• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/i915_drm.h>
12 #include <drm/intel-gtt.h>
13 
14 #include "gem/i915_gem_lmem.h"
15 
16 #include "intel_ggtt_gmch.h"
17 #include "intel_gt.h"
18 #include "intel_gt_regs.h"
19 #include "intel_pci_config.h"
20 #include "i915_drv.h"
21 #include "i915_pci.h"
22 #include "i915_scatterlist.h"
23 #include "i915_utils.h"
24 #include "i915_vgpu.h"
25 
26 #include "intel_gtt.h"
27 #include "gen8_ppgtt.h"
28 
suspend_retains_ptes(struct i915_address_space * vm)29 static inline bool suspend_retains_ptes(struct i915_address_space *vm)
30 {
31 	return GRAPHICS_VER(vm->i915) >= 8 &&
32 		!HAS_LMEM(vm->i915) &&
33 		vm->is_ggtt;
34 }
35 
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 				   unsigned long color,
38 				   u64 *start,
39 				   u64 *end)
40 {
41 	if (i915_node_color_differs(node, color))
42 		*start += I915_GTT_PAGE_SIZE;
43 
44 	/*
45 	 * Also leave a space between the unallocated reserved node after the
46 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 	 * to insert a guard page to prevent prefetches crossing over the
48 	 * GTT boundary.
49 	 */
50 	node = list_next_entry(node, node_list);
51 	if (node->color != color)
52 		*end -= I915_GTT_PAGE_SIZE;
53 }
54 
ggtt_init_hw(struct i915_ggtt * ggtt)55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 	struct drm_i915_private *i915 = ggtt->vm.i915;
58 
59 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60 
61 	ggtt->vm.is_ggtt = true;
62 
63 	/* Only VLV supports read-only GGTT mappings */
64 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65 
66 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68 
69 	if (ggtt->mappable_end) {
70 		if (!io_mapping_init_wc(&ggtt->iomap,
71 					ggtt->gmadr.start,
72 					ggtt->mappable_end)) {
73 			ggtt->vm.cleanup(&ggtt->vm);
74 			return -EIO;
75 		}
76 
77 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 					      ggtt->mappable_end);
79 	}
80 
81 	intel_ggtt_init_fences(ggtt);
82 
83 	return 0;
84 }
85 
86 /**
87  * i915_ggtt_init_hw - Initialize GGTT hardware
88  * @i915: i915 device
89  */
i915_ggtt_init_hw(struct drm_i915_private * i915)90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 	int ret;
93 
94 	/*
95 	 * Note that we use page colouring to enforce a guard page at the
96 	 * end of the address space. This is required as the CS may prefetch
97 	 * beyond the end of the batch buffer, across the page boundary,
98 	 * and beyond the end of the GTT if we do not provide a guard.
99 	 */
100 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 	if (ret)
102 		return ret;
103 
104 	return 0;
105 }
106 
107 /*
108  * Return the value of the last GGTT pte cast to an u64, if
109  * the system is supposed to retain ptes across resume. 0 otherwise.
110  */
read_last_pte(struct i915_address_space * vm)111 static u64 read_last_pte(struct i915_address_space *vm)
112 {
113 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
114 	gen8_pte_t __iomem *ptep;
115 
116 	if (!suspend_retains_ptes(vm))
117 		return 0;
118 
119 	GEM_BUG_ON(GRAPHICS_VER(vm->i915) < 8);
120 	ptep = (typeof(ptep))ggtt->gsm + (ggtt_total_entries(ggtt) - 1);
121 	return readq(ptep);
122 }
123 
124 /**
125  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
126  * @vm: The VM to suspend the mappings for
127  *
128  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
129  * DPT page table.
130  */
i915_ggtt_suspend_vm(struct i915_address_space * vm)131 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
132 {
133 	struct i915_vma *vma, *vn;
134 	int save_skip_rewrite;
135 
136 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
137 
138 retry:
139 	i915_gem_drain_freed_objects(vm->i915);
140 
141 	mutex_lock(&vm->mutex);
142 
143 	/*
144 	 * Skip rewriting PTE on VMA unbind.
145 	 * FIXME: Use an argument to i915_vma_unbind() instead?
