• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2021 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 
11 #include <linux/uaccess.h>
12 #include <linux/slab.h>
13 
14 #define HL_CS_FLAGS_TYPE_MASK	(HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
15 			HL_CS_FLAGS_COLLECTIVE_WAIT | HL_CS_FLAGS_RESERVE_SIGNALS_ONLY | \
16 			HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY | HL_CS_FLAGS_ENGINE_CORE_COMMAND)
17 
18 
19 #define MAX_TS_ITER_NUM 10
20 
21 /**
22  * enum hl_cs_wait_status - cs wait status
23  * @CS_WAIT_STATUS_BUSY: cs was not completed yet
24  * @CS_WAIT_STATUS_COMPLETED: cs completed
25  * @CS_WAIT_STATUS_GONE: cs completed but fence is already gone
26  */
27 enum hl_cs_wait_status {
28 	CS_WAIT_STATUS_BUSY,
29 	CS_WAIT_STATUS_COMPLETED,
30 	CS_WAIT_STATUS_GONE
31 };
32 
33 static void job_wq_completion(struct work_struct *work);
34 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
35 				enum hl_cs_wait_status *status, s64 *timestamp);
36 static void cs_do_release(struct kref *ref);
37 
hl_push_cs_outcome(struct hl_device * hdev,struct hl_cs_outcome_store * outcome_store,u64 seq,ktime_t ts,int error)38 static void hl_push_cs_outcome(struct hl_device *hdev,
39 			       struct hl_cs_outcome_store *outcome_store,
40 			       u64 seq, ktime_t ts, int error)
41 {
42 	struct hl_cs_outcome *node;
43 	unsigned long flags;
44 
45 	/*
46 	 * CS outcome store supports the following operations:
47 	 * push outcome - store a recent CS outcome in the store
48 	 * pop outcome - retrieve a SPECIFIC (by seq) CS outcome from the store
49 	 * It uses 2 lists: used list and free list.
50 	 * It has a pre-allocated amount of nodes, each node stores
51 	 * a single CS outcome.
52 	 * Initially, all the nodes are in the free list.
53 	 * On push outcome, a node (any) is taken from the free list, its
54 	 * information is filled in, and the node is moved to the used list.
55 	 * It is possible, that there are no nodes left in the free list.
56 	 * In this case, we will lose some information about old outcomes. We
57 	 * will pop the OLDEST node from the used list, and make it free.
58 	 * On pop, the node is searched for in the used list (using a search
59 	 * index).
60 	 * If found, the node is then removed from the used list, and moved
61 	 * back to the free list. The outcome data that the node contained is
62 	 * returned back to the user.
63 	 */
64 
65 	spin_lock_irqsave(&outcome_store->db_lock, flags);
66 
67 	if (list_empty(&outcome_store->free_list)) {
68 		node = list_last_entry(&outcome_store->used_list,
69 				       struct hl_cs_outcome, list_link);
70 		hash_del(&node->map_link);
71 		dev_dbg(hdev->dev, "CS %llu outcome was lost\n", node->seq);
72 	} else {
73 		node = list_last_entry(&outcome_store->free_list,
74 				       struct hl_cs_outcome, list_link);
75 	}
76 
77 	list_del_init(&node->list_link);
78 
79 	node->seq = seq;
80 	node->ts = ts;
81 	node->error = error;
82 
83 	list_add(&node->list_link, &outcome_store->used_list);
84 	hash_add(outcome_store->outcome_map, &node->map_link, node->seq);
85 
86 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
87 }
88 
hl_pop_cs_outcome(struct hl_cs_outcome_store * outcome_store,u64 seq,ktime_t * ts,int * error)89 static bool hl_pop_cs_outcome(struct hl_cs_outcome_store *outcome_store,
90 			       u64 seq, ktime_t *ts, int *error)
91 {
92 	struct hl_cs_outcome *node;
93 	unsigned long flags;
94 
95 	spin_lock_irqsave(&outcome_store->db_lock, flags);
96 
97 	hash_for_each_possible(outcome_store->outcome_map, node, map_link, seq)
98 		if (node->seq == seq) {
99 			*ts = node->ts;
100 			*error = node->error;
101 
102 			hash_del(&node->map_link);
103 			list_del_init(&node->list_link);
104 			list_add(&node->list_link, &outcome_store->free_list);
105 
106 			spin_unlock_irqrestore(&outcome_store->db_lock, flags);
107 
108 			return true;
109 		}
110 
111 	spin_unlock_irqrestore(&outcome_store->db_lock, flags);
112 
113 	return false;
114 }
115 
hl_sob_reset(struct kref * ref)116 static void hl_sob_reset(struct kref *ref)
117 {
118 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
119 							kref);
120 	struct hl_device *hdev = hw_sob->hdev;
121 
122 	dev_dbg(hdev->dev, "reset sob id %u\n", hw_sob->sob_id);
123 
124 	hdev->asic_funcs->reset_sob(hdev, hw_sob);
125 
126 	hw_sob->need_reset = false;
127 }
128 
hl_sob_reset_error(struct kref * ref)129 void hl_sob_reset_error(struct kref *ref)
130 {
131 	struct hl_hw_sob *hw_sob = container_of(ref, struct hl_hw_sob,
132 							kref);
133 	struct hl_device *hdev = hw_sob->hdev;
134 
135 	dev_crit(hdev->dev,
136 		"SOB release shouldn't be called here, q_idx: %d, sob_id: %d\n",
137 		hw_sob->q_idx, hw_sob->sob_id);
138 }
139 
hw_sob_put(struct hl_hw_sob * hw_sob)140 void hw_sob_put(struct hl_hw_sob *hw_sob)
141 {
142 	if (hw_sob)
143 		kref_put(&hw_sob->kref, hl_sob_reset);
144 }
145 
hw_sob_put_err(struct hl_hw_sob * hw_sob)146 static void hw_sob_put_err(struct hl_hw_sob *hw_sob)
147 {
148 	if (hw_sob)
149 		kref_put(&hw_sob->kref, hl_sob_reset_error);
150 }
151 
hw_sob_get(struct hl_hw_sob * hw_sob)152 void hw_sob_get(struct hl_hw_sob *hw_sob)
153 {
154 	if (hw_sob)
155 		kref_get(&hw_sob->kref);
156 }
157 
158 /**
159  * hl_gen_sob_mask() - Generates a sob mask to be used in a monitor arm packet
160  * @sob_base: sob base id
161  * @sob_mask: sob user mask, each bit represents a sob offset from sob base
162  * @mask: generated mask
163  *
164  * Return: 0 if given parameters are valid
165  */
hl_gen_sob_mask(u16 sob_base,u8 sob_mask,u8 * mask)166 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask)
167 {
168 	int i;
169 
170 	if (sob_mask == 0)
171 		return -EINVAL;
172 
173 	if (sob_mask == 0x1) {
174 		*mask = ~(1 << (sob_base & 0x7));
175 	} else {
176 		/* find msb in order to verify sob range is valid */
177 		for (i = BITS_PER_BYTE - 1 ; i >= 0 ; i--)
178 			if (BIT(i) & sob_mask)
179 				break;
180 
181 		if (i > (HL_MAX_SOBS_PER_MONITOR - (sob_base & 0x7) - 1))
182 			return -EINVAL;
183 
184 		*mask = ~sob_mask;
185 	}
186 
187 	return 0;
188 }
189 
hl_fence_release(struct kref * kref)190 static void hl_fence_release(struct kref *kref)
191 {
192 	struct hl_fence *fence =
193 		container_of(kref, struct hl_fence, refcount);
194 	struct hl_cs_compl *hl_cs_cmpl =
195 		container_of(fence, struct hl_cs_compl, base_fence);
196 
197 	kfree(hl_cs_cmpl);
198 }
199 
hl_fence_put(struct hl_fence * fence)200 void hl_fence_put(struct hl_fence *fence)
201 {
202 	if (IS_ERR_OR_NULL(fence))
203 		return;
204 	kref_put(&fence->refcount, hl_fence_release);
205 }
206 
hl_fences_put(struct hl_fence ** fence,int len)207 void hl_fences_put(struct hl_fence **fence, int len)
208 {
209 	int i;
210 
211 	for (i = 0; i < len; i++, fence++)
212 		hl_fence_put(*fence);
213 }
214 
hl_fence_get(struct hl_fence * fence)215 void hl_fence_get(struct hl_fence *fence)
216 {
217 	if (fence)
218 		kref_get(&fence->refcount);
219 }
220 
hl_fence_init(struct hl_fence * fence,u64 sequence)221 static void hl_fence_init(struct hl_fence *fence, u64 sequence)
222 {
223 	kref_init(&fence->refcount);
224 	fence->cs_sequence = sequence;
225 	fence->error = 0;
226 	fence->timestamp = ktime_set(0, 0);
227 	fence->mcs_handling_done = false;
228 	init_completion(&fence->completion);
229 }
230 
cs_get(struct hl_cs * cs)231 void cs_get(struct hl_cs *cs)
232 {
233 	kref_get(&cs->refcount);
234 }
235 
cs_get_unless_zero(struct hl_cs * cs)236 static int cs_get_unless_zero(struct hl_cs *cs)
237 {
238 	return kref_get_unless_zero(&cs->refcount);
239 }
240 
cs_put(struct hl_cs * cs)241 static void cs_put(struct hl_cs *cs)
242 {
243 	kref_put(&cs->refcount, cs_do_release);
244 }
245 
cs_job_do_release(struct kref * ref)246 static void cs_job_do_release(struct kref *ref)
247 {
248 	struct hl_cs_job *job = container_of(ref, struct hl_cs_job, refcount);
249 
250 	kfree(job);
251 }
252 
hl_cs_job_put(struct hl_cs_job * job)253 static void hl_cs_job_put(struct hl_cs_job *job)
254 {
255 	kref_put(&job->refcount, cs_job_do_release);
256 }
257 
cs_needs_completion(struct hl_cs * cs)258 bool cs_needs_completion(struct hl_cs *cs)
259 {
260 	/* In case this is a staged CS, only the last CS in sequence should
261 	 * get a completion, any non staged CS will always get a completion
262 	 */
263 	if (cs->staged_cs && !cs->staged_last)
264 		return false;
265 
266 	return true;
267 }
268 
cs_needs_timeout(struct hl_cs * cs)269 bool cs_needs_timeout(struct hl_cs *cs)
270 {
271 	/* In case this is a staged CS, only the first CS in sequence should
272 	 * get a timeout, any non staged CS will always get a timeout
273 	 */
274 	if (cs->staged_cs && !cs->staged_first)
275 		return false;
276 
277 	return true;
278 }
279 
is_cb_patched(struct hl_device * hdev,struct hl_cs_job * job)280 static bool is_cb_patched(struct hl_device *hdev, struct hl_cs_job *job)
281 {
282 	/*
283 	 * Patched CB is created for external queues jobs, and for H/W queues
284 	 * jobs if the user CB was allocated by driver and MMU is disabled.
285 	 */
286 	return (job->queue_type == QUEUE_TYPE_EXT ||
287 			(job->queue_type == QUEUE_TYPE_HW &&
288 					job->is_kernel_allocated_cb &&
289 					!hdev->mmu_enable));
290 }
291 
292 /*
293  * cs_parser - parse the user command submission
294  *
295  * @hpriv	: pointer to the private data of the fd
296  * @job        : pointer to the job that holds the command submission info
297  *
298  * The function parses the command submission of the user. It calls the
299  * ASIC specific parser, which returns a list of memory blocks to send
300  * to the device as different command buffers
301  *
302  */
cs_parser(struct hl_fpriv * hpriv,struct hl_cs_job * job)303 static int cs_parser(struct hl_fpriv *hpriv, struct hl_cs_job *job)
304 {
305 	struct hl_device *hdev = hpriv->hdev;
306 	struct hl_cs_parser parser;
307 	int rc;
308 
309 	parser.ctx_id = job->cs->ctx->asid;
310 	parser.cs_sequence = job->cs->sequence;
311 	parser.job_id = job->id;
312 
313 	parser.hw_queue_id = job->hw_queue_id;
314 	parser.job_userptr_list = &job->userptr_list;
315 	parser.patched_cb = NULL;
316 	parser.user_cb = job->user_cb;
317 	parser.user_cb_size = job->user_cb_size;
318 	parser.queue_type = job->queue_type;
319 	parser.is_kernel_allocated_cb = job->is_kernel_allocated_cb;
320 	job->patched_cb = NULL;
321 	parser.completion = cs_needs_completion(job->cs);
322 
323 	rc = hdev->asic_funcs->cs_parser(hdev, &parser);
324 
325 	if (is_cb_patched(hdev, job)) {
326 		if (!rc) {
327 			job->patched_cb = parser.patched_cb;
328 			job->job_cb_size = parser.patched_cb_size;
329 			job->contains_dma_pkt = parser.contains_dma_pkt;
330 			atomic_inc(&job->patched_cb->cs_cnt);
331 		}
332 
333 		/*
334 		 * Whether the parsing worked or not, we don't need the
335 		 * original CB anymore because it was already parsed and
336 		 * won't be accessed again for this CS
337 		 */
338 		atomic_dec(&job->user_cb->cs_cnt);
339 		hl_cb_put(job->user_cb);
340 		job->user_cb = NULL;
341 	} else if (!rc) {
342 		job->job_cb_size = job->user_cb_size;
343 	}
344 
345 	return rc;
346 }
347 
hl_complete_job(struct hl_device * hdev,struct hl_cs_job * job)348 static void hl_complete_job(struct hl_device *hdev, struct hl_cs_job *job)
349 {
350 	struct hl_cs *cs = job->cs;
351 
352 	if (is_cb_patched(hdev, job)) {
353 		hl_userptr_delete_list(hdev, &job->userptr_list);
354 
355 		/*
356 		 * We might arrive here from rollback and patched CB wasn't
357 		 * created, so we need to check it's not NULL
358 		 */
359 		if (job->patched_cb) {
360 			atomic_dec(&job->patched_cb->cs_cnt);
361 			hl_cb_put(job->patched_cb);
362 		}
363 	}
364 
365 	/* For H/W queue jobs, if a user CB was allocated by driver and MMU is
366 	 * enabled, the user CB isn't released in cs_parser() and thus should be
367 	 * released here. This is also true for INT queues jobs which were
368 	 * allocated by driver.
369 	 */
370 	if ((job->is_kernel_allocated_cb &&
371 		((job->queue_type == QUEUE_TYPE_HW && hdev->mmu_enable) ||
372 				job->queue_type == QUEUE_TYPE_INT))) {
373 		atomic_dec(&job->user_cb->cs_cnt);
374 		hl_cb_put(job->user_cb);
375 	}
376 
377 	/*
378 	 * This is the only place where there can be multiple threads
379 	 * modifying the list at the same time
380 	 */
381 	spin_lock(&cs->job_lock);
382 	list_del(&job->cs_node);
383 	spin_unlock(&cs->job_lock);
384 
385 	hl_debugfs_remove_job(hdev, job);
386 
387 	/* We decrement reference only for a CS that gets completion
388 	 * because the reference was incremented only for this kind of CS
389 	 * right before it was scheduled.
390 	 *
391 	 * In staged submission, only the last CS marked as 'staged_last'
392 	 * gets completion, hence its release function will be called from here.
393 	 * As for all the rest CS's in the staged submission which do not get
394 	 * completion, their CS reference will be decremented by the
395 	 * 'staged_last' CS during the CS release flow.
396 	 * All relevant PQ CI counters will be incremented during the CS release
397 	 * flow by calling 'hl_hw_queue_update_ci'.
398 	 */
399 	if (cs_needs_completion(cs) &&
400 		(job->queue_type == QUEUE_TYPE_EXT || job->queue_type == QUEUE_TYPE_HW))
401 		cs_put(cs);
402 
403 	hl_cs_job_put(job);
404 }
405 
406 /*
407  * hl_staged_cs_find_first - locate the first CS in this staged submission
408  *
409  * @hdev: pointer to device structure
410  * @cs_seq: staged submission sequence number
411  *
412  * @note: This function must be called under 'hdev->cs_mirror_lock'
413  *
414  * Find and return a CS pointer with the given sequence
415  */
hl_staged_cs_find_first(struct hl_device * hdev,u64 cs_seq)416 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq)
417 {
418 	struct hl_cs *cs;
419 
420 	list_for_each_entry_reverse(cs, &hdev->cs_mirror_list, mirror_node)
421 		if (cs->staged_cs && cs->staged_first &&
422 				cs->sequence == cs_seq)
423 			return cs;
424 
425 	return NULL;
426 }
427 
428 /*
429  * is_staged_cs_last_exists - returns true if the last CS in sequence exists
430  *
431  * @hdev: pointer to device structure
432  * @cs: staged submission member
433  *
434  */
is_staged_cs_last_exists(struct hl_device * hdev,struct hl_cs * cs)435 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs)
436 {
437 	struct hl_cs *last_entry;
438 
439 	last_entry = list_last_entry(&cs->staged_cs_node, struct hl_cs,
440 								staged_cs_node);
441 
442 	if (last_entry->staged_last)
443 		return true;
444 
445 	return false;
446 }
447 
448 /*
449  * staged_cs_get - get CS reference if this CS is a part of a staged CS
450  *
451  * @hdev: pointer to device structure
452  * @cs: current CS
453  * @cs_seq: staged submission sequence number
454  *
455  * Increment CS reference for every CS in this staged submission except for
456  * the CS which get completion.
457  */
staged_cs_get(struct hl_device * hdev,struct hl_cs * cs)458 static void staged_cs_get(struct hl_device *hdev, struct hl_cs *cs)
459 {
460 	/* Only the last CS in this staged submission will get a completion.
461 	 * We must increment the reference for all other CS's in this
462 	 * staged submission.
463 	 * Once we get a completion we will release the whole staged submission.
