• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 
17 static const struct INDEX_NAMES {
18 	const __le16 *name;
19 	u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 	{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 	{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 	{ SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25 
26 /*
27  * cmp_fnames - Compare two names in index.
28  *
29  * if l1 != 0
30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
31  * else
32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
33  */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 		      const void *data)
36 {
37 	const struct ATTR_FILE_NAME *f2 = key2;
38 	const struct ntfs_sb_info *sbi = data;
39 	const struct ATTR_FILE_NAME *f1;
40 	u16 fsize2;
41 	bool both_case;
42 
43 	if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 		return -1;
45 
46 	fsize2 = fname_full_size(f2);
47 	if (l2 < fsize2)
48 		return -1;
49 
50 	both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 	if (!l1) {
52 		const struct le_str *s2 = (struct le_str *)&f2->name_len;
53 
54 		/*
55 		 * If names are equal (case insensitive)
56 		 * try to compare it case sensitive.
57 		 */
58 		return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 	}
60 
61 	f1 = key1;
62 	return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 			      sbi->upcase, both_case);
64 }
65 
66 /*
67  * cmp_uint - $SII of $Secure and $Q of Quota
68  */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 		    const void *data)
71 {
72 	const u32 *k1 = key1;
73 	const u32 *k2 = key2;
74 
75 	if (l2 < sizeof(u32))
76 		return -1;
77 
78 	if (*k1 < *k2)
79 		return -1;
80 	if (*k1 > *k2)
81 		return 1;
82 	return 0;
83 }
84 
85 /*
86  * cmp_sdh - $SDH of $Secure
87  */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 		   const void *data)
90 {
91 	const struct SECURITY_KEY *k1 = key1;
92 	const struct SECURITY_KEY *k2 = key2;
93 	u32 t1, t2;
94 
95 	if (l2 < sizeof(struct SECURITY_KEY))
96 		return -1;
97 
98 	t1 = le32_to_cpu(k1->hash);
99 	t2 = le32_to_cpu(k2->hash);
100 
101 	/* First value is a hash value itself. */
102 	if (t1 < t2)
103 		return -1;
104 	if (t1 > t2)
105 		return 1;
106 
107 	/* Second value is security Id. */
108 	if (data) {
109 		t1 = le32_to_cpu(k1->sec_id);
110 		t2 = le32_to_cpu(k2->sec_id);
111 		if (t1 < t2)
112 			return -1;
113 		if (t1 > t2)
114 			return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 		     const void *data)
125 {
126 	const __le32 *k1 = key1;
127 	const __le32 *k2 = key2;
128 	size_t count;
129 
130 	if ((size_t)data == 1) {
131 		/*
132 		 * ni_delete_all -> ntfs_remove_reparse ->
133 		 * delete all with this reference.
134 		 * k1, k2 - pointers to REPARSE_KEY
135 		 */
136 
137 		k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 		k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 		if (l2 <= sizeof(int))
140 			return -1;
141 		l2 -= sizeof(int);
142 		if (l1 <= sizeof(int))
143 			return 1;
144 		l1 -= sizeof(int);
145 	}
146 
147 	if (l2 < sizeof(int))
148 		return -1;
149 
150 	for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 		u32 t1 = le32_to_cpu(*k1);
152 		u32 t2 = le32_to_cpu(*k2);
153 
154 		if (t1 > t2)
155 			return 1;
156 		if (t1 < t2)
157 			return -1;
158 	}
159 
160 	if (l1 > l2)
161 		return 1;
162 	if (l1 < l2)
163 		return -1;
164 
165 	return 0;
166 }
167 
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 	switch (root->type) {
171 	case ATTR_NAME:
172 		if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 			return &cmp_fnames;
174 		break;
175 	case ATTR_ZERO:
176 		switch (root->rule) {
177 		case NTFS_COLLATION_TYPE_UINT:
178 			return &cmp_uint;
179 		case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 			return &cmp_sdh;
181 		case NTFS_COLLATION_TYPE_UINTS:
182 			return &cmp_uints;
183 		default:
184 			break;
185 		}
186 		break;
187 	default:
188 		break;
189 	}
190 
191 	return NULL;
192 }
193 
194 struct bmp_buf {
195 	struct ATTRIB *b;
196 	struct mft_inode *mi;
197 	struct buffer_head *bh;
198 	ulong *buf;
199 	size_t bit;
200 	u32 nbits;
201 	u64 new_valid;
202 };
203 
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 		       size_t bit, struct bmp_buf *bbuf)
206 {
207 	struct ATTRIB *b;
208 	size_t data_size, valid_size, vbo, off = bit >> 3;
209 	struct ntfs_sb_info *sbi = ni->mi.sbi;
210 	CLST vcn = off >> sbi->cluster_bits;
211 	struct ATTR_LIST_ENTRY *le = NULL;
212 	struct buffer_head *bh;
213 	struct super_block *sb;
214 	u32 blocksize;
215 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217 	bbuf->bh = NULL;
218 
219 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 			 &vcn, &bbuf->mi);
221 	bbuf->b = b;
222 	if (!b)
223 		return -EINVAL;
224 
225 	if (!b->non_res) {
226 		data_size = le32_to_cpu(b->res.data_size);
227 
228 		if (off >= data_size)
229 			return -EINVAL;
230 
231 		bbuf->buf = (ulong *)resident_data(b);
232 		bbuf->bit = 0;
233 		bbuf->nbits = data_size * 8;
234 
235 		return 0;
236 	}
237 
238 	data_size = le64_to_cpu(b->nres.data_size);
239 	if (WARN_ON(off >= data_size)) {
240 		/* Looks like filesystem error. */
241 		return -EINVAL;
242 	}
243 
244 	valid_size = le64_to_cpu(b->nres.valid_size);
245 
246 	bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 	if (!bh)
248 		return -EIO;
249 
250 	if (IS_ERR(bh))
251 		return PTR_ERR(bh);
252 
253 	bbuf->bh = bh;
254 
255 	if (buffer_locked(bh))
256 		__wait_on_buffer(bh);
257 
258 	lock_buffer(bh);
259 
260 	sb = sbi->sb;
261 	blocksize = sb->s_blocksize;
262 
263 	vbo = off & ~(size_t)sbi->block_mask;
264 
265 	bbuf->new_valid = vbo + blocksize;
266 	if (bbuf->new_valid <= valid_size)
267 		bbuf->new_valid = 0;
268 	else if (bbuf->new_valid > data_size)
269 		bbuf->new_valid = data_size;
270 
271 	if (vbo >= valid_size) {
272 		memset(bh->b_data, 0, blocksize);
273 	} else if (vbo + blocksize > valid_size) {
274 		u32 voff = valid_size & sbi->block_mask;
275 
276 		memset(bh->b_data + voff, 0, blocksize - voff);
277 	}
278 
279 	bbuf->buf = (ulong *)bh->b_data;
280 	bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 	bbuf->nbits = 8 * blocksize;
282 
283 	return 0;
284 }
285 
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 	struct buffer_head *bh = bbuf->bh;
289 	struct ATTRIB *b = bbuf->b;
290 
291 	if (!bh) {
292 		if (b && !b->non_res && dirty)
293 			bbuf->mi->dirty = true;
294 		return;
295 	}
296 
297 	if (!dirty)
298 		goto out;
299 
300 	if (bbuf->new_valid) {
301 		b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 		bbuf->mi->dirty = true;
303 	}
304 
305 	set_buffer_uptodate(bh);
306 	mark_buffer_dirty(bh);
307 
308 out:
309 	unlock_buffer(bh);
310 	put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 			  size_t bit)
318 {
319 	int err;
320 	struct bmp_buf bbuf;
321 
322 	err = bmp_buf_get(indx, ni, bit, &bbuf);
323 	if (err)
324 		return err;
325 
326 	__set_bit(bit - bbuf.bit, bbuf.buf);
327 
328 	bmp_buf_put(&bbuf, true);
329 
330 	return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 			  size_t bit)
338 {
339 	int err;
340 	struct bmp_buf bbuf;
341 
342 	err = bmp_buf_get(indx, ni, bit, &bbuf);
343 	if (err)
344 		return err;
345 
346 	__clear_bit(bit - bbuf.bit, bbuf.buf);
347 
348 	bmp_buf_put(&bbuf, true);
349 
350 	return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 			    struct ntfs_index *indx, size_t from,
362 			    bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 				       size_t *ret),
364 			    size_t *ret)
365 {
366 	struct ntfs_sb_info *sbi = ni->mi.sbi;
367 	struct super_block *sb = sbi->sb;
368 	struct runs_tree *run = &indx->bitmap_run;
369 	struct rw_semaphore *lock = &indx->run_lock;
370 	u32 nbits = sb->s_blocksize * 8;
371 	u32 blocksize = sb->s_blocksize;
372 	u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 	u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 	sector_t eblock = bytes_to_block(sb, data_size);
375 	size_t vbo = from >> 3;
376 	sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 	sector_t vblock = vbo >> sb->s_blocksize_bits;
378 	sector_t blen, block;
