• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017	Intel Deutschland GmbH
8  * Copyright (C) 2018-2023 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25 
26 
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 			    u32 basic_rates, int bitrate)
30 {
31 	struct ieee80211_rate *result = &sband->bitrates[0];
32 	int i;
33 
34 	for (i = 0; i < sband->n_bitrates; i++) {
35 		if (!(basic_rates & BIT(i)))
36 			continue;
37 		if (sband->bitrates[i].bitrate > bitrate)
38 			continue;
39 		result = &sband->bitrates[i];
40 	}
41 
42 	return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 			      enum nl80211_bss_scan_width scan_width)
48 {
49 	struct ieee80211_rate *bitrates;
50 	u32 mandatory_rates = 0;
51 	enum ieee80211_rate_flags mandatory_flag;
52 	int i;
53 
54 	if (WARN_ON(!sband))
55 		return 1;
56 
57 	if (sband->band == NL80211_BAND_2GHZ) {
58 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 		else
62 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 	} else {
64 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 	}
66 
67 	bitrates = sband->bitrates;
68 	for (i = 0; i < sband->n_bitrates; i++)
69 		if (bitrates[i].flags & mandatory_flag)
70 			mandatory_rates |= BIT(i);
71 	return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74 
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 	/* see 802.11 17.3.8.3.2 and Annex J
78 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 	if (chan <= 0)
80 		return 0; /* not supported */
81 	switch (band) {
82 	case NL80211_BAND_2GHZ:
83 	case NL80211_BAND_LC:
84 		if (chan == 14)
85 			return MHZ_TO_KHZ(2484);
86 		else if (chan < 14)
87 			return MHZ_TO_KHZ(2407 + chan * 5);
88 		break;
89 	case NL80211_BAND_5GHZ:
90 		if (chan >= 182 && chan <= 196)
91 			return MHZ_TO_KHZ(4000 + chan * 5);
92 		else
93 			return MHZ_TO_KHZ(5000 + chan * 5);
94 		break;
95 	case NL80211_BAND_6GHZ:
96 		/* see 802.11ax D6.1 27.3.23.2 */
97 		if (chan == 2)
98 			return MHZ_TO_KHZ(5935);
99 		if (chan <= 233)
100 			return MHZ_TO_KHZ(5950 + chan * 5);
101 		break;
102 	case NL80211_BAND_60GHZ:
103 		if (chan < 7)
104 			return MHZ_TO_KHZ(56160 + chan * 2160);
105 		break;
106 	case NL80211_BAND_S1GHZ:
107 		return 902000 + chan * 500;
108 	default:
109 		;
110 	}
111 	return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114 
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 		return NL80211_CHAN_WIDTH_20_NOHT;
120 
121 	/*S1G defines a single allowed channel width per channel.
122 	 * Extract that width here.
123 	 */
124 	if (chan->flags & IEEE80211_CHAN_1MHZ)
125 		return NL80211_CHAN_WIDTH_1;
126 	else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 		return NL80211_CHAN_WIDTH_2;
128 	else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 		return NL80211_CHAN_WIDTH_4;
130 	else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 		return NL80211_CHAN_WIDTH_8;
132 	else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 		return NL80211_CHAN_WIDTH_16;
134 
135 	pr_err("unknown channel width for channel at %dKHz?\n",
136 	       ieee80211_channel_to_khz(chan));
137 
138 	return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141 
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 	/* TODO: just handle MHz for now */
145 	freq = KHZ_TO_MHZ(freq);
146 
147 	/* see 802.11 17.3.8.3.2 and Annex J */
148 	if (freq == 2484)
149 		return 14;
150 	else if (freq < 2484)
151 		return (freq - 2407) / 5;
152 	else if (freq >= 4910 && freq <= 4980)
153 		return (freq - 4000) / 5;
154 	else if (freq < 5925)
155 		return (freq - 5000) / 5;
156 	else if (freq == 5935)
157 		return 2;
158 	else if (freq <= 45000) /* DMG band lower limit */
159 		/* see 802.11ax D6.1 27.3.22.2 */
160 		return (freq - 5950) / 5;
161 	else if (freq >= 58320 && freq <= 70200)
162 		return (freq - 56160) / 2160;
163 	else
164 		return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167 
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 						    u32 freq)
170 {
171 	enum nl80211_band band;
172 	struct ieee80211_supported_band *sband;
173 	int i;
174 
175 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 		sband = wiphy->bands[band];
177 
178 		if (!sband)
179 			continue;
180 
181 		for (i = 0; i < sband->n_channels; i++) {
182 			struct ieee80211_channel *chan = &sband->channels[i];
183 
184 			if (ieee80211_channel_to_khz(chan) == freq)
185 				return chan;
186 		}
187 	}
188 
189 	return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192 
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 	int i, want;
196 
197 	switch (sband->band) {
198 	case NL80211_BAND_5GHZ:
199 	case NL80211_BAND_6GHZ:
200 		want = 3;
201 		for (i = 0; i < sband->n_bitrates; i++) {
202 			if (sband->bitrates[i].bitrate == 60 ||
203 			    sband->bitrates[i].bitrate == 120 ||
204 			    sband->bitrates[i].bitrate == 240) {
205 				sband->bitrates[i].flags |=
206 					IEEE80211_RATE_MANDATORY_A;
207 				want--;
208 			}
209 		}
210 		WARN_ON(want);
211 		break;
212 	case NL80211_BAND_2GHZ:
213 	case NL80211_BAND_LC:
214 		want = 7;
215 		for (i = 0; i < sband->n_bitrates; i++) {
216 			switch (sband->bitrates[i].bitrate) {
217 			case 10:
218 			case 20:
219 			case 55:
220 			case 110:
221 				sband->bitrates[i].flags |=
222 					IEEE80211_RATE_MANDATORY_B |
223 					IEEE80211_RATE_MANDATORY_G;
224 				want--;
225 				break;
226 			case 60:
227 			case 120:
228 			case 240:
229 				sband->bitrates[i].flags |=
230 					IEEE80211_RATE_MANDATORY_G;
231 				want--;
232 				fallthrough;
233 			default:
234 				sband->bitrates[i].flags |=
235 					IEEE80211_RATE_ERP_G;
236 				break;
237 			}
238 		}
239 		WARN_ON(want != 0 && want != 3);
240 		break;
241 	case NL80211_BAND_60GHZ:
242 		/* check for mandatory HT MCS 1..4 */
243 		WARN_ON(!sband->ht_cap.ht_supported);
244 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 		break;
246 	case NL80211_BAND_S1GHZ:
247 		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 		 * mandatory is ok.
249 		 */
250 		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 		break;
252 	case NUM_NL80211_BANDS:
253 	default:
254 		WARN_ON(1);
255 		break;
256 	}
257 }
258 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 	enum nl80211_band band;
262 
263 	for (band = 0; band < NUM_NL80211_BANDS; band++)
264 		if (wiphy->bands[band])
265 			set_mandatory_flags_band(wiphy->bands[band]);
266 }
267 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 	int i;
271 	for (i = 0; i < wiphy->n_cipher_suites; i++)
272 		if (cipher == wiphy->cipher_suites[i])
273 			return true;
274 	return false;
275 }
276 
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 	struct wiphy *wiphy = &rdev->wiphy;
281 	int i;
282 
283 	for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 		switch (wiphy->cipher_suites[i]) {
285 		case WLAN_CIPHER_SUITE_AES_CMAC:
286 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 			return true;
290 		}
291 	}
292 
293 	return false;
294 }
295 
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 			    int key_idx, bool pairwise)
298 {
299 	int max_key_idx;
300 
301 	if (pairwise)
302 		max_key_idx = 3;
303 	else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 		 wiphy_ext_feature_isset(&rdev->wiphy,
306 					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 		max_key_idx = 7;
308 	else if (cfg80211_igtk_cipher_supported(rdev))
309 		max_key_idx = 5;
310 	else
311 		max_key_idx = 3;
312 
313 	if (key_idx < 0 || key_idx > max_key_idx)
314 		return false;
315 
316 	return true;
317 }
318 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 				   struct key_params *params, int key_idx,
321 				   bool pairwise, const u8 *mac_addr)
322 {
323 	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 		return -EINVAL;
325 
326 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 		return -EINVAL;
328 
329 	if (pairwise && !mac_addr)
330 		return -EINVAL;
331 
332 	switch (params->cipher) {
333 	case WLAN_CIPHER_SUITE_TKIP:
334 		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 		if ((pairwise && key_idx) ||
336 		    params->mode != NL80211_KEY_RX_TX)
337 			return -EINVAL;
338 		break;
339 	case WLAN_CIPHER_SUITE_CCMP:
340 	case WLAN_CIPHER_SUITE_CCMP_256:
341 	case WLAN_CIPHER_SUITE_GCMP:
342 	case WLAN_CIPHER_SUITE_GCMP_256:
343 		/* IEEE802.11-2016 allows only 0 and - when supporting
344 		 * Extended Key ID - 1 as index for pairwise keys.
345 		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 		 * the driver supports Extended Key ID.
347 		 * @NL80211_KEY_SET_TX can't be set when installing and
348 		 * validating a key.
