• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c)  2018 Intel Corporation */
3 
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11 #include <linux/pm_runtime.h>
12 #include <net/pkt_sched.h>
13 #include <linux/bpf_trace.h>
14 #include <net/xdp_sock_drv.h>
15 #include <linux/pci.h>
16 
17 #include <net/ipv6.h>
18 
19 #include "igc.h"
20 #include "igc_hw.h"
21 #include "igc_tsn.h"
22 #include "igc_xdp.h"
23 
24 #define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
25 
26 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
27 
28 #define IGC_XDP_PASS		0
29 #define IGC_XDP_CONSUMED	BIT(0)
30 #define IGC_XDP_TX		BIT(1)
31 #define IGC_XDP_REDIRECT	BIT(2)
32 
33 static int debug = -1;
34 
35 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
36 MODULE_DESCRIPTION(DRV_SUMMARY);
37 MODULE_LICENSE("GPL v2");
38 module_param(debug, int, 0);
39 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40 
41 char igc_driver_name[] = "igc";
42 static const char igc_driver_string[] = DRV_SUMMARY;
43 static const char igc_copyright[] =
44 	"Copyright(c) 2018 Intel Corporation.";
45 
46 static const struct igc_info *igc_info_tbl[] = {
47 	[board_base] = &igc_base_info,
48 };
49 
50 static const struct pci_device_id igc_pci_tbl[] = {
51 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
52 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
53 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
54 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
55 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
56 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
57 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
58 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
59 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LMVP), board_base },
60 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
61 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
62 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
63 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
64 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
65 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
66 	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
67 	/* required last entry */
68 	{0, }
69 };
70 
71 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
72 
73 enum latency_range {
74 	lowest_latency = 0,
75 	low_latency = 1,
76 	bulk_latency = 2,
77 	latency_invalid = 255
78 };
79 
igc_reset(struct igc_adapter * adapter)80 void igc_reset(struct igc_adapter *adapter)
81 {
82 	struct net_device *dev = adapter->netdev;
83 	struct igc_hw *hw = &adapter->hw;
84 	struct igc_fc_info *fc = &hw->fc;
85 	u32 pba, hwm;
86 
87 	/* Repartition PBA for greater than 9k MTU if required */
88 	pba = IGC_PBA_34K;
89 
90 	/* flow control settings
91 	 * The high water mark must be low enough to fit one full frame
92 	 * after transmitting the pause frame.  As such we must have enough
93 	 * space to allow for us to complete our current transmit and then
94 	 * receive the frame that is in progress from the link partner.
95 	 * Set it to:
96 	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
97 	 */
98 	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
99 
100 	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
101 	fc->low_water = fc->high_water - 16;
102 	fc->pause_time = 0xFFFF;
103 	fc->send_xon = 1;
104 	fc->current_mode = fc->requested_mode;
105 
106 	hw->mac.ops.reset_hw(hw);
107 
108 	if (hw->mac.ops.init_hw(hw))
109 		netdev_err(dev, "Error on hardware initialization\n");
110 
111 	/* Re-establish EEE setting */
112 	igc_set_eee_i225(hw, true, true, true);
113 
114 	if (!netif_running(adapter->netdev))
115 		igc_power_down_phy_copper_base(&adapter->hw);
116 
117 	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
118 	wr32(IGC_VET, ETH_P_8021Q);
119 
120 	/* Re-enable PTP, where applicable. */
121 	igc_ptp_reset(adapter);
122 
123 	/* Re-enable TSN offloading, where applicable. */
124 	igc_tsn_reset(adapter);
125 
126 	igc_get_phy_info(hw);
127 }
128 
129 /**
130  * igc_power_up_link - Power up the phy link
131  * @adapter: address of board private structure
132  */
igc_power_up_link(struct igc_adapter * adapter)133 static void igc_power_up_link(struct igc_adapter *adapter)
134 {
135 	igc_reset_phy(&adapter->hw);
136 
137 	igc_power_up_phy_copper(&adapter->hw);
138 
139 	igc_setup_link(&adapter->hw);
140 }
141 
142 /**
143  * igc_release_hw_control - release control of the h/w to f/w
144  * @adapter: address of board private structure
145  *
146  * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
147  * For ASF and Pass Through versions of f/w this means that the
148  * driver is no longer loaded.
149  */
igc_release_hw_control(struct igc_adapter * adapter)150 static void igc_release_hw_control(struct igc_adapter *adapter)
151 {
152 	struct igc_hw *hw = &adapter->hw;
153 	u32 ctrl_ext;
154 
155 	if (!pci_device_is_present(adapter->pdev))
156 		return;
157 
158 	/* Let firmware take over control of h/w */
159 	ctrl_ext = rd32(IGC_CTRL_EXT);
160 	wr32(IGC_CTRL_EXT,
161 	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
162 }
163 
164 /**
165  * igc_get_hw_control - get control of the h/w from f/w
166  * @adapter: address of board private structure
167  *
168  * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
169  * For ASF and Pass Through versions of f/w this means that
170  * the driver is loaded.
171  */
igc_get_hw_control(struct igc_adapter * adapter)172 static void igc_get_hw_control(struct igc_adapter *adapter)
173 {
174 	struct igc_hw *hw = &adapter->hw;
175 	u32 ctrl_ext;
176 
177 	/* Let firmware know the driver has taken over */
178 	ctrl_ext = rd32(IGC_CTRL_EXT);
179 	wr32(IGC_CTRL_EXT,
180 	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
181 }
182 
igc_unmap_tx_buffer(struct device * dev,struct igc_tx_buffer * buf)183 static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
184 {
185 	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
186 			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
187 
188 	dma_unmap_len_set(buf, len, 0);
189 }
190 
191 /**
192  * igc_clean_tx_ring - Free Tx Buffers
193  * @tx_ring: ring to be cleaned
194  */
igc_clean_tx_ring(struct igc_ring * tx_ring)195 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
196 {
197 	u16 i = tx_ring->next_to_clean;
198 	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
199 	u32 xsk_frames = 0;
200 
201 	while (i != tx_ring->next_to_use) {
202 		union igc_adv_tx_desc *eop_desc, *tx_desc;
203 
204 		switch (tx_buffer->type) {
205 		case IGC_TX_BUFFER_TYPE_XSK:
206 			xsk_frames++;
207 			break;
208 		case IGC_TX_BUFFER_TYPE_XDP:
209 			xdp_return_frame(tx_buffer->xdpf);
210 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
211 			break;
212 		case IGC_TX_BUFFER_TYPE_SKB:
213 			dev_kfree_skb_any(tx_buffer->skb);
214 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
215 			break;
216 		default:
217 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
218 			break;
219 		}
220 
221 		/* check for eop_desc to determine the end of the packet */
222 		eop_desc = tx_buffer->next_to_watch;
223 		tx_desc = IGC_TX_DESC(tx_ring, i);
224 
225 		/* unmap remaining buffers */
226 		while (tx_desc != eop_desc) {
227 			tx_buffer++;
228 			tx_desc++;
229 			i++;
230 			if (unlikely(i == tx_ring->count)) {
231 				i = 0;
232 				tx_buffer = tx_ring->tx_buffer_info;
233 				tx_desc = IGC_TX_DESC(tx_ring, 0);
234 			}
235 
236 			/* unmap any remaining paged data */
237 			if (dma_unmap_len(tx_buffer, len))
238 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
239 		}
240 
241 		tx_buffer->next_to_watch = NULL;
242 
243 		/* move us one more past the eop_desc for start of next pkt */
244 		tx_buffer++;
245 		i++;
246 		if (unlikely(i == tx_ring->count)) {
247 			i = 0;
248 			tx_buffer = tx_ring->tx_buffer_info;
249 		}
250 	}
251 
252 	if (tx_ring->xsk_pool && xsk_frames)
253 		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
254 
255 	/* reset BQL for queue */
256 	netdev_tx_reset_queue(txring_txq(tx_ring));
257 
258 	/* Zero out the buffer ring */
259 	memset(tx_ring->tx_buffer_info, 0,
260 	       sizeof(*tx_ring->tx_buffer_info) * tx_ring->count);
261 
262 	/* Zero out the descriptor ring */
263 	memset(tx_ring->desc, 0, tx_ring->size);
264 
265 	/* reset next_to_use and next_to_clean */
266 	tx_ring->next_to_use = 0;
267 	tx_ring->next_to_clean = 0;
268 }
269 
270 /**
271  * igc_free_tx_resources - Free Tx Resources per Queue
272  * @tx_ring: Tx descriptor ring for a specific queue
273  *
274  * Free all transmit software resources
275  */
igc_free_tx_resources(struct igc_ring * tx_ring)276 void igc_free_tx_resources(struct igc_ring *tx_ring)
277 {
278 	igc_disable_tx_ring(tx_ring);
279 
280 	vfree(tx_ring->tx_buffer_info);
281 	tx_ring->tx_buffer_info = NULL;
282 
283 	/* if not set, then don't free */
284 	if (!tx_ring->desc)
285 		return;
286 
287 	dma_free_coherent(tx_ring->dev, tx_ring->size,
288 			  tx_ring->desc, tx_ring->dma);
289 
290 	tx_ring->desc = NULL;
291 }
292 
293 /**
294  * igc_free_all_tx_resources - Free Tx Resources for All Queues
295  * @adapter: board private structure
296  *
297  * Free all transmit software resources
298  */
igc_free_all_tx_resources(struct igc_adapter * adapter)299 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
300 {
301 	int i;
302 
303 	for (i = 0; i < adapter->num_tx_queues; i++)
304 		igc_free_tx_resources(adapter->tx_ring[i]);
305 }
306 
307 /**
308  * igc_clean_all_tx_rings - Free Tx Buffers for all queues
309  * @adapter: board private structure
310  */
igc_clean_all_tx_rings(struct igc_adapter * adapter)311 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
312 {
313 	int i;
314 
315 	for (i = 0; i < adapter->num_tx_queues; i++)
316 		if (adapter->tx_ring[i])
317 			igc_clean_tx_ring(adapter->tx_ring[i]);
318 }
319 
igc_disable_tx_ring_hw(struct igc_ring * ring)320 static void igc_disable_tx_ring_hw(struct igc_ring *ring)
321 {
322 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
323 	u8 idx = ring->reg_idx;
324 	u32 txdctl;
325 
326 	txdctl = rd32(IGC_TXDCTL(idx));
327 	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
328 	txdctl |= IGC_TXDCTL_SWFLUSH;
329 	wr32(IGC_TXDCTL(idx), txdctl);
330 }
331 
332 /**
333  * igc_disable_all_tx_rings_hw - Disable all transmit queue operation
334  * @adapter: board private structure
335  */
igc_disable_all_tx_rings_hw(struct igc_adapter * adapter)336 static void igc_disable_all_tx_rings_hw(struct igc_adapter *adapter)
337 {
338 	int i;
339 
340 	for (i = 0; i < adapter->num_tx_queues; i++) {
341 		struct igc_ring *tx_ring = adapter->tx_ring[i];
342 
343 		igc_disable_tx_ring_hw(tx_ring);
344 	}
345 }
346 
347 /**
348  * igc_setup_tx_resources - allocate Tx resources (Descriptors)
349  * @tx_ring: tx descriptor ring (for a specific queue) to setup
350  *
351  * Return 0 on success, negative on failure
352  */
igc_setup_tx_resources(struct igc_ring * tx_ring)353 int igc_setup_tx_resources(struct igc_ring *tx_ring)
354 {
355 	struct net_device *ndev = tx_ring->netdev;
356 	struct device *dev = tx_ring->dev;
357 	int size = 0;
358 
359 	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
360 	tx_ring->tx_buffer_info = vzalloc(size);
361 	if (!tx_ring->tx_buffer_info)
362 		goto err;
363 
364 	/* round up to nearest 4K */
365 	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
366 	tx_ring->size = ALIGN(tx_ring->size, 4096);
367 
368 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
369 					   &tx_ring->dma, GFP_KERNEL);
370 
371 	if (!tx_ring->desc)
372 		goto err;
373 
374 	tx_ring->next_to_use = 0;
375 	tx_ring->next_to_clean = 0;
376 
377 	return 0;
378 
379 err:
380 	vfree(tx_ring->tx_buffer_info);
381 	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
382 	return -ENOMEM;
383 }
384 
385 /**
386  * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
387  * @adapter: board private structure
388  *
389  * Return 0 on success, negative on failure
390  */
igc_setup_all_tx_resources(struct igc_adapter * adapter)391 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
392 {
393 	struct net_device *dev = adapter->netdev;
394 	int i, err = 0;
395 
396 	for (i = 0; i < adapter->num_tx_queues; i++) {
397 		err = igc_setup_tx_resources(adapter->tx_ring[i]);
398 		if (err) {
399 			netdev_err(dev, "Error on Tx queue %u setup\n", i);
400 			for (i--; i >= 0; i--)
401 				igc_free_tx_resources(adapter->tx_ring[i]);
402 			break;
403 		}
404 	}
405 
406 	return err;
407 }
408 
igc_clean_rx_ring_page_shared(struct igc_ring * rx_ring)409 static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
410 {
411 	u16 i = rx_ring->next_to_clean;
412 
413 	dev_kfree_skb(rx_ring->skb);
414 	rx_ring->skb = NULL;
415 
416 	/* Free all the Rx ring sk_buffs */
417 	while (i != rx_ring->next_to_alloc) {
418 		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
419 
420 		/* Invalidate cache lines that may have been written to by
421 		 * device so that we avoid corrupting memory.
422 		 */
423 		dma_sync_single_range_for_cpu(rx_ring->dev,
424 					      buffer_info->dma,
425 					      buffer_info->page_offset,
426 					      igc_rx_bufsz(rx_ring),
427 					      DMA_FROM_DEVICE);
428 
429 		/* free resources associated with mapping */
430 		dma_unmap_page_attrs(rx_ring->dev,
431 				     buffer_info->dma,
432 				     igc_rx_pg_size(rx_ring),
433 				     DMA_FROM_DEVICE,
434 				     IGC_RX_DMA_ATTR);
435 		__page_frag_cache_drain(buffer_info->page,
436 					buffer_info->pagecnt_bias);
437 
438 		i++;
439 		if (i == rx_ring->count)
440 			i = 0;
441 	}
442 }
443 
igc_clean_rx_ring_xsk_pool(struct igc_ring * ring)444 static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
445 {
446 	struct igc_rx_buffer *bi;
447 	u16 i;
448 
449 	for (i = 0; i < ring->count; i++) {
450 		bi = &ring->rx_buffer_info[i];
451 		if (!bi->xdp)
452 			continue;
453 
454 		xsk_buff_free(bi->xdp);
455 		bi->xdp = NULL;
456 	}
457 }
458 
459 /**
460  * igc_clean_rx_ring - Free Rx Buffers per Queue
461  * @ring: ring to free buffers from
462  */
igc_clean_rx_ring(struct igc_ring * ring)463 static void igc_clean_rx_ring(struct igc_ring *ring)
464 {
465 	if (ring->xsk_pool)
466 		igc_clean_rx_ring_xsk_pool(ring);
467 	else
468 		igc_clean_rx_ring_page_shared(ring);
469 
470 	clear_ring_uses_large_buffer(ring);
471 
472 	ring->next_to_alloc = 0;
473 	ring->next_to_clean = 0;
474 	ring->next_to_use = 0;
475 }
476 
477 /**
478  * igc_clean_all_rx_rings - Free Rx Buffers for all queues
479  * @adapter: board private structure
480  */
igc_clean_all_rx_rings(struct igc_adapter * adapter)481 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
482 {
483 	int i;
484 
485 	for (i = 0; i < adapter->num_rx_queues; i++)
486 		if (adapter->rx_ring[i])
487 			igc_clean_rx_ring(adapter->rx_ring[i]);
488 }
489 
490 /**
491  * igc_free_rx_resources - Free Rx Resources
492  * @rx_ring: ring to clean the resources from
493  *
494  * Free all receive software resources
495  */
igc_free_rx_resources(struct igc_ring * rx_ring)496 void igc_free_rx_resources(struct igc_ring *rx_ring)
497 {
498 	igc_clean_rx_ring(rx_ring);
499 
500 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
501 
502 	vfree(rx_ring->rx_buffer_info);
503 	rx_ring->rx_buffer_info = NULL;
504 
505 	/* if not set, then don't free */
506 	if (!rx_ring->desc)
507 		return;
508 
509 	dma_free_coherent(rx_ring->dev, rx_ring->size,
510 			  rx_ring->desc, rx_ring->dma);
511 
512 	rx_ring->desc = NULL;
513 }
514 
515 /**
516  * igc_free_all_rx_resources - Free Rx Resources for All Queues
517  * @adapter: board private structure
518  *
519  * Free all receive software resources
520  */
igc_free_all_rx_resources(struct igc_adapter * adapter)521 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
522 {
523 	int i;
524 
525 	for (i = 0; i < adapter->num_rx_queues; i++)
526 		igc_free_rx_resources(adapter->rx_ring[i]);
527 }
528 
529 /**
530  * igc_setup_rx_resources - allocate Rx resources (Descriptors)
531  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
532  *
533  * Returns 0 on success, negative on failure
534  */
igc_setup_rx_resources(struct igc_ring * rx_ring)535 int igc_setup_rx_resources(struct igc_ring *rx_ring)
536 {
537 	struct net_device *ndev = rx_ring->netdev;
538 	struct device *dev = rx_ring->dev;
539 	u8 index = rx_ring->queue_index;
540 	int size, desc_len, res;
541 
542 	/* XDP RX-queue info */
543 	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
544 		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
545 	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
546 			       rx_ring->q_vector->napi.napi_id);
547 	if (res < 0) {
548 		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
549 			   index);
550 		return res;
551 	}
552 
553 	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
554 	rx_ring->rx_buffer_info = vzalloc(size);
555 	if (!rx_ring->rx_buffer_info)
556 		goto err;
557 
558 	desc_len = sizeof(union igc_adv_rx_desc);
559 
560 	/* Round up to nearest 4K */
561 	rx_ring->size = rx_ring->count * desc_len;
562 	rx_ring->size = ALIGN(rx_ring->size, 4096);
563 
564 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
565 					   &rx_ring->dma, GFP_KERNEL);
566 
567 	if (!rx_ring->desc)
568 		goto err;
569 
570 	rx_ring->next_to_alloc = 0;
571 	rx_ring->next_to_clean = 0;
572 	rx_ring->next_to_use = 0;
573 
574 	return 0;
575 
576 err:
577 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
578 	vfree(rx_ring->rx_buffer_info);
579 	rx_ring->rx_buffer_info = NULL;
580 	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
581 	return -ENOMEM;
582 }
583 
584 /**
585  * igc_setup_all_rx_resources - wrapper to allocate Rx resources
586  *                                (Descriptors) for all queues
587  * @adapter: board private structure
588  *
589  * Return 0 on success, negative on failure
590  */
igc_setup_all_rx_resources(struct igc_adapter * adapter)591 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
592 {
593 	struct net_device *dev = adapter->netdev;
594 	int i, err = 0;
595 
596 	for (i = 0; i < adapter->num_rx_queues; i++) {
597 		err = igc_setup_rx_resources(adapter->rx_ring[i]);
598 		if (err) {
599 			netdev_err(dev, "Error on Rx queue %u setup\n", i);
600 			for (i--; i >= 0; i--)
601 				igc_free_rx_resources(adapter->rx_ring[i]);
602 			break;
603 		}
604 	}
605 
606 	return err;
607 }
608 
igc_get_xsk_pool(struct igc_adapter * adapter,struct igc_ring * ring)609 static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
610 					      struct igc_ring *ring)
611 {
612 	if (!igc_xdp_is_enabled(adapter) ||
613 	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
614 		return NULL;
615 
616 	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
617 }
618 
619 /**
620  * igc_configure_rx_ring - Configure a receive ring after Reset
621  * @adapter: board private structure
622  * @ring: receive ring to be configured
623  *
624  * Configure the Rx unit of the MAC after a reset.
625  */
igc_configure_rx_ring(struct igc_adapter * adapter,struct igc_ring * ring)626 static void igc_configure_rx_ring(struct igc_adapter *adapter,
627 				  struct igc_ring *ring)
628 {
629 	struct igc_hw *hw = &adapter->hw;
630 	union igc_adv_rx_desc *rx_desc;
631 	int reg_idx = ring->reg_idx;
632 	u32 srrctl = 0, rxdctl = 0;
633 	u64 rdba = ring->dma;
634 	u32 buf_size;
635 
636 	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
637 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
638 	if (ring->xsk_pool) {
639 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
640 						   MEM_TYPE_XSK_BUFF_POOL,
641 						   NULL));
642 		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
643 	} else {
644 		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
645 						   MEM_TYPE_PAGE_SHARED,
646 						   NULL));
647 	}
648 
649 	if (igc_xdp_is_enabled(adapter))
650 		set_ring_uses_large_buffer(ring);
651 
652 	/* disable the queue */
653 	wr32(IGC_RXDCTL(reg_idx), 0);
654 
655 	/* Set DMA base address registers */
656 	wr32(IGC_RDBAL(reg_idx),
657 	     rdba & 0x00000000ffffffffULL);
658 	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
659 	wr32(IGC_RDLEN(reg_idx),
660 	     ring->count * sizeof(union igc_adv_rx_desc));
661 
662 	/* initialize head and tail */
663 	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
664 	wr32(IGC_RDH(reg_idx), 0);
665 	writel(0, ring->tail);
666 
667 	/* reset next-to- use/clean to place SW in sync with hardware */
668 	ring->next_to_clean = 0;
669 	ring->next_to_use = 0;
670 
671 	if (ring->xsk_pool)
672 		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
673 	else if (ring_uses_large_buffer(ring))
674 		buf_size = IGC_RXBUFFER_3072;
675 	else
676 		buf_size = IGC_RXBUFFER_2048;
677 
678 	srrctl = rd32(IGC_SRRCTL(reg_idx));
679 	srrctl &= ~(IGC_SRRCTL_BSIZEPKT_MASK | IGC_SRRCTL_BSIZEHDR_MASK |
680 		    IGC_SRRCTL_DESCTYPE_MASK);
681 	srrctl |= IGC_SRRCTL_BSIZEHDR(IGC_RX_HDR_LEN);
682 	srrctl |= IGC_SRRCTL_BSIZEPKT(buf_size);
683 	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
684 
685 	wr32(IGC_SRRCTL(reg_idx), srrctl);
686 
687 	rxdctl |= IGC_RX_PTHRESH;
688 	rxdctl |= IGC_RX_HTHRESH << 8;
689 	rxdctl |= IGC_RX_WTHRESH << 16;
690 
691 	/* initialize rx_buffer_info */
692 	memset(ring->rx_buffer_info, 0,
693 	       sizeof(struct igc_rx_buffer) * ring->count);
694 
695 	/* initialize Rx descriptor 0 */
696 	rx_desc = IGC_RX_DESC(ring, 0);
697 	rx_desc->wb.upper.length = 0;
698 
699 	/* enable receive descriptor fetching */
700 	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
701 
702 	wr32(IGC_RXDCTL(reg_idx), rxdctl);
703 }
704 
705 /**
706  * igc_configure_rx - Configure receive Unit after Reset
707  * @adapter: board private structure
708  *
709  * Configure the Rx unit of the MAC after a reset.
710  */
igc_configure_rx(struct igc_adapter * adapter)711 static void igc_configure_rx(struct igc_adapter *adapter)
712 {
713 	int i;
714 
715 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
716 	 * the Base and Length of the Rx Descriptor Ring
717 	 */
718 	for (i = 0; i < adapter->num_rx_queues; i++)
719 		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
720 }
721 
722 /**
723  * igc_configure_tx_ring - Configure transmit ring after Reset
724  * @adapter: board private structure
725  * @ring: tx ring to configure
726  *
727  * Configure a transmit ring after a reset.
728  */
igc_configure_tx_ring(struct igc_adapter * adapter,struct igc_ring * ring)729 static void igc_configure_tx_ring(struct igc_adapter *adapter,
730 				  struct igc_ring *ring)
731 {
732 	struct igc_hw *hw = &adapter->hw;
733 	int reg_idx = ring->reg_idx;
734 	u64 tdba = ring->dma;
735 	u32 txdctl = 0;
736 
737 	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
738 
739 	/* disable the queue */
740 	wr32(IGC_TXDCTL(reg_idx), 0);
741 	wrfl();
742 
743 	wr32(IGC_TDLEN(reg_idx),
744 	     ring->count * sizeof(union igc_adv_tx_desc));
745 	wr32(IGC_TDBAL(reg_idx),
746 	     tdba & 0x00000000ffffffffULL);
747 	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
748 
749 	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
750 	wr32(IGC_TDH(reg_idx), 0);
751 	writel(0, ring->tail);
752 
753 	txdctl |= IGC_TX_PTHRESH;
754 	txdctl |= IGC_TX_HTHRESH << 8;
755 	txdctl |= IGC_TX_WTHRESH << 16;
756 
757 	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
758 	wr32(IGC_TXDCTL(reg_idx), txdctl);
759 }
760 
761 /**
762  * igc_configure_tx - Configure transmit Unit after Reset
763  * @adapter: board private structure
764  *
765  * Configure the Tx unit of the MAC after a reset.
766  */
igc_configure_tx(struct igc_adapter * adapter)767 static void igc_configure_tx(struct igc_adapter *adapter)
768 {
769 	int i;
770 
771 	for (i = 0; i < adapter->num_tx_queues; i++)
772 		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
773 }
774 
775 /**
776  * igc_setup_mrqc - configure the multiple receive queue control registers
777  * @adapter: Board private structure
778  */
igc_setup_mrqc(struct igc_adapter * adapter)779 static void igc_setup_mrqc(struct igc_adapter *adapter)
780 {
781 	struct igc_hw *hw = &adapter->hw;
782 	u32 j, num_rx_queues;
783 	u32 mrqc, rxcsum;
784 	u32 rss_key[10];
785 
786 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
787 	for (j = 0; j < 10; j++)
788 		wr32(IGC_RSSRK(j), rss_key[j]);
789 
790 	num_rx_queues = adapter->rss_queues;
791 
792 	if (adapter->rss_indir_tbl_init != num_rx_queues) {
793 		for (j = 0; j < IGC_RETA_SIZE; j++)
794 			adapter->rss_indir_tbl[j] =
795 			(j * num_rx_queues) / IGC_RETA_SIZE;
796 		adapter->rss_indir_tbl_init = num_rx_queues;
797 	}
798 	igc_write_rss_indir_tbl(adapter);
799 
800 	/* Disable raw packet checksumming so that RSS hash is placed in
801 	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
802 	 * offloads as they are enabled by default
803 	 */
804 	rxcsum = rd32(IGC_RXCSUM);
805 	rxcsum |= IGC_RXCSUM_PCSD;
806 
807 	/* Enable Receive Checksum Offload for SCTP */
808 	rxcsum |= IGC_RXCSUM_CRCOFL;
809 
810 	/* Don't need to set TUOFL or IPOFL, they default to 1 */
811 	wr32(IGC_RXCSUM, rxcsum);
812 
813 	/* Generate RSS hash based on packet types, TCP/UDP
814 	 * port numbers and/or IPv4/v6 src and dst addresses
815 	 */
816 	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
817 	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
818 	       IGC_MRQC_RSS_FIELD_IPV6 |
819 	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
820 	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
821 
822 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
823 		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
824 	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
825 		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
826 
827 	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
828 
829 	wr32(IGC_MRQC, mrqc);
830 }
831 
832 /**
833  * igc_setup_rctl - configure the receive control registers
834  * @adapter: Board private structure
835  */
igc_setup_rctl(struct igc_adapter * adapter)836 static void igc_setup_rctl(struct igc_adapter *adapter)
837 {
838 	struct igc_hw *hw = &adapter->hw;
839 	u32 rctl;
840 
841 	rctl = rd32(IGC_RCTL);
842 
843 	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
844 	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
845 
846 	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
847 		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
848 
849 	/* enable stripping of CRC. Newer features require
850 	 * that the HW strips the CRC.
851 	 */
852 	rctl |= IGC_RCTL_SECRC;
853 
854 	/* disable store bad packets and clear size bits. */
855 	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
856 
857 	/* enable LPE to allow for reception of jumbo frames */
858 	rctl |= IGC_RCTL_LPE;
859 
860 	/* disable queue 0 to prevent tail write w/o re-config */
861 	wr32(IGC_RXDCTL(0), 0);
862 
863 	/* This is useful for sniffing bad packets. */
864 	if (adapter->netdev->features & NETIF_F_RXALL) {
865 		/* UPE and MPE will be handled by normal PROMISC logic
866 		 * in set_rx_mode
867 		 */
868 		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
869 			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
870 			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
871 
872 		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
873 			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
874 	}
875 
876 	wr32(IGC_RCTL, rctl);
877 }
878 
879 /**
880  * igc_setup_tctl - configure the transmit control registers
881  * @adapter: Board private structure
882  */
igc_setup_tctl(struct igc_adapter * adapter)883 static void igc_setup_tctl(struct igc_adapter *adapter)
884 {
885 	struct igc_hw *hw = &adapter->hw;
886 	u32 tctl;
887 
888 	/* disable queue 0 which icould be enabled by default */
889 	wr32(IGC_TXDCTL(0), 0);
890 
891 	/* Program the Transmit Control Register */
892 	tctl = rd32(IGC_TCTL);
893 	tctl &= ~IGC_TCTL_CT;
894 	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
895 		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
896 
897 	/* Enable transmits */
898 	tctl |= IGC_TCTL_EN;
899 
900 	wr32(IGC_TCTL, tctl);
901 }
902 
903 /**
904  * igc_set_mac_filter_hw() - Set MAC address filter in hardware
905  * @adapter: Pointer to adapter where the filter should be set
906  * @index: Filter index
907  * @type: MAC address filter type (source or destination)
908  * @addr: MAC address
909  * @queue: If non-negative, queue assignment feature is enabled and frames
910  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
911  *         assignment is disabled.
912  */
igc_set_mac_filter_hw(struct igc_adapter * adapter,int index,enum igc_mac_filter_type type,const u8 * addr,int queue)913 static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
914 				  enum igc_mac_filter_type type,
915 				  const u8 *addr, int queue)
916 {
917 	struct net_device *dev = adapter->netdev;
918 	struct igc_hw *hw = &adapter->hw;
919 	u32 ral, rah;
920 
921 	if (WARN_ON(index >= hw->mac.rar_entry_count))
922 		return;
923 
924 	ral = le32_to_cpup((__le32 *)(addr));
925 	rah = le16_to_cpup((__le16 *)(addr + 4));
926 
927 	if (type == IGC_MAC_FILTER_TYPE_SRC) {
928 		rah &= ~IGC_RAH_ASEL_MASK;
929 		rah |= IGC_RAH_ASEL_SRC_ADDR;
930 	}
931 
932 	if (queue >= 0) {
933 		rah &= ~IGC_RAH_QSEL_MASK;
934 		rah |= (queue << IGC_RAH_QSEL_SHIFT);
935 		rah |= IGC_RAH_QSEL_ENABLE;
936 	}
937 
938 	rah |= IGC_RAH_AV;
939 
940 	wr32(IGC_RAL(index), ral);
941 	wr32(IGC_RAH(index), rah);
942 
943 	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
944 }
945 
946 /**
947  * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
948  * @adapter: Pointer to adapter where the filter should be cleared
949  * @index: Filter index
950  */
igc_clear_mac_filter_hw(struct igc_adapter * adapter,int index)951 static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
952 {
953 	struct net_device *dev = adapter->netdev;
954 	struct igc_hw *hw = &adapter->hw;
955 
956 	if (WARN_ON(index >= hw->mac.rar_entry_count))
957 		return;
958 
959 	wr32(IGC_RAL(index), 0);
960 	wr32(IGC_RAH(index), 0);
961 
962 	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
963 }
964 
965 /* Set default MAC address for the PF in the first RAR entry */
igc_set_default_mac_filter(struct igc_adapter * adapter)966 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
967 {
968 	struct net_device *dev = adapter->netdev;
969 	u8 *addr = adapter->hw.mac.addr;
970 
971 	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
972 
973 	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
974 }
975 
976 /**
977  * igc_set_mac - Change the Ethernet Address of the NIC
978  * @netdev: network interface device structure
979  * @p: pointer to an address structure
980  *
981  * Returns 0 on success, negative on failure
982  */
igc_set_mac(struct net_device * netdev,void * p)983 static int igc_set_mac(struct net_device *netdev, void *p)
984 {
985 	struct igc_adapter *adapter = netdev_priv(netdev);
986 	struct igc_hw *hw = &adapter->hw;
987 	struct sockaddr *addr = p;
988 
989 	if (!is_valid_ether_addr(addr->sa_data))
990 		return -EADDRNOTAVAIL;
991 
992 	eth_hw_addr_set(netdev, addr->sa_data);
993 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
994 
995 	/* set the correct pool for the new PF MAC address in entry 0 */
996 	igc_set_default_mac_filter(adapter);
997 
998 	return 0;
999 }
1000 
1001 /**
1002  *  igc_write_mc_addr_list - write multicast addresses to MTA
1003  *  @netdev: network interface device structure
1004  *
1005  *  Writes multicast address list to the MTA hash table.