464 	 */
465 	if (!cs->staged_last)
466 		cs_get(cs);
467 }
468 
469 /*
470  * staged_cs_put - put a CS in case it is part of staged submission
471  *
472  * @hdev: pointer to device structure
473  * @cs: CS to put
474  *
475  * This function decrements a CS reference (for a non completion CS)
476  */
staged_cs_put(struct hl_device * hdev,struct hl_cs * cs)477 static void staged_cs_put(struct hl_device *hdev, struct hl_cs *cs)
478 {
479 	/* We release all CS's in a staged submission except the last
480 	 * CS which we have never incremented its reference.
481 	 */
482 	if (!cs_needs_completion(cs))
483 		cs_put(cs);
484 }
485 
cs_handle_tdr(struct hl_device * hdev,struct hl_cs * cs)486 static void cs_handle_tdr(struct hl_device *hdev, struct hl_cs *cs)
487 {
488 	struct hl_cs *next = NULL, *iter, *first_cs;
489 
490 	if (!cs_needs_timeout(cs))
491 		return;
492 
493 	spin_lock(&hdev->cs_mirror_lock);
494 
495 	/* We need to handle tdr only once for the complete staged submission.
496 	 * Hence, we choose the CS that reaches this function first which is
497 	 * the CS marked as 'staged_last'.
498 	 * In case single staged cs was submitted which has both first and last
499 	 * indications, then "cs_find_first" below will return NULL, since we
500 	 * removed the cs node from the list before getting here,
501 	 * in such cases just continue with the cs to cancel it's TDR work.
502 	 */
503 	if (cs->staged_cs && cs->staged_last) {
504 		first_cs = hl_staged_cs_find_first(hdev, cs->staged_sequence);
505 		if (first_cs)
506 			cs = first_cs;
507 	}
508 
509 	spin_unlock(&hdev->cs_mirror_lock);
510 
511 	/* Don't cancel TDR in case this CS was timedout because we might be
512 	 * running from the TDR context
513 	 */
514 	if (cs->timedout || hdev->timeout_jiffies == MAX_SCHEDULE_TIMEOUT)
515 		return;
516 
517 	if (cs->tdr_active)
518 		cancel_delayed_work_sync(&cs->work_tdr);
519 
520 	spin_lock(&hdev->cs_mirror_lock);
521 
522 	/* queue TDR for next CS */
523 	list_for_each_entry(iter, &hdev->cs_mirror_list, mirror_node)
524 		if (cs_needs_timeout(iter)) {
525 			next = iter;
526 			break;
527 		}
528 
529 	if (next && !next->tdr_active) {
530 		next->tdr_active = true;
531 		schedule_delayed_work(&next->work_tdr, next->timeout_jiffies);
532 	}
533 
534 	spin_unlock(&hdev->cs_mirror_lock);
535 }
536 
537 /*
538  * force_complete_multi_cs - complete all contexts that wait on multi-CS
539  *
540  * @hdev: pointer to habanalabs device structure
541  */
force_complete_multi_cs(struct hl_device * hdev)542 static void force_complete_multi_cs(struct hl_device *hdev)
543 {
544 	int i;
545 
546 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
547 		struct multi_cs_completion *mcs_compl;
548 
549 		mcs_compl = &hdev->multi_cs_completion[i];
550 
551 		spin_lock(&mcs_compl->lock);
552 
553 		if (!mcs_compl->used) {
554 			spin_unlock(&mcs_compl->lock);
555 			continue;
556 		}
557 
558 		/* when calling force complete no context should be waiting on
559 		 * multi-cS.
560 		 * We are calling the function as a protection for such case
561 		 * to free any pending context and print error message
562 		 */
563 		dev_err(hdev->dev,
564 				"multi-CS completion context %d still waiting when calling force completion\n",
565 				i);
566 		complete_all(&mcs_compl->completion);
567 		spin_unlock(&mcs_compl->lock);
568 	}
569 }
570 
571 /*
572  * complete_multi_cs - complete all waiting entities on multi-CS
573  *
574  * @hdev: pointer to habanalabs device structure
575  * @cs: CS structure
576  * The function signals a waiting entity that has an overlapping stream masters
577  * with the completed CS.
578  * For example:
579  * - a completed CS worked on stream master QID 4, multi CS completion
580  *   is actively waiting on stream master QIDs 3, 5. don't send signal as no
581  *   common stream master QID
582  * - a completed CS worked on stream master QID 4, multi CS completion
583  *   is actively waiting on stream master QIDs 3, 4. send signal as stream
584  *   master QID 4 is common
585  */
complete_multi_cs(struct hl_device * hdev,struct hl_cs * cs)586 static void complete_multi_cs(struct hl_device *hdev, struct hl_cs *cs)
587 {
588 	struct hl_fence *fence = cs->fence;
589 	int i;
590 
591 	/* in case of multi CS check for completion only for the first CS */
592 	if (cs->staged_cs && !cs->staged_first)
593 		return;
594 
595 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
596 		struct multi_cs_completion *mcs_compl;
597 
598 		mcs_compl = &hdev->multi_cs_completion[i];
599 		if (!mcs_compl->used)
600 			continue;
601 
602 		spin_lock(&mcs_compl->lock);
603 
604 		/*
605 		 * complete if:
606 		 * 1. still waiting for completion
607 		 * 2. the completed CS has at least one overlapping stream
608 		 *    master with the stream masters in the completion
609 		 */
610 		if (mcs_compl->used &&
611 				(fence->stream_master_qid_map &
612 					mcs_compl->stream_master_qid_map)) {
613 			/* extract the timestamp only of first completed CS */
614 			if (!mcs_compl->timestamp)
615 				mcs_compl->timestamp = ktime_to_ns(fence->timestamp);
616 
617 			complete_all(&mcs_compl->completion);
618 
619 			/*
620 			 * Setting mcs_handling_done inside the lock ensures
621 			 * at least one fence have mcs_handling_done set to
622 			 * true before wait for mcs finish. This ensures at
623 			 * least one CS will be set as completed when polling
624 			 * mcs fences.
625 			 */
626 			fence->mcs_handling_done = true;
627 		}
628 
629 		spin_unlock(&mcs_compl->lock);
630 	}
631 	/* In case CS completed without mcs completion initialized */
632 	fence->mcs_handling_done = true;
633 }
634 
cs_release_sob_reset_handler(struct hl_device * hdev,struct hl_cs * cs,struct hl_cs_compl * hl_cs_cmpl)635 static inline void cs_release_sob_reset_handler(struct hl_device *hdev,
636 					struct hl_cs *cs,
637 					struct hl_cs_compl *hl_cs_cmpl)
638 {
639 	/* Skip this handler if the cs wasn't submitted, to avoid putting
640 	 * the hw_sob twice, since this case already handled at this point,
641 	 * also skip if the hw_sob pointer wasn't set.
642 	 */
643 	if (!hl_cs_cmpl->hw_sob || !cs->submitted)
644 		return;
645 
646 	spin_lock(&hl_cs_cmpl->lock);
647 
648 	/*
649 	 * we get refcount upon reservation of signals or signal/wait cs for the
650 	 * hw_sob object, and need to put it when the first staged cs
651 	 * (which cotains the encaps signals) or cs signal/wait is completed.
652 	 */
653 	if ((hl_cs_cmpl->type == CS_TYPE_SIGNAL) ||
654 			(hl_cs_cmpl->type == CS_TYPE_WAIT) ||
655 			(hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT) ||
656 			(!!hl_cs_cmpl->encaps_signals)) {
657 		dev_dbg(hdev->dev,
658 				"CS 0x%llx type %d finished, sob_id: %d, sob_val: %u\n",
659 				hl_cs_cmpl->cs_seq,
660 				hl_cs_cmpl->type,
661 				hl_cs_cmpl->hw_sob->sob_id,
662 				hl_cs_cmpl->sob_val);
663 
664 		hw_sob_put(hl_cs_cmpl->hw_sob);
665 
666 		if (hl_cs_cmpl->type == CS_TYPE_COLLECTIVE_WAIT)
667 			hdev->asic_funcs->reset_sob_group(hdev,
668 					hl_cs_cmpl->sob_group);
669 	}
670 
671 	spin_unlock(&hl_cs_cmpl->lock);
672 }
673 
cs_do_release(struct kref * ref)674 static void cs_do_release(struct kref *ref)
675 {
676 	struct hl_cs *cs = container_of(ref, struct hl_cs, refcount);
677 	struct hl_device *hdev = cs->ctx->hdev;
678 	struct hl_cs_job *job, *tmp;
679 	struct hl_cs_compl *hl_cs_cmpl =
680 			container_of(cs->fence, struct hl_cs_compl, base_fence);
681 
682 	cs->completed = true;
683 
684 	/*
685 	 * Although if we reached here it means that all external jobs have
686 	 * finished, because each one of them took refcnt to CS, we still
687 	 * need to go over the internal jobs and complete them. Otherwise, we
688 	 * will have leaked memory and what's worse, the CS object (and
689 	 * potentially the CTX object) could be released, while the JOB
690 	 * still holds a pointer to them (but no reference).
691 	 */
692 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
693 		hl_complete_job(hdev, job);
694 
695 	if (!cs->submitted) {
696 		/*
697 		 * In case the wait for signal CS was submitted, the fence put
698 		 * occurs in init_signal_wait_cs() or collective_wait_init_cs()
699 		 * right before hanging on the PQ.
700 		 */
701 		if (cs->type == CS_TYPE_WAIT ||
702 				cs->type == CS_TYPE_COLLECTIVE_WAIT)
703 			hl_fence_put(cs->signal_fence);
704 
705 		goto out;
706 	}
707 
708 	/* Need to update CI for all queue jobs that does not get completion */
709 	hl_hw_queue_update_ci(cs);
710 
711 	/* remove CS from CS mirror list */
712 	spin_lock(&hdev->cs_mirror_lock);
713 	list_del_init(&cs->mirror_node);
714 	spin_unlock(&hdev->cs_mirror_lock);
715 
716 	cs_handle_tdr(hdev, cs);
717 
718 	if (cs->staged_cs) {
719 		/* the completion CS decrements reference for the entire
720 		 * staged submission
721 		 */
722 		if (cs->staged_last) {
723 			struct hl_cs *staged_cs, *tmp_cs;
724 
725 			list_for_each_entry_safe(staged_cs, tmp_cs,
726 					&cs->staged_cs_node, staged_cs_node)
727 				staged_cs_put(hdev, staged_cs);
728 		}
729 
730 		/* A staged CS will be a member in the list only after it
731 		 * was submitted. We used 'cs_mirror_lock' when inserting
732 		 * it to list so we will use it again when removing it
733 		 */
734 		if (cs->submitted) {
735 			spin_lock(&hdev->cs_mirror_lock);
736 			list_del(&cs->staged_cs_node);
737 			spin_unlock(&hdev->cs_mirror_lock);
738 		}
739 
740 		/* decrement refcount to handle when first staged cs
741 		 * with encaps signals is completed.
742 		 */
743 		if (hl_cs_cmpl->encaps_signals)
744 			kref_put(&hl_cs_cmpl->encaps_sig_hdl->refcount,
745 						hl_encaps_handle_do_release);
746 	}
747 
748 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
749 			&& cs->encaps_signals)
750 		kref_put(&cs->encaps_sig_hdl->refcount,
751 					hl_encaps_handle_do_release);
752 
753 out:
754 	/* Must be called before hl_ctx_put because inside we use ctx to get
755 	 * the device
756 	 */
757 	hl_debugfs_remove_cs(cs);
758 
759 	hdev->shadow_cs_queue[cs->sequence & (hdev->asic_prop.max_pending_cs - 1)] = NULL;
760 
761 	/* We need to mark an error for not submitted because in that case
762 	 * the hl fence release flow is different. Mainly, we don't need
763 	 * to handle hw_sob for signal/wait
764 	 */
765 	if (cs->timedout)
766 		cs->fence->error = -ETIMEDOUT;
767 	else if (cs->aborted)
768 		cs->fence->error = -EIO;
769 	else if (!cs->submitted)
770 		cs->fence->error = -EBUSY;
771 
772 	if (unlikely(cs->skip_reset_on_timeout)) {
773 		dev_err(hdev->dev,
774 			"Command submission %llu completed after %llu (s)\n",
775 			cs->sequence,
776 			div_u64(jiffies - cs->submission_time_jiffies, HZ));
777 	}
778 
779 	if (cs->timestamp) {
780 		cs->fence->timestamp = ktime_get();
781 		hl_push_cs_outcome(hdev, &cs->ctx->outcome_store, cs->sequence,
782 				   cs->fence->timestamp, cs->fence->error);
783 	}
784 
785 	hl_ctx_put(cs->ctx);
786 
787 	complete_all(&cs->fence->completion);
788 	complete_multi_cs(hdev, cs);
789 
790 	cs_release_sob_reset_handler(hdev, cs, hl_cs_cmpl);
791 
792 	hl_fence_put(cs->fence);
793 
794 	kfree(cs->jobs_in_queue_cnt);
795 	kfree(cs);
796 }
797 
cs_timedout(struct work_struct * work)798 static void cs_timedout(struct work_struct *work)
799 {
800 	struct hl_device *hdev;
801 	u64 event_mask;
802 	int rc;
803 	struct hl_cs *cs = container_of(work, struct hl_cs,
804 						 work_tdr.work);
805 	bool skip_reset_on_timeout = cs->skip_reset_on_timeout, device_reset = false;
806 
807 	rc = cs_get_unless_zero(cs);
808 	if (!rc)
809 		return;
810 
811 	if ((!cs->submitted) || (cs->completed)) {
812 		cs_put(cs);
813 		return;
814 	}
815 
816 	hdev = cs->ctx->hdev;
817 
818 	if (likely(!skip_reset_on_timeout)) {
819 		if (hdev->reset_on_lockup)
820 			device_reset = true;
821 		else
822 			hdev->reset_info.needs_reset = true;
823 
824 		/* Mark the CS is timed out so we won't try to cancel its TDR */
825 		cs->timedout = true;
826 	}
827 
828 	/* Save only the first CS timeout parameters */
829 	rc = atomic_cmpxchg(&hdev->captured_err_info.cs_timeout.write_enable, 1, 0);
830 	if (rc) {
831 		hdev->captured_err_info.cs_timeout.timestamp = ktime_get();
832 		hdev->captured_err_info.cs_timeout.seq = cs->sequence;
833 
834 		event_mask = device_reset ? (HL_NOTIFIER_EVENT_CS_TIMEOUT |
835 				HL_NOTIFIER_EVENT_DEVICE_RESET) : HL_NOTIFIER_EVENT_CS_TIMEOUT;
836 
837 		hl_notifier_event_send_all(hdev, event_mask);
838 	}
839 
840 	switch (cs->type) {
841 	case CS_TYPE_SIGNAL:
842 		dev_err(hdev->dev,
843 			"Signal command submission %llu has not finished in time!\n",
844 			cs->sequence);
845 		break;
846 
847 	case CS_TYPE_WAIT:
848 		dev_err(hdev->dev,
849 			"Wait command submission %llu has not finished in time!\n",
850 			cs->sequence);
851 		break;
852 
853 	case CS_TYPE_COLLECTIVE_WAIT:
854 		dev_err(hdev->dev,
855 			"Collective Wait command submission %llu has not finished in time!\n",
856 			cs->sequence);
857 		break;
858 
859 	default:
860 		dev_err(hdev->dev,
861 			"Command submission %llu has not finished in time!\n",
862 			cs->sequence);
863 		break;
864 	}
865 
866 	rc = hl_state_dump(hdev);
867 	if (rc)
868 		dev_err(hdev->dev, "Error during system state dump %d\n", rc);
869 
870 	cs_put(cs);
871 
872 	if (device_reset)
873 		hl_device_reset(hdev, HL_DRV_RESET_TDR);
874 }
875 
allocate_cs(struct hl_device * hdev,struct hl_ctx * ctx,enum hl_cs_type cs_type,u64 user_sequence,struct hl_cs ** cs_new,u32 flags,u32 timeout)876 static int allocate_cs(struct hl_device *hdev, struct hl_ctx *ctx,
877 			enum hl_cs_type cs_type, u64 user_sequence,
878 			struct hl_cs **cs_new, u32 flags, u32 timeout)
879 {
880 	struct hl_cs_counters_atomic *cntr;
881 	struct hl_fence *other = NULL;
882 	struct hl_cs_compl *cs_cmpl;
883 	struct hl_cs *cs;
884 	int rc;
885 
886 	cntr = &hdev->aggregated_cs_counters;
887 
888 	cs = kzalloc(sizeof(*cs), GFP_ATOMIC);
889 	if (!cs)
890 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
891 
892 	if (!cs) {
893 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
894 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
895 		return -ENOMEM;
896 	}
897 
898 	/* increment refcnt for context */
899 	hl_ctx_get(ctx);
900 
901 	cs->ctx = ctx;
902 	cs->submitted = false;
903 	cs->completed = false;
904 	cs->type = cs_type;
905 	cs->timestamp = !!(flags & HL_CS_FLAGS_TIMESTAMP);
906 	cs->encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
907 	cs->timeout_jiffies = timeout;
908 	cs->skip_reset_on_timeout =
909 		hdev->reset_info.skip_reset_on_timeout ||
910 		!!(flags & HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT);
911 	cs->submission_time_jiffies = jiffies;
912 	INIT_LIST_HEAD(&cs->job_list);
913 	INIT_DELAYED_WORK(&cs->work_tdr, cs_timedout);
914 	kref_init(&cs->refcount);
915 	spin_lock_init(&cs->job_lock);
916 
917 	cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_ATOMIC);
918 	if (!cs_cmpl)
919 		cs_cmpl = kzalloc(sizeof(*cs_cmpl), GFP_KERNEL);
920 
921 	if (!cs_cmpl) {
922 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
923 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
924 		rc = -ENOMEM;
925 		goto free_cs;
926 	}
927 
928 	cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
929 			sizeof(*cs->jobs_in_queue_cnt), GFP_ATOMIC);
930 	if (!cs->jobs_in_queue_cnt)
931 		cs->jobs_in_queue_cnt = kcalloc(hdev->asic_prop.max_queues,
932 				sizeof(*cs->jobs_in_queue_cnt), GFP_KERNEL);
933 
934 	if (!cs->jobs_in_queue_cnt) {
935 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
936 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
937 		rc = -ENOMEM;
938 		goto free_cs_cmpl;
939 	}
940 
941 	cs_cmpl->hdev = hdev;
942 	cs_cmpl->type = cs->type;
943 	spin_lock_init(&cs_cmpl->lock);
944 	cs->fence = &cs_cmpl->base_fence;
945 
946 	spin_lock(&ctx->cs_lock);
947 
948 	cs_cmpl->cs_seq = ctx->cs_sequence;
949 	other = ctx->cs_pending[cs_cmpl->cs_seq &
950 				(hdev->asic_prop.max_pending_cs - 1)];
951 
952 	if (other && !completion_done(&other->completion)) {
953 		/* If the following statement is true, it means we have reached
954 		 * a point in which only part of the staged submission was
955 		 * submitted and we don't have enough room in the 'cs_pending'
956 		 * array for the rest of the submission.
