1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24 {
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52
53 dtype_cmd |= add ?
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 }
71
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
83 * @pf: The PF pointer
84 * @add: True for add/update, False for remove
85 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
88 bool add)
89 {
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
93 struct i40e_vsi *vsi;
94 struct device *dev;
95 dma_addr_t dma;
96 u32 td_cmd = 0;
97 u16 i;
98
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 if (!vsi)
102 return -ENOENT;
103
104 tx_ring = vsi->tx_rings[0];
105 dev = tx_ring->dev;
106
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 if (!i)
110 return -EAGAIN;
111 msleep_interruptible(1);
112 }
113
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
117 goto dma_fail;
118
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
123
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
128
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
136
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
148 */
149 wmb();
150
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
153
154 writel(tx_ring->next_to_use, tx_ring->tail);
155 return 0;
156
157 dma_fail:
158 return -1;
159 }
160
161 /**
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
166 * @data: filter data
167 *
168 * Returns address of layer 4 protocol dummy packet.
169 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
172 {
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan = {};
175 struct ipv6hdr ipv6 = {};
176 struct ethhdr eth = {};
177 struct iphdr ip = {};
178 u8 *tmp;
179
180 if (ipv4) {
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
183 ip.version = 0x4;
184 ip.ihl = 0x5;
185
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
188 } else {
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
191 ipv6.version = 0x6;
192
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 sizeof(__be32) * 4);
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 sizeof(__be32) * 4);
197 }
198
199 if (is_vlan) {
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
203 }
204
205 tmp = dummy_packet;
206 memcpy(tmp, ð, sizeof(eth));
207 tmp += sizeof(eth);
208
209 if (is_vlan) {
210 memcpy(tmp, &vlan, sizeof(vlan));
211 tmp += sizeof(vlan);
212 }
213
214 if (ipv4) {
215 memcpy(tmp, &ip, sizeof(ip));
216 tmp += sizeof(ip);
217 } else {
218 memcpy(tmp, &ipv6, sizeof(ipv6));
219 tmp += sizeof(ipv6);
220 }
221
222 return tmp;
223 }
224
225 /**
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
230 * @data: filter data
231 *
232 * Helper function to populate udp fields.
233 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
236 {
237 struct udphdr *udp;
238 u8 *tmp;
239
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
244 }
245
246 /**
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
251 * @data: filter data
252 *
253 * Helper function to populate tcp fields.
254 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
257 {
258 struct tcphdr *tcp;
259 u8 *tmp;
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
270 }
271
272 /**
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
277 * @data: filter data
278 *
279 * Helper function to populate sctp fields.
280 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 u8 l4proto,
283 struct i40e_fdir_filter *data)
284 {
285 struct sctphdr *sctp;
286 u8 *tmp;
287
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
293 }
294
295 /**
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
303 *
304 * Helper function to offset data of dummy packet, program it and
305 * handle errors.
306 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
311 {
312 int ret;
313
314 if (fd_data->flex_filter) {
315 u8 *payload;
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
318
319 payload = packet_addr + payload_offset;
320
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
324
325 *((__force __be16 *)(payload + off)) = pattern;
326 }
327
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 if (ret) {
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
335 return -EOPNOTSUPP;
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 if (add)
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 else
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
345 }
346
347 return ret;
348 }
349
350 /**
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
356 *
357 * Update filter number field for pf.
358 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
361 {
362 if (add) {
363 if (ipv4)
364 (*ipv4_filter_num)++;
365 else
366 (*ipv6_filter_num)++;
367 } else {
368 if (ipv4)
369 (*ipv4_filter_num)--;
370 else
371 (*ipv6_filter_num)--;
372 }
373 }
374
375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
377 /**
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
383 *
384 * Returns 0 if the filters were successfully added or removed
385 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 struct i40e_fdir_filter *fd_data,
388 bool add,
389 bool ipv4)
390 {
391 struct i40e_pf *pf = vsi->back;
392 u8 *raw_packet;
393 int ret;
394
395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 if (!raw_packet)
397 return -ENOMEM;
398
399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400
401 if (ipv4)
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 else
407 ret = i40e_prepare_fdir_filter
408 (pf, fd_data, add, raw_packet,
409 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411
412 if (ret) {
413 kfree(raw_packet);
414 return ret;
415 }
416
417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 &pf->fd_udp6_filter_cnt);
419
420 return 0;
421 }
422
423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
425 /**
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
431 *
432 * Returns 0 if the filters were successfully added or removed
433 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 struct i40e_fdir_filter *fd_data,
436 bool add,
437 bool ipv4)
438 {
439 struct i40e_pf *pf = vsi->back;
440 u8 *raw_packet;
441 int ret;
442
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 if (!raw_packet)
445 return -ENOMEM;
446
447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 if (ipv4)
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 else
454 ret = i40e_prepare_fdir_filter
455 (pf, fd_data, add, raw_packet,
456 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458
459 if (ret) {
460 kfree(raw_packet);
461 return ret;
462 }
463
464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 &pf->fd_tcp6_filter_cnt);
466
467 if (add) {
468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 I40E_DEBUG_FD & pf->hw.debug_mask)
470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 }
473 return 0;
474 }
475
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
478 /**
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
485 *
486 * Returns 0 if the filters were successfully added or removed
487 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 struct i40e_fdir_filter *fd_data,
490 bool add,
491 bool ipv4)
492 {
493 struct i40e_pf *pf = vsi->back;
494 u8 *raw_packet;
495 int ret;
496
497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 if (!raw_packet)
499 return -ENOMEM;
500
501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502
503 if (ipv4)
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 else
509 ret = i40e_prepare_fdir_filter
510 (pf, fd_data, add, raw_packet,
511 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513
514 if (ret) {
515 kfree(raw_packet);
516 return ret;
517 }
518
519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 &pf->fd_sctp6_filter_cnt);
521
522 return 0;
523 }
524
525 #define I40E_IP_DUMMY_PACKET_LEN 34
526 #define I40E_IP6_DUMMY_PACKET_LEN 54
527 /**
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
534 *
535 * Returns 0 if the filters were successfully added or removed
536 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 struct i40e_fdir_filter *fd_data,
539 bool add,
540 bool ipv4)
541 {
542 struct i40e_pf *pf = vsi->back;
543 int payload_offset;
544 u8 *raw_packet;
545 int iter_start;
546 int iter_end;
547 int ret;
548 int i;
549
550 if (ipv4) {
551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 } else {
554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 }
557
558 for (i = iter_start; i <= iter_end; i++) {
559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 if (!raw_packet)
561 return -ENOMEM;
562
563 /* IPv6 no header option differs from IPv4 */
564 (void)i40e_create_dummy_packet
565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 fd_data);
567
568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 I40E_IP6_DUMMY_PACKET_LEN;
570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 payload_offset, i);
572 if (ret)
573 goto err;
574 }
575
576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 &pf->fd_ip6_filter_cnt);
578
579 return 0;
580 err:
581 kfree(raw_packet);
582 return ret;
583 }
584
585 /**
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
590 *
591 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 struct i40e_fdir_filter *input, bool add)
594 {
595 enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 struct i40e_pf *pf = vsi->back;
597 int ret;
598
599 switch (input->flow_type & ~FLOW_EXT) {
600 case TCP_V4_FLOW:
601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 break;
603 case UDP_V4_FLOW:
604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 break;
606 case SCTP_V4_FLOW:
607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 break;
609 case TCP_V6_FLOW:
610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 break;
612 case UDP_V6_FLOW:
613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 break;
615 case SCTP_V6_FLOW:
616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 break;
618 case IP_USER_FLOW:
619 switch (input->ipl4_proto) {
620 case IPPROTO_TCP:
621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 break;
623 case IPPROTO_UDP:
624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 break;
626 case IPPROTO_SCTP:
627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 break;
629 case IPPROTO_IP:
630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 break;
632 default:
633 /* We cannot support masking based on protocol */
634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 input->ipl4_proto);
636 return -EINVAL;
637 }
638 break;
639 case IPV6_USER_FLOW:
640 switch (input->ipl4_proto) {
641 case IPPROTO_TCP:
642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 break;
644 case IPPROTO_UDP:
645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 break;
647 case IPPROTO_SCTP:
648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 break;
650 case IPPROTO_IP:
651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 break;
653 default:
654 /* We cannot support masking based on protocol */
655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 input->ipl4_proto);
657 return -EINVAL;
658 }
659 break;
660 default:
661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 input->flow_type);
663 return -EINVAL;
664 }
665
666 /* The buffer allocated here will be normally be freed by
667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 * completion. In the event of an error adding the buffer to the FDIR
669 * ring, it will immediately be freed. It may also be freed by
670 * i40e_clean_tx_ring() when closing the VSI.
671 */
672 return ret;
673 }
674
675 /**
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
681 *
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
684 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 u64 qword1, u8 prog_id)
687 {
688 struct i40e_pf *pf = rx_ring->vsi->back;
689 struct pci_dev *pdev = pf->pdev;
690 struct i40e_16b_rx_wb_qw0 *qw0;
691 u32 fcnt_prog, fcnt_avail;
692 u32 error;
693
694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697
698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 if (qw0->hi_dword.fd_id != 0 ||
701 (I40E_DEBUG_FD & pf->hw.debug_mask))
702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 pf->fd_inv);
704
705 /* Check if the programming error is for ATR.
706 * If so, auto disable ATR and set a state for
707 * flush in progress. Next time we come here if flush is in
708 * progress do nothing, once flush is complete the state will
709 * be cleared.
710 */
711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 return;
713
714 pf->fd_add_err++;
715 /* store the current atr filter count */
716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717
718 if (qw0->hi_dword.fd_id == 0 &&
719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 /* These set_bit() calls aren't atomic with the
721 * test_bit() here, but worse case we potentially
722 * disable ATR and queue a flush right after SB
723 * support is re-enabled. That shouldn't cause an
724 * issue in practice
725 */
726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 }
729
730 /* filter programming failed most likely due to table full */
731 fcnt_prog = i40e_get_global_fd_count(pf);
732 fcnt_avail = pf->fdir_pf_filter_count;
733 /* If ATR is running fcnt_prog can quickly change,
734 * if we are very close to full, it makes sense to disable
735 * FD ATR/SB and then re-enable it when there is room.
736 */
737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 pf->state))
741 if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 }
744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 qw0->hi_dword.fd_id);
748 }
749 }
750
751 /**
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring: the ring that owns the buffer
754 * @tx_buffer: the buffer to free
755 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 struct i40e_tx_buffer *tx_buffer)
758 {
759 if (tx_buffer->skb) {
760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 kfree(tx_buffer->raw_buf);
762 else if (ring_is_xdp(ring))
763 xdp_return_frame(tx_buffer->xdpf);
764 else
765 dev_kfree_skb_any(tx_buffer->skb);
766 if (dma_unmap_len(tx_buffer, len))
767 dma_unmap_single(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 } else if (dma_unmap_len(tx_buffer, len)) {
772 dma_unmap_page(ring->dev,
773 dma_unmap_addr(tx_buffer, dma),
774 dma_unmap_len(tx_buffer, len),
775 DMA_TO_DEVICE);
776 }
777
778 tx_buffer->next_to_watch = NULL;
779 tx_buffer->skb = NULL;
780 dma_unmap_len_set(tx_buffer, len, 0);
781 /* tx_buffer must be completely set up in the transmit path */
782 }
783
784 /**
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
787 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 unsigned long bi_size;
791 u16 i;
792
793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 i40e_xsk_clean_tx_ring(tx_ring);
795 } else {
796 /* ring already cleared, nothing to do */
797 if (!tx_ring->tx_bi)
798 return;
799
800 /* Free all the Tx ring sk_buffs */
801 for (i = 0; i < tx_ring->count; i++)
802 i40e_unmap_and_free_tx_resource(tx_ring,
803 &tx_ring->tx_bi[i]);
804 }
805
806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 memset(tx_ring->tx_bi, 0, bi_size);
808
809 /* Zero out the descriptor ring */
810 memset(tx_ring->desc, 0, tx_ring->size);
811
812 tx_ring->next_to_use = 0;
813 tx_ring->next_to_clean = 0;
814
815 if (!tx_ring->netdev)
816 return;
817
818 /* cleanup Tx queue statistics */
819 netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821
822 /**
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
825 *
826 * Free all transmit software resources
827 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 i40e_clean_tx_ring(tx_ring);
831 kfree(tx_ring->tx_bi);
832 tx_ring->tx_bi = NULL;
833
834 if (tx_ring->desc) {
835 dma_free_coherent(tx_ring->dev, tx_ring->size,
836 tx_ring->desc, tx_ring->dma);
837 tx_ring->desc = NULL;
838 }
839 }
840
841 /**
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
845 *
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
848 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 u32 head, tail;
852
853 if (!in_sw) {
854 head = i40e_get_head(ring);
855 tail = readl(ring->tail);
856 } else {
857 head = ring->next_to_clean;
858 tail = ring->next_to_use;
859 }
860
861 if (head != tail)
862 return (head < tail) ?