1006  *  Returns: -ENOMEM on failure
1007  *           0 on no addresses written
1008  *           X on writing X addresses to MTA
1009  **/
igc_write_mc_addr_list(struct net_device * netdev)1010 static int igc_write_mc_addr_list(struct net_device *netdev)
1011 {
1012 	struct igc_adapter *adapter = netdev_priv(netdev);
1013 	struct igc_hw *hw = &adapter->hw;
1014 	struct netdev_hw_addr *ha;
1015 	u8  *mta_list;
1016 	int i;
1017 
1018 	if (netdev_mc_empty(netdev)) {
1019 		/* nothing to program, so clear mc list */
1020 		igc_update_mc_addr_list(hw, NULL, 0);
1021 		return 0;
1022 	}
1023 
1024 	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
1025 	if (!mta_list)
1026 		return -ENOMEM;
1027 
1028 	/* The shared function expects a packed array of only addresses. */
1029 	i = 0;
1030 	netdev_for_each_mc_addr(ha, netdev)
1031 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1032 
1033 	igc_update_mc_addr_list(hw, mta_list, i);
1034 	kfree(mta_list);
1035 
1036 	return netdev_mc_count(netdev);
1037 }
1038 
igc_tx_launchtime(struct igc_ring * ring,ktime_t txtime,bool * first_flag,bool * insert_empty)1039 static __le32 igc_tx_launchtime(struct igc_ring *ring, ktime_t txtime,
1040 				bool *first_flag, bool *insert_empty)
1041 {
1042 	struct igc_adapter *adapter = netdev_priv(ring->netdev);
1043 	ktime_t cycle_time = adapter->cycle_time;
1044 	ktime_t base_time = adapter->base_time;
1045 	ktime_t now = ktime_get_clocktai();
1046 	ktime_t baset_est, end_of_cycle;
1047 	s32 launchtime;
1048 	s64 n;
1049 
1050 	n = div64_s64(ktime_sub_ns(now, base_time), cycle_time);
1051 
1052 	baset_est = ktime_add_ns(base_time, cycle_time * (n));
1053 	end_of_cycle = ktime_add_ns(baset_est, cycle_time);
1054 
1055 	if (ktime_compare(txtime, end_of_cycle) >= 0) {
1056 		if (baset_est != ring->last_ff_cycle) {
1057 			*first_flag = true;
1058 			ring->last_ff_cycle = baset_est;
1059 
1060 			if (ktime_compare(end_of_cycle, ring->last_tx_cycle) > 0)
1061 				*insert_empty = true;
1062 		}
1063 	}
1064 
1065 	/* Introducing a window at end of cycle on which packets
1066 	 * potentially not honor launchtime. Window of 5us chosen
1067 	 * considering software update the tail pointer and packets
1068 	 * are dma'ed to packet buffer.
1069 	 */
1070 	if ((ktime_sub_ns(end_of_cycle, now) < 5 * NSEC_PER_USEC))
1071 		netdev_warn(ring->netdev, "Packet with txtime=%llu may not be honoured\n",
1072 			    txtime);
1073 
1074 	ring->last_tx_cycle = end_of_cycle;
1075 
1076 	launchtime = ktime_sub_ns(txtime, baset_est);
1077 	if (launchtime > 0)
1078 		div_s64_rem(launchtime, cycle_time, &launchtime);
1079 	else
1080 		launchtime = 0;
1081 
1082 	return cpu_to_le32(launchtime);
1083 }
1084 
igc_init_empty_frame(struct igc_ring * ring,struct igc_tx_buffer * buffer,struct sk_buff * skb)1085 static int igc_init_empty_frame(struct igc_ring *ring,
1086 				struct igc_tx_buffer *buffer,
1087 				struct sk_buff *skb)
1088 {
1089 	unsigned int size;
1090 	dma_addr_t dma;
1091 
1092 	size = skb_headlen(skb);
1093 
1094 	dma = dma_map_single(ring->dev, skb->data, size, DMA_TO_DEVICE);
1095 	if (dma_mapping_error(ring->dev, dma)) {
1096 		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
1097 		return -ENOMEM;
1098 	}
1099 
1100 	buffer->skb = skb;
1101 	buffer->protocol = 0;
1102 	buffer->bytecount = skb->len;
1103 	buffer->gso_segs = 1;
1104 	buffer->time_stamp = jiffies;
1105 	dma_unmap_len_set(buffer, len, skb->len);
1106 	dma_unmap_addr_set(buffer, dma, dma);
1107 
1108 	return 0;
1109 }
1110 
igc_init_tx_empty_descriptor(struct igc_ring * ring,struct sk_buff * skb,struct igc_tx_buffer * first)1111 static int igc_init_tx_empty_descriptor(struct igc_ring *ring,
1112 					struct sk_buff *skb,
1113 					struct igc_tx_buffer *first)
1114 {
1115 	union igc_adv_tx_desc *desc;
1116 	u32 cmd_type, olinfo_status;
1117 	int err;
1118 
1119 	if (!igc_desc_unused(ring))
1120 		return -EBUSY;
1121 
1122 	err = igc_init_empty_frame(ring, first, skb);
1123 	if (err)
1124 		return err;
1125 
1126 	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
1127 		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
1128 		   first->bytecount;
1129 	olinfo_status = first->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
1130 
1131 	desc = IGC_TX_DESC(ring, ring->next_to_use);
1132 	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1133 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1134 	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(first, dma));
1135 
1136 	netdev_tx_sent_queue(txring_txq(ring), skb->len);
1137 
1138 	first->next_to_watch = desc;
1139 
1140 	ring->next_to_use++;
1141 	if (ring->next_to_use == ring->count)
1142 		ring->next_to_use = 0;
1143 
1144 	return 0;
1145 }
1146 
1147 #define IGC_EMPTY_FRAME_SIZE 60
1148 
igc_tx_ctxtdesc(struct igc_ring * tx_ring,__le32 launch_time,bool first_flag,u32 vlan_macip_lens,u32 type_tucmd,u32 mss_l4len_idx)1149 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1150 			    __le32 launch_time, bool first_flag,
1151 			    u32 vlan_macip_lens, u32 type_tucmd,
1152 			    u32 mss_l4len_idx)
1153 {
1154 	struct igc_adv_tx_context_desc *context_desc;
1155 	u16 i = tx_ring->next_to_use;
1156 
1157 	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1158 
1159 	i++;
1160 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1161 
1162 	/* set bits to identify this as an advanced context descriptor */
1163 	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1164 
1165 	/* For i225, context index must be unique per ring. */
1166 	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1167 		mss_l4len_idx |= tx_ring->reg_idx << 4;
1168 
1169 	if (first_flag)
1170 		mss_l4len_idx |= IGC_ADVTXD_TSN_CNTX_FIRST;
1171 
1172 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1173 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1174 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1175 	context_desc->launch_time	= launch_time;
1176 }
1177 
igc_tx_csum(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag)1178 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first,
1179 			__le32 launch_time, bool first_flag)
1180 {
1181 	struct sk_buff *skb = first->skb;
1182 	u32 vlan_macip_lens = 0;
1183 	u32 type_tucmd = 0;
1184 
1185 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1186 csum_failed:
1187 		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1188 		    !tx_ring->launchtime_enable)
1189 			return;
1190 		goto no_csum;
1191 	}
1192 
1193 	switch (skb->csum_offset) {
1194 	case offsetof(struct tcphdr, check):
1195 		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1196 		fallthrough;
1197 	case offsetof(struct udphdr, check):
1198 		break;
1199 	case offsetof(struct sctphdr, checksum):
1200 		/* validate that this is actually an SCTP request */
1201 		if (skb_csum_is_sctp(skb)) {
1202 			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1203 			break;
1204 		}
1205 		fallthrough;
1206 	default:
1207 		skb_checksum_help(skb);
1208 		goto csum_failed;
1209 	}
1210 
1211 	/* update TX checksum flag */
1212 	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1213 	vlan_macip_lens = skb_checksum_start_offset(skb) -
1214 			  skb_network_offset(skb);
1215 no_csum:
1216 	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1217 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1218 
1219 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1220 			vlan_macip_lens, type_tucmd, 0);
1221 }
1222 
__igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1223 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1224 {
1225 	struct net_device *netdev = tx_ring->netdev;
1226 
1227 	netif_stop_subqueue(netdev, tx_ring->queue_index);
1228 
1229 	/* memory barriier comment */
1230 	smp_mb();
1231 
1232 	/* We need to check again in a case another CPU has just
1233 	 * made room available.
1234 	 */
1235 	if (igc_desc_unused(tx_ring) < size)
1236 		return -EBUSY;
1237 
1238 	/* A reprieve! */
1239 	netif_wake_subqueue(netdev, tx_ring->queue_index);
1240 
1241 	u64_stats_update_begin(&tx_ring->tx_syncp2);
1242 	tx_ring->tx_stats.restart_queue2++;
1243 	u64_stats_update_end(&tx_ring->tx_syncp2);
1244 
1245 	return 0;
1246 }
1247 
igc_maybe_stop_tx(struct igc_ring * tx_ring,const u16 size)1248 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1249 {
1250 	if (igc_desc_unused(tx_ring) >= size)
1251 		return 0;
1252 	return __igc_maybe_stop_tx(tx_ring, size);
1253 }
1254 
1255 #define IGC_SET_FLAG(_input, _flag, _result) \
1256 	(((_flag) <= (_result)) ?				\
1257 	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1258 	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1259 
igc_tx_cmd_type(struct sk_buff * skb,u32 tx_flags)1260 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1261 {
1262 	/* set type for advanced descriptor with frame checksum insertion */
1263 	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1264 		       IGC_ADVTXD_DCMD_DEXT |
1265 		       IGC_ADVTXD_DCMD_IFCS;
1266 
1267 	/* set HW vlan bit if vlan is present */
1268 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1269 				 IGC_ADVTXD_DCMD_VLE);
1270 
1271 	/* set segmentation bits for TSO */
1272 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1273 				 (IGC_ADVTXD_DCMD_TSE));
1274 
1275 	/* set timestamp bit if present */
1276 	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1277 				 (IGC_ADVTXD_MAC_TSTAMP));
1278 
1279 	/* insert frame checksum */
1280 	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1281 
1282 	return cmd_type;
1283 }
1284 
igc_tx_olinfo_status(struct igc_ring * tx_ring,union igc_adv_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)1285 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1286 				 union igc_adv_tx_desc *tx_desc,
1287 				 u32 tx_flags, unsigned int paylen)
1288 {
1289 	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1290 
1291 	/* insert L4 checksum */
1292 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1293 			  ((IGC_TXD_POPTS_TXSM << 8) /
1294 			  IGC_TX_FLAGS_CSUM);
1295 
1296 	/* insert IPv4 checksum */
1297 	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1298 			  (((IGC_TXD_POPTS_IXSM << 8)) /
1299 			  IGC_TX_FLAGS_IPV4);
1300 
1301 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1302 }
1303 
igc_tx_map(struct igc_ring * tx_ring,struct igc_tx_buffer * first,const u8 hdr_len)1304 static int igc_tx_map(struct igc_ring *tx_ring,
1305 		      struct igc_tx_buffer *first,
1306 		      const u8 hdr_len)
1307 {
1308 	struct sk_buff *skb = first->skb;
1309 	struct igc_tx_buffer *tx_buffer;
1310 	union igc_adv_tx_desc *tx_desc;
1311 	u32 tx_flags = first->tx_flags;
1312 	skb_frag_t *frag;
1313 	u16 i = tx_ring->next_to_use;
1314 	unsigned int data_len, size;
1315 	dma_addr_t dma;
1316 	u32 cmd_type;
1317 
1318 	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1319 	tx_desc = IGC_TX_DESC(tx_ring, i);
1320 
1321 	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1322 
1323 	size = skb_headlen(skb);
1324 	data_len = skb->data_len;
1325 
1326 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1327 
1328 	tx_buffer = first;
1329 
1330 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1331 		if (dma_mapping_error(tx_ring->dev, dma))
1332 			goto dma_error;
1333 
1334 		/* record length, and DMA address */
1335 		dma_unmap_len_set(tx_buffer, len, size);
1336 		dma_unmap_addr_set(tx_buffer, dma, dma);
1337 
1338 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1339 
1340 		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1341 			tx_desc->read.cmd_type_len =
1342 				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1343 
1344 			i++;
1345 			tx_desc++;
1346 			if (i == tx_ring->count) {
1347 				tx_desc = IGC_TX_DESC(tx_ring, 0);
1348 				i = 0;
1349 			}
1350 			tx_desc->read.olinfo_status = 0;
1351 
1352 			dma += IGC_MAX_DATA_PER_TXD;
1353 			size -= IGC_MAX_DATA_PER_TXD;
1354 
1355 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1356 		}
1357 
1358 		if (likely(!data_len))
1359 			break;
1360 
1361 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1362 
1363 		i++;
1364 		tx_desc++;
1365 		if (i == tx_ring->count) {
1366 			tx_desc = IGC_TX_DESC(tx_ring, 0);
1367 			i = 0;
1368 		}
1369 		tx_desc->read.olinfo_status = 0;
1370 
1371 		size = skb_frag_size(frag);
1372 		data_len -= size;
1373 
1374 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1375 				       size, DMA_TO_DEVICE);
1376 
1377 		tx_buffer = &tx_ring->tx_buffer_info[i];
1378 	}
1379 
1380 	/* write last descriptor with RS and EOP bits */
1381 	cmd_type |= size | IGC_TXD_DCMD;
1382 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1383 
1384 	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1385 
1386 	/* set the timestamp */
1387 	first->time_stamp = jiffies;
1388 
1389 	skb_tx_timestamp(skb);
1390 
1391 	/* Force memory writes to complete before letting h/w know there
1392 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1393 	 * memory model archs, such as IA-64).
1394 	 *
1395 	 * We also need this memory barrier to make certain all of the
1396 	 * status bits have been updated before next_to_watch is written.
1397 	 */
1398 	wmb();
1399 
1400 	/* set next_to_watch value indicating a packet is present */
1401 	first->next_to_watch = tx_desc;
1402 
1403 	i++;
1404 	if (i == tx_ring->count)
1405 		i = 0;
1406 
1407 	tx_ring->next_to_use = i;
1408 
1409 	/* Make sure there is space in the ring for the next send. */
1410 	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1411 
1412 	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1413 		writel(i, tx_ring->tail);
1414 	}
1415 
1416 	return 0;
1417 dma_error:
1418 	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1419 	tx_buffer = &tx_ring->tx_buffer_info[i];
1420 
1421 	/* clear dma mappings for failed tx_buffer_info map */
1422 	while (tx_buffer != first) {
1423 		if (dma_unmap_len(tx_buffer, len))
1424 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1425 
1426 		if (i-- == 0)
1427 			i += tx_ring->count;
1428 		tx_buffer = &tx_ring->tx_buffer_info[i];
1429 	}
1430 
1431 	if (dma_unmap_len(tx_buffer, len))
1432 		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1433 
1434 	dev_kfree_skb_any(tx_buffer->skb);
1435 	tx_buffer->skb = NULL;
1436 
1437 	tx_ring->next_to_use = i;
1438 
1439 	return -1;
1440 }
1441 
igc_tso(struct igc_ring * tx_ring,struct igc_tx_buffer * first,__le32 launch_time,bool first_flag,u8 * hdr_len)1442 static int igc_tso(struct igc_ring *tx_ring,
1443 		   struct igc_tx_buffer *first,
1444 		   __le32 launch_time, bool first_flag,
1445 		   u8 *hdr_len)
1446 {
1447 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1448 	struct sk_buff *skb = first->skb;
1449 	union {
1450 		struct iphdr *v4;
1451 		struct ipv6hdr *v6;
1452 		unsigned char *hdr;
1453 	} ip;
1454 	union {
1455 		struct tcphdr *tcp;
1456 		struct udphdr *udp;
1457 		unsigned char *hdr;
1458 	} l4;
1459 	u32 paylen, l4_offset;
1460 	int err;
1461 
1462 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1463 		return 0;
1464 
1465 	if (!skb_is_gso(skb))
1466 		return 0;
1467 
1468 	err = skb_cow_head(skb, 0);
1469 	if (err < 0)
1470 		return err;
1471 
1472 	ip.hdr = skb_network_header(skb);
1473 	l4.hdr = skb_checksum_start(skb);
1474 
1475 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1476 	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1477 
1478 	/* initialize outer IP header fields */
1479 	if (ip.v4->version == 4) {
1480 		unsigned char *csum_start = skb_checksum_start(skb);
1481 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1482 
1483 		/* IP header will have to cancel out any data that
1484 		 * is not a part of the outer IP header
1485 		 */
1486 		ip.v4->check = csum_fold(csum_partial(trans_start,
1487 						      csum_start - trans_start,
1488 						      0));
1489 		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1490 
1491 		ip.v4->tot_len = 0;
1492 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1493 				   IGC_TX_FLAGS_CSUM |
1494 				   IGC_TX_FLAGS_IPV4;
1495 	} else {
1496 		ip.v6->payload_len = 0;
1497 		first->tx_flags |= IGC_TX_FLAGS_TSO |
1498 				   IGC_TX_FLAGS_CSUM;
1499 	}
1500 
1501 	/* determine offset of inner transport header */
1502 	l4_offset = l4.hdr - skb->data;
1503 
1504 	/* remove payload length from inner checksum */
1505 	paylen = skb->len - l4_offset;
1506 	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1507 		/* compute length of segmentation header */
1508 		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1509 		csum_replace_by_diff(&l4.tcp->check,
1510 				     (__force __wsum)htonl(paylen));
1511 	} else {
1512 		/* compute length of segmentation header */
1513 		*hdr_len = sizeof(*l4.udp) + l4_offset;
1514 		csum_replace_by_diff(&l4.udp->check,
1515 				     (__force __wsum)htonl(paylen));
1516 	}
1517 
1518 	/* update gso size and bytecount with header size */
1519 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1520 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1521 
1522 	/* MSS L4LEN IDX */
1523 	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1524 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1525 
1526 	/* VLAN MACLEN IPLEN */
1527 	vlan_macip_lens = l4.hdr - ip.hdr;
1528 	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1529 	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1530 
1531 	igc_tx_ctxtdesc(tx_ring, launch_time, first_flag,
1532 			vlan_macip_lens, type_tucmd, mss_l4len_idx);
1533 
1534 	return 1;
1535 }
1536 
igc_xmit_frame_ring(struct sk_buff * skb,struct igc_ring * tx_ring)1537 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1538 				       struct igc_ring *tx_ring)
1539 {
1540 	bool first_flag = false, insert_empty = false;
1541 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1542 	__be16 protocol = vlan_get_protocol(skb);
1543 	struct igc_tx_buffer *first;
1544 	__le32 launch_time = 0;
1545 	u32 tx_flags = 0;
1546 	unsigned short f;
1547 	ktime_t txtime;
1548 	u8 hdr_len = 0;
1549 	int tso = 0;
1550 
1551 	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1552 	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1553 	 *	+ 2 desc gap to keep tail from touching head,
1554 	 *	+ 1 desc for context descriptor,
1555 	 * otherwise try next time
1556 	 */
1557 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1558 		count += TXD_USE_COUNT(skb_frag_size(
1559 						&skb_shinfo(skb)->frags[f]));
1560 
1561 	if (igc_maybe_stop_tx(tx_ring, count + 5)) {
1562 		/* this is a hard error */
1563 		return NETDEV_TX_BUSY;
1564 	}
1565 
1566 	if (!tx_ring->launchtime_enable)
1567 		goto done;
1568 
1569 	txtime = skb->tstamp;
1570 	skb->tstamp = ktime_set(0, 0);
1571 	launch_time = igc_tx_launchtime(tx_ring, txtime, &first_flag, &insert_empty);
1572 
1573 	if (insert_empty) {
1574 		struct igc_tx_buffer *empty_info;
1575 		struct sk_buff *empty;
1576 		void *data;
1577 
1578 		empty_info = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1579 		empty = alloc_skb(IGC_EMPTY_FRAME_SIZE, GFP_ATOMIC);
1580 		if (!empty)
1581 			goto done;
1582 
1583 		data = skb_put(empty, IGC_EMPTY_FRAME_SIZE);
1584 		memset(data, 0, IGC_EMPTY_FRAME_SIZE);
1585 
1586 		igc_tx_ctxtdesc(tx_ring, 0, false, 0, 0, 0);
1587 
1588 		if (igc_init_tx_empty_descriptor(tx_ring,
1589 						 empty,
1590 						 empty_info) < 0)
1591 			dev_kfree_skb_any(empty);
1592 	}
1593 
1594 done:
1595 	/* record the location of the first descriptor for this packet */
1596 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1597 	first->type = IGC_TX_BUFFER_TYPE_SKB;
1598 	first->skb = skb;
1599 	first->bytecount = skb->len;
1600 	first->gso_segs = 1;
1601 
1602 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1603 		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1604 
1605 		/* FIXME: add support for retrieving timestamps from
1606 		 * the other timer registers before skipping the
1607 		 * timestamping request.
1608 		 */
1609 		unsigned long flags;
1610 
1611 		spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
1612 		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON && !adapter->ptp_tx_skb) {
1613 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1614 			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1615 
1616 			adapter->ptp_tx_skb = skb_get(skb);
1617 			adapter->ptp_tx_start = jiffies;
1618 		} else {
1619 			adapter->tx_hwtstamp_skipped++;
1620 		}
1621 
1622 		spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
1623 	}
1624 
1625 	if (skb_vlan_tag_present(skb)) {
1626 		tx_flags |= IGC_TX_FLAGS_VLAN;
1627 		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1628 	}
1629 
1630 	/* record initial flags and protocol */
1631 	first->tx_flags = tx_flags;
1632 	first->protocol = protocol;
1633 
1634 	tso = igc_tso(tx_ring, first, launch_time, first_flag, &hdr_len);
1635 	if (tso < 0)
1636 		goto out_drop;
1637 	else if (!tso)
1638 		igc_tx_csum(tx_ring, first, launch_time, first_flag);
1639 
1640 	igc_tx_map(tx_ring, first, hdr_len);
1641 
1642 	return NETDEV_TX_OK;
1643 
1644 out_drop:
1645 	dev_kfree_skb_any(first->skb);
1646 	first->skb = NULL;
1647 
1648 	return NETDEV_TX_OK;
1649 }
1650 
igc_tx_queue_mapping(struct igc_adapter * adapter,struct sk_buff * skb)1651 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1652 						    struct sk_buff *skb)
1653 {
1654 	unsigned int r_idx = skb->queue_mapping;
1655 
1656 	if (r_idx >= adapter->num_tx_queues)
1657 		r_idx = r_idx % adapter->num_tx_queues;
1658 
1659 	return adapter->tx_ring[r_idx];
1660 }
1661 
igc_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1662 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1663 				  struct net_device *netdev)
1664 {
1665 	struct igc_adapter *adapter = netdev_priv(netdev);
1666 
1667 	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1668 	 * in order to meet this minimum size requirement.
1669 	 */
1670 	if (skb->len < 17) {
1671 		if (skb_padto(skb, 17))
1672 			return NETDEV_TX_OK;
1673 		skb->len = 17;
1674 	}
1675 
1676 	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1677 }
1678 
igc_rx_checksum(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1679 static void igc_rx_checksum(struct igc_ring *ring,
1680 			    union igc_adv_rx_desc *rx_desc,
1681 			    struct sk_buff *skb)
1682 {
1683 	skb_checksum_none_assert(skb);
1684 
1685 	/* Ignore Checksum bit is set */
1686 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1687 		return;
1688 
1689 	/* Rx checksum disabled via ethtool */
1690 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1691 		return;
1692 
1693 	/* TCP/UDP checksum error bit is set */
1694 	if (igc_test_staterr(rx_desc,
1695 			     IGC_RXDEXT_STATERR_L4E |
1696 			     IGC_RXDEXT_STATERR_IPE)) {
1697 		/* work around errata with sctp packets where the TCPE aka
1698 		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1699 		 * packets (aka let the stack check the crc32c)
1700 		 */
1701 		if (!(skb->len == 60 &&
1702 		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1703 			u64_stats_update_begin(&ring->rx_syncp);
1704 			ring->rx_stats.csum_err++;
1705 			u64_stats_update_end(&ring->rx_syncp);
1706 		}
1707 		/* let the stack verify checksum errors */
1708 		return;
1709 	}
1710 	/* It must be a TCP or UDP packet with a valid checksum */
1711 	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1712 				      IGC_RXD_STAT_UDPCS))
1713 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1714 
1715 	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1716 		   le32_to_cpu(rx_desc->wb.upper.status_error));
1717 }
1718 
1719 /* Mapping HW RSS Type to enum pkt_hash_types */
1720 static const enum pkt_hash_types igc_rss_type_table[IGC_RSS_TYPE_MAX_TABLE] = {
1721 	[IGC_RSS_TYPE_NO_HASH]		= PKT_HASH_TYPE_L2,
1722 	[IGC_RSS_TYPE_HASH_TCP_IPV4]	= PKT_HASH_TYPE_L4,
1723 	[IGC_RSS_TYPE_HASH_IPV4]	= PKT_HASH_TYPE_L3,
1724 	[IGC_RSS_TYPE_HASH_TCP_IPV6]	= PKT_HASH_TYPE_L4,
1725 	[IGC_RSS_TYPE_HASH_IPV6_EX]	= PKT_HASH_TYPE_L3,
1726 	[IGC_RSS_TYPE_HASH_IPV6]	= PKT_HASH_TYPE_L3,
1727 	[IGC_RSS_TYPE_HASH_TCP_IPV6_EX] = PKT_HASH_TYPE_L4,
1728 	[IGC_RSS_TYPE_HASH_UDP_IPV4]	= PKT_HASH_TYPE_L4,
1729 	[IGC_RSS_TYPE_HASH_UDP_IPV6]	= PKT_HASH_TYPE_L4,
1730 	[IGC_RSS_TYPE_HASH_UDP_IPV6_EX] = PKT_HASH_TYPE_L4,
1731 	[10] = PKT_HASH_TYPE_NONE, /* RSS Type above 9 "Reserved" by HW  */
1732 	[11] = PKT_HASH_TYPE_NONE, /* keep array sized for SW bit-mask   */
1733 	[12] = PKT_HASH_TYPE_NONE, /* to handle future HW revisons       */
1734 	[13] = PKT_HASH_TYPE_NONE,
1735 	[14] = PKT_HASH_TYPE_NONE,
1736 	[15] = PKT_HASH_TYPE_NONE,
1737 };
1738 
igc_rx_hash(struct igc_ring * ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1739 static inline void igc_rx_hash(struct igc_ring *ring,
1740 			       union igc_adv_rx_desc *rx_desc,
1741 			       struct sk_buff *skb)
1742 {
1743 	if (ring->netdev->features & NETIF_F_RXHASH) {
1744 		u32 rss_hash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
1745 		u32 rss_type = igc_rss_type(rx_desc);
1746 
1747 		skb_set_hash(skb, rss_hash, igc_rss_type_table[rss_type]);
1748 	}
1749 }
1750 
igc_rx_vlan(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1751 static void igc_rx_vlan(struct igc_ring *rx_ring,
1752 			union igc_adv_rx_desc *rx_desc,
1753 			struct sk_buff *skb)
1754 {
1755 	struct net_device *dev = rx_ring->netdev;
1756 	u16 vid;
1757 
1758 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1759 	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1760 		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1761 		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1762 			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1763 		else
1764 			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1765 
1766 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1767 	}
1768 }
1769 
1770 /**
1771  * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1772  * @rx_ring: rx descriptor ring packet is being transacted on
1773  * @rx_desc: pointer to the EOP Rx descriptor
1774  * @skb: pointer to current skb being populated
1775  *
1776  * This function checks the ring, descriptor, and packet information in order
1777  * to populate the hash, checksum, VLAN, protocol, and other fields within the
1778  * skb.
1779  */
igc_process_skb_fields(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)1780 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1781 				   union igc_adv_rx_desc *rx_desc,
1782 				   struct sk_buff *skb)
1783 {
1784 	igc_rx_hash(rx_ring, rx_desc, skb);
1785 
1786 	igc_rx_checksum(rx_ring, rx_desc, skb);
1787 
1788 	igc_rx_vlan(rx_ring, rx_desc, skb);
1789 
1790 	skb_record_rx_queue(skb, rx_ring->queue_index);
1791 
1792 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1793 }
1794 
igc_vlan_mode(struct net_device * netdev,netdev_features_t features)1795 static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1796 {
1797 	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1798 	struct igc_adapter *adapter = netdev_priv(netdev);
1799 	struct igc_hw *hw = &adapter->hw;
1800 	u32 ctrl;
1801 
1802 	ctrl = rd32(IGC_CTRL);
1803 
1804 	if (enable) {
1805 		/* enable VLAN tag insert/strip */
1806 		ctrl |= IGC_CTRL_VME;
1807 	} else {
1808 		/* disable VLAN tag insert/strip */
1809 		ctrl &= ~IGC_CTRL_VME;
1810 	}
1811 	wr32(IGC_CTRL, ctrl);
1812 }
1813 
igc_restore_vlan(struct igc_adapter * adapter)1814 static void igc_restore_vlan(struct igc_adapter *adapter)
1815 {
1816 	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1817 }
1818 
igc_get_rx_buffer(struct igc_ring * rx_ring,const unsigned int size,int * rx_buffer_pgcnt)1819 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1820 					       const unsigned int size,
1821 					       int *rx_buffer_pgcnt)
1822 {
1823 	struct igc_rx_buffer *rx_buffer;
1824 
1825 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1826 	*rx_buffer_pgcnt =
1827 #if (PAGE_SIZE < 8192)
1828 		page_count(rx_buffer->page);
1829 #else
1830 		0;
1831 #endif
1832 	prefetchw(rx_buffer->page);
1833 
1834 	/* we are reusing so sync this buffer for CPU use */
1835 	dma_sync_single_range_for_cpu(rx_ring->dev,
1836 				      rx_buffer->dma,
1837 				      rx_buffer->page_offset,
1838 				      size,
1839 				      DMA_FROM_DEVICE);
1840 
1841 	rx_buffer->pagecnt_bias--;
1842 
1843 	return rx_buffer;
1844 }
1845 
igc_rx_buffer_flip(struct igc_rx_buffer * buffer,unsigned int truesize)1846 static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1847 			       unsigned int truesize)
1848 {
1849 #if (PAGE_SIZE < 8192)
1850 	buffer->page_offset ^= truesize;
1851 #else
1852 	buffer->page_offset += truesize;
1853 #endif
1854 }
1855 
igc_get_rx_frame_truesize(struct igc_ring * ring,unsigned int size)1856 static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1857 					      unsigned int size)
1858 {
1859 	unsigned int truesize;
1860 
1861 #if (PAGE_SIZE < 8192)
1862 	truesize = igc_rx_pg_size(ring) / 2;
1863 #else
1864 	truesize = ring_uses_build_skb(ring) ?