379 	CLST lcn, clen, vcn, vcn_next;
380 	size_t idx;
381 	struct buffer_head *bh;
382 	bool ok;
383 
384 	*ret = MINUS_ONE_T;
385 
386 	if (vblock >= eblock)
387 		return 0;
388 
389 	from &= nbits - 1;
390 	vcn = vbo >> sbi->cluster_bits;
391 
392 	down_read(lock);
393 	ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 	up_read(lock);
395 
396 next_run:
397 	if (!ok) {
398 		int err;
399 		const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401 		down_write(lock);
402 		err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 					 name->name_len, run, vcn);
404 		up_write(lock);
405 		if (err)
406 			return err;
407 		down_read(lock);
408 		ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 		up_read(lock);
410 		if (!ok)
411 			return -EINVAL;
412 	}
413 
414 	blen = (sector_t)clen * sbi->blocks_per_cluster;
415 	block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417 	for (; blk < blen; blk++, from = 0) {
418 		bh = ntfs_bread(sb, block + blk);
419 		if (!bh)
420 			return -EIO;
421 
422 		vbo = (u64)vblock << sb->s_blocksize_bits;
423 		if (vbo >= valid_size) {
424 			memset(bh->b_data, 0, blocksize);
425 		} else if (vbo + blocksize > valid_size) {
426 			u32 voff = valid_size & sbi->block_mask;
427 
428 			memset(bh->b_data + voff, 0, blocksize - voff);
429 		}
430 
431 		if (vbo + blocksize > data_size)
432 			nbits = 8 * (data_size - vbo);
433 
434 		ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 				  : false;
436 		put_bh(bh);
437 
438 		if (ok) {
439 			*ret += 8 * vbo;
440 			return 0;
441 		}
442 
443 		if (++vblock >= eblock) {
444 			*ret = MINUS_ONE_T;
445 			return 0;
446 		}
447 	}
448 	blk = 0;
449 	vcn_next = vcn + clen;
450 	down_read(lock);
451 	ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 	if (!ok)
453 		vcn = vcn_next;
454 	up_read(lock);
455 	goto next_run;
456 }
457 
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 	size_t pos = find_next_zero_bit(buf, bits, bit);
461 
462 	if (pos >= bits)
463 		return false;
464 	*ret = pos;
465 	return true;
466 }
467 
468 /*
469  * indx_find_free - Look for free bit.
470  *
471  * Return: -1 if no free bits.
472  */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 			  size_t *bit, struct ATTRIB **bitmap)
475 {
476 	struct ATTRIB *b;
477 	struct ATTR_LIST_ENTRY *le = NULL;
478 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 	int err;
480 
481 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 			 NULL, NULL);
483 
484 	if (!b)
485 		return -ENOENT;
486 
487 	*bitmap = b;
488 	*bit = MINUS_ONE_T;
489 
490 	if (!b->non_res) {
491 		u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 		size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493 
494 		if (pos < nbits)
495 			*bit = pos;
496 	} else {
497 		err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498 
499 		if (err)
500 			return err;
501 	}
502 
503 	return 0;
504 }
505 
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 	size_t pos = find_next_bit(buf, bits, bit);
509 
510 	if (pos >= bits)
511 		return false;
512 	*ret = pos;
513 	return true;
514 }
515 
516 /*
517  * indx_used_bit - Look for used bit.
518  *
519  * Return: MINUS_ONE_T if no used bits.
520  */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 	struct ATTRIB *b;
524 	struct ATTR_LIST_ENTRY *le = NULL;
525 	size_t from = *bit;
526 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 	int err;
528 
529 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 			 NULL, NULL);
531 
532 	if (!b)
533 		return -ENOENT;
534 
535 	*bit = MINUS_ONE_T;
536 
537 	if (!b->non_res) {
538 		u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 		size_t pos = find_next_bit(resident_data(b), nbits, from);
540 
541 		if (pos < nbits)
542 			*bit = pos;
543 	} else {
544 		err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 		if (err)
546 			return err;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * hdr_find_split
554  *
555  * Find a point at which the index allocation buffer would like to be split.
556  * NOTE: This function should never return 'END' entry NULL returns on error.
557  */
hdr_find_split(const struct INDEX_HDR * hdr)558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 	size_t o;
561 	const struct NTFS_DE *e = hdr_first_de(hdr);
562 	u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 	u16 esize;
564 
565 	if (!e || de_is_last(e))
566 		return NULL;
567 
568 	esize = le16_to_cpu(e->size);
569 	for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 		const struct NTFS_DE *p = e;
571 
572 		e = Add2Ptr(hdr, o);
573 
574 		/* We must not return END entry. */
575 		if (de_is_last(e))
576 			return p;
577 
578 		esize = le16_to_cpu(e->size);
579 	}
580 
581 	return e;
582 }
583 
584 /*
585  * hdr_insert_head - Insert some entries at the beginning of the buffer.
586  *
587  * It is used to insert entries into a newly-created buffer.
588  */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 					     const void *ins, u32 ins_bytes)
591 {
592 	u32 to_move;
593 	struct NTFS_DE *e = hdr_first_de(hdr);
594 	u32 used = le32_to_cpu(hdr->used);
595 
596 	if (!e)
597 		return NULL;
598 
599 	/* Now we just make room for the inserted entries and jam it in. */
600 	to_move = used - le32_to_cpu(hdr->de_off);
601 	memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 	memcpy(e, ins, ins_bytes);
603 	hdr->used = cpu_to_le32(used + ins_bytes);
604 
605 	return e;
606 }
607 
608 /*
609  * index_hdr_check
610  *
611  * return true if INDEX_HDR is valid
612  */
index_hdr_check(const struct INDEX_HDR * hdr,u32 bytes)613 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
614 {
615 	u32 end = le32_to_cpu(hdr->used);
616 	u32 tot = le32_to_cpu(hdr->total);
617 	u32 off = le32_to_cpu(hdr->de_off);
618 
619 	if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
620 	    off + sizeof(struct NTFS_DE) > end) {
621 		/* incorrect index buffer. */
622 		return false;
623 	}
624 
625 	return true;
626 }
627 
628 /*
629  * index_buf_check
630  *
631  * return true if INDEX_BUFFER seems is valid
632  */
index_buf_check(const struct INDEX_BUFFER * ib,u32 bytes,const CLST * vbn)633 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
634 			    const CLST *vbn)
635 {
636 	const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
637 	u16 fo = le16_to_cpu(rhdr->fix_off);
638 	u16 fn = le16_to_cpu(rhdr->fix_num);
639 
640 	if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
641 	    rhdr->sign != NTFS_INDX_SIGNATURE ||
642 	    fo < sizeof(struct INDEX_BUFFER)
643 	    /* Check index buffer vbn. */
644 	    || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
645 	    fo + fn * sizeof(short) >= bytes ||
646 	    fn != ((bytes >> SECTOR_SHIFT) + 1)) {
647 		/* incorrect index buffer. */
648 		return false;
649 	}
650 
651 	return index_hdr_check(&ib->ihdr,
652 			       bytes - offsetof(struct INDEX_BUFFER, ihdr));
653 }
654 
fnd_clear(struct ntfs_fnd * fnd)655 void fnd_clear(struct ntfs_fnd *fnd)
656 {
657 	int i;
658 
659 	for (i = fnd->level - 1; i >= 0; i--) {
660 		struct indx_node *n = fnd->nodes[i];
661 
662 		if (!n)
663 			continue;
664 
665 		put_indx_node(n);
666 		fnd->nodes[i] = NULL;
667 	}
668 	fnd->level = 0;
669 	fnd->root_de = NULL;
670 }
671 
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)672 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
673 		    struct NTFS_DE *e)
674 {
675 	int i;
676 
677 	i = fnd->level;
678 	if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 		return -EINVAL;
680 	fnd->nodes[i] = n;
681 	fnd->de[i] = e;
682 	fnd->level += 1;
683 	return 0;
684 }
685 
fnd_pop(struct ntfs_fnd * fnd)686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 	struct indx_node *n;
689 	int i = fnd->level;
690 
691 	i -= 1;
692 	n = fnd->nodes[i];
693 	fnd->nodes[i] = NULL;
694 	fnd->level = i;
695 
696 	return n;
697 }
698 
fnd_is_empty(struct ntfs_fnd * fnd)699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 	if (!fnd->level)
702 		return !fnd->root_de;
703 
704 	return !fnd->de[fnd->level - 1];
705 }
706 
707 /*
708  * hdr_find_e - Locate an entry the index buffer.