146 	 */
147 	save_skip_rewrite = vm->skip_pte_rewrite;
148 	vm->skip_pte_rewrite = true;
149 
150 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
151 		struct drm_i915_gem_object *obj = vma->obj;
152 
153 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
154 
155 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
156 			continue;
157 
158 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
159 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
160 			/*
161 			 * No dead objects should appear here, GPU should be
162 			 * completely idle, and userspace suspended
163 			 */
164 			i915_gem_object_get(obj);
165 
166 			mutex_unlock(&vm->mutex);
167 
168 			i915_gem_object_lock(obj, NULL);
169 			GEM_WARN_ON(i915_vma_unbind(vma));
170 			i915_gem_object_unlock(obj);
171 			i915_gem_object_put(obj);
172 
173 			vm->skip_pte_rewrite = save_skip_rewrite;
174 			goto retry;
175 		}
176 
177 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
178 			i915_vma_wait_for_bind(vma);
179 
180 			__i915_vma_evict(vma, false);
181 			drm_mm_remove_node(&vma->node);
182 		}
183 
184 		i915_gem_object_unlock(obj);
185 	}
186 
187 	if (!suspend_retains_ptes(vm))
188 		vm->clear_range(vm, 0, vm->total);
189 	else
190 		i915_vm_to_ggtt(vm)->probed_pte = read_last_pte(vm);
191 
192 	vm->skip_pte_rewrite = save_skip_rewrite;
193 
194 	mutex_unlock(&vm->mutex);
195 }
196 
i915_ggtt_suspend(struct i915_ggtt * ggtt)197 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
198 {
199 	i915_ggtt_suspend_vm(&ggtt->vm);
200 	ggtt->invalidate(ggtt);
201 
202 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
203 }
204 
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)205 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
206 {
207 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
208 
209 	spin_lock_irq(&uncore->lock);
210 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
211 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
212 	spin_unlock_irq(&uncore->lock);
213 }
214 
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)215 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
216 {
217 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
218 
219 	/*
220 	 * Note that as an uncached mmio write, this will flush the
221 	 * WCB of the writes into the GGTT before it triggers the invalidate.
222 	 */
223 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
224 }
225 
guc_ggtt_invalidate(struct i915_ggtt * ggtt)226 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
227 {
228 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
229 	struct drm_i915_private *i915 = ggtt->vm.i915;
230 
231 	gen8_ggtt_invalidate(ggtt);
232 
233 	if (GRAPHICS_VER(i915) >= 12)
234 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
235 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
236 	else
237 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
238 }
239 
gen8_ggtt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)240 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
241 			 enum i915_cache_level level,
242 			 u32 flags)
243 {
244 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
245 
246 	if (flags & PTE_LM)
247 		pte |= GEN12_GGTT_PTE_LM;
248 
249 	return pte;
250 }
251 
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)252 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
253 {
254 	writeq(pte, addr);
255 }
256 
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)257 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
258 				  dma_addr_t addr,
259 				  u64 offset,
260 				  enum i915_cache_level level,
261 				  u32 flags)
262 {
263 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
264 	gen8_pte_t __iomem *pte =
265 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
266 
267 	gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags));
268 
269 	ggtt->invalidate(ggtt);
270 }
271 
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,enum i915_cache_level level,u32 flags)272 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
273 				     struct i915_vma_resource *vma_res,
274 				     enum i915_cache_level level,
275 				     u32 flags)
276 {
277 	const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags);
278 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
279 	gen8_pte_t __iomem *gte;
280 	gen8_pte_t __iomem *end;
281 	struct sgt_iter iter;
282 	dma_addr_t addr;
283 
284 	/*
285 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
286 	 * not to allow the user to override access to a read only page.
287 	 */
288 
289 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
290 	gte += vma_res->start / I915_GTT_PAGE_SIZE;
291 	end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE;
292 
293 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
294 		gen8_set_pte(gte++, pte_encode | addr);
295 	GEM_BUG_ON(gte > end);
296 
297 	/* Fill the allocated but "unused" space beyond the end of the buffer */
298 	while (gte < end)
299 		gen8_set_pte(gte++, vm->scratch[0]->encode);
300 
301 	/*
302 	 * We want to flush the TLBs only after we're certain all the PTE
303 	 * updates have finished.
304 	 */
305 	ggtt->invalidate(ggtt);
306 }
307 
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)308 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
309 				  dma_addr_t addr,
310 				  u64 offset,
311 				  enum i915_cache_level level,
312 				  u32 flags)
313 {
314 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
315 	gen6_pte_t __iomem *pte =
316 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
317 
318 	iowrite32(vm->pte_encode(addr, level, flags), pte);
319 
320 	ggtt->invalidate(ggtt);
321 }
322 
323 /*
324  * Binds an object into the global gtt with the specified cache level.
325  * The object will be accessible to the GPU via commands whose operands
326  * reference offsets within the global GTT as well as accessible by the GPU
327  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
328  */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,enum i915_cache_level level,u32 flags)329 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
330 				     struct i915_vma_resource *vma_res,
331 				     enum i915_cache_level level,
332 				     u32 flags)
333 {
334 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
335 	gen6_pte_t __iomem *gte;
336 	gen6_pte_t __iomem *end;
337 	struct sgt_iter iter;
338 	dma_addr_t addr;
339 
340 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
341 	gte += vma_res->start / I915_GTT_PAGE_SIZE;
342 	end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE;
343 
344 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
345 		iowrite32(vm->pte_encode(addr, level, flags), gte++);
346 	GEM_BUG_ON(gte > end);
347 
348 	/* Fill the allocated but "unused" space beyond the end of the buffer */
349 	while (gte < end)
350 		iowrite32(vm->scratch[0]->encode, gte++);
351 
352 	/*
353 	 * We want to flush the TLBs only after we're certain all the PTE
354 	 * updates have finished.