1865 		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1866 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1867 		   SKB_DATA_ALIGN(size);
1868 #endif
1869 	return truesize;
1870 }
1871 
1872 /**
1873  * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1874  * @rx_ring: rx descriptor ring to transact packets on
1875  * @rx_buffer: buffer containing page to add
1876  * @skb: sk_buff to place the data into
1877  * @size: size of buffer to be added
1878  *
1879  * This function will add the data contained in rx_buffer->page to the skb.
1880  */
igc_add_rx_frag(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct sk_buff * skb,unsigned int size)1881 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1882 			    struct igc_rx_buffer *rx_buffer,
1883 			    struct sk_buff *skb,
1884 			    unsigned int size)
1885 {
1886 	unsigned int truesize;
1887 
1888 #if (PAGE_SIZE < 8192)
1889 	truesize = igc_rx_pg_size(rx_ring) / 2;
1890 #else
1891 	truesize = ring_uses_build_skb(rx_ring) ?
1892 		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1893 		   SKB_DATA_ALIGN(size);
1894 #endif
1895 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1896 			rx_buffer->page_offset, size, truesize);
1897 
1898 	igc_rx_buffer_flip(rx_buffer, truesize);
1899 }
1900 
igc_build_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp)1901 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1902 				     struct igc_rx_buffer *rx_buffer,
1903 				     struct xdp_buff *xdp)
1904 {
1905 	unsigned int size = xdp->data_end - xdp->data;
1906 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1907 	unsigned int metasize = xdp->data - xdp->data_meta;
1908 	struct sk_buff *skb;
1909 
1910 	/* prefetch first cache line of first page */
1911 	net_prefetch(xdp->data_meta);
1912 
1913 	/* build an skb around the page buffer */
1914 	skb = napi_build_skb(xdp->data_hard_start, truesize);
1915 	if (unlikely(!skb))
1916 		return NULL;
1917 
1918 	/* update pointers within the skb to store the data */
1919 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
1920 	__skb_put(skb, size);
1921 	if (metasize)
1922 		skb_metadata_set(skb, metasize);
1923 
1924 	igc_rx_buffer_flip(rx_buffer, truesize);
1925 	return skb;
1926 }
1927 
igc_construct_skb(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,struct xdp_buff * xdp,ktime_t timestamp)1928 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1929 					 struct igc_rx_buffer *rx_buffer,
1930 					 struct xdp_buff *xdp,
1931 					 ktime_t timestamp)
1932 {
1933 	unsigned int metasize = xdp->data - xdp->data_meta;
1934 	unsigned int size = xdp->data_end - xdp->data;
1935 	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1936 	void *va = xdp->data;
1937 	unsigned int headlen;
1938 	struct sk_buff *skb;
1939 
1940 	/* prefetch first cache line of first page */
1941 	net_prefetch(xdp->data_meta);
1942 
1943 	/* allocate a skb to store the frags */
1944 	skb = napi_alloc_skb(&rx_ring->q_vector->napi,
1945 			     IGC_RX_HDR_LEN + metasize);
1946 	if (unlikely(!skb))
1947 		return NULL;
1948 
1949 	if (timestamp)
1950 		skb_hwtstamps(skb)->hwtstamp = timestamp;
1951 
1952 	/* Determine available headroom for copy */
1953 	headlen = size;
1954 	if (headlen > IGC_RX_HDR_LEN)
1955 		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1956 
1957 	/* align pull length to size of long to optimize memcpy performance */
1958 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1959 	       ALIGN(headlen + metasize, sizeof(long)));
1960 
1961 	if (metasize) {
1962 		skb_metadata_set(skb, metasize);
1963 		__skb_pull(skb, metasize);
1964 	}
1965 
1966 	/* update all of the pointers */
1967 	size -= headlen;
1968 	if (size) {
1969 		skb_add_rx_frag(skb, 0, rx_buffer->page,
1970 				(va + headlen) - page_address(rx_buffer->page),
1971 				size, truesize);
1972 		igc_rx_buffer_flip(rx_buffer, truesize);
1973 	} else {
1974 		rx_buffer->pagecnt_bias++;
1975 	}
1976 
1977 	return skb;
1978 }
1979 
1980 /**
1981  * igc_reuse_rx_page - page flip buffer and store it back on the ring
1982  * @rx_ring: rx descriptor ring to store buffers on
1983  * @old_buff: donor buffer to have page reused
1984  *
1985  * Synchronizes page for reuse by the adapter
1986  */
igc_reuse_rx_page(struct igc_ring * rx_ring,struct igc_rx_buffer * old_buff)1987 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1988 			      struct igc_rx_buffer *old_buff)
1989 {
1990 	u16 nta = rx_ring->next_to_alloc;
1991 	struct igc_rx_buffer *new_buff;
1992 
1993 	new_buff = &rx_ring->rx_buffer_info[nta];
1994 
1995 	/* update, and store next to alloc */
1996 	nta++;
1997 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1998 
1999 	/* Transfer page from old buffer to new buffer.
2000 	 * Move each member individually to avoid possible store
2001 	 * forwarding stalls.
2002 	 */
2003 	new_buff->dma		= old_buff->dma;
2004 	new_buff->page		= old_buff->page;
2005 	new_buff->page_offset	= old_buff->page_offset;
2006 	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
2007 }
2008 
igc_can_reuse_rx_page(struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2009 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
2010 				  int rx_buffer_pgcnt)
2011 {
2012 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
2013 	struct page *page = rx_buffer->page;
2014 
2015 	/* avoid re-using remote and pfmemalloc pages */
2016 	if (!dev_page_is_reusable(page))
2017 		return false;
2018 
2019 #if (PAGE_SIZE < 8192)
2020 	/* if we are only owner of page we can reuse it */
2021 	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
2022 		return false;
2023 #else
2024 #define IGC_LAST_OFFSET \
2025 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
2026 
2027 	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
2028 		return false;
2029 #endif
2030 
2031 	/* If we have drained the page fragment pool we need to update
2032 	 * the pagecnt_bias and page count so that we fully restock the
2033 	 * number of references the driver holds.
2034 	 */
2035 	if (unlikely(pagecnt_bias == 1)) {
2036 		page_ref_add(page, USHRT_MAX - 1);
2037 		rx_buffer->pagecnt_bias = USHRT_MAX;
2038 	}
2039 
2040 	return true;
2041 }
2042 
2043 /**
2044  * igc_is_non_eop - process handling of non-EOP buffers
2045  * @rx_ring: Rx ring being processed
2046  * @rx_desc: Rx descriptor for current buffer
2047  *
2048  * This function updates next to clean.  If the buffer is an EOP buffer
2049  * this function exits returning false, otherwise it will place the
2050  * sk_buff in the next buffer to be chained and return true indicating
2051  * that this is in fact a non-EOP buffer.
2052  */
igc_is_non_eop(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc)2053 static bool igc_is_non_eop(struct igc_ring *rx_ring,
2054 			   union igc_adv_rx_desc *rx_desc)
2055 {
2056 	u32 ntc = rx_ring->next_to_clean + 1;
2057 
2058 	/* fetch, update, and store next to clean */
2059 	ntc = (ntc < rx_ring->count) ? ntc : 0;
2060 	rx_ring->next_to_clean = ntc;
2061 
2062 	prefetch(IGC_RX_DESC(rx_ring, ntc));
2063 
2064 	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
2065 		return false;
2066 
2067 	return true;
2068 }
2069 
2070 /**
2071  * igc_cleanup_headers - Correct corrupted or empty headers
2072  * @rx_ring: rx descriptor ring packet is being transacted on
2073  * @rx_desc: pointer to the EOP Rx descriptor
2074  * @skb: pointer to current skb being fixed
2075  *
2076  * Address the case where we are pulling data in on pages only
2077  * and as such no data is present in the skb header.
2078  *
2079  * In addition if skb is not at least 60 bytes we need to pad it so that
2080  * it is large enough to qualify as a valid Ethernet frame.
2081  *
2082  * Returns true if an error was encountered and skb was freed.
2083  */
igc_cleanup_headers(struct igc_ring * rx_ring,union igc_adv_rx_desc * rx_desc,struct sk_buff * skb)2084 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
2085 				union igc_adv_rx_desc *rx_desc,
2086 				struct sk_buff *skb)
2087 {
2088 	/* XDP packets use error pointer so abort at this point */
2089 	if (IS_ERR(skb))
2090 		return true;
2091 
2092 	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
2093 		struct net_device *netdev = rx_ring->netdev;
2094 
2095 		if (!(netdev->features & NETIF_F_RXALL)) {
2096 			dev_kfree_skb_any(skb);
2097 			return true;
2098 		}
2099 	}
2100 
2101 	/* if eth_skb_pad returns an error the skb was freed */
2102 	if (eth_skb_pad(skb))
2103 		return true;
2104 
2105 	return false;
2106 }
2107 
igc_put_rx_buffer(struct igc_ring * rx_ring,struct igc_rx_buffer * rx_buffer,int rx_buffer_pgcnt)2108 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
2109 			      struct igc_rx_buffer *rx_buffer,
2110 			      int rx_buffer_pgcnt)
2111 {
2112 	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2113 		/* hand second half of page back to the ring */
2114 		igc_reuse_rx_page(rx_ring, rx_buffer);
2115 	} else {
2116 		/* We are not reusing the buffer so unmap it and free
2117 		 * any references we are holding to it
2118 		 */
2119 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2120 				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
2121 				     IGC_RX_DMA_ATTR);
2122 		__page_frag_cache_drain(rx_buffer->page,
2123 					rx_buffer->pagecnt_bias);
2124 	}
2125 
2126 	/* clear contents of rx_buffer */
2127 	rx_buffer->page = NULL;
2128 }
2129 
igc_rx_offset(struct igc_ring * rx_ring)2130 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
2131 {
2132 	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
2133 
2134 	if (ring_uses_build_skb(rx_ring))
2135 		return IGC_SKB_PAD;
2136 	if (igc_xdp_is_enabled(adapter))
2137 		return XDP_PACKET_HEADROOM;
2138 
2139 	return 0;
2140 }
2141 
igc_alloc_mapped_page(struct igc_ring * rx_ring,struct igc_rx_buffer * bi)2142 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
2143 				  struct igc_rx_buffer *bi)
2144 {
2145 	struct page *page = bi->page;
2146 	dma_addr_t dma;
2147 
2148 	/* since we are recycling buffers we should seldom need to alloc */
2149 	if (likely(page))
2150 		return true;
2151 
2152 	/* alloc new page for storage */
2153 	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
2154 	if (unlikely(!page)) {
2155 		rx_ring->rx_stats.alloc_failed++;
2156 		return false;
2157 	}
2158 
2159 	/* map page for use */
2160 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
2161 				 igc_rx_pg_size(rx_ring),
2162 				 DMA_FROM_DEVICE,
2163 				 IGC_RX_DMA_ATTR);
2164 
2165 	/* if mapping failed free memory back to system since
2166 	 * there isn't much point in holding memory we can't use
2167 	 */
2168 	if (dma_mapping_error(rx_ring->dev, dma)) {
2169 		__free_page(page);
2170 
2171 		rx_ring->rx_stats.alloc_failed++;
2172 		return false;
2173 	}
2174 
2175 	bi->dma = dma;
2176 	bi->page = page;
2177 	bi->page_offset = igc_rx_offset(rx_ring);
2178 	page_ref_add(page, USHRT_MAX - 1);
2179 	bi->pagecnt_bias = USHRT_MAX;
2180 
2181 	return true;
2182 }
2183 
2184 /**
2185  * igc_alloc_rx_buffers - Replace used receive buffers; packet split
2186  * @rx_ring: rx descriptor ring
2187  * @cleaned_count: number of buffers to clean
2188  */
igc_alloc_rx_buffers(struct igc_ring * rx_ring,u16 cleaned_count)2189 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
2190 {
2191 	union igc_adv_rx_desc *rx_desc;
2192 	u16 i = rx_ring->next_to_use;
2193 	struct igc_rx_buffer *bi;
2194 	u16 bufsz;
2195 
2196 	/* nothing to do */
2197 	if (!cleaned_count)
2198 		return;
2199 
2200 	rx_desc = IGC_RX_DESC(rx_ring, i);
2201 	bi = &rx_ring->rx_buffer_info[i];
2202 	i -= rx_ring->count;
2203 
2204 	bufsz = igc_rx_bufsz(rx_ring);
2205 
2206 	do {
2207 		if (!igc_alloc_mapped_page(rx_ring, bi))
2208 			break;
2209 
2210 		/* sync the buffer for use by the device */
2211 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2212 						 bi->page_offset, bufsz,
2213 						 DMA_FROM_DEVICE);
2214 
2215 		/* Refresh the desc even if buffer_addrs didn't change
2216 		 * because each write-back erases this info.
2217 		 */
2218 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2219 
2220 		rx_desc++;
2221 		bi++;
2222 		i++;
2223 		if (unlikely(!i)) {
2224 			rx_desc = IGC_RX_DESC(rx_ring, 0);
2225 			bi = rx_ring->rx_buffer_info;
2226 			i -= rx_ring->count;
2227 		}
2228 
2229 		/* clear the length for the next_to_use descriptor */
2230 		rx_desc->wb.upper.length = 0;
2231 
2232 		cleaned_count--;
2233 	} while (cleaned_count);
2234 
2235 	i += rx_ring->count;
2236 
2237 	if (rx_ring->next_to_use != i) {
2238 		/* record the next descriptor to use */
2239 		rx_ring->next_to_use = i;
2240 
2241 		/* update next to alloc since we have filled the ring */
2242 		rx_ring->next_to_alloc = i;
2243 
2244 		/* Force memory writes to complete before letting h/w
2245 		 * know there are new descriptors to fetch.  (Only
2246 		 * applicable for weak-ordered memory model archs,
2247 		 * such as IA-64).
2248 		 */
2249 		wmb();
2250 		writel(i, rx_ring->tail);
2251 	}
2252 }
2253 
igc_alloc_rx_buffers_zc(struct igc_ring * ring,u16 count)2254 static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2255 {
2256 	union igc_adv_rx_desc *desc;
2257 	u16 i = ring->next_to_use;
2258 	struct igc_rx_buffer *bi;
2259 	dma_addr_t dma;
2260 	bool ok = true;
2261 
2262 	if (!count)
2263 		return ok;
2264 
2265 	desc = IGC_RX_DESC(ring, i);
2266 	bi = &ring->rx_buffer_info[i];
2267 	i -= ring->count;
2268 
2269 	do {
2270 		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2271 		if (!bi->xdp) {
2272 			ok = false;
2273 			break;
2274 		}
2275 
2276 		dma = xsk_buff_xdp_get_dma(bi->xdp);
2277 		desc->read.pkt_addr = cpu_to_le64(dma);
2278 
2279 		desc++;
2280 		bi++;
2281 		i++;
2282 		if (unlikely(!i)) {
2283 			desc = IGC_RX_DESC(ring, 0);
2284 			bi = ring->rx_buffer_info;
2285 			i -= ring->count;
2286 		}
2287 
2288 		/* Clear the length for the next_to_use descriptor. */
2289 		desc->wb.upper.length = 0;
2290 
2291 		count--;
2292 	} while (count);
2293 
2294 	i += ring->count;
2295 
2296 	if (ring->next_to_use != i) {
2297 		ring->next_to_use = i;
2298 
2299 		/* Force memory writes to complete before letting h/w
2300 		 * know there are new descriptors to fetch.  (Only
2301 		 * applicable for weak-ordered memory model archs,
2302 		 * such as IA-64).
2303 		 */
2304 		wmb();
2305 		writel(i, ring->tail);
2306 	}
2307 
2308 	return ok;
2309 }
2310 
2311 /* This function requires __netif_tx_lock is held by the caller. */
igc_xdp_init_tx_descriptor(struct igc_ring * ring,struct xdp_frame * xdpf)2312 static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2313 				      struct xdp_frame *xdpf)
2314 {
2315 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2316 	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
2317 	u16 count, index = ring->next_to_use;
2318 	struct igc_tx_buffer *head = &ring->tx_buffer_info[index];
2319 	struct igc_tx_buffer *buffer = head;
2320 	union igc_adv_tx_desc *desc = IGC_TX_DESC(ring, index);
2321 	u32 olinfo_status, len = xdpf->len, cmd_type;
2322 	void *data = xdpf->data;
2323 	u16 i;
2324 
2325 	count = TXD_USE_COUNT(len);
2326 	for (i = 0; i < nr_frags; i++)
2327 		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
2328 
2329 	if (igc_maybe_stop_tx(ring, count + 3)) {
2330 		/* this is a hard error */
2331 		return -EBUSY;
2332 	}
2333 
2334 	i = 0;
2335 	head->bytecount = xdp_get_frame_len(xdpf);
2336 	head->type = IGC_TX_BUFFER_TYPE_XDP;
2337 	head->gso_segs = 1;
2338 	head->xdpf = xdpf;
2339 
2340 	olinfo_status = head->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2341 	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2342 
2343 	for (;;) {
2344 		dma_addr_t dma;
2345 
2346 		dma = dma_map_single(ring->dev, data, len, DMA_TO_DEVICE);
2347 		if (dma_mapping_error(ring->dev, dma)) {
2348 			netdev_err_once(ring->netdev,
2349 					"Failed to map DMA for TX\n");
2350 			goto unmap;
2351 		}
2352 
2353 		dma_unmap_len_set(buffer, len, len);
2354 		dma_unmap_addr_set(buffer, dma, dma);
2355 
2356 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2357 			   IGC_ADVTXD_DCMD_IFCS | len;
2358 
2359 		desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2360 		desc->read.buffer_addr = cpu_to_le64(dma);
2361 
2362 		buffer->protocol = 0;
2363 
2364 		if (++index == ring->count)
2365 			index = 0;
2366 
2367 		if (i == nr_frags)
2368 			break;
2369 
2370 		buffer = &ring->tx_buffer_info[index];
2371 		desc = IGC_TX_DESC(ring, index);
2372 		desc->read.olinfo_status = 0;
2373 
2374 		data = skb_frag_address(&sinfo->frags[i]);
2375 		len = skb_frag_size(&sinfo->frags[i]);
2376 		i++;
2377 	}
2378 	desc->read.cmd_type_len |= cpu_to_le32(IGC_TXD_DCMD);
2379 
2380 	netdev_tx_sent_queue(txring_txq(ring), head->bytecount);
2381 	/* set the timestamp */
2382 	head->time_stamp = jiffies;
2383 	/* set next_to_watch value indicating a packet is present */
2384 	head->next_to_watch = desc;
2385 	ring->next_to_use = index;
2386 
2387 	return 0;
2388 
2389 unmap:
2390 	for (;;) {
2391 		buffer = &ring->tx_buffer_info[index];
2392 		if (dma_unmap_len(buffer, len))
2393 			dma_unmap_page(ring->dev,
2394 				       dma_unmap_addr(buffer, dma),
2395 				       dma_unmap_len(buffer, len),
2396 				       DMA_TO_DEVICE);
2397 		dma_unmap_len_set(buffer, len, 0);
2398 		if (buffer == head)
2399 			break;
2400 
2401 		if (!index)
2402 			index += ring->count;
2403 		index--;
2404 	}
2405 
2406 	return -ENOMEM;
2407 }
2408 
igc_xdp_get_tx_ring(struct igc_adapter * adapter,int cpu)2409 static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2410 					    int cpu)
2411 {
2412 	int index = cpu;
2413 
2414 	if (unlikely(index < 0))
2415 		index = 0;
2416 
2417 	while (index >= adapter->num_tx_queues)
2418 		index -= adapter->num_tx_queues;
2419 
2420 	return adapter->tx_ring[index];
2421 }
2422 
igc_xdp_xmit_back(struct igc_adapter * adapter,struct xdp_buff * xdp)2423 static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2424 {
2425 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2426 	int cpu = smp_processor_id();
2427 	struct netdev_queue *nq;
2428 	struct igc_ring *ring;
2429 	int res;
2430 
2431 	if (unlikely(!xdpf))
2432 		return -EFAULT;
2433 
2434 	ring = igc_xdp_get_tx_ring(adapter, cpu);
2435 	nq = txring_txq(ring);
2436 
2437 	__netif_tx_lock(nq, cpu);
2438 	/* Avoid transmit queue timeout since we share it with the slow path */
2439 	txq_trans_cond_update(nq);
2440 	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2441 	__netif_tx_unlock(nq);
2442 	return res;
2443 }
2444 
2445 /* This function assumes rcu_read_lock() is held by the caller. */
__igc_xdp_run_prog(struct igc_adapter * adapter,struct bpf_prog * prog,struct xdp_buff * xdp)2446 static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2447 			      struct bpf_prog *prog,
2448 			      struct xdp_buff *xdp)
2449 {
2450 	u32 act = bpf_prog_run_xdp(prog, xdp);
2451 
2452 	switch (act) {
2453 	case XDP_PASS:
2454 		return IGC_XDP_PASS;
2455 	case XDP_TX:
2456 		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2457 			goto out_failure;
2458 		return IGC_XDP_TX;
2459 	case XDP_REDIRECT:
2460 		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2461 			goto out_failure;
2462 		return IGC_XDP_REDIRECT;
2463 		break;
2464 	default:
2465 		bpf_warn_invalid_xdp_action(adapter->netdev, prog, act);
2466 		fallthrough;
2467 	case XDP_ABORTED:
2468 out_failure:
2469 		trace_xdp_exception(adapter->netdev, prog, act);
2470 		fallthrough;
2471 	case XDP_DROP:
2472 		return IGC_XDP_CONSUMED;
2473 	}
2474 }
2475 
igc_xdp_run_prog(struct igc_adapter * adapter,struct xdp_buff * xdp)2476 static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2477 					struct xdp_buff *xdp)
2478 {
2479 	struct bpf_prog *prog;
2480 	int res;
2481 
2482 	prog = READ_ONCE(adapter->xdp_prog);
2483 	if (!prog) {
2484 		res = IGC_XDP_PASS;
2485 		goto out;
2486 	}
2487 
2488 	res = __igc_xdp_run_prog(adapter, prog, xdp);
2489 
2490 out:
2491 	return ERR_PTR(-res);
2492 }
2493 
2494 /* This function assumes __netif_tx_lock is held by the caller. */
igc_flush_tx_descriptors(struct igc_ring * ring)2495 static void igc_flush_tx_descriptors(struct igc_ring *ring)
2496 {
2497 	/* Once tail pointer is updated, hardware can fetch the descriptors
2498 	 * any time so we issue a write membar here to ensure all memory
2499 	 * writes are complete before the tail pointer is updated.
2500 	 */
2501 	wmb();
2502 	writel(ring->next_to_use, ring->tail);
2503 }
2504 
igc_finalize_xdp(struct igc_adapter * adapter,int status)2505 static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2506 {
2507 	int cpu = smp_processor_id();
2508 	struct netdev_queue *nq;
2509 	struct igc_ring *ring;
2510 
2511 	if (status & IGC_XDP_TX) {
2512 		ring = igc_xdp_get_tx_ring(adapter, cpu);
2513 		nq = txring_txq(ring);
2514 
2515 		__netif_tx_lock(nq, cpu);
2516 		igc_flush_tx_descriptors(ring);
2517 		__netif_tx_unlock(nq);
2518 	}
2519 
2520 	if (status & IGC_XDP_REDIRECT)
2521 		xdp_do_flush();
2522 }
2523 
igc_update_rx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2524 static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2525 				unsigned int packets, unsigned int bytes)
2526 {
2527 	struct igc_ring *ring = q_vector->rx.ring;
2528 
2529 	u64_stats_update_begin(&ring->rx_syncp);
2530 	ring->rx_stats.packets += packets;
2531 	ring->rx_stats.bytes += bytes;
2532 	u64_stats_update_end(&ring->rx_syncp);
2533 
2534 	q_vector->rx.total_packets += packets;
2535 	q_vector->rx.total_bytes += bytes;
2536 }
2537 
igc_clean_rx_irq(struct igc_q_vector * q_vector,const int budget)2538 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2539 {
2540 	unsigned int total_bytes = 0, total_packets = 0;
2541 	struct igc_adapter *adapter = q_vector->adapter;
2542 	struct igc_ring *rx_ring = q_vector->rx.ring;
2543 	struct sk_buff *skb = rx_ring->skb;
2544 	u16 cleaned_count = igc_desc_unused(rx_ring);
2545 	int xdp_status = 0, rx_buffer_pgcnt;
2546 
2547 	while (likely(total_packets < budget)) {
2548 		union igc_adv_rx_desc *rx_desc;
2549 		struct igc_rx_buffer *rx_buffer;
2550 		unsigned int size, truesize;
2551 		ktime_t timestamp = 0;
2552 		struct xdp_buff xdp;
2553 		int pkt_offset = 0;
2554 		void *pktbuf;
2555 
2556 		/* return some buffers to hardware, one at a time is too slow */
2557 		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2558 			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2559 			cleaned_count = 0;
2560 		}
2561 
2562 		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2563 		size = le16_to_cpu(rx_desc->wb.upper.length);
2564 		if (!size)
2565 			break;
2566 
2567 		/* This memory barrier is needed to keep us from reading
2568 		 * any other fields out of the rx_desc until we know the
2569 		 * descriptor has been written back
2570 		 */
2571 		dma_rmb();
2572 
2573 		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2574 		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2575 
2576 		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2577 
2578 		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2579 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2580 							pktbuf);
2581 			pkt_offset = IGC_TS_HDR_LEN;
2582 			size -= IGC_TS_HDR_LEN;
2583 		}
2584 
2585 		if (!skb) {
2586 			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2587 			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2588 					 igc_rx_offset(rx_ring) + pkt_offset,
2589 					 size, true);
2590 			xdp_buff_clear_frags_flag(&xdp);
2591 
2592 			skb = igc_xdp_run_prog(adapter, &xdp);
2593 		}
2594 
2595 		if (IS_ERR(skb)) {
2596 			unsigned int xdp_res = -PTR_ERR(skb);
2597 
2598 			switch (xdp_res) {
2599 			case IGC_XDP_CONSUMED:
2600 				rx_buffer->pagecnt_bias++;
2601 				break;
2602 			case IGC_XDP_TX:
2603 			case IGC_XDP_REDIRECT:
2604 				igc_rx_buffer_flip(rx_buffer, truesize);
2605 				xdp_status |= xdp_res;
2606 				break;
2607 			}
2608 
2609 			total_packets++;
2610 			total_bytes += size;
2611 		} else if (skb)
2612 			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2613 		else if (ring_uses_build_skb(rx_ring))
2614 			skb = igc_build_skb(rx_ring, rx_buffer, &xdp);
2615 		else
2616 			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2617 						timestamp);
2618 
2619 		/* exit if we failed to retrieve a buffer */
2620 		if (!skb) {
2621 			rx_ring->rx_stats.alloc_failed++;
2622 			rx_buffer->pagecnt_bias++;
2623 			break;
2624 		}
2625 
2626 		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2627 		cleaned_count++;
2628 
2629 		/* fetch next buffer in frame if non-eop */
2630 		if (igc_is_non_eop(rx_ring, rx_desc))
2631 			continue;
2632 
2633 		/* verify the packet layout is correct */
2634 		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2635 			skb = NULL;
2636 			continue;
2637 		}
2638 
2639 		/* probably a little skewed due to removing CRC */
2640 		total_bytes += skb->len;
2641 
2642 		/* populate checksum, VLAN, and protocol */
2643 		igc_process_skb_fields(rx_ring, rx_desc, skb);
2644 
2645 		napi_gro_receive(&q_vector->napi, skb);
2646 
2647 		/* reset skb pointer */
2648 		skb = NULL;
2649 
2650 		/* update budget accounting */
2651 		total_packets++;
2652 	}
2653 
2654 	if (xdp_status)
2655 		igc_finalize_xdp(adapter, xdp_status);
2656 
2657 	/* place incomplete frames back on ring for completion */
2658 	rx_ring->skb = skb;
2659 
2660 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2661 
2662 	if (cleaned_count)
2663 		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2664 
2665 	return total_packets;
2666 }
2667 
igc_construct_skb_zc(struct igc_ring * ring,struct xdp_buff * xdp)2668 static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2669 					    struct xdp_buff *xdp)
2670 {
2671 	unsigned int totalsize = xdp->data_end - xdp->data_meta;
2672 	unsigned int metasize = xdp->data - xdp->data_meta;
2673 	struct sk_buff *skb;
2674 
2675 	net_prefetch(xdp->data_meta);
2676 
2677 	skb = __napi_alloc_skb(&ring->q_vector->napi, totalsize,
2678 			       GFP_ATOMIC | __GFP_NOWARN);
2679 	if (unlikely(!skb))
2680 		return NULL;
2681 
2682 	memcpy(__skb_put(skb, totalsize), xdp->data_meta,
2683 	       ALIGN(totalsize, sizeof(long)));
2684 
2685 	if (metasize) {
2686 		skb_metadata_set(skb, metasize);
2687 		__skb_pull(skb, metasize);
2688 	}
2689 
2690 	return skb;
2691 }
2692 
igc_dispatch_skb_zc(struct igc_q_vector * q_vector,union igc_adv_rx_desc * desc,struct xdp_buff * xdp,ktime_t timestamp)2693 static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2694 				union igc_adv_rx_desc *desc,
2695 				struct xdp_buff *xdp,
2696 				ktime_t timestamp)
2697 {
2698 	struct igc_ring *ring = q_vector->rx.ring;
2699 	struct sk_buff *skb;
2700 
2701 	skb = igc_construct_skb_zc(ring, xdp);
2702 	if (!skb) {
2703 		ring->rx_stats.alloc_failed++;
2704 		return;
2705 	}
2706 
2707 	if (timestamp)
2708 		skb_hwtstamps(skb)->hwtstamp = timestamp;
2709 
2710 	if (igc_cleanup_headers(ring, desc, skb))
2711 		return;
2712 
2713 	igc_process_skb_fields(ring, desc, skb);
2714 	napi_gro_receive(&q_vector->napi, skb);
2715 }
2716 
igc_clean_rx_irq_zc(struct igc_q_vector * q_vector,const int budget)2717 static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2718 {
2719 	struct igc_adapter *adapter = q_vector->adapter;
2720 	struct igc_ring *ring = q_vector->rx.ring;
2721 	u16 cleaned_count = igc_desc_unused(ring);
2722 	int total_bytes = 0, total_packets = 0;
2723 	u16 ntc = ring->next_to_clean;
2724 	struct bpf_prog *prog;
2725 	bool failure = false;
2726 	int xdp_status = 0;
2727 
2728 	rcu_read_lock();
2729 
2730 	prog = READ_ONCE(adapter->xdp_prog);
2731 
2732 	while (likely(total_packets < budget)) {
2733 		union igc_adv_rx_desc *desc;
2734 		struct igc_rx_buffer *bi;
2735 		ktime_t timestamp = 0;
2736 		unsigned int size;
2737 		int res;
2738 
2739 		desc = IGC_RX_DESC(ring, ntc);
2740 		size = le16_to_cpu(desc->wb.upper.length);
2741 		if (!size)
2742 			break;
2743 
2744 		/* This memory barrier is needed to keep us from reading
2745 		 * any other fields out of the rx_desc until we know the
2746 		 * descriptor has been written back
2747 		 */
2748 		dma_rmb();
2749 
2750 		bi = &ring->rx_buffer_info[ntc];
2751 
2752 		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2753 			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2754 							bi->xdp->data);
2755 
2756 			bi->xdp->data += IGC_TS_HDR_LEN;
2757 
2758 			/* HW timestamp has been copied into local variable. Metadata
2759 			 * length when XDP program is called should be 0.