709  *
710  * If no matching entry is found, it returns the first entry which is greater
711  * than the desired entry If the search key is greater than all the entries the
712  * buffer, it returns the 'end' entry. This function does a binary search of the
713  * current index buffer, for the first entry that is <= to the search value.
714  *
715  * Return: NULL if error.
716  */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 				  const struct INDEX_HDR *hdr, const void *key,
719 				  size_t key_len, const void *ctx, int *diff)
720 {
721 	struct NTFS_DE *e, *found = NULL;
722 	NTFS_CMP_FUNC cmp = indx->cmp;
723 	int min_idx = 0, mid_idx, max_idx = 0;
724 	int diff2;
725 	int table_size = 8;
726 	u32 e_size, e_key_len;
727 	u32 end = le32_to_cpu(hdr->used);
728 	u32 off = le32_to_cpu(hdr->de_off);
729 	u32 total = le32_to_cpu(hdr->total);
730 	u16 offs[128];
731 
732 	if (unlikely(!cmp))
733 		return NULL;
734 
735 fill_table:
736 	if (end > total)
737 		return NULL;
738 
739 	if (off + sizeof(struct NTFS_DE) > end)
740 		return NULL;
741 
742 	e = Add2Ptr(hdr, off);
743 	e_size = le16_to_cpu(e->size);
744 
745 	if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 		return NULL;
747 
748 	if (!de_is_last(e)) {
749 		offs[max_idx] = off;
750 		off += e_size;
751 
752 		max_idx++;
753 		if (max_idx < table_size)
754 			goto fill_table;
755 
756 		max_idx--;
757 	}
758 
759 binary_search:
760 	e_key_len = le16_to_cpu(e->key_size);
761 
762 	diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 	if (diff2 > 0) {
764 		if (found) {
765 			min_idx = mid_idx + 1;
766 		} else {
767 			if (de_is_last(e))
768 				return NULL;
769 
770 			max_idx = 0;
771 			table_size = min(table_size * 2,
772 					 (int)ARRAY_SIZE(offs));
773 			goto fill_table;
774 		}
775 	} else if (diff2 < 0) {
776 		if (found)
777 			max_idx = mid_idx - 1;
778 		else
779 			max_idx--;
780 
781 		found = e;
782 	} else {
783 		*diff = 0;
784 		return e;
785 	}
786 
787 	if (min_idx > max_idx) {
788 		*diff = -1;
789 		return found;
790 	}
791 
792 	mid_idx = (min_idx + max_idx) >> 1;
793 	e = Add2Ptr(hdr, offs[mid_idx]);
794 
795 	goto binary_search;
796 }
797 
798 /*
799  * hdr_insert_de - Insert an index entry into the buffer.
800  *
801  * 'before' should be a pointer previously returned from hdr_find_e.
802  */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)803 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
804 				     struct INDEX_HDR *hdr,
805 				     const struct NTFS_DE *de,
806 				     struct NTFS_DE *before, const void *ctx)
807 {
808 	int diff;
809 	size_t off = PtrOffset(hdr, before);
810 	u32 used = le32_to_cpu(hdr->used);
811 	u32 total = le32_to_cpu(hdr->total);
812 	u16 de_size = le16_to_cpu(de->size);
813 
814 	/* First, check to see if there's enough room. */
815 	if (used + de_size > total)
816 		return NULL;
817 
818 	/* We know there's enough space, so we know we'll succeed. */
819 	if (before) {
820 		/* Check that before is inside Index. */
821 		if (off >= used || off < le32_to_cpu(hdr->de_off) ||
822 		    off + le16_to_cpu(before->size) > total) {
823 			return NULL;
824 		}
825 		goto ok;
826 	}
827 	/* No insert point is applied. Get it manually. */
828 	before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
829 			    &diff);
830 	if (!before)
831 		return NULL;
832 	off = PtrOffset(hdr, before);
833 
834 ok:
835 	/* Now we just make room for the entry and jam it in. */
836 	memmove(Add2Ptr(before, de_size), before, used - off);
837 
838 	hdr->used = cpu_to_le32(used + de_size);
839 	memcpy(before, de, de_size);
840 
841 	return before;
842 }
843 
844 /*
845  * hdr_delete_de - Remove an entry from the index buffer.
846  */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)847 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
848 					    struct NTFS_DE *re)
849 {
850 	u32 used = le32_to_cpu(hdr->used);
851 	u16 esize = le16_to_cpu(re->size);
852 	u32 off = PtrOffset(hdr, re);
853 	int bytes = used - (off + esize);
854 
855 	/* check INDEX_HDR valid before using INDEX_HDR */
856 	if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
857 		return NULL;
858 
859 	if (off >= used || esize < sizeof(struct NTFS_DE) ||
860 	    bytes < sizeof(struct NTFS_DE))
861 		return NULL;
862 
863 	hdr->used = cpu_to_le32(used - esize);
864 	memmove(re, Add2Ptr(re, esize), bytes);
865 
866 	return re;
867 }
868 
indx_clear(struct ntfs_index * indx)869 void indx_clear(struct ntfs_index *indx)
870 {
871 	run_close(&indx->alloc_run);
872 	run_close(&indx->bitmap_run);
873 }
874 
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)875 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
876 	      const struct ATTRIB *attr, enum index_mutex_classed type)
877 {
878 	u32 t32;
879 	const struct INDEX_ROOT *root = resident_data(attr);
880 
881 	t32 = le32_to_cpu(attr->res.data_size);
882 	if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
883 	    !index_hdr_check(&root->ihdr,
884 			     t32 - offsetof(struct INDEX_ROOT, ihdr))) {
885 		goto out;
886 	}
887 
888 	/* Check root fields. */
889 	if (!root->index_block_clst)
890 		goto out;
891 
892 	indx->type = type;
893 	indx->idx2vbn_bits = __ffs(root->index_block_clst);
894 
895 	t32 = le32_to_cpu(root->index_block_size);
896 	indx->index_bits = blksize_bits(t32);
897 
898 	/* Check index record size. */
899 	if (t32 < sbi->cluster_size) {
900 		/* Index record is smaller than a cluster, use 512 blocks. */
901 		if (t32 != root->index_block_clst * SECTOR_SIZE)
902 			goto out;
903 
904 		/* Check alignment to a cluster. */
905 		if ((sbi->cluster_size >> SECTOR_SHIFT) &
906 		    (root->index_block_clst - 1)) {
907 			goto out;
908 		}
909 
910 		indx->vbn2vbo_bits = SECTOR_SHIFT;
911 	} else {
912 		/* Index record must be a multiple of cluster size. */
913 		if (t32 != root->index_block_clst << sbi->cluster_bits)
914 			goto out;
915 
916 		indx->vbn2vbo_bits = sbi->cluster_bits;
917 	}
918 
919 	init_rwsem(&indx->run_lock);
920 
921 	indx->cmp = get_cmp_func(root);
922 	if (!indx->cmp)
923 		goto out;
924 
925 	return 0;
926 
927 out:
928 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
929 	return -EINVAL;
930 }
931 
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)932 static struct indx_node *indx_new(struct ntfs_index *indx,
933 				  struct ntfs_inode *ni, CLST vbn,
934 				  const __le64 *sub_vbn)
935 {
936 	int err;
937 	struct NTFS_DE *e;
938 	struct indx_node *r;
939 	struct INDEX_HDR *hdr;
940 	struct INDEX_BUFFER *index;
941 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
942 	u32 bytes = 1u << indx->index_bits;
943 	u16 fn;
944 	u32 eo;
945 
946 	r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
947 	if (!r)
948 		return ERR_PTR(-ENOMEM);
949 
950 	index = kzalloc(bytes, GFP_NOFS);
951 	if (!index) {
952 		kfree(r);
953 		return ERR_PTR(-ENOMEM);
954 	}
955 
956 	err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
957 
958 	if (err) {
959 		kfree(index);
960 		kfree(r);
961 		return ERR_PTR(err);
962 	}
963 
964 	/* Create header. */
965 	index->rhdr.sign = NTFS_INDX_SIGNATURE;
966 	index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
967 	fn = (bytes >> SECTOR_SHIFT) + 1; // 9
968 	index->rhdr.fix_num = cpu_to_le16(fn);
969 	index->vbn = cpu_to_le64(vbn);
970 	hdr = &index->ihdr;
971 	eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
972 	hdr->de_off = cpu_to_le32(eo);
973 
974 	e = Add2Ptr(hdr, eo);
975 
976 	if (sub_vbn) {
977 		e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
978 		e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
979 		hdr->used =
980 			cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
981 		de_set_vbn_le(e, *sub_vbn);
982 		hdr->flags = 1;
983 	} else {
984 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
985 		hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
986 		e->flags = NTFS_IE_LAST;
987 	}
988 
989 	hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
990 
991 	r->index = index;
992 	return r;
993 }
994 
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)995 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
996 				 struct ATTRIB **attr, struct mft_inode **mi)
997 {
998 	struct ATTR_LIST_ENTRY *le = NULL;
999 	struct ATTRIB *a;
1000 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1001 
1002 	a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003 			 mi);
1004 	if (!a)
1005 		return NULL;
1006 
1007 	if (attr)
1008 		*attr = a;
1009 
1010 	return resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011 }
1012 
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)1013 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1014 		      struct indx_node *node, int sync)
1015 {
1016 	struct INDEX_BUFFER *ib = node->index;
1017 
1018 	return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1019 }
1020 
1021 /*
1022  * indx_read
1023  *
1024  * If ntfs_readdir calls this function
1025  * inode is shared locked and no ni_lock.