355 	 */
356 	ggtt->invalidate(ggtt);
357 }
358 
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)359 static void nop_clear_range(struct i915_address_space *vm,
360 			    u64 start, u64 length)
361 {
362 }
363 
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)364 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
365 				  u64 start, u64 length)
366 {
367 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
368 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
369 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
370 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
371 	gen8_pte_t __iomem *gtt_base =
372 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
373 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
374 	int i;
375 
376 	if (WARN(num_entries > max_entries,
377 		 "First entry = %d; Num entries = %d (max=%d)\n",
378 		 first_entry, num_entries, max_entries))
379 		num_entries = max_entries;
380 
381 	for (i = 0; i < num_entries; i++)
382 		gen8_set_pte(&gtt_base[i], scratch_pte);
383 }
384 
bxt_vtd_ggtt_wa(struct i915_address_space * vm)385 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
386 {
387 	/*
388 	 * Make sure the internal GAM fifo has been cleared of all GTT
389 	 * writes before exiting stop_machine(). This guarantees that
390 	 * any aperture accesses waiting to start in another process
391 	 * cannot back up behind the GTT writes causing a hang.
392 	 * The register can be any arbitrary GAM register.
393 	 */
394 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
395 }
396 
397 struct insert_page {
398 	struct i915_address_space *vm;
399 	dma_addr_t addr;
400 	u64 offset;
401 	enum i915_cache_level level;
402 };
403 
bxt_vtd_ggtt_insert_page__cb(void * _arg)404 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
405 {
406 	struct insert_page *arg = _arg;
407 
408 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
409 	bxt_vtd_ggtt_wa(arg->vm);
410 
411 	return 0;
412 }
413 
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)414 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
415 					  dma_addr_t addr,
416 					  u64 offset,
417 					  enum i915_cache_level level,
418 					  u32 unused)
419 {
420 	struct insert_page arg = { vm, addr, offset, level };
421 
422 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
423 }
424 
425 struct insert_entries {
426 	struct i915_address_space *vm;
427 	struct i915_vma_resource *vma_res;
428 	enum i915_cache_level level;
429 	u32 flags;
430 };
431 
bxt_vtd_ggtt_insert_entries__cb(void * _arg)432 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
433 {
434 	struct insert_entries *arg = _arg;
435 
436 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags);
437 	bxt_vtd_ggtt_wa(arg->vm);
438 
439 	return 0;
440 }
441 
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,enum i915_cache_level level,u32 flags)442 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
443 					     struct i915_vma_resource *vma_res,
444 					     enum i915_cache_level level,
445 					     u32 flags)
446 {
447 	struct insert_entries arg = { vm, vma_res, level, flags };
448 
449 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
450 }
451 
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)452 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
453 				  u64 start, u64 length)
454 {
455 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
456 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
457 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
458 	gen6_pte_t scratch_pte, __iomem *gtt_base =
459 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
460 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
461 	int i;
462 
463 	if (WARN(num_entries > max_entries,
464 		 "First entry = %d; Num entries = %d (max=%d)\n",
465 		 first_entry, num_entries, max_entries))
466 		num_entries = max_entries;
467 
468 	scratch_pte = vm->scratch[0]->encode;
469 	for (i = 0; i < num_entries; i++)
470 		iowrite32(scratch_pte, &gtt_base[i]);
471 }
472 
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,enum i915_cache_level cache_level,u32 flags)473 void intel_ggtt_bind_vma(struct i915_address_space *vm,
474 			 struct i915_vm_pt_stash *stash,
475 			 struct i915_vma_resource *vma_res,
476 			 enum i915_cache_level cache_level,
477 			 u32 flags)
478 {
479 	u32 pte_flags;
480 
481 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
482 		return;
483 
484 	vma_res->bound_flags |= flags;
485 
486 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
487 	pte_flags = 0;
488 	if (vma_res->bi.readonly)
489 		pte_flags |= PTE_READ_ONLY;
490 	if (vma_res->bi.lmem)
491 		pte_flags |= PTE_LM;
492 
493 	vm->insert_entries(vm, vma_res, cache_level, pte_flags);
494 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
495 }
496 
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)497 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
498 			   struct i915_vma_resource *vma_res)
499 {
500 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
501 }
502 
503 /*
504  * Reserve the top of the GuC address space for firmware images. Addresses
505  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
506  * which makes for a suitable range to hold GuC/HuC firmware images if the
507  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
508  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
509  * of the same size anyway, which is far more than needed, to keep the logic
510  * in uc_fw_ggtt_offset() simple.