863 tail - head : (tail + ring->count - head);
864
865 return 0;
866 }
867
868 /**
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi: pointer to vsi struct with tx queues
871 *
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 struct i40e_ring *tx_ring = NULL;
878 struct net_device *netdev;
879 unsigned int i;
880 int packets;
881
882 if (!vsi)
883 return;
884
885 if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 return;
887
888 netdev = vsi->netdev;
889 if (!netdev)
890 return;
891
892 if (!netif_carrier_ok(netdev))
893 return;
894
895 for (i = 0; i < vsi->num_queue_pairs; i++) {
896 tx_ring = vsi->tx_rings[i];
897 if (tx_ring && tx_ring->desc) {
898 /* If packet counter has not changed the queue is
899 * likely stalled, so force an interrupt for this
900 * queue.
901 *
902 * prev_pkt_ctr would be negative if there was no
903 * pending work.
904 */
905 packets = tx_ring->stats.packets & INT_MAX;
906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 i40e_force_wb(vsi, tx_ring->q_vector);
908 continue;
909 }
910
911 /* Memory barrier between read of packet count and call
912 * to i40e_get_tx_pending()
913 */
914 smp_rmb();
915 tx_ring->tx_stats.prev_pkt_ctr =
916 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 }
918 }
919 }
920
921 /**
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
926 *
927 * Returns true if there's any budget left (e.g. the clean is finished)
928 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget)929 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
930 struct i40e_ring *tx_ring, int napi_budget)
931 {
932 int i = tx_ring->next_to_clean;
933 struct i40e_tx_buffer *tx_buf;
934 struct i40e_tx_desc *tx_head;
935 struct i40e_tx_desc *tx_desc;
936 unsigned int total_bytes = 0, total_packets = 0;
937 unsigned int budget = vsi->work_limit;
938
939 tx_buf = &tx_ring->tx_bi[i];
940 tx_desc = I40E_TX_DESC(tx_ring, i);
941 i -= tx_ring->count;
942
943 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
944
945 do {
946 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
947
948 /* if next_to_watch is not set then there is no work pending */
949 if (!eop_desc)
950 break;
951
952 /* prevent any other reads prior to eop_desc */
953 smp_rmb();
954
955 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
956 /* we have caught up to head, no work left to do */
957 if (tx_head == tx_desc)
958 break;
959
960 /* clear next_to_watch to prevent false hangs */
961 tx_buf->next_to_watch = NULL;
962
963 /* update the statistics for this packet */
964 total_bytes += tx_buf->bytecount;
965 total_packets += tx_buf->gso_segs;
966
967 /* free the skb/XDP data */
968 if (ring_is_xdp(tx_ring))
969 xdp_return_frame(tx_buf->xdpf);
970 else
971 napi_consume_skb(tx_buf->skb, napi_budget);
972
973 /* unmap skb header data */
974 dma_unmap_single(tx_ring->dev,
975 dma_unmap_addr(tx_buf, dma),
976 dma_unmap_len(tx_buf, len),
977 DMA_TO_DEVICE);
978
979 /* clear tx_buffer data */
980 tx_buf->skb = NULL;
981 dma_unmap_len_set(tx_buf, len, 0);
982
983 /* unmap remaining buffers */
984 while (tx_desc != eop_desc) {
985 i40e_trace(clean_tx_irq_unmap,
986 tx_ring, tx_desc, tx_buf);
987
988 tx_buf++;
989 tx_desc++;
990 i++;
991 if (unlikely(!i)) {
992 i -= tx_ring->count;
993 tx_buf = tx_ring->tx_bi;
994 tx_desc = I40E_TX_DESC(tx_ring, 0);
995 }
996
997 /* unmap any remaining paged data */
998 if (dma_unmap_len(tx_buf, len)) {
999 dma_unmap_page(tx_ring->dev,
1000 dma_unmap_addr(tx_buf, dma),
1001 dma_unmap_len(tx_buf, len),
1002 DMA_TO_DEVICE);
1003 dma_unmap_len_set(tx_buf, len, 0);
1004 }
1005 }
1006
1007 /* move us one more past the eop_desc for start of next pkt */
1008 tx_buf++;
1009 tx_desc++;
1010 i++;
1011 if (unlikely(!i)) {
1012 i -= tx_ring->count;
1013 tx_buf = tx_ring->tx_bi;
1014 tx_desc = I40E_TX_DESC(tx_ring, 0);
1015 }
1016
1017 prefetch(tx_desc);
1018
1019 /* update budget accounting */
1020 budget--;
1021 } while (likely(budget));
1022
1023 i += tx_ring->count;
1024 tx_ring->next_to_clean = i;
1025 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1026 i40e_arm_wb(tx_ring, vsi, budget);
1027
1028 if (ring_is_xdp(tx_ring))
1029 return !!budget;
1030
1031 /* notify netdev of completed buffers */
1032 netdev_tx_completed_queue(txring_txq(tx_ring),
1033 total_packets, total_bytes);
1034
1035 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1036 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1037 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1038 /* Make sure that anybody stopping the queue after this
1039 * sees the new next_to_clean.
1040 */
1041 smp_mb();
1042 if (__netif_subqueue_stopped(tx_ring->netdev,
1043 tx_ring->queue_index) &&
1044 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1045 netif_wake_subqueue(tx_ring->netdev,
1046 tx_ring->queue_index);
1047 ++tx_ring->tx_stats.restart_queue;
1048 }
1049 }
1050
1051 return !!budget;
1052 }
1053
1054 /**
1055 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1056 * @vsi: the VSI we care about
1057 * @q_vector: the vector on which to enable writeback
1058 *
1059 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1060 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1061 struct i40e_q_vector *q_vector)
1062 {
1063 u16 flags = q_vector->tx.ring[0].flags;
1064 u32 val;
1065
1066 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1067 return;
1068
1069 if (q_vector->arm_wb_state)
1070 return;
1071
1072 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1073 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1074 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1075
1076 wr32(&vsi->back->hw,
1077 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1078 val);
1079 } else {
1080 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1081 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1082
1083 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1084 }
1085 q_vector->arm_wb_state = true;
1086 }
1087
1088 /**
1089 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1090 * @vsi: the VSI we care about
1091 * @q_vector: the vector on which to force writeback
1092 *
1093 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1094 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1095 {
1096 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1097 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1098 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1099 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1100 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1101 /* allow 00 to be written to the index */
1102
1103 wr32(&vsi->back->hw,
1104 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1105 } else {
1106 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1107 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1108 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1109 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1110 /* allow 00 to be written to the index */
1111
1112 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1113 }
1114 }
1115
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1116 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1117 struct i40e_ring_container *rc)
1118 {
1119 return &q_vector->rx == rc;
1120 }
1121
i40e_itr_divisor(struct i40e_q_vector * q_vector)1122 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1123 {
1124 unsigned int divisor;
1125
1126 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1127 case I40E_LINK_SPEED_40GB:
1128 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1129 break;
1130 case I40E_LINK_SPEED_25GB:
1131 case I40E_LINK_SPEED_20GB:
1132 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1133 break;
1134 default:
1135 case I40E_LINK_SPEED_10GB:
1136 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1137 break;
1138 case I40E_LINK_SPEED_1GB:
1139 case I40E_LINK_SPEED_100MB:
1140 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1141 break;
1142 }
1143
1144 return divisor;
1145 }
1146
1147 /**
1148 * i40e_update_itr - update the dynamic ITR value based on statistics
1149 * @q_vector: structure containing interrupt and ring information
1150 * @rc: structure containing ring performance data
1151 *
1152 * Stores a new ITR value based on packets and byte
1153 * counts during the last interrupt. The advantage of per interrupt
1154 * computation is faster updates and more accurate ITR for the current
1155 * traffic pattern. Constants in this function were computed
1156 * based on theoretical maximum wire speed and thresholds were set based
1157 * on testing data as well as attempting to minimize response time
1158 * while increasing bulk throughput.
1159 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1160 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1161 struct i40e_ring_container *rc)
1162 {
1163 unsigned int avg_wire_size, packets, bytes, itr;
1164 unsigned long next_update = jiffies;
1165
1166 /* If we don't have any rings just leave ourselves set for maximum
1167 * possible latency so we take ourselves out of the equation.
1168 */
1169 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1170 return;
1171
1172 /* For Rx we want to push the delay up and default to low latency.
1173 * for Tx we want to pull the delay down and default to high latency.
1174 */
1175 itr = i40e_container_is_rx(q_vector, rc) ?
1176 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1177 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1178
1179 /* If we didn't update within up to 1 - 2 jiffies we can assume
1180 * that either packets are coming in so slow there hasn't been
1181 * any work, or that there is so much work that NAPI is dealing
1182 * with interrupt moderation and we don't need to do anything.
1183 */
1184 if (time_after(next_update, rc->next_update))
1185 goto clear_counts;
1186
1187 /* If itr_countdown is set it means we programmed an ITR within
1188 * the last 4 interrupt cycles. This has a side effect of us
1189 * potentially firing an early interrupt. In order to work around
1190 * this we need to throw out any data received for a few
1191 * interrupts following the update.
1192 */
1193 if (q_vector->itr_countdown) {
1194 itr = rc->target_itr;
1195 goto clear_counts;
1196 }
1197
1198 packets = rc->total_packets;
1199 bytes = rc->total_bytes;
1200
1201 if (i40e_container_is_rx(q_vector, rc)) {
1202 /* If Rx there are 1 to 4 packets and bytes are less than
1203 * 9000 assume insufficient data to use bulk rate limiting
1204 * approach unless Tx is already in bulk rate limiting. We
1205 * are likely latency driven.
1206 */
1207 if (packets && packets < 4 && bytes < 9000 &&
1208 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1209 itr = I40E_ITR_ADAPTIVE_LATENCY;
1210 goto adjust_by_size;
1211 }
1212 } else if (packets < 4) {
1213 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1214 * bulk mode and we are receiving 4 or fewer packets just
1215 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1216 * that the Rx can relax.
1217 */
1218 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1219 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1220 I40E_ITR_ADAPTIVE_MAX_USECS)
1221 goto clear_counts;
1222 } else if (packets > 32) {
1223 /* If we have processed over 32 packets in a single interrupt
1224 * for Tx assume we need to switch over to "bulk" mode.
1225 */
1226 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1227 }
1228
1229 /* We have no packets to actually measure against. This means
1230 * either one of the other queues on this vector is active or
1231 * we are a Tx queue doing TSO with too high of an interrupt rate.
1232 *
1233 * Between 4 and 56 we can assume that our current interrupt delay
1234 * is only slightly too low. As such we should increase it by a small
1235 * fixed amount.
1236 */
1237 if (packets < 56) {
1238 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1239 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1240 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1241 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1242 }
1243 goto clear_counts;
1244 }
1245
1246 if (packets <= 256) {
1247 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1248 itr &= I40E_ITR_MASK;
1249
1250 /* Between 56 and 112 is our "goldilocks" zone where we are
1251 * working out "just right". Just report that our current
1252 * ITR is good for us.
1253 */
1254 if (packets <= 112)
1255 goto clear_counts;
1256
1257 /* If packet count is 128 or greater we are likely looking
1258 * at a slight overrun of the delay we want. Try halving
1259 * our delay to see if that will cut the number of packets
1260 * in half per interrupt.
1261 */
1262 itr /= 2;
1263 itr &= I40E_ITR_MASK;
1264 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1265 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1266
1267 goto clear_counts;
1268 }
1269
1270 /* The paths below assume we are dealing with a bulk ITR since
1271 * number of packets is greater than 256. We are just going to have
1272 * to compute a value and try to bring the count under control,
1273 * though for smaller packet sizes there isn't much we can do as
1274 * NAPI polling will likely be kicking in sooner rather than later.
1275 */
1276 itr = I40E_ITR_ADAPTIVE_BULK;
1277
1278 adjust_by_size:
1279 /* If packet counts are 256 or greater we can assume we have a gross
1280 * overestimation of what the rate should be. Instead of trying to fine
1281 * tune it just use the formula below to try and dial in an exact value
1282 * give the current packet size of the frame.
1283 */
1284 avg_wire_size = bytes / packets;
1285
1286 /* The following is a crude approximation of:
1287 * wmem_default / (size + overhead) = desired_pkts_per_int
1288 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1289 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1290 *
1291 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1292 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1293 * formula down to
1294 *
1295 * (170 * (size + 24)) / (size + 640) = ITR
1296 *
1297 * We first do some math on the packet size and then finally bitshift
1298 * by 8 after rounding up. We also have to account for PCIe link speed
1299 * difference as ITR scales based on this.
1300 */
1301 if (avg_wire_size <= 60) {
1302 /* Start at 250k ints/sec */
1303 avg_wire_size = 4096;
1304 } else if (avg_wire_size <= 380) {
1305 /* 250K ints/sec to 60K ints/sec */
1306 avg_wire_size *= 40;
1307 avg_wire_size += 1696;
1308 } else if (avg_wire_size <= 1084) {
1309 /* 60K ints/sec to 36K ints/sec */
1310 avg_wire_size *= 15;
1311 avg_wire_size += 11452;
1312 } else if (avg_wire_size <= 1980) {
1313 /* 36K ints/sec to 30K ints/sec */
1314 avg_wire_size *= 5;
1315 avg_wire_size += 22420;
1316 } else {
1317 /* plateau at a limit of 30K ints/sec */
1318 avg_wire_size = 32256;
1319 }
1320
1321 /* If we are in low latency mode halve our delay which doubles the
1322 * rate to somewhere between 100K to 16K ints/sec
1323 */
1324 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1325 avg_wire_size /= 2;
1326
1327 /* Resultant value is 256 times larger than it needs to be. This
1328 * gives us room to adjust the value as needed to either increase
1329 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1330 *
1331 * Use addition as we have already recorded the new latency flag
1332 * for the ITR value.