349 		 */
350 		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 		    params->mode == NL80211_KEY_SET_TX)
352 			return -EINVAL;
353 		if (wiphy_ext_feature_isset(&rdev->wiphy,
354 					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 			if (pairwise && (key_idx < 0 || key_idx > 1))
356 				return -EINVAL;
357 		} else if (pairwise && key_idx) {
358 			return -EINVAL;
359 		}
360 		break;
361 	case WLAN_CIPHER_SUITE_AES_CMAC:
362 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 		/* Disallow BIP (group-only) cipher as pairwise cipher */
366 		if (pairwise)
367 			return -EINVAL;
368 		if (key_idx < 4)
369 			return -EINVAL;
370 		break;
371 	case WLAN_CIPHER_SUITE_WEP40:
372 	case WLAN_CIPHER_SUITE_WEP104:
373 		if (key_idx > 3)
374 			return -EINVAL;
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	switch (params->cipher) {
381 	case WLAN_CIPHER_SUITE_WEP40:
382 		if (params->key_len != WLAN_KEY_LEN_WEP40)
383 			return -EINVAL;
384 		break;
385 	case WLAN_CIPHER_SUITE_TKIP:
386 		if (params->key_len != WLAN_KEY_LEN_TKIP)
387 			return -EINVAL;
388 		break;
389 	case WLAN_CIPHER_SUITE_CCMP:
390 		if (params->key_len != WLAN_KEY_LEN_CCMP)
391 			return -EINVAL;
392 		break;
393 	case WLAN_CIPHER_SUITE_CCMP_256:
394 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 			return -EINVAL;
396 		break;
397 	case WLAN_CIPHER_SUITE_GCMP:
398 		if (params->key_len != WLAN_KEY_LEN_GCMP)
399 			return -EINVAL;
400 		break;
401 	case WLAN_CIPHER_SUITE_GCMP_256:
402 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 			return -EINVAL;
404 		break;
405 	case WLAN_CIPHER_SUITE_WEP104:
406 		if (params->key_len != WLAN_KEY_LEN_WEP104)
407 			return -EINVAL;
408 		break;
409 	case WLAN_CIPHER_SUITE_AES_CMAC:
410 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 			return -EINVAL;
412 		break;
413 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 			return -EINVAL;
416 		break;
417 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 			return -EINVAL;
420 		break;
421 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 			return -EINVAL;
424 		break;
425 	default:
426 		/*
427 		 * We don't know anything about this algorithm,
428 		 * allow using it -- but the driver must check
429 		 * all parameters! We still check below whether
430 		 * or not the driver supports this algorithm,
431 		 * of course.
432 		 */
433 		break;
434 	}
435 
436 	if (params->seq) {
437 		switch (params->cipher) {
438 		case WLAN_CIPHER_SUITE_WEP40:
439 		case WLAN_CIPHER_SUITE_WEP104:
440 			/* These ciphers do not use key sequence */
441 			return -EINVAL;
442 		case WLAN_CIPHER_SUITE_TKIP:
443 		case WLAN_CIPHER_SUITE_CCMP:
444 		case WLAN_CIPHER_SUITE_CCMP_256:
445 		case WLAN_CIPHER_SUITE_GCMP:
446 		case WLAN_CIPHER_SUITE_GCMP_256:
447 		case WLAN_CIPHER_SUITE_AES_CMAC:
448 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 			if (params->seq_len != 6)
452 				return -EINVAL;
453 			break;
454 		}
455 	}
456 
457 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 		return -EINVAL;
459 
460 	return 0;
461 }
462 
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 	unsigned int hdrlen = 24;
466 
467 	if (ieee80211_is_ext(fc)) {
468 		hdrlen = 4;
469 		goto out;
470 	}
471 
472 	if (ieee80211_is_data(fc)) {
473 		if (ieee80211_has_a4(fc))
474 			hdrlen = 30;
475 		if (ieee80211_is_data_qos(fc)) {
476 			hdrlen += IEEE80211_QOS_CTL_LEN;
477 			if (ieee80211_has_order(fc))
478 				hdrlen += IEEE80211_HT_CTL_LEN;
479 		}
480 		goto out;
481 	}
482 
483 	if (ieee80211_is_mgmt(fc)) {
484 		if (ieee80211_has_order(fc))
485 			hdrlen += IEEE80211_HT_CTL_LEN;
486 		goto out;
487 	}
488 
489 	if (ieee80211_is_ctl(fc)) {
490 		/*
491 		 * ACK and CTS are 10 bytes, all others 16. To see how
492 		 * to get this condition consider
493 		 *   subtype mask:   0b0000000011110000 (0x00F0)
494 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
495 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
496 		 *   bits that matter:         ^^^      (0x00E0)
497 		 *   value of those: 0b0000000011000000 (0x00C0)
498 		 */
499 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 			hdrlen = 10;
501 		else
502 			hdrlen = 16;
503 	}
504 out:
505 	return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 	const struct ieee80211_hdr *hdr =
512 			(const struct ieee80211_hdr *)skb->data;
513 	unsigned int hdrlen;
514 
515 	if (unlikely(skb->len < 10))
516 		return 0;
517 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 	if (unlikely(hdrlen > skb->len))
519 		return 0;
520 	return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523 
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 	int ae = flags & MESH_FLAGS_AE;
527 	/* 802.11-2012, 8.2.4.7.3 */
528 	switch (ae) {
529 	default:
530 	case 0:
531 		return 6;
532 	case MESH_FLAGS_AE_A4:
533 		return 12;
534 	case MESH_FLAGS_AE_A5_A6:
535 		return 18;
536 	}
537 }
538 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546 				  const u8 *addr, enum nl80211_iftype iftype,
547 				  u8 data_offset, bool is_amsdu)
548 {
549 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550 	struct {
551 		u8 hdr[ETH_ALEN] __aligned(2);
552 		__be16 proto;
553 	} payload;
554 	struct ethhdr tmp;
555 	u16 hdrlen;
556 	u8 mesh_flags = 0;
557 
558 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559 		return -1;
560 
561 	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562 	if (skb->len < hdrlen)
563 		return -1;
564 
565 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
566 	 * header
567 	 * IEEE 802.11 address fields:
568 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569 	 *   0     0   DA    SA    BSSID n/a
570 	 *   0     1   DA    BSSID SA    n/a
571 	 *   1     0   BSSID SA    DA    n/a
572 	 *   1     1   RA    TA    DA    SA
573 	 */
574 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576 
577 	if (iftype == NL80211_IFTYPE_MESH_POINT &&
578 	    skb_copy_bits(skb, hdrlen, &mesh_flags, 1) < 0)
579 		return -1;
580 
581 	mesh_flags &= MESH_FLAGS_AE;
582 
583 	switch (hdr->frame_control &
584 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
585 	case cpu_to_le16(IEEE80211_FCTL_TODS):
586 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
587 			     iftype != NL80211_IFTYPE_AP_VLAN &&
588 			     iftype != NL80211_IFTYPE_P2P_GO))
589 			return -1;
590 		break;
591 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
592 		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
593 			     iftype != NL80211_IFTYPE_AP_VLAN &&
594 			     iftype != NL80211_IFTYPE_STATION))
595 			return -1;
596 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
597 			if (mesh_flags == MESH_FLAGS_AE_A4)
598 				return -1;
599 			if (mesh_flags == MESH_FLAGS_AE_A5_A6 &&
600 			    skb_copy_bits(skb, hdrlen +
601 					  offsetof(struct ieee80211s_hdr, eaddr1),
602 					  tmp.h_dest, 2 * ETH_ALEN) < 0)
603 				return -1;
604 
605 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
606 		}
607 		break;
608 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
609 		if ((iftype != NL80211_IFTYPE_STATION &&
610 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
611 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
612 		    (is_multicast_ether_addr(tmp.h_dest) &&
613 		     ether_addr_equal(tmp.h_source, addr)))
614 			return -1;
615 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
616 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
617 				return -1;
618 			if (mesh_flags == MESH_FLAGS_AE_A4 &&
619 			    skb_copy_bits(skb, hdrlen +
620 					  offsetof(struct ieee80211s_hdr, eaddr1),
621 					  tmp.h_source, ETH_ALEN) < 0)
622 				return -1;
623 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
624 		}
625 		break;
626 	case cpu_to_le16(0):
627 		if (iftype != NL80211_IFTYPE_ADHOC &&
628 		    iftype != NL80211_IFTYPE_STATION &&
629 		    iftype != NL80211_IFTYPE_OCB)
630 				return -1;
631 		break;
632 	}
633 
634 	if (likely(skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
635 	           ((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
636 		     payload.proto != htons(ETH_P_AARP) &&
637 		     payload.proto != htons(ETH_P_IPX)) ||
638 		    ether_addr_equal(payload.hdr, bridge_tunnel_header)))) {
639 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
640 		 * replace EtherType */
641 		hdrlen += ETH_ALEN + 2;
642 		tmp.h_proto = payload.proto;
643 		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
644 	} else {
645 		tmp.h_proto = htons(skb->len - hdrlen);
646 	}
647 
648 	pskb_pull(skb, hdrlen);
649 
650 	if (!ehdr)
651 		ehdr = skb_push(skb, sizeof(struct ethhdr));
652 	memcpy(ehdr, &tmp, sizeof(tmp));
653 
654 	return 0;
655 }
656 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
657 
658 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)659 __frame_add_frag(struct sk_buff *skb, struct page *page,
660 		 void *ptr, int len, int size)
661 {
662 	struct skb_shared_info *sh = skb_shinfo(skb);
663 	int page_offset;
664 
665 	get_page(page);
666 	page_offset = ptr - page_address(page);
667 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
668 }
669 
670 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)671 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
672 			    int offset, int len)
673 {
674 	struct skb_shared_info *sh = skb_shinfo(skb);
675 	const skb_frag_t *frag = &sh->frags[0];
676 	struct page *frag_page;
677 	void *frag_ptr;
678 	int frag_len, frag_size;
679 	int head_size = skb->len - skb->data_len;
680 	int cur_len;
681 
682 	frag_page = virt_to_head_page(skb->head);
683 	frag_ptr = skb->data;
684 	frag_size = head_size;
685 
686 	while (offset >= frag_size) {
687 		offset -= frag_size;
688 		frag_page = skb_frag_page(frag);
689 		frag_ptr = skb_frag_address(frag);
690 		frag_size = skb_frag_size(frag);
691 		frag++;
692 	}
693 
694 	frag_ptr += offset;
695 	frag_len = frag_size - offset;
696 
697 	cur_len = min(len, frag_len);
698 
699 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
700 	len -= cur_len;
701 
702 	while (len > 0) {
703 		frag_len = skb_frag_size(frag);
704 		cur_len = min(len, frag_len);
705 		__frame_add_frag(frame, skb_frag_page(frag),
706 				 skb_frag_address(frag), cur_len, frag_len);
707 		len -= cur_len;
708 		frag++;
709 	}
710 }
711 
712 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)713 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
714 		       int offset, int len, bool reuse_frag)
715 {
716 	struct sk_buff *frame;
717 	int cur_len = len;
718 
719 	if (skb->len - offset < len)
720 		return NULL;
721 
722 	/*
723 	 * When reusing framents, copy some data to the head to simplify
724 	 * ethernet header handling and speed up protocol header processing
725 	 * in the stack later.