511  */
512 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
513 
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)514 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
515 {
516 	u64 offset;
517 	int ret;
518 
519 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
520 		return 0;
521 
522 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
523 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
524 
525 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
526 				   GUC_TOP_RESERVE_SIZE, offset,
527 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
528 	if (ret)
529 		drm_dbg(&ggtt->vm.i915->drm,
530 			"Failed to reserve top of GGTT for GuC\n");
531 
532 	return ret;
533 }
534 
ggtt_release_guc_top(struct i915_ggtt * ggtt)535 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
536 {
537 	if (drm_mm_node_allocated(&ggtt->uc_fw))
538 		drm_mm_remove_node(&ggtt->uc_fw);
539 }
540 
cleanup_init_ggtt(struct i915_ggtt * ggtt)541 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
542 {
543 	ggtt_release_guc_top(ggtt);
544 	if (drm_mm_node_allocated(&ggtt->error_capture))
545 		drm_mm_remove_node(&ggtt->error_capture);
546 	mutex_destroy(&ggtt->error_mutex);
547 }
548 
init_ggtt(struct i915_ggtt * ggtt)549 static int init_ggtt(struct i915_ggtt *ggtt)
550 {
551 	/*
552 	 * Let GEM Manage all of the aperture.
553 	 *
554 	 * However, leave one page at the end still bound to the scratch page.
555 	 * There are a number of places where the hardware apparently prefetches
556 	 * past the end of the object, and we've seen multiple hangs with the
557 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
558 	 * aperture.  One page should be enough to keep any prefetching inside
559 	 * of the aperture.
560 	 */
561 	unsigned long hole_start, hole_end;
562 	struct drm_mm_node *entry;
563 	int ret;
564 
565 	ggtt->pte_lost = true;
566 
567 	/*
568 	 * GuC requires all resources that we're sharing with it to be placed in
569 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
570 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
571 	 * why.
572 	 */
573 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
574 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
575 
576 	ret = intel_vgt_balloon(ggtt);
577 	if (ret)
578 		return ret;
579 
580 	mutex_init(&ggtt->error_mutex);
581 	if (ggtt->mappable_end) {
582 		/*
583 		 * Reserve a mappable slot for our lockless error capture.
584 		 *
585 		 * We strongly prefer taking address 0x0 in order to protect
586 		 * other critical buffers against accidental overwrites,
587 		 * as writing to address 0 is a very common mistake.
588 		 *
589 		 * Since 0 may already be in use by the system (e.g. the BIOS
590 		 * framebuffer), we let the reservation fail quietly and hope
591 		 * 0 remains reserved always.
592 		 *
593 		 * If we fail to reserve 0, and then fail to find any space
594 		 * for an error-capture, remain silent. We can afford not
595 		 * to reserve an error_capture node as we have fallback
596 		 * paths, and we trust that 0 will remain reserved. However,
597 		 * the only likely reason for failure to insert is a driver
598 		 * bug, which we expect to cause other failures...
599 		 */
600 		ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
601 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
602 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
603 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
604 						    &ggtt->error_capture,
605 						    ggtt->error_capture.size, 0,
606 						    ggtt->error_capture.color,
607 						    0, ggtt->mappable_end,
608 						    DRM_MM_INSERT_LOW);
609 	}
610 	if (drm_mm_node_allocated(&ggtt->error_capture))
611 		drm_dbg(&ggtt->vm.i915->drm,
612 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
613 			ggtt->error_capture.start,
614 			ggtt->error_capture.start + ggtt->error_capture.size);
615 
616 	/*
617 	 * The upper portion of the GuC address space has a sizeable hole
618 	 * (several MB) that is inaccessible by GuC. Reserve this range within
619 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
620 	 */
621 	ret = ggtt_reserve_guc_top(ggtt);
622 	if (ret)
623 		goto err;
624 
625 	/* Clear any non-preallocated blocks */
626 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
627 		drm_dbg(&ggtt->vm.i915->drm,
628 			"clearing unused GTT space: [%lx, %lx]\n",
629 			hole_start, hole_end);
630 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
631 				     hole_end - hole_start);
632 	}
633 
634 	/* And finally clear the reserved guard page */
635 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
636 
637 	return 0;
638 
639 err:
640 	cleanup_init_ggtt(ggtt);
641 	return ret;
642 }
643 
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,enum i915_cache_level cache_level,u32 flags)644 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
645 				  struct i915_vm_pt_stash *stash,
646 				  struct i915_vma_resource *vma_res,
647 				  enum i915_cache_level cache_level,
648 				  u32 flags)
649 {
650 	u32 pte_flags;
651 
652 	/* Currently applicable only to VLV */
653 	pte_flags = 0;
654 	if (vma_res->bi.readonly)
655 		pte_flags |= PTE_READ_ONLY;
656 
657 	if (flags & I915_VMA_LOCAL_BIND)
658 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
659 			       stash, vma_res, cache_level, flags);
660 
661 	if (flags & I915_VMA_GLOBAL_BIND)
662 		vm->insert_entries(vm, vma_res, cache_level, pte_flags);
663 
664 	vma_res->bound_flags |= flags;
665 }
666 
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)667 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
668 				    struct i915_vma_resource *vma_res)
669 {
670 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
671 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
672 
673 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
674 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
675 }
676 
init_aliasing_ppgtt(struct i915_ggtt * ggtt)677 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
678 {
679 	struct i915_vm_pt_stash stash = {};
680 	struct i915_ppgtt *ppgtt;
681 	int err;
682 
683 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
684 	if (IS_ERR(ppgtt))
685 		return PTR_ERR(ppgtt);
686 
687 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
688 		err = -ENODEV;
689 		goto err_ppgtt;
690 	}
691 
692 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
693 	if (err)
694 		goto err_ppgtt;
695 
696 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
697 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
698 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
699 	if (err)
700 		goto err_stash;
701 
702 	/*
703 	 * Note we only pre-allocate as far as the end of the global
704 	 * GTT. On 48b / 4-level page-tables, the difference is very,
705 	 * very significant! We have to preallocate as GVT/vgpu does
706 	 * not like the page directory disappearing.