1026  * Use rw_semaphore for read/write access to alloc_run.
1027  */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)1028 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1029 	      struct indx_node **node)
1030 {
1031 	int err;
1032 	struct INDEX_BUFFER *ib;
1033 	struct runs_tree *run = &indx->alloc_run;
1034 	struct rw_semaphore *lock = &indx->run_lock;
1035 	u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1036 	u32 bytes = 1u << indx->index_bits;
1037 	struct indx_node *in = *node;
1038 	const struct INDEX_NAMES *name;
1039 
1040 	if (!in) {
1041 		in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1042 		if (!in)
1043 			return -ENOMEM;
1044 	} else {
1045 		nb_put(&in->nb);
1046 	}
1047 
1048 	ib = in->index;
1049 	if (!ib) {
1050 		ib = kmalloc(bytes, GFP_NOFS);
1051 		if (!ib) {
1052 			err = -ENOMEM;
1053 			goto out;
1054 		}
1055 	}
1056 
1057 	down_read(lock);
1058 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1059 	up_read(lock);
1060 	if (!err)
1061 		goto ok;
1062 
1063 	if (err == -E_NTFS_FIXUP)
1064 		goto ok;
1065 
1066 	if (err != -ENOENT)
1067 		goto out;
1068 
1069 	name = &s_index_names[indx->type];
1070 	down_write(lock);
1071 	err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1072 				   run, vbo, vbo + bytes);
1073 	up_write(lock);
1074 	if (err)
1075 		goto out;
1076 
1077 	down_read(lock);
1078 	err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1079 	up_read(lock);
1080 	if (err == -E_NTFS_FIXUP)
1081 		goto ok;
1082 
1083 	if (err)
1084 		goto out;
1085 
1086 ok:
1087 	if (!index_buf_check(ib, bytes, &vbn)) {
1088 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1089 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1090 		err = -EINVAL;
1091 		goto out;
1092 	}
1093 
1094 	if (err == -E_NTFS_FIXUP) {
1095 		ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1096 		err = 0;
1097 	}
1098 
1099 	/* check for index header length */
1100 	if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1101 	    bytes) {
1102 		err = -EINVAL;
1103 		goto out;
1104 	}
1105 
1106 	in->index = ib;
1107 	*node = in;
1108 
1109 out:
1110 	if (err == -E_NTFS_CORRUPT) {
1111 		ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1112 		ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1113 		err = -EINVAL;
1114 	}
1115 
1116 	if (ib != in->index)
1117 		kfree(ib);
1118 
1119 	if (*node != in) {
1120 		nb_put(&in->nb);
1121 		kfree(in);
1122 	}
1123 
1124 	return err;
1125 }
1126 
1127 /*
1128  * indx_find - Scan NTFS directory for given entry.
1129  */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1130 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1131 	      const struct INDEX_ROOT *root, const void *key, size_t key_len,
1132 	      const void *ctx, int *diff, struct NTFS_DE **entry,
1133 	      struct ntfs_fnd *fnd)
1134 {
1135 	int err;
1136 	struct NTFS_DE *e;
1137 	struct indx_node *node;
1138 
1139 	if (!root)
1140 		root = indx_get_root(&ni->dir, ni, NULL, NULL);
1141 
1142 	if (!root) {
1143 		/* Should not happen. */
1144 		return -EINVAL;
1145 	}
1146 
1147 	/* Check cache. */
1148 	e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1149 	if (e && !de_is_last(e) &&
1150 	    !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1151 		*entry = e;
1152 		*diff = 0;
1153 		return 0;
1154 	}
1155 
1156 	/* Soft finder reset. */
1157 	fnd_clear(fnd);
1158 
1159 	/* Lookup entry that is <= to the search value. */
1160 	e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1161 	if (!e)
1162 		return -EINVAL;
1163 
1164 	fnd->root_de = e;
1165 
1166 	for (;;) {
1167 		node = NULL;
1168 		if (*diff >= 0 || !de_has_vcn_ex(e))
1169 			break;
1170 
1171 		/* Read next level. */
1172 		err = indx_read(indx, ni, de_get_vbn(e), &node);
1173 		if (err)
1174 			return err;
1175 
1176 		/* Lookup entry that is <= to the search value. */
1177 		e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1178 			       diff);
1179 		if (!e) {
1180 			put_indx_node(node);
1181 			return -EINVAL;
1182 		}
1183 
1184 		fnd_push(fnd, node, e);
1185 	}
1186 
1187 	*entry = e;
1188 	return 0;
1189 }
1190 
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1191 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1192 		   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1193 		   struct ntfs_fnd *fnd)
1194 {
1195 	int err;
1196 	struct indx_node *n = NULL;
1197 	struct NTFS_DE *e;
1198 	size_t iter = 0;
1199 	int level = fnd->level;
1200 
1201 	if (!*entry) {
1202 		/* Start find. */
1203 		e = hdr_first_de(&root->ihdr);
1204 		if (!e)
1205 			return 0;
1206 		fnd_clear(fnd);
1207 		fnd->root_de = e;
1208 	} else if (!level) {
1209 		if (de_is_last(fnd->root_de)) {
1210 			*entry = NULL;
1211 			return 0;
1212 		}
1213 
1214 		e = hdr_next_de(&root->ihdr, fnd->root_de);
1215 		if (!e)
1216 			return -EINVAL;
1217 		fnd->root_de = e;
1218 	} else {
1219 		n = fnd->nodes[level - 1];
1220 		e = fnd->de[level - 1];
1221 
1222 		if (de_is_last(e))
1223 			goto pop_level;
1224 
1225 		e = hdr_next_de(&n->index->ihdr, e);
1226 		if (!e)
1227 			return -EINVAL;
1228 
1229 		fnd->de[level - 1] = e;
1230 	}
1231 
1232 	/* Just to avoid tree cycle. */
1233 next_iter:
1234 	if (iter++ >= 1000)
1235 		return -EINVAL;
1236 
1237 	while (de_has_vcn_ex(e)) {
1238 		if (le16_to_cpu(e->size) <
1239 		    sizeof(struct NTFS_DE) + sizeof(u64)) {
1240 			if (n) {
1241 				fnd_pop(fnd);
1242 				kfree(n);
1243 			}
1244 			return -EINVAL;
1245 		}
1246 
1247 		/* Read next level. */
1248 		err = indx_read(indx, ni, de_get_vbn(e), &n);
1249 		if (err)
1250 			return err;
1251 
1252 		/* Try next level. */
1253 		e = hdr_first_de(&n->index->ihdr);
1254 		if (!e) {
1255 			kfree(n);
1256 			return -EINVAL;
1257 		}
1258 
1259 		fnd_push(fnd, n, e);
1260 	}
1261 
1262 	if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1263 		*entry = e;
1264 		return 0;
1265 	}
1266 
1267 pop_level:
1268 	for (;;) {
1269 		if (!de_is_last(e))
1270 			goto next_iter;
1271 
1272 		/* Pop one level. */
1273 		if (n) {
1274 			fnd_pop(fnd);
1275 			kfree(n);
1276 		}
1277 
1278 		level = fnd->level;
1279 
1280 		if (level) {
1281 			n = fnd->nodes[level - 1];
1282 			e = fnd->de[level - 1];
1283 		} else if (fnd->root_de) {
1284 			n = NULL;
1285 			e = fnd->root_de;
1286 			fnd->root_de = NULL;
1287 		} else {
1288 			*entry = NULL;
1289 			return 0;
1290 		}
1291 
1292 		if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1293 			*entry = e;
1294 			if (!fnd->root_de)
1295 				fnd->root_de = e;
1296 			return 0;
1297 		}
1298 	}
1299 }
1300 
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1301 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1302 		  const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1303 		  size_t *off, struct ntfs_fnd *fnd)
1304 {
1305 	int err;
1306 	struct indx_node *n = NULL;
1307 	struct NTFS_DE *e = NULL;
1308 	struct NTFS_DE *e2;
1309 	size_t bit;
1310 	CLST next_used_vbn;
1311 	CLST next_vbn;
1312 	u32 record_size = ni->mi.sbi->record_size;
1313 
1314 	/* Use non sorted algorithm. */
1315 	if (!*entry) {
1316 		/* This is the first call. */