1333 */
1334 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1335 I40E_ITR_ADAPTIVE_MIN_INC;
1336
1337 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1338 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1339 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1340 }
1341
1342 clear_counts:
1343 /* write back value */
1344 rc->target_itr = itr;
1345
1346 /* next update should occur within next jiffy */
1347 rc->next_update = next_update + 1;
1348
1349 rc->total_bytes = 0;
1350 rc->total_packets = 0;
1351 }
1352
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1353 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1354 {
1355 return &rx_ring->rx_bi[idx];
1356 }
1357
1358 /**
1359 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1360 * @rx_ring: rx descriptor ring to store buffers on
1361 * @old_buff: donor buffer to have page reused
1362 *
1363 * Synchronizes page for reuse by the adapter
1364 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1365 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1366 struct i40e_rx_buffer *old_buff)
1367 {
1368 struct i40e_rx_buffer *new_buff;
1369 u16 nta = rx_ring->next_to_alloc;
1370
1371 new_buff = i40e_rx_bi(rx_ring, nta);
1372
1373 /* update, and store next to alloc */
1374 nta++;
1375 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1376
1377 /* transfer page from old buffer to new buffer */
1378 new_buff->dma = old_buff->dma;
1379 new_buff->page = old_buff->page;
1380 new_buff->page_offset = old_buff->page_offset;
1381 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1382
1383 /* clear contents of buffer_info */
1384 old_buff->page = NULL;
1385 }
1386
1387 /**
1388 * i40e_clean_programming_status - clean the programming status descriptor
1389 * @rx_ring: the rx ring that has this descriptor
1390 * @qword0_raw: qword0
1391 * @qword1: qword1 representing status_error_len in CPU ordering
1392 *
1393 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1394 * status being successful or not and take actions accordingly. FCoE should
1395 * handle its context/filter programming/invalidation status and take actions.
1396 *
1397 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1398 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1399 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1400 u64 qword1)
1401 {
1402 u8 id;
1403
1404 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1405 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1406
1407 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1408 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1409 }
1410
1411 /**
1412 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1413 * @tx_ring: the tx ring to set up
1414 *
1415 * Return 0 on success, negative on error
1416 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1417 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1418 {
1419 struct device *dev = tx_ring->dev;
1420 int bi_size;
1421
1422 if (!dev)
1423 return -ENOMEM;
1424
1425 /* warn if we are about to overwrite the pointer */
1426 WARN_ON(tx_ring->tx_bi);
1427 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1428 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1429 if (!tx_ring->tx_bi)
1430 goto err;
1431
1432 u64_stats_init(&tx_ring->syncp);
1433
1434 /* round up to nearest 4K */
1435 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1436 /* add u32 for head writeback, align after this takes care of
1437 * guaranteeing this is at least one cache line in size
1438 */
1439 tx_ring->size += sizeof(u32);
1440 tx_ring->size = ALIGN(tx_ring->size, 4096);
1441 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1442 &tx_ring->dma, GFP_KERNEL);
1443 if (!tx_ring->desc) {
1444 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1445 tx_ring->size);
1446 goto err;
1447 }
1448
1449 tx_ring->next_to_use = 0;
1450 tx_ring->next_to_clean = 0;
1451 tx_ring->tx_stats.prev_pkt_ctr = -1;
1452 return 0;
1453
1454 err:
1455 kfree(tx_ring->tx_bi);
1456 tx_ring->tx_bi = NULL;
1457 return -ENOMEM;
1458 }
1459
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1460 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1461 {
1462 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1463 }
1464
1465 /**
1466 * i40e_clean_rx_ring - Free Rx buffers
1467 * @rx_ring: ring to be cleaned
1468 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1469 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1470 {
1471 u16 i;
1472
1473 /* ring already cleared, nothing to do */
1474 if (!rx_ring->rx_bi)
1475 return;
1476
1477 dev_kfree_skb(rx_ring->skb);
1478 rx_ring->skb = NULL;
1479
1480 if (rx_ring->xsk_pool) {
1481 i40e_xsk_clean_rx_ring(rx_ring);
1482 goto skip_free;
1483 }
1484
1485 /* Free all the Rx ring sk_buffs */
1486 for (i = 0; i < rx_ring->count; i++) {
1487 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1488
1489 if (!rx_bi->page)
1490 continue;
1491
1492 /* Invalidate cache lines that may have been written to by
1493 * device so that we avoid corrupting memory.
1494 */
1495 dma_sync_single_range_for_cpu(rx_ring->dev,
1496 rx_bi->dma,
1497 rx_bi->page_offset,
1498 rx_ring->rx_buf_len,
1499 DMA_FROM_DEVICE);
1500
1501 /* free resources associated with mapping */
1502 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503 i40e_rx_pg_size(rx_ring),
1504 DMA_FROM_DEVICE,
1505 I40E_RX_DMA_ATTR);
1506
1507 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1508
1509 rx_bi->page = NULL;
1510 rx_bi->page_offset = 0;
1511 }
1512
1513 skip_free:
1514 if (rx_ring->xsk_pool)
1515 i40e_clear_rx_bi_zc(rx_ring);
1516 else
1517 i40e_clear_rx_bi(rx_ring);
1518
1519 /* Zero out the descriptor ring */
1520 memset(rx_ring->desc, 0, rx_ring->size);
1521
1522 rx_ring->next_to_alloc = 0;
1523 rx_ring->next_to_clean = 0;
1524 rx_ring->next_to_use = 0;
1525 }
1526
1527 /**
1528 * i40e_free_rx_resources - Free Rx resources
1529 * @rx_ring: ring to clean the resources from
1530 *
1531 * Free all receive software resources
1532 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1533 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1534 {
1535 i40e_clean_rx_ring(rx_ring);
1536 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1537 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1538 rx_ring->xdp_prog = NULL;
1539 kfree(rx_ring->rx_bi);
1540 rx_ring->rx_bi = NULL;
1541
1542 if (rx_ring->desc) {
1543 dma_free_coherent(rx_ring->dev, rx_ring->size,
1544 rx_ring->desc, rx_ring->dma);
1545 rx_ring->desc = NULL;
1546 }
1547 }
1548
1549 /**
1550 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1551 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1552 *
1553 * Returns 0 on success, negative on failure
1554 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1555 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1556 {
1557 struct device *dev = rx_ring->dev;
1558 int err;
1559
1560 u64_stats_init(&rx_ring->syncp);
1561
1562 /* Round up to nearest 4K */
1563 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1564 rx_ring->size = ALIGN(rx_ring->size, 4096);
1565 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1566 &rx_ring->dma, GFP_KERNEL);
1567
1568 if (!rx_ring->desc) {
1569 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1570 rx_ring->size);
1571 return -ENOMEM;
1572 }
1573
1574 rx_ring->next_to_alloc = 0;
1575 rx_ring->next_to_clean = 0;
1576 rx_ring->next_to_use = 0;
1577
1578 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1579 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1580 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1581 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1582 if (err < 0)
1583 return err;
1584 }
1585
1586 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1587
1588 rx_ring->rx_bi =
1589 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1590 if (!rx_ring->rx_bi)
1591 return -ENOMEM;
1592
1593 return 0;
1594 }
1595
1596 /**
1597 * i40e_release_rx_desc - Store the new tail and head values
1598 * @rx_ring: ring to bump
1599 * @val: new head index
1600 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1601 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1602 {
1603 rx_ring->next_to_use = val;
1604
1605 /* update next to alloc since we have filled the ring */
1606 rx_ring->next_to_alloc = val;
1607
1608 /* Force memory writes to complete before letting h/w
1609 * know there are new descriptors to fetch. (Only
1610 * applicable for weak-ordered memory model archs,
1611 * such as IA-64).
1612 */
1613 wmb();
1614 writel(val, rx_ring->tail);
1615 }
1616
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1617 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1618 unsigned int size)
1619 {
1620 unsigned int truesize;
1621
1622 #if (PAGE_SIZE < 8192)
1623 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1624 #else
1625 truesize = rx_ring->rx_offset ?
1626 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1627 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1628 SKB_DATA_ALIGN(size);
1629 #endif
1630 return truesize;
1631 }
1632
1633 /**
1634 * i40e_alloc_mapped_page - recycle or make a new page
1635 * @rx_ring: ring to use
1636 * @bi: rx_buffer struct to modify
1637 *
1638 * Returns true if the page was successfully allocated or
1639 * reused.
1640 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1641 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1642 struct i40e_rx_buffer *bi)
1643 {
1644 struct page *page = bi->page;
1645 dma_addr_t dma;
1646
1647 /* since we are recycling buffers we should seldom need to alloc */
1648 if (likely(page)) {
1649 rx_ring->rx_stats.page_reuse_count++;
1650 return true;
1651 }
1652
1653 /* alloc new page for storage */
1654 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1655 if (unlikely(!page)) {
1656 rx_ring->rx_stats.alloc_page_failed++;
1657 return false;
1658 }
1659
1660 rx_ring->rx_stats.page_alloc_count++;
1661
1662 /* map page for use */
1663 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1664 i40e_rx_pg_size(rx_ring),
1665 DMA_FROM_DEVICE,
1666 I40E_RX_DMA_ATTR);
1667
1668 /* if mapping failed free memory back to system since
1669 * there isn't much point in holding memory we can't use
1670 */
1671 if (dma_mapping_error(rx_ring->dev, dma)) {
1672 __free_pages(page, i40e_rx_pg_order(rx_ring));
1673 rx_ring->rx_stats.alloc_page_failed++;
1674 return false;
1675 }
1676
1677 bi->dma = dma;
1678 bi->page = page;
1679 bi->page_offset = rx_ring->rx_offset;
1680 page_ref_add(page, USHRT_MAX - 1);
1681 bi->pagecnt_bias = USHRT_MAX;
1682
1683 return true;
1684 }
1685
1686 /**
1687 * i40e_alloc_rx_buffers - Replace used receive buffers
1688 * @rx_ring: ring to place buffers on
1689 * @cleaned_count: number of buffers to replace
1690 *
1691 * Returns false if all allocations were successful, true if any fail
1692 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1693 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1694 {
1695 u16 ntu = rx_ring->next_to_use;
1696 union i40e_rx_desc *rx_desc;
1697 struct i40e_rx_buffer *bi;
1698
1699 /* do nothing if no valid netdev defined */
1700 if (!rx_ring->netdev || !cleaned_count)
1701 return false;
1702
1703 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1704 bi = i40e_rx_bi(rx_ring, ntu);
1705
1706 do {
1707 if (!i40e_alloc_mapped_page(rx_ring, bi))
1708 goto no_buffers;
1709
1710 /* sync the buffer for use by the device */
1711 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1712 bi->page_offset,
1713 rx_ring->rx_buf_len,
1714 DMA_FROM_DEVICE);
1715
1716 /* Refresh the desc even if buffer_addrs didn't change
1717 * because each write-back erases this info.
1718 */
1719 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1720
1721 rx_desc++;
1722 bi++;
1723 ntu++;
1724 if (unlikely(ntu == rx_ring->count)) {
1725 rx_desc = I40E_RX_DESC(rx_ring, 0);
1726 bi = i40e_rx_bi(rx_ring, 0);
1727 ntu = 0;
1728 }
1729
1730 /* clear the status bits for the next_to_use descriptor */
1731 rx_desc->wb.qword1.status_error_len = 0;
1732
1733 cleaned_count--;
1734 } while (cleaned_count);
1735
1736 if (rx_ring->next_to_use != ntu)
1737 i40e_release_rx_desc(rx_ring, ntu);
1738
1739 return false;
1740
1741 no_buffers:
1742 if (rx_ring->next_to_use != ntu)
1743 i40e_release_rx_desc(rx_ring, ntu);
1744
1745 /* make sure to come back via polling to try again after
1746 * allocation failure
1747 */
1748 return true;
1749 }
1750
1751 /**
1752 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1753 * @vsi: the VSI we care about
1754 * @skb: skb currently being received and modified
1755 * @rx_desc: the receive descriptor
1756 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1757 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1758 struct sk_buff *skb,
1759 union i40e_rx_desc *rx_desc)
1760 {
1761 struct i40e_rx_ptype_decoded decoded;
1762 u32 rx_error, rx_status;
1763 bool ipv4, ipv6;
1764 u8 ptype;
1765 u64 qword;
1766
1767 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1769 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1770 I40E_RXD_QW1_ERROR_SHIFT;
1771 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1772 I40E_RXD_QW1_STATUS_SHIFT;
1773 decoded = decode_rx_desc_ptype(ptype);
1774
1775 skb->ip_summed = CHECKSUM_NONE;
1776
1777 skb_checksum_none_assert(skb);
1778
1779 /* Rx csum enabled and ip headers found? */
1780 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1781 return;
1782
1783 /* did the hardware decode the packet and checksum? */
1784 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1785 return;
1786
1787 /* both known and outer_ip must be set for the below code to work */
1788 if (!(decoded.known && decoded.outer_ip))
1789 return;
1790
1791 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1792 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1793 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1794 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1795
1796 if (ipv4 &&
1797 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1798 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1799 goto checksum_fail;
1800
1801 /* likely incorrect csum if alternate IP extension headers found */
1802 if (ipv6 &&
1803 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1804 /* don't increment checksum err here, non-fatal err */
1805 return;
1806
1807 /* there was some L4 error, count error and punt packet to the stack */
1808 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1809 goto checksum_fail;
1810
1811 /* handle packets that were not able to be checksummed due
1812 * to arrival speed, in this case the stack can compute
1813 * the csum.