957 		 * This causes a deadlock because this CS will never be
958 		 * completed as it depends on future CS's for completion.
959 		 */
960 		if (other->cs_sequence == user_sequence)
961 			dev_crit_ratelimited(hdev->dev,
962 				"Staged CS %llu deadlock due to lack of resources",
963 				user_sequence);
964 
965 		dev_dbg_ratelimited(hdev->dev,
966 			"Rejecting CS because of too many in-flights CS\n");
967 		atomic64_inc(&ctx->cs_counters.max_cs_in_flight_drop_cnt);
968 		atomic64_inc(&cntr->max_cs_in_flight_drop_cnt);
969 		rc = -EAGAIN;
970 		goto free_fence;
971 	}
972 
973 	/* init hl_fence */
974 	hl_fence_init(&cs_cmpl->base_fence, cs_cmpl->cs_seq);
975 
976 	cs->sequence = cs_cmpl->cs_seq;
977 
978 	ctx->cs_pending[cs_cmpl->cs_seq &
979 			(hdev->asic_prop.max_pending_cs - 1)] =
980 							&cs_cmpl->base_fence;
981 	ctx->cs_sequence++;
982 
983 	hl_fence_get(&cs_cmpl->base_fence);
984 
985 	hl_fence_put(other);
986 
987 	spin_unlock(&ctx->cs_lock);
988 
989 	*cs_new = cs;
990 
991 	return 0;
992 
993 free_fence:
994 	spin_unlock(&ctx->cs_lock);
995 	kfree(cs->jobs_in_queue_cnt);
996 free_cs_cmpl:
997 	kfree(cs_cmpl);
998 free_cs:
999 	kfree(cs);
1000 	hl_ctx_put(ctx);
1001 	return rc;
1002 }
1003 
cs_rollback(struct hl_device * hdev,struct hl_cs * cs)1004 static void cs_rollback(struct hl_device *hdev, struct hl_cs *cs)
1005 {
1006 	struct hl_cs_job *job, *tmp;
1007 
1008 	staged_cs_put(hdev, cs);
1009 
1010 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1011 		hl_complete_job(hdev, job);
1012 }
1013 
hl_cs_rollback_all(struct hl_device * hdev,bool skip_wq_flush)1014 void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush)
1015 {
1016 	int i;
1017 	struct hl_cs *cs, *tmp;
1018 
1019 	if (!skip_wq_flush) {
1020 		flush_workqueue(hdev->ts_free_obj_wq);
1021 
1022 		/* flush all completions before iterating over the CS mirror list in
1023 		 * order to avoid a race with the release functions
1024 		 */
1025 		for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
1026 			flush_workqueue(hdev->cq_wq[i]);
1027 
1028 		flush_workqueue(hdev->cs_cmplt_wq);
1029 	}
1030 
1031 	/* Make sure we don't have leftovers in the CS mirror list */
1032 	list_for_each_entry_safe(cs, tmp, &hdev->cs_mirror_list, mirror_node) {
1033 		cs_get(cs);
1034 		cs->aborted = true;
1035 		dev_warn_ratelimited(hdev->dev, "Killing CS %d.%llu\n",
1036 					cs->ctx->asid, cs->sequence);
1037 		cs_rollback(hdev, cs);
1038 		cs_put(cs);
1039 	}
1040 
1041 	force_complete_multi_cs(hdev);
1042 }
1043 
1044 static void
wake_pending_user_interrupt_threads(struct hl_user_interrupt * interrupt)1045 wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
1046 {
1047 	struct hl_user_pending_interrupt *pend, *temp;
1048 	unsigned long flags;
1049 
1050 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
1051 	list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
1052 		if (pend->ts_reg_info.buf) {
1053 			list_del(&pend->wait_list_node);
1054 			hl_mmap_mem_buf_put(pend->ts_reg_info.buf);
1055 			hl_cb_put(pend->ts_reg_info.cq_cb);
1056 		} else {
1057 			pend->fence.error = -EIO;
1058 			complete_all(&pend->fence.completion);
1059 		}
1060 	}
1061 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
1062 }
1063 
hl_release_pending_user_interrupts(struct hl_device * hdev)1064 void hl_release_pending_user_interrupts(struct hl_device *hdev)
1065 {
1066 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1067 	struct hl_user_interrupt *interrupt;
1068 	int i;
1069 
1070 	if (!prop->user_interrupt_count)
1071 		return;
1072 
1073 	/* We iterate through the user interrupt requests and waking up all
1074 	 * user threads waiting for interrupt completion. We iterate the
1075 	 * list under a lock, this is why all user threads, once awake,
1076 	 * will wait on the same lock and will release the waiting object upon
1077 	 * unlock.
1078 	 */
1079 
1080 	for (i = 0 ; i < prop->user_interrupt_count ; i++) {
1081 		interrupt = &hdev->user_interrupt[i];
1082 		wake_pending_user_interrupt_threads(interrupt);
1083 	}
1084 
1085 	interrupt = &hdev->common_user_cq_interrupt;
1086 	wake_pending_user_interrupt_threads(interrupt);
1087 
1088 	interrupt = &hdev->common_decoder_interrupt;
1089 	wake_pending_user_interrupt_threads(interrupt);
1090 }
1091 
job_wq_completion(struct work_struct * work)1092 static void job_wq_completion(struct work_struct *work)
1093 {
1094 	struct hl_cs_job *job = container_of(work, struct hl_cs_job,
1095 						finish_work);
1096 	struct hl_cs *cs = job->cs;
1097 	struct hl_device *hdev = cs->ctx->hdev;
1098 
1099 	/* job is no longer needed */
1100 	hl_complete_job(hdev, job);
1101 }
1102 
cs_completion(struct work_struct * work)1103 static void cs_completion(struct work_struct *work)
1104 {
1105 	struct hl_cs *cs = container_of(work, struct hl_cs, finish_work);
1106 	struct hl_device *hdev = cs->ctx->hdev;
1107 	struct hl_cs_job *job, *tmp;
1108 
1109 	list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
1110 		hl_complete_job(hdev, job);
1111 }
1112 
validate_queue_index(struct hl_device * hdev,struct hl_cs_chunk * chunk,enum hl_queue_type * queue_type,bool * is_kernel_allocated_cb)1113 static int validate_queue_index(struct hl_device *hdev,
1114 				struct hl_cs_chunk *chunk,
1115 				enum hl_queue_type *queue_type,
1116 				bool *is_kernel_allocated_cb)
1117 {
1118 	struct asic_fixed_properties *asic = &hdev->asic_prop;
1119 	struct hw_queue_properties *hw_queue_prop;
1120 
1121 	/* This must be checked here to prevent out-of-bounds access to
1122 	 * hw_queues_props array
1123 	 */
1124 	if (chunk->queue_index >= asic->max_queues) {
1125 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1126 			chunk->queue_index);
1127 		return -EINVAL;
1128 	}
1129 
1130 	hw_queue_prop = &asic->hw_queues_props[chunk->queue_index];
1131 
1132 	if (hw_queue_prop->type == QUEUE_TYPE_NA) {
1133 		dev_err(hdev->dev, "Queue index %d is not applicable\n",
1134 			chunk->queue_index);
1135 		return -EINVAL;
1136 	}
1137 
1138 	if (hw_queue_prop->binned) {
1139 		dev_err(hdev->dev, "Queue index %d is binned out\n",
1140 			chunk->queue_index);
1141 		return -EINVAL;
1142 	}
1143 
1144 	if (hw_queue_prop->driver_only) {
1145 		dev_err(hdev->dev,
1146 			"Queue index %d is restricted for the kernel driver\n",
1147 			chunk->queue_index);
1148 		return -EINVAL;
1149 	}
1150 
1151 	/* When hw queue type isn't QUEUE_TYPE_HW,
1152 	 * USER_ALLOC_CB flag shall be referred as "don't care".
1153 	 */
1154 	if (hw_queue_prop->type == QUEUE_TYPE_HW) {
1155 		if (chunk->cs_chunk_flags & HL_CS_CHUNK_FLAGS_USER_ALLOC_CB) {
1156 			if (!(hw_queue_prop->cb_alloc_flags & CB_ALLOC_USER)) {
1157 				dev_err(hdev->dev,
1158 					"Queue index %d doesn't support user CB\n",
1159 					chunk->queue_index);
1160 				return -EINVAL;
1161 			}
1162 
1163 			*is_kernel_allocated_cb = false;
1164 		} else {
1165 			if (!(hw_queue_prop->cb_alloc_flags &
1166 					CB_ALLOC_KERNEL)) {
1167 				dev_err(hdev->dev,
1168 					"Queue index %d doesn't support kernel CB\n",
1169 					chunk->queue_index);
1170 				return -EINVAL;
1171 			}
1172 
1173 			*is_kernel_allocated_cb = true;
1174 		}
1175 	} else {
1176 		*is_kernel_allocated_cb = !!(hw_queue_prop->cb_alloc_flags
1177 						& CB_ALLOC_KERNEL);
1178 	}
1179 
1180 	*queue_type = hw_queue_prop->type;
1181 	return 0;
1182 }
1183 
get_cb_from_cs_chunk(struct hl_device * hdev,struct hl_mem_mgr * mmg,struct hl_cs_chunk * chunk)1184 static struct hl_cb *get_cb_from_cs_chunk(struct hl_device *hdev,
1185 					struct hl_mem_mgr *mmg,
1186 					struct hl_cs_chunk *chunk)
1187 {
1188 	struct hl_cb *cb;
1189 
1190 	cb = hl_cb_get(mmg, chunk->cb_handle);
1191 	if (!cb) {
1192 		dev_err(hdev->dev, "CB handle 0x%llx invalid\n", chunk->cb_handle);
1193 		return NULL;
1194 	}
1195 
1196 	if ((chunk->cb_size < 8) || (chunk->cb_size > cb->size)) {
1197 		dev_err(hdev->dev, "CB size %u invalid\n", chunk->cb_size);
1198 		goto release_cb;
1199 	}
1200 
1201 	atomic_inc(&cb->cs_cnt);
1202 
1203 	return cb;
1204 
1205 release_cb:
1206 	hl_cb_put(cb);
1207 	return NULL;
1208 }
1209 
hl_cs_allocate_job(struct hl_device * hdev,enum hl_queue_type queue_type,bool is_kernel_allocated_cb)1210 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
1211 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb)
1212 {
1213 	struct hl_cs_job *job;
1214 
1215 	job = kzalloc(sizeof(*job), GFP_ATOMIC);
1216 	if (!job)
1217 		job = kzalloc(sizeof(*job), GFP_KERNEL);
1218 
1219 	if (!job)
1220 		return NULL;
1221 
1222 	kref_init(&job->refcount);
1223 	job->queue_type = queue_type;
1224 	job->is_kernel_allocated_cb = is_kernel_allocated_cb;
1225 
1226 	if (is_cb_patched(hdev, job))
1227 		INIT_LIST_HEAD(&job->userptr_list);
1228 
1229 	if (job->queue_type == QUEUE_TYPE_EXT)
1230 		INIT_WORK(&job->finish_work, job_wq_completion);
1231 
1232 	return job;
1233 }
1234 
hl_cs_get_cs_type(u32 cs_type_flags)1235 static enum hl_cs_type hl_cs_get_cs_type(u32 cs_type_flags)
1236 {
1237 	if (cs_type_flags & HL_CS_FLAGS_SIGNAL)
1238 		return CS_TYPE_SIGNAL;
1239 	else if (cs_type_flags & HL_CS_FLAGS_WAIT)
1240 		return CS_TYPE_WAIT;
1241 	else if (cs_type_flags & HL_CS_FLAGS_COLLECTIVE_WAIT)
1242 		return CS_TYPE_COLLECTIVE_WAIT;
1243 	else if (cs_type_flags & HL_CS_FLAGS_RESERVE_SIGNALS_ONLY)
1244 		return CS_RESERVE_SIGNALS;
1245 	else if (cs_type_flags & HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY)
1246 		return CS_UNRESERVE_SIGNALS;
1247 	else if (cs_type_flags & HL_CS_FLAGS_ENGINE_CORE_COMMAND)
1248 		return CS_TYPE_ENGINE_CORE;
1249 	else
1250 		return CS_TYPE_DEFAULT;
1251 }
1252 
hl_cs_sanity_checks(struct hl_fpriv * hpriv,union hl_cs_args * args)1253 static int hl_cs_sanity_checks(struct hl_fpriv *hpriv, union hl_cs_args *args)
1254 {
1255 	struct hl_device *hdev = hpriv->hdev;
1256 	struct hl_ctx *ctx = hpriv->ctx;
1257 	u32 cs_type_flags, num_chunks;
1258 	enum hl_device_status status;
1259 	enum hl_cs_type cs_type;
1260 	bool is_sync_stream;
1261 
1262 	if (!hl_device_operational(hdev, &status)) {
1263 		return -EBUSY;
1264 	}
1265 
1266 	if ((args->in.cs_flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1267 			!hdev->supports_staged_submission) {
1268 		dev_err(hdev->dev, "staged submission not supported");
1269 		return -EPERM;
1270 	}
1271 
1272 	cs_type_flags = args->in.cs_flags & HL_CS_FLAGS_TYPE_MASK;
1273 
1274 	if (unlikely(cs_type_flags && !is_power_of_2(cs_type_flags))) {
1275 		dev_err(hdev->dev,
1276 			"CS type flags are mutually exclusive, context %d\n",
1277 			ctx->asid);
1278 		return -EINVAL;
1279 	}
1280 
1281 	cs_type = hl_cs_get_cs_type(cs_type_flags);
1282 	num_chunks = args->in.num_chunks_execute;
1283 
1284 	is_sync_stream = (cs_type == CS_TYPE_SIGNAL || cs_type == CS_TYPE_WAIT ||
1285 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
1286 
1287 	if (unlikely(is_sync_stream && !hdev->supports_sync_stream)) {
1288 		dev_err(hdev->dev, "Sync stream CS is not supported\n");
1289 		return -EINVAL;
1290 	}
1291 
1292 	if (cs_type == CS_TYPE_DEFAULT) {
1293 		if (!num_chunks) {
1294 			dev_err(hdev->dev, "Got execute CS with 0 chunks, context %d\n", ctx->asid);
1295 			return -EINVAL;
1296 		}
1297 	} else if (is_sync_stream && num_chunks != 1) {
1298 		dev_err(hdev->dev,
1299 			"Sync stream CS mandates one chunk only, context %d\n",
1300 			ctx->asid);
1301 		return -EINVAL;
1302 	}
1303 
1304 	return 0;
1305 }
1306 
hl_cs_copy_chunk_array(struct hl_device * hdev,struct hl_cs_chunk ** cs_chunk_array,void __user * chunks,u32 num_chunks,struct hl_ctx * ctx)1307 static int hl_cs_copy_chunk_array(struct hl_device *hdev,
1308 					struct hl_cs_chunk **cs_chunk_array,
1309 					void __user *chunks, u32 num_chunks,
1310 					struct hl_ctx *ctx)
1311 {
1312 	u32 size_to_copy;
1313 
1314 	if (num_chunks > HL_MAX_JOBS_PER_CS) {
1315 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1316 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1317 		dev_err(hdev->dev,
1318 			"Number of chunks can NOT be larger than %d\n",
1319 			HL_MAX_JOBS_PER_CS);
1320 		return -EINVAL;
1321 	}
1322 
1323 	*cs_chunk_array = kmalloc_array(num_chunks, sizeof(**cs_chunk_array),
1324 					GFP_ATOMIC);
1325 	if (!*cs_chunk_array)
1326 		*cs_chunk_array = kmalloc_array(num_chunks,
1327 					sizeof(**cs_chunk_array), GFP_KERNEL);
1328 	if (!*cs_chunk_array) {
1329 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1330 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1331 		return -ENOMEM;
1332 	}
1333 
1334 	size_to_copy = num_chunks * sizeof(struct hl_cs_chunk);
1335 	if (copy_from_user(*cs_chunk_array, chunks, size_to_copy)) {
1336 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1337 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1338 		dev_err(hdev->dev, "Failed to copy cs chunk array from user\n");
1339 		kfree(*cs_chunk_array);
1340 		return -EFAULT;
1341 	}
1342 
1343 	return 0;
1344 }
1345 
cs_staged_submission(struct hl_device * hdev,struct hl_cs * cs,u64 sequence,u32 flags,u32 encaps_signal_handle)1346 static int cs_staged_submission(struct hl_device *hdev, struct hl_cs *cs,
1347 				u64 sequence, u32 flags,
1348 				u32 encaps_signal_handle)
1349 {
1350 	if (!(flags & HL_CS_FLAGS_STAGED_SUBMISSION))
1351 		return 0;
1352 
1353 	cs->staged_last = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_LAST);
1354 	cs->staged_first = !!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST);
1355 
1356 	if (cs->staged_first) {
1357 		/* Staged CS sequence is the first CS sequence */
