg_list);
2799
2800 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2801 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2802
2803 if (hdev->pmmu_huge_range)
2804 va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2805
2806 mutex_destroy(&ctx->mem_hash_lock);
2807 hl_mmu_ctx_fini(ctx);
2808
2809 /* In this case we need to clear the global accounting of DRAM usage
2810 * because the user notifies us on allocations. If the user is no more,
2811 * all DRAM is available
2812 */
2813 if (ctx->asid != HL_KERNEL_ASID_ID &&
2814 !hdev->asic_prop.dram_supports_virtual_memory)
2815 atomic64_set(&hdev->dram_used_mem, 0);
2816 }
2817
2818 /**
2819 * hl_vm_init() - initialize virtual memory module.
2820 * @hdev: pointer to the habanalabs device structure.
2821 *
2822 * This function initializes the following:
2823 * - MMU module.
2824 * - DRAM physical pages pool of 2MB.
2825 * - Idr for device memory allocation handles.
2826 */
hl_vm_init(struct hl_device * hdev)2827 int hl_vm_init(struct hl_device *hdev)
2828 {
2829 struct asic_fixed_properties *prop = &hdev->asic_prop;
2830 struct hl_vm *vm = &hdev->vm;
2831 int rc;
2832
2833 if (is_power_of_2(prop->dram_page_size))
2834 vm->dram_pg_pool =
2835 gen_pool_create(__ffs(prop->dram_page_size), -1);
2836 else
2837 vm->dram_pg_pool =
2838 gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2839
2840 if (!vm->dram_pg_pool) {
2841 dev_err(hdev->dev, "Failed to create dram page pool\n");
2842 return -ENOMEM;
2843 }
2844
2845 kref_init(&vm->dram_pg_pool_refcount);
2846
2847 rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2848 prop->dram_end_address - prop->dram_user_base_address,
2849 -1);
2850
2851 if (rc) {
2852 dev_err(hdev->dev,
2853 "Failed to add memory to dram page pool %d\n", rc);
2854 goto pool_add_err;
2855 }
2856
2857 spin_lock_init(&vm->idr_lock);
2858 idr_init(&vm->phys_pg_pack_handles);
2859
2860 atomic64_set(&hdev->dram_used_mem, 0);
2861
2862 vm->init_done = true;
2863
2864 return 0;
2865
2866 pool_add_err:
2867 gen_pool_destroy(vm->dram_pg_pool);
2868
2869 return rc;
2870 }
2871
2872 /**
2873 * hl_vm_fini() - virtual memory module teardown.
2874 * @hdev: pointer to the habanalabs device structure.
2875 *
2876 * This function perform teardown to the following:
2877 * - Idr for device memory allocation handles.
2878 * - DRAM physical pages pool of 2MB.
2879 * - MMU module.
2880 */
hl_vm_fini(struct hl_device * hdev)2881 void hl_vm_fini(struct hl_device *hdev)
2882 {
2883 struct hl_vm *vm = &hdev->vm;
2884
2885 if (!vm->init_done)
2886 return;
2887
2888 /*
2889 * At this point all the contexts should be freed and hence no DRAM
2890 * memory should be in use. Hence the DRAM pool should be freed here.
2891 */
2892 if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2893 dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2894 __func__);
2895
2896 vm->init_done = false;
2897 }
2898
2899 /**
2900 * hl_hw_block_mem_init() - HW block memory initialization.
2901 * @ctx: pointer to the habanalabs context structure.
2902 *
2903 * This function initializes the HW block virtual mapped addresses list and
2904 * it's lock.
2905 */
hl_hw_block_mem_init(struct hl_ctx * ctx)2906 void hl_hw_block_mem_init(struct hl_ctx *ctx)
2907 {
2908 mutex_init(&ctx->hw_block_list_lock);
2909 INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2910 }
2911
2912 /**
2913 * hl_hw_block_mem_fini() - HW block memory teardown.
2914 * @ctx: pointer to the habanalabs context structure.
2915 *
2916 * This function clears the HW block virtual mapped addresses list and destroys
2917 * it's lock.
2918 */
hl_hw_block_mem_fini(struct hl_ctx * ctx)2919 void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2920 {
2921 struct hl_vm_hw_block_list_node *lnode, *tmp;
2922
2923 if (!list_empty(&ctx->hw_block_mem_list))
2924 dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2925
2926 list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2927 list_del(&lnode->node);
2928 kfree(lnode);
2929 }
2930
2931 mutex_destroy(&ctx->hw_block_list_lock);
2932 }
2933