1814 */
1815 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1816 return;
1817
1818 /* If there is an outer header present that might contain a checksum
1819 * we need to bump the checksum level by 1 to reflect the fact that
1820 * we are indicating we validated the inner checksum.
1821 */
1822 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1823 skb->csum_level = 1;
1824
1825 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1826 switch (decoded.inner_prot) {
1827 case I40E_RX_PTYPE_INNER_PROT_TCP:
1828 case I40E_RX_PTYPE_INNER_PROT_UDP:
1829 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1830 skb->ip_summed = CHECKSUM_UNNECESSARY;
1831 fallthrough;
1832 default:
1833 break;
1834 }
1835
1836 return;
1837
1838 checksum_fail:
1839 vsi->back->hw_csum_rx_error++;
1840 }
1841
1842 /**
1843 * i40e_ptype_to_htype - get a hash type
1844 * @ptype: the ptype value from the descriptor
1845 *
1846 * Returns a hash type to be used by skb_set_hash
1847 **/
i40e_ptype_to_htype(u8 ptype)1848 static inline int i40e_ptype_to_htype(u8 ptype)
1849 {
1850 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1851
1852 if (!decoded.known)
1853 return PKT_HASH_TYPE_NONE;
1854
1855 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1856 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1857 return PKT_HASH_TYPE_L4;
1858 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1860 return PKT_HASH_TYPE_L3;
1861 else
1862 return PKT_HASH_TYPE_L2;
1863 }
1864
1865 /**
1866 * i40e_rx_hash - set the hash value in the skb
1867 * @ring: descriptor ring
1868 * @rx_desc: specific descriptor
1869 * @skb: skb currently being received and modified
1870 * @rx_ptype: Rx packet type
1871 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1872 static inline void i40e_rx_hash(struct i40e_ring *ring,
1873 union i40e_rx_desc *rx_desc,
1874 struct sk_buff *skb,
1875 u8 rx_ptype)
1876 {
1877 u32 hash;
1878 const __le64 rss_mask =
1879 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1880 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1881
1882 if (!(ring->netdev->features & NETIF_F_RXHASH))
1883 return;
1884
1885 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1886 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1887 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1888 }
1889 }
1890
1891 /**
1892 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1893 * @rx_ring: rx descriptor ring packet is being transacted on
1894 * @rx_desc: pointer to the EOP Rx descriptor
1895 * @skb: pointer to current skb being populated
1896 *
1897 * This function checks the ring, descriptor, and packet information in
1898 * order to populate the hash, checksum, VLAN, protocol, and
1899 * other fields within the skb.
1900 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1901 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1902 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1903 {
1904 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1905 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1906 I40E_RXD_QW1_STATUS_SHIFT;
1907 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1908 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1909 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1910 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1911 I40E_RXD_QW1_PTYPE_SHIFT;
1912
1913 if (unlikely(tsynvalid))
1914 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1915
1916 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1917
1918 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1919
1920 skb_record_rx_queue(skb, rx_ring->queue_index);
1921
1922 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1923 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1924
1925 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1926 le16_to_cpu(vlan_tag));
1927 }
1928
1929 /* modifies the skb - consumes the enet header */
1930 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1931 }
1932
1933 /**
1934 * i40e_cleanup_headers - Correct empty headers
1935 * @rx_ring: rx descriptor ring packet is being transacted on
1936 * @skb: pointer to current skb being fixed
1937 * @rx_desc: pointer to the EOP Rx descriptor
1938 *
1939 * In addition if skb is not at least 60 bytes we need to pad it so that
1940 * it is large enough to qualify as a valid Ethernet frame.
1941 *
1942 * Returns true if an error was encountered and skb was freed.
1943 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1944 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1945 union i40e_rx_desc *rx_desc)
1946
1947 {
1948 /* ERR_MASK will only have valid bits if EOP set, and
1949 * what we are doing here is actually checking
1950 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1951 * the error field
1952 */
1953 if (unlikely(i40e_test_staterr(rx_desc,
1954 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1955 dev_kfree_skb_any(skb);
1956 return true;
1957 }
1958
1959 /* if eth_skb_pad returns an error the skb was freed */
1960 if (eth_skb_pad(skb))
1961 return true;
1962
1963 return false;
1964 }
1965
1966 /**
1967 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1968 * @rx_buffer: buffer containing the page
1969 * @rx_stats: rx stats structure for the rx ring
1970 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1971 *
1972 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1973 * which will assign the current buffer to the buffer that next_to_alloc is
1974 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1975 * page freed.
1976 *
1977 * rx_stats will be updated to indicate whether the page was waived
1978 * or busy if it could not be reused.
1979 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats,int rx_buffer_pgcnt)1980 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1981 struct i40e_rx_queue_stats *rx_stats,
1982 int rx_buffer_pgcnt)
1983 {
1984 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1985 struct page *page = rx_buffer->page;
1986
1987 /* Is any reuse possible? */
1988 if (!dev_page_is_reusable(page)) {
1989 rx_stats->page_waive_count++;
1990 return false;
1991 }
1992
1993 #if (PAGE_SIZE < 8192)
1994 /* if we are only owner of page we can reuse it */
1995 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1)) {
1996 rx_stats->page_busy_count++;
1997 return false;
1998 }
1999 #else
2000 #define I40E_LAST_OFFSET \
2001 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2002 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2003 rx_stats->page_busy_count++;
2004 return false;
2005 }
2006 #endif
2007
2008 /* If we have drained the page fragment pool we need to update
2009 * the pagecnt_bias and page count so that we fully restock the
2010 * number of references the driver holds.
2011 */
2012 if (unlikely(pagecnt_bias == 1)) {
2013 page_ref_add(page, USHRT_MAX - 1);
2014 rx_buffer->pagecnt_bias = USHRT_MAX;
2015 }
2016
2017 return true;
2018 }
2019
2020 /**
2021 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
2022 * @rx_ring: rx descriptor ring to transact packets on
2023 * @rx_buffer: buffer containing page to add
2024 * @skb: sk_buff to place the data into
2025 * @size: packet length from rx_desc
2026 *
2027 * This function will add the data contained in rx_buffer->page to the skb.
2028 * It will just attach the page as a frag to the skb.
2029 *
2030 * The function will then update the page offset.
2031 **/
i40e_add_rx_frag(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)2032 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
2033 struct i40e_rx_buffer *rx_buffer,
2034 struct sk_buff *skb,
2035 unsigned int size)
2036 {
2037 #if (PAGE_SIZE < 8192)
2038 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2039 #else
2040 unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
2041 #endif
2042
2043 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
2044 rx_buffer->page_offset, size, truesize);
2045
2046 /* page is being used so we must update the page offset */
2047 #if (PAGE_SIZE < 8192)
2048 rx_buffer->page_offset ^= truesize;
2049 #else
2050 rx_buffer->page_offset += truesize;
2051 #endif
2052 }
2053
2054 /**
2055 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2056 * @rx_ring: rx descriptor ring to transact packets on
2057 * @size: size of buffer to add to skb
2058 * @rx_buffer_pgcnt: buffer page refcount
2059 *
2060 * This function will pull an Rx buffer from the ring and synchronize it
2061 * for use by the CPU.
2062 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)2063 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2064 const unsigned int size,
2065 int *rx_buffer_pgcnt)
2066 {
2067 struct i40e_rx_buffer *rx_buffer;
2068
2069 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2070 *rx_buffer_pgcnt =
2071 #if (PAGE_SIZE < 8192)
2072 page_count(rx_buffer->page);
2073 #else
2074 0;
2075 #endif
2076 prefetch_page_address(rx_buffer->page);
2077
2078 /* we are reusing so sync this buffer for CPU use */
2079 dma_sync_single_range_for_cpu(rx_ring->dev,
2080 rx_buffer->dma,
2081 rx_buffer->page_offset,
2082 size,
2083 DMA_FROM_DEVICE);
2084
2085 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2086 rx_buffer->pagecnt_bias--;
2087
2088 return rx_buffer;
2089 }
2090
2091 /**
2092 * i40e_construct_skb - Allocate skb and populate it
2093 * @rx_ring: rx descriptor ring to transact packets on
2094 * @rx_buffer: rx buffer to pull data from
2095 * @xdp: xdp_buff pointing to the data
2096 *
2097 * This function allocates an skb. It then populates it with the page
2098 * data from the current receive descriptor, taking care to set up the
2099 * skb correctly.
2100 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2101 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2102 struct i40e_rx_buffer *rx_buffer,
2103 struct xdp_buff *xdp)
2104 {
2105 unsigned int size = xdp->data_end - xdp->data;
2106 #if (PAGE_SIZE < 8192)
2107 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2108 #else
2109 unsigned int truesize = SKB_DATA_ALIGN(size);
2110 #endif
2111 unsigned int headlen;
2112 struct sk_buff *skb;
2113
2114 /* prefetch first cache line of first page */
2115 net_prefetch(xdp->data);
2116
2117 /* Note, we get here by enabling legacy-rx via:
2118 *
2119 * ethtool --set-priv-flags <dev> legacy-rx on
2120 *
2121 * In this mode, we currently get 0 extra XDP headroom as
2122 * opposed to having legacy-rx off, where we process XDP
2123 * packets going to stack via i40e_build_skb(). The latter
2124 * provides us currently with 192 bytes of headroom.
2125 *
2126 * For i40e_construct_skb() mode it means that the
2127 * xdp->data_meta will always point to xdp->data, since
2128 * the helper cannot expand the head. Should this ever
2129 * change in future for legacy-rx mode on, then lets also
2130 * add xdp->data_meta handling here.
2131 */
2132
2133 /* allocate a skb to store the frags */
2134 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2135 I40E_RX_HDR_SIZE,
2136 GFP_ATOMIC | __GFP_NOWARN);
2137 if (unlikely(!skb))
2138 return NULL;
2139
2140 /* Determine available headroom for copy */
2141 headlen = size;
2142 if (headlen > I40E_RX_HDR_SIZE)
2143 headlen = eth_get_headlen(skb->dev, xdp->data,
2144 I40E_RX_HDR_SIZE);
2145
2146 /* align pull length to size of long to optimize memcpy performance */
2147 memcpy(__skb_put(skb, headlen), xdp->data,
2148 ALIGN(headlen, sizeof(long)));
2149
2150 /* update all of the pointers */
2151 size -= headlen;
2152 if (size) {
2153 skb_add_rx_frag(skb, 0, rx_buffer->page,
2154 rx_buffer->page_offset + headlen,
2155 size, truesize);
2156
2157 /* buffer is used by skb, update page_offset */
2158 #if (PAGE_SIZE < 8192)
2159 rx_buffer->page_offset ^= truesize;
2160 #else
2161 rx_buffer->page_offset += truesize;
2162 #endif
2163 } else {
2164 /* buffer is unused, reset bias back to rx_buffer */
2165 rx_buffer->pagecnt_bias++;
2166 }
2167
2168 return skb;
2169 }
2170
2171 /**
2172 * i40e_build_skb - Build skb around an existing buffer
2173 * @rx_ring: Rx descriptor ring to transact packets on
2174 * @rx_buffer: Rx buffer to pull data from
2175 * @xdp: xdp_buff pointing to the data
2176 *
2177 * This function builds an skb around an existing Rx buffer, taking care
2178 * to set up the skb correctly and avoid any memcpy overhead.
2179 */
i40e_build_skb(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,struct xdp_buff * xdp)2180 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2181 struct i40e_rx_buffer *rx_buffer,
2182 struct xdp_buff *xdp)
2183 {
2184 unsigned int metasize = xdp->data - xdp->data_meta;
2185 #if (PAGE_SIZE < 8192)
2186 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2187 #else
2188 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2189 SKB_DATA_ALIGN(xdp->data_end -
2190 xdp->data_hard_start);
2191 #endif
2192 struct sk_buff *skb;
2193
2194 /* Prefetch first cache line of first page. If xdp->data_meta
2195 * is unused, this points exactly as xdp->data, otherwise we
2196 * likely have a consumer accessing first few bytes of meta
2197 * data, and then actual data.
2198 */
2199 net_prefetch(xdp->data_meta);
2200
2201 /* build an skb around the page buffer */
2202 skb = napi_build_skb(xdp->data_hard_start, truesize);
2203 if (unlikely(!skb))
2204 return NULL;
2205
2206 /* update pointers within the skb to store the data */
2207 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2208 __skb_put(skb, xdp->data_end - xdp->data);
2209 if (metasize)
2210 skb_metadata_set(skb, metasize);
2211
2212 /* buffer is used by skb, update page_offset */
2213 #if (PAGE_SIZE < 8192)
2214 rx_buffer->page_offset ^= truesize;
2215 #else
2216 rx_buffer->page_offset += truesize;
2217 #endif
2218
2219 return skb;
2220 }
2221
2222 /**
2223 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2224 * @rx_ring: rx descriptor ring to transact packets on
2225 * @rx_buffer: rx buffer to pull data from
2226 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2227 *
2228 * This function will clean up the contents of the rx_buffer. It will
2229 * either recycle the buffer or unmap it and free the associated resources.