1358 		INIT_LIST_HEAD(&cs->staged_cs_node);
1359 		cs->staged_sequence = cs->sequence;
1360 
1361 		if (cs->encaps_signals)
1362 			cs->encaps_sig_hdl_id = encaps_signal_handle;
1363 	} else {
1364 		/* User sequence will be validated in 'hl_hw_queue_schedule_cs'
1365 		 * under the cs_mirror_lock
1366 		 */
1367 		cs->staged_sequence = sequence;
1368 	}
1369 
1370 	/* Increment CS reference if needed */
1371 	staged_cs_get(hdev, cs);
1372 
1373 	cs->staged_cs = true;
1374 
1375 	return 0;
1376 }
1377 
get_stream_master_qid_mask(struct hl_device * hdev,u32 qid)1378 static u32 get_stream_master_qid_mask(struct hl_device *hdev, u32 qid)
1379 {
1380 	int i;
1381 
1382 	for (i = 0; i < hdev->stream_master_qid_arr_size; i++)
1383 		if (qid == hdev->stream_master_qid_arr[i])
1384 			return BIT(i);
1385 
1386 	return 0;
1387 }
1388 
cs_ioctl_default(struct hl_fpriv * hpriv,void __user * chunks,u32 num_chunks,u64 * cs_seq,u32 flags,u32 encaps_signals_handle,u32 timeout,u16 * signal_initial_sob_count)1389 static int cs_ioctl_default(struct hl_fpriv *hpriv, void __user *chunks,
1390 				u32 num_chunks, u64 *cs_seq, u32 flags,
1391 				u32 encaps_signals_handle, u32 timeout,
1392 				u16 *signal_initial_sob_count)
1393 {
1394 	bool staged_mid, int_queues_only = true, using_hw_queues = false;
1395 	struct hl_device *hdev = hpriv->hdev;
1396 	struct hl_cs_chunk *cs_chunk_array;
1397 	struct hl_cs_counters_atomic *cntr;
1398 	struct hl_ctx *ctx = hpriv->ctx;
1399 	struct hl_cs_job *job;
1400 	struct hl_cs *cs;
1401 	struct hl_cb *cb;
1402 	u64 user_sequence;
1403 	u8 stream_master_qid_map = 0;
1404 	int rc, i;
1405 
1406 	cntr = &hdev->aggregated_cs_counters;
1407 	user_sequence = *cs_seq;
1408 	*cs_seq = ULLONG_MAX;
1409 
1410 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
1411 			hpriv->ctx);
1412 	if (rc)
1413 		goto out;
1414 
1415 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
1416 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
1417 		staged_mid = true;
1418 	else
1419 		staged_mid = false;
1420 
1421 	rc = allocate_cs(hdev, hpriv->ctx, CS_TYPE_DEFAULT,
1422 			staged_mid ? user_sequence : ULLONG_MAX, &cs, flags,
1423 			timeout);
1424 	if (rc)
1425 		goto free_cs_chunk_array;
1426 
1427 	*cs_seq = cs->sequence;
1428 
1429 	hl_debugfs_add_cs(cs);
1430 
1431 	rc = cs_staged_submission(hdev, cs, user_sequence, flags,
1432 						encaps_signals_handle);
1433 	if (rc)
1434 		goto free_cs_object;
1435 
1436 	/* If this is a staged submission we must return the staged sequence
1437 	 * rather than the internal CS sequence
1438 	 */
1439 	if (cs->staged_cs)
1440 		*cs_seq = cs->staged_sequence;
1441 
1442 	/* Validate ALL the CS chunks before submitting the CS */
1443 	for (i = 0 ; i < num_chunks ; i++) {
1444 		struct hl_cs_chunk *chunk = &cs_chunk_array[i];
1445 		enum hl_queue_type queue_type;
1446 		bool is_kernel_allocated_cb;
1447 
1448 		rc = validate_queue_index(hdev, chunk, &queue_type,
1449 						&is_kernel_allocated_cb);
1450 		if (rc) {
1451 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1452 			atomic64_inc(&cntr->validation_drop_cnt);
1453 			goto free_cs_object;
1454 		}
1455 
1456 		if (is_kernel_allocated_cb) {
1457 			cb = get_cb_from_cs_chunk(hdev, &hpriv->mem_mgr, chunk);
1458 			if (!cb) {
1459 				atomic64_inc(
1460 					&ctx->cs_counters.validation_drop_cnt);
1461 				atomic64_inc(&cntr->validation_drop_cnt);
1462 				rc = -EINVAL;
1463 				goto free_cs_object;
1464 			}
1465 		} else {
1466 			cb = (struct hl_cb *) (uintptr_t) chunk->cb_handle;
1467 		}
1468 
1469 		if (queue_type == QUEUE_TYPE_EXT ||
1470 						queue_type == QUEUE_TYPE_HW) {
1471 			int_queues_only = false;
1472 
1473 			/*
1474 			 * store which stream are being used for external/HW
1475 			 * queues of this CS
1476 			 */
1477 			if (hdev->supports_wait_for_multi_cs)
1478 				stream_master_qid_map |=
1479 					get_stream_master_qid_mask(hdev,
1480 							chunk->queue_index);
1481 		}
1482 
1483 		if (queue_type == QUEUE_TYPE_HW)
1484 			using_hw_queues = true;
1485 
1486 		job = hl_cs_allocate_job(hdev, queue_type,
1487 						is_kernel_allocated_cb);
1488 		if (!job) {
1489 			atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1490 			atomic64_inc(&cntr->out_of_mem_drop_cnt);
1491 			dev_err(hdev->dev, "Failed to allocate a new job\n");
1492 			rc = -ENOMEM;
1493 			if (is_kernel_allocated_cb)
1494 				goto release_cb;
1495 
1496 			goto free_cs_object;
1497 		}
1498 
1499 		job->id = i + 1;
1500 		job->cs = cs;
1501 		job->user_cb = cb;
1502 		job->user_cb_size = chunk->cb_size;
1503 		job->hw_queue_id = chunk->queue_index;
1504 
1505 		cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1506 		cs->jobs_cnt++;
1507 
1508 		list_add_tail(&job->cs_node, &cs->job_list);
1509 
1510 		/*
1511 		 * Increment CS reference. When CS reference is 0, CS is
1512 		 * done and can be signaled to user and free all its resources
1513 		 * Only increment for JOB on external or H/W queues, because
1514 		 * only for those JOBs we get completion
1515 		 */
1516 		if (cs_needs_completion(cs) &&
1517 			(job->queue_type == QUEUE_TYPE_EXT ||
1518 				job->queue_type == QUEUE_TYPE_HW))
1519 			cs_get(cs);
1520 
1521 		hl_debugfs_add_job(hdev, job);
1522 
1523 		rc = cs_parser(hpriv, job);
1524 		if (rc) {
1525 			atomic64_inc(&ctx->cs_counters.parsing_drop_cnt);
1526 			atomic64_inc(&cntr->parsing_drop_cnt);
1527 			dev_err(hdev->dev,
1528 				"Failed to parse JOB %d.%llu.%d, err %d, rejecting the CS\n",
1529 				cs->ctx->asid, cs->sequence, job->id, rc);
1530 			goto free_cs_object;
1531 		}
1532 	}
1533 
1534 	/* We allow a CS with any queue type combination as long as it does
1535 	 * not get a completion
1536 	 */
1537 	if (int_queues_only && cs_needs_completion(cs)) {
1538 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1539 		atomic64_inc(&cntr->validation_drop_cnt);
1540 		dev_err(hdev->dev,
1541 			"Reject CS %d.%llu since it contains only internal queues jobs and needs completion\n",
1542 			cs->ctx->asid, cs->sequence);
1543 		rc = -EINVAL;
1544 		goto free_cs_object;
1545 	}
1546 
1547 	if (using_hw_queues)
1548 		INIT_WORK(&cs->finish_work, cs_completion);
1549 
1550 	/*
1551 	 * store the (external/HW queues) streams used by the CS in the
1552 	 * fence object for multi-CS completion
1553 	 */
1554 	if (hdev->supports_wait_for_multi_cs)
1555 		cs->fence->stream_master_qid_map = stream_master_qid_map;
1556 
1557 	rc = hl_hw_queue_schedule_cs(cs);
1558 	if (rc) {
1559 		if (rc != -EAGAIN)
1560 			dev_err(hdev->dev,
1561 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
1562 				cs->ctx->asid, cs->sequence, rc);
1563 		goto free_cs_object;
1564 	}
1565 
1566 	*signal_initial_sob_count = cs->initial_sob_count;
1567 
1568 	rc = HL_CS_STATUS_SUCCESS;
1569 	goto put_cs;
1570 
1571 release_cb:
1572 	atomic_dec(&cb->cs_cnt);
1573 	hl_cb_put(cb);
1574 free_cs_object:
1575 	cs_rollback(hdev, cs);
1576 	*cs_seq = ULLONG_MAX;
1577 	/* The path below is both for good and erroneous exits */
1578 put_cs:
1579 	/* We finished with the CS in this function, so put the ref */
1580 	cs_put(cs);
1581 free_cs_chunk_array:
1582 	kfree(cs_chunk_array);
1583 out:
1584 	return rc;
1585 }
1586 
hl_cs_ctx_switch(struct hl_fpriv * hpriv,union hl_cs_args * args,u64 * cs_seq)1587 static int hl_cs_ctx_switch(struct hl_fpriv *hpriv, union hl_cs_args *args,
1588 				u64 *cs_seq)
1589 {
1590 	struct hl_device *hdev = hpriv->hdev;
1591 	struct hl_ctx *ctx = hpriv->ctx;
1592 	bool need_soft_reset = false;
1593 	int rc = 0, do_ctx_switch = 0;
1594 	void __user *chunks;
1595 	u32 num_chunks, tmp;
1596 	u16 sob_count;
1597 	int ret;
1598 
1599 	if (hdev->supports_ctx_switch)
1600 		do_ctx_switch = atomic_cmpxchg(&ctx->thread_ctx_switch_token, 1, 0);
1601 
1602 	if (do_ctx_switch || (args->in.cs_flags & HL_CS_FLAGS_FORCE_RESTORE)) {
1603 		mutex_lock(&hpriv->restore_phase_mutex);
1604 
1605 		if (do_ctx_switch) {
1606 			rc = hdev->asic_funcs->context_switch(hdev, ctx->asid);
1607 			if (rc) {
1608 				dev_err_ratelimited(hdev->dev,
1609 					"Failed to switch to context %d, rejecting CS! %d\n",
1610 					ctx->asid, rc);
1611 				/*
1612 				 * If we timedout, or if the device is not IDLE
1613 				 * while we want to do context-switch (-EBUSY),
1614 				 * we need to soft-reset because QMAN is
1615 				 * probably stuck. However, we can't call to
1616 				 * reset here directly because of deadlock, so
1617 				 * need to do it at the very end of this
1618 				 * function
1619 				 */
1620 				if ((rc == -ETIMEDOUT) || (rc == -EBUSY))
1621 					need_soft_reset = true;
1622 				mutex_unlock(&hpriv->restore_phase_mutex);
1623 				goto out;
1624 			}
1625 		}
1626 
1627 		hdev->asic_funcs->restore_phase_topology(hdev);
1628 
1629 		chunks = (void __user *) (uintptr_t) args->in.chunks_restore;
1630 		num_chunks = args->in.num_chunks_restore;
1631 
1632 		if (!num_chunks) {
1633 			dev_dbg(hdev->dev,
1634 				"Need to run restore phase but restore CS is empty\n");
1635 			rc = 0;
1636 		} else {
1637 			rc = cs_ioctl_default(hpriv, chunks, num_chunks,
1638 					cs_seq, 0, 0, hdev->timeout_jiffies, &sob_count);
1639 		}
1640 
1641 		mutex_unlock(&hpriv->restore_phase_mutex);
1642 
1643 		if (rc) {
1644 			dev_err(hdev->dev,
1645 				"Failed to submit restore CS for context %d (%d)\n",
1646 				ctx->asid, rc);
1647 			goto out;
1648 		}
1649 
1650 		/* Need to wait for restore completion before execution phase */
1651 		if (num_chunks) {
1652 			enum hl_cs_wait_status status;
1653 wait_again:
1654 			ret = _hl_cs_wait_ioctl(hdev, ctx,
1655 					jiffies_to_usecs(hdev->timeout_jiffies),
1656 					*cs_seq, &status, NULL);
1657 			if (ret) {
1658 				if (ret == -ERESTARTSYS) {
1659 					usleep_range(100, 200);
1660 					goto wait_again;
1661 				}
1662 
1663 				dev_err(hdev->dev,
1664 					"Restore CS for context %d failed to complete %d\n",
1665 					ctx->asid, ret);
1666 				rc = -ENOEXEC;
1667 				goto out;
1668 			}
1669 		}
1670 
1671 		if (hdev->supports_ctx_switch)
1672 			ctx->thread_ctx_switch_wait_token = 1;
1673 
1674 	} else if (hdev->supports_ctx_switch && !ctx->thread_ctx_switch_wait_token) {
1675 		rc = hl_poll_timeout_memory(hdev,
1676 			&ctx->thread_ctx_switch_wait_token, tmp, (tmp == 1),
1677 			100, jiffies_to_usecs(hdev->timeout_jiffies), false);
1678 
1679 		if (rc == -ETIMEDOUT) {
1680 			dev_err(hdev->dev,
1681 				"context switch phase timeout (%d)\n", tmp);
1682 			goto out;
1683 		}
1684 	}
1685 
1686 out:
1687 	if ((rc == -ETIMEDOUT || rc == -EBUSY) && (need_soft_reset))
1688 		hl_device_reset(hdev, 0);
1689 
1690 	return rc;
1691 }
1692 
1693 /*
1694  * hl_cs_signal_sob_wraparound_handler: handle SOB value wrapaound case.
1695  * if the SOB value reaches the max value move to the other SOB reserved
1696  * to the queue.
1697  * @hdev: pointer to device structure
1698  * @q_idx: stream queue index
1699  * @hw_sob: the H/W SOB used in this signal CS.
1700  * @count: signals count
1701  * @encaps_sig: tells whether it's reservation for encaps signals or not.
1702  *
1703  * Note that this function must be called while hw_queues_lock is taken.
1704  */
hl_cs_signal_sob_wraparound_handler(struct hl_device * hdev,u32 q_idx,struct hl_hw_sob ** hw_sob,u32 count,bool encaps_sig)1705 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
1706 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig)
1707 
1708 {
1709 	struct hl_sync_stream_properties *prop;
1710 	struct hl_hw_sob *sob = *hw_sob, *other_sob;
1711 	u8 other_sob_offset;
1712 
1713 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1714 
1715 	hw_sob_get(sob);
1716 
1717 	/* check for wraparound */
1718 	if (prop->next_sob_val + count >= HL_MAX_SOB_VAL) {
1719 		/*
1720 		 * Decrement as we reached the max value.
1721 		 * The release function won't be called here as we've
1722 		 * just incremented the refcount right before calling this
1723 		 * function.
1724 		 */
1725 		hw_sob_put_err(sob);
1726 
1727 		/*
1728 		 * check the other sob value, if it still in use then fail
1729 		 * otherwise make the switch
1730 		 */
1731 		other_sob_offset = (prop->curr_sob_offset + 1) % HL_RSVD_SOBS;
1732 		other_sob = &prop->hw_sob[other_sob_offset];
1733 
1734 		if (kref_read(&other_sob->kref) != 1) {
1735 			dev_err(hdev->dev, "error: Cannot switch SOBs q_idx: %d\n",
1736 								q_idx);
1737 			return -EINVAL;
1738 		}
1739 
1740 		/*
1741 		 * next_sob_val always points to the next available signal
1742 		 * in the sob, so in encaps signals it will be the next one
1743 		 * after reserving the required amount.
1744 		 */
1745 		if (encaps_sig)
1746 			prop->next_sob_val = count + 1;
1747 		else
1748 			prop->next_sob_val = count;
1749 
1750 		/* only two SOBs are currently in use */
1751 		prop->curr_sob_offset = other_sob_offset;
1752 		*hw_sob = other_sob;
1753 
1754 		/*
1755 		 * check if other_sob needs reset, then do it before using it
1756 		 * for the reservation or the next signal cs.
1757 		 * we do it here, and for both encaps and regular signal cs
1758 		 * cases in order to avoid possible races of two kref_put
1759 		 * of the sob which can occur at the same time if we move the
1760 		 * sob reset(kref_put) to cs_do_release function.
1761 		 * in addition, if we have combination of cs signal and
1762 		 * encaps, and at the point we need to reset the sob there was
1763 		 * no more reservations and only signal cs keep coming,
1764 		 * in such case we need signal_cs to put the refcount and
1765 		 * reset the sob.