726 	 */
727 	if (reuse_frag)
728 		cur_len = min_t(int, len, 32);
729 
730 	/*
731 	 * Allocate and reserve two bytes more for payload
732 	 * alignment since sizeof(struct ethhdr) is 14.
733 	 */
734 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
735 	if (!frame)
736 		return NULL;
737 
738 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
739 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
740 
741 	len -= cur_len;
742 	if (!len)
743 		return frame;
744 
745 	offset += cur_len;
746 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
747 
748 	return frame;
749 }
750 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)751 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
752 			      const u8 *addr, enum nl80211_iftype iftype,
753 			      const unsigned int extra_headroom,
754 			      const u8 *check_da, const u8 *check_sa)
755 {
756 	unsigned int hlen = ALIGN(extra_headroom, 4);
757 	struct sk_buff *frame = NULL;
758 	u16 ethertype;
759 	u8 *payload;
760 	int offset = 0, remaining;
761 	struct ethhdr eth;
762 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
763 	bool reuse_skb = false;
764 	bool last = false;
765 
766 	while (!last) {
767 		unsigned int subframe_len;
768 		int len;
769 		u8 padding;
770 
771 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
772 		len = ntohs(eth.h_proto);
773 		subframe_len = sizeof(struct ethhdr) + len;
774 		padding = (4 - subframe_len) & 0x3;
775 
776 		/* the last MSDU has no padding */
777 		remaining = skb->len - offset;
778 		if (subframe_len > remaining)
779 			goto purge;
780 		/* mitigate A-MSDU aggregation injection attacks */
781 		if (ether_addr_equal(eth.h_dest, rfc1042_header))
782 			goto purge;
783 
784 		offset += sizeof(struct ethhdr);
785 		last = remaining <= subframe_len + padding;
786 
787 		/* FIXME: should we really accept multicast DA? */
788 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
789 		     !ether_addr_equal(check_da, eth.h_dest)) ||
790 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
791 			offset += len + padding;
792 			continue;
793 		}
794 
795 		/* reuse skb for the last subframe */
796 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
797 			skb_pull(skb, offset);
798 			frame = skb;
799 			reuse_skb = true;
800 		} else {
801 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
802 						       reuse_frag);
803 			if (!frame)
804 				goto purge;
805 
806 			offset += len + padding;
807 		}
808 
809 		skb_reset_network_header(frame);
810 		frame->dev = skb->dev;
811 		frame->priority = skb->priority;
812 
813 		payload = frame->data;
814 		ethertype = (payload[6] << 8) | payload[7];
815 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
816 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
817 			   ether_addr_equal(payload, bridge_tunnel_header))) {
818 			eth.h_proto = htons(ethertype);
819 			skb_pull(frame, ETH_ALEN + 2);
820 		}
821 
822 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
823 		__skb_queue_tail(list, frame);
824 	}
825 
826 	if (!reuse_skb)
827 		dev_kfree_skb(skb);
828 
829 	return;
830 
831  purge:
832 	__skb_queue_purge(list);
833 	dev_kfree_skb(skb);
834 }
835 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
836 
837 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)838 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
839 				    struct cfg80211_qos_map *qos_map)
840 {
841 	unsigned int dscp;
842 	unsigned char vlan_priority;
843 	unsigned int ret;
844 
845 	/* skb->priority values from 256->263 are magic values to
846 	 * directly indicate a specific 802.1d priority.  This is used
847 	 * to allow 802.1d priority to be passed directly in from VLAN
848 	 * tags, etc.
849 	 */
850 	if (skb->priority >= 256 && skb->priority <= 263) {
851 		ret = skb->priority - 256;
852 		goto out;
853 	}
854 
855 	if (skb_vlan_tag_present(skb)) {
856 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
857 			>> VLAN_PRIO_SHIFT;
858 		if (vlan_priority > 0) {
859 			ret = vlan_priority;
860 			goto out;
861 		}
862 	}
863 
864 	switch (skb->protocol) {
865 	case htons(ETH_P_IP):
866 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
867 		break;
868 	case htons(ETH_P_IPV6):
869 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
870 		break;
871 	case htons(ETH_P_MPLS_UC):
872 	case htons(ETH_P_MPLS_MC): {
873 		struct mpls_label mpls_tmp, *mpls;
874 
875 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
876 					  sizeof(*mpls), &mpls_tmp);
877 		if (!mpls)
878 			return 0;
879 
880 		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
881 			>> MPLS_LS_TC_SHIFT;
882 		goto out;
883 	}
884 	case htons(ETH_P_80221):
885 		/* 802.21 is always network control traffic */
886 		return 7;
887 	default:
888 		return 0;
889 	}
890 
891 	if (qos_map) {
892 		unsigned int i, tmp_dscp = dscp >> 2;
893 
894 		for (i = 0; i < qos_map->num_des; i++) {
895 			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
896 				ret = qos_map->dscp_exception[i].up;
897 				goto out;
898 			}
899 		}
900 
901 		for (i = 0; i < 8; i++) {
902 			if (tmp_dscp >= qos_map->up[i].low &&
903 			    tmp_dscp <= qos_map->up[i].high) {
904 				ret = i;
905 				goto out;
906 			}
907 		}
908 	}
909 
910 	ret = dscp >> 5;
911 out:
912 	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
913 }
914 EXPORT_SYMBOL(cfg80211_classify8021d);
915 
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)916 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
917 {
918 	const struct cfg80211_bss_ies *ies;
919 
920 	ies = rcu_dereference(bss->ies);
921 	if (!ies)
922 		return NULL;
923 
924 	return cfg80211_find_elem(id, ies->data, ies->len);
925 }
926 EXPORT_SYMBOL(ieee80211_bss_get_elem);
927 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)928 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
929 {
930 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
931 	struct net_device *dev = wdev->netdev;
932 	int i;
933 
934 	if (!wdev->connect_keys)
935 		return;
936 
937 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
938 		if (!wdev->connect_keys->params[i].cipher)
939 			continue;
940 		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
941 				 &wdev->connect_keys->params[i])) {
942 			netdev_err(dev, "failed to set key %d\n", i);
943 			continue;
944 		}
945 		if (wdev->connect_keys->def == i &&
946 		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
947 			netdev_err(dev, "failed to set defkey %d\n", i);
948 			continue;
949 		}
950 	}
951 
952 	kfree_sensitive(wdev->connect_keys);
953 	wdev->connect_keys = NULL;
954 }
955 
cfg80211_process_wdev_events(struct wireless_dev * wdev)956 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
957 {
958 	struct cfg80211_event *ev;
959 	unsigned long flags;
960 
961 	spin_lock_irqsave(&wdev->event_lock, flags);
962 	while (!list_empty(&wdev->event_list)) {
963 		ev = list_first_entry(&wdev->event_list,
964 				      struct cfg80211_event, list);
965 		list_del(&ev->list);
966 		spin_unlock_irqrestore(&wdev->event_lock, flags);
967 
968 		wdev_lock(wdev);
969 		switch (ev->type) {
970 		case EVENT_CONNECT_RESULT:
971 			__cfg80211_connect_result(
972 				wdev->netdev,
973 				&ev->cr,
974 				ev->cr.status == WLAN_STATUS_SUCCESS);
975 			break;
976 		case EVENT_ROAMED:
977 			__cfg80211_roamed(wdev, &ev->rm);
978 			break;
979 		case EVENT_DISCONNECTED:
980 			__cfg80211_disconnected(wdev->netdev,
981 						ev->dc.ie, ev->dc.ie_len,
982 						ev->dc.reason,
983 						!ev->dc.locally_generated);
984 			break;
985 		case EVENT_IBSS_JOINED:
986 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
987 					       ev->ij.channel);
988 			break;
989 		case EVENT_STOPPED:
990 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
991 			break;
992 		case EVENT_PORT_AUTHORIZED:
993 			__cfg80211_port_authorized(wdev, ev->pa.peer_addr,
994 						   ev->pa.td_bitmap,
995 						   ev->pa.td_bitmap_len);
996 			break;
997 		}
998 		wdev_unlock(wdev);
999 
1000 		kfree(ev);
1001 
1002 		spin_lock_irqsave(&wdev->event_lock, flags);
1003 	}
1004 	spin_unlock_irqrestore(&wdev->event_lock, flags);
1005 }
1006 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1007 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1008 {
1009 	struct wireless_dev *wdev;
1010 
1011 	lockdep_assert_held(&rdev->wiphy.mtx);
1012 
1013 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1014 		cfg80211_process_wdev_events(wdev);
1015 }
1016 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1017 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1018 			  struct net_device *dev, enum nl80211_iftype ntype,
1019 			  struct vif_params *params)
1020 {
1021 	int err;
1022 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1023 
1024 	lockdep_assert_held(&rdev->wiphy.mtx);
1025 
1026 	/* don't support changing VLANs, you just re-create them */
1027 	if (otype == NL80211_IFTYPE_AP_VLAN)
1028 		return -EOPNOTSUPP;
1029 
1030 	/* cannot change into P2P device or NAN */
1031 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1032 	    ntype == NL80211_IFTYPE_NAN)
1033 		return -EOPNOTSUPP;
1034 
1035 	if (!rdev->ops->change_virtual_intf ||
1036 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1037 		return -EOPNOTSUPP;
1038 
1039 	if (ntype != otype) {
1040 		/* if it's part of a bridge, reject changing type to station/ibss */
1041 		if (netif_is_bridge_port(dev) &&
1042 		    (ntype == NL80211_IFTYPE_ADHOC ||
1043 		     ntype == NL80211_IFTYPE_STATION ||