2760 			 */
2761 			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2762 			size -= IGC_TS_HDR_LEN;
2763 		}
2764 
2765 		bi->xdp->data_end = bi->xdp->data + size;
2766 		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2767 
2768 		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2769 		switch (res) {
2770 		case IGC_XDP_PASS:
2771 			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2772 			fallthrough;
2773 		case IGC_XDP_CONSUMED:
2774 			xsk_buff_free(bi->xdp);
2775 			break;
2776 		case IGC_XDP_TX:
2777 		case IGC_XDP_REDIRECT:
2778 			xdp_status |= res;
2779 			break;
2780 		}
2781 
2782 		bi->xdp = NULL;
2783 		total_bytes += size;
2784 		total_packets++;
2785 		cleaned_count++;
2786 		ntc++;
2787 		if (ntc == ring->count)
2788 			ntc = 0;
2789 	}
2790 
2791 	ring->next_to_clean = ntc;
2792 	rcu_read_unlock();
2793 
2794 	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2795 		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2796 
2797 	if (xdp_status)
2798 		igc_finalize_xdp(adapter, xdp_status);
2799 
2800 	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2801 
2802 	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2803 		if (failure || ring->next_to_clean == ring->next_to_use)
2804 			xsk_set_rx_need_wakeup(ring->xsk_pool);
2805 		else
2806 			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2807 		return total_packets;
2808 	}
2809 
2810 	return failure ? budget : total_packets;
2811 }
2812 
igc_update_tx_stats(struct igc_q_vector * q_vector,unsigned int packets,unsigned int bytes)2813 static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2814 				unsigned int packets, unsigned int bytes)
2815 {
2816 	struct igc_ring *ring = q_vector->tx.ring;
2817 
2818 	u64_stats_update_begin(&ring->tx_syncp);
2819 	ring->tx_stats.bytes += bytes;
2820 	ring->tx_stats.packets += packets;
2821 	u64_stats_update_end(&ring->tx_syncp);
2822 
2823 	q_vector->tx.total_bytes += bytes;
2824 	q_vector->tx.total_packets += packets;
2825 }
2826 
igc_xdp_xmit_zc(struct igc_ring * ring)2827 static void igc_xdp_xmit_zc(struct igc_ring *ring)
2828 {
2829 	struct xsk_buff_pool *pool = ring->xsk_pool;
2830 	struct netdev_queue *nq = txring_txq(ring);
2831 	union igc_adv_tx_desc *tx_desc = NULL;
2832 	int cpu = smp_processor_id();
2833 	struct xdp_desc xdp_desc;
2834 	u16 budget, ntu;
2835 
2836 	if (!netif_carrier_ok(ring->netdev))
2837 		return;
2838 
2839 	__netif_tx_lock(nq, cpu);
2840 
2841 	/* Avoid transmit queue timeout since we share it with the slow path */
2842 	txq_trans_cond_update(nq);
2843 
2844 	ntu = ring->next_to_use;
2845 	budget = igc_desc_unused(ring);
2846 
2847 	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2848 		u32 cmd_type, olinfo_status;
2849 		struct igc_tx_buffer *bi;
2850 		dma_addr_t dma;
2851 
2852 		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2853 			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2854 			   xdp_desc.len;
2855 		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2856 
2857 		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2858 		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2859 
2860 		tx_desc = IGC_TX_DESC(ring, ntu);
2861 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2862 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2863 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2864 
2865 		bi = &ring->tx_buffer_info[ntu];
2866 		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2867 		bi->protocol = 0;
2868 		bi->bytecount = xdp_desc.len;
2869 		bi->gso_segs = 1;
2870 		bi->time_stamp = jiffies;
2871 		bi->next_to_watch = tx_desc;
2872 
2873 		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2874 
2875 		ntu++;
2876 		if (ntu == ring->count)
2877 			ntu = 0;
2878 	}
2879 
2880 	ring->next_to_use = ntu;
2881 	if (tx_desc) {
2882 		igc_flush_tx_descriptors(ring);
2883 		xsk_tx_release(pool);
2884 	}
2885 
2886 	__netif_tx_unlock(nq);
2887 }
2888 
2889 /**
2890  * igc_clean_tx_irq - Reclaim resources after transmit completes
2891  * @q_vector: pointer to q_vector containing needed info
2892  * @napi_budget: Used to determine if we are in netpoll
2893  *
2894  * returns true if ring is completely cleaned
2895  */
igc_clean_tx_irq(struct igc_q_vector * q_vector,int napi_budget)2896 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2897 {
2898 	struct igc_adapter *adapter = q_vector->adapter;
2899 	unsigned int total_bytes = 0, total_packets = 0;
2900 	unsigned int budget = q_vector->tx.work_limit;
2901 	struct igc_ring *tx_ring = q_vector->tx.ring;
2902 	unsigned int i = tx_ring->next_to_clean;
2903 	struct igc_tx_buffer *tx_buffer;
2904 	union igc_adv_tx_desc *tx_desc;
2905 	u32 xsk_frames = 0;
2906 
2907 	if (test_bit(__IGC_DOWN, &adapter->state))
2908 		return true;
2909 
2910 	tx_buffer = &tx_ring->tx_buffer_info[i];
2911 	tx_desc = IGC_TX_DESC(tx_ring, i);
2912 	i -= tx_ring->count;
2913 
2914 	do {
2915 		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2916 
2917 		/* if next_to_watch is not set then there is no work pending */
2918 		if (!eop_desc)
2919 			break;
2920 
2921 		/* prevent any other reads prior to eop_desc */
2922 		smp_rmb();
2923 
2924 		/* if DD is not set pending work has not been completed */
2925 		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2926 			break;
2927 
2928 		/* clear next_to_watch to prevent false hangs */
2929 		tx_buffer->next_to_watch = NULL;
2930 
2931 		/* update the statistics for this packet */
2932 		total_bytes += tx_buffer->bytecount;
2933 		total_packets += tx_buffer->gso_segs;
2934 
2935 		switch (tx_buffer->type) {
2936 		case IGC_TX_BUFFER_TYPE_XSK:
2937 			xsk_frames++;
2938 			break;
2939 		case IGC_TX_BUFFER_TYPE_XDP:
2940 			xdp_return_frame(tx_buffer->xdpf);
2941 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2942 			break;
2943 		case IGC_TX_BUFFER_TYPE_SKB:
2944 			napi_consume_skb(tx_buffer->skb, napi_budget);
2945 			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2946 			break;
2947 		default:
2948 			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2949 			break;
2950 		}
2951 
2952 		/* clear last DMA location and unmap remaining buffers */
2953 		while (tx_desc != eop_desc) {
2954 			tx_buffer++;
2955 			tx_desc++;
2956 			i++;
2957 			if (unlikely(!i)) {
2958 				i -= tx_ring->count;
2959 				tx_buffer = tx_ring->tx_buffer_info;
2960 				tx_desc = IGC_TX_DESC(tx_ring, 0);
2961 			}
2962 
2963 			/* unmap any remaining paged data */
2964 			if (dma_unmap_len(tx_buffer, len))
2965 				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2966 		}
2967 
2968 		/* move us one more past the eop_desc for start of next pkt */
2969 		tx_buffer++;
2970 		tx_desc++;
2971 		i++;
2972 		if (unlikely(!i)) {
2973 			i -= tx_ring->count;
2974 			tx_buffer = tx_ring->tx_buffer_info;
2975 			tx_desc = IGC_TX_DESC(tx_ring, 0);
2976 		}
2977 
2978 		/* issue prefetch for next Tx descriptor */
2979 		prefetch(tx_desc);
2980 
2981 		/* update budget accounting */
2982 		budget--;
2983 	} while (likely(budget));
2984 
2985 	netdev_tx_completed_queue(txring_txq(tx_ring),
2986 				  total_packets, total_bytes);
2987 
2988 	i += tx_ring->count;
2989 	tx_ring->next_to_clean = i;
2990 
2991 	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2992 
2993 	if (tx_ring->xsk_pool) {
2994 		if (xsk_frames)
2995 			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2996 		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2997 			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2998 		igc_xdp_xmit_zc(tx_ring);
2999 	}
3000 
3001 	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
3002 		struct igc_hw *hw = &adapter->hw;
3003 
3004 		/* Detect a transmit hang in hardware, this serializes the
3005 		 * check with the clearing of time_stamp and movement of i
3006 		 */
3007 		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3008 		if (tx_buffer->next_to_watch &&
3009 		    time_after(jiffies, tx_buffer->time_stamp +
3010 		    (adapter->tx_timeout_factor * HZ)) &&
3011 		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF) &&
3012 		    (rd32(IGC_TDH(tx_ring->reg_idx)) !=
3013 		     readl(tx_ring->tail))) {
3014 			/* detected Tx unit hang */
3015 			netdev_err(tx_ring->netdev,
3016 				   "Detected Tx Unit Hang\n"
3017 				   "  Tx Queue             <%d>\n"
3018 				   "  TDH                  <%x>\n"
3019 				   "  TDT                  <%x>\n"
3020 				   "  next_to_use          <%x>\n"
3021 				   "  next_to_clean        <%x>\n"
3022 				   "buffer_info[next_to_clean]\n"
3023 				   "  time_stamp           <%lx>\n"
3024 				   "  next_to_watch        <%p>\n"
3025 				   "  jiffies              <%lx>\n"
3026 				   "  desc.status          <%x>\n",
3027 				   tx_ring->queue_index,
3028 				   rd32(IGC_TDH(tx_ring->reg_idx)),
3029 				   readl(tx_ring->tail),
3030 				   tx_ring->next_to_use,
3031 				   tx_ring->next_to_clean,
3032 				   tx_buffer->time_stamp,
3033 				   tx_buffer->next_to_watch,
3034 				   jiffies,
3035 				   tx_buffer->next_to_watch->wb.status);
3036 			netif_stop_subqueue(tx_ring->netdev,
3037 					    tx_ring->queue_index);
3038 
3039 			/* we are about to reset, no point in enabling stuff */
3040 			return true;
3041 		}
3042 	}
3043 
3044 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
3045 	if (unlikely(total_packets &&
3046 		     netif_carrier_ok(tx_ring->netdev) &&
3047 		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
3048 		/* Make sure that anybody stopping the queue after this
3049 		 * sees the new next_to_clean.
3050 		 */
3051 		smp_mb();
3052 		if (__netif_subqueue_stopped(tx_ring->netdev,
3053 					     tx_ring->queue_index) &&
3054 		    !(test_bit(__IGC_DOWN, &adapter->state))) {
3055 			netif_wake_subqueue(tx_ring->netdev,
3056 					    tx_ring->queue_index);
3057 
3058 			u64_stats_update_begin(&tx_ring->tx_syncp);
3059 			tx_ring->tx_stats.restart_queue++;
3060 			u64_stats_update_end(&tx_ring->tx_syncp);
3061 		}
3062 	}
3063 
3064 	return !!budget;
3065 }
3066 
igc_find_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3067 static int igc_find_mac_filter(struct igc_adapter *adapter,
3068 			       enum igc_mac_filter_type type, const u8 *addr)
3069 {
3070 	struct igc_hw *hw = &adapter->hw;
3071 	int max_entries = hw->mac.rar_entry_count;
3072 	u32 ral, rah;
3073 	int i;
3074 
3075 	for (i = 0; i < max_entries; i++) {
3076 		ral = rd32(IGC_RAL(i));
3077 		rah = rd32(IGC_RAH(i));
3078 
3079 		if (!(rah & IGC_RAH_AV))
3080 			continue;
3081 		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
3082 			continue;
3083 		if ((rah & IGC_RAH_RAH_MASK) !=
3084 		    le16_to_cpup((__le16 *)(addr + 4)))
3085 			continue;
3086 		if (ral != le32_to_cpup((__le32 *)(addr)))
3087 			continue;
3088 
3089 		return i;
3090 	}
3091 
3092 	return -1;
3093 }
3094 
igc_get_avail_mac_filter_slot(struct igc_adapter * adapter)3095 static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
3096 {
3097 	struct igc_hw *hw = &adapter->hw;
3098 	int max_entries = hw->mac.rar_entry_count;
3099 	u32 rah;
3100 	int i;
3101 
3102 	for (i = 0; i < max_entries; i++) {
3103 		rah = rd32(IGC_RAH(i));
3104 
3105 		if (!(rah & IGC_RAH_AV))
3106 			return i;
3107 	}
3108 
3109 	return -1;
3110 }
3111 
3112 /**
3113  * igc_add_mac_filter() - Add MAC address filter
3114  * @adapter: Pointer to adapter where the filter should be added
3115  * @type: MAC address filter type (source or destination)
3116  * @addr: MAC address
3117  * @queue: If non-negative, queue assignment feature is enabled and frames
3118  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3119  *         assignment is disabled.
3120  *
3121  * Return: 0 in case of success, negative errno code otherwise.
3122  */
igc_add_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr,int queue)3123 static int igc_add_mac_filter(struct igc_adapter *adapter,
3124 			      enum igc_mac_filter_type type, const u8 *addr,
3125 			      int queue)
3126 {
3127 	struct net_device *dev = adapter->netdev;
3128 	int index;
3129 
3130 	index = igc_find_mac_filter(adapter, type, addr);
3131 	if (index >= 0)
3132 		goto update_filter;
3133 
3134 	index = igc_get_avail_mac_filter_slot(adapter);
3135 	if (index < 0)
3136 		return -ENOSPC;
3137 
3138 	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
3139 		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3140 		   addr, queue);
3141 
3142 update_filter:
3143 	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
3144 	return 0;
3145 }
3146 
3147 /**
3148  * igc_del_mac_filter() - Delete MAC address filter
3149  * @adapter: Pointer to adapter where the filter should be deleted from
3150  * @type: MAC address filter type (source or destination)
3151  * @addr: MAC address
3152  */
igc_del_mac_filter(struct igc_adapter * adapter,enum igc_mac_filter_type type,const u8 * addr)3153 static void igc_del_mac_filter(struct igc_adapter *adapter,
3154 			       enum igc_mac_filter_type type, const u8 *addr)
3155 {
3156 	struct net_device *dev = adapter->netdev;
3157 	int index;
3158 
3159 	index = igc_find_mac_filter(adapter, type, addr);
3160 	if (index < 0)
3161 		return;
3162 
3163 	if (index == 0) {
3164 		/* If this is the default filter, we don't actually delete it.
3165 		 * We just reset to its default value i.e. disable queue
3166 		 * assignment.
3167 		 */
3168 		netdev_dbg(dev, "Disable default MAC filter queue assignment");
3169 
3170 		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
3171 	} else {
3172 		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
3173 			   index,
3174 			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
3175 			   addr);
3176 
3177 		igc_clear_mac_filter_hw(adapter, index);
3178 	}
3179 }
3180 
3181 /**
3182  * igc_add_vlan_prio_filter() - Add VLAN priority filter
3183  * @adapter: Pointer to adapter where the filter should be added
3184  * @prio: VLAN priority value
3185  * @queue: Queue number which matching frames are assigned to
3186  *
3187  * Return: 0 in case of success, negative errno code otherwise.
3188  */
igc_add_vlan_prio_filter(struct igc_adapter * adapter,int prio,int queue)3189 static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
3190 				    int queue)
3191 {
3192 	struct net_device *dev = adapter->netdev;
3193 	struct igc_hw *hw = &adapter->hw;
3194 	u32 vlanpqf;
3195 
3196 	vlanpqf = rd32(IGC_VLANPQF);
3197 
3198 	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
3199 		netdev_dbg(dev, "VLAN priority filter already in use\n");
3200 		return -EEXIST;
3201 	}
3202 
3203 	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
3204 	vlanpqf |= IGC_VLANPQF_VALID(prio);
3205 
3206 	wr32(IGC_VLANPQF, vlanpqf);
3207 
3208 	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
3209 		   prio, queue);
3210 	return 0;
3211 }
3212 
3213 /**
3214  * igc_del_vlan_prio_filter() - Delete VLAN priority filter
3215  * @adapter: Pointer to adapter where the filter should be deleted from
3216  * @prio: VLAN priority value
3217  */
igc_del_vlan_prio_filter(struct igc_adapter * adapter,int prio)3218 static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
3219 {
3220 	struct igc_hw *hw = &adapter->hw;
3221 	u32 vlanpqf;
3222 
3223 	vlanpqf = rd32(IGC_VLANPQF);
3224 
3225 	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
3226 	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
3227 
3228 	wr32(IGC_VLANPQF, vlanpqf);
3229 
3230 	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
3231 		   prio);
3232 }
3233 
igc_get_avail_etype_filter_slot(struct igc_adapter * adapter)3234 static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
3235 {
3236 	struct igc_hw *hw = &adapter->hw;
3237 	int i;
3238 
3239 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3240 		u32 etqf = rd32(IGC_ETQF(i));
3241 
3242 		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
3243 			return i;
3244 	}
3245 
3246 	return -1;
3247 }
3248 
3249 /**
3250  * igc_add_etype_filter() - Add ethertype filter
3251  * @adapter: Pointer to adapter where the filter should be added
3252  * @etype: Ethertype value
3253  * @queue: If non-negative, queue assignment feature is enabled and frames
3254  *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3255  *         assignment is disabled.
3256  *
3257  * Return: 0 in case of success, negative errno code otherwise.
3258  */
igc_add_etype_filter(struct igc_adapter * adapter,u16 etype,int queue)3259 static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3260 				int queue)
3261 {
3262 	struct igc_hw *hw = &adapter->hw;
3263 	int index;
3264 	u32 etqf;
3265 
3266 	index = igc_get_avail_etype_filter_slot(adapter);
3267 	if (index < 0)
3268 		return -ENOSPC;
3269 
3270 	etqf = rd32(IGC_ETQF(index));
3271 
3272 	etqf &= ~IGC_ETQF_ETYPE_MASK;
3273 	etqf |= etype;
3274 
3275 	if (queue >= 0) {
3276 		etqf &= ~IGC_ETQF_QUEUE_MASK;
3277 		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3278 		etqf |= IGC_ETQF_QUEUE_ENABLE;
3279 	}
3280 
3281 	etqf |= IGC_ETQF_FILTER_ENABLE;
3282 
3283 	wr32(IGC_ETQF(index), etqf);
3284 
3285 	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3286 		   etype, queue);
3287 	return 0;
3288 }
3289 
igc_find_etype_filter(struct igc_adapter * adapter,u16 etype)3290 static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3291 {
3292 	struct igc_hw *hw = &adapter->hw;
3293 	int i;
3294 
3295 	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3296 		u32 etqf = rd32(IGC_ETQF(i));
3297 
3298 		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3299 			return i;
3300 	}
3301 
3302 	return -1;
3303 }
3304 
3305 /**
3306  * igc_del_etype_filter() - Delete ethertype filter
3307  * @adapter: Pointer to adapter where the filter should be deleted from
3308  * @etype: Ethertype value
3309  */
igc_del_etype_filter(struct igc_adapter * adapter,u16 etype)3310 static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3311 {
3312 	struct igc_hw *hw = &adapter->hw;
3313 	int index;
3314 
3315 	index = igc_find_etype_filter(adapter, etype);
3316 	if (index < 0)
3317 		return;
3318 
3319 	wr32(IGC_ETQF(index), 0);
3320 
3321 	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3322 		   etype);
3323 }
3324 
igc_flex_filter_select(struct igc_adapter * adapter,struct igc_flex_filter * input,u32 * fhft)3325 static int igc_flex_filter_select(struct igc_adapter *adapter,
3326 				  struct igc_flex_filter *input,
3327 				  u32 *fhft)
3328 {
3329 	struct igc_hw *hw = &adapter->hw;
3330 	u8 fhft_index;
3331 	u32 fhftsl;
3332 
3333 	if (input->index >= MAX_FLEX_FILTER) {
3334 		dev_err(&adapter->pdev->dev, "Wrong Flex Filter index selected!\n");
3335 		return -EINVAL;
3336 	}
3337 
3338 	/* Indirect table select register */
3339 	fhftsl = rd32(IGC_FHFTSL);
3340 	fhftsl &= ~IGC_FHFTSL_FTSL_MASK;
3341 	switch (input->index) {
3342 	case 0 ... 7:
3343 		fhftsl |= 0x00;
3344 		break;
3345 	case 8 ... 15:
3346 		fhftsl |= 0x01;
3347 		break;
3348 	case 16 ... 23:
3349 		fhftsl |= 0x02;
3350 		break;
3351 	case 24 ... 31:
3352 		fhftsl |= 0x03;
3353 		break;
3354 	}
3355 	wr32(IGC_FHFTSL, fhftsl);
3356 
3357 	/* Normalize index down to host table register */
3358 	fhft_index = input->index % 8;
3359 
3360 	*fhft = (fhft_index < 4) ? IGC_FHFT(fhft_index) :
3361 		IGC_FHFT_EXT(fhft_index - 4);
3362 
3363 	return 0;
3364 }
3365 
igc_write_flex_filter_ll(struct igc_adapter * adapter,struct igc_flex_filter * input)3366 static int igc_write_flex_filter_ll(struct igc_adapter *adapter,
3367 				    struct igc_flex_filter *input)
3368 {
3369 	struct device *dev = &adapter->pdev->dev;
3370 	struct igc_hw *hw = &adapter->hw;
3371 	u8 *data = input->data;
3372 	u8 *mask = input->mask;
3373 	u32 queuing;
3374 	u32 fhft;
3375 	u32 wufc;
3376 	int ret;
3377 	int i;
3378 
3379 	/* Length has to be aligned to 8. Otherwise the filter will fail. Bail
3380 	 * out early to avoid surprises later.
3381 	 */
3382 	if (input->length % 8 != 0) {
3383 		dev_err(dev, "The length of a flex filter has to be 8 byte aligned!\n");
3384 		return -EINVAL;
3385 	}
3386 
3387 	/* Select corresponding flex filter register and get base for host table. */
3388 	ret = igc_flex_filter_select(adapter, input, &fhft);
3389 	if (ret)
3390 		return ret;
3391 
3392 	/* When adding a filter globally disable flex filter feature. That is
3393 	 * recommended within the datasheet.
3394 	 */
3395 	wufc = rd32(IGC_WUFC);
3396 	wufc &= ~IGC_WUFC_FLEX_HQ;
3397 	wr32(IGC_WUFC, wufc);
3398 
3399 	/* Configure filter */
3400 	queuing = input->length & IGC_FHFT_LENGTH_MASK;
3401 	queuing |= (input->rx_queue << IGC_FHFT_QUEUE_SHIFT) & IGC_FHFT_QUEUE_MASK;
3402 	queuing |= (input->prio << IGC_FHFT_PRIO_SHIFT) & IGC_FHFT_PRIO_MASK;
3403 
3404 	if (input->immediate_irq)
3405 		queuing |= IGC_FHFT_IMM_INT;
3406 
3407 	if (input->drop)
3408 		queuing |= IGC_FHFT_DROP;
3409 
3410 	wr32(fhft + 0xFC, queuing);
3411 
3412 	/* Write data (128 byte) and mask (128 bit) */
3413 	for (i = 0; i < 16; ++i) {
3414 		const size_t data_idx = i * 8;
3415 		const size_t row_idx = i * 16;
3416 		u32 dw0 =
3417 			(data[data_idx + 0] << 0) |
3418 			(data[data_idx + 1] << 8) |
3419 			(data[data_idx + 2] << 16) |
3420 			(data[data_idx + 3] << 24);
3421 		u32 dw1 =
3422 			(data[data_idx + 4] << 0) |
3423 			(data[data_idx + 5] << 8) |
3424 			(data[data_idx + 6] << 16) |
3425 			(data[data_idx + 7] << 24);
3426 		u32 tmp;
3427 
3428 		/* Write row: dw0, dw1 and mask */
3429 		wr32(fhft + row_idx, dw0);
3430 		wr32(fhft + row_idx + 4, dw1);
3431 
3432 		/* mask is only valid for MASK(7, 0) */
3433 		tmp = rd32(fhft + row_idx + 8);
3434 		tmp &= ~GENMASK(7, 0);
3435 		tmp |= mask[i];
3436 		wr32(fhft + row_idx + 8, tmp);
3437 	}
3438 
3439 	/* Enable filter. */
3440 	wufc |= IGC_WUFC_FLEX_HQ;
3441 	if (input->index > 8) {
3442 		/* Filter 0-7 are enabled via WUFC. The other 24 filters are not. */
3443 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3444 
3445 		wufc_ext |= (IGC_WUFC_EXT_FLX8 << (input->index - 8));
3446 
3447 		wr32(IGC_WUFC_EXT, wufc_ext);
3448 	} else {
3449 		wufc |= (IGC_WUFC_FLX0 << input->index);
3450 	}
3451 	wr32(IGC_WUFC, wufc);
3452 
3453 	dev_dbg(&adapter->pdev->dev, "Added flex filter %u to HW.\n",
3454 		input->index);
3455 
3456 	return 0;
3457 }
3458 
igc_flex_filter_add_field(struct igc_flex_filter * flex,const void * src,unsigned int offset,size_t len,const void * mask)3459 static void igc_flex_filter_add_field(struct igc_flex_filter *flex,
3460 				      const void *src, unsigned int offset,
3461 				      size_t len, const void *mask)
3462 {
3463 	int i;
3464 
3465 	/* data */
3466 	memcpy(&flex->data[offset], src, len);
3467 
3468 	/* mask */
3469 	for (i = 0; i < len; ++i) {
3470 		const unsigned int idx = i + offset;
3471 		const u8 *ptr = mask;
3472 
3473 		if (mask) {
3474 			if (ptr[i] & 0xff)
3475 				flex->mask[idx / 8] |= BIT(idx % 8);
3476 
3477 			continue;
3478 		}
3479 
3480 		flex->mask[idx / 8] |= BIT(idx % 8);
3481 	}
3482 }
3483 
igc_find_avail_flex_filter_slot(struct igc_adapter * adapter)3484 static int igc_find_avail_flex_filter_slot(struct igc_adapter *adapter)
3485 {
3486 	struct igc_hw *hw = &adapter->hw;
3487 	u32 wufc, wufc_ext;
3488 	int i;
3489 
3490 	wufc = rd32(IGC_WUFC);
3491 	wufc_ext = rd32(IGC_WUFC_EXT);
3492 
3493 	for (i = 0; i < MAX_FLEX_FILTER; i++) {
3494 		if (i < 8) {
3495 			if (!(wufc & (IGC_WUFC_FLX0 << i)))
3496 				return i;
3497 		} else {
3498 			if (!(wufc_ext & (IGC_WUFC_EXT_FLX8 << (i - 8))))
3499 				return i;
3500 		}
3501 	}
3502 
3503 	return -ENOSPC;
3504 }
3505 
igc_flex_filter_in_use(struct igc_adapter * adapter)3506 static bool igc_flex_filter_in_use(struct igc_adapter *adapter)
3507 {
3508 	struct igc_hw *hw = &adapter->hw;
3509 	u32 wufc, wufc_ext;
3510 
3511 	wufc = rd32(IGC_WUFC);
3512 	wufc_ext = rd32(IGC_WUFC_EXT);
3513 
3514 	if (wufc & IGC_WUFC_FILTER_MASK)
3515 		return true;
3516 
3517 	if (wufc_ext & IGC_WUFC_EXT_FILTER_MASK)
3518 		return true;
3519 
3520 	return false;
3521 }
3522 
igc_add_flex_filter(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3523 static int igc_add_flex_filter(struct igc_adapter *adapter,
3524 			       struct igc_nfc_rule *rule)
3525 {
3526 	struct igc_flex_filter flex = { };
3527 	struct igc_nfc_filter *filter = &rule->filter;
3528 	unsigned int eth_offset, user_offset;
3529 	int ret, index;
3530 	bool vlan;
3531 
3532 	index = igc_find_avail_flex_filter_slot(adapter);
3533 	if (index < 0)
3534 		return -ENOSPC;
3535 
3536 	/* Construct the flex filter:
3537 	 *  -> dest_mac [6]
3538 	 *  -> src_mac [6]
3539 	 *  -> tpid [2]
3540 	 *  -> vlan tci [2]
3541 	 *  -> ether type [2]
3542 	 *  -> user data [8]
3543 	 *  -> = 26 bytes => 32 length
3544 	 */
3545 	flex.index    = index;
3546 	flex.length   = 32;
3547 	flex.rx_queue = rule->action;
3548 
3549 	vlan = rule->filter.vlan_tci || rule->filter.vlan_etype;
3550 	eth_offset = vlan ? 16 : 12;
3551 	user_offset = vlan ? 18 : 14;
3552 
3553 	/* Add destination MAC  */
3554 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3555 		igc_flex_filter_add_field(&flex, &filter->dst_addr, 0,
3556 					  ETH_ALEN, NULL);
3557 
3558 	/* Add source MAC */
3559 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3560 		igc_flex_filter_add_field(&flex, &filter->src_addr, 6,
3561 					  ETH_ALEN, NULL);
3562 
3563 	/* Add VLAN etype */
3564 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_ETYPE)
3565 		igc_flex_filter_add_field(&flex, &filter->vlan_etype, 12,
3566 					  sizeof(filter->vlan_etype),
3567 					  NULL);
3568 
3569 	/* Add VLAN TCI */
3570 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI)
3571 		igc_flex_filter_add_field(&flex, &filter->vlan_tci, 14,
3572 					  sizeof(filter->vlan_tci), NULL);
3573 
3574 	/* Add Ether type */
3575 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3576 		__be16 etype = cpu_to_be16(filter->etype);
3577 
3578 		igc_flex_filter_add_field(&flex, &etype, eth_offset,
3579 					  sizeof(etype), NULL);
3580 	}
3581 
3582 	/* Add user data */
3583 	if (rule->filter.match_flags & IGC_FILTER_FLAG_USER_DATA)
3584 		igc_flex_filter_add_field(&flex, &filter->user_data,
3585 					  user_offset,
3586 					  sizeof(filter->user_data),
3587 					  filter->user_mask);
3588 
3589 	/* Add it down to the hardware and enable it. */
3590 	ret = igc_write_flex_filter_ll(adapter, &flex);
3591 	if (ret)
3592 		return ret;
3593 
3594 	filter->flex_index = index;
3595 
3596 	return 0;
3597 }
3598 
igc_del_flex_filter(struct igc_adapter * adapter,u16 reg_index)3599 static void igc_del_flex_filter(struct igc_adapter *adapter,
3600 				u16 reg_index)
3601 {
3602 	struct igc_hw *hw = &adapter->hw;
3603 	u32 wufc;
3604 
3605 	/* Just disable the filter. The filter table itself is kept
3606 	 * intact. Another flex_filter_add() should override the "old" data
3607 	 * then.