1766 		 */
1767 		if (other_sob->need_reset)
1768 			hw_sob_put(other_sob);
1769 
1770 		if (encaps_sig) {
1771 			/* set reset indication for the sob */
1772 			sob->need_reset = true;
1773 			hw_sob_get(other_sob);
1774 		}
1775 
1776 		dev_dbg(hdev->dev, "switched to SOB %d, q_idx: %d\n",
1777 				prop->curr_sob_offset, q_idx);
1778 	} else {
1779 		prop->next_sob_val += count;
1780 	}
1781 
1782 	return 0;
1783 }
1784 
cs_ioctl_extract_signal_seq(struct hl_device * hdev,struct hl_cs_chunk * chunk,u64 * signal_seq,struct hl_ctx * ctx,bool encaps_signals)1785 static int cs_ioctl_extract_signal_seq(struct hl_device *hdev,
1786 		struct hl_cs_chunk *chunk, u64 *signal_seq, struct hl_ctx *ctx,
1787 		bool encaps_signals)
1788 {
1789 	u64 *signal_seq_arr = NULL;
1790 	u32 size_to_copy, signal_seq_arr_len;
1791 	int rc = 0;
1792 
1793 	if (encaps_signals) {
1794 		*signal_seq = chunk->encaps_signal_seq;
1795 		return 0;
1796 	}
1797 
1798 	signal_seq_arr_len = chunk->num_signal_seq_arr;
1799 
1800 	/* currently only one signal seq is supported */
1801 	if (signal_seq_arr_len != 1) {
1802 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1803 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1804 		dev_err(hdev->dev,
1805 			"Wait for signal CS supports only one signal CS seq\n");
1806 		return -EINVAL;
1807 	}
1808 
1809 	signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1810 					sizeof(*signal_seq_arr),
1811 					GFP_ATOMIC);
1812 	if (!signal_seq_arr)
1813 		signal_seq_arr = kmalloc_array(signal_seq_arr_len,
1814 					sizeof(*signal_seq_arr),
1815 					GFP_KERNEL);
1816 	if (!signal_seq_arr) {
1817 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1818 		atomic64_inc(&hdev->aggregated_cs_counters.out_of_mem_drop_cnt);
1819 		return -ENOMEM;
1820 	}
1821 
1822 	size_to_copy = signal_seq_arr_len * sizeof(*signal_seq_arr);
1823 	if (copy_from_user(signal_seq_arr,
1824 				u64_to_user_ptr(chunk->signal_seq_arr),
1825 				size_to_copy)) {
1826 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
1827 		atomic64_inc(&hdev->aggregated_cs_counters.validation_drop_cnt);
1828 		dev_err(hdev->dev,
1829 			"Failed to copy signal seq array from user\n");
1830 		rc = -EFAULT;
1831 		goto out;
1832 	}
1833 
1834 	/* currently it is guaranteed to have only one signal seq */
1835 	*signal_seq = signal_seq_arr[0];
1836 
1837 out:
1838 	kfree(signal_seq_arr);
1839 
1840 	return rc;
1841 }
1842 
cs_ioctl_signal_wait_create_jobs(struct hl_device * hdev,struct hl_ctx * ctx,struct hl_cs * cs,enum hl_queue_type q_type,u32 q_idx,u32 encaps_signal_offset)1843 static int cs_ioctl_signal_wait_create_jobs(struct hl_device *hdev,
1844 		struct hl_ctx *ctx, struct hl_cs *cs,
1845 		enum hl_queue_type q_type, u32 q_idx, u32 encaps_signal_offset)
1846 {
1847 	struct hl_cs_counters_atomic *cntr;
1848 	struct hl_cs_job *job;
1849 	struct hl_cb *cb;
1850 	u32 cb_size;
1851 
1852 	cntr = &hdev->aggregated_cs_counters;
1853 
1854 	job = hl_cs_allocate_job(hdev, q_type, true);
1855 	if (!job) {
1856 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1857 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1858 		dev_err(hdev->dev, "Failed to allocate a new job\n");
1859 		return -ENOMEM;
1860 	}
1861 
1862 	if (cs->type == CS_TYPE_WAIT)
1863 		cb_size = hdev->asic_funcs->get_wait_cb_size(hdev);
1864 	else
1865 		cb_size = hdev->asic_funcs->get_signal_cb_size(hdev);
1866 
1867 	cb = hl_cb_kernel_create(hdev, cb_size,
1868 				q_type == QUEUE_TYPE_HW && hdev->mmu_enable);
1869 	if (!cb) {
1870 		atomic64_inc(&ctx->cs_counters.out_of_mem_drop_cnt);
1871 		atomic64_inc(&cntr->out_of_mem_drop_cnt);
1872 		kfree(job);
1873 		return -EFAULT;
1874 	}
1875 
1876 	job->id = 0;
1877 	job->cs = cs;
1878 	job->user_cb = cb;
1879 	atomic_inc(&job->user_cb->cs_cnt);
1880 	job->user_cb_size = cb_size;
1881 	job->hw_queue_id = q_idx;
1882 
1883 	if ((cs->type == CS_TYPE_WAIT || cs->type == CS_TYPE_COLLECTIVE_WAIT)
1884 			&& cs->encaps_signals)
1885 		job->encaps_sig_wait_offset = encaps_signal_offset;
1886 	/*
1887 	 * No need in parsing, user CB is the patched CB.
1888 	 * We call hl_cb_destroy() out of two reasons - we don't need the CB in
1889 	 * the CB idr anymore and to decrement its refcount as it was
1890 	 * incremented inside hl_cb_kernel_create().
1891 	 */
1892 	job->patched_cb = job->user_cb;
1893 	job->job_cb_size = job->user_cb_size;
1894 	hl_cb_destroy(&hdev->kernel_mem_mgr, cb->buf->handle);
1895 
1896 	/* increment refcount as for external queues we get completion */
1897 	cs_get(cs);
1898 
1899 	cs->jobs_in_queue_cnt[job->hw_queue_id]++;
1900 	cs->jobs_cnt++;
1901 
1902 	list_add_tail(&job->cs_node, &cs->job_list);
1903 
1904 	hl_debugfs_add_job(hdev, job);
1905 
1906 	return 0;
1907 }
1908 
cs_ioctl_reserve_signals(struct hl_fpriv * hpriv,u32 q_idx,u32 count,u32 * handle_id,u32 * sob_addr,u32 * signals_count)1909 static int cs_ioctl_reserve_signals(struct hl_fpriv *hpriv,
1910 				u32 q_idx, u32 count,
1911 				u32 *handle_id, u32 *sob_addr,
1912 				u32 *signals_count)
1913 {
1914 	struct hw_queue_properties *hw_queue_prop;
1915 	struct hl_sync_stream_properties *prop;
1916 	struct hl_device *hdev = hpriv->hdev;
1917 	struct hl_cs_encaps_sig_handle *handle;
1918 	struct hl_encaps_signals_mgr *mgr;
1919 	struct hl_hw_sob *hw_sob;
1920 	int hdl_id;
1921 	int rc = 0;
1922 
1923 	if (count >= HL_MAX_SOB_VAL) {
1924 		dev_err(hdev->dev, "signals count(%u) exceeds the max SOB value\n",
1925 						count);
1926 		rc = -EINVAL;
1927 		goto out;
1928 	}
1929 
1930 	if (q_idx >= hdev->asic_prop.max_queues) {
1931 		dev_err(hdev->dev, "Queue index %d is invalid\n",
1932 			q_idx);
1933 		rc = -EINVAL;
1934 		goto out;
1935 	}
1936 
1937 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
1938 
1939 	if (!hw_queue_prop->supports_sync_stream) {
1940 		dev_err(hdev->dev,
1941 			"Queue index %d does not support sync stream operations\n",
1942 									q_idx);
1943 		rc = -EINVAL;
1944 		goto out;
1945 	}
1946 
1947 	prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
1948 
1949 	handle = kzalloc(sizeof(*handle), GFP_KERNEL);
1950 	if (!handle) {
1951 		rc = -ENOMEM;
1952 		goto out;
1953 	}
1954 
1955 	handle->count = count;
1956 
1957 	hl_ctx_get(hpriv->ctx);
1958 	handle->ctx = hpriv->ctx;
1959 	mgr = &hpriv->ctx->sig_mgr;
1960 
1961 	spin_lock(&mgr->lock);
1962 	hdl_id = idr_alloc(&mgr->handles, handle, 1, 0, GFP_ATOMIC);
1963 	spin_unlock(&mgr->lock);
1964 
1965 	if (hdl_id < 0) {
1966 		dev_err(hdev->dev, "Failed to allocate IDR for a new signal reservation\n");
1967 		rc = -EINVAL;
1968 		goto put_ctx;
1969 	}
1970 
1971 	handle->id = hdl_id;
1972 	handle->q_idx = q_idx;
1973 	handle->hdev = hdev;
1974 	kref_init(&handle->refcount);
1975 
1976 	hdev->asic_funcs->hw_queues_lock(hdev);
1977 
1978 	hw_sob = &prop->hw_sob[prop->curr_sob_offset];
1979 
1980 	/*
1981 	 * Increment the SOB value by count by user request
1982 	 * to reserve those signals
1983 	 * check if the signals amount to reserve is not exceeding the max sob
1984 	 * value, if yes then switch sob.
1985 	 */
1986 	rc = hl_cs_signal_sob_wraparound_handler(hdev, q_idx, &hw_sob, count,
1987 								true);
1988 	if (rc) {
1989 		dev_err(hdev->dev, "Failed to switch SOB\n");
1990 		hdev->asic_funcs->hw_queues_unlock(hdev);
1991 		rc = -EINVAL;
1992 		goto remove_idr;
1993 	}
1994 	/* set the hw_sob to the handle after calling the sob wraparound handler
1995 	 * since sob could have changed.
1996 	 */
1997 	handle->hw_sob = hw_sob;
1998 
1999 	/* store the current sob value for unreserve validity check, and
2000 	 * signal offset support
2001 	 */
2002 	handle->pre_sob_val = prop->next_sob_val - handle->count;
2003 
2004 	*signals_count = prop->next_sob_val;
2005 	hdev->asic_funcs->hw_queues_unlock(hdev);
2006 
2007 	*sob_addr = handle->hw_sob->sob_addr;
2008 	*handle_id = hdl_id;
2009 
2010 	dev_dbg(hdev->dev,
2011 		"Signals reserved, sob_id: %d, sob addr: 0x%x, last sob_val: %u, q_idx: %d, hdl_id: %d\n",
2012 			hw_sob->sob_id, handle->hw_sob->sob_addr,
2013 			prop->next_sob_val - 1, q_idx, hdl_id);
2014 	goto out;
2015 
2016 remove_idr:
2017 	spin_lock(&mgr->lock);
2018 	idr_remove(&mgr->handles, hdl_id);
2019 	spin_unlock(&mgr->lock);
2020 
2021 put_ctx:
2022 	hl_ctx_put(handle->ctx);
2023 	kfree(handle);
2024 
2025 out:
2026 	return rc;
2027 }
2028 
cs_ioctl_unreserve_signals(struct hl_fpriv * hpriv,u32 handle_id)2029 static int cs_ioctl_unreserve_signals(struct hl_fpriv *hpriv, u32 handle_id)
2030 {
2031 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
2032 	struct hl_sync_stream_properties *prop;
2033 	struct hl_device *hdev = hpriv->hdev;
2034 	struct hl_encaps_signals_mgr *mgr;
2035 	struct hl_hw_sob *hw_sob;
2036 	u32 q_idx, sob_addr;
2037 	int rc = 0;
2038 
2039 	mgr = &hpriv->ctx->sig_mgr;
2040 
2041 	spin_lock(&mgr->lock);
2042 	encaps_sig_hdl = idr_find(&mgr->handles, handle_id);
2043 	if (encaps_sig_hdl) {
2044 		dev_dbg(hdev->dev, "unreserve signals, handle: %u, SOB:0x%x, count: %u\n",
2045 				handle_id, encaps_sig_hdl->hw_sob->sob_addr,
2046 					encaps_sig_hdl->count);
2047 
2048 		hdev->asic_funcs->hw_queues_lock(hdev);
2049 
2050 		q_idx = encaps_sig_hdl->q_idx;
2051 		prop = &hdev->kernel_queues[q_idx].sync_stream_prop;
2052 		hw_sob = &prop->hw_sob[prop->curr_sob_offset];
2053 		sob_addr = hdev->asic_funcs->get_sob_addr(hdev, hw_sob->sob_id);
2054 
2055 		/* Check if sob_val got out of sync due to other
2056 		 * signal submission requests which were handled
2057 		 * between the reserve-unreserve calls or SOB switch
2058 		 * upon reaching SOB max value.
2059 		 */
2060 		if (encaps_sig_hdl->pre_sob_val + encaps_sig_hdl->count
2061 				!= prop->next_sob_val ||
2062 				sob_addr != encaps_sig_hdl->hw_sob->sob_addr) {
2063 			dev_err(hdev->dev, "Cannot unreserve signals, SOB val ran out of sync, expected: %u, actual val: %u\n",
2064 				encaps_sig_hdl->pre_sob_val,
2065 				(prop->next_sob_val - encaps_sig_hdl->count));
2066 
2067 			hdev->asic_funcs->hw_queues_unlock(hdev);
2068 			rc = -EINVAL;
2069 			goto out;
2070 		}
2071 
2072 		/*
2073 		 * Decrement the SOB value by count by user request
2074 		 * to unreserve those signals
2075 		 */
2076 		prop->next_sob_val -= encaps_sig_hdl->count;
2077 
2078 		hdev->asic_funcs->hw_queues_unlock(hdev);
2079 
2080 		hw_sob_put(hw_sob);
2081 
2082 		/* Release the id and free allocated memory of the handle */
2083 		idr_remove(&mgr->handles, handle_id);
2084 		hl_ctx_put(encaps_sig_hdl->ctx);
2085 		kfree(encaps_sig_hdl);
2086 	} else {
2087 		rc = -EINVAL;
2088 		dev_err(hdev->dev, "failed to unreserve signals, cannot find handler\n");
2089 	}
2090 out:
2091 	spin_unlock(&mgr->lock);
2092 
2093 	return rc;
2094 }
2095 
cs_ioctl_signal_wait(struct hl_fpriv * hpriv,enum hl_cs_type cs_type,void __user * chunks,u32 num_chunks,u64 * cs_seq,u32 flags,u32 timeout,u32 * signal_sob_addr_offset,u16 * signal_initial_sob_count)2096 static int cs_ioctl_signal_wait(struct hl_fpriv *hpriv, enum hl_cs_type cs_type,
2097 				void __user *chunks, u32 num_chunks,
2098 				u64 *cs_seq, u32 flags, u32 timeout,
2099 				u32 *signal_sob_addr_offset, u16 *signal_initial_sob_count)
2100 {
2101 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl = NULL;
2102 	bool handle_found = false, is_wait_cs = false,
2103 			wait_cs_submitted = false,
2104 			cs_encaps_signals = false;
2105 	struct hl_cs_chunk *cs_chunk_array, *chunk;
2106 	bool staged_cs_with_encaps_signals = false;
2107 	struct hw_queue_properties *hw_queue_prop;
2108 	struct hl_device *hdev = hpriv->hdev;
2109 	struct hl_cs_compl *sig_waitcs_cmpl;
2110 	u32 q_idx, collective_engine_id = 0;
2111 	struct hl_cs_counters_atomic *cntr;
2112 	struct hl_fence *sig_fence = NULL;
2113 	struct hl_ctx *ctx = hpriv->ctx;
2114 	enum hl_queue_type q_type;
2115 	struct hl_cs *cs;
2116 	u64 signal_seq;
2117 	int rc;
2118 
2119 	cntr = &hdev->aggregated_cs_counters;
2120 	*cs_seq = ULLONG_MAX;
2121 
2122 	rc = hl_cs_copy_chunk_array(hdev, &cs_chunk_array, chunks, num_chunks,
2123 			ctx);
2124 	if (rc)
2125 		goto out;
2126 
2127 	/* currently it is guaranteed to have only one chunk */
2128 	chunk = &cs_chunk_array[0];
2129 
2130 	if (chunk->queue_index >= hdev->asic_prop.max_queues) {
2131 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2132 		atomic64_inc(&cntr->validation_drop_cnt);
2133 		dev_err(hdev->dev, "Queue index %d is invalid\n",
2134 			chunk->queue_index);
2135 		rc = -EINVAL;
2136 		goto free_cs_chunk_array;
2137 	}
2138 
2139 	q_idx = chunk->queue_index;
2140 	hw_queue_prop = &hdev->asic_prop.hw_queues_props[q_idx];
2141 	q_type = hw_queue_prop->type;
2142 
2143 	if (!hw_queue_prop->supports_sync_stream) {
2144 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2145 		atomic64_inc(&cntr->validation_drop_cnt);
2146 		dev_err(hdev->dev,
2147 			"Queue index %d does not support sync stream operations\n",
2148 			q_idx);
2149 		rc = -EINVAL;
2150 		goto free_cs_chunk_array;
2151 	}
2152 
2153 	if (cs_type == CS_TYPE_COLLECTIVE_WAIT) {
2154 		if (!(hw_queue_prop->collective_mode == HL_COLLECTIVE_MASTER)) {
2155 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2156 			atomic64_inc(&cntr->validation_drop_cnt);
2157 			dev_err(hdev->dev,
2158 				"Queue index %d is invalid\n", q_idx);
2159 			rc = -EINVAL;
2160 			goto free_cs_chunk_array;
2161 		}
2162 
2163 		if (!hdev->nic_ports_mask) {
2164 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2165 			atomic64_inc(&cntr->validation_drop_cnt);
2166 			dev_err(hdev->dev,
2167 				"Collective operations not supported when NIC ports are disabled");
2168 			rc = -EINVAL;
2169 			goto free_cs_chunk_array;
2170 		}
2171 
2172 		collective_engine_id = chunk->collective_engine_id;
2173 	}
2174 
2175 	is_wait_cs = !!(cs_type == CS_TYPE_WAIT ||
2176 			cs_type == CS_TYPE_COLLECTIVE_WAIT);
2177 
2178 	cs_encaps_signals = !!(flags & HL_CS_FLAGS_ENCAP_SIGNALS);
2179 
2180 	if (is_wait_cs) {
2181 		rc = cs_ioctl_extract_signal_seq(hdev, chunk, &signal_seq,
2182 				ctx, cs_encaps_signals);
2183 		if (rc)
2184 			goto free_cs_chunk_array;
2185 
2186 		if (cs_encaps_signals) {
2187 			/* check if cs sequence has encapsulated
2188 			 * signals handle
2189 			 */
2190 			struct idr *idp;
2191 			u32 id;
2192 
2193 			spin_lock(&ctx->sig_mgr.lock);
2194 			idp = &ctx->sig_mgr.handles;
2195 			idr_for_each_entry(idp, encaps_sig_hdl, id) {
2196 				if (encaps_sig_hdl->cs_seq == signal_seq) {
2197 					/* get refcount to protect removing this handle from idr,
2198 					 * needed when multiple wait cs are used with offset
2199 					 * to wait on reserved encaps signals.
2200 					 * Since kref_put of this handle is executed outside the
2201 					 * current lock, it is possible that the handle refcount
2202 					 * is 0 but it yet to be removed from the list. In this
2203 					 * case need to consider the handle as not valid.