707 	 */
708 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
709 
710 	ggtt->alias = ppgtt;
711 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
712 
713 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
714 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
715 
716 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
717 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
718 
719 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
720 	return 0;
721 
722 err_stash:
723 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
724 err_ppgtt:
725 	i915_vm_put(&ppgtt->vm);
726 	return err;
727 }
728 
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)729 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
730 {
731 	struct i915_ppgtt *ppgtt;
732 
733 	ppgtt = fetch_and_zero(&ggtt->alias);
734 	if (!ppgtt)
735 		return;
736 
737 	i915_vm_put(&ppgtt->vm);
738 
739 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
740 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
741 }
742 
i915_init_ggtt(struct drm_i915_private * i915)743 int i915_init_ggtt(struct drm_i915_private *i915)
744 {
745 	int ret;
746 
747 	ret = init_ggtt(to_gt(i915)->ggtt);
748 	if (ret)
749 		return ret;
750 
751 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
752 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
753 		if (ret)
754 			cleanup_init_ggtt(to_gt(i915)->ggtt);
755 	}
756 
757 	return 0;
758 }
759 
ggtt_cleanup_hw(struct i915_ggtt * ggtt)760 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
761 {
762 	struct i915_vma *vma, *vn;
763 
764 	flush_workqueue(ggtt->vm.i915->wq);
765 	i915_gem_drain_freed_objects(ggtt->vm.i915);
766 
767 	mutex_lock(&ggtt->vm.mutex);
768 
769 	ggtt->vm.skip_pte_rewrite = true;
770 
771 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
772 		struct drm_i915_gem_object *obj = vma->obj;
773 		bool trylock;
774 
775 		trylock = i915_gem_object_trylock(obj, NULL);
776 		WARN_ON(!trylock);
777 
778 		WARN_ON(__i915_vma_unbind(vma));
779 		if (trylock)
780 			i915_gem_object_unlock(obj);
781 	}
782 
783 	if (drm_mm_node_allocated(&ggtt->error_capture))
784 		drm_mm_remove_node(&ggtt->error_capture);
785 	mutex_destroy(&ggtt->error_mutex);
786 
787 	ggtt_release_guc_top(ggtt);
788 	intel_vgt_deballoon(ggtt);
789 
790 	ggtt->vm.cleanup(&ggtt->vm);
791 
792 	mutex_unlock(&ggtt->vm.mutex);
793 	i915_address_space_fini(&ggtt->vm);
794 
795 	arch_phys_wc_del(ggtt->mtrr);
796 
797 	if (ggtt->iomap.size)
798 		io_mapping_fini(&ggtt->iomap);
799 }
800 
801 /**
802  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
803  * @i915: i915 device
804  */
i915_ggtt_driver_release(struct drm_i915_private * i915)805 void i915_ggtt_driver_release(struct drm_i915_private *i915)
806 {
807 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
808 
809 	fini_aliasing_ppgtt(ggtt);
810 
811 	intel_ggtt_fini_fences(ggtt);
812 	ggtt_cleanup_hw(ggtt);
813 }
814 
815 /**
816  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
817  * all free objects have been drained.
818  * @i915: i915 device
819  */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)820 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
821 {
822 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
823 
824 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
825 	dma_resv_fini(&ggtt->vm._resv);
826 }
827 
gen6_get_total_gtt_size(u16 snb_gmch_ctl)828 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
829 {
830 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
831 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
832 	return snb_gmch_ctl << 20;
833 }
834 
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)835 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
836 {
837 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
838 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
839 	if (bdw_gmch_ctl)
840 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
841 
842 #ifdef CONFIG_X86_32
843 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
844 	if (bdw_gmch_ctl > 4)
845 		bdw_gmch_ctl = 4;
846 #endif
847 
848 	return bdw_gmch_ctl << 20;
849 }
850 
chv_get_total_gtt_size(u16 gmch_ctrl)851 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
852 {
853 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
854 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
855 
856 	if (gmch_ctrl)
857 		return 1 << (20 + gmch_ctrl);
858 
859 	return 0;
860 }
861 
gen6_gttmmadr_size(struct drm_i915_private * i915)862 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
863 {
864 	/*
865 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
866 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
867 	 */
868 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
869 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
870 }
871 
gen6_gttadr_offset(struct drm_i915_private * i915)872 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
873 {
874 	return gen6_gttmmadr_size(i915) / 2;
875 }
876 
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)877 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
878 {
879 	struct drm_i915_private *i915 = ggtt->vm.i915;
880 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
881 	phys_addr_t phys_addr;
882 	u32 pte_flags;
883 	int ret;
884 
885 	GEM_WARN_ON(pci_resource_len(pdev, GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
886 	phys_addr = pci_resource_start(pdev, GTTMMADR_BAR) + gen6_gttadr_offset(i915);
887 
888 	/*
889 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
890 	 * will be dropped. For WC mappings in general we have 64 byte burst
891 	 * writes when the WC buffer is flushed, so we can't use it, but have to
892 	 * resort to an uncached mapping. The WC issue is easily caught by the
893 	 * readback check when writing GTT PTE entries.