1317 		e = hdr_first_de(&root->ihdr);
1318 		if (!e)
1319 			return 0;
1320 		fnd_clear(fnd);
1321 		fnd->root_de = e;
1322 
1323 		/* The first call with setup of initial element. */
1324 		if (*off >= record_size) {
1325 			next_vbn = (((*off - record_size) >> indx->index_bits))
1326 				   << indx->idx2vbn_bits;
1327 			/* Jump inside cycle 'for'. */
1328 			goto next;
1329 		}
1330 
1331 		/* Start enumeration from root. */
1332 		*off = 0;
1333 	} else if (!fnd->root_de)
1334 		return -EINVAL;
1335 
1336 	for (;;) {
1337 		/* Check if current entry can be used. */
1338 		if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1339 			goto ok;
1340 
1341 		if (!fnd->level) {
1342 			/* Continue to enumerate root. */
1343 			if (!de_is_last(fnd->root_de)) {
1344 				e = hdr_next_de(&root->ihdr, fnd->root_de);
1345 				if (!e)
1346 					return -EINVAL;
1347 				fnd->root_de = e;
1348 				continue;
1349 			}
1350 
1351 			/* Start to enumerate indexes from 0. */
1352 			next_vbn = 0;
1353 		} else {
1354 			/* Continue to enumerate indexes. */
1355 			e2 = fnd->de[fnd->level - 1];
1356 
1357 			n = fnd->nodes[fnd->level - 1];
1358 
1359 			if (!de_is_last(e2)) {
1360 				e = hdr_next_de(&n->index->ihdr, e2);
1361 				if (!e)
1362 					return -EINVAL;
1363 				fnd->de[fnd->level - 1] = e;
1364 				continue;
1365 			}
1366 
1367 			/* Continue with next index. */
1368 			next_vbn = le64_to_cpu(n->index->vbn) +
1369 				   root->index_block_clst;
1370 		}
1371 
1372 next:
1373 		/* Release current index. */
1374 		if (n) {
1375 			fnd_pop(fnd);
1376 			put_indx_node(n);
1377 			n = NULL;
1378 		}
1379 
1380 		/* Skip all free indexes. */
1381 		bit = next_vbn >> indx->idx2vbn_bits;
1382 		err = indx_used_bit(indx, ni, &bit);
1383 		if (err == -ENOENT || bit == MINUS_ONE_T) {
1384 			/* No used indexes. */
1385 			*entry = NULL;
1386 			return 0;
1387 		}
1388 
1389 		next_used_vbn = bit << indx->idx2vbn_bits;
1390 
1391 		/* Read buffer into memory. */
1392 		err = indx_read(indx, ni, next_used_vbn, &n);
1393 		if (err)
1394 			return err;
1395 
1396 		e = hdr_first_de(&n->index->ihdr);
1397 		fnd_push(fnd, n, e);
1398 		if (!e)
1399 			return -EINVAL;
1400 	}
1401 
1402 ok:
1403 	/* Return offset to restore enumerator if necessary. */
1404 	if (!n) {
1405 		/* 'e' points in root, */
1406 		*off = PtrOffset(&root->ihdr, e);
1407 	} else {
1408 		/* 'e' points in index, */
1409 		*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1410 		       record_size + PtrOffset(&n->index->ihdr, e);
1411 	}
1412 
1413 	*entry = e;
1414 	return 0;
1415 }
1416 
1417 /*
1418  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1419  */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1420 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1421 				CLST *vbn)
1422 {
1423 	int err;
1424 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1425 	struct ATTRIB *bitmap;
1426 	struct ATTRIB *alloc;
1427 	u32 data_size = 1u << indx->index_bits;
1428 	u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1429 	CLST len = alloc_size >> sbi->cluster_bits;
1430 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1431 	CLST alen;
1432 	struct runs_tree run;
1433 
1434 	run_init(&run);
1435 
1436 	err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1437 				     NULL);
1438 	if (err)
1439 		goto out;
1440 
1441 	err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1442 				    &run, 0, len, 0, &alloc, NULL, NULL);
1443 	if (err)
1444 		goto out1;
1445 
1446 	alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1447 
1448 	err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1449 				 in->name_len, &bitmap, NULL, NULL);
1450 	if (err)
1451 		goto out2;
1452 
1453 	if (in->name == I30_NAME) {
1454 		ni->vfs_inode.i_size = data_size;
1455 		inode_set_bytes(&ni->vfs_inode, alloc_size);
1456 	}
1457 
1458 	memcpy(&indx->alloc_run, &run, sizeof(run));
1459 
1460 	*vbn = 0;
1461 
1462 	return 0;
1463 
1464 out2:
1465 	mi_remove_attr(NULL, &ni->mi, alloc);
1466 
1467 out1:
1468 	run_deallocate(sbi, &run, false);
1469 
1470 out:
1471 	return err;
1472 }
1473 
1474 /*
1475  * indx_add_allocate - Add clusters to index.
1476  */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1477 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1478 			     CLST *vbn)
1479 {
1480 	int err;
1481 	size_t bit;
1482 	u64 data_size;
1483 	u64 bmp_size, bmp_size_v;
1484 	struct ATTRIB *bmp, *alloc;
1485 	struct mft_inode *mi;
1486 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
1487 
1488 	err = indx_find_free(indx, ni, &bit, &bmp);
1489 	if (err)
1490 		goto out1;
1491 
1492 	if (bit != MINUS_ONE_T) {
1493 		bmp = NULL;
1494 	} else {
1495 		if (bmp->non_res) {
1496 			bmp_size = le64_to_cpu(bmp->nres.data_size);
1497 			bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1498 		} else {
1499 			bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1500 		}
1501 
1502 		bit = bmp_size << 3;
1503 	}
1504 
1505 	data_size = (u64)(bit + 1) << indx->index_bits;
1506 
1507 	if (bmp) {
1508 		/* Increase bitmap. */
1509 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1510 				    &indx->bitmap_run, bitmap_size(bit + 1),
1511 				    NULL, true, NULL);
1512 		if (err)
1513 			goto out1;
1514 	}
1515 
1516 	alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1517 			     NULL, &mi);
1518 	if (!alloc) {
1519 		err = -EINVAL;
1520 		if (bmp)
1521 			goto out2;
1522 		goto out1;
1523 	}
1524 
1525 	/* Increase allocation. */
1526 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1527 			    &indx->alloc_run, data_size, &data_size, true,
1528 			    NULL);
1529 	if (err) {
1530 		if (bmp)
1531 			goto out2;
1532 		goto out1;
1533 	}
1534 
1535 	*vbn = bit << indx->idx2vbn_bits;
1536 
1537 	return 0;
1538 
1539 out2:
1540 	/* Ops. No space? */
1541 	attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1542 		      &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1543 
1544 out1:
1545 	return err;
1546 }
1547 
1548 /*
1549  * indx_insert_into_root - Attempt to insert an entry into the index root.
1550  *
1551  * @undo - True if we undoing previous remove.
1552  * If necessary, it will twiddle the index b-tree.
1553  */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1554 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1555 				 const struct NTFS_DE *new_de,
1556 				 struct NTFS_DE *root_de, const void *ctx,
1557 				 struct ntfs_fnd *fnd, bool undo)
1558 {
1559 	int err = 0;
1560 	struct NTFS_DE *e, *e0, *re;
1561 	struct mft_inode *mi;
1562 	struct ATTRIB *attr;
1563 	struct INDEX_HDR *hdr;
1564 	struct indx_node *n;
1565 	CLST new_vbn;
1566 	__le64 *sub_vbn, t_vbn;
1567 	u16 new_de_size;
1568 	u32 hdr_used, hdr_total, asize, to_move;
1569 	u32 root_size, new_root_size;
1570 	struct ntfs_sb_info *sbi;
1571 	int ds_root;
1572 	struct INDEX_ROOT *root, *a_root;
1573 
1574 	/* Get the record this root placed in. */
1575 	root = indx_get_root(indx, ni, &attr, &mi);
1576 	if (!root)
1577 		return -EINVAL;
1578 
1579 	/*
1580 	 * Try easy case:
1581 	 * hdr_insert_de will succeed if there's
1582 	 * room the root for the new entry.