2204 					 */
2205 					if (kref_get_unless_zero(&encaps_sig_hdl->refcount))
2206 						handle_found = true;
2207 					break;
2208 				}
2209 			}
2210 			spin_unlock(&ctx->sig_mgr.lock);
2211 
2212 			if (!handle_found) {
2213 				/* treat as signal CS already finished */
2214 				dev_dbg(hdev->dev, "Cannot find encapsulated signals handle for seq 0x%llx\n",
2215 						signal_seq);
2216 				rc = 0;
2217 				goto free_cs_chunk_array;
2218 			}
2219 
2220 			/* validate also the signal offset value */
2221 			if (chunk->encaps_signal_offset >
2222 					encaps_sig_hdl->count) {
2223 				dev_err(hdev->dev, "offset(%u) value exceed max reserved signals count(%u)!\n",
2224 						chunk->encaps_signal_offset,
2225 						encaps_sig_hdl->count);
2226 				rc = -EINVAL;
2227 				goto free_cs_chunk_array;
2228 			}
2229 		}
2230 
2231 		sig_fence = hl_ctx_get_fence(ctx, signal_seq);
2232 		if (IS_ERR(sig_fence)) {
2233 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2234 			atomic64_inc(&cntr->validation_drop_cnt);
2235 			dev_err(hdev->dev,
2236 				"Failed to get signal CS with seq 0x%llx\n",
2237 				signal_seq);
2238 			rc = PTR_ERR(sig_fence);
2239 			goto free_cs_chunk_array;
2240 		}
2241 
2242 		if (!sig_fence) {
2243 			/* signal CS already finished */
2244 			rc = 0;
2245 			goto free_cs_chunk_array;
2246 		}
2247 
2248 		sig_waitcs_cmpl =
2249 			container_of(sig_fence, struct hl_cs_compl, base_fence);
2250 
2251 		staged_cs_with_encaps_signals = !!
2252 				(sig_waitcs_cmpl->type == CS_TYPE_DEFAULT &&
2253 				(flags & HL_CS_FLAGS_ENCAP_SIGNALS));
2254 
2255 		if (sig_waitcs_cmpl->type != CS_TYPE_SIGNAL &&
2256 				!staged_cs_with_encaps_signals) {
2257 			atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2258 			atomic64_inc(&cntr->validation_drop_cnt);
2259 			dev_err(hdev->dev,
2260 				"CS seq 0x%llx is not of a signal/encaps-signal CS\n",
2261 				signal_seq);
2262 			hl_fence_put(sig_fence);
2263 			rc = -EINVAL;
2264 			goto free_cs_chunk_array;
2265 		}
2266 
2267 		if (completion_done(&sig_fence->completion)) {
2268 			/* signal CS already finished */
2269 			hl_fence_put(sig_fence);
2270 			rc = 0;
2271 			goto free_cs_chunk_array;
2272 		}
2273 	}
2274 
2275 	rc = allocate_cs(hdev, ctx, cs_type, ULLONG_MAX, &cs, flags, timeout);
2276 	if (rc) {
2277 		if (is_wait_cs)
2278 			hl_fence_put(sig_fence);
2279 
2280 		goto free_cs_chunk_array;
2281 	}
2282 
2283 	/*
2284 	 * Save the signal CS fence for later initialization right before
2285 	 * hanging the wait CS on the queue.
2286 	 * for encaps signals case, we save the cs sequence and handle pointer
2287 	 * for later initialization.
2288 	 */
2289 	if (is_wait_cs) {
2290 		cs->signal_fence = sig_fence;
2291 		/* store the handle pointer, so we don't have to
2292 		 * look for it again, later on the flow
2293 		 * when we need to set SOB info in hw_queue.
2294 		 */
2295 		if (cs->encaps_signals)
2296 			cs->encaps_sig_hdl = encaps_sig_hdl;
2297 	}
2298 
2299 	hl_debugfs_add_cs(cs);
2300 
2301 	*cs_seq = cs->sequence;
2302 
2303 	if (cs_type == CS_TYPE_WAIT || cs_type == CS_TYPE_SIGNAL)
2304 		rc = cs_ioctl_signal_wait_create_jobs(hdev, ctx, cs, q_type,
2305 				q_idx, chunk->encaps_signal_offset);
2306 	else if (cs_type == CS_TYPE_COLLECTIVE_WAIT)
2307 		rc = hdev->asic_funcs->collective_wait_create_jobs(hdev, ctx,
2308 				cs, q_idx, collective_engine_id,
2309 				chunk->encaps_signal_offset);
2310 	else {
2311 		atomic64_inc(&ctx->cs_counters.validation_drop_cnt);
2312 		atomic64_inc(&cntr->validation_drop_cnt);
2313 		rc = -EINVAL;
2314 	}
2315 
2316 	if (rc)
2317 		goto free_cs_object;
2318 
2319 	if (q_type == QUEUE_TYPE_HW)
2320 		INIT_WORK(&cs->finish_work, cs_completion);
2321 
2322 	rc = hl_hw_queue_schedule_cs(cs);
2323 	if (rc) {
2324 		/* In case wait cs failed here, it means the signal cs
2325 		 * already completed. we want to free all it's related objects
2326 		 * but we don't want to fail the ioctl.
2327 		 */
2328 		if (is_wait_cs)
2329 			rc = 0;
2330 		else if (rc != -EAGAIN)
2331 			dev_err(hdev->dev,
2332 				"Failed to submit CS %d.%llu to H/W queues, error %d\n",
2333 				ctx->asid, cs->sequence, rc);
2334 		goto free_cs_object;
2335 	}
2336 
2337 	*signal_sob_addr_offset = cs->sob_addr_offset;
2338 	*signal_initial_sob_count = cs->initial_sob_count;
2339 
2340 	rc = HL_CS_STATUS_SUCCESS;
2341 	if (is_wait_cs)
2342 		wait_cs_submitted = true;
2343 	goto put_cs;
2344 
2345 free_cs_object:
2346 	cs_rollback(hdev, cs);
2347 	*cs_seq = ULLONG_MAX;
2348 	/* The path below is both for good and erroneous exits */
2349 put_cs:
2350 	/* We finished with the CS in this function, so put the ref */
2351 	cs_put(cs);
2352 free_cs_chunk_array:
2353 	if (!wait_cs_submitted && cs_encaps_signals && handle_found &&
2354 							is_wait_cs)
2355 		kref_put(&encaps_sig_hdl->refcount,
2356 				hl_encaps_handle_do_release);
2357 	kfree(cs_chunk_array);
2358 out:
2359 	return rc;
2360 }
2361 
cs_ioctl_engine_cores(struct hl_fpriv * hpriv,u64 engine_cores,u32 num_engine_cores,u32 core_command)2362 static int cs_ioctl_engine_cores(struct hl_fpriv *hpriv, u64 engine_cores,
2363 						u32 num_engine_cores, u32 core_command)
2364 {
2365 	int rc;
2366 	struct hl_device *hdev = hpriv->hdev;
2367 	void __user *engine_cores_arr;
2368 	u32 *cores;
2369 
2370 	if (!num_engine_cores || num_engine_cores > hdev->asic_prop.num_engine_cores) {
2371 		dev_err(hdev->dev, "Number of engine cores %d is invalid\n", num_engine_cores);
2372 		return -EINVAL;
2373 	}
2374 
2375 	if (core_command != HL_ENGINE_CORE_RUN && core_command != HL_ENGINE_CORE_HALT) {
2376 		dev_err(hdev->dev, "Engine core command is invalid\n");
2377 		return -EINVAL;
2378 	}
2379 
2380 	engine_cores_arr = (void __user *) (uintptr_t) engine_cores;
2381 	cores = kmalloc_array(num_engine_cores, sizeof(u32), GFP_KERNEL);
2382 	if (!cores)
2383 		return -ENOMEM;
2384 
2385 	if (copy_from_user(cores, engine_cores_arr, num_engine_cores * sizeof(u32))) {
2386 		dev_err(hdev->dev, "Failed to copy core-ids array from user\n");
2387 		kfree(cores);
2388 		return -EFAULT;
2389 	}
2390 
2391 	rc = hdev->asic_funcs->set_engine_cores(hdev, cores, num_engine_cores, core_command);
2392 	kfree(cores);
2393 
2394 	return rc;
2395 }
2396 
hl_cs_ioctl(struct hl_fpriv * hpriv,void * data)2397 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data)
2398 {
2399 	union hl_cs_args *args = data;
2400 	enum hl_cs_type cs_type = 0;
2401 	u64 cs_seq = ULONG_MAX;
2402 	void __user *chunks;
2403 	u32 num_chunks, flags, timeout,
2404 		signals_count = 0, sob_addr = 0, handle_id = 0;
2405 	u16 sob_initial_count = 0;
2406 	int rc;
2407 
2408 	rc = hl_cs_sanity_checks(hpriv, args);
2409 	if (rc)
2410 		goto out;
2411 
2412 	rc = hl_cs_ctx_switch(hpriv, args, &cs_seq);
2413 	if (rc)
2414 		goto out;
2415 
2416 	cs_type = hl_cs_get_cs_type(args->in.cs_flags &
2417 					~HL_CS_FLAGS_FORCE_RESTORE);
2418 	chunks = (void __user *) (uintptr_t) args->in.chunks_execute;
2419 	num_chunks = args->in.num_chunks_execute;
2420 	flags = args->in.cs_flags;
2421 
2422 	/* In case this is a staged CS, user should supply the CS sequence */
2423 	if ((flags & HL_CS_FLAGS_STAGED_SUBMISSION) &&
2424 			!(flags & HL_CS_FLAGS_STAGED_SUBMISSION_FIRST))
2425 		cs_seq = args->in.seq;
2426 
2427 	timeout = flags & HL_CS_FLAGS_CUSTOM_TIMEOUT
2428 			? msecs_to_jiffies(args->in.timeout * 1000)
2429 			: hpriv->hdev->timeout_jiffies;
2430 
2431 	switch (cs_type) {
2432 	case CS_TYPE_SIGNAL:
2433 	case CS_TYPE_WAIT:
2434 	case CS_TYPE_COLLECTIVE_WAIT:
2435 		rc = cs_ioctl_signal_wait(hpriv, cs_type, chunks, num_chunks,
2436 					&cs_seq, args->in.cs_flags, timeout,
2437 					&sob_addr, &sob_initial_count);
2438 		break;
2439 	case CS_RESERVE_SIGNALS:
2440 		rc = cs_ioctl_reserve_signals(hpriv,
2441 					args->in.encaps_signals_q_idx,
2442 					args->in.encaps_signals_count,
2443 					&handle_id, &sob_addr, &signals_count);
2444 		break;
2445 	case CS_UNRESERVE_SIGNALS:
2446 		rc = cs_ioctl_unreserve_signals(hpriv,
2447 					args->in.encaps_sig_handle_id);
2448 		break;
2449 	case CS_TYPE_ENGINE_CORE:
2450 		rc = cs_ioctl_engine_cores(hpriv, args->in.engine_cores,
2451 				args->in.num_engine_cores, args->in.core_command);
2452 		break;
2453 	default:
2454 		rc = cs_ioctl_default(hpriv, chunks, num_chunks, &cs_seq,
2455 						args->in.cs_flags,
2456 						args->in.encaps_sig_handle_id,
2457 						timeout, &sob_initial_count);
2458 		break;
2459 	}
2460 out:
2461 	if (rc != -EAGAIN) {
2462 		memset(args, 0, sizeof(*args));
2463 
2464 		switch (cs_type) {
2465 		case CS_RESERVE_SIGNALS:
2466 			args->out.handle_id = handle_id;
2467 			args->out.sob_base_addr_offset = sob_addr;
2468 			args->out.count = signals_count;
2469 			break;
2470 		case CS_TYPE_SIGNAL:
2471 			args->out.sob_base_addr_offset = sob_addr;
2472 			args->out.sob_count_before_submission = sob_initial_count;
2473 			args->out.seq = cs_seq;
2474 			break;
2475 		case CS_TYPE_DEFAULT:
2476 			args->out.sob_count_before_submission = sob_initial_count;
2477 			args->out.seq = cs_seq;
2478 			break;
2479 		default:
2480 			args->out.seq = cs_seq;
2481 			break;
2482 		}
2483 
2484 		args->out.status = rc;
2485 	}
2486 
2487 	return rc;
2488 }
2489 
hl_wait_for_fence(struct hl_ctx * ctx,u64 seq,struct hl_fence * fence,enum hl_cs_wait_status * status,u64 timeout_us,s64 * timestamp)2490 static int hl_wait_for_fence(struct hl_ctx *ctx, u64 seq, struct hl_fence *fence,
2491 				enum hl_cs_wait_status *status, u64 timeout_us, s64 *timestamp)
2492 {
2493 	struct hl_device *hdev = ctx->hdev;
2494 	ktime_t timestamp_kt;
2495 	long completion_rc;
2496 	int rc = 0, error;
2497 
2498 	if (IS_ERR(fence)) {
2499 		rc = PTR_ERR(fence);
2500 		if (rc == -EINVAL)
2501 			dev_notice_ratelimited(hdev->dev,
2502 				"Can't wait on CS %llu because current CS is at seq %llu\n",
2503 				seq, ctx->cs_sequence);
2504 		return rc;
2505 	}
2506 
2507 	if (!fence) {
2508 		if (!hl_pop_cs_outcome(&ctx->outcome_store, seq, &timestamp_kt, &error)) {
2509 			dev_dbg(hdev->dev,
2510 				"Can't wait on seq %llu because current CS is at seq %llu (Fence is gone)\n",
2511 				seq, ctx->cs_sequence);
2512 			*status = CS_WAIT_STATUS_GONE;
2513 			return 0;
2514 		}
2515 
2516 		completion_rc = 1;
2517 		goto report_results;
2518 	}
2519 
2520 	if (!timeout_us) {
2521 		completion_rc = completion_done(&fence->completion);
2522 	} else {
2523 		unsigned long timeout;
2524 
2525 		timeout = (timeout_us == MAX_SCHEDULE_TIMEOUT) ?
2526 				timeout_us : usecs_to_jiffies(timeout_us);
2527 		completion_rc =
2528 			wait_for_completion_interruptible_timeout(
2529 				&fence->completion, timeout);
2530 	}
2531 
2532 	error = fence->error;
2533 	timestamp_kt = fence->timestamp;
2534 
2535 report_results:
2536 	if (completion_rc > 0) {
2537 		*status = CS_WAIT_STATUS_COMPLETED;
2538 		if (timestamp)
2539 			*timestamp = ktime_to_ns(timestamp_kt);
2540 	} else {
2541 		*status = CS_WAIT_STATUS_BUSY;
2542 	}
2543 
2544 	if (error == -ETIMEDOUT || error == -EIO)
2545 		rc = error;
2546 
2547 	return rc;
2548 }
2549 
2550 /*
2551  * hl_cs_poll_fences - iterate CS fences to check for CS completion
2552  *
2553  * @mcs_data: multi-CS internal data
2554  * @mcs_compl: multi-CS completion structure
2555  *
2556  * @return 0 on success, otherwise non 0 error code
2557  *
2558  * The function iterates on all CS sequence in the list and set bit in
2559  * completion_bitmap for each completed CS.
2560  * While iterating, the function sets the stream map of each fence in the fence
2561  * array in the completion QID stream map to be used by CSs to perform
2562  * completion to the multi-CS context.
2563  * This function shall be called after taking context ref
2564  */
hl_cs_poll_fences(struct multi_cs_data * mcs_data,struct multi_cs_completion * mcs_compl)2565 static int hl_cs_poll_fences(struct multi_cs_data *mcs_data, struct multi_cs_completion *mcs_compl)
2566 {
2567 	struct hl_fence **fence_ptr = mcs_data->fence_arr;
2568 	struct hl_device *hdev = mcs_data->ctx->hdev;
2569 	int i, rc, arr_len = mcs_data->arr_len;
2570 	u64 *seq_arr = mcs_data->seq_arr;
2571 	ktime_t max_ktime, first_cs_time;
2572 	enum hl_cs_wait_status status;
2573 
2574 	memset(fence_ptr, 0, arr_len * sizeof(struct hl_fence *));
2575 
2576 	/* get all fences under the same lock */
2577 	rc = hl_ctx_get_fences(mcs_data->ctx, seq_arr, fence_ptr, arr_len);
2578 	if (rc)
2579 		return rc;
2580 
2581 	/*
2582 	 * re-initialize the completion here to handle 2 possible cases:
2583 	 * 1. CS will complete the multi-CS prior clearing the completion. in which
2584 	 *    case the fence iteration is guaranteed to catch the CS completion.
2585 	 * 2. the completion will occur after re-init of the completion.
2586 	 *    in which case we will wake up immediately in wait_for_completion.
2587 	 */
2588 	reinit_completion(&mcs_compl->completion);
2589 
2590 	/*
2591 	 * set to maximum time to verify timestamp is valid: if at the end
2592 	 * this value is maintained- no timestamp was updated
2593 	 */
2594 	max_ktime = ktime_set(KTIME_SEC_MAX, 0);
2595 	first_cs_time = max_ktime;
2596 
2597 	for (i = 0; i < arr_len; i++, fence_ptr++) {
2598 		struct hl_fence *fence = *fence_ptr;
2599 
2600 		/*
2601 		 * In order to prevent case where we wait until timeout even though a CS associated
2602 		 * with the multi-CS actually completed we do things in the below order:
2603 		 * 1. for each fence set it's QID map in the multi-CS completion QID map. This way
2604 		 *    any CS can, potentially, complete the multi CS for the specific QID (note
2605 		 *    that once completion is initialized, calling complete* and then wait on the
2606 		 *    completion will cause it to return at once)
2607 		 * 2. only after allowing multi-CS completion for the specific QID we check whether
2608 		 *    the specific CS already completed (and thus the wait for completion part will
2609 		 *    be skipped). if the CS not completed it is guaranteed that completing CS will
2610 		 *    wake up the completion.
2611 		 */
2612 		if (fence)
2613 			mcs_compl->stream_master_qid_map |= fence->stream_master_qid_map;
2614 
2615 		/*
2616 		 * function won't sleep as it is called with timeout 0 (i.e.