1044 		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1045 			return -EBUSY;
1046 
1047 		dev->ieee80211_ptr->use_4addr = false;
1048 		wdev_lock(dev->ieee80211_ptr);
1049 		rdev_set_qos_map(rdev, dev, NULL);
1050 		wdev_unlock(dev->ieee80211_ptr);
1051 
1052 		switch (otype) {
1053 		case NL80211_IFTYPE_AP:
1054 		case NL80211_IFTYPE_P2P_GO:
1055 			cfg80211_stop_ap(rdev, dev, -1, true);
1056 			break;
1057 		case NL80211_IFTYPE_ADHOC:
1058 			cfg80211_leave_ibss(rdev, dev, false);
1059 			break;
1060 		case NL80211_IFTYPE_STATION:
1061 		case NL80211_IFTYPE_P2P_CLIENT:
1062 			wdev_lock(dev->ieee80211_ptr);
1063 			cfg80211_disconnect(rdev, dev,
1064 					    WLAN_REASON_DEAUTH_LEAVING, true);
1065 			wdev_unlock(dev->ieee80211_ptr);
1066 			break;
1067 		case NL80211_IFTYPE_MESH_POINT:
1068 			/* mesh should be handled? */
1069 			break;
1070 		case NL80211_IFTYPE_OCB:
1071 			cfg80211_leave_ocb(rdev, dev);
1072 			break;
1073 		default:
1074 			break;
1075 		}
1076 
1077 		cfg80211_process_rdev_events(rdev);
1078 		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1079 
1080 		memset(&dev->ieee80211_ptr->u, 0,
1081 		       sizeof(dev->ieee80211_ptr->u));
1082 		memset(&dev->ieee80211_ptr->links, 0,
1083 		       sizeof(dev->ieee80211_ptr->links));
1084 	}
1085 
1086 	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1087 
1088 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1089 
1090 	if (!err && params && params->use_4addr != -1)
1091 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1092 
1093 	if (!err) {
1094 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1095 		switch (ntype) {
1096 		case NL80211_IFTYPE_STATION:
1097 			if (dev->ieee80211_ptr->use_4addr)
1098 				break;
1099 			fallthrough;
1100 		case NL80211_IFTYPE_OCB:
1101 		case NL80211_IFTYPE_P2P_CLIENT:
1102 		case NL80211_IFTYPE_ADHOC:
1103 			dev->priv_flags |= IFF_DONT_BRIDGE;
1104 			break;
1105 		case NL80211_IFTYPE_P2P_GO:
1106 		case NL80211_IFTYPE_AP:
1107 		case NL80211_IFTYPE_AP_VLAN:
1108 		case NL80211_IFTYPE_MESH_POINT:
1109 			/* bridging OK */
1110 			break;
1111 		case NL80211_IFTYPE_MONITOR:
1112 			/* monitor can't bridge anyway */
1113 			break;
1114 		case NL80211_IFTYPE_UNSPECIFIED:
1115 		case NUM_NL80211_IFTYPES:
1116 			/* not happening */
1117 			break;
1118 		case NL80211_IFTYPE_P2P_DEVICE:
1119 		case NL80211_IFTYPE_WDS:
1120 		case NL80211_IFTYPE_NAN:
1121 			WARN_ON(1);
1122 			break;
1123 		}
1124 	}
1125 
1126 	if (!err && ntype != otype && netif_running(dev)) {
1127 		cfg80211_update_iface_num(rdev, ntype, 1);
1128 		cfg80211_update_iface_num(rdev, otype, -1);
1129 	}
1130 
1131 	return err;
1132 }
1133 
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1134 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1135 {
1136 	int modulation, streams, bitrate;
1137 
1138 	/* the formula below does only work for MCS values smaller than 32 */
1139 	if (WARN_ON_ONCE(rate->mcs >= 32))
1140 		return 0;
1141 
1142 	modulation = rate->mcs & 7;
1143 	streams = (rate->mcs >> 3) + 1;
1144 
1145 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1146 
1147 	if (modulation < 4)
1148 		bitrate *= (modulation + 1);
1149 	else if (modulation == 4)
1150 		bitrate *= (modulation + 2);
1151 	else
1152 		bitrate *= (modulation + 3);
1153 
1154 	bitrate *= streams;
1155 
1156 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1157 		bitrate = (bitrate / 9) * 10;
1158 
1159 	/* do NOT round down here */
1160 	return (bitrate + 50000) / 100000;
1161 }
1162 
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1163 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1164 {
1165 	static const u32 __mcs2bitrate[] = {
1166 		/* control PHY */
1167 		[0] =   275,
1168 		/* SC PHY */
1169 		[1] =  3850,
1170 		[2] =  7700,
1171 		[3] =  9625,
1172 		[4] = 11550,
1173 		[5] = 12512, /* 1251.25 mbps */
1174 		[6] = 15400,
1175 		[7] = 19250,
1176 		[8] = 23100,
1177 		[9] = 25025,
1178 		[10] = 30800,
1179 		[11] = 38500,
1180 		[12] = 46200,
1181 		/* OFDM PHY */
1182 		[13] =  6930,
1183 		[14] =  8662, /* 866.25 mbps */
1184 		[15] = 13860,
1185 		[16] = 17325,
1186 		[17] = 20790,
1187 		[18] = 27720,
1188 		[19] = 34650,
1189 		[20] = 41580,
1190 		[21] = 45045,
1191 		[22] = 51975,
1192 		[23] = 62370,
1193 		[24] = 67568, /* 6756.75 mbps */
1194 		/* LP-SC PHY */
1195 		[25] =  6260,
1196 		[26] =  8340,
1197 		[27] = 11120,
1198 		[28] = 12510,
1199 		[29] = 16680,
1200 		[30] = 22240,
1201 		[31] = 25030,
1202 	};
1203 
1204 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1205 		return 0;
1206 
1207 	return __mcs2bitrate[rate->mcs];
1208 }
1209 
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1210 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1211 {
1212 	static const u32 __mcs2bitrate[] = {
1213 		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1214 		[7 - 6] = 50050, /* MCS 12.1 */
1215 		[8 - 6] = 53900,
1216 		[9 - 6] = 57750,
1217 		[10 - 6] = 63900,
1218 		[11 - 6] = 75075,
1219 		[12 - 6] = 80850,
1220 	};
1221 
1222 	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1223 	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1224 		return 0;
1225 
1226 	return __mcs2bitrate[rate->mcs - 6];
1227 }
1228 
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1229 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1230 {
1231 	static const u32 __mcs2bitrate[] = {
1232 		/* control PHY */
1233 		[0] =   275,
1234 		/* SC PHY */
1235 		[1] =  3850,
1236 		[2] =  7700,
1237 		[3] =  9625,
1238 		[4] = 11550,
1239 		[5] = 12512, /* 1251.25 mbps */
1240 		[6] = 13475,
1241 		[7] = 15400,
1242 		[8] = 19250,
1243 		[9] = 23100,
1244 		[10] = 25025,
1245 		[11] = 26950,
1246 		[12] = 30800,
1247 		[13] = 38500,
1248 		[14] = 46200,
1249 		[15] = 50050,
1250 		[16] = 53900,
1251 		[17] = 57750,
1252 		[18] = 69300,
1253 		[19] = 75075,
1254 		[20] = 80850,
1255 	};
1256 
1257 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1258 		return 0;
1259 
1260 	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1261 }
1262 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1263 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1264 {
1265 	static const u32 base[4][12] = {
1266 		{   6500000,
1267 		   13000000,
1268 		   19500000,
1269 		   26000000,
1270 		   39000000,
1271 		   52000000,
1272 		   58500000,
1273 		   65000000,
1274 		   78000000,
1275 		/* not in the spec, but some devices use this: */
1276 		   86700000,
1277 		   97500000,
1278 		  108300000,
1279 		},
1280 		{  13500000,
1281 		   27000000,
1282 		   40500000,
1283 		   54000000,
1284 		   81000000,
1285 		  108000000,
1286 		  121500000,
1287 		  135000000,
1288 		  162000000,
1289 		  180000000,
1290 		  202500000,
1291 		  225000000,
1292 		},
1293 		{  29300000,
1294 		   58500000,
1295 		   87800000,
1296 		  117000000,
1297 		  175500000,
1298 		  234000000,
1299 		  263300000,
1300 		  292500000,
1301 		  351000000,
1302 		  390000000,
1303 		  438800000,
1304 		  487500000,
1305 		},
1306 		{  58500000,
1307 		  117000000,
1308 		  175500000,
1309 		  234000000,
1310 		  351000000,
1311 		  468000000,
1312 		  526500000,
1313 		  585000000,
1314 		  702000000,
1315 		  780000000,
1316 		  877500000,
1317 		  975000000,
1318 		},
1319 	};
1320 	u32 bitrate;
1321 	int idx;
1322 
1323 	if (rate->mcs > 11)
1324 		goto warn;
1325 
1326 	switch (rate->bw) {
1327 	case RATE_INFO_BW_160:
1328 		idx = 3;
1329 		break;
1330 	case RATE_INFO_BW_80:
1331 		idx = 2;
1332 		break;
1333 	case RATE_INFO_BW_40:
1334 		idx = 1;
1335 		break;
1336 	case RATE_INFO_BW_5:
1337 	case RATE_INFO_BW_10:
1338 	default:
1339 		goto warn;
1340 	case RATE_INFO_BW_20:
1341 		idx = 0;
1342 	}
1343 
1344 	bitrate = base[idx][rate->mcs];
1345 	bitrate *= rate->nss;
1346 
1347 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1348 		bitrate = (bitrate / 9) * 10;
1349 
1350 	/* do NOT round down here */
1351 	return (bitrate + 50000) / 100000;
1352  warn:
1353 	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1354 		  rate->bw, rate->mcs, rate->nss);
1355 	return 0;
1356 }
1357 
cfg80211_calculate_bitrate_he(struct rate_info * rate)1358 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1359 {
1360 #define SCALE 6144
1361 	u32 mcs_divisors[14] = {
1362 		102399, /* 16.666666... */
1363 		 51201, /*  8.333333... */
1364 		 34134, /*  5.555555... */
1365 		 25599, /*  4.166666... */
1366 		 17067, /*  2.777777... */
1367 		 12801, /*  2.083333... */
1368 		 11377, /*  1.851725... */
1369 		 10239, /*  1.666666... */
1370 		  8532, /*  1.388888... */
1371 		  7680, /*  1.250000... */
1372 		  6828, /*  1.111111... */
1373 		  6144, /*  1.000000... */
1374 		  5690, /*  0.926106... */
1375 		  5120, /*  0.833333... */
1376 	};
1377 	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1378 	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1379 	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1380 	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1381 	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1382 	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1383 	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1384 	u64 tmp;
1385 	u32 result;
1386 
1387 	if (WARN_ON_ONCE(rate->mcs > 13))
1388 		return 0;
1389 
1390 	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1391 		return 0;
1392 	if (WARN_ON_ONCE(rate->he_ru_alloc >
1393 			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1394 		return 0;
1395 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1396 		return 0;