2230 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2231 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2232 struct i40e_rx_buffer *rx_buffer,
2233 int rx_buffer_pgcnt)
2234 {
2235 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats, rx_buffer_pgcnt)) {
2236 /* hand second half of page back to the ring */
2237 i40e_reuse_rx_page(rx_ring, rx_buffer);
2238 } else {
2239 /* we are not reusing the buffer so unmap it */
2240 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2241 i40e_rx_pg_size(rx_ring),
2242 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2243 __page_frag_cache_drain(rx_buffer->page,
2244 rx_buffer->pagecnt_bias);
2245 /* clear contents of buffer_info */
2246 rx_buffer->page = NULL;
2247 }
2248 }
2249
2250 /**
2251 * i40e_is_non_eop - process handling of non-EOP buffers
2252 * @rx_ring: Rx ring being processed
2253 * @rx_desc: Rx descriptor for current buffer
2254 *
2255 * If the buffer is an EOP buffer, this function exits returning false,
2256 * otherwise return true indicating that this is in fact a non-EOP buffer.
2257 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2258 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2259 union i40e_rx_desc *rx_desc)
2260 {
2261 /* if we are the last buffer then there is nothing else to do */
2262 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2263 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2264 return false;
2265
2266 rx_ring->rx_stats.non_eop_descs++;
2267
2268 return true;
2269 }
2270
2271 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2272 struct i40e_ring *xdp_ring);
2273
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2274 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2275 {
2276 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2277
2278 if (unlikely(!xdpf))
2279 return I40E_XDP_CONSUMED;
2280
2281 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2282 }
2283
2284 /**
2285 * i40e_run_xdp - run an XDP program
2286 * @rx_ring: Rx ring being processed
2287 * @xdp: XDP buffer containing the frame
2288 * @xdp_prog: XDP program to run
2289 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2290 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2291 {
2292 int err, result = I40E_XDP_PASS;
2293 struct i40e_ring *xdp_ring;
2294 u32 act;
2295
2296 if (!xdp_prog)
2297 goto xdp_out;
2298
2299 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2300
2301 act = bpf_prog_run_xdp(xdp_prog, xdp);
2302 switch (act) {
2303 case XDP_PASS:
2304 break;
2305 case XDP_TX:
2306 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2307 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2308 if (result == I40E_XDP_CONSUMED)
2309 goto out_failure;
2310 break;
2311 case XDP_REDIRECT:
2312 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2313 if (err)
2314 goto out_failure;
2315 result = I40E_XDP_REDIR;
2316 break;
2317 default:
2318 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2319 fallthrough;
2320 case XDP_ABORTED:
2321 out_failure:
2322 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2323 fallthrough; /* handle aborts by dropping packet */
2324 case XDP_DROP:
2325 result = I40E_XDP_CONSUMED;
2326 break;
2327 }
2328 xdp_out:
2329 return result;
2330 }
2331
2332 /**
2333 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2334 * @rx_ring: Rx ring
2335 * @rx_buffer: Rx buffer to adjust
2336 * @size: Size of adjustment
2337 **/
i40e_rx_buffer_flip(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer,unsigned int size)2338 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2339 struct i40e_rx_buffer *rx_buffer,
2340 unsigned int size)
2341 {
2342 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2343
2344 #if (PAGE_SIZE < 8192)
2345 rx_buffer->page_offset ^= truesize;
2346 #else
2347 rx_buffer->page_offset += truesize;
2348 #endif
2349 }
2350
2351 /**
2352 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2353 * @xdp_ring: XDP Tx ring
2354 *
2355 * This function updates the XDP Tx ring tail register.
2356 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2357 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2358 {
2359 /* Force memory writes to complete before letting h/w
2360 * know there are new descriptors to fetch.
2361 */
2362 wmb();
2363 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2364 }
2365
2366 /**
2367 * i40e_update_rx_stats - Update Rx ring statistics
2368 * @rx_ring: rx descriptor ring
2369 * @total_rx_bytes: number of bytes received
2370 * @total_rx_packets: number of packets received
2371 *
2372 * This function updates the Rx ring statistics.
2373 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2374 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2375 unsigned int total_rx_bytes,
2376 unsigned int total_rx_packets)
2377 {
2378 u64_stats_update_begin(&rx_ring->syncp);
2379 rx_ring->stats.packets += total_rx_packets;
2380 rx_ring->stats.bytes += total_rx_bytes;
2381 u64_stats_update_end(&rx_ring->syncp);
2382 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2383 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2384 }
2385
2386 /**
2387 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2388 * @rx_ring: Rx ring
2389 * @xdp_res: Result of the receive batch
2390 *
2391 * This function bumps XDP Tx tail and/or flush redirect map, and
2392 * should be called when a batch of packets has been processed in the
2393 * napi loop.
2394 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2395 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2396 {
2397 if (xdp_res & I40E_XDP_REDIR)
2398 xdp_do_flush_map();
2399
2400 if (xdp_res & I40E_XDP_TX) {
2401 struct i40e_ring *xdp_ring =
2402 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2403
2404 i40e_xdp_ring_update_tail(xdp_ring);
2405 }
2406 }
2407
2408 /**
2409 * i40e_inc_ntc: Advance the next_to_clean index
2410 * @rx_ring: Rx ring
2411 **/
i40e_inc_ntc(struct i40e_ring * rx_ring)2412 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2413 {
2414 u32 ntc = rx_ring->next_to_clean + 1;
2415
2416 ntc = (ntc < rx_ring->count) ? ntc : 0;
2417 rx_ring->next_to_clean = ntc;
2418 prefetch(I40E_RX_DESC(rx_ring, ntc));
2419 }
2420
2421 /**
2422 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2423 * @rx_ring: rx descriptor ring to transact packets on
2424 * @budget: Total limit on number of packets to process
2425 *
2426 * This function provides a "bounce buffer" approach to Rx interrupt
2427 * processing. The advantage to this is that on systems that have
2428 * expensive overhead for IOMMU access this provides a means of avoiding
2429 * it by maintaining the mapping of the page to the system.
2430 *
2431 * Returns amount of work completed
2432 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget)2433 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2434 {
2435 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
2436 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2437 unsigned int offset = rx_ring->rx_offset;
2438 struct sk_buff *skb = rx_ring->skb;
2439 unsigned int xdp_xmit = 0;
2440 struct bpf_prog *xdp_prog;
2441 bool failure = false;
2442 struct xdp_buff xdp;
2443 int xdp_res = 0;
2444
2445 #if (PAGE_SIZE < 8192)
2446 frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2447 #endif
2448 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
2449
2450 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2451
2452 while (likely(total_rx_packets < (unsigned int)budget)) {
2453 struct i40e_rx_buffer *rx_buffer;
2454 union i40e_rx_desc *rx_desc;
2455 int rx_buffer_pgcnt;
2456 unsigned int size;
2457 u64 qword;
2458
2459 /* return some buffers to hardware, one at a time is too slow */
2460 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2461 failure = failure ||
2462 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2463 cleaned_count = 0;
2464 }
2465
2466 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2467
2468 /* status_error_len will always be zero for unused descriptors
2469 * because it's cleared in cleanup, and overlaps with hdr_addr
2470 * which is always zero because packet split isn't used, if the
2471 * hardware wrote DD then the length will be non-zero
2472 */
2473 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2474
2475 /* This memory barrier is needed to keep us from reading
2476 * any other fields out of the rx_desc until we have
2477 * verified the descriptor has been written back.
2478 */
2479 dma_rmb();
2480
2481 if (i40e_rx_is_programming_status(qword)) {
2482 i40e_clean_programming_status(rx_ring,
2483 rx_desc->raw.qword[0],
2484 qword);
2485 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2486 i40e_inc_ntc(rx_ring);
2487 i40e_reuse_rx_page(rx_ring, rx_buffer);
2488 cleaned_count++;
2489 continue;
2490 }
2491
2492 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2493 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2494 if (!size)
2495 break;
2496
2497 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2498 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2499
2500 /* retrieve a buffer from the ring */
2501 if (!skb) {
2502 unsigned char *hard_start;
2503
2504 hard_start = page_address(rx_buffer->page) +
2505 rx_buffer->page_offset - offset;
2506 xdp_prepare_buff(&xdp, hard_start, offset, size, true);
2507 xdp_buff_clear_frags_flag(&xdp);
2508 #if (PAGE_SIZE > 4096)
2509 /* At larger PAGE_SIZE, frame_sz depend on len size */
2510 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2511 #endif
2512 xdp_res = i40e_run_xdp(rx_ring, &xdp, xdp_prog);
2513 }
2514
2515 if (xdp_res) {
2516 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2517 xdp_xmit |= xdp_res;
2518 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2519 } else {
2520 rx_buffer->pagecnt_bias++;
2521 }
2522 total_rx_bytes += size;
2523 total_rx_packets++;
2524 } else if (skb) {
2525 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2526 } else if (ring_uses_build_skb(rx_ring)) {
2527 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2528 } else {
2529 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2530 }
2531
2532 /* exit if we failed to retrieve a buffer */
2533 if (!xdp_res && !skb) {
2534 rx_ring->rx_stats.alloc_buff_failed++;
2535 rx_buffer->pagecnt_bias++;
2536 break;
2537 }
2538
2539 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2540 cleaned_count++;
2541
2542 i40e_inc_ntc(rx_ring);
2543 if (i40e_is_non_eop(rx_ring, rx_desc))
2544 continue;
2545
2546 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2547 skb = NULL;
2548 continue;
2549 }
2550
2551 /* probably a little skewed due to removing CRC */
2552 total_rx_bytes += skb->len;
2553
2554 /* populate checksum, VLAN, and protocol */
2555 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2556
2557 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2558 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2559 skb = NULL;
2560
2561 /* update budget accounting */
2562 total_rx_packets++;
2563 }
2564
2565 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2566 rx_ring->skb = skb;
2567
2568 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2569
2570 /* guarantee a trip back through this routine if there was a failure */
2571 return failure ? budget : (int)total_rx_packets;
2572 }
2573
i40e_buildreg_itr(const int type,u16 itr)2574 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2575 {
2576 u32 val;
2577
2578 /* We don't bother with setting the CLEARPBA bit as the data sheet
2579 * points out doing so is "meaningless since it was already
2580 * auto-cleared". The auto-clearing happens when the interrupt is
2581 * asserted.
2582 *
2583 * Hardware errata 28 for also indicates that writing to a
2584 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2585 * an event in the PBA anyway so we need to rely on the automask
2586 * to hold pending events for us until the interrupt is re-enabled
2587 *
2588 * The itr value is reported in microseconds, and the register
2589 * value is recorded in 2 microsecond units. For this reason we
2590 * only need to shift by the interval shift - 1 instead of the
2591 * full value.
2592 */
2593 itr &= I40E_ITR_MASK;
2594
2595 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2596 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2597 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2598
2599 return val;
2600 }
2601
2602 /* a small macro to shorten up some long lines */
2603 #define INTREG I40E_PFINT_DYN_CTLN
2604
2605 /* The act of updating the ITR will cause it to immediately trigger. In order
2606 * to prevent this from throwing off adaptive update statistics we defer the
2607 * update so that it can only happen so often. So after either Tx or Rx are
2608 * updated we make the adaptive scheme wait until either the ITR completely
2609 * expires via the next_update expiration or we have been through at least
2610 * 3 interrupts.
2611 */
2612 #define ITR_COUNTDOWN_START 3
2613
2614 /**
2615 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2616 * @vsi: the VSI we care about
2617 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2618 *
2619 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2620 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2621 struct i40e_q_vector *q_vector)
2622 {
2623 struct i40e_hw *hw = &vsi->back->hw;
2624 u32 intval;
2625
2626 /* If we don't have MSIX, then we only need to re-enable icr0 */
2627 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2628 i40e_irq_dynamic_enable_icr0(vsi->back);
2629 return;
2630 }
2631
2632 /* These will do nothing if dynamic updates are not enabled */
2633 i40e_update_itr(q_vector, &q_vector->tx);
2634 i40e_update_itr(q_vector, &q_vector->rx);
2635
2636 /* This block of logic allows us to get away with only updating
2637 * one ITR value with each interrupt. The idea is to perform a
2638 * pseudo-lazy update with the following criteria.
2639 *
2640 * 1. Rx is given higher priority than Tx if both are in same state
2641 * 2. If we must reduce an ITR that is given highest priority.
2642 * 3. We then give priority to increasing ITR based on amount.