2617 		 * poll the fence)
2618 		 */
2619 		rc = hl_wait_for_fence(mcs_data->ctx, seq_arr[i], fence, &status, 0, NULL);
2620 		if (rc) {
2621 			dev_err(hdev->dev,
2622 				"wait_for_fence error :%d for CS seq %llu\n",
2623 								rc, seq_arr[i]);
2624 			break;
2625 		}
2626 
2627 		switch (status) {
2628 		case CS_WAIT_STATUS_BUSY:
2629 			/* CS did not finished, QID to wait on already stored */
2630 			break;
2631 		case CS_WAIT_STATUS_COMPLETED:
2632 			/*
2633 			 * Using mcs_handling_done to avoid possibility of mcs_data
2634 			 * returns to user indicating CS completed before it finished
2635 			 * all of its mcs handling, to avoid race the next time the
2636 			 * user waits for mcs.
2637 			 * note: when reaching this case fence is definitely not NULL
2638 			 *       but NULL check was added to overcome static analysis
2639 			 */
2640 			if (fence && !fence->mcs_handling_done) {
2641 				/*
2642 				 * in case multi CS is completed but MCS handling not done
2643 				 * we "complete" the multi CS to prevent it from waiting
2644 				 * until time-out and the "multi-CS handling done" will have
2645 				 * another chance at the next iteration
2646 				 */
2647 				complete_all(&mcs_compl->completion);
2648 				break;
2649 			}
2650 
2651 			mcs_data->completion_bitmap |= BIT(i);
2652 			/*
2653 			 * For all completed CSs we take the earliest timestamp.
2654 			 * For this we have to validate that the timestamp is
2655 			 * earliest of all timestamps so far.
2656 			 */
2657 			if (fence && mcs_data->update_ts &&
2658 					(ktime_compare(fence->timestamp, first_cs_time) < 0))
2659 				first_cs_time = fence->timestamp;
2660 			break;
2661 		case CS_WAIT_STATUS_GONE:
2662 			mcs_data->update_ts = false;
2663 			mcs_data->gone_cs = true;
2664 			/*
2665 			 * It is possible to get an old sequence numbers from user
2666 			 * which related to already completed CSs and their fences
2667 			 * already gone. In this case, CS set as completed but
2668 			 * no need to consider its QID for mcs completion.
2669 			 */
2670 			mcs_data->completion_bitmap |= BIT(i);
2671 			break;
2672 		default:
2673 			dev_err(hdev->dev, "Invalid fence status\n");
2674 			return -EINVAL;
2675 		}
2676 
2677 	}
2678 
2679 	hl_fences_put(mcs_data->fence_arr, arr_len);
2680 
2681 	if (mcs_data->update_ts &&
2682 			(ktime_compare(first_cs_time, max_ktime) != 0))
2683 		mcs_data->timestamp = ktime_to_ns(first_cs_time);
2684 
2685 	return rc;
2686 }
2687 
_hl_cs_wait_ioctl(struct hl_device * hdev,struct hl_ctx * ctx,u64 timeout_us,u64 seq,enum hl_cs_wait_status * status,s64 * timestamp)2688 static int _hl_cs_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, u64 timeout_us, u64 seq,
2689 				enum hl_cs_wait_status *status, s64 *timestamp)
2690 {
2691 	struct hl_fence *fence;
2692 	int rc = 0;
2693 
2694 	if (timestamp)
2695 		*timestamp = 0;
2696 
2697 	hl_ctx_get(ctx);
2698 
2699 	fence = hl_ctx_get_fence(ctx, seq);
2700 
2701 	rc = hl_wait_for_fence(ctx, seq, fence, status, timeout_us, timestamp);
2702 	hl_fence_put(fence);
2703 	hl_ctx_put(ctx);
2704 
2705 	return rc;
2706 }
2707 
hl_usecs64_to_jiffies(const u64 usecs)2708 static inline unsigned long hl_usecs64_to_jiffies(const u64 usecs)
2709 {
2710 	if (usecs <= U32_MAX)
2711 		return usecs_to_jiffies(usecs);
2712 
2713 	/*
2714 	 * If the value in nanoseconds is larger than 64 bit, use the largest
2715 	 * 64 bit value.
2716 	 */
2717 	if (usecs >= ((u64)(U64_MAX / NSEC_PER_USEC)))
2718 		return nsecs_to_jiffies(U64_MAX);
2719 
2720 	return nsecs_to_jiffies(usecs * NSEC_PER_USEC);
2721 }
2722 
2723 /*
2724  * hl_wait_multi_cs_completion_init - init completion structure
2725  *
2726  * @hdev: pointer to habanalabs device structure
2727  * @stream_master_bitmap: stream master QIDs map, set bit indicates stream
2728  *                        master QID to wait on
2729  *
2730  * @return valid completion struct pointer on success, otherwise error pointer
2731  *
2732  * up to MULTI_CS_MAX_USER_CTX calls can be done concurrently to the driver.
2733  * the function gets the first available completion (by marking it "used")
2734  * and initialize its values.
2735  */
hl_wait_multi_cs_completion_init(struct hl_device * hdev)2736 static struct multi_cs_completion *hl_wait_multi_cs_completion_init(struct hl_device *hdev)
2737 {
2738 	struct multi_cs_completion *mcs_compl;
2739 	int i;
2740 
2741 	/* find free multi_cs completion structure */
2742 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2743 		mcs_compl = &hdev->multi_cs_completion[i];
2744 		spin_lock(&mcs_compl->lock);
2745 		if (!mcs_compl->used) {
2746 			mcs_compl->used = 1;
2747 			mcs_compl->timestamp = 0;
2748 			/*
2749 			 * init QID map to 0 to avoid completion by CSs. the actual QID map
2750 			 * to multi-CS CSs will be set incrementally at a later stage
2751 			 */
2752 			mcs_compl->stream_master_qid_map = 0;
2753 			spin_unlock(&mcs_compl->lock);
2754 			break;
2755 		}
2756 		spin_unlock(&mcs_compl->lock);
2757 	}
2758 
2759 	if (i == MULTI_CS_MAX_USER_CTX) {
2760 		dev_err(hdev->dev, "no available multi-CS completion structure\n");
2761 		return ERR_PTR(-ENOMEM);
2762 	}
2763 	return mcs_compl;
2764 }
2765 
2766 /*
2767  * hl_wait_multi_cs_completion_fini - return completion structure and set as
2768  *                                    unused
2769  *
2770  * @mcs_compl: pointer to the completion structure
2771  */
hl_wait_multi_cs_completion_fini(struct multi_cs_completion * mcs_compl)2772 static void hl_wait_multi_cs_completion_fini(
2773 					struct multi_cs_completion *mcs_compl)
2774 {
2775 	/*
2776 	 * free completion structure, do it under lock to be in-sync with the
2777 	 * thread that signals completion
2778 	 */
2779 	spin_lock(&mcs_compl->lock);
2780 	mcs_compl->used = 0;
2781 	spin_unlock(&mcs_compl->lock);
2782 }
2783 
2784 /*
2785  * hl_wait_multi_cs_completion - wait for first CS to complete
2786  *
2787  * @mcs_data: multi-CS internal data
2788  *
2789  * @return 0 on success, otherwise non 0 error code
2790  */
hl_wait_multi_cs_completion(struct multi_cs_data * mcs_data,struct multi_cs_completion * mcs_compl)2791 static int hl_wait_multi_cs_completion(struct multi_cs_data *mcs_data,
2792 						struct multi_cs_completion *mcs_compl)
2793 {
2794 	long completion_rc;
2795 
2796 	completion_rc = wait_for_completion_interruptible_timeout(&mcs_compl->completion,
2797 									mcs_data->timeout_jiffies);
2798 
2799 	/* update timestamp */
2800 	if (completion_rc > 0)
2801 		mcs_data->timestamp = mcs_compl->timestamp;
2802 
2803 	mcs_data->wait_status = completion_rc;
2804 
2805 	return 0;
2806 }
2807 
2808 /*
2809  * hl_multi_cs_completion_init - init array of multi-CS completion structures
2810  *
2811  * @hdev: pointer to habanalabs device structure
2812  */
hl_multi_cs_completion_init(struct hl_device * hdev)2813 void hl_multi_cs_completion_init(struct hl_device *hdev)
2814 {
2815 	struct multi_cs_completion *mcs_cmpl;
2816 	int i;
2817 
2818 	for (i = 0; i < MULTI_CS_MAX_USER_CTX; i++) {
2819 		mcs_cmpl = &hdev->multi_cs_completion[i];
2820 		mcs_cmpl->used = 0;
2821 		spin_lock_init(&mcs_cmpl->lock);
2822 		init_completion(&mcs_cmpl->completion);
2823 	}
2824 }
2825 
2826 /*
2827  * hl_multi_cs_wait_ioctl - implementation of the multi-CS wait ioctl
2828  *
2829  * @hpriv: pointer to the private data of the fd
2830  * @data: pointer to multi-CS wait ioctl in/out args
2831  *
2832  */
hl_multi_cs_wait_ioctl(struct hl_fpriv * hpriv,void * data)2833 static int hl_multi_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2834 {
2835 	struct multi_cs_completion *mcs_compl;
2836 	struct hl_device *hdev = hpriv->hdev;
2837 	struct multi_cs_data mcs_data = {};
2838 	union hl_wait_cs_args *args = data;
2839 	struct hl_ctx *ctx = hpriv->ctx;
2840 	struct hl_fence **fence_arr;
2841 	void __user *seq_arr;
2842 	u32 size_to_copy;
2843 	u64 *cs_seq_arr;
2844 	u8 seq_arr_len;
2845 	int rc;
2846 
2847 	if (!hdev->supports_wait_for_multi_cs) {
2848 		dev_err(hdev->dev, "Wait for multi CS is not supported\n");
2849 		return -EPERM;
2850 	}
2851 
2852 	seq_arr_len = args->in.seq_arr_len;
2853 
2854 	if (seq_arr_len > HL_WAIT_MULTI_CS_LIST_MAX_LEN) {
2855 		dev_err(hdev->dev, "Can wait only up to %d CSs, input sequence is of length %u\n",
2856 				HL_WAIT_MULTI_CS_LIST_MAX_LEN, seq_arr_len);
2857 		return -EINVAL;
2858 	}
2859 
2860 	/* allocate memory for sequence array */
2861 	cs_seq_arr =
2862 		kmalloc_array(seq_arr_len, sizeof(*cs_seq_arr), GFP_KERNEL);
2863 	if (!cs_seq_arr)
2864 		return -ENOMEM;
2865 
2866 	/* copy CS sequence array from user */
2867 	seq_arr = (void __user *) (uintptr_t) args->in.seq;
2868 	size_to_copy = seq_arr_len * sizeof(*cs_seq_arr);
2869 	if (copy_from_user(cs_seq_arr, seq_arr, size_to_copy)) {
2870 		dev_err(hdev->dev, "Failed to copy multi-cs sequence array from user\n");
2871 		rc = -EFAULT;
2872 		goto free_seq_arr;
2873 	}
2874 
2875 	/* allocate array for the fences */
2876 	fence_arr = kmalloc_array(seq_arr_len, sizeof(struct hl_fence *), GFP_KERNEL);
2877 	if (!fence_arr) {
2878 		rc = -ENOMEM;
2879 		goto free_seq_arr;
2880 	}
2881 
2882 	/* initialize the multi-CS internal data */
2883 	mcs_data.ctx = ctx;
2884 	mcs_data.seq_arr = cs_seq_arr;
2885 	mcs_data.fence_arr = fence_arr;
2886 	mcs_data.arr_len = seq_arr_len;
2887 
2888 	hl_ctx_get(ctx);
2889 
2890 	/* wait (with timeout) for the first CS to be completed */
2891 	mcs_data.timeout_jiffies = hl_usecs64_to_jiffies(args->in.timeout_us);
2892 	mcs_compl = hl_wait_multi_cs_completion_init(hdev);
2893 	if (IS_ERR(mcs_compl)) {
2894 		rc = PTR_ERR(mcs_compl);
2895 		goto put_ctx;
2896 	}
2897 
2898 	/* poll all CS fences, extract timestamp */
2899 	mcs_data.update_ts = true;
2900 	rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
2901 	/*
2902 	 * skip wait for CS completion when one of the below is true:
2903 	 * - an error on the poll function
2904 	 * - one or more CS in the list completed
2905 	 * - the user called ioctl with timeout 0
2906 	 */
2907 	if (rc || mcs_data.completion_bitmap || !args->in.timeout_us)
2908 		goto completion_fini;
2909 
2910 	while (true) {
2911 		rc = hl_wait_multi_cs_completion(&mcs_data, mcs_compl);
2912 		if (rc || (mcs_data.wait_status == 0))
2913 			break;
2914 
2915 		/*
2916 		 * poll fences once again to update the CS map.
2917 		 * no timestamp should be updated this time.
2918 		 */
2919 		mcs_data.update_ts = false;
2920 		rc = hl_cs_poll_fences(&mcs_data, mcs_compl);
2921 
2922 		if (rc || mcs_data.completion_bitmap)
2923 			break;
2924 
2925 		/*
2926 		 * if hl_wait_multi_cs_completion returned before timeout (i.e.