3608 	 */
3609 	if (reg_index > 8) {
3610 		u32 wufc_ext = rd32(IGC_WUFC_EXT);
3611 
3612 		wufc_ext &= ~(IGC_WUFC_EXT_FLX8 << (reg_index - 8));
3613 		wr32(IGC_WUFC_EXT, wufc_ext);
3614 	} else {
3615 		wufc = rd32(IGC_WUFC);
3616 
3617 		wufc &= ~(IGC_WUFC_FLX0 << reg_index);
3618 		wr32(IGC_WUFC, wufc);
3619 	}
3620 
3621 	if (igc_flex_filter_in_use(adapter))
3622 		return;
3623 
3624 	/* No filters are in use, we may disable flex filters */
3625 	wufc = rd32(IGC_WUFC);
3626 	wufc &= ~IGC_WUFC_FLEX_HQ;
3627 	wr32(IGC_WUFC, wufc);
3628 }
3629 
igc_enable_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3630 static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3631 			       struct igc_nfc_rule *rule)
3632 {
3633 	int err;
3634 
3635 	if (rule->flex) {
3636 		return igc_add_flex_filter(adapter, rule);
3637 	}
3638 
3639 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3640 		err = igc_add_etype_filter(adapter, rule->filter.etype,
3641 					   rule->action);
3642 		if (err)
3643 			return err;
3644 	}
3645 
3646 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3647 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3648 					 rule->filter.src_addr, rule->action);
3649 		if (err)
3650 			return err;
3651 	}
3652 
3653 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3654 		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3655 					 rule->filter.dst_addr, rule->action);
3656 		if (err)
3657 			return err;
3658 	}
3659 
3660 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3661 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3662 			   VLAN_PRIO_SHIFT;
3663 
3664 		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3665 		if (err)
3666 			return err;
3667 	}
3668 
3669 	return 0;
3670 }
3671 
igc_disable_nfc_rule(struct igc_adapter * adapter,const struct igc_nfc_rule * rule)3672 static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3673 				 const struct igc_nfc_rule *rule)
3674 {
3675 	if (rule->flex) {
3676 		igc_del_flex_filter(adapter, rule->filter.flex_index);
3677 		return;
3678 	}
3679 
3680 	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3681 		igc_del_etype_filter(adapter, rule->filter.etype);
3682 
3683 	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3684 		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3685 			   VLAN_PRIO_SHIFT;
3686 
3687 		igc_del_vlan_prio_filter(adapter, prio);
3688 	}
3689 
3690 	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3691 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3692 				   rule->filter.src_addr);
3693 
3694 	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3695 		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3696 				   rule->filter.dst_addr);
3697 }
3698 
3699 /**
3700  * igc_get_nfc_rule() - Get NFC rule
3701  * @adapter: Pointer to adapter
3702  * @location: Rule location
3703  *
3704  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3705  *
3706  * Return: Pointer to NFC rule at @location. If not found, NULL.
3707  */
igc_get_nfc_rule(struct igc_adapter * adapter,u32 location)3708 struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3709 				      u32 location)
3710 {
3711 	struct igc_nfc_rule *rule;
3712 
3713 	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3714 		if (rule->location == location)
3715 			return rule;
3716 		if (rule->location > location)
3717 			break;
3718 	}
3719 
3720 	return NULL;
3721 }
3722 
3723 /**
3724  * igc_del_nfc_rule() - Delete NFC rule
3725  * @adapter: Pointer to adapter
3726  * @rule: Pointer to rule to be deleted
3727  *
3728  * Disable NFC rule in hardware and delete it from adapter.
3729  *
3730  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3731  */
igc_del_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3732 void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3733 {
3734 	igc_disable_nfc_rule(adapter, rule);
3735 
3736 	list_del(&rule->list);
3737 	adapter->nfc_rule_count--;
3738 
3739 	kfree(rule);
3740 }
3741 
igc_flush_nfc_rules(struct igc_adapter * adapter)3742 static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3743 {
3744 	struct igc_nfc_rule *rule, *tmp;
3745 
3746 	mutex_lock(&adapter->nfc_rule_lock);
3747 
3748 	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3749 		igc_del_nfc_rule(adapter, rule);
3750 
3751 	mutex_unlock(&adapter->nfc_rule_lock);
3752 }
3753 
3754 /**
3755  * igc_add_nfc_rule() - Add NFC rule
3756  * @adapter: Pointer to adapter
3757  * @rule: Pointer to rule to be added
3758  *
3759  * Enable NFC rule in hardware and add it to adapter.
3760  *
3761  * Context: Expects adapter->nfc_rule_lock to be held by caller.
3762  *
3763  * Return: 0 on success, negative errno on failure.
3764  */
igc_add_nfc_rule(struct igc_adapter * adapter,struct igc_nfc_rule * rule)3765 int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3766 {
3767 	struct igc_nfc_rule *pred, *cur;
3768 	int err;
3769 
3770 	err = igc_enable_nfc_rule(adapter, rule);
3771 	if (err)
3772 		return err;
3773 
3774 	pred = NULL;
3775 	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3776 		if (cur->location >= rule->location)
3777 			break;
3778 		pred = cur;
3779 	}
3780 
3781 	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3782 	adapter->nfc_rule_count++;
3783 	return 0;
3784 }
3785 
igc_restore_nfc_rules(struct igc_adapter * adapter)3786 static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3787 {
3788 	struct igc_nfc_rule *rule;
3789 
3790 	mutex_lock(&adapter->nfc_rule_lock);
3791 
3792 	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3793 		igc_enable_nfc_rule(adapter, rule);
3794 
3795 	mutex_unlock(&adapter->nfc_rule_lock);
3796 }
3797 
igc_uc_sync(struct net_device * netdev,const unsigned char * addr)3798 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3799 {
3800 	struct igc_adapter *adapter = netdev_priv(netdev);
3801 
3802 	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3803 }
3804 
igc_uc_unsync(struct net_device * netdev,const unsigned char * addr)3805 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3806 {
3807 	struct igc_adapter *adapter = netdev_priv(netdev);
3808 
3809 	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3810 	return 0;
3811 }
3812 
3813 /**
3814  * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3815  * @netdev: network interface device structure
3816  *
3817  * The set_rx_mode entry point is called whenever the unicast or multicast
3818  * address lists or the network interface flags are updated.  This routine is
3819  * responsible for configuring the hardware for proper unicast, multicast,
3820  * promiscuous mode, and all-multi behavior.
3821  */
igc_set_rx_mode(struct net_device * netdev)3822 static void igc_set_rx_mode(struct net_device *netdev)
3823 {
3824 	struct igc_adapter *adapter = netdev_priv(netdev);
3825 	struct igc_hw *hw = &adapter->hw;
3826 	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3827 	int count;
3828 
3829 	/* Check for Promiscuous and All Multicast modes */
3830 	if (netdev->flags & IFF_PROMISC) {
3831 		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3832 	} else {
3833 		if (netdev->flags & IFF_ALLMULTI) {
3834 			rctl |= IGC_RCTL_MPE;
3835 		} else {
3836 			/* Write addresses to the MTA, if the attempt fails
3837 			 * then we should just turn on promiscuous mode so
3838 			 * that we can at least receive multicast traffic
3839 			 */
3840 			count = igc_write_mc_addr_list(netdev);
3841 			if (count < 0)
3842 				rctl |= IGC_RCTL_MPE;
3843 		}
3844 	}
3845 
3846 	/* Write addresses to available RAR registers, if there is not
3847 	 * sufficient space to store all the addresses then enable
3848 	 * unicast promiscuous mode
3849 	 */
3850 	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3851 		rctl |= IGC_RCTL_UPE;
3852 
3853 	/* update state of unicast and multicast */
3854 	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3855 	wr32(IGC_RCTL, rctl);
3856 
3857 #if (PAGE_SIZE < 8192)
3858 	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3859 		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3860 #endif
3861 	wr32(IGC_RLPML, rlpml);
3862 }
3863 
3864 /**
3865  * igc_configure - configure the hardware for RX and TX
3866  * @adapter: private board structure
3867  */
igc_configure(struct igc_adapter * adapter)3868 static void igc_configure(struct igc_adapter *adapter)
3869 {
3870 	struct net_device *netdev = adapter->netdev;
3871 	int i = 0;
3872 
3873 	igc_get_hw_control(adapter);
3874 	igc_set_rx_mode(netdev);
3875 
3876 	igc_restore_vlan(adapter);
3877 
3878 	igc_setup_tctl(adapter);
3879 	igc_setup_mrqc(adapter);
3880 	igc_setup_rctl(adapter);
3881 
3882 	igc_set_default_mac_filter(adapter);
3883 	igc_restore_nfc_rules(adapter);
3884 
3885 	igc_configure_tx(adapter);
3886 	igc_configure_rx(adapter);
3887 
3888 	igc_rx_fifo_flush_base(&adapter->hw);
3889 
3890 	/* call igc_desc_unused which always leaves
3891 	 * at least 1 descriptor unused to make sure
3892 	 * next_to_use != next_to_clean
3893 	 */
3894 	for (i = 0; i < adapter->num_rx_queues; i++) {
3895 		struct igc_ring *ring = adapter->rx_ring[i];
3896 
3897 		if (ring->xsk_pool)
3898 			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3899 		else
3900 			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3901 	}
3902 }
3903 
3904 /**
3905  * igc_write_ivar - configure ivar for given MSI-X vector
3906  * @hw: pointer to the HW structure
3907  * @msix_vector: vector number we are allocating to a given ring
3908  * @index: row index of IVAR register to write within IVAR table
3909  * @offset: column offset of in IVAR, should be multiple of 8
3910  *
3911  * The IVAR table consists of 2 columns,
3912  * each containing an cause allocation for an Rx and Tx ring, and a
3913  * variable number of rows depending on the number of queues supported.
3914  */
igc_write_ivar(struct igc_hw * hw,int msix_vector,int index,int offset)3915 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3916 			   int index, int offset)
3917 {
3918 	u32 ivar = array_rd32(IGC_IVAR0, index);
3919 
3920 	/* clear any bits that are currently set */
3921 	ivar &= ~((u32)0xFF << offset);
3922 
3923 	/* write vector and valid bit */
3924 	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3925 
3926 	array_wr32(IGC_IVAR0, index, ivar);
3927 }
3928 
igc_assign_vector(struct igc_q_vector * q_vector,int msix_vector)3929 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3930 {
3931 	struct igc_adapter *adapter = q_vector->adapter;
3932 	struct igc_hw *hw = &adapter->hw;
3933 	int rx_queue = IGC_N0_QUEUE;
3934 	int tx_queue = IGC_N0_QUEUE;
3935 
3936 	if (q_vector->rx.ring)
3937 		rx_queue = q_vector->rx.ring->reg_idx;
3938 	if (q_vector->tx.ring)
3939 		tx_queue = q_vector->tx.ring->reg_idx;
3940 
3941 	switch (hw->mac.type) {
3942 	case igc_i225:
3943 		if (rx_queue > IGC_N0_QUEUE)
3944 			igc_write_ivar(hw, msix_vector,
3945 				       rx_queue >> 1,
3946 				       (rx_queue & 0x1) << 4);
3947 		if (tx_queue > IGC_N0_QUEUE)
3948 			igc_write_ivar(hw, msix_vector,
3949 				       tx_queue >> 1,
3950 				       ((tx_queue & 0x1) << 4) + 8);
3951 		q_vector->eims_value = BIT(msix_vector);
3952 		break;
3953 	default:
3954 		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3955 		break;
3956 	}
3957 
3958 	/* add q_vector eims value to global eims_enable_mask */
3959 	adapter->eims_enable_mask |= q_vector->eims_value;
3960 
3961 	/* configure q_vector to set itr on first interrupt */
3962 	q_vector->set_itr = 1;
3963 }
3964 
3965 /**
3966  * igc_configure_msix - Configure MSI-X hardware
3967  * @adapter: Pointer to adapter structure
3968  *
3969  * igc_configure_msix sets up the hardware to properly
3970  * generate MSI-X interrupts.
3971  */
igc_configure_msix(struct igc_adapter * adapter)3972 static void igc_configure_msix(struct igc_adapter *adapter)
3973 {
3974 	struct igc_hw *hw = &adapter->hw;
3975 	int i, vector = 0;
3976 	u32 tmp;
3977 
3978 	adapter->eims_enable_mask = 0;
3979 
3980 	/* set vector for other causes, i.e. link changes */
3981 	switch (hw->mac.type) {
3982 	case igc_i225:
3983 		/* Turn on MSI-X capability first, or our settings
3984 		 * won't stick.  And it will take days to debug.
3985 		 */
3986 		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3987 		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3988 		     IGC_GPIE_NSICR);
3989 
3990 		/* enable msix_other interrupt */
3991 		adapter->eims_other = BIT(vector);
3992 		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3993 
3994 		wr32(IGC_IVAR_MISC, tmp);
3995 		break;
3996 	default:
3997 		/* do nothing, since nothing else supports MSI-X */
3998 		break;
3999 	} /* switch (hw->mac.type) */
4000 
4001 	adapter->eims_enable_mask |= adapter->eims_other;
4002 
4003 	for (i = 0; i < adapter->num_q_vectors; i++)
4004 		igc_assign_vector(adapter->q_vector[i], vector++);
4005 
4006 	wrfl();
4007 }
4008 
4009 /**
4010  * igc_irq_enable - Enable default interrupt generation settings
4011  * @adapter: board private structure
4012  */
igc_irq_enable(struct igc_adapter * adapter)4013 static void igc_irq_enable(struct igc_adapter *adapter)
4014 {
4015 	struct igc_hw *hw = &adapter->hw;
4016 
4017 	if (adapter->msix_entries) {
4018 		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
4019 		u32 regval = rd32(IGC_EIAC);
4020 
4021 		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
4022 		regval = rd32(IGC_EIAM);
4023 		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
4024 		wr32(IGC_EIMS, adapter->eims_enable_mask);
4025 		wr32(IGC_IMS, ims);
4026 	} else {
4027 		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4028 		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4029 	}
4030 }
4031 
4032 /**
4033  * igc_irq_disable - Mask off interrupt generation on the NIC
4034  * @adapter: board private structure
4035  */
igc_irq_disable(struct igc_adapter * adapter)4036 static void igc_irq_disable(struct igc_adapter *adapter)
4037 {
4038 	struct igc_hw *hw = &adapter->hw;
4039 
4040 	if (adapter->msix_entries) {
4041 		u32 regval = rd32(IGC_EIAM);
4042 
4043 		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
4044 		wr32(IGC_EIMC, adapter->eims_enable_mask);
4045 		regval = rd32(IGC_EIAC);
4046 		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
4047 	}
4048 
4049 	wr32(IGC_IAM, 0);
4050 	wr32(IGC_IMC, ~0);
4051 	wrfl();
4052 
4053 	if (adapter->msix_entries) {
4054 		int vector = 0, i;
4055 
4056 		synchronize_irq(adapter->msix_entries[vector++].vector);
4057 
4058 		for (i = 0; i < adapter->num_q_vectors; i++)
4059 			synchronize_irq(adapter->msix_entries[vector++].vector);
4060 	} else {
4061 		synchronize_irq(adapter->pdev->irq);
4062 	}
4063 }
4064 
igc_set_flag_queue_pairs(struct igc_adapter * adapter,const u32 max_rss_queues)4065 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4066 			      const u32 max_rss_queues)
4067 {
4068 	/* Determine if we need to pair queues. */
4069 	/* If rss_queues > half of max_rss_queues, pair the queues in
4070 	 * order to conserve interrupts due to limited supply.
4071 	 */
4072 	if (adapter->rss_queues > (max_rss_queues / 2))
4073 		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4074 	else
4075 		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4076 }
4077 
igc_get_max_rss_queues(struct igc_adapter * adapter)4078 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4079 {
4080 	return IGC_MAX_RX_QUEUES;
4081 }
4082 
igc_init_queue_configuration(struct igc_adapter * adapter)4083 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4084 {
4085 	u32 max_rss_queues;
4086 
4087 	max_rss_queues = igc_get_max_rss_queues(adapter);
4088 	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4089 
4090 	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4091 }
4092 
4093 /**
4094  * igc_reset_q_vector - Reset config for interrupt vector
4095  * @adapter: board private structure to initialize
4096  * @v_idx: Index of vector to be reset
4097  *
4098  * If NAPI is enabled it will delete any references to the
4099  * NAPI struct. This is preparation for igc_free_q_vector.
4100  */
igc_reset_q_vector(struct igc_adapter * adapter,int v_idx)4101 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
4102 {
4103 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4104 
4105 	/* if we're coming from igc_set_interrupt_capability, the vectors are
4106 	 * not yet allocated
4107 	 */
4108 	if (!q_vector)
4109 		return;
4110 
4111 	if (q_vector->tx.ring)
4112 		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
4113 
4114 	if (q_vector->rx.ring)
4115 		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
4116 
4117 	netif_napi_del(&q_vector->napi);
4118 }
4119 
4120 /**
4121  * igc_free_q_vector - Free memory allocated for specific interrupt vector
4122  * @adapter: board private structure to initialize
4123  * @v_idx: Index of vector to be freed
4124  *
4125  * This function frees the memory allocated to the q_vector.
4126  */
igc_free_q_vector(struct igc_adapter * adapter,int v_idx)4127 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
4128 {
4129 	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
4130 
4131 	adapter->q_vector[v_idx] = NULL;
4132 
4133 	/* igc_get_stats64() might access the rings on this vector,
4134 	 * we must wait a grace period before freeing it.
4135 	 */
4136 	if (q_vector)
4137 		kfree_rcu(q_vector, rcu);
4138 }
4139 
4140 /**
4141  * igc_free_q_vectors - Free memory allocated for interrupt vectors
4142  * @adapter: board private structure to initialize
4143  *
4144  * This function frees the memory allocated to the q_vectors.  In addition if
4145  * NAPI is enabled it will delete any references to the NAPI struct prior
4146  * to freeing the q_vector.
4147  */
igc_free_q_vectors(struct igc_adapter * adapter)4148 static void igc_free_q_vectors(struct igc_adapter *adapter)
4149 {
4150 	int v_idx = adapter->num_q_vectors;
4151 
4152 	adapter->num_tx_queues = 0;
4153 	adapter->num_rx_queues = 0;
4154 	adapter->num_q_vectors = 0;
4155 
4156 	while (v_idx--) {
4157 		igc_reset_q_vector(adapter, v_idx);
4158 		igc_free_q_vector(adapter, v_idx);
4159 	}
4160 }
4161 
4162 /**
4163  * igc_update_itr - update the dynamic ITR value based on statistics
4164  * @q_vector: pointer to q_vector
4165  * @ring_container: ring info to update the itr for
4166  *
4167  * Stores a new ITR value based on packets and byte
4168  * counts during the last interrupt.  The advantage of per interrupt
4169  * computation is faster updates and more accurate ITR for the current
4170  * traffic pattern.  Constants in this function were computed
4171  * based on theoretical maximum wire speed and thresholds were set based
4172  * on testing data as well as attempting to minimize response time
4173  * while increasing bulk throughput.
4174  * NOTE: These calculations are only valid when operating in a single-
4175  * queue environment.
4176  */
igc_update_itr(struct igc_q_vector * q_vector,struct igc_ring_container * ring_container)4177 static void igc_update_itr(struct igc_q_vector *q_vector,
4178 			   struct igc_ring_container *ring_container)
4179 {
4180 	unsigned int packets = ring_container->total_packets;
4181 	unsigned int bytes = ring_container->total_bytes;
4182 	u8 itrval = ring_container->itr;
4183 
4184 	/* no packets, exit with status unchanged */
4185 	if (packets == 0)
4186 		return;
4187 
4188 	switch (itrval) {
4189 	case lowest_latency:
4190 		/* handle TSO and jumbo frames */
4191 		if (bytes / packets > 8000)
4192 			itrval = bulk_latency;
4193 		else if ((packets < 5) && (bytes > 512))
4194 			itrval = low_latency;
4195 		break;
4196 	case low_latency:  /* 50 usec aka 20000 ints/s */
4197 		if (bytes > 10000) {
4198 			/* this if handles the TSO accounting */
4199 			if (bytes / packets > 8000)
4200 				itrval = bulk_latency;
4201 			else if ((packets < 10) || ((bytes / packets) > 1200))
4202 				itrval = bulk_latency;
4203 			else if ((packets > 35))
4204 				itrval = lowest_latency;
4205 		} else if (bytes / packets > 2000) {
4206 			itrval = bulk_latency;
4207 		} else if (packets <= 2 && bytes < 512) {
4208 			itrval = lowest_latency;
4209 		}
4210 		break;
4211 	case bulk_latency: /* 250 usec aka 4000 ints/s */
4212 		if (bytes > 25000) {
4213 			if (packets > 35)
4214 				itrval = low_latency;
4215 		} else if (bytes < 1500) {
4216 			itrval = low_latency;
4217 		}
4218 		break;
4219 	}
4220 
4221 	/* clear work counters since we have the values we need */
4222 	ring_container->total_bytes = 0;
4223 	ring_container->total_packets = 0;
4224 
4225 	/* write updated itr to ring container */
4226 	ring_container->itr = itrval;
4227 }
4228 
igc_set_itr(struct igc_q_vector * q_vector)4229 static void igc_set_itr(struct igc_q_vector *q_vector)
4230 {
4231 	struct igc_adapter *adapter = q_vector->adapter;
4232 	u32 new_itr = q_vector->itr_val;
4233 	u8 current_itr = 0;
4234 
4235 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4236 	switch (adapter->link_speed) {
4237 	case SPEED_10:
4238 	case SPEED_100:
4239 		current_itr = 0;
4240 		new_itr = IGC_4K_ITR;
4241 		goto set_itr_now;
4242 	default:
4243 		break;
4244 	}
4245 
4246 	igc_update_itr(q_vector, &q_vector->tx);
4247 	igc_update_itr(q_vector, &q_vector->rx);
4248 
4249 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4250 
4251 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4252 	if (current_itr == lowest_latency &&
4253 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4254 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4255 		current_itr = low_latency;
4256 
4257 	switch (current_itr) {
4258 	/* counts and packets in update_itr are dependent on these numbers */
4259 	case lowest_latency:
4260 		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
4261 		break;
4262 	case low_latency:
4263 		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
4264 		break;
4265 	case bulk_latency:
4266 		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
4267 		break;
4268 	default:
4269 		break;
4270 	}
4271 
4272 set_itr_now:
4273 	if (new_itr != q_vector->itr_val) {
4274 		/* this attempts to bias the interrupt rate towards Bulk
4275 		 * by adding intermediate steps when interrupt rate is
4276 		 * increasing
4277 		 */
4278 		new_itr = new_itr > q_vector->itr_val ?
4279 			  max((new_itr * q_vector->itr_val) /
4280 			  (new_itr + (q_vector->itr_val >> 2)),
4281 			  new_itr) : new_itr;
4282 		/* Don't write the value here; it resets the adapter's
4283 		 * internal timer, and causes us to delay far longer than
4284 		 * we should between interrupts.  Instead, we write the ITR
4285 		 * value at the beginning of the next interrupt so the timing
4286 		 * ends up being correct.
4287 		 */
4288 		q_vector->itr_val = new_itr;
4289 		q_vector->set_itr = 1;
4290 	}
4291 }
4292 
igc_reset_interrupt_capability(struct igc_adapter * adapter)4293 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
4294 {
4295 	int v_idx = adapter->num_q_vectors;
4296 
4297 	if (adapter->msix_entries) {
4298 		pci_disable_msix(adapter->pdev);
4299 		kfree(adapter->msix_entries);
4300 		adapter->msix_entries = NULL;
4301 	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
4302 		pci_disable_msi(adapter->pdev);
4303 	}
4304 
4305 	while (v_idx--)
4306 		igc_reset_q_vector(adapter, v_idx);
4307 }
4308 
4309 /**
4310  * igc_set_interrupt_capability - set MSI or MSI-X if supported
4311  * @adapter: Pointer to adapter structure
4312  * @msix: boolean value for MSI-X capability
4313  *
4314  * Attempt to configure interrupts using the best available
4315  * capabilities of the hardware and kernel.
4316  */
igc_set_interrupt_capability(struct igc_adapter * adapter,bool msix)4317 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
4318 					 bool msix)
4319 {
4320 	int numvecs, i;
4321 	int err;
4322 
4323 	if (!msix)
4324 		goto msi_only;
4325 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4326 
4327 	/* Number of supported queues. */
4328 	adapter->num_rx_queues = adapter->rss_queues;
4329 
4330 	adapter->num_tx_queues = adapter->rss_queues;
4331 
4332 	/* start with one vector for every Rx queue */
4333 	numvecs = adapter->num_rx_queues;
4334 
4335 	/* if Tx handler is separate add 1 for every Tx queue */
4336 	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
4337 		numvecs += adapter->num_tx_queues;
4338 
4339 	/* store the number of vectors reserved for queues */
4340 	adapter->num_q_vectors = numvecs;
4341 
4342 	/* add 1 vector for link status interrupts */
4343 	numvecs++;
4344 
4345 	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
4346 					GFP_KERNEL);
4347 
4348 	if (!adapter->msix_entries)
4349 		return;
4350 
4351 	/* populate entry values */
4352 	for (i = 0; i < numvecs; i++)
4353 		adapter->msix_entries[i].entry = i;
4354 
4355 	err = pci_enable_msix_range(adapter->pdev,
4356 				    adapter->msix_entries,
4357 				    numvecs,
4358 				    numvecs);
4359 	if (err > 0)
4360 		return;
4361 
4362 	kfree(adapter->msix_entries);
4363 	adapter->msix_entries = NULL;
4364 
4365 	igc_reset_interrupt_capability(adapter);
4366 
4367 msi_only:
4368 	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
4369 
4370 	adapter->rss_queues = 1;
4371 	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4372 	adapter->num_rx_queues = 1;
4373 	adapter->num_tx_queues = 1;
4374 	adapter->num_q_vectors = 1;
4375 	if (!pci_enable_msi(adapter->pdev))
4376 		adapter->flags |= IGC_FLAG_HAS_MSI;
4377 }
4378 
4379 /**
4380  * igc_update_ring_itr - update the dynamic ITR value based on packet size
4381  * @q_vector: pointer to q_vector
4382  *
4383  * Stores a new ITR value based on strictly on packet size.  This
4384  * algorithm is less sophisticated than that used in igc_update_itr,
4385  * due to the difficulty of synchronizing statistics across multiple
4386  * receive rings.  The divisors and thresholds used by this function
4387  * were determined based on theoretical maximum wire speed and testing
4388  * data, in order to minimize response time while increasing bulk
4389  * throughput.
4390  * NOTE: This function is called only when operating in a multiqueue
4391  * receive environment.
4392  */
igc_update_ring_itr(struct igc_q_vector * q_vector)4393 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
4394 {
4395 	struct igc_adapter *adapter = q_vector->adapter;
4396 	int new_val = q_vector->itr_val;
4397 	int avg_wire_size = 0;
4398 	unsigned int packets;
4399 
4400 	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4401 	 * ints/sec - ITR timer value of 120 ticks.
4402 	 */
4403 	switch (adapter->link_speed) {
4404 	case SPEED_10:
4405 	case SPEED_100:
4406 		new_val = IGC_4K_ITR;
4407 		goto set_itr_val;
4408 	default:
4409 		break;
4410 	}
4411 
4412 	packets = q_vector->rx.total_packets;
4413 	if (packets)
4414 		avg_wire_size = q_vector->rx.total_bytes / packets;
4415 
4416 	packets = q_vector->tx.total_packets;
4417 	if (packets)
4418 		avg_wire_size = max_t(u32, avg_wire_size,
4419 				      q_vector->tx.total_bytes / packets);
4420 
4421 	/* if avg_wire_size isn't set no work was done */
4422 	if (!avg_wire_size)
4423 		goto clear_counts;
4424 
4425 	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4426 	avg_wire_size += 24;
4427 
4428 	/* Don't starve jumbo frames */
4429 	avg_wire_size = min(avg_wire_size, 3000);
4430 
4431 	/* Give a little boost to mid-size frames */
4432 	if (avg_wire_size > 300 && avg_wire_size < 1200)
4433 		new_val = avg_wire_size / 3;
4434 	else
4435 		new_val = avg_wire_size / 2;
4436 
4437 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4438 	if (new_val < IGC_20K_ITR &&
4439 	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4440 	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4441 		new_val = IGC_20K_ITR;
4442 
4443 set_itr_val:
4444 	if (new_val != q_vector->itr_val) {
4445 		q_vector->itr_val = new_val;
4446 		q_vector->set_itr = 1;
4447 	}
4448 clear_counts:
4449 	q_vector->rx.total_bytes = 0;
4450 	q_vector->rx.total_packets = 0;
4451 	q_vector->tx.total_bytes = 0;
4452 	q_vector->tx.total_packets = 0;
4453 }
4454 
igc_ring_irq_enable(struct igc_q_vector * q_vector)4455 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
4456 {
4457 	struct igc_adapter *adapter = q_vector->adapter;
4458 	struct igc_hw *hw = &adapter->hw;
4459 
4460 	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
4461 	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
4462 		if (adapter->num_q_vectors == 1)
4463 			igc_set_itr(q_vector);
4464 		else
4465 			igc_update_ring_itr(q_vector);
4466 	}
4467 
4468 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
4469 		if (adapter->msix_entries)
4470 			wr32(IGC_EIMS, q_vector->eims_value);
4471 		else
4472 			igc_irq_enable(adapter);
4473 	}
4474 }
4475 
igc_add_ring(struct igc_ring * ring,struct igc_ring_container * head)4476 static void igc_add_ring(struct igc_ring *ring,
4477 			 struct igc_ring_container *head)
4478 {
4479 	head->ring = ring;
4480 	head->count++;
4481 }
4482 
4483 /**
4484  * igc_cache_ring_register - Descriptor ring to register mapping
4485  * @adapter: board private structure to initialize
4486  *
4487  * Once we know the feature-set enabled for the device, we'll cache
4488  * the register offset the descriptor ring is assigned to.
4489  */
igc_cache_ring_register(struct igc_adapter * adapter)4490 static void igc_cache_ring_register(struct igc_adapter *adapter)
4491 {
4492 	int i = 0, j = 0;
4493 
4494 	switch (adapter->hw.mac.type) {
4495 	case igc_i225:
4496 	default:
4497 		for (; i < adapter->num_rx_queues; i++)
4498 			adapter->rx_ring[i]->reg_idx = i;
4499 		for (; j < adapter->num_tx_queues; j++)
4500 			adapter->tx_ring[j]->reg_idx = j;
4501 		break;
4502 	}
4503 }
4504 
4505 /**
4506  * igc_poll - NAPI Rx polling callback
4507  * @napi: napi polling structure
4508  * @budget: count of how many packets we should handle
4509  */
igc_poll(struct napi_struct * napi,int budget)4510 static int igc_poll(struct napi_struct *napi, int budget)
4511 {
4512 	struct igc_q_vector *q_vector = container_of(napi,
4513 						     struct igc_q_vector,
4514 						     napi);
4515 	struct igc_ring *rx_ring = q_vector->rx.ring;
4516 	bool clean_complete = true;
4517 	int work_done = 0;
4518 
4519 	if (q_vector->tx.ring)
4520 		clean_complete = igc_clean_tx_irq(q_vector, budget);
4521 
4522 	if (rx_ring) {
4523 		int cleaned = rx_ring->xsk_pool ?