894 	 */
895 	if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11)
896 		ggtt->gsm = ioremap(phys_addr, size);
897 	else
898 		ggtt->gsm = ioremap_wc(phys_addr, size);
899 	if (!ggtt->gsm) {
900 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
901 		return -ENOMEM;
902 	}
903 
904 	kref_init(&ggtt->vm.resv_ref);
905 	ret = setup_scratch_page(&ggtt->vm);
906 	if (ret) {
907 		drm_err(&i915->drm, "Scratch setup failed\n");
908 		/* iounmap will also get called at remove, but meh */
909 		iounmap(ggtt->gsm);
910 		return ret;
911 	}
912 
913 	pte_flags = 0;
914 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
915 		pte_flags |= PTE_LM;
916 
917 	ggtt->vm.scratch[0]->encode =
918 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
919 				    I915_CACHE_NONE, pte_flags);
920 
921 	return 0;
922 }
923 
gen6_gmch_remove(struct i915_address_space * vm)924 static void gen6_gmch_remove(struct i915_address_space *vm)
925 {
926 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
927 
928 	iounmap(ggtt->gsm);
929 	free_scratch(vm);
930 }
931 
pci_resource(struct pci_dev * pdev,int bar)932 static struct resource pci_resource(struct pci_dev *pdev, int bar)
933 {
934 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
935 					       pci_resource_len(pdev, bar));
936 }
937 
gen8_gmch_probe(struct i915_ggtt * ggtt)938 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
939 {
940 	struct drm_i915_private *i915 = ggtt->vm.i915;
941 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
942 	unsigned int size;
943 	u16 snb_gmch_ctl;
944 
945 	if (!HAS_LMEM(i915)) {
946 		if (!i915_pci_resource_valid(pdev, GTT_APERTURE_BAR))
947 			return -ENXIO;
948 
949 		ggtt->gmadr = pci_resource(pdev, GTT_APERTURE_BAR);
950 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
951 	}
952 
953 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
954 	if (IS_CHERRYVIEW(i915))
955 		size = chv_get_total_gtt_size(snb_gmch_ctl);
956 	else
957 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
958 
959 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
960 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
961 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
962 
963 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
964 	ggtt->vm.cleanup = gen6_gmch_remove;
965 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
966 	ggtt->vm.clear_range = nop_clear_range;
967 	if (intel_scanout_needs_vtd_wa(i915))
968 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
969 
970 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
971 
972 	/*
973 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
974 	 * and always on CHV.
975 	 */
976 	if (intel_vm_no_concurrent_access_wa(i915)) {
977 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
978 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
979 
980 		/*
981 		 * Calling stop_machine() version of GGTT update function
982 		 * at error capture/reset path will raise lockdep warning.
983 		 * Allow calling gen8_ggtt_insert_* directly at reset path
984 		 * which is safe from parallel GGTT updates.