2927 		 * it got a completion) it either got completed by CS in the multi CS list
2928 		 * (in which case the indication will be non empty completion_bitmap) or it
2929 		 * got completed by CS submitted to one of the shared stream master but
2930 		 * not in the multi CS list (in which case we should wait again but modify
2931 		 * the timeout and set timestamp as zero to let a CS related to the current
2932 		 * multi-CS set a new, relevant, timestamp)
2933 		 */
2934 		mcs_data.timeout_jiffies = mcs_data.wait_status;
2935 		mcs_compl->timestamp = 0;
2936 	}
2937 
2938 completion_fini:
2939 	hl_wait_multi_cs_completion_fini(mcs_compl);
2940 
2941 put_ctx:
2942 	hl_ctx_put(ctx);
2943 	kfree(fence_arr);
2944 
2945 free_seq_arr:
2946 	kfree(cs_seq_arr);
2947 
2948 	if (rc)
2949 		return rc;
2950 
2951 	if (mcs_data.wait_status == -ERESTARTSYS) {
2952 		dev_err_ratelimited(hdev->dev,
2953 				"user process got signal while waiting for Multi-CS\n");
2954 		return -EINTR;
2955 	}
2956 
2957 	/* update output args */
2958 	memset(args, 0, sizeof(*args));
2959 
2960 	if (mcs_data.completion_bitmap) {
2961 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
2962 		args->out.cs_completion_map = mcs_data.completion_bitmap;
2963 
2964 		/* if timestamp not 0- it's valid */
2965 		if (mcs_data.timestamp) {
2966 			args->out.timestamp_nsec = mcs_data.timestamp;
2967 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
2968 		}
2969 
2970 		/* update if some CS was gone */
2971 		if (!mcs_data.timestamp)
2972 			args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
2973 	} else {
2974 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
2975 	}
2976 
2977 	return 0;
2978 }
2979 
hl_cs_wait_ioctl(struct hl_fpriv * hpriv,void * data)2980 static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
2981 {
2982 	struct hl_device *hdev = hpriv->hdev;
2983 	union hl_wait_cs_args *args = data;
2984 	enum hl_cs_wait_status status;
2985 	u64 seq = args->in.seq;
2986 	s64 timestamp;
2987 	int rc;
2988 
2989 	rc = _hl_cs_wait_ioctl(hdev, hpriv->ctx, args->in.timeout_us, seq, &status, &timestamp);
2990 
2991 	if (rc == -ERESTARTSYS) {
2992 		dev_err_ratelimited(hdev->dev,
2993 			"user process got signal while waiting for CS handle %llu\n",
2994 			seq);
2995 		return -EINTR;
2996 	}
2997 
2998 	memset(args, 0, sizeof(*args));
2999 
3000 	if (rc) {
3001 		if (rc == -ETIMEDOUT) {
3002 			dev_err_ratelimited(hdev->dev,
3003 				"CS %llu has timed-out while user process is waiting for it\n",
3004 				seq);
3005 			args->out.status = HL_WAIT_CS_STATUS_TIMEDOUT;
3006 		} else if (rc == -EIO) {
3007 			dev_err_ratelimited(hdev->dev,
3008 				"CS %llu has been aborted while user process is waiting for it\n",
3009 				seq);
3010 			args->out.status = HL_WAIT_CS_STATUS_ABORTED;
3011 		}
3012 		return rc;
3013 	}
3014 
3015 	if (timestamp) {
3016 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3017 		args->out.timestamp_nsec = timestamp;
3018 	}
3019 
3020 	switch (status) {
3021 	case CS_WAIT_STATUS_GONE:
3022 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_GONE;
3023 		fallthrough;
3024 	case CS_WAIT_STATUS_COMPLETED:
3025 		args->out.status = HL_WAIT_CS_STATUS_COMPLETED;
3026 		break;
3027 	case CS_WAIT_STATUS_BUSY:
3028 	default:
3029 		args->out.status = HL_WAIT_CS_STATUS_BUSY;
3030 		break;
3031 	}
3032 
3033 	return 0;
3034 }
3035 
ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf * buf,struct hl_cb * cq_cb,u64 ts_offset,u64 cq_offset,u64 target_value,spinlock_t * wait_list_lock,struct hl_user_pending_interrupt ** pend)3036 static int ts_buff_get_kernel_ts_record(struct hl_mmap_mem_buf *buf,
3037 					struct hl_cb *cq_cb,
3038 					u64 ts_offset, u64 cq_offset, u64 target_value,
3039 					spinlock_t *wait_list_lock,
3040 					struct hl_user_pending_interrupt **pend)
3041 {
3042 	struct hl_ts_buff *ts_buff = buf->private;
3043 	struct hl_user_pending_interrupt *requested_offset_record =
3044 				(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3045 				ts_offset;
3046 	struct hl_user_pending_interrupt *cb_last =
3047 			(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
3048 			(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
3049 	unsigned long flags, iter_counter = 0;
3050 	u64 current_cq_counter;
3051 
3052 	/* Validate ts_offset not exceeding last max */
3053 	if (requested_offset_record >= cb_last) {
3054 		dev_err(buf->mmg->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
3055 								(u64)(uintptr_t)cb_last);
3056 		return -EINVAL;
3057 	}
3058 
3059 start_over:
3060 	spin_lock_irqsave(wait_list_lock, flags);
3061 
3062 	/* Unregister only if we didn't reach the target value
3063 	 * since in this case there will be no handling in irq context
3064 	 * and then it's safe to delete the node out of the interrupt list
3065 	 * then re-use it on other interrupt
3066 	 */
3067 	if (requested_offset_record->ts_reg_info.in_use) {
3068 		current_cq_counter = *requested_offset_record->cq_kernel_addr;
3069 		if (current_cq_counter < requested_offset_record->cq_target_value) {
3070 			list_del(&requested_offset_record->wait_list_node);
3071 			spin_unlock_irqrestore(wait_list_lock, flags);
3072 
3073 			hl_mmap_mem_buf_put(requested_offset_record->ts_reg_info.buf);
3074 			hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
3075 
3076 			dev_dbg(buf->mmg->dev,
3077 				"ts node removed from interrupt list now can re-use\n");
3078 		} else {
3079 			dev_dbg(buf->mmg->dev,
3080 				"ts node in middle of irq handling\n");
3081 
3082 			/* irq handling in the middle give it time to finish */
3083 			spin_unlock_irqrestore(wait_list_lock, flags);
3084 			usleep_range(1, 10);
3085 			if (++iter_counter == MAX_TS_ITER_NUM) {
3086 				dev_err(buf->mmg->dev,
3087 					"handling registration interrupt took too long!!\n");
3088 				return -EINVAL;
3089 			}
3090 
3091 			goto start_over;
3092 		}
3093 	} else {
3094 		/* Fill up the new registration node info */
3095 		requested_offset_record->ts_reg_info.buf = buf;
3096 		requested_offset_record->ts_reg_info.cq_cb = cq_cb;
3097 		requested_offset_record->ts_reg_info.timestamp_kernel_addr =
3098 				(u64 *) ts_buff->user_buff_address + ts_offset;
3099 		requested_offset_record->cq_kernel_addr =
3100 				(u64 *) cq_cb->kernel_address + cq_offset;
3101 		requested_offset_record->cq_target_value = target_value;
3102 
3103 		spin_unlock_irqrestore(wait_list_lock, flags);
3104 	}
3105 
3106 	*pend = requested_offset_record;
3107 
3108 	dev_dbg(buf->mmg->dev, "Found available node in TS kernel CB %p\n",
3109 		requested_offset_record);
3110 	return 0;
3111 }
3112 
_hl_interrupt_wait_ioctl(struct hl_device * hdev,struct hl_ctx * ctx,struct hl_mem_mgr * cb_mmg,struct hl_mem_mgr * mmg,u64 timeout_us,u64 cq_counters_handle,u64 cq_counters_offset,u64 target_value,struct hl_user_interrupt * interrupt,bool register_ts_record,u64 ts_handle,u64 ts_offset,u32 * status,u64 * timestamp)3113 static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
3114 				struct hl_mem_mgr *cb_mmg, struct hl_mem_mgr *mmg,
3115 				u64 timeout_us, u64 cq_counters_handle,	u64 cq_counters_offset,
3116 				u64 target_value, struct hl_user_interrupt *interrupt,
3117 				bool register_ts_record, u64 ts_handle, u64 ts_offset,
3118 				u32 *status, u64 *timestamp)
3119 {
3120 	struct hl_user_pending_interrupt *pend;
3121 	struct hl_mmap_mem_buf *buf;
3122 	struct hl_cb *cq_cb;
3123 	unsigned long timeout, flags;
3124 	long completion_rc;
3125 	int rc = 0;
3126 
3127 	timeout = hl_usecs64_to_jiffies(timeout_us);
3128 
3129 	hl_ctx_get(ctx);
3130 
3131 	cq_cb = hl_cb_get(cb_mmg, cq_counters_handle);
3132 	if (!cq_cb) {
3133 		rc = -EINVAL;
3134 		goto put_ctx;
3135 	}
3136 
3137 	/* Validate the cq offset */
3138 	if (((u64 *) cq_cb->kernel_address + cq_counters_offset) >=
3139 			((u64 *) cq_cb->kernel_address + (cq_cb->size / sizeof(u64)))) {
3140 		rc = -EINVAL;
3141 		goto put_cq_cb;
3142 	}
3143 
3144 	if (register_ts_record) {
3145 		dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
3146 					interrupt->interrupt_id, ts_offset, cq_counters_offset);
3147 		buf = hl_mmap_mem_buf_get(mmg, ts_handle);
3148 		if (!buf) {
3149 			rc = -EINVAL;
3150 			goto put_cq_cb;
3151 		}
3152 
3153 		/* get ts buffer record */
3154 		rc = ts_buff_get_kernel_ts_record(buf, cq_cb, ts_offset,
3155 						cq_counters_offset, target_value,
3156 						&interrupt->wait_list_lock, &pend);
3157 		if (rc)
3158 			goto put_ts_buff;
3159 	} else {
3160 		pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3161 		if (!pend) {
3162 			rc = -ENOMEM;
3163 			goto put_cq_cb;
3164 		}
3165 		hl_fence_init(&pend->fence, ULONG_MAX);
3166 		pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
3167 		pend->cq_target_value = target_value;
3168 	}
3169 
3170 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3171 
3172 	/* We check for completion value as interrupt could have been received
3173 	 * before we added the node to the wait list
3174 	 */
3175 	if (*pend->cq_kernel_addr >= target_value) {
3176 		if (register_ts_record)
3177 			pend->ts_reg_info.in_use = 0;
3178 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3179 
3180 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3181 
3182 		if (register_ts_record) {
3183 			*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
3184 			goto put_ts_buff;
3185 		} else {
3186 			pend->fence.timestamp = ktime_get();
3187 			goto set_timestamp;
3188 		}
3189 	} else if (!timeout_us) {
3190 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3191 		*status = HL_WAIT_CS_STATUS_BUSY;
3192 		pend->fence.timestamp = ktime_get();
3193 		goto set_timestamp;
3194 	}
3195 
3196 	/* Add pending user interrupt to relevant list for the interrupt
3197 	 * handler to monitor.
3198 	 * Note that we cannot have sorted list by target value,
3199 	 * in order to shorten the list pass loop, since
3200 	 * same list could have nodes for different cq counter handle.
3201 	 * Note:
3202 	 * Mark ts buff offset as in use here in the spinlock protection area
3203 	 * to avoid getting in the re-use section in ts_buff_get_kernel_ts_record
3204 	 * before adding the node to the list. this scenario might happen when
3205 	 * multiple threads are racing on same offset and one thread could
3206 	 * set the ts buff in ts_buff_get_kernel_ts_record then the other thread
3207 	 * takes over and get to ts_buff_get_kernel_ts_record and then we will try
3208 	 * to re-use the same ts buff offset, and will try to delete a non existing
3209 	 * node from the list.
3210 	 */
3211 	if (register_ts_record)
3212 		pend->ts_reg_info.in_use = 1;
3213 
3214 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3215 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3216 
3217 	if (register_ts_record) {
3218 		rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
3219 		goto ts_registration_exit;
3220 	}
3221 
3222 	/* Wait for interrupt handler to signal completion */
3223 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3224 								timeout);
3225 	if (completion_rc > 0) {
3226 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3227 	} else {
3228 		if (completion_rc == -ERESTARTSYS) {
3229 			dev_err_ratelimited(hdev->dev,
3230 					"user process got signal while waiting for interrupt ID %d\n",
3231 					interrupt->interrupt_id);
3232 			rc = -EINTR;
3233 			*status = HL_WAIT_CS_STATUS_ABORTED;
3234 		} else {
3235 			if (pend->fence.error == -EIO) {
3236 				dev_err_ratelimited(hdev->dev,
3237 						"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3238 						pend->fence.error);
3239 				rc = -EIO;
3240 				*status = HL_WAIT_CS_STATUS_ABORTED;
3241 			} else {
3242 				/* The wait has timed-out. We don't know anything beyond that
3243 				 * because the workload wasn't submitted through the driver.
3244 				 * Therefore, from driver's perspective, the workload is still
3245 				 * executing.
3246 				 */
3247 				rc = 0;
3248 				*status = HL_WAIT_CS_STATUS_BUSY;
3249 			}
3250 		}
3251 	}
3252 
3253 	/*
3254 	 * We keep removing the node from list here, and not at the irq handler
3255 	 * for completion timeout case. and if it's a registration
3256 	 * for ts record, the node will be deleted in the irq handler after
3257 	 * we reach the target value.
3258 	 */
3259 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3260 	list_del(&pend->wait_list_node);
3261 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3262 
3263 set_timestamp:
3264 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3265 	kfree(pend);
3266 	hl_cb_put(cq_cb);
3267 ts_registration_exit:
3268 	hl_ctx_put(ctx);
3269 
3270 	return rc;
3271 
3272 put_ts_buff:
3273 	hl_mmap_mem_buf_put(buf);
3274 put_cq_cb:
3275 	hl_cb_put(cq_cb);
3276 put_ctx:
3277 	hl_ctx_put(ctx);
3278 
3279 	return rc;
3280 }
3281 
_hl_interrupt_wait_ioctl_user_addr(struct hl_device * hdev,struct hl_ctx * ctx,u64 timeout_us,u64 user_address,u64 target_value,struct hl_user_interrupt * interrupt,u32 * status,u64 * timestamp)3282 static int _hl_interrupt_wait_ioctl_user_addr(struct hl_device *hdev, struct hl_ctx *ctx,
3283 				u64 timeout_us, u64 user_address,
3284 				u64 target_value, struct hl_user_interrupt *interrupt,
3285 				u32 *status,
3286 				u64 *timestamp)
3287 {
3288 	struct hl_user_pending_interrupt *pend;
3289 	unsigned long timeout, flags;
3290 	u64 completion_value;
3291 	long completion_rc;
3292 	int rc = 0;
3293 
3294 	timeout = hl_usecs64_to_jiffies(timeout_us);
3295 
3296 	hl_ctx_get(ctx);
3297 
3298 	pend = kzalloc(sizeof(*pend), GFP_KERNEL);
3299 	if (!pend) {
3300 		hl_ctx_put(ctx);
3301 		return -ENOMEM;
3302 	}
3303 
3304 	hl_fence_init(&pend->fence, ULONG_MAX);
3305 
3306 	/* Add pending user interrupt to relevant list for the interrupt
3307 	 * handler to monitor
3308 	 */
3309 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3310 	list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
3311 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3312 
3313 	/* We check for completion value as interrupt could have been received
3314 	 * before we added the node to the wait list
3315 	 */
3316 	if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3317 		dev_err(hdev->dev, "Failed to copy completion value from user\n");
3318 		rc = -EFAULT;
3319 		goto remove_pending_user_interrupt;
3320 	}
3321 
3322 	if (completion_value >= target_value) {
3323 		*status = HL_WAIT_CS_STATUS_COMPLETED;
3324 		/* There was no interrupt, we assume the completion is now. */
3325 		pend->fence.timestamp = ktime_get();
3326 	} else {
3327 		*status = HL_WAIT_CS_STATUS_BUSY;
3328 	}
3329 
3330 	if (!timeout_us || (*status == HL_WAIT_CS_STATUS_COMPLETED))
3331 		goto remove_pending_user_interrupt;
3332 
3333 wait_again:
3334 	/* Wait for interrupt handler to signal completion */
3335 	completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
3336 										timeout);
3337 
3338 	/* If timeout did not expire we need to perform the comparison.
3339 	 * If comparison fails, keep waiting until timeout expires
3340 	 */
3341 	if (completion_rc > 0) {
3342 		spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3343 		/* reinit_completion must be called before we check for user
3344 		 * completion value, otherwise, if interrupt is received after
3345 		 * the comparison and before the next wait_for_completion,
3346 		 * we will reach timeout and fail
3347 		 */
3348 		reinit_completion(&pend->fence.completion);
3349 		spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3350 
3351 		if (copy_from_user(&completion_value, u64_to_user_ptr(user_address), 8)) {
3352 			dev_err(hdev->dev, "Failed to copy completion value from user\n");
3353 			rc = -EFAULT;
3354 
3355 			goto remove_pending_user_interrupt;
3356 		}
3357 
3358 		if (completion_value >= target_value) {
3359 			*status = HL_WAIT_CS_STATUS_COMPLETED;
3360 		} else if (pend->fence.error) {
3361 			dev_err_ratelimited(hdev->dev,
3362 				"interrupt based wait ioctl aborted(error:%d) due to a reset cycle initiated\n",
3363 				pend->fence.error);
3364 			/* set the command completion status as ABORTED */
3365 			*status = HL_WAIT_CS_STATUS_ABORTED;
3366 		} else {
3367 			timeout = completion_rc;
3368 			goto wait_again;
3369 		}
3370 	} else if (completion_rc == -ERESTARTSYS) {
3371 		dev_err_ratelimited(hdev->dev,
3372 			"user process got signal while waiting for interrupt ID %d\n",
3373 			interrupt->interrupt_id);
3374 		rc = -EINTR;
3375 	} else {
3376 		/* The wait has timed-out. We don't know anything beyond that
3377 		 * because the workload wasn't submitted through the driver.
3378 		 * Therefore, from driver's perspective, the workload is still
3379 		 * executing.
3380 		 */
3381 		rc = 0;
3382 		*status = HL_WAIT_CS_STATUS_BUSY;
3383 	}
3384 
3385 remove_pending_user_interrupt:
3386 	spin_lock_irqsave(&interrupt->wait_list_lock, flags);
3387 	list_del(&pend->wait_list_node);
3388 	spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
3389 
3390 	*timestamp = ktime_to_ns(pend->fence.timestamp);
3391 
3392 	kfree(pend);
3393 	hl_ctx_put(ctx);
3394 
3395 	return rc;
3396 }
3397 
hl_interrupt_wait_ioctl(struct hl_fpriv * hpriv,void * data)3398 static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3399 {
3400 	u16 interrupt_id, first_interrupt, last_interrupt;
3401 	struct hl_device *hdev = hpriv->hdev;
3402 	struct asic_fixed_properties *prop;
3403 	struct hl_user_interrupt *interrupt;
3404 	union hl_wait_cs_args *args = data;
3405 	u32 status = HL_WAIT_CS_STATUS_BUSY;
3406 	u64 timestamp = 0;
3407 	int rc, int_idx;
3408 
3409 	prop = &hdev->asic_prop;
3410 
3411 	if (!(prop->user_interrupt_count + prop->user_dec_intr_count)) {
3412 		dev_err(hdev->dev, "no user interrupts allowed");
3413 		return -EPERM;
3414 	}
3415 
3416 	interrupt_id = FIELD_GET(HL_WAIT_CS_FLAGS_INTERRUPT_MASK, args->in.flags);
3417 
3418 	first_interrupt = prop->first_available_user_interrupt;
3419 	last_interrupt = prop->first_available_user_interrupt + prop->user_interrupt_count - 1;
3420 
3421 	if (interrupt_id < prop->user_dec_intr_count) {
3422 
3423 		/* Check if the requested core is enabled */
3424 		if (!(prop->decoder_enabled_mask & BIT(interrupt_id))) {
3425 			dev_err(hdev->dev, "interrupt on a disabled core(%u) not allowed",
3426 				interrupt_id);
3427 			return -EINVAL;
3428 		}
3429 
3430 		interrupt = &hdev->user_interrupt[interrupt_id];
3431 
3432 	} else if (interrupt_id >= first_interrupt && interrupt_id <= last_interrupt) {
3433 
3434 		int_idx = interrupt_id - first_interrupt + prop->user_dec_intr_count;
3435 		interrupt = &hdev->user_interrupt[int_idx];
3436 
3437 	} else if (interrupt_id == HL_COMMON_USER_CQ_INTERRUPT_ID) {
3438 		interrupt = &hdev->common_user_cq_interrupt;
3439 	} else if (interrupt_id == HL_COMMON_DEC_INTERRUPT_ID) {
3440 		interrupt = &hdev->common_decoder_interrupt;
3441 	} else {
3442 		dev_err(hdev->dev, "invalid user interrupt %u", interrupt_id);
3443 		return -EINVAL;
3444 	}
3445 
3446 	if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
3447 		rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->mem_mgr, &hpriv->mem_mgr,
3448 				args->in.interrupt_timeout_us, args->in.cq_counters_handle,
3449 				args->in.cq_counters_offset,
3450 				args->in.target, interrupt,
3451 				!!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
3452 				args->in.timestamp_handle, args->in.timestamp_offset,
3453 				&status, &timestamp);
3454 	else
3455 		rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
3456 				args->in.interrupt_timeout_us, args->in.addr,
3457 				args->in.target, interrupt, &status,
3458 				&timestamp);
3459 	if (rc)
3460 		return rc;
3461 
3462 	memset(args, 0, sizeof(*args));
3463 	args->out.status = status;
3464 
3465 	if (timestamp) {
3466 		args->out.timestamp_nsec = timestamp;
3467 		args->out.flags |= HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD;
3468 	}
3469 
3470 	return 0;
3471 }
3472 
hl_wait_ioctl(struct hl_fpriv * hpriv,void * data)3473 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data)
3474 {
3475 	union hl_wait_cs_args *args = data;
3476 	u32 flags = args->in.flags;
3477 	int rc;
3478 
3479 	/* If the device is not operational, no point in waiting for any command submission or
3480 	 * user interrupt
3481 	 */
3482 	if (!hl_device_operational(hpriv->hdev, NULL))
3483 		return -EBUSY;
3484 
3485 	if (flags & HL_WAIT_CS_FLAGS_INTERRUPT)
3486 		rc = hl_interrupt_wait_ioctl(hpriv, data);
3487 	else if (flags & HL_WAIT_CS_FLAGS_MULTI_CS)
3488 		rc = hl_multi_cs_wait_ioctl(hpriv, data);
3489 	else
3490 		rc = hl_cs_wait_ioctl(hpriv, data);
3491 
3492 	return rc;
3493 }
3494