2643 */
2644 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2645 /* Rx ITR needs to be reduced, this is highest priority */
2646 intval = i40e_buildreg_itr(I40E_RX_ITR,
2647 q_vector->rx.target_itr);
2648 q_vector->rx.current_itr = q_vector->rx.target_itr;
2649 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2650 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2651 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2652 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2653 /* Tx ITR needs to be reduced, this is second priority
2654 * Tx ITR needs to be increased more than Rx, fourth priority
2655 */
2656 intval = i40e_buildreg_itr(I40E_TX_ITR,
2657 q_vector->tx.target_itr);
2658 q_vector->tx.current_itr = q_vector->tx.target_itr;
2659 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2660 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2661 /* Rx ITR needs to be increased, third priority */
2662 intval = i40e_buildreg_itr(I40E_RX_ITR,
2663 q_vector->rx.target_itr);
2664 q_vector->rx.current_itr = q_vector->rx.target_itr;
2665 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2666 } else {
2667 /* No ITR update, lowest priority */
2668 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2669 if (q_vector->itr_countdown)
2670 q_vector->itr_countdown--;
2671 }
2672
2673 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2674 wr32(hw, INTREG(q_vector->reg_idx), intval);
2675 }
2676
2677 /**
2678 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2679 * @napi: napi struct with our devices info in it
2680 * @budget: amount of work driver is allowed to do this pass, in packets
2681 *
2682 * This function will clean all queues associated with a q_vector.
2683 *
2684 * Returns the amount of work done
2685 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2686 int i40e_napi_poll(struct napi_struct *napi, int budget)
2687 {
2688 struct i40e_q_vector *q_vector =
2689 container_of(napi, struct i40e_q_vector, napi);
2690 struct i40e_vsi *vsi = q_vector->vsi;
2691 struct i40e_ring *ring;
2692 bool clean_complete = true;
2693 bool arm_wb = false;
2694 int budget_per_ring;
2695 int work_done = 0;
2696
2697 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2698 napi_complete(napi);
2699 return 0;
2700 }
2701
2702 /* Since the actual Tx work is minimal, we can give the Tx a larger
2703 * budget and be more aggressive about cleaning up the Tx descriptors.
2704 */
2705 i40e_for_each_ring(ring, q_vector->tx) {
2706 bool wd = ring->xsk_pool ?
2707 i40e_clean_xdp_tx_irq(vsi, ring) :
2708 i40e_clean_tx_irq(vsi, ring, budget);
2709
2710 if (!wd) {
2711 clean_complete = false;
2712 continue;
2713 }
2714 arm_wb |= ring->arm_wb;
2715 ring->arm_wb = false;
2716 }
2717
2718 /* Handle case where we are called by netpoll with a budget of 0 */
2719 if (budget <= 0)
2720 goto tx_only;
2721
2722 /* normally we have 1 Rx ring per q_vector */
2723 if (unlikely(q_vector->num_ringpairs > 1))
2724 /* We attempt to distribute budget to each Rx queue fairly, but
2725 * don't allow the budget to go below 1 because that would exit
2726 * polling early.
2727 */
2728 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2729 else
2730 /* Max of 1 Rx ring in this q_vector so give it the budget */
2731 budget_per_ring = budget;
2732
2733 i40e_for_each_ring(ring, q_vector->rx) {
2734 int cleaned = ring->xsk_pool ?
2735 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2736 i40e_clean_rx_irq(ring, budget_per_ring);
2737
2738 work_done += cleaned;
2739 /* if we clean as many as budgeted, we must not be done */
2740 if (cleaned >= budget_per_ring)
2741 clean_complete = false;
2742 }
2743
2744 /* If work not completed, return budget and polling will return */
2745 if (!clean_complete) {
2746 int cpu_id = smp_processor_id();
2747
2748 /* It is possible that the interrupt affinity has changed but,
2749 * if the cpu is pegged at 100%, polling will never exit while
2750 * traffic continues and the interrupt will be stuck on this
2751 * cpu. We check to make sure affinity is correct before we
2752 * continue to poll, otherwise we must stop polling so the
2753 * interrupt can move to the correct cpu.
2754 */
2755 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2756 /* Tell napi that we are done polling */
2757 napi_complete_done(napi, work_done);
2758
2759 /* Force an interrupt */
2760 i40e_force_wb(vsi, q_vector);
2761
2762 /* Return budget-1 so that polling stops */
2763 return budget - 1;
2764 }
2765 tx_only:
2766 if (arm_wb) {
2767 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2768 i40e_enable_wb_on_itr(vsi, q_vector);
2769 }
2770 return budget;
2771 }
2772
2773 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2774 q_vector->arm_wb_state = false;
2775
2776 /* Exit the polling mode, but don't re-enable interrupts if stack might
2777 * poll us due to busy-polling
2778 */
2779 if (likely(napi_complete_done(napi, work_done)))
2780 i40e_update_enable_itr(vsi, q_vector);
2781
2782 return min(work_done, budget - 1);
2783 }
2784
2785 /**
2786 * i40e_atr - Add a Flow Director ATR filter
2787 * @tx_ring: ring to add programming descriptor to
2788 * @skb: send buffer
2789 * @tx_flags: send tx flags
2790 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2791 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2792 u32 tx_flags)
2793 {
2794 struct i40e_filter_program_desc *fdir_desc;
2795 struct i40e_pf *pf = tx_ring->vsi->back;
2796 union {
2797 unsigned char *network;
2798 struct iphdr *ipv4;
2799 struct ipv6hdr *ipv6;
2800 } hdr;
2801 struct tcphdr *th;
2802 unsigned int hlen;
2803 u32 flex_ptype, dtype_cmd;
2804 int l4_proto;
2805 u16 i;
2806
2807 /* make sure ATR is enabled */
2808 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2809 return;
2810
2811 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2812 return;
2813
2814 /* if sampling is disabled do nothing */
2815 if (!tx_ring->atr_sample_rate)
2816 return;
2817
2818 /* Currently only IPv4/IPv6 with TCP is supported */
2819 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2820 return;
2821
2822 /* snag network header to get L4 type and address */
2823 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2824 skb_inner_network_header(skb) : skb_network_header(skb);
2825
2826 /* Note: tx_flags gets modified to reflect inner protocols in
2827 * tx_enable_csum function if encap is enabled.
2828 */
2829 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2830 /* access ihl as u8 to avoid unaligned access on ia64 */
2831 hlen = (hdr.network[0] & 0x0F) << 2;
2832 l4_proto = hdr.ipv4->protocol;
2833 } else {
2834 /* find the start of the innermost ipv6 header */
2835 unsigned int inner_hlen = hdr.network - skb->data;
2836 unsigned int h_offset = inner_hlen;
2837
2838 /* this function updates h_offset to the end of the header */
2839 l4_proto =
2840 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2841 /* hlen will contain our best estimate of the tcp header */
2842 hlen = h_offset - inner_hlen;
2843 }
2844
2845 if (l4_proto != IPPROTO_TCP)
2846 return;
2847
2848 th = (struct tcphdr *)(hdr.network + hlen);
2849
2850 /* Due to lack of space, no more new filters can be programmed */
2851 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2852 return;
2853 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2854 /* HW ATR eviction will take care of removing filters on FIN
2855 * and RST packets.
2856 */
2857 if (th->fin || th->rst)
2858 return;
2859 }
2860
2861 tx_ring->atr_count++;
2862
2863 /* sample on all syn/fin/rst packets or once every atr sample rate */
2864 if (!th->fin &&
2865 !th->syn &&
2866 !th->rst &&
2867 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2868 return;
2869
2870 tx_ring->atr_count = 0;
2871
2872 /* grab the next descriptor */
2873 i = tx_ring->next_to_use;
2874 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2875
2876 i++;
2877 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2878
2879 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2880 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2881 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2882 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2883 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2884 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2885 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2886
2887 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2888
2889 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2890
2891 dtype_cmd |= (th->fin || th->rst) ?
2892 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2893 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2894 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2895 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2896
2897 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2898 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2899
2900 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2901 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2902
2903 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2904 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2905 dtype_cmd |=
2906 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2907 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2908 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2909 else
2910 dtype_cmd |=
2911 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2912 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2913 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2914
2915 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2916 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2917
2918 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2919 fdir_desc->rsvd = cpu_to_le32(0);
2920 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2921 fdir_desc->fd_id = cpu_to_le32(0);
2922 }
2923
2924 /**
2925 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2926 * @skb: send buffer
2927 * @tx_ring: ring to send buffer on
2928 * @flags: the tx flags to be set
2929 *
2930 * Checks the skb and set up correspondingly several generic transmit flags
2931 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2932 *
2933 * Returns error code indicate the frame should be dropped upon error and the
2934 * otherwise returns 0 to indicate the flags has been set properly.
2935 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)2936 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2937 struct i40e_ring *tx_ring,
2938 u32 *flags)
2939 {
2940 __be16 protocol = skb->protocol;
2941 u32 tx_flags = 0;
2942
2943 if (protocol == htons(ETH_P_8021Q) &&
2944 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2945 /* When HW VLAN acceleration is turned off by the user the
2946 * stack sets the protocol to 8021q so that the driver
2947 * can take any steps required to support the SW only
2948 * VLAN handling. In our case the driver doesn't need
2949 * to take any further steps so just set the protocol
2950 * to the encapsulated ethertype.
2951 */
2952 skb->protocol = vlan_get_protocol(skb);
2953 goto out;
2954 }
2955
2956 /* if we have a HW VLAN tag being added, default to the HW one */
2957 if (skb_vlan_tag_present(skb)) {
2958 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2959 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2960 /* else if it is a SW VLAN, check the next protocol and store the tag */
2961 } else if (protocol == htons(ETH_P_8021Q)) {
2962 struct vlan_hdr *vhdr, _vhdr;
2963
2964 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2965 if (!vhdr)
2966 return -EINVAL;
2967
2968 protocol = vhdr->h_vlan_encapsulated_proto;
2969 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2970 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2971 }
2972
2973 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2974 goto out;
2975
2976 /* Insert 802.1p priority into VLAN header */
2977 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2978 (skb->priority != TC_PRIO_CONTROL)) {
2979 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2980 tx_flags |= (skb->priority & 0x7) <<
2981 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2982 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2983 struct vlan_ethhdr *vhdr;
2984 int rc;
2985
2986 rc = skb_cow_head(skb, 0);
2987 if (rc < 0)
2988 return rc;
2989 vhdr = skb_vlan_eth_hdr(skb);
2990 vhdr->h_vlan_TCI = htons(tx_flags >>
2991 I40E_TX_FLAGS_VLAN_SHIFT);
2992 } else {
2993 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2994 }
2995 }
2996
2997 out:
2998 *flags = tx_flags;
2999 return 0;
3000 }
3001
3002 /**
3003 * i40e_tso - set up the tso context descriptor
3004 * @first: pointer to first Tx buffer for xmit
3005 * @hdr_len: ptr to the size of the packet header
3006 * @cd_type_cmd_tso_mss: Quad Word 1
3007 *
3008 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3009 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3010 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3011 u64 *cd_type_cmd_tso_mss)
3012 {
3013 struct sk_buff *skb = first->skb;
3014 u64 cd_cmd, cd_tso_len, cd_mss;
3015 __be16 protocol;
3016 union {
3017 struct iphdr *v4;
3018 struct ipv6hdr *v6;
3019 unsigned char *hdr;
3020 } ip;
3021 union {
3022 struct tcphdr *tcp;
3023 struct udphdr *udp;
3024 unsigned char *hdr;
3025 } l4;
3026 u32 paylen, l4_offset;
3027 u16 gso_size;
3028 int err;
3029
3030 if (skb->ip_summed != CHECKSUM_PARTIAL)
3031 return 0;
3032
3033 if (!skb_is_gso(skb))
3034 return 0;
3035
3036 err = skb_cow_head(skb, 0);
3037 if (err < 0)
3038 return err;
3039
3040 protocol = vlan_get_protocol(skb);
3041
3042 if (eth_p_mpls(protocol))
3043 ip.hdr = skb_inner_network_header(skb);
3044 else
3045 ip.hdr = skb_network_header(skb);
3046 l4.hdr = skb_checksum_start(skb);
3047
3048 /* initialize outer IP header fields */
3049 if (ip.v4->version == 4) {
3050 ip.v4->tot_len = 0;
3051 ip.v4->check = 0;
3052
3053 first->tx_flags |= I40E_TX_FLAGS_TSO;
3054 } else {
3055 ip.v6->payload_len = 0;
3056 first->tx_flags |= I40E_TX_FLAGS_TSO;
3057 }
3058
3059 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3060 SKB_GSO_GRE_CSUM |
3061 SKB_GSO_IPXIP4 |
3062 SKB_GSO_IPXIP6 |
3063 SKB_GSO_UDP_TUNNEL |
3064 SKB_GSO_UDP_TUNNEL_CSUM)) {
3065 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3066 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3067 l4.udp->len = 0;
3068
3069 /* determine offset of outer transport header */
3070 l4_offset = l4.hdr - skb->data;
3071
3072 /* remove payload length from outer checksum */
3073 paylen = skb->len - l4_offset;
3074 csum_replace_by_diff(&l4.udp->check,
3075 (__force __wsum)htonl(paylen));
3076 }
3077
3078 /* reset pointers to inner headers */
3079 ip.hdr = skb_inner_network_header(skb);
3080 l4.hdr = skb_inner_transport_header(skb);
3081
3082 /* initialize inner IP header fields */
3083 if (ip.v4->version == 4) {
3084 ip.v4->tot_len = 0;
3085 ip.v4->check = 0;
3086 } else {
3087 ip.v6->payload_len = 0;
3088 }
3089 }
3090
3091 /* determine offset of inner transport header */
3092 l4_offset = l4.hdr - skb->data;
3093
3094 /* remove payload length from inner checksum */
3095 paylen = skb->len - l4_offset;
3096
3097 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3098 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3099 /* compute length of segmentation header */
3100 *hdr_len = sizeof(*l4.udp) + l4_offset;
3101 } else {
3102 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3103 /* compute length of segmentation header */
3104 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3105 }
3106
3107 /* pull values out of skb_shinfo */
3108 gso_size = skb_shinfo(skb)->gso_size;
3109
3110 /* update GSO size and bytecount with header size */
3111 first->gso_segs = skb_shinfo(skb)->gso_segs;
3112 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3113
3114 /* find the field values */
3115 cd_cmd = I40E_TX_CTX_DESC_TSO;
3116 cd_tso_len = skb->len - *hdr_len;
3117 cd_mss = gso_size;
3118 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3119 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3120 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3121 return 1;
3122 }
3123
3124 /**
3125 * i40e_tsyn - set up the tsyn context descriptor
3126 * @tx_ring: ptr to the ring to send
3127 * @skb: ptr to the skb we're sending
3128 * @tx_flags: the collected send information
3129 * @cd_type_cmd_tso_mss: Quad Word 1
3130 *
3131 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3132 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3133 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3134 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3135 {
3136 struct i40e_pf *pf;
3137
3138 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3139 return 0;
3140
3141 /* Tx timestamps cannot be sampled when doing TSO */
3142 if (tx_flags & I40E_TX_FLAGS_TSO)
3143 return 0;
3144
3145 /* only timestamp the outbound packet if the user has requested it and
3146 * we are not already transmitting a packet to be timestamped
3147 */
3148 pf = i40e_netdev_to_pf(tx_ring->netdev);
3149 if (!(pf->flags & I40E_FLAG_PTP))
3150 return 0;
3151
3152 if (pf->ptp_tx &&
3153 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3154 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3155 pf->ptp_tx_start = jiffies;
3156 pf->ptp_tx_skb = skb_get(skb);
3157 } else {
3158 pf->tx_hwtstamp_skipped++;
3159 return 0;
3160 }
3161
3162 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3163 I40E_TXD_CTX_QW1_CMD_SHIFT;
3164
3165 return 1;
3166 }
3167
3168 /**
3169 * i40e_tx_enable_csum - Enable Tx checksum offloads
3170 * @skb: send buffer
3171 * @tx_flags: pointer to Tx flags currently set
3172 * @td_cmd: Tx descriptor command bits to set
3173 * @td_offset: Tx descriptor header offsets to set
3174 * @tx_ring: Tx descriptor ring
3175 * @cd_tunneling: ptr to context desc bits
3176 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3177 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3178 u32 *td_cmd, u32 *td_offset,
3179 struct i40e_ring *tx_ring,
3180 u32 *cd_tunneling)
3181 {
3182 union {
3183 struct iphdr *v4;
3184 struct ipv6hdr *v6;
3185 unsigned char *hdr;
3186 } ip;
3187 union {
3188 struct tcphdr *tcp;
3189 struct udphdr *udp;
3190 unsigned char *hdr;
3191 } l4;
3192 unsigned char *exthdr;
3193 u32 offset, cmd = 0;
3194 __be16 frag_off;
3195 __be16 protocol;
3196 u8 l4_proto = 0;
3197
3198 if (skb->ip_summed != CHECKSUM_PARTIAL)
3199 return 0;
3200
3201 protocol = vlan_get_protocol(skb);
3202
3203 if (eth_p_mpls(protocol)) {
3204 ip.hdr = skb_inner_network_header(skb);
3205 l4.hdr = skb_checksum_start(skb);
3206 } else {
3207 ip.hdr = skb_network_header(skb);
3208 l4.hdr = skb_transport_header(skb);
3209 }
3210
3211 /* set the tx_flags to indicate the IP protocol type. this is
3212 * required so that checksum header computation below is accurate.