1397 
1398 	if (rate->bw == RATE_INFO_BW_160)
1399 		result = rates_160M[rate->he_gi];
1400 	else if (rate->bw == RATE_INFO_BW_80 ||
1401 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1402 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1403 		result = rates_969[rate->he_gi];
1404 	else if (rate->bw == RATE_INFO_BW_40 ||
1405 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1406 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1407 		result = rates_484[rate->he_gi];
1408 	else if (rate->bw == RATE_INFO_BW_20 ||
1409 		 (rate->bw == RATE_INFO_BW_HE_RU &&
1410 		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1411 		result = rates_242[rate->he_gi];
1412 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1413 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1414 		result = rates_106[rate->he_gi];
1415 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1416 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1417 		result = rates_52[rate->he_gi];
1418 	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1419 		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1420 		result = rates_26[rate->he_gi];
1421 	else {
1422 		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1423 		     rate->bw, rate->he_ru_alloc);
1424 		return 0;
1425 	}
1426 
1427 	/* now scale to the appropriate MCS */
1428 	tmp = result;
1429 	tmp *= SCALE;
1430 	do_div(tmp, mcs_divisors[rate->mcs]);
1431 	result = tmp;
1432 
1433 	/* and take NSS, DCM into account */
1434 	result = (result * rate->nss) / 8;
1435 	if (rate->he_dcm)
1436 		result /= 2;
1437 
1438 	return result / 10000;
1439 }
1440 
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1441 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1442 {
1443 #define SCALE 6144
1444 	static const u32 mcs_divisors[16] = {
1445 		102399, /* 16.666666... */
1446 		 51201, /*  8.333333... */
1447 		 34134, /*  5.555555... */
1448 		 25599, /*  4.166666... */
1449 		 17067, /*  2.777777... */
1450 		 12801, /*  2.083333... */
1451 		 11377, /*  1.851725... */
1452 		 10239, /*  1.666666... */
1453 		  8532, /*  1.388888... */
1454 		  7680, /*  1.250000... */
1455 		  6828, /*  1.111111... */
1456 		  6144, /*  1.000000... */
1457 		  5690, /*  0.926106... */
1458 		  5120, /*  0.833333... */
1459 		409600, /* 66.666666... */
1460 		204800, /* 33.333333... */
1461 	};
1462 	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1463 	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1464 	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1465 	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1466 	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1467 	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1468 	u64 tmp;
1469 	u32 result;
1470 
1471 	if (WARN_ON_ONCE(rate->mcs > 15))
1472 		return 0;
1473 	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1474 		return 0;
1475 	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1476 			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1477 		return 0;
1478 	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1479 		return 0;
1480 
1481 	/* Bandwidth checks for MCS 14 */
1482 	if (rate->mcs == 14) {
1483 		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1484 		     rate->bw != RATE_INFO_BW_80 &&
1485 		     rate->bw != RATE_INFO_BW_160 &&
1486 		     rate->bw != RATE_INFO_BW_320) ||
1487 		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1488 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1489 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1490 		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1491 			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1492 			     rate->bw, rate->eht_ru_alloc);
1493 			return 0;
1494 		}
1495 	}
1496 
1497 	if (rate->bw == RATE_INFO_BW_320 ||
1498 	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1499 	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1500 		result = 4 * rates_996[rate->eht_gi];
1501 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1502 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1503 		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1504 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1505 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1506 		result = 3 * rates_996[rate->eht_gi];
1507 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1508 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1509 		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1510 	else if (rate->bw == RATE_INFO_BW_160 ||
1511 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1512 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1513 		result = 2 * rates_996[rate->eht_gi];
1514 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1515 		 rate->eht_ru_alloc ==
1516 		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1517 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1518 			 + rates_242[rate->eht_gi];
1519 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1520 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1521 		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1522 	else if (rate->bw == RATE_INFO_BW_80 ||
1523 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1524 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1525 		result = rates_996[rate->eht_gi];
1526 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1527 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1528 		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1529 	else if (rate->bw == RATE_INFO_BW_40 ||
1530 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1531 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1532 		result = rates_484[rate->eht_gi];
1533 	else if (rate->bw == RATE_INFO_BW_20 ||
1534 		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1535 		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1536 		result = rates_242[rate->eht_gi];
1537 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1538 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1539 		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1540 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1541 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1542 		result = rates_106[rate->eht_gi];
1543 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1544 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1545 		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1546 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1547 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1548 		result = rates_52[rate->eht_gi];
1549 	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1550 		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1551 		result = rates_26[rate->eht_gi];
1552 	else {
1553 		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1554 		     rate->bw, rate->eht_ru_alloc);
1555 		return 0;
1556 	}
1557 
1558 	/* now scale to the appropriate MCS */
1559 	tmp = result;
1560 	tmp *= SCALE;
1561 	do_div(tmp, mcs_divisors[rate->mcs]);
1562 
1563 	/* and take NSS */
1564 	tmp *= rate->nss;
1565 	do_div(tmp, 8);
1566 
1567 	result = tmp;
1568 
1569 	return result / 10000;
1570 }
1571 
cfg80211_calculate_bitrate(struct rate_info * rate)1572 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1573 {
1574 	if (rate->flags & RATE_INFO_FLAGS_MCS)
1575 		return cfg80211_calculate_bitrate_ht(rate);
1576 	if (rate->flags & RATE_INFO_FLAGS_DMG)
1577 		return cfg80211_calculate_bitrate_dmg(rate);
1578 	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1579 		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1580 	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1581 		return cfg80211_calculate_bitrate_edmg(rate);
1582 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1583 		return cfg80211_calculate_bitrate_vht(rate);
1584 	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1585 		return cfg80211_calculate_bitrate_he(rate);
1586 	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1587 		return cfg80211_calculate_bitrate_eht(rate);
1588 
1589 	return rate->legacy;
1590 }
1591 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1592 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1593 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1594 			  enum ieee80211_p2p_attr_id attr,
1595 			  u8 *buf, unsigned int bufsize)
1596 {
1597 	u8 *out = buf;
1598 	u16 attr_remaining = 0;
1599 	bool desired_attr = false;
1600 	u16 desired_len = 0;
1601 
1602 	while (len > 0) {
1603 		unsigned int iedatalen;
1604 		unsigned int copy;
1605 		const u8 *iedata;
1606 
1607 		if (len < 2)
1608 			return -EILSEQ;
1609 		iedatalen = ies[1];
1610 		if (iedatalen + 2 > len)
1611 			return -EILSEQ;
1612 
1613 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1614 			goto cont;
1615 
1616 		if (iedatalen < 4)
1617 			goto cont;
1618 
1619 		iedata = ies + 2;
1620 
1621 		/* check WFA OUI, P2P subtype */
1622 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1623 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1624 			goto cont;
1625 
1626 		iedatalen -= 4;
1627 		iedata += 4;
1628 
1629 		/* check attribute continuation into this IE */
1630 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1631 		if (copy && desired_attr) {
1632 			desired_len += copy;
1633 			if (out) {
1634 				memcpy(out, iedata, min(bufsize, copy));
1635 				out += min(bufsize, copy);
1636 				bufsize -= min(bufsize, copy);
1637 			}
1638 
1639 
1640 			if (copy == attr_remaining)
1641 				return desired_len;
1642 		}
1643 
1644 		attr_remaining -= copy;