1583 	 */
1584 	hdr = &root->ihdr;
1585 	sbi = ni->mi.sbi;
1586 	new_de_size = le16_to_cpu(new_de->size);
1587 	hdr_used = le32_to_cpu(hdr->used);
1588 	hdr_total = le32_to_cpu(hdr->total);
1589 	asize = le32_to_cpu(attr->size);
1590 	root_size = le32_to_cpu(attr->res.data_size);
1591 
1592 	ds_root = new_de_size + hdr_used - hdr_total;
1593 
1594 	/* If 'undo' is set then reduce requirements. */
1595 	if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1596 	    mi_resize_attr(mi, attr, ds_root)) {
1597 		hdr->total = cpu_to_le32(hdr_total + ds_root);
1598 		e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1599 		WARN_ON(!e);
1600 		fnd_clear(fnd);
1601 		fnd->root_de = e;
1602 
1603 		return 0;
1604 	}
1605 
1606 	/* Make a copy of root attribute to restore if error. */
1607 	a_root = kmemdup(attr, asize, GFP_NOFS);
1608 	if (!a_root)
1609 		return -ENOMEM;
1610 
1611 	/*
1612 	 * Copy all the non-end entries from
1613 	 * the index root to the new buffer.
1614 	 */
1615 	to_move = 0;
1616 	e0 = hdr_first_de(hdr);
1617 
1618 	/* Calculate the size to copy. */
1619 	for (e = e0;; e = hdr_next_de(hdr, e)) {
1620 		if (!e) {
1621 			err = -EINVAL;
1622 			goto out_free_root;
1623 		}
1624 
1625 		if (de_is_last(e))
1626 			break;
1627 		to_move += le16_to_cpu(e->size);
1628 	}
1629 
1630 	if (!to_move) {
1631 		re = NULL;
1632 	} else {
1633 		re = kmemdup(e0, to_move, GFP_NOFS);
1634 		if (!re) {
1635 			err = -ENOMEM;
1636 			goto out_free_root;
1637 		}
1638 	}
1639 
1640 	sub_vbn = NULL;
1641 	if (de_has_vcn(e)) {
1642 		t_vbn = de_get_vbn_le(e);
1643 		sub_vbn = &t_vbn;
1644 	}
1645 
1646 	new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1647 			sizeof(u64);
1648 	ds_root = new_root_size - root_size;
1649 
1650 	if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1651 		/* Make root external. */
1652 		err = -EOPNOTSUPP;
1653 		goto out_free_re;
1654 	}
1655 
1656 	if (ds_root)
1657 		mi_resize_attr(mi, attr, ds_root);
1658 
1659 	/* Fill first entry (vcn will be set later). */
1660 	e = (struct NTFS_DE *)(root + 1);
1661 	memset(e, 0, sizeof(struct NTFS_DE));
1662 	e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1663 	e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1664 
1665 	hdr->flags = 1;
1666 	hdr->used = hdr->total =
1667 		cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1668 
1669 	fnd->root_de = hdr_first_de(hdr);
1670 	mi->dirty = true;
1671 
1672 	/* Create alloc and bitmap attributes (if not). */
1673 	err = run_is_empty(&indx->alloc_run)
1674 		      ? indx_create_allocate(indx, ni, &new_vbn)
1675 		      : indx_add_allocate(indx, ni, &new_vbn);
1676 
1677 	/* Layout of record may be changed, so rescan root. */
1678 	root = indx_get_root(indx, ni, &attr, &mi);
1679 	if (!root) {
1680 		/* Bug? */
1681 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1682 		err = -EINVAL;
1683 		goto out_free_re;
1684 	}
1685 
1686 	if (err) {
1687 		/* Restore root. */
1688 		if (mi_resize_attr(mi, attr, -ds_root)) {
1689 			memcpy(attr, a_root, asize);
1690 		} else {
1691 			/* Bug? */
1692 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1693 		}
1694 		goto out_free_re;
1695 	}
1696 
1697 	e = (struct NTFS_DE *)(root + 1);
1698 	*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1699 	mi->dirty = true;
1700 
1701 	/* Now we can create/format the new buffer and copy the entries into. */
1702 	n = indx_new(indx, ni, new_vbn, sub_vbn);
1703 	if (IS_ERR(n)) {
1704 		err = PTR_ERR(n);
1705 		goto out_free_re;
1706 	}
1707 
1708 	hdr = &n->index->ihdr;
1709 	hdr_used = le32_to_cpu(hdr->used);
1710 	hdr_total = le32_to_cpu(hdr->total);
1711 
1712 	/* Copy root entries into new buffer. */
1713 	hdr_insert_head(hdr, re, to_move);
1714 
1715 	/* Update bitmap attribute. */
1716 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1717 
1718 	/* Check if we can insert new entry new index buffer. */
1719 	if (hdr_used + new_de_size > hdr_total) {
1720 		/*
1721 		 * This occurs if MFT record is the same or bigger than index
1722 		 * buffer. Move all root new index and have no space to add
1723 		 * new entry classic case when MFT record is 1K and index
1724 		 * buffer 4K the problem should not occurs.
1725 		 */
1726 		kfree(re);
1727 		indx_write(indx, ni, n, 0);
1728 
1729 		put_indx_node(n);
1730 		fnd_clear(fnd);
1731 		err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1732 		goto out_free_root;
1733 	}
1734 
1735 	/*
1736 	 * Now root is a parent for new index buffer.
1737 	 * Insert NewEntry a new buffer.
1738 	 */
1739 	e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1740 	if (!e) {
1741 		err = -EINVAL;
1742 		goto out_put_n;
1743 	}
1744 	fnd_push(fnd, n, e);
1745 
1746 	/* Just write updates index into disk. */
1747 	indx_write(indx, ni, n, 0);
1748 
1749 	n = NULL;
1750 
1751 out_put_n:
1752 	put_indx_node(n);
1753 out_free_re:
1754 	kfree(re);
1755 out_free_root:
1756 	kfree(a_root);
1757 	return err;
1758 }
1759 
1760 /*
1761  * indx_insert_into_buffer
1762  *
1763  * Attempt to insert an entry into an Index Allocation Buffer.
1764  * If necessary, it will split the buffer.
1765  */
1766 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1767 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1768 			struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1769 			const void *ctx, int level, struct ntfs_fnd *fnd)
1770 {
1771 	int err;
1772 	const struct NTFS_DE *sp;
1773 	struct NTFS_DE *e, *de_t, *up_e;
1774 	struct indx_node *n2;
1775 	struct indx_node *n1 = fnd->nodes[level];
1776 	struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1777 	struct INDEX_HDR *hdr2;
1778 	u32 to_copy, used;
1779 	CLST new_vbn;
1780 	__le64 t_vbn, *sub_vbn;
1781 	u16 sp_size;
1782 
1783 	/* Try the most easy case. */
1784 	e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1785 	e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1786 	fnd->de[level] = e;
1787 	if (e) {
1788 		/* Just write updated index into disk. */
1789 		indx_write(indx, ni, n1, 0);
1790 		return 0;
1791 	}
1792 
1793 	/*
1794 	 * No space to insert into buffer. Split it.