4524 			      igc_clean_rx_irq_zc(q_vector, budget) :
4525 			      igc_clean_rx_irq(q_vector, budget);
4526 
4527 		work_done += cleaned;
4528 		if (cleaned >= budget)
4529 			clean_complete = false;
4530 	}
4531 
4532 	/* If all work not completed, return budget and keep polling */
4533 	if (!clean_complete)
4534 		return budget;
4535 
4536 	/* Exit the polling mode, but don't re-enable interrupts if stack might
4537 	 * poll us due to busy-polling
4538 	 */
4539 	if (likely(napi_complete_done(napi, work_done)))
4540 		igc_ring_irq_enable(q_vector);
4541 
4542 	return min(work_done, budget - 1);
4543 }
4544 
4545 /**
4546  * igc_alloc_q_vector - Allocate memory for a single interrupt vector
4547  * @adapter: board private structure to initialize
4548  * @v_count: q_vectors allocated on adapter, used for ring interleaving
4549  * @v_idx: index of vector in adapter struct
4550  * @txr_count: total number of Tx rings to allocate
4551  * @txr_idx: index of first Tx ring to allocate
4552  * @rxr_count: total number of Rx rings to allocate
4553  * @rxr_idx: index of first Rx ring to allocate
4554  *
4555  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
4556  */
igc_alloc_q_vector(struct igc_adapter * adapter,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)4557 static int igc_alloc_q_vector(struct igc_adapter *adapter,
4558 			      unsigned int v_count, unsigned int v_idx,
4559 			      unsigned int txr_count, unsigned int txr_idx,
4560 			      unsigned int rxr_count, unsigned int rxr_idx)
4561 {
4562 	struct igc_q_vector *q_vector;
4563 	struct igc_ring *ring;
4564 	int ring_count;
4565 
4566 	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4567 	if (txr_count > 1 || rxr_count > 1)
4568 		return -ENOMEM;
4569 
4570 	ring_count = txr_count + rxr_count;
4571 
4572 	/* allocate q_vector and rings */
4573 	q_vector = adapter->q_vector[v_idx];
4574 	if (!q_vector)
4575 		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4576 				   GFP_KERNEL);
4577 	else
4578 		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4579 	if (!q_vector)
4580 		return -ENOMEM;
4581 
4582 	/* initialize NAPI */
4583 	netif_napi_add(adapter->netdev, &q_vector->napi, igc_poll);
4584 
4585 	/* tie q_vector and adapter together */
4586 	adapter->q_vector[v_idx] = q_vector;
4587 	q_vector->adapter = adapter;
4588 
4589 	/* initialize work limits */
4590 	q_vector->tx.work_limit = adapter->tx_work_limit;
4591 
4592 	/* initialize ITR configuration */
4593 	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4594 	q_vector->itr_val = IGC_START_ITR;
4595 
4596 	/* initialize pointer to rings */
4597 	ring = q_vector->ring;
4598 
4599 	/* initialize ITR */
4600 	if (rxr_count) {
4601 		/* rx or rx/tx vector */
4602 		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4603 			q_vector->itr_val = adapter->rx_itr_setting;
4604 	} else {
4605 		/* tx only vector */
4606 		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4607 			q_vector->itr_val = adapter->tx_itr_setting;
4608 	}
4609 
4610 	if (txr_count) {
4611 		/* assign generic ring traits */
4612 		ring->dev = &adapter->pdev->dev;
4613 		ring->netdev = adapter->netdev;
4614 
4615 		/* configure backlink on ring */
4616 		ring->q_vector = q_vector;
4617 
4618 		/* update q_vector Tx values */
4619 		igc_add_ring(ring, &q_vector->tx);
4620 
4621 		/* apply Tx specific ring traits */
4622 		ring->count = adapter->tx_ring_count;
4623 		ring->queue_index = txr_idx;
4624 
4625 		/* assign ring to adapter */
4626 		adapter->tx_ring[txr_idx] = ring;
4627 
4628 		/* push pointer to next ring */
4629 		ring++;
4630 	}
4631 
4632 	if (rxr_count) {
4633 		/* assign generic ring traits */
4634 		ring->dev = &adapter->pdev->dev;
4635 		ring->netdev = adapter->netdev;
4636 
4637 		/* configure backlink on ring */
4638 		ring->q_vector = q_vector;
4639 
4640 		/* update q_vector Rx values */
4641 		igc_add_ring(ring, &q_vector->rx);
4642 
4643 		/* apply Rx specific ring traits */
4644 		ring->count = adapter->rx_ring_count;
4645 		ring->queue_index = rxr_idx;
4646 
4647 		/* assign ring to adapter */
4648 		adapter->rx_ring[rxr_idx] = ring;
4649 	}
4650 
4651 	return 0;
4652 }
4653 
4654 /**
4655  * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4656  * @adapter: board private structure to initialize
4657  *
4658  * We allocate one q_vector per queue interrupt.  If allocation fails we
4659  * return -ENOMEM.
4660  */
igc_alloc_q_vectors(struct igc_adapter * adapter)4661 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4662 {
4663 	int rxr_remaining = adapter->num_rx_queues;
4664 	int txr_remaining = adapter->num_tx_queues;
4665 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4666 	int q_vectors = adapter->num_q_vectors;
4667 	int err;
4668 
4669 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4670 		for (; rxr_remaining; v_idx++) {
4671 			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4672 						 0, 0, 1, rxr_idx);
4673 
4674 			if (err)
4675 				goto err_out;
4676 
4677 			/* update counts and index */
4678 			rxr_remaining--;
4679 			rxr_idx++;
4680 		}
4681 	}
4682 
4683 	for (; v_idx < q_vectors; v_idx++) {
4684 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4685 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4686 
4687 		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4688 					 tqpv, txr_idx, rqpv, rxr_idx);
4689 
4690 		if (err)
4691 			goto err_out;
4692 
4693 		/* update counts and index */
4694 		rxr_remaining -= rqpv;
4695 		txr_remaining -= tqpv;
4696 		rxr_idx++;
4697 		txr_idx++;
4698 	}
4699 
4700 	return 0;
4701 
4702 err_out:
4703 	adapter->num_tx_queues = 0;
4704 	adapter->num_rx_queues = 0;
4705 	adapter->num_q_vectors = 0;
4706 
4707 	while (v_idx--)
4708 		igc_free_q_vector(adapter, v_idx);
4709 
4710 	return -ENOMEM;
4711 }
4712 
4713 /**
4714  * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4715  * @adapter: Pointer to adapter structure
4716  * @msix: boolean for MSI-X capability
4717  *
4718  * This function initializes the interrupts and allocates all of the queues.
4719  */
igc_init_interrupt_scheme(struct igc_adapter * adapter,bool msix)4720 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4721 {
4722 	struct net_device *dev = adapter->netdev;
4723 	int err = 0;
4724 
4725 	igc_set_interrupt_capability(adapter, msix);
4726 
4727 	err = igc_alloc_q_vectors(adapter);
4728 	if (err) {
4729 		netdev_err(dev, "Unable to allocate memory for vectors\n");
4730 		goto err_alloc_q_vectors;
4731 	}
4732 
4733 	igc_cache_ring_register(adapter);
4734 
4735 	return 0;
4736 
4737 err_alloc_q_vectors:
4738 	igc_reset_interrupt_capability(adapter);
4739 	return err;
4740 }
4741 
4742 /**
4743  * igc_sw_init - Initialize general software structures (struct igc_adapter)
4744  * @adapter: board private structure to initialize
4745  *
4746  * igc_sw_init initializes the Adapter private data structure.
4747  * Fields are initialized based on PCI device information and
4748  * OS network device settings (MTU size).
4749  */
igc_sw_init(struct igc_adapter * adapter)4750 static int igc_sw_init(struct igc_adapter *adapter)
4751 {
4752 	struct net_device *netdev = adapter->netdev;
4753 	struct pci_dev *pdev = adapter->pdev;
4754 	struct igc_hw *hw = &adapter->hw;
4755 
4756 	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4757 
4758 	/* set default ring sizes */
4759 	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4760 	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4761 
4762 	/* set default ITR values */
4763 	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4764 	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4765 
4766 	/* set default work limits */
4767 	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4768 
4769 	/* adjust max frame to be at least the size of a standard frame */
4770 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4771 				VLAN_HLEN;
4772 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4773 
4774 	mutex_init(&adapter->nfc_rule_lock);
4775 	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4776 	adapter->nfc_rule_count = 0;
4777 
4778 	spin_lock_init(&adapter->stats64_lock);
4779 	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4780 	adapter->flags |= IGC_FLAG_HAS_MSIX;
4781 
4782 	igc_init_queue_configuration(adapter);
4783 
4784 	/* This call may decrease the number of queues */
4785 	if (igc_init_interrupt_scheme(adapter, true)) {
4786 		netdev_err(netdev, "Unable to allocate memory for queues\n");
4787 		return -ENOMEM;
4788 	}
4789 
4790 	/* Explicitly disable IRQ since the NIC can be in any state. */
4791 	igc_irq_disable(adapter);
4792 
4793 	set_bit(__IGC_DOWN, &adapter->state);
4794 
4795 	return 0;
4796 }
4797 
4798 /**
4799  * igc_up - Open the interface and prepare it to handle traffic
4800  * @adapter: board private structure
4801  */
igc_up(struct igc_adapter * adapter)4802 void igc_up(struct igc_adapter *adapter)
4803 {
4804 	struct igc_hw *hw = &adapter->hw;
4805 	int i = 0;
4806 
4807 	/* hardware has been reset, we need to reload some things */
4808 	igc_configure(adapter);
4809 
4810 	clear_bit(__IGC_DOWN, &adapter->state);
4811 
4812 	for (i = 0; i < adapter->num_q_vectors; i++)
4813 		napi_enable(&adapter->q_vector[i]->napi);
4814 
4815 	if (adapter->msix_entries)
4816 		igc_configure_msix(adapter);
4817 	else
4818 		igc_assign_vector(adapter->q_vector[0], 0);
4819 
4820 	/* Clear any pending interrupts. */
4821 	rd32(IGC_ICR);
4822 	igc_irq_enable(adapter);
4823 
4824 	netif_tx_start_all_queues(adapter->netdev);
4825 
4826 	/* start the watchdog. */
4827 	hw->mac.get_link_status = true;
4828 	schedule_work(&adapter->watchdog_task);
4829 }
4830 
4831 /**
4832  * igc_update_stats - Update the board statistics counters
4833  * @adapter: board private structure
4834  */
igc_update_stats(struct igc_adapter * adapter)4835 void igc_update_stats(struct igc_adapter *adapter)
4836 {
4837 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4838 	struct pci_dev *pdev = adapter->pdev;
4839 	struct igc_hw *hw = &adapter->hw;
4840 	u64 _bytes, _packets;
4841 	u64 bytes, packets;
4842 	unsigned int start;
4843 	u32 mpc;
4844 	int i;
4845 
4846 	/* Prevent stats update while adapter is being reset, or if the pci
4847 	 * connection is down.
4848 	 */
4849 	if (adapter->link_speed == 0)
4850 		return;
4851 	if (pci_channel_offline(pdev))
4852 		return;
4853 
4854 	packets = 0;
4855 	bytes = 0;
4856 
4857 	rcu_read_lock();
4858 	for (i = 0; i < adapter->num_rx_queues; i++) {
4859 		struct igc_ring *ring = adapter->rx_ring[i];
4860 		u32 rqdpc = rd32(IGC_RQDPC(i));
4861 
4862 		if (hw->mac.type >= igc_i225)
4863 			wr32(IGC_RQDPC(i), 0);
4864 
4865 		if (rqdpc) {
4866 			ring->rx_stats.drops += rqdpc;
4867 			net_stats->rx_fifo_errors += rqdpc;
4868 		}
4869 
4870 		do {
4871 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4872 			_bytes = ring->rx_stats.bytes;
4873 			_packets = ring->rx_stats.packets;
4874 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4875 		bytes += _bytes;
4876 		packets += _packets;
4877 	}
4878 
4879 	net_stats->rx_bytes = bytes;
4880 	net_stats->rx_packets = packets;
4881 
4882 	packets = 0;
4883 	bytes = 0;
4884 	for (i = 0; i < adapter->num_tx_queues; i++) {
4885 		struct igc_ring *ring = adapter->tx_ring[i];
4886 
4887 		do {
4888 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4889 			_bytes = ring->tx_stats.bytes;
4890 			_packets = ring->tx_stats.packets;
4891 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4892 		bytes += _bytes;
4893 		packets += _packets;
4894 	}
4895 	net_stats->tx_bytes = bytes;
4896 	net_stats->tx_packets = packets;
4897 	rcu_read_unlock();
4898 
4899 	/* read stats registers */
4900 	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4901 	adapter->stats.gprc += rd32(IGC_GPRC);
4902 	adapter->stats.gorc += rd32(IGC_GORCL);
4903 	rd32(IGC_GORCH); /* clear GORCL */
4904 	adapter->stats.bprc += rd32(IGC_BPRC);
4905 	adapter->stats.mprc += rd32(IGC_MPRC);
4906 	adapter->stats.roc += rd32(IGC_ROC);
4907 
4908 	adapter->stats.prc64 += rd32(IGC_PRC64);
4909 	adapter->stats.prc127 += rd32(IGC_PRC127);
4910 	adapter->stats.prc255 += rd32(IGC_PRC255);
4911 	adapter->stats.prc511 += rd32(IGC_PRC511);
4912 	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4913 	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4914 	adapter->stats.tlpic += rd32(IGC_TLPIC);
4915 	adapter->stats.rlpic += rd32(IGC_RLPIC);
4916 	adapter->stats.hgptc += rd32(IGC_HGPTC);
4917 
4918 	mpc = rd32(IGC_MPC);
4919 	adapter->stats.mpc += mpc;
4920 	net_stats->rx_fifo_errors += mpc;
4921 	adapter->stats.scc += rd32(IGC_SCC);
4922 	adapter->stats.ecol += rd32(IGC_ECOL);
4923 	adapter->stats.mcc += rd32(IGC_MCC);
4924 	adapter->stats.latecol += rd32(IGC_LATECOL);
4925 	adapter->stats.dc += rd32(IGC_DC);
4926 	adapter->stats.rlec += rd32(IGC_RLEC);
4927 	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4928 	adapter->stats.xontxc += rd32(IGC_XONTXC);
4929 	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4930 	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4931 	adapter->stats.fcruc += rd32(IGC_FCRUC);
4932 	adapter->stats.gptc += rd32(IGC_GPTC);
4933 	adapter->stats.gotc += rd32(IGC_GOTCL);
4934 	rd32(IGC_GOTCH); /* clear GOTCL */
4935 	adapter->stats.rnbc += rd32(IGC_RNBC);
4936 	adapter->stats.ruc += rd32(IGC_RUC);
4937 	adapter->stats.rfc += rd32(IGC_RFC);
4938 	adapter->stats.rjc += rd32(IGC_RJC);
4939 	adapter->stats.tor += rd32(IGC_TORH);
4940 	adapter->stats.tot += rd32(IGC_TOTH);
4941 	adapter->stats.tpr += rd32(IGC_TPR);
4942 
4943 	adapter->stats.ptc64 += rd32(IGC_PTC64);
4944 	adapter->stats.ptc127 += rd32(IGC_PTC127);
4945 	adapter->stats.ptc255 += rd32(IGC_PTC255);
4946 	adapter->stats.ptc511 += rd32(IGC_PTC511);
4947 	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4948 	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4949 
4950 	adapter->stats.mptc += rd32(IGC_MPTC);
4951 	adapter->stats.bptc += rd32(IGC_BPTC);
4952 
4953 	adapter->stats.tpt += rd32(IGC_TPT);
4954 	adapter->stats.colc += rd32(IGC_COLC);
4955 	adapter->stats.colc += rd32(IGC_RERC);
4956 
4957 	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4958 
4959 	adapter->stats.tsctc += rd32(IGC_TSCTC);
4960 
4961 	adapter->stats.iac += rd32(IGC_IAC);
4962 
4963 	/* Fill out the OS statistics structure */
4964 	net_stats->multicast = adapter->stats.mprc;
4965 	net_stats->collisions = adapter->stats.colc;
4966 
4967 	/* Rx Errors */
4968 
4969 	/* RLEC on some newer hardware can be incorrect so build
4970 	 * our own version based on RUC and ROC
4971 	 */
4972 	net_stats->rx_errors = adapter->stats.rxerrc +
4973 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4974 		adapter->stats.ruc + adapter->stats.roc +
4975 		adapter->stats.cexterr;
4976 	net_stats->rx_length_errors = adapter->stats.ruc +
4977 				      adapter->stats.roc;
4978 	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4979 	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4980 	net_stats->rx_missed_errors = adapter->stats.mpc;
4981 
4982 	/* Tx Errors */
4983 	net_stats->tx_errors = adapter->stats.ecol +
4984 			       adapter->stats.latecol;
4985 	net_stats->tx_aborted_errors = adapter->stats.ecol;
4986 	net_stats->tx_window_errors = adapter->stats.latecol;
4987 	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4988 
4989 	/* Tx Dropped needs to be maintained elsewhere */
4990 
4991 	/* Management Stats */
4992 	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4993 	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4994 	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4995 }
4996 
4997 /**
4998  * igc_down - Close the interface
4999  * @adapter: board private structure
5000  */
igc_down(struct igc_adapter * adapter)5001 void igc_down(struct igc_adapter *adapter)
5002 {
5003 	struct net_device *netdev = adapter->netdev;
5004 	struct igc_hw *hw = &adapter->hw;
5005 	u32 tctl, rctl;
5006 	int i = 0;
5007 
5008 	set_bit(__IGC_DOWN, &adapter->state);
5009 
5010 	igc_ptp_suspend(adapter);
5011 
5012 	if (pci_device_is_present(adapter->pdev)) {
5013 		/* disable receives in the hardware */
5014 		rctl = rd32(IGC_RCTL);
5015 		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
5016 		/* flush and sleep below */
5017 	}
5018 	/* set trans_start so we don't get spurious watchdogs during reset */
5019 	netif_trans_update(netdev);
5020 
5021 	netif_carrier_off(netdev);
5022 	netif_tx_stop_all_queues(netdev);
5023 
5024 	if (pci_device_is_present(adapter->pdev)) {
5025 		/* disable transmits in the hardware */
5026 		tctl = rd32(IGC_TCTL);
5027 		tctl &= ~IGC_TCTL_EN;
5028 		wr32(IGC_TCTL, tctl);
5029 		/* flush both disables and wait for them to finish */
5030 		wrfl();
5031 		usleep_range(10000, 20000);
5032 
5033 		igc_irq_disable(adapter);
5034 	}
5035 
5036 	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5037 
5038 	for (i = 0; i < adapter->num_q_vectors; i++) {
5039 		if (adapter->q_vector[i]) {
5040 			napi_synchronize(&adapter->q_vector[i]->napi);
5041 			napi_disable(&adapter->q_vector[i]->napi);
5042 		}
5043 	}
5044 
5045 	del_timer_sync(&adapter->watchdog_timer);
5046 	del_timer_sync(&adapter->phy_info_timer);
5047 
5048 	/* record the stats before reset*/
5049 	spin_lock(&adapter->stats64_lock);
5050 	igc_update_stats(adapter);
5051 	spin_unlock(&adapter->stats64_lock);
5052 
5053 	adapter->link_speed = 0;
5054 	adapter->link_duplex = 0;
5055 
5056 	if (!pci_channel_offline(adapter->pdev))
5057 		igc_reset(adapter);
5058 
5059 	/* clear VLAN promisc flag so VFTA will be updated if necessary */
5060 	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
5061 
5062 	igc_disable_all_tx_rings_hw(adapter);
5063 	igc_clean_all_tx_rings(adapter);
5064 	igc_clean_all_rx_rings(adapter);
5065 }
5066 
igc_reinit_locked(struct igc_adapter * adapter)5067 void igc_reinit_locked(struct igc_adapter *adapter)
5068 {
5069 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5070 		usleep_range(1000, 2000);
5071 	igc_down(adapter);
5072 	igc_up(adapter);
5073 	clear_bit(__IGC_RESETTING, &adapter->state);
5074 }
5075 
igc_reset_task(struct work_struct * work)5076 static void igc_reset_task(struct work_struct *work)
5077 {
5078 	struct igc_adapter *adapter;
5079 
5080 	adapter = container_of(work, struct igc_adapter, reset_task);
5081 
5082 	rtnl_lock();
5083 	/* If we're already down or resetting, just bail */
5084 	if (test_bit(__IGC_DOWN, &adapter->state) ||
5085 	    test_bit(__IGC_RESETTING, &adapter->state)) {
5086 		rtnl_unlock();
5087 		return;
5088 	}
5089 
5090 	igc_rings_dump(adapter);
5091 	igc_regs_dump(adapter);
5092 	netdev_err(adapter->netdev, "Reset adapter\n");
5093 	igc_reinit_locked(adapter);
5094 	rtnl_unlock();
5095 }
5096 
5097 /**
5098  * igc_change_mtu - Change the Maximum Transfer Unit
5099  * @netdev: network interface device structure
5100  * @new_mtu: new value for maximum frame size
5101  *
5102  * Returns 0 on success, negative on failure
5103  */
igc_change_mtu(struct net_device * netdev,int new_mtu)5104 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
5105 {
5106 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5107 	struct igc_adapter *adapter = netdev_priv(netdev);
5108 
5109 	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
5110 		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
5111 		return -EINVAL;
5112 	}
5113 
5114 	/* adjust max frame to be at least the size of a standard frame */
5115 	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5116 		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5117 
5118 	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
5119 		usleep_range(1000, 2000);
5120 
5121 	/* igc_down has a dependency on max_frame_size */
5122 	adapter->max_frame_size = max_frame;
5123 
5124 	if (netif_running(netdev))
5125 		igc_down(adapter);
5126 
5127 	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5128 	netdev->mtu = new_mtu;
5129 
5130 	if (netif_running(netdev))
5131 		igc_up(adapter);
5132 	else
5133 		igc_reset(adapter);
5134 
5135 	clear_bit(__IGC_RESETTING, &adapter->state);
5136 
5137 	return 0;
5138 }
5139 
5140 /**
5141  * igc_tx_timeout - Respond to a Tx Hang
5142  * @netdev: network interface device structure
5143  * @txqueue: queue number that timed out
5144  **/
igc_tx_timeout(struct net_device * netdev,unsigned int __always_unused txqueue)5145 static void igc_tx_timeout(struct net_device *netdev,
5146 			   unsigned int __always_unused txqueue)
5147 {
5148 	struct igc_adapter *adapter = netdev_priv(netdev);
5149 	struct igc_hw *hw = &adapter->hw;
5150 
5151 	/* Do the reset outside of interrupt context */
5152 	adapter->tx_timeout_count++;
5153 	schedule_work(&adapter->reset_task);
5154 	wr32(IGC_EICS,
5155 	     (adapter->eims_enable_mask & ~adapter->eims_other));
5156 }
5157 
5158 /**
5159  * igc_get_stats64 - Get System Network Statistics
5160  * @netdev: network interface device structure
5161  * @stats: rtnl_link_stats64 pointer
5162  *
5163  * Returns the address of the device statistics structure.
5164  * The statistics are updated here and also from the timer callback.
5165  */
igc_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5166 static void igc_get_stats64(struct net_device *netdev,
5167 			    struct rtnl_link_stats64 *stats)
5168 {
5169 	struct igc_adapter *adapter = netdev_priv(netdev);
5170 
5171 	spin_lock(&adapter->stats64_lock);
5172 	if (!test_bit(__IGC_RESETTING, &adapter->state))
5173 		igc_update_stats(adapter);
5174 	memcpy(stats, &adapter->stats64, sizeof(*stats));
5175 	spin_unlock(&adapter->stats64_lock);
5176 }
5177 
igc_fix_features(struct net_device * netdev,netdev_features_t features)5178 static netdev_features_t igc_fix_features(struct net_device *netdev,
5179 					  netdev_features_t features)
5180 {
5181 	/* Since there is no support for separate Rx/Tx vlan accel
5182 	 * enable/disable make sure Tx flag is always in same state as Rx.
5183 	 */
5184 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
5185 		features |= NETIF_F_HW_VLAN_CTAG_TX;
5186 	else
5187 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5188 
5189 	return features;
5190 }
5191 
igc_set_features(struct net_device * netdev,netdev_features_t features)5192 static int igc_set_features(struct net_device *netdev,
5193 			    netdev_features_t features)
5194 {
5195 	netdev_features_t changed = netdev->features ^ features;
5196 	struct igc_adapter *adapter = netdev_priv(netdev);
5197 
5198 	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5199 		igc_vlan_mode(netdev, features);
5200 
5201 	/* Add VLAN support */
5202 	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
5203 		return 0;
5204 
5205 	if (!(features & NETIF_F_NTUPLE))
5206 		igc_flush_nfc_rules(adapter);
5207 
5208 	netdev->features = features;
5209 
5210 	if (netif_running(netdev))
5211 		igc_reinit_locked(adapter);
5212 	else
5213 		igc_reset(adapter);
5214 
5215 	return 1;
5216 }
5217 
5218 static netdev_features_t
igc_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)5219 igc_features_check(struct sk_buff *skb, struct net_device *dev,
5220 		   netdev_features_t features)
5221 {
5222 	unsigned int network_hdr_len, mac_hdr_len;
5223 
5224 	/* Make certain the headers can be described by a context descriptor */
5225 	mac_hdr_len = skb_network_header(skb) - skb->data;
5226 	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
5227 		return features & ~(NETIF_F_HW_CSUM |
5228 				    NETIF_F_SCTP_CRC |
5229 				    NETIF_F_HW_VLAN_CTAG_TX |
5230 				    NETIF_F_TSO |
5231 				    NETIF_F_TSO6);
5232 
5233 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
5234 	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
5235 		return features & ~(NETIF_F_HW_CSUM |
5236 				    NETIF_F_SCTP_CRC |
5237 				    NETIF_F_TSO |
5238 				    NETIF_F_TSO6);
5239 
5240 	/* We can only support IPv4 TSO in tunnels if we can mangle the
5241 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
5242 	 */
5243 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
5244 		features &= ~NETIF_F_TSO;
5245 
5246 	return features;
5247 }
5248 
igc_tsync_interrupt(struct igc_adapter * adapter)5249 static void igc_tsync_interrupt(struct igc_adapter *adapter)
5250 {
5251 	u32 ack, tsauxc, sec, nsec, tsicr;
5252 	struct igc_hw *hw = &adapter->hw;
5253 	struct ptp_clock_event event;
5254 	struct timespec64 ts;
5255 
5256 	tsicr = rd32(IGC_TSICR);
5257 	ack = 0;
5258 
5259 	if (tsicr & IGC_TSICR_SYS_WRAP) {
5260 		event.type = PTP_CLOCK_PPS;
5261 		if (adapter->ptp_caps.pps)
5262 			ptp_clock_event(adapter->ptp_clock, &event);
5263 		ack |= IGC_TSICR_SYS_WRAP;
5264 	}
5265 
5266 	if (tsicr & IGC_TSICR_TXTS) {
5267 		/* retrieve hardware timestamp */
5268 		schedule_work(&adapter->ptp_tx_work);
5269 		ack |= IGC_TSICR_TXTS;
5270 	}
5271 
5272 	if (tsicr & IGC_TSICR_TT0) {
5273 		spin_lock(&adapter->tmreg_lock);
5274 		ts = timespec64_add(adapter->perout[0].start,
5275 				    adapter->perout[0].period);
5276 		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5277 		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
5278 		tsauxc = rd32(IGC_TSAUXC);
5279 		tsauxc |= IGC_TSAUXC_EN_TT0;
5280 		wr32(IGC_TSAUXC, tsauxc);
5281 		adapter->perout[0].start = ts;
5282 		spin_unlock(&adapter->tmreg_lock);
5283 		ack |= IGC_TSICR_TT0;
5284 	}
5285 
5286 	if (tsicr & IGC_TSICR_TT1) {
5287 		spin_lock(&adapter->tmreg_lock);
5288 		ts = timespec64_add(adapter->perout[1].start,
5289 				    adapter->perout[1].period);
5290 		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
5291 		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
5292 		tsauxc = rd32(IGC_TSAUXC);
5293 		tsauxc |= IGC_TSAUXC_EN_TT1;
5294 		wr32(IGC_TSAUXC, tsauxc);
5295 		adapter->perout[1].start = ts;
5296 		spin_unlock(&adapter->tmreg_lock);
5297 		ack |= IGC_TSICR_TT1;
5298 	}
5299 
5300 	if (tsicr & IGC_TSICR_AUTT0) {
5301 		nsec = rd32(IGC_AUXSTMPL0);
5302 		sec  = rd32(IGC_AUXSTMPH0);
5303 		event.type = PTP_CLOCK_EXTTS;
5304 		event.index = 0;
5305 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5306 		ptp_clock_event(adapter->ptp_clock, &event);
5307 		ack |= IGC_TSICR_AUTT0;
5308 	}
5309 
5310 	if (tsicr & IGC_TSICR_AUTT1) {
5311 		nsec = rd32(IGC_AUXSTMPL1);
5312 		sec  = rd32(IGC_AUXSTMPH1);
5313 		event.type = PTP_CLOCK_EXTTS;
5314 		event.index = 1;
5315 		event.timestamp = sec * NSEC_PER_SEC + nsec;
5316 		ptp_clock_event(adapter->ptp_clock, &event);
5317 		ack |= IGC_TSICR_AUTT1;
5318 	}
5319 
5320 	/* acknowledge the interrupts */
5321 	wr32(IGC_TSICR, ack);
5322 }
5323 
5324 /**
5325  * igc_msix_other - msix other interrupt handler
5326  * @irq: interrupt number
5327  * @data: pointer to a q_vector
5328  */
igc_msix_other(int irq,void * data)5329 static irqreturn_t igc_msix_other(int irq, void *data)
5330 {
5331 	struct igc_adapter *adapter = data;
5332 	struct igc_hw *hw = &adapter->hw;
5333 	u32 icr = rd32(IGC_ICR);
5334 
5335 	/* reading ICR causes bit 31 of EICR to be cleared */
5336 	if (icr & IGC_ICR_DRSTA)
5337 		schedule_work(&adapter->reset_task);
5338 
5339 	if (icr & IGC_ICR_DOUTSYNC) {
5340 		/* HW is reporting DMA is out of sync */
5341 		adapter->stats.doosync++;
5342 	}
5343 
5344 	if (icr & IGC_ICR_LSC) {
5345 		hw->mac.get_link_status = true;
5346 		/* guard against interrupt when we're going down */
5347 		if (!test_bit(__IGC_DOWN, &adapter->state))
5348 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5349 	}
5350 
5351 	if (icr & IGC_ICR_TS)
5352 		igc_tsync_interrupt(adapter);
5353 
5354 	wr32(IGC_EIMS, adapter->eims_other);
5355 
5356 	return IRQ_HANDLED;
5357 }
5358 
igc_write_itr(struct igc_q_vector * q_vector)5359 static void igc_write_itr(struct igc_q_vector *q_vector)
5360 {
5361 	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
5362 
5363 	if (!q_vector->set_itr)
5364 		return;
5365 
5366 	if (!itr_val)
5367 		itr_val = IGC_ITR_VAL_MASK;
5368 
5369 	itr_val |= IGC_EITR_CNT_IGNR;
5370 
5371 	writel(itr_val, q_vector->itr_register);
5372 	q_vector->set_itr = 0;
5373 }
5374 
igc_msix_ring(int irq,void * data)5375 static irqreturn_t igc_msix_ring(int irq, void *data)
5376 {
5377 	struct igc_q_vector *q_vector = data;
5378 
5379 	/* Write the ITR value calculated from the previous interrupt. */
5380 	igc_write_itr(q_vector);
5381 
5382 	napi_schedule(&q_vector->napi);
5383 
5384 	return IRQ_HANDLED;
5385 }
5386 
5387 /**
5388  * igc_request_msix - Initialize MSI-X interrupts
5389  * @adapter: Pointer to adapter structure
5390  *
5391  * igc_request_msix allocates MSI-X vectors and requests interrupts from the
5392  * kernel.