1645 		if (attr_remaining)
1646 			goto cont;
1647 
1648 		iedatalen -= copy;
1649 		iedata += copy;
1650 
1651 		while (iedatalen > 0) {
1652 			u16 attr_len;
1653 
1654 			/* P2P attribute ID & size must fit */
1655 			if (iedatalen < 3)
1656 				return -EILSEQ;
1657 			desired_attr = iedata[0] == attr;
1658 			attr_len = get_unaligned_le16(iedata + 1);
1659 			iedatalen -= 3;
1660 			iedata += 3;
1661 
1662 			copy = min_t(unsigned int, attr_len, iedatalen);
1663 
1664 			if (desired_attr) {
1665 				desired_len += copy;
1666 				if (out) {
1667 					memcpy(out, iedata, min(bufsize, copy));
1668 					out += min(bufsize, copy);
1669 					bufsize -= min(bufsize, copy);
1670 				}
1671 
1672 				if (copy == attr_len)
1673 					return desired_len;
1674 			}
1675 
1676 			iedata += copy;
1677 			iedatalen -= copy;
1678 			attr_remaining = attr_len - copy;
1679 		}
1680 
1681  cont:
1682 		len -= ies[1] + 2;
1683 		ies += ies[1] + 2;
1684 	}
1685 
1686 	if (attr_remaining && desired_attr)
1687 		return -EILSEQ;
1688 
1689 	return -ENOENT;
1690 }
1691 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1692 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1693 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1694 {
1695 	int i;
1696 
1697 	/* Make sure array values are legal */
1698 	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1699 		return false;
1700 
1701 	i = 0;
1702 	while (i < n_ids) {
1703 		if (ids[i] == WLAN_EID_EXTENSION) {
1704 			if (id_ext && (ids[i + 1] == id))
1705 				return true;
1706 
1707 			i += 2;
1708 			continue;
1709 		}
1710 
1711 		if (ids[i] == id && !id_ext)
1712 			return true;
1713 
1714 		i++;
1715 	}
1716 	return false;
1717 }
1718 
skip_ie(const u8 * ies,size_t ielen,size_t pos)1719 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1720 {
1721 	/* we assume a validly formed IEs buffer */
1722 	u8 len = ies[pos + 1];
1723 
1724 	pos += 2 + len;
1725 
1726 	/* the IE itself must have 255 bytes for fragments to follow */
1727 	if (len < 255)
1728 		return pos;
1729 
1730 	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1731 		len = ies[pos + 1];
1732 		pos += 2 + len;
1733 	}
1734 
1735 	return pos;
1736 }
1737 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1738 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1739 			      const u8 *ids, int n_ids,
1740 			      const u8 *after_ric, int n_after_ric,
1741 			      size_t offset)
1742 {
1743 	size_t pos = offset;
1744 
1745 	while (pos < ielen) {
1746 		u8 ext = 0;
1747 
1748 		if (ies[pos] == WLAN_EID_EXTENSION)
1749 			ext = 2;
1750 		if ((pos + ext) >= ielen)
1751 			break;
1752 
1753 		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1754 					  ies[pos] == WLAN_EID_EXTENSION))
1755 			break;
1756 
1757 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1758 			pos = skip_ie(ies, ielen, pos);
1759 
1760 			while (pos < ielen) {
1761 				if (ies[pos] == WLAN_EID_EXTENSION)
1762 					ext = 2;
1763 				else
1764 					ext = 0;
1765 
1766 				if ((pos + ext) >= ielen)
1767 					break;
1768 
1769 				if (!ieee80211_id_in_list(after_ric,
1770 							  n_after_ric,
1771 							  ies[pos + ext],
1772 							  ext == 2))
1773 					pos = skip_ie(ies, ielen, pos);
1774 				else
1775 					break;
1776 			}
1777 		} else {
1778 			pos = skip_ie(ies, ielen, pos);
1779 		}
1780 	}
1781 
1782 	return pos;
1783 }
1784 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1785 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1786 bool ieee80211_operating_class_to_band(u8 operating_class,
1787 				       enum nl80211_band *band)
1788 {
1789 	switch (operating_class) {
1790 	case 112:
1791 	case 115 ... 127:
1792 	case 128 ... 130:
1793 		*band = NL80211_BAND_5GHZ;
1794 		return true;
1795 	case 131 ... 135:
1796 		*band = NL80211_BAND_6GHZ;
1797 		return true;
1798 	case 81:
1799 	case 82:
1800 	case 83:
1801 	case 84:
1802 		*band = NL80211_BAND_2GHZ;
1803 		return true;
1804 	case 180:
1805 		*band = NL80211_BAND_60GHZ;
1806 		return true;
1807 	}
1808 
1809 	return false;
1810 }
1811 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1812 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1813 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1814 					  u8 *op_class)
1815 {
1816 	u8 vht_opclass;
1817 	u32 freq = chandef->center_freq1;
1818 
1819 	if (freq >= 2412 && freq <= 2472) {
1820 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1821 			return false;
1822 
1823 		/* 2.407 GHz, channels 1..13 */
1824 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1825 			if (freq > chandef->chan->center_freq)
1826 				*op_class = 83; /* HT40+ */
1827 			else
1828 				*op_class = 84; /* HT40- */
1829 		} else {
1830 			*op_class = 81;
1831 		}
1832 
1833 		return true;
1834 	}
1835 
1836 	if (freq == 2484) {
1837 		/* channel 14 is only for IEEE 802.11b */
1838 		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1839 			return false;
1840 
1841 		*op_class = 82; /* channel 14 */
1842 		return true;
1843 	}
1844 
1845 	switch (chandef->width) {
1846 	case NL80211_CHAN_WIDTH_80:
1847 		vht_opclass = 128;
1848 		break;
1849 	case NL80211_CHAN_WIDTH_160:
1850 		vht_opclass = 129;
1851 		break;
1852 	case NL80211_CHAN_WIDTH_80P80:
1853 		vht_opclass = 130;
1854 		break;
1855 	case NL80211_CHAN_WIDTH_10:
1856 	case NL80211_CHAN_WIDTH_5:
1857 		return false; /* unsupported for now */
1858 	default:
1859 		vht_opclass = 0;
1860 		break;
1861 	}
1862 
1863 	/* 5 GHz, channels 36..48 */
1864 	if (freq >= 5180 && freq <= 5240) {
1865 		if (vht_opclass) {
1866 			*op_class = vht_opclass;
1867 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1868 			if (freq > chandef->chan->center_freq)
1869 				*op_class = 116;
1870 			else
1871 				*op_class = 117;
1872 		} else {
1873 			*op_class = 115;
1874 		}
1875 
1876 		return true;
1877 	}
1878 
1879 	/* 5 GHz, channels 52..64 */
1880 	if (freq >= 5260 && freq <= 5320) {
1881 		if (vht_opclass) {
1882 			*op_class = vht_opclass;
1883 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1884 			if (freq > chandef->chan->center_freq)
1885 				*op_class = 119;
1886 			else
1887 				*op_class = 120;
1888 		} else {
1889 			*op_class = 118;
1890 		}
1891 
1892 		return true;
1893 	}
1894 
1895 	/* 5 GHz, channels 100..144 */
1896 	if (freq >= 5500 && freq <= 5720) {
1897 		if (vht_opclass) {
1898 			*op_class = vht_opclass;
1899 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1900 			if (freq > chandef->chan->center_freq)
1901 				*op_class = 122;
1902 			else
1903 				*op_class = 123;
1904 		} else {
1905 			*op_class = 121;
1906 		}
1907 
1908 		return true;
1909 	}
1910 
1911 	/* 5 GHz, channels 149..169 */
1912 	if (freq >= 5745 && freq <= 5845) {
1913 		if (vht_opclass) {
1914 			*op_class = vht_opclass;
1915 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1916 			if (freq > chandef->chan->center_freq)
1917 				*op_class = 126;
1918 			else
1919 				*op_class = 127;
1920 		} else if (freq <= 5805) {
1921 			*op_class = 124;
1922 		} else {
1923 			*op_class = 125;
1924 		}
1925 
1926 		return true;
1927 	}
1928 
1929 	/* 56.16 GHz, channel 1..4 */
1930 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1931 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1932 			return false;
1933 
1934 		*op_class = 180;
1935 		return true;
1936 	}
1937 
1938 	/* not supported yet */
1939 	return false;
1940 }
1941 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1942 
cfg80211_wdev_bi(struct wireless_dev * wdev)1943 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1944 {
1945 	switch (wdev->iftype) {
1946 	case NL80211_IFTYPE_AP:
1947 	case NL80211_IFTYPE_P2P_GO:
1948 		WARN_ON(wdev->valid_links);
1949 		return wdev->links[0].ap.beacon_interval;
1950 	case NL80211_IFTYPE_MESH_POINT:
1951 		return wdev->u.mesh.beacon_interval;
1952 	case NL80211_IFTYPE_ADHOC:
1953 		return wdev->u.ibss.beacon_interval;
1954 	default:
1955 		break;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1961 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1962 				       u32 *beacon_int_gcd,
1963 				       bool *beacon_int_different)
1964 {
1965 	struct wireless_dev *wdev;
1966 
1967 	*beacon_int_gcd = 0;
1968 	*beacon_int_different = false;
1969 
1970 	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1971 		int wdev_bi;
1972 
1973 		/* this feature isn't supported with MLO */
1974 		if (wdev->valid_links)
1975 			continue;
1976 
1977 		wdev_bi = cfg80211_wdev_bi(wdev);
1978 
1979 		if (!wdev_bi)
1980 			continue;
1981 
1982 		if (!*beacon_int_gcd) {
1983 			*beacon_int_gcd = wdev_bi;
1984 			continue;
1985 		}
1986 
1987 		if (wdev_bi == *beacon_int_gcd)
1988 			continue;
1989 
1990 		*beacon_int_different = true;
1991 		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1992 	}
1993 
1994 	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1995 		if (*beacon_int_gcd)
1996 			*beacon_int_different = true;
1997 		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1998 	}
1999 }
2000 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)2001 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2002 				 enum nl80211_iftype iftype, u32 beacon_int)
2003 {
2004 	/*
2005 	 * This is just a basic pre-condition check; if interface combinations
2006 	 * are possible the driver must already be checking those with a call
2007 	 * to cfg80211_check_combinations(), in which case we'll validate more
2008 	 * through the cfg80211_calculate_bi_data() call and code in
2009 	 * cfg80211_iter_combinations().