985 		 */
986 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
987 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
988 
989 		ggtt->vm.bind_async_flags =
990 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
991 	}
992 
993 	ggtt->invalidate = gen8_ggtt_invalidate;
994 
995 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
996 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
997 
998 	ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
999 
1000 	setup_private_pat(ggtt->vm.gt->uncore);
1001 
1002 	return ggtt_probe_common(ggtt, size);
1003 }
1004 
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1005 static u64 snb_pte_encode(dma_addr_t addr,
1006 			  enum i915_cache_level level,
1007 			  u32 flags)
1008 {
1009 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1010 
1011 	switch (level) {
1012 	case I915_CACHE_L3_LLC:
1013 	case I915_CACHE_LLC:
1014 		pte |= GEN6_PTE_CACHE_LLC;
1015 		break;
1016 	case I915_CACHE_NONE:
1017 		pte |= GEN6_PTE_UNCACHED;
1018 		break;
1019 	default:
1020 		MISSING_CASE(level);
1021 	}
1022 
1023 	return pte;
1024 }
1025 
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1026 static u64 ivb_pte_encode(dma_addr_t addr,
1027 			  enum i915_cache_level level,
1028 			  u32 flags)
1029 {
1030 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1031 
1032 	switch (level) {
1033 	case I915_CACHE_L3_LLC:
1034 		pte |= GEN7_PTE_CACHE_L3_LLC;
1035 		break;
1036 	case I915_CACHE_LLC:
1037 		pte |= GEN6_PTE_CACHE_LLC;
1038 		break;
1039 	case I915_CACHE_NONE:
1040 		pte |= GEN6_PTE_UNCACHED;
1041 		break;
1042 	default:
1043 		MISSING_CASE(level);
1044 	}
1045 
1046 	return pte;
1047 }
1048 
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1049 static u64 byt_pte_encode(dma_addr_t addr,
1050 			  enum i915_cache_level level,
1051 			  u32 flags)
1052 {
1053 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1054 
1055 	if (!(flags & PTE_READ_ONLY))
1056 		pte |= BYT_PTE_WRITEABLE;
1057 
1058 	if (level != I915_CACHE_NONE)
1059 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1060 
1061 	return pte;
1062 }
1063 
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1064 static u64 hsw_pte_encode(dma_addr_t addr,
1065 			  enum i915_cache_level level,
1066 			  u32 flags)
1067 {
1068 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1069 
1070 	if (level != I915_CACHE_NONE)
1071 		pte |= HSW_WB_LLC_AGE3;
1072 
1073 	return pte;
1074 }
1075 
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)1076 static u64 iris_pte_encode(dma_addr_t addr,
1077 			   enum i915_cache_level level,
1078 			   u32 flags)
1079 {
1080 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1081 
1082 	switch (level) {
1083 	case I915_CACHE_NONE:
1084 		break;
1085 	case I915_CACHE_WT:
1086 		pte |= HSW_WT_ELLC_LLC_AGE3;
1087 		break;
1088 	default:
1089 		pte |= HSW_WB_ELLC_LLC_AGE3;
1090 		break;
1091 	}
1092 
1093 	return pte;
1094 }
1095 
gen6_gmch_probe(struct i915_ggtt * ggtt)1096 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1097 {
1098 	struct drm_i915_private *i915 = ggtt->vm.i915;
1099 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1100 	unsigned int size;
1101 	u16 snb_gmch_ctl;
1102 
1103 	if (!i915_pci_resource_valid(pdev, GTT_APERTURE_BAR))
1104 		return -ENXIO;
1105 
1106 	ggtt->gmadr = pci_resource(pdev, GTT_APERTURE_BAR);
1107 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1108 
1109 	/*
1110 	 * 64/512MB is the current min/max we actually know of, but this is
1111 	 * just a coarse sanity check.
1112 	 */
1113 	if (ggtt->mappable_end < (64 << 20) ||
1114 	    ggtt->mappable_end > (512 << 20)) {
1115 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1116 			&ggtt->mappable_end);
1117 		return -ENXIO;
1118 	}
1119 
1120 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1121 
1122 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1123 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1124 
1125 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1126 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1127 
1128 	ggtt->vm.clear_range = nop_clear_range;
1129 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1130 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1131 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1132 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1133 	ggtt->vm.cleanup = gen6_gmch_remove;
1134 
1135 	ggtt->invalidate = gen6_ggtt_invalidate;
1136 
1137 	if (HAS_EDRAM(i915))
1138 		ggtt->vm.pte_encode = iris_pte_encode;
1139 	else if (IS_HASWELL(i915))
1140 		ggtt->vm.pte_encode = hsw_pte_encode;
1141 	else if (IS_VALLEYVIEW(i915))
1142 		ggtt->vm.pte_encode = byt_pte_encode;
1143 	else if (GRAPHICS_VER(i915) >= 7)
1144 		ggtt->vm.pte_encode = ivb_pte_encode;
1145 	else
1146 		ggtt->vm.pte_encode = snb_pte_encode;
1147 
1148 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1149 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1150 
1151 	return ggtt_probe_common(ggtt, size);
1152 }
1153 
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1154 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1155 {
1156 	struct drm_i915_private *i915 = gt->i915;
1157 	int ret;
1158 
1159 	ggtt->vm.gt = gt;
1160 	ggtt->vm.i915 = i915;
1161 	ggtt->vm.dma = i915->drm.dev;