3213 */
3214 if (ip.v4->version == 4)
3215 *tx_flags |= I40E_TX_FLAGS_IPV4;
3216 else
3217 *tx_flags |= I40E_TX_FLAGS_IPV6;
3218
3219 /* compute outer L2 header size */
3220 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3221
3222 if (skb->encapsulation) {
3223 u32 tunnel = 0;
3224 /* define outer network header type */
3225 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3226 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3227 I40E_TX_CTX_EXT_IP_IPV4 :
3228 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3229
3230 l4_proto = ip.v4->protocol;
3231 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3232 int ret;
3233
3234 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3235
3236 exthdr = ip.hdr + sizeof(*ip.v6);
3237 l4_proto = ip.v6->nexthdr;
3238 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3239 &l4_proto, &frag_off);
3240 if (ret < 0)
3241 return -1;
3242 }
3243
3244 /* define outer transport */
3245 switch (l4_proto) {
3246 case IPPROTO_UDP:
3247 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3248 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3249 break;
3250 case IPPROTO_GRE:
3251 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3252 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3253 break;
3254 case IPPROTO_IPIP:
3255 case IPPROTO_IPV6:
3256 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3257 l4.hdr = skb_inner_network_header(skb);
3258 break;
3259 default:
3260 if (*tx_flags & I40E_TX_FLAGS_TSO)
3261 return -1;
3262
3263 skb_checksum_help(skb);
3264 return 0;
3265 }
3266
3267 /* compute outer L3 header size */
3268 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3269 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3270
3271 /* switch IP header pointer from outer to inner header */
3272 ip.hdr = skb_inner_network_header(skb);
3273
3274 /* compute tunnel header size */
3275 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3276 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3277
3278 /* indicate if we need to offload outer UDP header */
3279 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3280 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3281 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3282 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3283
3284 /* record tunnel offload values */
3285 *cd_tunneling |= tunnel;
3286
3287 /* switch L4 header pointer from outer to inner */
3288 l4.hdr = skb_inner_transport_header(skb);
3289 l4_proto = 0;
3290
3291 /* reset type as we transition from outer to inner headers */
3292 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3293 if (ip.v4->version == 4)
3294 *tx_flags |= I40E_TX_FLAGS_IPV4;
3295 if (ip.v6->version == 6)
3296 *tx_flags |= I40E_TX_FLAGS_IPV6;
3297 }
3298
3299 /* Enable IP checksum offloads */
3300 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3301 l4_proto = ip.v4->protocol;
3302 /* the stack computes the IP header already, the only time we
3303 * need the hardware to recompute it is in the case of TSO.
3304 */
3305 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3306 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3307 I40E_TX_DESC_CMD_IIPT_IPV4;
3308 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3309 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3310
3311 exthdr = ip.hdr + sizeof(*ip.v6);
3312 l4_proto = ip.v6->nexthdr;
3313 if (l4.hdr != exthdr)
3314 ipv6_skip_exthdr(skb, exthdr - skb->data,
3315 &l4_proto, &frag_off);
3316 }
3317
3318 /* compute inner L3 header size */
3319 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3320
3321 /* Enable L4 checksum offloads */
3322 switch (l4_proto) {
3323 case IPPROTO_TCP:
3324 /* enable checksum offloads */
3325 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3326 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3327 break;
3328 case IPPROTO_SCTP:
3329 /* enable SCTP checksum offload */
3330 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3331 offset |= (sizeof(struct sctphdr) >> 2) <<
3332 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3333 break;
3334 case IPPROTO_UDP:
3335 /* enable UDP checksum offload */
3336 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3337 offset |= (sizeof(struct udphdr) >> 2) <<
3338 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3339 break;
3340 default:
3341 if (*tx_flags & I40E_TX_FLAGS_TSO)
3342 return -1;
3343 skb_checksum_help(skb);
3344 return 0;
3345 }
3346
3347 *td_cmd |= cmd;
3348 *td_offset |= offset;
3349
3350 return 1;
3351 }
3352
3353 /**
3354 * i40e_create_tx_ctx - Build the Tx context descriptor
3355 * @tx_ring: ring to create the descriptor on
3356 * @cd_type_cmd_tso_mss: Quad Word 1
3357 * @cd_tunneling: Quad Word 0 - bits 0-31
3358 * @cd_l2tag2: Quad Word 0 - bits 32-63
3359 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3360 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3361 const u64 cd_type_cmd_tso_mss,
3362 const u32 cd_tunneling, const u32 cd_l2tag2)
3363 {
3364 struct i40e_tx_context_desc *context_desc;
3365 int i = tx_ring->next_to_use;
3366
3367 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3368 !cd_tunneling && !cd_l2tag2)
3369 return;
3370
3371 /* grab the next descriptor */
3372 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3373
3374 i++;
3375 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3376
3377 /* cpu_to_le32 and assign to struct fields */
3378 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3379 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3380 context_desc->rsvd = cpu_to_le16(0);
3381 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3382 }
3383
3384 /**
3385 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3386 * @tx_ring: the ring to be checked
3387 * @size: the size buffer we want to assure is available
3388 *
3389 * Returns -EBUSY if a stop is needed, else 0
3390 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3391 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3392 {
3393 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3394 /* Memory barrier before checking head and tail */
3395 smp_mb();
3396
3397 ++tx_ring->tx_stats.tx_stopped;
3398
3399 /* Check again in a case another CPU has just made room available. */
3400 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3401 return -EBUSY;
3402
3403 /* A reprieve! - use start_queue because it doesn't call schedule */
3404 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3405 ++tx_ring->tx_stats.restart_queue;
3406 return 0;
3407 }
3408
3409 /**
3410 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3411 * @skb: send buffer
3412 *
3413 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3414 * and so we need to figure out the cases where we need to linearize the skb.
3415 *
3416 * For TSO we need to count the TSO header and segment payload separately.
3417 * As such we need to check cases where we have 7 fragments or more as we
3418 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3419 * the segment payload in the first descriptor, and another 7 for the
3420 * fragments.
3421 **/
__i40e_chk_linearize(struct sk_buff * skb)3422 bool __i40e_chk_linearize(struct sk_buff *skb)
3423 {
3424 const skb_frag_t *frag, *stale;
3425 int nr_frags, sum;
3426
3427 /* no need to check if number of frags is less than 7 */
3428 nr_frags = skb_shinfo(skb)->nr_frags;
3429 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3430 return false;
3431
3432 /* We need to walk through the list and validate that each group
3433 * of 6 fragments totals at least gso_size.
3434 */
3435 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3436 frag = &skb_shinfo(skb)->frags[0];
3437
3438 /* Initialize size to the negative value of gso_size minus 1. We
3439 * use this as the worst case scenerio in which the frag ahead
3440 * of us only provides one byte which is why we are limited to 6
3441 * descriptors for a single transmit as the header and previous
3442 * fragment are already consuming 2 descriptors.
3443 */
3444 sum = 1 - skb_shinfo(skb)->gso_size;
3445
3446 /* Add size of frags 0 through 4 to create our initial sum */
3447 sum += skb_frag_size(frag++);
3448 sum += skb_frag_size(frag++);
3449 sum += skb_frag_size(frag++);
3450 sum += skb_frag_size(frag++);
3451 sum += skb_frag_size(frag++);
3452
3453 /* Walk through fragments adding latest fragment, testing it, and
3454 * then removing stale fragments from the sum.
3455 */
3456 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3457 int stale_size = skb_frag_size(stale);
3458
3459 sum += skb_frag_size(frag++);
3460
3461 /* The stale fragment may present us with a smaller
3462 * descriptor than the actual fragment size. To account
3463 * for that we need to remove all the data on the front and
3464 * figure out what the remainder would be in the last
3465 * descriptor associated with the fragment.