2010 	 */
2011 
2012 	if (beacon_int < 10 || beacon_int > 10000)
2013 		return -EINVAL;
2014 
2015 	return 0;
2016 }
2017 
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2018 int cfg80211_iter_combinations(struct wiphy *wiphy,
2019 			       struct iface_combination_params *params,
2020 			       void (*iter)(const struct ieee80211_iface_combination *c,
2021 					    void *data),
2022 			       void *data)
2023 {
2024 	const struct ieee80211_regdomain *regdom;
2025 	enum nl80211_dfs_regions region = 0;
2026 	int i, j, iftype;
2027 	int num_interfaces = 0;
2028 	u32 used_iftypes = 0;
2029 	u32 beacon_int_gcd;
2030 	bool beacon_int_different;
2031 
2032 	/*
2033 	 * This is a bit strange, since the iteration used to rely only on
2034 	 * the data given by the driver, but here it now relies on context,
2035 	 * in form of the currently operating interfaces.
2036 	 * This is OK for all current users, and saves us from having to
2037 	 * push the GCD calculations into all the drivers.
2038 	 * In the future, this should probably rely more on data that's in
2039 	 * cfg80211 already - the only thing not would appear to be any new
2040 	 * interfaces (while being brought up) and channel/radar data.
2041 	 */
2042 	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2043 				   &beacon_int_gcd, &beacon_int_different);
2044 
2045 	if (params->radar_detect) {
2046 		rcu_read_lock();
2047 		regdom = rcu_dereference(cfg80211_regdomain);
2048 		if (regdom)
2049 			region = regdom->dfs_region;
2050 		rcu_read_unlock();
2051 	}
2052 
2053 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2054 		num_interfaces += params->iftype_num[iftype];
2055 		if (params->iftype_num[iftype] > 0 &&
2056 		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2057 			used_iftypes |= BIT(iftype);
2058 	}
2059 
2060 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
2061 		const struct ieee80211_iface_combination *c;
2062 		struct ieee80211_iface_limit *limits;
2063 		u32 all_iftypes = 0;
2064 
2065 		c = &wiphy->iface_combinations[i];
2066 
2067 		if (num_interfaces > c->max_interfaces)
2068 			continue;
2069 		if (params->num_different_channels > c->num_different_channels)
2070 			continue;
2071 
2072 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2073 				 GFP_KERNEL);
2074 		if (!limits)
2075 			return -ENOMEM;
2076 
2077 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2078 			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2079 				continue;
2080 			for (j = 0; j < c->n_limits; j++) {
2081 				all_iftypes |= limits[j].types;
2082 				if (!(limits[j].types & BIT(iftype)))
2083 					continue;
2084 				if (limits[j].max < params->iftype_num[iftype])
2085 					goto cont;
2086 				limits[j].max -= params->iftype_num[iftype];
2087 			}
2088 		}
2089 
2090 		if (params->radar_detect !=
2091 			(c->radar_detect_widths & params->radar_detect))
2092 			goto cont;
2093 
2094 		if (params->radar_detect && c->radar_detect_regions &&
2095 		    !(c->radar_detect_regions & BIT(region)))
2096 			goto cont;
2097 
2098 		/* Finally check that all iftypes that we're currently
2099 		 * using are actually part of this combination. If they
2100 		 * aren't then we can't use this combination and have
2101 		 * to continue to the next.
2102 		 */
2103 		if ((all_iftypes & used_iftypes) != used_iftypes)
2104 			goto cont;
2105 
2106 		if (beacon_int_gcd) {
2107 			if (c->beacon_int_min_gcd &&
2108 			    beacon_int_gcd < c->beacon_int_min_gcd)
2109 				goto cont;
2110 			if (!c->beacon_int_min_gcd && beacon_int_different)
2111 				goto cont;
2112 		}
2113 
2114 		/* This combination covered all interface types and
2115 		 * supported the requested numbers, so we're good.
2116 		 */
2117 
2118 		(*iter)(c, data);
2119  cont:
2120 		kfree(limits);
2121 	}
2122 
2123 	return 0;
2124 }
2125 EXPORT_SYMBOL(cfg80211_iter_combinations);
2126 
2127 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2128 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2129 			  void *data)
2130 {
2131 	int *num = data;
2132 	(*num)++;
2133 }
2134 
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2135 int cfg80211_check_combinations(struct wiphy *wiphy,
2136 				struct iface_combination_params *params)
2137 {
2138 	int err, num = 0;
2139 
2140 	err = cfg80211_iter_combinations(wiphy, params,
2141 					 cfg80211_iter_sum_ifcombs, &num);
2142 	if (err)
2143 		return err;
2144 	if (num == 0)
2145 		return -EBUSY;
2146 
2147 	return 0;
2148 }
2149 EXPORT_SYMBOL(cfg80211_check_combinations);
2150 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2151 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2152 			   const u8 *rates, unsigned int n_rates,
2153 			   u32 *mask)
2154 {
2155 	int i, j;
2156 
2157 	if (!sband)
2158 		return -EINVAL;
2159 
2160 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2161 		return -EINVAL;
2162 
2163 	*mask = 0;
2164 
2165 	for (i = 0; i < n_rates; i++) {
2166 		int rate = (rates[i] & 0x7f) * 5;
2167 		bool found = false;
2168 
2169 		for (j = 0; j < sband->n_bitrates; j++) {
2170 			if (sband->bitrates[j].bitrate == rate) {
2171 				found = true;
2172 				*mask |= BIT(j);
2173 				break;
2174 			}
2175 		}
2176 		if (!found)
2177 			return -EINVAL;
2178 	}
2179 
2180 	/*
2181 	 * mask must have at least one bit set here since we
2182 	 * didn't accept a 0-length rates array nor allowed
2183 	 * entries in the array that didn't exist
2184 	 */
2185 
2186 	return 0;
2187 }
2188 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2189 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2190 {
2191 	enum nl80211_band band;
2192 	unsigned int n_channels = 0;
2193 
2194 	for (band = 0; band < NUM_NL80211_BANDS; band++)
2195 		if (wiphy->bands[band])
2196 			n_channels += wiphy->bands[band]->n_channels;
2197 
2198 	return n_channels;
2199 }
2200 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2201 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2202 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2203 			 struct station_info *sinfo)
2204 {
2205 	struct cfg80211_registered_device *rdev;
2206 	struct wireless_dev *wdev;
2207 
2208 	wdev = dev->ieee80211_ptr;
2209 	if (!wdev)
2210 		return -EOPNOTSUPP;
2211 
2212 	rdev = wiphy_to_rdev(wdev->wiphy);
2213 	if (!rdev->ops->get_station)
2214 		return -EOPNOTSUPP;
2215 
2216 	memset(sinfo, 0, sizeof(*sinfo));
2217 
2218 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2219 }
2220 EXPORT_SYMBOL(cfg80211_get_station);
2221 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2222 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2223 {
2224 	int i;
2225 
2226 	if (!f)
2227 		return;
2228 
2229 	kfree(f->serv_spec_info);
2230 	kfree(f->srf_bf);
2231 	kfree(f->srf_macs);
2232 	for (i = 0; i < f->num_rx_filters; i++)
2233 		kfree(f->rx_filters[i].filter);
2234 
2235 	for (i = 0; i < f->num_tx_filters; i++)
2236 		kfree(f->tx_filters[i].filter);
2237 
2238 	kfree(f->rx_filters);
2239 	kfree(f->tx_filters);
2240 	kfree(f);
2241 }
2242 EXPORT_SYMBOL(cfg80211_free_nan_func);
2243 
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2244 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2245 				u32 center_freq_khz, u32 bw_khz)
2246 {
2247 	u32 start_freq_khz, end_freq_khz;
2248 
2249 	start_freq_khz = center_freq_khz - (bw_khz / 2);
2250 	end_freq_khz = center_freq_khz + (bw_khz / 2);
2251 
2252 	if (start_freq_khz >= freq_range->start_freq_khz &&
2253 	    end_freq_khz <= freq_range->end_freq_khz)
2254 		return true;
2255 
2256 	return false;
2257 }
2258 
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2259 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2260 {
2261 	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2262 				sizeof(*(sinfo->pertid)),
2263 				gfp);
2264 	if (!sinfo->pertid)
2265 		return -ENOMEM;
2266 
2267 	return 0;
2268 }
2269 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2270 