5393  */
igc_request_msix(struct igc_adapter * adapter)5394 static int igc_request_msix(struct igc_adapter *adapter)
5395 {
5396 	unsigned int num_q_vectors = adapter->num_q_vectors;
5397 	int i = 0, err = 0, vector = 0, free_vector = 0;
5398 	struct net_device *netdev = adapter->netdev;
5399 
5400 	err = request_irq(adapter->msix_entries[vector].vector,
5401 			  &igc_msix_other, 0, netdev->name, adapter);
5402 	if (err)
5403 		goto err_out;
5404 
5405 	if (num_q_vectors > MAX_Q_VECTORS) {
5406 		num_q_vectors = MAX_Q_VECTORS;
5407 		dev_warn(&adapter->pdev->dev,
5408 			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
5409 			 adapter->num_q_vectors, MAX_Q_VECTORS);
5410 	}
5411 	for (i = 0; i < num_q_vectors; i++) {
5412 		struct igc_q_vector *q_vector = adapter->q_vector[i];
5413 
5414 		vector++;
5415 
5416 		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
5417 
5418 		if (q_vector->rx.ring && q_vector->tx.ring)
5419 			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
5420 				q_vector->rx.ring->queue_index);
5421 		else if (q_vector->tx.ring)
5422 			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
5423 				q_vector->tx.ring->queue_index);
5424 		else if (q_vector->rx.ring)
5425 			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
5426 				q_vector->rx.ring->queue_index);
5427 		else
5428 			sprintf(q_vector->name, "%s-unused", netdev->name);
5429 
5430 		err = request_irq(adapter->msix_entries[vector].vector,
5431 				  igc_msix_ring, 0, q_vector->name,
5432 				  q_vector);
5433 		if (err)
5434 			goto err_free;
5435 	}
5436 
5437 	igc_configure_msix(adapter);
5438 	return 0;
5439 
5440 err_free:
5441 	/* free already assigned IRQs */
5442 	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
5443 
5444 	vector--;
5445 	for (i = 0; i < vector; i++) {
5446 		free_irq(adapter->msix_entries[free_vector++].vector,
5447 			 adapter->q_vector[i]);
5448 	}
5449 err_out:
5450 	return err;
5451 }
5452 
5453 /**
5454  * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
5455  * @adapter: Pointer to adapter structure
5456  *
5457  * This function resets the device so that it has 0 rx queues, tx queues, and
5458  * MSI-X interrupts allocated.
5459  */
igc_clear_interrupt_scheme(struct igc_adapter * adapter)5460 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
5461 {
5462 	igc_free_q_vectors(adapter);
5463 	igc_reset_interrupt_capability(adapter);
5464 }
5465 
5466 /* Need to wait a few seconds after link up to get diagnostic information from
5467  * the phy
5468  */
igc_update_phy_info(struct timer_list * t)5469 static void igc_update_phy_info(struct timer_list *t)
5470 {
5471 	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5472 
5473 	igc_get_phy_info(&adapter->hw);
5474 }
5475 
5476 /**
5477  * igc_has_link - check shared code for link and determine up/down
5478  * @adapter: pointer to driver private info
5479  */
igc_has_link(struct igc_adapter * adapter)5480 bool igc_has_link(struct igc_adapter *adapter)
5481 {
5482 	struct igc_hw *hw = &adapter->hw;
5483 	bool link_active = false;
5484 
5485 	/* get_link_status is set on LSC (link status) interrupt or
5486 	 * rx sequence error interrupt.  get_link_status will stay
5487 	 * false until the igc_check_for_link establishes link
5488 	 * for copper adapters ONLY
5489 	 */
5490 	if (!hw->mac.get_link_status)
5491 		return true;
5492 	hw->mac.ops.check_for_link(hw);
5493 	link_active = !hw->mac.get_link_status;
5494 
5495 	if (hw->mac.type == igc_i225) {
5496 		if (!netif_carrier_ok(adapter->netdev)) {
5497 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5498 		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
5499 			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
5500 			adapter->link_check_timeout = jiffies;
5501 		}
5502 	}
5503 
5504 	return link_active;
5505 }
5506 
5507 /**
5508  * igc_watchdog - Timer Call-back
5509  * @t: timer for the watchdog
5510  */
igc_watchdog(struct timer_list * t)5511 static void igc_watchdog(struct timer_list *t)
5512 {
5513 	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5514 	/* Do the rest outside of interrupt context */
5515 	schedule_work(&adapter->watchdog_task);
5516 }
5517 
igc_watchdog_task(struct work_struct * work)5518 static void igc_watchdog_task(struct work_struct *work)
5519 {
5520 	struct igc_adapter *adapter = container_of(work,
5521 						   struct igc_adapter,
5522 						   watchdog_task);
5523 	struct net_device *netdev = adapter->netdev;
5524 	struct igc_hw *hw = &adapter->hw;
5525 	struct igc_phy_info *phy = &hw->phy;
5526 	u16 phy_data, retry_count = 20;
5527 	u32 link;
5528 	int i;
5529 
5530 	link = igc_has_link(adapter);
5531 
5532 	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
5533 		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5534 			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
5535 		else
5536 			link = false;
5537 	}
5538 
5539 	if (link) {
5540 		/* Cancel scheduled suspend requests. */
5541 		pm_runtime_resume(netdev->dev.parent);
5542 
5543 		if (!netif_carrier_ok(netdev)) {
5544 			u32 ctrl;
5545 
5546 			hw->mac.ops.get_speed_and_duplex(hw,
5547 							 &adapter->link_speed,
5548 							 &adapter->link_duplex);
5549 
5550 			ctrl = rd32(IGC_CTRL);
5551 			/* Link status message must follow this format */
5552 			netdev_info(netdev,
5553 				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5554 				    adapter->link_speed,
5555 				    adapter->link_duplex == FULL_DUPLEX ?
5556 				    "Full" : "Half",
5557 				    (ctrl & IGC_CTRL_TFCE) &&
5558 				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
5559 				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
5560 				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
5561 
5562 			/* disable EEE if enabled */
5563 			if ((adapter->flags & IGC_FLAG_EEE) &&
5564 			    adapter->link_duplex == HALF_DUPLEX) {
5565 				netdev_info(netdev,
5566 					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
5567 				adapter->hw.dev_spec._base.eee_enable = false;
5568 				adapter->flags &= ~IGC_FLAG_EEE;
5569 			}
5570 
5571 			/* check if SmartSpeed worked */
5572 			igc_check_downshift(hw);
5573 			if (phy->speed_downgraded)
5574 				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5575 
5576 			/* adjust timeout factor according to speed/duplex */
5577 			adapter->tx_timeout_factor = 1;
5578 			switch (adapter->link_speed) {
5579 			case SPEED_10:
5580 				adapter->tx_timeout_factor = 14;
5581 				break;
5582 			case SPEED_100:
5583 			case SPEED_1000:
5584 			case SPEED_2500:
5585 				adapter->tx_timeout_factor = 1;
5586 				break;
5587 			}
5588 
5589 			if (adapter->link_speed != SPEED_1000)
5590 				goto no_wait;
5591 
5592 			/* wait for Remote receiver status OK */
5593 retry_read_status:
5594 			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5595 					      &phy_data)) {
5596 				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5597 				    retry_count) {
5598 					msleep(100);
5599 					retry_count--;
5600 					goto retry_read_status;
5601 				} else if (!retry_count) {
5602 					netdev_err(netdev, "exceed max 2 second\n");
5603 				}
5604 			} else {
5605 				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5606 			}
5607 no_wait:
5608 			netif_carrier_on(netdev);
5609 
5610 			/* link state has changed, schedule phy info update */
5611 			if (!test_bit(__IGC_DOWN, &adapter->state))
5612 				mod_timer(&adapter->phy_info_timer,
5613 					  round_jiffies(jiffies + 2 * HZ));
5614 		}
5615 	} else {
5616 		if (netif_carrier_ok(netdev)) {
5617 			adapter->link_speed = 0;
5618 			adapter->link_duplex = 0;
5619 
5620 			/* Links status message must follow this format */
5621 			netdev_info(netdev, "NIC Link is Down\n");
5622 			netif_carrier_off(netdev);
5623 
5624 			/* link state has changed, schedule phy info update */
5625 			if (!test_bit(__IGC_DOWN, &adapter->state))
5626 				mod_timer(&adapter->phy_info_timer,
5627 					  round_jiffies(jiffies + 2 * HZ));
5628 
5629 			/* link is down, time to check for alternate media */
5630 			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5631 				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5632 					schedule_work(&adapter->reset_task);
5633 					/* return immediately */
5634 					return;
5635 				}
5636 			}
5637 			pm_schedule_suspend(netdev->dev.parent,
5638 					    MSEC_PER_SEC * 5);
5639 
5640 		/* also check for alternate media here */
5641 		} else if (!netif_carrier_ok(netdev) &&
5642 			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5643 			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5644 				schedule_work(&adapter->reset_task);
5645 				/* return immediately */
5646 				return;
5647 			}
5648 		}
5649 	}
5650 
5651 	spin_lock(&adapter->stats64_lock);
5652 	igc_update_stats(adapter);
5653 	spin_unlock(&adapter->stats64_lock);
5654 
5655 	for (i = 0; i < adapter->num_tx_queues; i++) {
5656 		struct igc_ring *tx_ring = adapter->tx_ring[i];
5657 
5658 		if (!netif_carrier_ok(netdev)) {
5659 			/* We've lost link, so the controller stops DMA,
5660 			 * but we've got queued Tx work that's never going
5661 			 * to get done, so reset controller to flush Tx.
5662 			 * (Do the reset outside of interrupt context).
5663 			 */
5664 			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5665 				adapter->tx_timeout_count++;
5666 				schedule_work(&adapter->reset_task);
5667 				/* return immediately since reset is imminent */
5668 				return;
5669 			}
5670 		}
5671 
5672 		/* Force detection of hung controller every watchdog period */
5673 		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5674 	}
5675 
5676 	/* Cause software interrupt to ensure Rx ring is cleaned */
5677 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5678 		u32 eics = 0;
5679 
5680 		for (i = 0; i < adapter->num_q_vectors; i++)
5681 			eics |= adapter->q_vector[i]->eims_value;
5682 		wr32(IGC_EICS, eics);
5683 	} else {
5684 		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5685 	}
5686 
5687 	igc_ptp_tx_hang(adapter);
5688 
5689 	/* Reset the timer */
5690 	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5691 		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5692 			mod_timer(&adapter->watchdog_timer,
5693 				  round_jiffies(jiffies +  HZ));
5694 		else
5695 			mod_timer(&adapter->watchdog_timer,
5696 				  round_jiffies(jiffies + 2 * HZ));
5697 	}
5698 }
5699 
5700 /**
5701  * igc_intr_msi - Interrupt Handler
5702  * @irq: interrupt number
5703  * @data: pointer to a network interface device structure
5704  */
igc_intr_msi(int irq,void * data)5705 static irqreturn_t igc_intr_msi(int irq, void *data)
5706 {
5707 	struct igc_adapter *adapter = data;
5708 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5709 	struct igc_hw *hw = &adapter->hw;
5710 	/* read ICR disables interrupts using IAM */
5711 	u32 icr = rd32(IGC_ICR);
5712 
5713 	igc_write_itr(q_vector);
5714 
5715 	if (icr & IGC_ICR_DRSTA)
5716 		schedule_work(&adapter->reset_task);
5717 
5718 	if (icr & IGC_ICR_DOUTSYNC) {
5719 		/* HW is reporting DMA is out of sync */
5720 		adapter->stats.doosync++;
5721 	}
5722 
5723 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5724 		hw->mac.get_link_status = true;
5725 		if (!test_bit(__IGC_DOWN, &adapter->state))
5726 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5727 	}
5728 
5729 	if (icr & IGC_ICR_TS)
5730 		igc_tsync_interrupt(adapter);
5731 
5732 	napi_schedule(&q_vector->napi);
5733 
5734 	return IRQ_HANDLED;
5735 }
5736 
5737 /**
5738  * igc_intr - Legacy Interrupt Handler
5739  * @irq: interrupt number
5740  * @data: pointer to a network interface device structure
5741  */
igc_intr(int irq,void * data)5742 static irqreturn_t igc_intr(int irq, void *data)
5743 {
5744 	struct igc_adapter *adapter = data;
5745 	struct igc_q_vector *q_vector = adapter->q_vector[0];
5746 	struct igc_hw *hw = &adapter->hw;
5747 	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5748 	 * need for the IMC write
5749 	 */
5750 	u32 icr = rd32(IGC_ICR);
5751 
5752 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5753 	 * not set, then the adapter didn't send an interrupt
5754 	 */
5755 	if (!(icr & IGC_ICR_INT_ASSERTED))
5756 		return IRQ_NONE;
5757 
5758 	igc_write_itr(q_vector);
5759 
5760 	if (icr & IGC_ICR_DRSTA)
5761 		schedule_work(&adapter->reset_task);
5762 
5763 	if (icr & IGC_ICR_DOUTSYNC) {
5764 		/* HW is reporting DMA is out of sync */
5765 		adapter->stats.doosync++;
5766 	}
5767 
5768 	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5769 		hw->mac.get_link_status = true;
5770 		/* guard against interrupt when we're going down */
5771 		if (!test_bit(__IGC_DOWN, &adapter->state))
5772 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5773 	}
5774 
5775 	if (icr & IGC_ICR_TS)
5776 		igc_tsync_interrupt(adapter);
5777 
5778 	napi_schedule(&q_vector->napi);
5779 
5780 	return IRQ_HANDLED;
5781 }
5782 
igc_free_irq(struct igc_adapter * adapter)5783 static void igc_free_irq(struct igc_adapter *adapter)
5784 {
5785 	if (adapter->msix_entries) {
5786 		int vector = 0, i;
5787 
5788 		free_irq(adapter->msix_entries[vector++].vector, adapter);
5789 
5790 		for (i = 0; i < adapter->num_q_vectors; i++)
5791 			free_irq(adapter->msix_entries[vector++].vector,
5792 				 adapter->q_vector[i]);
5793 	} else {
5794 		free_irq(adapter->pdev->irq, adapter);
5795 	}
5796 }
5797 
5798 /**
5799  * igc_request_irq - initialize interrupts
5800  * @adapter: Pointer to adapter structure
5801  *
5802  * Attempts to configure interrupts using the best available
5803  * capabilities of the hardware and kernel.
5804  */
igc_request_irq(struct igc_adapter * adapter)5805 static int igc_request_irq(struct igc_adapter *adapter)
5806 {
5807 	struct net_device *netdev = adapter->netdev;
5808 	struct pci_dev *pdev = adapter->pdev;
5809 	int err = 0;
5810 
5811 	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5812 		err = igc_request_msix(adapter);
5813 		if (!err)
5814 			goto request_done;
5815 		/* fall back to MSI */
5816 		igc_free_all_tx_resources(adapter);
5817 		igc_free_all_rx_resources(adapter);
5818 
5819 		igc_clear_interrupt_scheme(adapter);
5820 		err = igc_init_interrupt_scheme(adapter, false);
5821 		if (err)
5822 			goto request_done;
5823 		igc_setup_all_tx_resources(adapter);
5824 		igc_setup_all_rx_resources(adapter);
5825 		igc_configure(adapter);
5826 	}
5827 
5828 	igc_assign_vector(adapter->q_vector[0], 0);
5829 
5830 	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5831 		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5832 				  netdev->name, adapter);
5833 		if (!err)
5834 			goto request_done;
5835 
5836 		/* fall back to legacy interrupts */
5837 		igc_reset_interrupt_capability(adapter);
5838 		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5839 	}
5840 
5841 	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5842 			  netdev->name, adapter);
5843 
5844 	if (err)
5845 		netdev_err(netdev, "Error %d getting interrupt\n", err);
5846 
5847 request_done:
5848 	return err;
5849 }
5850 
5851 /**
5852  * __igc_open - Called when a network interface is made active
5853  * @netdev: network interface device structure
5854  * @resuming: boolean indicating if the device is resuming
5855  *
5856  * Returns 0 on success, negative value on failure
5857  *
5858  * The open entry point is called when a network interface is made
5859  * active by the system (IFF_UP).  At this point all resources needed
5860  * for transmit and receive operations are allocated, the interrupt
5861  * handler is registered with the OS, the watchdog timer is started,
5862  * and the stack is notified that the interface is ready.
5863  */
__igc_open(struct net_device * netdev,bool resuming)5864 static int __igc_open(struct net_device *netdev, bool resuming)
5865 {
5866 	struct igc_adapter *adapter = netdev_priv(netdev);
5867 	struct pci_dev *pdev = adapter->pdev;
5868 	struct igc_hw *hw = &adapter->hw;
5869 	int err = 0;
5870 	int i = 0;
5871 
5872 	/* disallow open during test */
5873 
5874 	if (test_bit(__IGC_TESTING, &adapter->state)) {
5875 		WARN_ON(resuming);
5876 		return -EBUSY;
5877 	}
5878 
5879 	if (!resuming)
5880 		pm_runtime_get_sync(&pdev->dev);
5881 
5882 	netif_carrier_off(netdev);
5883 
5884 	/* allocate transmit descriptors */
5885 	err = igc_setup_all_tx_resources(adapter);
5886 	if (err)
5887 		goto err_setup_tx;
5888 
5889 	/* allocate receive descriptors */
5890 	err = igc_setup_all_rx_resources(adapter);
5891 	if (err)
5892 		goto err_setup_rx;
5893 
5894 	igc_power_up_link(adapter);
5895 
5896 	igc_configure(adapter);
5897 
5898 	err = igc_request_irq(adapter);
5899 	if (err)
5900 		goto err_req_irq;
5901 
5902 	/* Notify the stack of the actual queue counts. */
5903 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5904 	if (err)
5905 		goto err_set_queues;
5906 
5907 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5908 	if (err)
5909 		goto err_set_queues;
5910 
5911 	clear_bit(__IGC_DOWN, &adapter->state);
5912 
5913 	for (i = 0; i < adapter->num_q_vectors; i++)
5914 		napi_enable(&adapter->q_vector[i]->napi);
5915 
5916 	/* Clear any pending interrupts. */
5917 	rd32(IGC_ICR);
5918 	igc_irq_enable(adapter);
5919 
5920 	if (!resuming)
5921 		pm_runtime_put(&pdev->dev);
5922 
5923 	netif_tx_start_all_queues(netdev);
5924 
5925 	/* start the watchdog. */
5926 	hw->mac.get_link_status = true;
5927 	schedule_work(&adapter->watchdog_task);
5928 
5929 	return IGC_SUCCESS;
5930 
5931 err_set_queues:
5932 	igc_free_irq(adapter);
5933 err_req_irq:
5934 	igc_release_hw_control(adapter);
5935 	igc_power_down_phy_copper_base(&adapter->hw);
5936 	igc_free_all_rx_resources(adapter);
5937 err_setup_rx:
5938 	igc_free_all_tx_resources(adapter);
5939 err_setup_tx:
5940 	igc_reset(adapter);
5941 	if (!resuming)
5942 		pm_runtime_put(&pdev->dev);
5943 
5944 	return err;
5945 }
5946 
igc_open(struct net_device * netdev)5947 int igc_open(struct net_device *netdev)
5948 {
5949 	return __igc_open(netdev, false);
5950 }
5951 
5952 /**
5953  * __igc_close - Disables a network interface
5954  * @netdev: network interface device structure
5955  * @suspending: boolean indicating the device is suspending
5956  *
5957  * Returns 0, this is not allowed to fail
5958  *
5959  * The close entry point is called when an interface is de-activated
5960  * by the OS.  The hardware is still under the driver's control, but
5961  * needs to be disabled.  A global MAC reset is issued to stop the
5962  * hardware, and all transmit and receive resources are freed.
5963  */
__igc_close(struct net_device * netdev,bool suspending)5964 static int __igc_close(struct net_device *netdev, bool suspending)
5965 {
5966 	struct igc_adapter *adapter = netdev_priv(netdev);
5967 	struct pci_dev *pdev = adapter->pdev;
5968 
5969 	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5970 
5971 	if (!suspending)
5972 		pm_runtime_get_sync(&pdev->dev);
5973 
5974 	igc_down(adapter);
5975 
5976 	igc_release_hw_control(adapter);
5977 
5978 	igc_free_irq(adapter);
5979 
5980 	igc_free_all_tx_resources(adapter);
5981 	igc_free_all_rx_resources(adapter);
5982 
5983 	if (!suspending)
5984 		pm_runtime_put_sync(&pdev->dev);
5985 
5986 	return 0;
5987 }
5988 
igc_close(struct net_device * netdev)5989 int igc_close(struct net_device *netdev)
5990 {
5991 	if (netif_device_present(netdev) || netdev->dismantle)
5992 		return __igc_close(netdev, false);
5993 	return 0;
5994 }
5995 
5996 /**
5997  * igc_ioctl - Access the hwtstamp interface
5998  * @netdev: network interface device structure
5999  * @ifr: interface request data
6000  * @cmd: ioctl command
6001  **/
igc_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6002 static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6003 {
6004 	switch (cmd) {
6005 	case SIOCGHWTSTAMP:
6006 		return igc_ptp_get_ts_config(netdev, ifr);
6007 	case SIOCSHWTSTAMP:
6008 		return igc_ptp_set_ts_config(netdev, ifr);
6009 	default:
6010 		return -EOPNOTSUPP;
6011 	}
6012 }
6013 
igc_save_launchtime_params(struct igc_adapter * adapter,int queue,bool enable)6014 static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
6015 				      bool enable)
6016 {
6017 	struct igc_ring *ring;
6018 
6019 	if (queue < 0 || queue >= adapter->num_tx_queues)
6020 		return -EINVAL;
6021 
6022 	ring = adapter->tx_ring[queue];
6023 	ring->launchtime_enable = enable;
6024 
6025 	return 0;
6026 }
6027 
is_base_time_past(ktime_t base_time,const struct timespec64 * now)6028 static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
6029 {
6030 	struct timespec64 b;
6031 
6032 	b = ktime_to_timespec64(base_time);
6033 
6034 	return timespec64_compare(now, &b) > 0;
6035 }
6036 
validate_schedule(struct igc_adapter * adapter,const struct tc_taprio_qopt_offload * qopt)6037 static bool validate_schedule(struct igc_adapter *adapter,
6038 			      const struct tc_taprio_qopt_offload *qopt)
6039 {
6040 	int queue_uses[IGC_MAX_TX_QUEUES] = { };
6041 	struct igc_hw *hw = &adapter->hw;
6042 	struct timespec64 now;
6043 	size_t n;
6044 
6045 	if (qopt->cycle_time_extension)
6046 		return false;
6047 
6048 	igc_ptp_read(adapter, &now);
6049 
6050 	/* If we program the controller's BASET registers with a time
6051 	 * in the future, it will hold all the packets until that
6052 	 * time, causing a lot of TX Hangs, so to avoid that, we
6053 	 * reject schedules that would start in the future.
6054 	 * Note: Limitation above is no longer in i226.
6055 	 */
6056 	if (!is_base_time_past(qopt->base_time, &now) &&
6057 	    igc_is_device_id_i225(hw))
6058 		return false;
6059 
6060 	for (n = 0; n < qopt->num_entries; n++) {
6061 		const struct tc_taprio_sched_entry *e, *prev;
6062 		int i;
6063 
6064 		prev = n ? &qopt->entries[n - 1] : NULL;
6065 		e = &qopt->entries[n];
6066 
6067 		/* i225 only supports "global" frame preemption
6068 		 * settings.
6069 		 */
6070 		if (e->command != TC_TAPRIO_CMD_SET_GATES)
6071 			return false;
6072 
6073 		for (i = 0; i < adapter->num_tx_queues; i++)
6074 			if (e->gate_mask & BIT(i)) {
6075 				queue_uses[i]++;
6076 
6077 				/* There are limitations: A single queue cannot
6078 				 * be opened and closed multiple times per cycle
6079 				 * unless the gate stays open. Check for it.
6080 				 */
6081 				if (queue_uses[i] > 1 &&
6082 				    !(prev->gate_mask & BIT(i)))
6083 					return false;
6084 			}
6085 	}
6086 
6087 	return true;
6088 }
6089 
igc_tsn_enable_launchtime(struct igc_adapter * adapter,struct tc_etf_qopt_offload * qopt)6090 static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
6091 				     struct tc_etf_qopt_offload *qopt)
6092 {
6093 	struct igc_hw *hw = &adapter->hw;
6094 	int err;
6095 
6096 	if (hw->mac.type != igc_i225)
6097 		return -EOPNOTSUPP;
6098 
6099 	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
6100 	if (err)
6101 		return err;
6102 
6103 	return igc_tsn_offload_apply(adapter);
6104 }
6105 
igc_tsn_clear_schedule(struct igc_adapter * adapter)6106 static int igc_tsn_clear_schedule(struct igc_adapter *adapter)
6107 {
6108 	int i;
6109 
6110 	adapter->base_time = 0;
6111 	adapter->cycle_time = NSEC_PER_SEC;
6112 	adapter->qbv_config_change_errors = 0;
6113 
6114 	for (i = 0; i < adapter->num_tx_queues; i++) {
6115 		struct igc_ring *ring = adapter->tx_ring[i];
6116 
6117 		ring->start_time = 0;
6118 		ring->end_time = NSEC_PER_SEC;
6119 	}
6120 
6121 	return 0;
6122 }
6123 
igc_save_qbv_schedule(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6124 static int igc_save_qbv_schedule(struct igc_adapter *adapter,
6125 				 struct tc_taprio_qopt_offload *qopt)
6126 {
6127 	bool queue_configured[IGC_MAX_TX_QUEUES] = { };
6128 	struct igc_hw *hw = &adapter->hw;
6129 	u32 start_time = 0, end_time = 0;
6130 	size_t n;
6131 	int i;
6132 
6133 	adapter->qbv_enable = qopt->enable;
6134 
6135 	if (!qopt->enable)
6136 		return igc_tsn_clear_schedule(adapter);
6137 
6138 	if (qopt->base_time < 0)
6139 		return -ERANGE;
6140 
6141 	if (igc_is_device_id_i225(hw) && adapter->base_time)
6142 		return -EALREADY;
6143 
6144 	if (!validate_schedule(adapter, qopt))
6145 		return -EINVAL;
6146 
6147 	adapter->cycle_time = qopt->cycle_time;
6148 	adapter->base_time = qopt->base_time;
6149 
6150 	for (n = 0; n < qopt->num_entries; n++) {
6151 		struct tc_taprio_sched_entry *e = &qopt->entries[n];
6152 
6153 		end_time += e->interval;
6154 
6155 		/* If any of the conditions below are true, we need to manually
6156 		 * control the end time of the cycle.
6157 		 * 1. Qbv users can specify a cycle time that is not equal
6158 		 * to the total GCL intervals. Hence, recalculation is
6159 		 * necessary here to exclude the time interval that
6160 		 * exceeds the cycle time.
6161 		 * 2. According to IEEE Std. 802.1Q-2018 section 8.6.9.2,
6162 		 * once the end of the list is reached, it will switch
6163 		 * to the END_OF_CYCLE state and leave the gates in the
6164 		 * same state until the next cycle is started.
6165 		 */
6166 		if (end_time > adapter->cycle_time ||
6167 		    n + 1 == qopt->num_entries)
6168 			end_time = adapter->cycle_time;
6169 
6170 		for (i = 0; i < adapter->num_tx_queues; i++) {
6171 			struct igc_ring *ring = adapter->tx_ring[i];
6172 
6173 			if (!(e->gate_mask & BIT(i)))
6174 				continue;
6175 
6176 			/* Check whether a queue stays open for more than one
6177 			 * entry. If so, keep the start and advance the end
6178 			 * time.
6179 			 */
6180 			if (!queue_configured[i])
6181 				ring->start_time = start_time;
6182 			ring->end_time = end_time;
6183 
6184 			queue_configured[i] = true;
6185 		}
6186 
6187 		start_time += e->interval;
6188 	}
6189 
6190 	/* Check whether a queue gets configured.
6191 	 * If not, set the start and end time to be end time.
6192 	 */
6193 	for (i = 0; i < adapter->num_tx_queues; i++) {
6194 		if (!queue_configured[i]) {
6195 			struct igc_ring *ring = adapter->tx_ring[i];
6196 
6197 			ring->start_time = end_time;
6198 			ring->end_time = end_time;
6199 		}
6200 	}
6201 
6202 	return 0;
6203 }
6204 
igc_tsn_enable_qbv_scheduling(struct igc_adapter * adapter,struct tc_taprio_qopt_offload * qopt)6205 static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
6206 					 struct tc_taprio_qopt_offload *qopt)
6207 {
6208 	struct igc_hw *hw = &adapter->hw;
6209 	int err;
6210 
6211 	if (hw->mac.type != igc_i225)
6212 		return -EOPNOTSUPP;
6213 
6214 	err = igc_save_qbv_schedule(adapter, qopt);
6215 	if (err)
6216 		return err;
6217 
6218 	return igc_tsn_offload_apply(adapter);
6219 }
6220 
igc_save_cbs_params(struct igc_adapter * adapter,int queue,bool enable,int idleslope,int sendslope,int hicredit,int locredit)6221 static int igc_save_cbs_params(struct igc_adapter *adapter, int queue,
6222 			       bool enable, int idleslope, int sendslope,
6223 			       int hicredit, int locredit)
6224 {
6225 	bool cbs_status[IGC_MAX_SR_QUEUES] = { false };
6226 	struct net_device *netdev = adapter->netdev;
6227 	struct igc_ring *ring;
6228 	int i;
6229 
6230 	/* i225 has two sets of credit-based shaper logic.
6231 	 * Supporting it only on the top two priority queues
6232 	 */
6233 	if (queue < 0 || queue > 1)
6234 		return -EINVAL;
6235 
6236 	ring = adapter->tx_ring[queue];
6237 
6238 	for (i = 0; i < IGC_MAX_SR_QUEUES; i++)
6239 		if (adapter->tx_ring[i])
6240 			cbs_status[i] = adapter->tx_ring[i]->cbs_enable;
6241 
6242 	/* CBS should be enabled on the highest priority queue first in order
6243 	 * for the CBS algorithm to operate as intended.