1795 	 * To split we:
1796 	 *  - Save split point ('cause index buffers will be changed)
1797 	 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1798 	 * - Remove all entries (sp including) from TargetBuffer
1799 	 * - Insert NewEntry into left or right buffer (depending on sp <=>
1800 	 *     NewEntry)
1801 	 * - Insert sp into parent buffer (or root)
1802 	 * - Make sp a parent for new buffer
1803 	 */
1804 	sp = hdr_find_split(hdr1);
1805 	if (!sp)
1806 		return -EINVAL;
1807 
1808 	sp_size = le16_to_cpu(sp->size);
1809 	up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1810 	if (!up_e)
1811 		return -ENOMEM;
1812 	memcpy(up_e, sp, sp_size);
1813 
1814 	if (!hdr1->flags) {
1815 		up_e->flags |= NTFS_IE_HAS_SUBNODES;
1816 		up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1817 		sub_vbn = NULL;
1818 	} else {
1819 		t_vbn = de_get_vbn_le(up_e);
1820 		sub_vbn = &t_vbn;
1821 	}
1822 
1823 	/* Allocate on disk a new index allocation buffer. */
1824 	err = indx_add_allocate(indx, ni, &new_vbn);
1825 	if (err)
1826 		goto out;
1827 
1828 	/* Allocate and format memory a new index buffer. */
1829 	n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1830 	if (IS_ERR(n2)) {
1831 		err = PTR_ERR(n2);
1832 		goto out;
1833 	}
1834 
1835 	hdr2 = &n2->index->ihdr;
1836 
1837 	/* Make sp a parent for new buffer. */
1838 	de_set_vbn(up_e, new_vbn);
1839 
1840 	/* Copy all the entries <= sp into the new buffer. */
1841 	de_t = hdr_first_de(hdr1);
1842 	to_copy = PtrOffset(de_t, sp);
1843 	hdr_insert_head(hdr2, de_t, to_copy);
1844 
1845 	/* Remove all entries (sp including) from hdr1. */
1846 	used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1847 	memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1848 	hdr1->used = cpu_to_le32(used);
1849 
1850 	/*
1851 	 * Insert new entry into left or right buffer
1852 	 * (depending on sp <=> new_de).
1853 	 */
1854 	hdr_insert_de(indx,
1855 		      (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1856 				   up_e + 1, le16_to_cpu(up_e->key_size),
1857 				   ctx) < 0
1858 			      ? hdr2
1859 			      : hdr1,
1860 		      new_de, NULL, ctx);
1861 
1862 	indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1863 
1864 	indx_write(indx, ni, n1, 0);
1865 	indx_write(indx, ni, n2, 0);
1866 
1867 	put_indx_node(n2);
1868 
1869 	/*
1870 	 * We've finished splitting everybody, so we are ready to
1871 	 * insert the promoted entry into the parent.
1872 	 */
1873 	if (!level) {
1874 		/* Insert in root. */
1875 		err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1876 		if (err)
1877 			goto out;
1878 	} else {
1879 		/*
1880 		 * The target buffer's parent is another index buffer.
1881 		 * TODO: Remove recursion.
1882 		 */
1883 		err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1884 					      level - 1, fnd);
1885 		if (err)
1886 			goto out;
1887 	}
1888 
1889 out:
1890 	kfree(up_e);
1891 
1892 	return err;
1893 }
1894 
1895 /*
1896  * indx_insert_entry - Insert new entry into index.
1897  *
1898  * @undo - True if we undoing previous remove.
1899  */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1900 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1901 		      const struct NTFS_DE *new_de, const void *ctx,
1902 		      struct ntfs_fnd *fnd, bool undo)
1903 {
1904 	int err;
1905 	int diff;
1906 	struct NTFS_DE *e;
1907 	struct ntfs_fnd *fnd_a = NULL;
1908 	struct INDEX_ROOT *root;
1909 
1910 	if (!fnd) {
1911 		fnd_a = fnd_get();
1912 		if (!fnd_a) {
1913 			err = -ENOMEM;
1914 			goto out1;
1915 		}
1916 		fnd = fnd_a;
1917 	}
1918 
1919 	root = indx_get_root(indx, ni, NULL, NULL);
1920 	if (!root) {
1921 		err = -EINVAL;
1922 		goto out;
1923 	}
1924 
1925 	if (fnd_is_empty(fnd)) {
1926 		/*
1927 		 * Find the spot the tree where we want to
1928 		 * insert the new entry.
1929 		 */
1930 		err = indx_find(indx, ni, root, new_de + 1,
1931 				le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1932 				fnd);
1933 		if (err)
1934 			goto out;
1935 
1936 		if (!diff) {
1937 			err = -EEXIST;
1938 			goto out;
1939 		}
1940 	}
1941 
1942 	if (!fnd->level) {
1943 		/*
1944 		 * The root is also a leaf, so we'll insert the
1945 		 * new entry into it.
1946 		 */
1947 		err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1948 					    fnd, undo);
1949 		if (err)
1950 			goto out;
1951 	} else {
1952 		/*
1953 		 * Found a leaf buffer, so we'll insert the new entry into it.
1954 		 */
1955 		err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1956 					      fnd->level - 1, fnd);
1957 		if (err)
1958 			goto out;
1959 	}
1960 
1961 out:
1962 	fnd_put(fnd_a);
1963 out1:
1964 	return err;
1965 }
1966 
1967 /*
1968  * indx_find_buffer - Locate a buffer from the tree.
1969  */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)1970 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1971 					  struct ntfs_inode *ni,
1972 					  const struct INDEX_ROOT *root,
1973 					  __le64 vbn, struct indx_node *n)
1974 {
1975 	int err;
1976 	const struct NTFS_DE *e;
1977 	struct indx_node *r;
1978 	const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1979 
1980 	/* Step 1: Scan one level. */
1981 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1982 		if (!e)
1983 			return ERR_PTR(-EINVAL);
1984 
1985 		if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1986 			return n;
1987 
1988 		if (de_is_last(e))
1989 			break;
1990 	}
1991 
1992 	/* Step2: Do recursion. */
1993 	e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1994 	for (;;) {
1995 		if (de_has_vcn_ex(e)) {
1996 			err = indx_read(indx, ni, de_get_vbn(e), &n);
1997 			if (err)
1998 				return ERR_PTR(err);
1999 
2000 			r = indx_find_buffer(indx, ni, root, vbn, n);
2001 			if (r)
2002 				return r;
2003 		}
2004 
2005 		if (de_is_last(e))
2006 			break;
2007 
2008 		e = Add2Ptr(e, le16_to_cpu(e->size));
2009 	}
2010 
2011 	return NULL;
2012 }
2013 
2014 /*
2015  * indx_shrink - Deallocate unused tail indexes.
2016  */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)2017 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2018 		       size_t bit)
2019 {
2020 	int err = 0;
2021 	u64 bpb, new_data;
2022 	size_t nbits;
2023 	struct ATTRIB *b;
2024 	struct ATTR_LIST_ENTRY *le = NULL;
2025 	const struct INDEX_NAMES *in = &s_index_names[indx->type];
2026 
2027 	b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2028 			 NULL, NULL);
2029 
2030 	if (!b)
2031 		return -ENOENT;
2032 
2033 	if (!b->non_res) {
2034 		unsigned long pos;
2035 		const unsigned long *bm = resident_data(b);
2036 
2037 		nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2038 
2039 		if (bit >= nbits)
2040 			return 0;
2041 
2042 		pos = find_next_bit(bm, nbits, bit);
2043 		if (pos < nbits)
2044 			return 0;
2045 	} else {
2046 		size_t used = MINUS_ONE_T;
2047 
2048 		nbits = le64_to_cpu(b->nres.data_size) * 8;
2049 
2050 		if (bit >= nbits)
2051 			return 0;
2052 
2053 		err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2054 		if (err)
2055 			return err;
2056 
2057 		if (used != MINUS_ONE_T)
2058 			return 0;
2059 	}
2060 
2061 	new_data = (u64)bit << indx->index_bits;
2062 
2063 	err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2064 			    &indx->alloc_run, new_data, &new_data, false, NULL);
2065 	if (err)
2066 		return err;
2067 
2068 	bpb = bitmap_size(bit);
2069 	if (bpb * 8 == nbits)
2070 		return 0;
2071 
2072 	err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2073 			    &indx->bitmap_run, bpb, &bpb, false, NULL);
2074 
2075 	return err;
2076 }
2077 
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)2078 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2079 			      const struct NTFS_DE *e, bool trim)
2080 {
2081 	int err;
2082 	struct indx_node *n = NULL;
2083 	struct INDEX_HDR *hdr;
2084 	CLST vbn = de_get_vbn(e);
2085 	size_t i;
2086 
2087 	err = indx_read(indx, ni, vbn, &n);
2088 	if (err)
2089 		return err;
2090 
2091 	hdr = &n->index->ihdr;
2092 	/* First, recurse into the children, if any. */
2093 	if (hdr_has_subnode(hdr)) {
2094 		for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2095 			indx_free_children(indx, ni, e, false);
2096 			if (de_is_last(e))
2097 				break;
2098 		}
2099 	}
2100 
2101 	put_indx_node(n);
2102 
2103 	i = vbn >> indx->idx2vbn_bits;
2104 	/*
2105 	 * We've gotten rid of the children; add this buffer to the free list.
2106 	 */
2107 	indx_mark_free(indx, ni, i);
2108 
2109 	if (!trim)
2110 		return 0;
2111 
2112 	/*
2113 	 * If there are no used indexes after current free index
2114 	 * then we can truncate allocation and bitmap.