2271 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2272 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2273 const unsigned char rfc1042_header[] __aligned(2) =
2274 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2275 EXPORT_SYMBOL(rfc1042_header);
2276 
2277 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2278 const unsigned char bridge_tunnel_header[] __aligned(2) =
2279 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2280 EXPORT_SYMBOL(bridge_tunnel_header);
2281 
2282 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2283 struct iapp_layer2_update {
2284 	u8 da[ETH_ALEN];	/* broadcast */
2285 	u8 sa[ETH_ALEN];	/* STA addr */
2286 	__be16 len;		/* 6 */
2287 	u8 dsap;		/* 0 */
2288 	u8 ssap;		/* 0 */
2289 	u8 control;
2290 	u8 xid_info[3];
2291 } __packed;
2292 
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2293 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2294 {
2295 	struct iapp_layer2_update *msg;
2296 	struct sk_buff *skb;
2297 
2298 	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2299 	 * bridge devices */
2300 
2301 	skb = dev_alloc_skb(sizeof(*msg));
2302 	if (!skb)
2303 		return;
2304 	msg = skb_put(skb, sizeof(*msg));
2305 
2306 	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2307 	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2308 
2309 	eth_broadcast_addr(msg->da);
2310 	ether_addr_copy(msg->sa, addr);
2311 	msg->len = htons(6);
2312 	msg->dsap = 0;
2313 	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2314 	msg->control = 0xaf;	/* XID response lsb.1111F101.
2315 				 * F=0 (no poll command; unsolicited frame) */
2316 	msg->xid_info[0] = 0x81;	/* XID format identifier */
2317 	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2318 	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2319 
2320 	skb->dev = dev;
2321 	skb->protocol = eth_type_trans(skb, dev);
2322 	memset(skb->cb, 0, sizeof(skb->cb));
2323 	netif_rx(skb);
2324 }
2325 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2326 
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2327 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2328 			      enum ieee80211_vht_chanwidth bw,
2329 			      int mcs, bool ext_nss_bw_capable,
2330 			      unsigned int max_vht_nss)
2331 {
2332 	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2333 	int ext_nss_bw;
2334 	int supp_width;
2335 	int i, mcs_encoding;
2336 
2337 	if (map == 0xffff)
2338 		return 0;
2339 
2340 	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2341 		return 0;
2342 	if (mcs <= 7)
2343 		mcs_encoding = 0;
2344 	else if (mcs == 8)
2345 		mcs_encoding = 1;
2346 	else
2347 		mcs_encoding = 2;
2348 
2349 	if (!max_vht_nss) {
2350 		/* find max_vht_nss for the given MCS */
2351 		for (i = 7; i >= 0; i--) {
2352 			int supp = (map >> (2 * i)) & 3;
2353 
2354 			if (supp == 3)
2355 				continue;
2356 
2357 			if (supp >= mcs_encoding) {
2358 				max_vht_nss = i + 1;
2359 				break;
2360 			}
2361 		}
2362 	}
2363 
2364 	if (!(cap->supp_mcs.tx_mcs_map &
2365 			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2366 		return max_vht_nss;
2367 
2368 	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2369 				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2370 	supp_width = le32_get_bits(cap->vht_cap_info,
2371 				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2372 
2373 	/* if not capable, treat ext_nss_bw as 0 */
2374 	if (!ext_nss_bw_capable)
2375 		ext_nss_bw = 0;
2376 
2377 	/* This is invalid */
2378 	if (supp_width == 3)
2379 		return 0;
2380 
2381 	/* This is an invalid combination so pretend nothing is supported */
2382 	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2383 		return 0;
2384 
2385 	/*
2386 	 * Cover all the special cases according to IEEE 802.11-2016
2387 	 * Table 9-250. All other cases are either factor of 1 or not
2388 	 * valid/supported.
2389 	 */
2390 	switch (bw) {
2391 	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2392 	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2393 		if ((supp_width == 1 || supp_width == 2) &&
2394 		    ext_nss_bw == 3)
2395 			return 2 * max_vht_nss;
2396 		break;
2397 	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2398 		if (supp_width == 0 &&
2399 		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2400 			return max_vht_nss / 2;
2401 		if (supp_width == 0 &&
2402 		    ext_nss_bw == 3)
2403 			return (3 * max_vht_nss) / 4;
2404 		if (supp_width == 1 &&
2405 		    ext_nss_bw == 3)
2406 			return 2 * max_vht_nss;
2407 		break;
2408 	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2409 		if (supp_width == 0 && ext_nss_bw == 1)
2410 			return 0; /* not possible */
2411 		if (supp_width == 0 &&
2412 		    ext_nss_bw == 2)
2413 			return max_vht_nss / 2;
2414 		if (supp_width == 0 &&
2415 		    ext_nss_bw == 3)
2416 			return (3 * max_vht_nss) / 4;
2417 		if (supp_width == 1 &&
2418 		    ext_nss_bw == 0)
2419 			return 0; /* not possible */
2420 		if (supp_width == 1 &&
2421 		    ext_nss_bw == 1)
2422 			return max_vht_nss / 2;
2423 		if (supp_width == 1 &&
2424 		    ext_nss_bw == 2)
2425 			return (3 * max_vht_nss) / 4;
2426 		break;
2427 	}
2428 
2429 	/* not covered or invalid combination received */
2430 	return max_vht_nss;
2431 }
2432 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2433 
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2434 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2435 			     bool is_4addr, u8 check_swif)
2436 
2437 {
2438 	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2439 
2440 	switch (check_swif) {
2441 	case 0:
2442 		if (is_vlan && is_4addr)
2443 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2444 		return wiphy->interface_modes & BIT(iftype);
2445 	case 1:
2446 		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2447 			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2448 		return wiphy->software_iftypes & BIT(iftype);
2449 	default:
2450 		break;
2451 	}
2452 
2453 	return false;
2454 }
2455 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2456 
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2457 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2458 {
2459 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2460 
2461 	ASSERT_WDEV_LOCK(wdev);
2462 
2463 	switch (wdev->iftype) {
2464 	case NL80211_IFTYPE_AP:
2465 	case NL80211_IFTYPE_P2P_GO:
2466 		__cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2467 		break;
2468 	default:
2469 		/* per-link not relevant */
2470 		break;
2471 	}
2472 
2473 	wdev->valid_links &= ~BIT(link_id);
2474 
2475 	rdev_del_intf_link(rdev, wdev, link_id);
2476 
2477 	eth_zero_addr(wdev->links[link_id].addr);
2478 }
2479 
cfg80211_remove_links(struct wireless_dev * wdev)2480 void cfg80211_remove_links(struct wireless_dev *wdev)
2481 {
2482 	unsigned int link_id;
2483 
2484 	/*
2485 	 * links are controlled by upper layers (userspace/cfg)
2486 	 * only for AP mode, so only remove them here for AP
2487 	 */
2488 	if (wdev->iftype != NL80211_IFTYPE_AP)
2489 		return;
2490 
2491 	wdev_lock(wdev);
2492 	if (wdev->valid_links) {
2493 		for_each_valid_link(wdev, link_id)
2494 			cfg80211_remove_link(wdev, link_id);
2495 	}
2496 	wdev_unlock(wdev);
2497 }
2498 
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2499 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2500 				 struct wireless_dev *wdev)
2501 {
2502 	cfg80211_remove_links(wdev);
2503 
2504 	return rdev_del_virtual_intf(rdev, wdev);
2505 }
2506 
2507 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2508 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2509 {
2510 	int i;
2511 
2512 	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2513 		if (wiphy->iftype_ext_capab[i].iftype == type)
2514 			return &wiphy->iftype_ext_capab[i];
2515 	}
2516 
2517 	return NULL;
2518 }
2519 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2520