6244 	 */
6245 	if (enable) {
6246 		if (queue == 1 && !cbs_status[0]) {
6247 			netdev_err(netdev,
6248 				   "Enabling CBS on queue1 before queue0\n");
6249 			return -EINVAL;
6250 		}
6251 	} else {
6252 		if (queue == 0 && cbs_status[1]) {
6253 			netdev_err(netdev,
6254 				   "Disabling CBS on queue0 before queue1\n");
6255 			return -EINVAL;
6256 		}
6257 	}
6258 
6259 	ring->cbs_enable = enable;
6260 	ring->idleslope = idleslope;
6261 	ring->sendslope = sendslope;
6262 	ring->hicredit = hicredit;
6263 	ring->locredit = locredit;
6264 
6265 	return 0;
6266 }
6267 
igc_tsn_enable_cbs(struct igc_adapter * adapter,struct tc_cbs_qopt_offload * qopt)6268 static int igc_tsn_enable_cbs(struct igc_adapter *adapter,
6269 			      struct tc_cbs_qopt_offload *qopt)
6270 {
6271 	struct igc_hw *hw = &adapter->hw;
6272 	int err;
6273 
6274 	if (hw->mac.type != igc_i225)
6275 		return -EOPNOTSUPP;
6276 
6277 	if (qopt->queue < 0 || qopt->queue > 1)
6278 		return -EINVAL;
6279 
6280 	err = igc_save_cbs_params(adapter, qopt->queue, qopt->enable,
6281 				  qopt->idleslope, qopt->sendslope,
6282 				  qopt->hicredit, qopt->locredit);
6283 	if (err)
6284 		return err;
6285 
6286 	return igc_tsn_offload_apply(adapter);
6287 }
6288 
igc_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)6289 static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
6290 			void *type_data)
6291 {
6292 	struct igc_adapter *adapter = netdev_priv(dev);
6293 
6294 	adapter->tc_setup_type = type;
6295 
6296 	switch (type) {
6297 	case TC_SETUP_QDISC_TAPRIO:
6298 		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
6299 
6300 	case TC_SETUP_QDISC_ETF:
6301 		return igc_tsn_enable_launchtime(adapter, type_data);
6302 
6303 	case TC_SETUP_QDISC_CBS:
6304 		return igc_tsn_enable_cbs(adapter, type_data);
6305 
6306 	default:
6307 		return -EOPNOTSUPP;
6308 	}
6309 }
6310 
igc_bpf(struct net_device * dev,struct netdev_bpf * bpf)6311 static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6312 {
6313 	struct igc_adapter *adapter = netdev_priv(dev);
6314 
6315 	switch (bpf->command) {
6316 	case XDP_SETUP_PROG:
6317 		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
6318 	case XDP_SETUP_XSK_POOL:
6319 		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
6320 					  bpf->xsk.queue_id);
6321 	default:
6322 		return -EOPNOTSUPP;
6323 	}
6324 }
6325 
igc_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6326 static int igc_xdp_xmit(struct net_device *dev, int num_frames,
6327 			struct xdp_frame **frames, u32 flags)
6328 {
6329 	struct igc_adapter *adapter = netdev_priv(dev);
6330 	int cpu = smp_processor_id();
6331 	struct netdev_queue *nq;
6332 	struct igc_ring *ring;
6333 	int i, drops;
6334 
6335 	if (unlikely(!netif_carrier_ok(dev)))
6336 		return -ENETDOWN;
6337 
6338 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6339 		return -EINVAL;
6340 
6341 	ring = igc_xdp_get_tx_ring(adapter, cpu);
6342 	nq = txring_txq(ring);
6343 
6344 	__netif_tx_lock(nq, cpu);
6345 
6346 	/* Avoid transmit queue timeout since we share it with the slow path */
6347 	txq_trans_cond_update(nq);
6348 
6349 	drops = 0;
6350 	for (i = 0; i < num_frames; i++) {
6351 		int err;
6352 		struct xdp_frame *xdpf = frames[i];
6353 
6354 		err = igc_xdp_init_tx_descriptor(ring, xdpf);
6355 		if (err) {
6356 			xdp_return_frame_rx_napi(xdpf);
6357 			drops++;
6358 		}
6359 	}
6360 
6361 	if (flags & XDP_XMIT_FLUSH)
6362 		igc_flush_tx_descriptors(ring);
6363 
6364 	__netif_tx_unlock(nq);
6365 
6366 	return num_frames - drops;
6367 }
6368 
igc_trigger_rxtxq_interrupt(struct igc_adapter * adapter,struct igc_q_vector * q_vector)6369 static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
6370 					struct igc_q_vector *q_vector)
6371 {
6372 	struct igc_hw *hw = &adapter->hw;
6373 	u32 eics = 0;
6374 
6375 	eics |= q_vector->eims_value;
6376 	wr32(IGC_EICS, eics);
6377 }
6378 
igc_xsk_wakeup(struct net_device * dev,u32 queue_id,u32 flags)6379 int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
6380 {
6381 	struct igc_adapter *adapter = netdev_priv(dev);
6382 	struct igc_q_vector *q_vector;
6383 	struct igc_ring *ring;
6384 
6385 	if (test_bit(__IGC_DOWN, &adapter->state))
6386 		return -ENETDOWN;
6387 
6388 	if (!igc_xdp_is_enabled(adapter))
6389 		return -ENXIO;
6390 
6391 	if (queue_id >= adapter->num_rx_queues)
6392 		return -EINVAL;
6393 
6394 	ring = adapter->rx_ring[queue_id];
6395 
6396 	if (!ring->xsk_pool)
6397 		return -ENXIO;
6398 
6399 	q_vector = adapter->q_vector[queue_id];
6400 	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
6401 		igc_trigger_rxtxq_interrupt(adapter, q_vector);
6402 
6403 	return 0;
6404 }
6405 
6406 static const struct net_device_ops igc_netdev_ops = {
6407 	.ndo_open		= igc_open,
6408 	.ndo_stop		= igc_close,
6409 	.ndo_start_xmit		= igc_xmit_frame,
6410 	.ndo_set_rx_mode	= igc_set_rx_mode,
6411 	.ndo_set_mac_address	= igc_set_mac,
6412 	.ndo_change_mtu		= igc_change_mtu,
6413 	.ndo_tx_timeout		= igc_tx_timeout,
6414 	.ndo_get_stats64	= igc_get_stats64,
6415 	.ndo_fix_features	= igc_fix_features,
6416 	.ndo_set_features	= igc_set_features,
6417 	.ndo_features_check	= igc_features_check,
6418 	.ndo_eth_ioctl		= igc_ioctl,
6419 	.ndo_setup_tc		= igc_setup_tc,
6420 	.ndo_bpf		= igc_bpf,
6421 	.ndo_xdp_xmit		= igc_xdp_xmit,
6422 	.ndo_xsk_wakeup		= igc_xsk_wakeup,
6423 };
6424 
6425 /* PCIe configuration access */
igc_read_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6426 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6427 {
6428 	struct igc_adapter *adapter = hw->back;
6429 
6430 	pci_read_config_word(adapter->pdev, reg, value);
6431 }
6432 
igc_write_pci_cfg(struct igc_hw * hw,u32 reg,u16 * value)6433 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
6434 {
6435 	struct igc_adapter *adapter = hw->back;
6436 
6437 	pci_write_config_word(adapter->pdev, reg, *value);
6438 }
6439 
igc_read_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6440 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6441 {
6442 	struct igc_adapter *adapter = hw->back;
6443 
6444 	if (!pci_is_pcie(adapter->pdev))
6445 		return -IGC_ERR_CONFIG;
6446 
6447 	pcie_capability_read_word(adapter->pdev, reg, value);
6448 
6449 	return IGC_SUCCESS;
6450 }
6451 
igc_write_pcie_cap_reg(struct igc_hw * hw,u32 reg,u16 * value)6452 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
6453 {
6454 	struct igc_adapter *adapter = hw->back;
6455 
6456 	if (!pci_is_pcie(adapter->pdev))
6457 		return -IGC_ERR_CONFIG;
6458 
6459 	pcie_capability_write_word(adapter->pdev, reg, *value);
6460 
6461 	return IGC_SUCCESS;
6462 }
6463 
igc_rd32(struct igc_hw * hw,u32 reg)6464 u32 igc_rd32(struct igc_hw *hw, u32 reg)
6465 {
6466 	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
6467 	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
6468 	u32 value = 0;
6469 
6470 	if (IGC_REMOVED(hw_addr))
6471 		return ~value;
6472 
6473 	value = readl(&hw_addr[reg]);
6474 
6475 	/* reads should not return all F's */
6476 	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
6477 		struct net_device *netdev = igc->netdev;
6478 
6479 		hw->hw_addr = NULL;
6480 		netif_device_detach(netdev);
6481 		netdev_err(netdev, "PCIe link lost, device now detached\n");
6482 		WARN(pci_device_is_present(igc->pdev),
6483 		     "igc: Failed to read reg 0x%x!\n", reg);
6484 	}
6485 
6486 	return value;
6487 }
6488 
6489 /**
6490  * igc_probe - Device Initialization Routine
6491  * @pdev: PCI device information struct
6492  * @ent: entry in igc_pci_tbl
6493  *
6494  * Returns 0 on success, negative on failure
6495  *
6496  * igc_probe initializes an adapter identified by a pci_dev structure.
6497  * The OS initialization, configuring the adapter private structure,
6498  * and a hardware reset occur.
6499  */
igc_probe(struct pci_dev * pdev,const struct pci_device_id * ent)6500 static int igc_probe(struct pci_dev *pdev,
6501 		     const struct pci_device_id *ent)
6502 {
6503 	struct igc_adapter *adapter;
6504 	struct net_device *netdev;
6505 	struct igc_hw *hw;
6506 	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
6507 	int err;
6508 
6509 	err = pci_enable_device_mem(pdev);
6510 	if (err)
6511 		return err;
6512 
6513 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6514 	if (err) {
6515 		dev_err(&pdev->dev,
6516 			"No usable DMA configuration, aborting\n");
6517 		goto err_dma;
6518 	}
6519 
6520 	err = pci_request_mem_regions(pdev, igc_driver_name);
6521 	if (err)
6522 		goto err_pci_reg;
6523 
6524 	pci_enable_pcie_error_reporting(pdev);
6525 
6526 	err = pci_enable_ptm(pdev, NULL);
6527 	if (err < 0)
6528 		dev_info(&pdev->dev, "PCIe PTM not supported by PCIe bus/controller\n");
6529 
6530 	pci_set_master(pdev);
6531 
6532 	err = -ENOMEM;
6533 	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
6534 				   IGC_MAX_TX_QUEUES);
6535 
6536 	if (!netdev)
6537 		goto err_alloc_etherdev;
6538 
6539 	SET_NETDEV_DEV(netdev, &pdev->dev);
6540 
6541 	pci_set_drvdata(pdev, netdev);
6542 	adapter = netdev_priv(netdev);
6543 	adapter->netdev = netdev;
6544 	adapter->pdev = pdev;
6545 	hw = &adapter->hw;
6546 	hw->back = adapter;
6547 	adapter->port_num = hw->bus.func;
6548 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6549 
6550 	err = pci_save_state(pdev);
6551 	if (err)
6552 		goto err_ioremap;
6553 
6554 	err = -EIO;
6555 	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
6556 				   pci_resource_len(pdev, 0));
6557 	if (!adapter->io_addr)
6558 		goto err_ioremap;
6559 
6560 	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
6561 	hw->hw_addr = adapter->io_addr;
6562 
6563 	netdev->netdev_ops = &igc_netdev_ops;
6564 	igc_ethtool_set_ops(netdev);
6565 	netdev->watchdog_timeo = 5 * HZ;
6566 
6567 	netdev->mem_start = pci_resource_start(pdev, 0);
6568 	netdev->mem_end = pci_resource_end(pdev, 0);
6569 
6570 	/* PCI config space info */
6571 	hw->vendor_id = pdev->vendor;
6572 	hw->device_id = pdev->device;
6573 	hw->revision_id = pdev->revision;
6574 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
6575 	hw->subsystem_device_id = pdev->subsystem_device;
6576 
6577 	/* Copy the default MAC and PHY function pointers */
6578 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6579 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6580 
6581 	/* Initialize skew-specific constants */
6582 	err = ei->get_invariants(hw);
6583 	if (err)
6584 		goto err_sw_init;
6585 
6586 	/* Add supported features to the features list*/
6587 	netdev->features |= NETIF_F_SG;
6588 	netdev->features |= NETIF_F_TSO;
6589 	netdev->features |= NETIF_F_TSO6;
6590 	netdev->features |= NETIF_F_TSO_ECN;
6591 	netdev->features |= NETIF_F_RXHASH;
6592 	netdev->features |= NETIF_F_RXCSUM;
6593 	netdev->features |= NETIF_F_HW_CSUM;
6594 	netdev->features |= NETIF_F_SCTP_CRC;
6595 	netdev->features |= NETIF_F_HW_TC;
6596 
6597 #define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
6598 				  NETIF_F_GSO_GRE_CSUM | \
6599 				  NETIF_F_GSO_IPXIP4 | \
6600 				  NETIF_F_GSO_IPXIP6 | \
6601 				  NETIF_F_GSO_UDP_TUNNEL | \
6602 				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
6603 
6604 	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
6605 	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
6606 
6607 	/* setup the private structure */
6608 	err = igc_sw_init(adapter);
6609 	if (err)
6610 		goto err_sw_init;
6611 
6612 	/* copy netdev features into list of user selectable features */
6613 	netdev->hw_features |= NETIF_F_NTUPLE;
6614 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
6615 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
6616 	netdev->hw_features |= netdev->features;
6617 
6618 	netdev->features |= NETIF_F_HIGHDMA;
6619 
6620 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
6621 	netdev->mpls_features |= NETIF_F_HW_CSUM;
6622 	netdev->hw_enc_features |= netdev->vlan_features;
6623 
6624 	/* MTU range: 68 - 9216 */
6625 	netdev->min_mtu = ETH_MIN_MTU;
6626 	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
6627 
6628 	/* before reading the NVM, reset the controller to put the device in a
6629 	 * known good starting state
6630 	 */
6631 	hw->mac.ops.reset_hw(hw);
6632 
6633 	if (igc_get_flash_presence_i225(hw)) {
6634 		if (hw->nvm.ops.validate(hw) < 0) {
6635 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6636 			err = -EIO;
6637 			goto err_eeprom;
6638 		}
6639 	}
6640 
6641 	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
6642 		/* copy the MAC address out of the NVM */
6643 		if (hw->mac.ops.read_mac_addr(hw))
6644 			dev_err(&pdev->dev, "NVM Read Error\n");
6645 	}
6646 
6647 	eth_hw_addr_set(netdev, hw->mac.addr);
6648 
6649 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6650 		dev_err(&pdev->dev, "Invalid MAC Address\n");
6651 		err = -EIO;
6652 		goto err_eeprom;
6653 	}
6654 
6655 	/* configure RXPBSIZE and TXPBSIZE */
6656 	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6657 	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6658 
6659 	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6660 	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6661 
6662 	INIT_WORK(&adapter->reset_task, igc_reset_task);
6663 	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6664 
6665 	/* Initialize link properties that are user-changeable */
6666 	adapter->fc_autoneg = true;
6667 	hw->mac.autoneg = true;
6668 	hw->phy.autoneg_advertised = 0xaf;
6669 
6670 	hw->fc.requested_mode = igc_fc_default;
6671 	hw->fc.current_mode = igc_fc_default;
6672 
6673 	/* By default, support wake on port A */
6674 	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6675 
6676 	/* initialize the wol settings based on the eeprom settings */
6677 	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6678 		adapter->wol |= IGC_WUFC_MAG;
6679 
6680 	device_set_wakeup_enable(&adapter->pdev->dev,
6681 				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6682 
6683 	igc_ptp_init(adapter);
6684 
6685 	igc_tsn_clear_schedule(adapter);
6686 
6687 	/* reset the hardware with the new settings */
6688 	igc_reset(adapter);
6689 
6690 	/* let the f/w know that the h/w is now under the control of the
6691 	 * driver.
6692 	 */
6693 	igc_get_hw_control(adapter);
6694 
6695 	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6696 	err = register_netdev(netdev);
6697 	if (err)
6698 		goto err_register;
6699 
6700 	 /* carrier off reporting is important to ethtool even BEFORE open */
6701 	netif_carrier_off(netdev);
6702 
6703 	/* Check if Media Autosense is enabled */
6704 	adapter->ei = *ei;
6705 
6706 	/* print pcie link status and MAC address */
6707 	pcie_print_link_status(pdev);
6708 	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6709 
6710 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6711 	/* Disable EEE for internal PHY devices */
6712 	hw->dev_spec._base.eee_enable = false;
6713 	adapter->flags &= ~IGC_FLAG_EEE;
6714 	igc_set_eee_i225(hw, false, false, false);
6715 
6716 	pm_runtime_put_noidle(&pdev->dev);
6717 
6718 	return 0;
6719 
6720 err_register:
6721 	igc_release_hw_control(adapter);
6722 err_eeprom:
6723 	if (!igc_check_reset_block(hw))
6724 		igc_reset_phy(hw);
6725 err_sw_init:
6726 	igc_clear_interrupt_scheme(adapter);
6727 	iounmap(adapter->io_addr);
6728 err_ioremap:
6729 	free_netdev(netdev);
6730 err_alloc_etherdev:
6731 	pci_disable_pcie_error_reporting(pdev);
6732 	pci_release_mem_regions(pdev);
6733 err_pci_reg:
6734 err_dma:
6735 	pci_disable_device(pdev);
6736 	return err;
6737 }
6738 
6739 /**
6740  * igc_remove - Device Removal Routine
6741  * @pdev: PCI device information struct
6742  *
6743  * igc_remove is called by the PCI subsystem to alert the driver
6744  * that it should release a PCI device.  This could be caused by a
6745  * Hot-Plug event, or because the driver is going to be removed from
6746  * memory.
6747  */
igc_remove(struct pci_dev * pdev)6748 static void igc_remove(struct pci_dev *pdev)
6749 {
6750 	struct net_device *netdev = pci_get_drvdata(pdev);
6751 	struct igc_adapter *adapter = netdev_priv(netdev);
6752 
6753 	pm_runtime_get_noresume(&pdev->dev);
6754 
6755 	igc_flush_nfc_rules(adapter);
6756 
6757 	igc_ptp_stop(adapter);
6758 
6759 	pci_disable_ptm(pdev);
6760 	pci_clear_master(pdev);
6761 
6762 	set_bit(__IGC_DOWN, &adapter->state);
6763 
6764 	del_timer_sync(&adapter->watchdog_timer);
6765 	del_timer_sync(&adapter->phy_info_timer);
6766 
6767 	cancel_work_sync(&adapter->reset_task);
6768 	cancel_work_sync(&adapter->watchdog_task);
6769 
6770 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6771 	 * would have already happened in close and is redundant.
6772 	 */
6773 	igc_release_hw_control(adapter);
6774 	unregister_netdev(netdev);
6775 
6776 	igc_clear_interrupt_scheme(adapter);
6777 	pci_iounmap(pdev, adapter->io_addr);
6778 	pci_release_mem_regions(pdev);
6779 
6780 	free_netdev(netdev);
6781 
6782 	pci_disable_pcie_error_reporting(pdev);
6783 
6784 	pci_disable_device(pdev);
6785 }
6786 
__igc_shutdown(struct pci_dev * pdev,bool * enable_wake,bool runtime)6787 static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6788 			  bool runtime)
6789 {
6790 	struct net_device *netdev = pci_get_drvdata(pdev);
6791 	struct igc_adapter *adapter = netdev_priv(netdev);
6792 	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6793 	struct igc_hw *hw = &adapter->hw;
6794 	u32 ctrl, rctl, status;
6795 	bool wake;
6796 
6797 	rtnl_lock();
6798 	netif_device_detach(netdev);
6799 
6800 	if (netif_running(netdev))
6801 		__igc_close(netdev, true);
6802 
6803 	igc_ptp_suspend(adapter);
6804 
6805 	igc_clear_interrupt_scheme(adapter);
6806 	rtnl_unlock();
6807 
6808 	status = rd32(IGC_STATUS);
6809 	if (status & IGC_STATUS_LU)
6810 		wufc &= ~IGC_WUFC_LNKC;
6811 
6812 	if (wufc) {
6813 		igc_setup_rctl(adapter);
6814 		igc_set_rx_mode(netdev);
6815 
6816 		/* turn on all-multi mode if wake on multicast is enabled */
6817 		if (wufc & IGC_WUFC_MC) {
6818 			rctl = rd32(IGC_RCTL);
6819 			rctl |= IGC_RCTL_MPE;
6820 			wr32(IGC_RCTL, rctl);
6821 		}
6822 
6823 		ctrl = rd32(IGC_CTRL);
6824 		ctrl |= IGC_CTRL_ADVD3WUC;
6825 		wr32(IGC_CTRL, ctrl);
6826 
6827 		/* Allow time for pending master requests to run */
6828 		igc_disable_pcie_master(hw);
6829 
6830 		wr32(IGC_WUC, IGC_WUC_PME_EN);
6831 		wr32(IGC_WUFC, wufc);
6832 	} else {
6833 		wr32(IGC_WUC, 0);
6834 		wr32(IGC_WUFC, 0);
6835 	}
6836 
6837 	wake = wufc || adapter->en_mng_pt;
6838 	if (!wake)
6839 		igc_power_down_phy_copper_base(&adapter->hw);
6840 	else
6841 		igc_power_up_link(adapter);
6842 
6843 	if (enable_wake)
6844 		*enable_wake = wake;
6845 
6846 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6847 	 * would have already happened in close and is redundant.
6848 	 */
6849 	igc_release_hw_control(adapter);
6850 
6851 	pci_disable_device(pdev);
6852 
6853 	return 0;
6854 }
6855 
6856 #ifdef CONFIG_PM
igc_runtime_suspend(struct device * dev)6857 static int __maybe_unused igc_runtime_suspend(struct device *dev)
6858 {
6859 	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6860 }
6861 
igc_deliver_wake_packet(struct net_device * netdev)6862 static void igc_deliver_wake_packet(struct net_device *netdev)
6863 {
6864 	struct igc_adapter *adapter = netdev_priv(netdev);
6865 	struct igc_hw *hw = &adapter->hw;
6866 	struct sk_buff *skb;
6867 	u32 wupl;
6868 
6869 	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6870 
6871 	/* WUPM stores only the first 128 bytes of the wake packet.
6872 	 * Read the packet only if we have the whole thing.
6873 	 */
6874 	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6875 		return;
6876 
6877 	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6878 	if (!skb)
6879 		return;
6880 
6881 	skb_put(skb, wupl);
6882 
6883 	/* Ensure reads are 32-bit aligned */
6884 	wupl = roundup(wupl, 4);
6885 
6886 	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6887 
6888 	skb->protocol = eth_type_trans(skb, netdev);
6889 	netif_rx(skb);
6890 }
6891 
igc_resume(struct device * dev)6892 static int __maybe_unused igc_resume(struct device *dev)
6893 {
6894 	struct pci_dev *pdev = to_pci_dev(dev);
6895 	struct net_device *netdev = pci_get_drvdata(pdev);
6896 	struct igc_adapter *adapter = netdev_priv(netdev);
6897 	struct igc_hw *hw = &adapter->hw;
6898 	u32 err, val;
6899 
6900 	pci_set_power_state(pdev, PCI_D0);
6901 	pci_restore_state(pdev);
6902 	pci_save_state(pdev);
6903 
6904 	if (!pci_device_is_present(pdev))
6905 		return -ENODEV;
6906 	err = pci_enable_device_mem(pdev);
6907 	if (err) {
6908 		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6909 		return err;
6910 	}
6911 	pci_set_master(pdev);
6912 
6913 	pci_enable_wake(pdev, PCI_D3hot, 0);
6914 	pci_enable_wake(pdev, PCI_D3cold, 0);
6915 
6916 	if (igc_init_interrupt_scheme(adapter, true)) {
6917 		netdev_err(netdev, "Unable to allocate memory for queues\n");
6918 		return -ENOMEM;
6919 	}
6920 
6921 	igc_reset(adapter);
6922 
6923 	/* let the f/w know that the h/w is now under the control of the
6924 	 * driver.
6925 	 */
6926 	igc_get_hw_control(adapter);
6927 
6928 	val = rd32(IGC_WUS);
6929 	if (val & WAKE_PKT_WUS)
6930 		igc_deliver_wake_packet(netdev);
6931 
6932 	wr32(IGC_WUS, ~0);
6933 
6934 	rtnl_lock();
6935 	if (!err && netif_running(netdev))
6936 		err = __igc_open(netdev, true);
6937 
6938 	if (!err)
6939 		netif_device_attach(netdev);
6940 	rtnl_unlock();
6941 
6942 	return err;
6943 }
6944 
igc_runtime_resume(struct device * dev)6945 static int __maybe_unused igc_runtime_resume(struct device *dev)
6946 {
6947 	return igc_resume(dev);
6948 }
6949 
igc_suspend(struct device * dev)6950 static int __maybe_unused igc_suspend(struct device *dev)
6951 {
6952 	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6953 }
6954 
igc_runtime_idle(struct device * dev)6955 static int __maybe_unused igc_runtime_idle(struct device *dev)
6956 {
6957 	struct net_device *netdev = dev_get_drvdata(dev);
6958 	struct igc_adapter *adapter = netdev_priv(netdev);
6959 
6960 	if (!igc_has_link(adapter))
6961 		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6962 
6963 	return -EBUSY;
6964 }
6965 #endif /* CONFIG_PM */
6966 
igc_shutdown(struct pci_dev * pdev)6967 static void igc_shutdown(struct pci_dev *pdev)
6968 {
6969 	bool wake;
6970 
6971 	__igc_shutdown(pdev, &wake, 0);
6972 
6973 	if (system_state == SYSTEM_POWER_OFF) {
6974 		pci_wake_from_d3(pdev, wake);
6975 		pci_set_power_state(pdev, PCI_D3hot);
6976 	}
6977 }
6978 
6979 /**
6980  *  igc_io_error_detected - called when PCI error is detected
6981  *  @pdev: Pointer to PCI device
6982  *  @state: The current PCI connection state
6983  *
6984  *  This function is called after a PCI bus error affecting
6985  *  this device has been detected.
6986  **/
igc_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)6987 static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6988 					      pci_channel_state_t state)
6989 {
6990 	struct net_device *netdev = pci_get_drvdata(pdev);
6991 	struct igc_adapter *adapter = netdev_priv(netdev);
6992 
6993 	netif_device_detach(netdev);
6994 
6995 	if (state == pci_channel_io_perm_failure)
6996 		return PCI_ERS_RESULT_DISCONNECT;
6997 
6998 	if (netif_running(netdev))
6999 		igc_down(adapter);
7000 	pci_disable_device(pdev);
7001 
7002 	/* Request a slot reset. */
7003 	return PCI_ERS_RESULT_NEED_RESET;
7004 }
7005 
7006 /**
7007  *  igc_io_slot_reset - called after the PCI bus has been reset.
7008  *  @pdev: Pointer to PCI device
7009  *
7010  *  Restart the card from scratch, as if from a cold-boot. Implementation
7011  *  resembles the first-half of the igc_resume routine.
7012  **/
igc_io_slot_reset(struct pci_dev * pdev)7013 static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
7014 {
7015 	struct net_device *netdev = pci_get_drvdata(pdev);
7016 	struct igc_adapter *adapter = netdev_priv(netdev);
7017 	struct igc_hw *hw = &adapter->hw;
7018 	pci_ers_result_t result;
7019 
7020 	if (pci_enable_device_mem(pdev)) {
7021 		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
7022 		result = PCI_ERS_RESULT_DISCONNECT;
7023 	} else {
7024 		pci_set_master(pdev);
7025 		pci_restore_state(pdev);
7026 		pci_save_state(pdev);
7027 
7028 		pci_enable_wake(pdev, PCI_D3hot, 0);
7029 		pci_enable_wake(pdev, PCI_D3cold, 0);
7030 
7031 		/* In case of PCI error, adapter loses its HW address
7032 		 * so we should re-assign it here.
7033 		 */
7034 		hw->hw_addr = adapter->io_addr;
7035 
7036 		igc_reset(adapter);
7037 		wr32(IGC_WUS, ~0);
7038 		result = PCI_ERS_RESULT_RECOVERED;
7039 	}
7040 
7041 	return result;
7042 }
7043 
7044 /**
7045  *  igc_io_resume - called when traffic can start to flow again.
7046  *  @pdev: Pointer to PCI device
7047  *
7048  *  This callback is called when the error recovery driver tells us that
7049  *  its OK to resume normal operation. Implementation resembles the
7050  *  second-half of the igc_resume routine.
7051  */
igc_io_resume(struct pci_dev * pdev)7052 static void igc_io_resume(struct pci_dev *pdev)
7053 {
7054 	struct net_device *netdev = pci_get_drvdata(pdev);
7055 	struct igc_adapter *adapter = netdev_priv(netdev);
7056 
7057 	rtnl_lock();
7058 	if (netif_running(netdev)) {
7059 		if (igc_open(netdev)) {
7060 			netdev_err(netdev, "igc_open failed after reset\n");
7061 			return;
7062 		}
7063 	}
7064 
7065 	netif_device_attach(netdev);
7066 
7067 	/* let the f/w know that the h/w is now under the control of the
7068 	 * driver.
7069 	 */
7070 	igc_get_hw_control(adapter);
7071 	rtnl_unlock();
7072 }
7073 
7074 static const struct pci_error_handlers igc_err_handler = {
7075 	.error_detected = igc_io_error_detected,
7076 	.slot_reset = igc_io_slot_reset,
7077 	.resume = igc_io_resume,
7078 };
7079 
7080 #ifdef CONFIG_PM
7081 static const struct dev_pm_ops igc_pm_ops = {
7082 	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
7083 	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
7084 			   igc_runtime_idle)
7085 };
7086 #endif
7087 
7088 static struct pci_driver igc_driver = {
7089 	.name     = igc_driver_name,
7090 	.id_table = igc_pci_tbl,
7091 	.probe    = igc_probe,
7092 	.remove   = igc_remove,
7093 #ifdef CONFIG_PM
7094 	.driver.pm = &igc_pm_ops,
7095 #endif
7096 	.shutdown = igc_shutdown,
7097 	.err_handler = &igc_err_handler,
7098 };
7099 
7100 /**
7101  * igc_reinit_queues - return error
7102  * @adapter: pointer to adapter structure
7103  */
igc_reinit_queues(struct igc_adapter * adapter)7104 int igc_reinit_queues(struct igc_adapter *adapter)
7105 {
7106 	struct net_device *netdev = adapter->netdev;
7107 	int err = 0;
7108 
7109 	if (netif_running(netdev))
7110 		igc_close(netdev);
7111 
7112 	igc_reset_interrupt_capability(adapter);
7113 
7114 	if (igc_init_interrupt_scheme(adapter, true)) {
7115 		netdev_err(netdev, "Unable to allocate memory for queues\n");
7116 		return -ENOMEM;
7117 	}
7118 
7119 	if (netif_running(netdev))
7120 		err = igc_open(netdev);
7121 
7122 	return err;
7123 }
7124 
7125 /**
7126  * igc_get_hw_dev - return device
7127  * @hw: pointer to hardware structure
7128  *
7129  * used by hardware layer to print debugging information
7130  */
igc_get_hw_dev(struct igc_hw * hw)7131 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
7132 {
7133 	struct igc_adapter *adapter = hw->back;
7134 
7135 	return adapter->netdev;
7136 }
7137 
igc_disable_rx_ring_hw(struct igc_ring * ring)7138 static void igc_disable_rx_ring_hw(struct igc_ring *ring)
7139 {
7140 	struct igc_hw *hw = &ring->q_vector->adapter->hw;
7141 	u8 idx = ring->reg_idx;
7142 	u32 rxdctl;
7143 
7144 	rxdctl = rd32(IGC_RXDCTL(idx));
7145 	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
7146 	rxdctl |= IGC_RXDCTL_SWFLUSH;
7147 	wr32(IGC_RXDCTL(idx), rxdctl);
7148 }
7149 
igc_disable_rx_ring(struct igc_ring * ring)7150 void igc_disable_rx_ring(struct igc_ring *ring)
7151 {
7152 	igc_disable_rx_ring_hw(ring);
7153 	igc_clean_rx_ring(ring);
7154 }
7155 
igc_enable_rx_ring(struct igc_ring * ring)7156 void igc_enable_rx_ring(struct igc_ring *ring)
7157 {
7158 	struct igc_adapter *adapter = ring->q_vector->adapter;
7159 
7160 	igc_configure_rx_ring(adapter, ring);
7161 
7162 	if (ring->xsk_pool)
7163 		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
7164 	else
7165 		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
7166 }
7167 
igc_disable_tx_ring(struct igc_ring * ring)7168 void igc_disable_tx_ring(struct igc_ring *ring)
7169 {
7170 	igc_disable_tx_ring_hw(ring);
7171 	igc_clean_tx_ring(ring);
7172 }
7173 
igc_enable_tx_ring(struct igc_ring * ring)7174 void igc_enable_tx_ring(struct igc_ring *ring)
7175 {
7176 	struct igc_adapter *adapter = ring->q_vector->adapter;
7177 
7178 	igc_configure_tx_ring(adapter, ring);
7179 }
7180 
7181 /**
7182  * igc_init_module - Driver Registration Routine
7183  *
7184  * igc_init_module is the first routine called when the driver is
7185  * loaded. All it does is register with the PCI subsystem.
7186  */
igc_init_module(void)7187 static int __init igc_init_module(void)
7188 {
7189 	int ret;
7190 
7191 	pr_info("%s\n", igc_driver_string);
7192 	pr_info("%s\n", igc_copyright);
7193 
7194 	ret = pci_register_driver(&igc_driver);
7195 	return ret;
7196 }
7197 
7198 module_init(igc_init_module);
7199 
7200 /**
7201  * igc_exit_module - Driver Exit Cleanup Routine
7202  *
7203  * igc_exit_module is called just before the driver is removed
7204  * from memory.
7205  */
igc_exit_module(void)7206 static void __exit igc_exit_module(void)
7207 {
7208 	pci_unregister_driver(&igc_driver);
7209 }
7210 
7211 module_exit(igc_exit_module);
7212 /* igc_main.c */
7213