1162 	dma_resv_init(&ggtt->vm._resv);
1163 
1164 	if (GRAPHICS_VER(i915) >= 8)
1165 		ret = gen8_gmch_probe(ggtt);
1166 	else if (GRAPHICS_VER(i915) >= 6)
1167 		ret = gen6_gmch_probe(ggtt);
1168 	else
1169 		ret = intel_ggtt_gmch_probe(ggtt);
1170 
1171 	if (ret) {
1172 		dma_resv_fini(&ggtt->vm._resv);
1173 		return ret;
1174 	}
1175 
1176 	if ((ggtt->vm.total - 1) >> 32) {
1177 		drm_err(&i915->drm,
1178 			"We never expected a Global GTT with more than 32bits"
1179 			" of address space! Found %lldM!\n",
1180 			ggtt->vm.total >> 20);
1181 		ggtt->vm.total = 1ULL << 32;
1182 		ggtt->mappable_end =
1183 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1184 	}
1185 
1186 	if (ggtt->mappable_end > ggtt->vm.total) {
1187 		drm_err(&i915->drm,
1188 			"mappable aperture extends past end of GGTT,"
1189 			" aperture=%pa, total=%llx\n",
1190 			&ggtt->mappable_end, ggtt->vm.total);
1191 		ggtt->mappable_end = ggtt->vm.total;
1192 	}
1193 
1194 	/* GMADR is the PCI mmio aperture into the global GTT. */
1195 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1196 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1197 		(u64)ggtt->mappable_end >> 20);
1198 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1199 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1200 
1201 	return 0;
1202 }
1203 
1204 /**
1205  * i915_ggtt_probe_hw - Probe GGTT hardware location
1206  * @i915: i915 device
1207  */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1208 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1209 {
1210 	int ret;
1211 
1212 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1213 	if (ret)
1214 		return ret;
1215 
1216 	if (i915_vtd_active(i915))
1217 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1218 
1219 	return 0;
1220 }
1221 
i915_ggtt_enable_hw(struct drm_i915_private * i915)1222 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1223 {
1224 	if (GRAPHICS_VER(i915) < 6)
1225 		return intel_ggtt_gmch_enable_hw(i915);
1226 
1227 	return 0;
1228 }
1229 
i915_ggtt_enable_guc(struct i915_ggtt * ggtt)1230 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1231 {
1232 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1233 
1234 	ggtt->invalidate = guc_ggtt_invalidate;
1235 
1236 	ggtt->invalidate(ggtt);
1237 }
1238 
i915_ggtt_disable_guc(struct i915_ggtt * ggtt)1239 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1240 {
1241 	/* XXX Temporary pardon for error unload */
1242 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1243 		return;
1244 
1245 	/* We should only be called after i915_ggtt_enable_guc() */
1246 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1247 
1248 	ggtt->invalidate = gen8_ggtt_invalidate;
1249 
1250 	ggtt->invalidate(ggtt);
1251 }
1252 
1253 /**
1254  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1255  * @vm: The VM to restore the mappings for
1256  *
1257  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1258  * DPT page table.
1259  *
1260  * Returns %true if restoring the mapping for any object that was in a write
1261  * domain before suspend.
1262  */
i915_ggtt_resume_vm(struct i915_address_space * vm)1263 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1264 {
1265 	struct i915_vma *vma;
1266 	bool write_domain_objs = false;
1267 	bool retained_ptes;
1268 
1269 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1270 
1271 	/*
1272 	 * First fill our portion of the GTT with scratch pages if
1273 	 * they were not retained across suspend.
1274 	 */
1275 	retained_ptes = suspend_retains_ptes(vm) &&
1276 		!i915_vm_to_ggtt(vm)->pte_lost &&
1277 		!GEM_WARN_ON(i915_vm_to_ggtt(vm)->probed_pte != read_last_pte(vm));
1278 
1279 	if (!retained_ptes)
1280 		vm->clear_range(vm, 0, vm->total);
1281 
1282 	/* clflush objects bound into the GGTT and rebind them. */
1283 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1284 		struct drm_i915_gem_object *obj = vma->obj;
1285 		unsigned int was_bound =
1286 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1287 
1288 		GEM_BUG_ON(!was_bound);
1289 		if (!retained_ptes) {
1290 			/*
1291 			 * Clear the bound flags of the vma resource to allow
1292 			 * ptes to be repopulated.
1293 			 */
1294 			vma->resource->bound_flags = 0;
1295 			vma->ops->bind_vma(vm, NULL, vma->resource,
1296 					   obj ? obj->cache_level : 0,
1297 					   was_bound);
1298 		}
1299 		if (obj) { /* only used during resume => exclusive access */
1300 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1301 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1302 		}
1303 	}
1304 
1305 	return write_domain_objs;
1306 }
1307 
i915_ggtt_resume(struct i915_ggtt * ggtt)1308 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1309 {
1310 	bool flush;
1311 
1312 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1313 
1314 	flush = i915_ggtt_resume_vm(&ggtt->vm);
1315 
1316 	ggtt->invalidate(ggtt);
1317 
1318 	if (flush)
1319 		wbinvd_on_all_cpus();
1320 
1321 	if (GRAPHICS_VER(ggtt->vm.i915) >= 8)
1322 		setup_private_pat(ggtt->vm.gt->uncore);
1323 
1324 	intel_ggtt_restore_fences(ggtt);
1325 }
1326 
i915_ggtt_mark_pte_lost(struct drm_i915_private * i915,bool val)1327 void i915_ggtt_mark_pte_lost(struct drm_i915_private *i915, bool val)
1328 {
1329 	to_gt(i915)->ggtt->pte_lost = val;
1330 }
1331