3466 */
3467 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3468 int align_pad = -(skb_frag_off(stale)) &
3469 (I40E_MAX_READ_REQ_SIZE - 1);
3470
3471 sum -= align_pad;
3472 stale_size -= align_pad;
3473
3474 do {
3475 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3476 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3477 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3478 }
3479
3480 /* if sum is negative we failed to make sufficient progress */
3481 if (sum < 0)
3482 return true;
3483
3484 if (!nr_frags--)
3485 break;
3486
3487 sum -= stale_size;
3488 }
3489
3490 return false;
3491 }
3492
3493 /**
3494 * i40e_tx_map - Build the Tx descriptor
3495 * @tx_ring: ring to send buffer on
3496 * @skb: send buffer
3497 * @first: first buffer info buffer to use
3498 * @tx_flags: collected send information
3499 * @hdr_len: size of the packet header
3500 * @td_cmd: the command field in the descriptor
3501 * @td_offset: offset for checksum or crc
3502 *
3503 * Returns 0 on success, -1 on failure to DMA
3504 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3505 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3506 struct i40e_tx_buffer *first, u32 tx_flags,
3507 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3508 {
3509 unsigned int data_len = skb->data_len;
3510 unsigned int size = skb_headlen(skb);
3511 skb_frag_t *frag;
3512 struct i40e_tx_buffer *tx_bi;
3513 struct i40e_tx_desc *tx_desc;
3514 u16 i = tx_ring->next_to_use;
3515 u32 td_tag = 0;
3516 dma_addr_t dma;
3517 u16 desc_count = 1;
3518
3519 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3520 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3521 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3522 I40E_TX_FLAGS_VLAN_SHIFT;
3523 }
3524
3525 first->tx_flags = tx_flags;
3526
3527 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3528
3529 tx_desc = I40E_TX_DESC(tx_ring, i);
3530 tx_bi = first;
3531
3532 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3533 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3534
3535 if (dma_mapping_error(tx_ring->dev, dma))
3536 goto dma_error;
3537
3538 /* record length, and DMA address */
3539 dma_unmap_len_set(tx_bi, len, size);
3540 dma_unmap_addr_set(tx_bi, dma, dma);
3541
3542 /* align size to end of page */
3543 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3544 tx_desc->buffer_addr = cpu_to_le64(dma);
3545
3546 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3547 tx_desc->cmd_type_offset_bsz =
3548 build_ctob(td_cmd, td_offset,
3549 max_data, td_tag);
3550
3551 tx_desc++;
3552 i++;
3553 desc_count++;
3554
3555 if (i == tx_ring->count) {
3556 tx_desc = I40E_TX_DESC(tx_ring, 0);
3557 i = 0;
3558 }
3559
3560 dma += max_data;
3561 size -= max_data;
3562
3563 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3564 tx_desc->buffer_addr = cpu_to_le64(dma);
3565 }
3566
3567 if (likely(!data_len))
3568 break;
3569
3570 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3571 size, td_tag);
3572
3573 tx_desc++;
3574 i++;
3575 desc_count++;
3576
3577 if (i == tx_ring->count) {
3578 tx_desc = I40E_TX_DESC(tx_ring, 0);
3579 i = 0;
3580 }
3581
3582 size = skb_frag_size(frag);
3583 data_len -= size;
3584
3585 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3586 DMA_TO_DEVICE);
3587
3588 tx_bi = &tx_ring->tx_bi[i];
3589 }
3590
3591 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3592
3593 i++;
3594 if (i == tx_ring->count)
3595 i = 0;
3596
3597 tx_ring->next_to_use = i;
3598
3599 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3600
3601 /* write last descriptor with EOP bit */
3602 td_cmd |= I40E_TX_DESC_CMD_EOP;
3603
3604 /* We OR these values together to check both against 4 (WB_STRIDE)
3605 * below. This is safe since we don't re-use desc_count afterwards.
3606 */
3607 desc_count |= ++tx_ring->packet_stride;
3608
3609 if (desc_count >= WB_STRIDE) {
3610 /* write last descriptor with RS bit set */
3611 td_cmd |= I40E_TX_DESC_CMD_RS;
3612 tx_ring->packet_stride = 0;
3613 }
3614
3615 tx_desc->cmd_type_offset_bsz =
3616 build_ctob(td_cmd, td_offset, size, td_tag);
3617
3618 skb_tx_timestamp(skb);
3619
3620 /* Force memory writes to complete before letting h/w know there
3621 * are new descriptors to fetch.
3622 *
3623 * We also use this memory barrier to make certain all of the
3624 * status bits have been updated before next_to_watch is written.
3625 */
3626 wmb();
3627
3628 /* set next_to_watch value indicating a packet is present */
3629 first->next_to_watch = tx_desc;
3630
3631 /* notify HW of packet */
3632 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3633 writel(i, tx_ring->tail);
3634 }
3635
3636 return 0;
3637
3638 dma_error:
3639 dev_info(tx_ring->dev, "TX DMA map failed\n");
3640
3641 /* clear dma mappings for failed tx_bi map */
3642 for (;;) {
3643 tx_bi = &tx_ring->tx_bi[i];
3644 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3645 if (tx_bi == first)
3646 break;
3647 if (i == 0)
3648 i = tx_ring->count;
3649 i--;
3650 }
3651
3652 tx_ring->next_to_use = i;
3653
3654 return -1;
3655 }
3656
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3657 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3658 const struct sk_buff *skb,
3659 u16 num_tx_queues)
3660 {
3661 u32 jhash_initval_salt = 0xd631614b;
3662 u32 hash;
3663
3664 if (skb->sk && skb->sk->sk_hash)
3665 hash = skb->sk->sk_hash;
3666 else
3667 hash = (__force u16)skb->protocol ^ skb->hash;
3668
3669 hash = jhash_1word(hash, jhash_initval_salt);
3670
3671 return (u16)(((u64)hash * num_tx_queues) >> 32);
3672 }
3673
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3674 u16 i40e_lan_select_queue(struct net_device *netdev,
3675 struct sk_buff *skb,
3676 struct net_device __always_unused *sb_dev)
3677 {
3678 struct i40e_netdev_priv *np = netdev_priv(netdev);
3679 struct i40e_vsi *vsi = np->vsi;
3680 struct i40e_hw *hw;
3681 u16 qoffset;
3682 u16 qcount;
3683 u8 tclass;
3684 u16 hash;
3685 u8 prio;
3686
3687 /* is DCB enabled at all? */
3688 if (vsi->tc_config.numtc == 1 ||
3689 i40e_is_tc_mqprio_enabled(vsi->back))
3690 return netdev_pick_tx(netdev, skb, sb_dev);
3691
3692 prio = skb->priority;
3693 hw = &vsi->back->hw;
3694 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3695 /* sanity check */
3696 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3697 tclass = 0;
3698
3699 /* select a queue assigned for the given TC */
3700 qcount = vsi->tc_config.tc_info[tclass].qcount;
3701 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3702
3703 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3704 return qoffset + hash;
3705 }
3706
3707 /**
3708 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3709 * @xdpf: data to transmit
3710 * @xdp_ring: XDP Tx ring
3711 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3712 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3713 struct i40e_ring *xdp_ring)
3714 {
3715 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3716 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3717 u16 i = 0, index = xdp_ring->next_to_use;
3718 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3719 struct i40e_tx_buffer *tx_bi = tx_head;
3720 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3721 void *data = xdpf->data;
3722 u32 size = xdpf->len;
3723
3724 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3725 xdp_ring->tx_stats.tx_busy++;
3726 return I40E_XDP_CONSUMED;
3727 }
3728
3729 tx_head->bytecount = xdp_get_frame_len(xdpf);
3730 tx_head->gso_segs = 1;
3731 tx_head->xdpf = xdpf;
3732
3733 for (;;) {
3734 dma_addr_t dma;
3735
3736 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3737 if (dma_mapping_error(xdp_ring->dev, dma))
3738 goto unmap;
3739
3740 /* record length, and DMA address */
3741 dma_unmap_len_set(tx_bi, len, size);
3742 dma_unmap_addr_set(tx_bi, dma, dma);
3743
3744 tx_desc->buffer_addr = cpu_to_le64(dma);
3745 tx_desc->cmd_type_offset_bsz =
3746 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3747
3748 if (++index == xdp_ring->count)
3749 index = 0;
3750
3751 if (i == nr_frags)
3752 break;
3753
3754 tx_bi = &xdp_ring->tx_bi[index];
3755 tx_desc = I40E_TX_DESC(xdp_ring, index);
3756
3757 data = skb_frag_address(&sinfo->frags[i]);
3758 size = skb_frag_size(&sinfo->frags[i]);
3759 i++;
3760 }
3761
3762 tx_desc->cmd_type_offset_bsz |=
3763 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3764
3765 /* Make certain all of the status bits have been updated
3766 * before next_to_watch is written.
3767 */
3768 smp_wmb();
3769
3770 xdp_ring->xdp_tx_active++;
3771
3772 tx_head->next_to_watch = tx_desc;
3773 xdp_ring->next_to_use = index;
3774
3775 return I40E_XDP_TX;
3776
3777 unmap:
3778 for (;;) {
3779 tx_bi = &xdp_ring->tx_bi[index];
3780 if (dma_unmap_len(tx_bi, len))
3781 dma_unmap_page(xdp_ring->dev,
3782 dma_unmap_addr(tx_bi, dma),
3783 dma_unmap_len(tx_bi, len),
3784 DMA_TO_DEVICE);
3785 dma_unmap_len_set(tx_bi, len, 0);
3786 if (tx_bi == tx_head)
3787 break;
3788
3789 if (!index)
3790 index += xdp_ring->count;
3791 index--;
3792 }
3793
3794 return I40E_XDP_CONSUMED;
3795 }
3796
3797 /**
3798 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3799 * @skb: send buffer
3800 * @tx_ring: ring to send buffer on
3801 *
3802 * Returns NETDEV_TX_OK if sent, else an error code
3803 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3804 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3805 struct i40e_ring *tx_ring)
3806 {
3807 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3808 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3809 struct i40e_tx_buffer *first;
3810 u32 td_offset = 0;
3811 u32 tx_flags = 0;
3812 u32 td_cmd = 0;
3813 u8 hdr_len = 0;
3814 int tso, count;
3815 int tsyn;
3816
3817 /* prefetch the data, we'll need it later */
3818 prefetch(skb->data);
3819
3820 i40e_trace(xmit_frame_ring, skb, tx_ring);
3821
3822 count = i40e_xmit_descriptor_count(skb);
3823 if (i40e_chk_linearize(skb, count)) {
3824 if (__skb_linearize(skb)) {
3825 dev_kfree_skb_any(skb);
3826 return NETDEV_TX_OK;
3827 }
3828 count = i40e_txd_use_count(skb->len);
3829 tx_ring->tx_stats.tx_linearize++;
3830 }
3831
3832 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3833 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3834 * + 4 desc gap to avoid the cache line where head is,
3835 * + 1 desc for context descriptor,
3836 * otherwise try next time
3837 */
3838 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3839 tx_ring->tx_stats.tx_busy++;
3840 return NETDEV_TX_BUSY;
3841 }
3842
3843 /* record the location of the first descriptor for this packet */
3844 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3845 first->skb = skb;
3846 first->bytecount = skb->len;
3847 first->gso_segs = 1;
3848
3849 /* prepare the xmit flags */
3850 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3851 goto out_drop;
3852
3853 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3854
3855 if (tso < 0)
3856 goto out_drop;
3857 else if (tso)
3858 tx_flags |= I40E_TX_FLAGS_TSO;
3859
3860 /* Always offload the checksum, since it's in the data descriptor */
3861 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3862 tx_ring, &cd_tunneling);
3863 if (tso < 0)
3864 goto out_drop;
3865
3866 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3867
3868 if (tsyn)
3869 tx_flags |= I40E_TX_FLAGS_TSYN;
3870
3871 /* always enable CRC insertion offload */
3872 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3873
3874 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3875 cd_tunneling, cd_l2tag2);
3876
3877 /* Add Flow Director ATR if it's enabled.
3878 *
3879 * NOTE: this must always be directly before the data descriptor.
3880 */
3881 i40e_atr(tx_ring, skb, tx_flags);
3882
3883 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3884 td_cmd, td_offset))
3885 goto cleanup_tx_tstamp;
3886
3887 return NETDEV_TX_OK;
3888
3889 out_drop:
3890 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3891 dev_kfree_skb_any(first->skb);
3892 first->skb = NULL;
3893 cleanup_tx_tstamp:
3894 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3895 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3896
3897 dev_kfree_skb_any(pf->ptp_tx_skb);
3898 pf->ptp_tx_skb = NULL;
3899 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3900 }
3901
3902 return NETDEV_TX_OK;
3903 }
3904
3905 /**
3906 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3907 * @skb: send buffer
3908 * @netdev: network interface device structure
3909 *
3910 * Returns NETDEV_TX_OK if sent, else an error code
3911 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3912 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3913 {
3914 struct i40e_netdev_priv *np = netdev_priv(netdev);
3915 struct i40e_vsi *vsi = np->vsi;
3916 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3917
3918 /* hardware can't handle really short frames, hardware padding works
3919 * beyond this point
3920 */
3921 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3922 return NETDEV_TX_OK;
3923
3924 return i40e_xmit_frame_ring(skb, tx_ring);
3925 }
3926
3927 /**
3928 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3929 * @dev: netdev
3930 * @n: number of frames
3931 * @frames: array of XDP buffer pointers
3932 * @flags: XDP extra info
3933 *
3934 * Returns number of frames successfully sent. Failed frames
3935 * will be free'ed by XDP core.
3936 *
3937 * For error cases, a negative errno code is returned and no-frames
3938 * are transmitted (caller must handle freeing frames).
3939 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)3940 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3941 u32 flags)
3942 {
3943 struct i40e_netdev_priv *np = netdev_priv(dev);
3944 unsigned int queue_index = smp_processor_id();
3945 struct i40e_vsi *vsi = np->vsi;
3946 struct i40e_pf *pf = vsi->back;
3947 struct i40e_ring *xdp_ring;
3948 int nxmit = 0;
3949 int i;
3950
3951 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3952 return -ENETDOWN;
3953
3954 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3955 test_bit(__I40E_CONFIG_BUSY, pf->state))
3956 return -ENXIO;
3957
3958 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3959 return -EINVAL;
3960
3961 xdp_ring = vsi->xdp_rings[queue_index];
3962
3963 for (i = 0; i < n; i++) {
3964 struct xdp_frame *xdpf = frames[i];
3965 int err;
3966
3967 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3968 if (err != I40E_XDP_TX)
3969 break;
3970 nxmit++;
3971 }
3972
3973 if (unlikely(flags & XDP_XMIT_FLUSH))
3974 i40e_xdp_ring_update_tail(xdp_ring);
3975
3976 return nxmit;
3977 }
3978