2115 	 * Use bitmap to estimate the case.
2116 	 */
2117 	indx_shrink(indx, ni, i + 1);
2118 	return 0;
2119 }
2120 
2121 /*
2122  * indx_get_entry_to_replace
2123  *
2124  * Find a replacement entry for a deleted entry.
2125  * Always returns a node entry:
2126  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2127  */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2128 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2129 				     struct ntfs_inode *ni,
2130 				     const struct NTFS_DE *de_next,
2131 				     struct NTFS_DE **de_to_replace,
2132 				     struct ntfs_fnd *fnd)
2133 {
2134 	int err;
2135 	int level = -1;
2136 	CLST vbn;
2137 	struct NTFS_DE *e, *te, *re;
2138 	struct indx_node *n;
2139 	struct INDEX_BUFFER *ib;
2140 
2141 	*de_to_replace = NULL;
2142 
2143 	/* Find first leaf entry down from de_next. */
2144 	vbn = de_get_vbn(de_next);
2145 	for (;;) {
2146 		n = NULL;
2147 		err = indx_read(indx, ni, vbn, &n);
2148 		if (err)
2149 			goto out;
2150 
2151 		e = hdr_first_de(&n->index->ihdr);
2152 		fnd_push(fnd, n, e);
2153 
2154 		if (!de_is_last(e)) {
2155 			/*
2156 			 * This buffer is non-empty, so its first entry
2157 			 * could be used as the replacement entry.
2158 			 */
2159 			level = fnd->level - 1;
2160 		}
2161 
2162 		if (!de_has_vcn(e))
2163 			break;
2164 
2165 		/* This buffer is a node. Continue to go down. */
2166 		vbn = de_get_vbn(e);
2167 	}
2168 
2169 	if (level == -1)
2170 		goto out;
2171 
2172 	n = fnd->nodes[level];
2173 	te = hdr_first_de(&n->index->ihdr);
2174 	/* Copy the candidate entry into the replacement entry buffer. */
2175 	re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2176 	if (!re) {
2177 		err = -ENOMEM;
2178 		goto out;
2179 	}
2180 
2181 	*de_to_replace = re;
2182 	memcpy(re, te, le16_to_cpu(te->size));
2183 
2184 	if (!de_has_vcn(re)) {
2185 		/*
2186 		 * The replacement entry we found doesn't have a sub_vcn.
2187 		 * increase its size to hold one.
2188 		 */
2189 		le16_add_cpu(&re->size, sizeof(u64));
2190 		re->flags |= NTFS_IE_HAS_SUBNODES;
2191 	} else {
2192 		/*
2193 		 * The replacement entry we found was a node entry, which
2194 		 * means that all its child buffers are empty. Return them
2195 		 * to the free pool.
2196 		 */
2197 		indx_free_children(indx, ni, te, true);
2198 	}
2199 
2200 	/*
2201 	 * Expunge the replacement entry from its former location,
2202 	 * and then write that buffer.
2203 	 */
2204 	ib = n->index;
2205 	e = hdr_delete_de(&ib->ihdr, te);
2206 
2207 	fnd->de[level] = e;
2208 	indx_write(indx, ni, n, 0);
2209 
2210 	/* Check to see if this action created an empty leaf. */
2211 	if (ib_is_leaf(ib) && ib_is_empty(ib))
2212 		return 0;
2213 
2214 out:
2215 	fnd_clear(fnd);
2216 	return err;
2217 }
2218 
2219 /*
2220  * indx_delete_entry - Delete an entry from the index.
2221  */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2222 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2223 		      const void *key, u32 key_len, const void *ctx)
2224 {
2225 	int err, diff;
2226 	struct INDEX_ROOT *root;
2227 	struct INDEX_HDR *hdr;
2228 	struct ntfs_fnd *fnd, *fnd2;
2229 	struct INDEX_BUFFER *ib;
2230 	struct NTFS_DE *e, *re, *next, *prev, *me;
2231 	struct indx_node *n, *n2d = NULL;
2232 	__le64 sub_vbn;
2233 	int level, level2;
2234 	struct ATTRIB *attr;
2235 	struct mft_inode *mi;
2236 	u32 e_size, root_size, new_root_size;
2237 	size_t trim_bit;
2238 	const struct INDEX_NAMES *in;
2239 
2240 	fnd = fnd_get();
2241 	if (!fnd) {
2242 		err = -ENOMEM;
2243 		goto out2;
2244 	}
2245 
2246 	fnd2 = fnd_get();
2247 	if (!fnd2) {
2248 		err = -ENOMEM;
2249 		goto out1;
2250 	}
2251 
2252 	root = indx_get_root(indx, ni, &attr, &mi);
2253 	if (!root) {
2254 		err = -EINVAL;
2255 		goto out;
2256 	}
2257 
2258 	/* Locate the entry to remove. */
2259 	err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2260 	if (err)
2261 		goto out;
2262 
2263 	if (!e || diff) {
2264 		err = -ENOENT;
2265 		goto out;
2266 	}
2267 
2268 	level = fnd->level;
2269 
2270 	if (level) {
2271 		n = fnd->nodes[level - 1];
2272 		e = fnd->de[level - 1];
2273 		ib = n->index;
2274 		hdr = &ib->ihdr;
2275 	} else {
2276 		hdr = &root->ihdr;
2277 		e = fnd->root_de;
2278 		n = NULL;
2279 	}
2280 
2281 	e_size = le16_to_cpu(e->size);
2282 
2283 	if (!de_has_vcn_ex(e)) {
2284 		/* The entry to delete is a leaf, so we can just rip it out. */
2285 		hdr_delete_de(hdr, e);
2286 
2287 		if (!level) {
2288 			hdr->total = hdr->used;
2289 
2290 			/* Shrink resident root attribute. */
2291 			mi_resize_attr(mi, attr, 0 - e_size);
2292 			goto out;
2293 		}
2294 
2295 		indx_write(indx, ni, n, 0);
2296 
2297 		/*
2298 		 * Check to see if removing that entry made
2299 		 * the leaf empty.
2300 		 */
2301 		if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2302 			fnd_pop(fnd);
2303 			fnd_push(fnd2, n, e);
2304 		}
2305 	} else {
2306 		/*
2307 		 * The entry we wish to delete is a node buffer, so we
2308 		 * have to find a replacement for it.
2309 		 */
2310 		next = de_get_next(e);
2311 
2312 		err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2313 		if (err)
2314 			goto out;
2315 
2316 		if (re) {
2317 			de_set_vbn_le(re, de_get_vbn_le(e));
2318 			hdr_delete_de(hdr, e);
2319 
2320 			err = level ? indx_insert_into_buffer(indx, ni, root,
2321 							      re, ctx,
2322 							      fnd->level - 1,
2323 							      fnd)
2324 				    : indx_insert_into_root(indx, ni, re, e,
2325 							    ctx, fnd, 0);
2326 			kfree(re);
2327 
2328 			if (err)
2329 				goto out;
2330 		} else {
2331 			/*
2332 			 * There is no replacement for the current entry.
2333 			 * This means that the subtree rooted at its node
2334 			 * is empty, and can be deleted, which turn means
2335 			 * that the node can just inherit the deleted
2336 			 * entry sub_vcn.
2337 			 */
2338 			indx_free_children(indx, ni, next, true);
2339 
2340 			de_set_vbn_le(next, de_get_vbn_le(e));
2341 			hdr_delete_de(hdr, e);
2342 			if (level) {
2343 				indx_write(indx, ni, n, 0);
2344 			} else {
2345 				hdr->total = hdr->used;
2346 
2347 				/* Shrink resident root attribute. */
2348 				mi_resize_attr(mi, attr, 0 - e_size);
2349 			}
2350 		}
2351 	}
2352 
2353 	/* Delete a branch of tree. */
2354 	if (!fnd2 || !fnd2->level)
2355 		goto out;
2356 
2357 	/* Reinit root 'cause it can be changed. */
2358 	root = indx_get_root(indx, ni, &attr, &mi);
2359 	if (!root) {
2360 		err = -EINVAL;
2361 		goto out;
2362 	}
2363 
2364 	n2d = NULL;
2365 	sub_vbn = fnd2->nodes[0]->index->vbn;
2366 	level2 = 0;
2367 	level = fnd->level;
2368 
2369 	hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2370 
2371 	/* Scan current level. */
2372 	for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2373 		if (!e) {
2374 			err = -EINVAL;
2375 			goto out;
2376 		}
2377 
2378 		if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2379 			break;
2380 
2381 		if (de_is_last(e)) {
2382 			e = NULL;
2383 			break;
2384 		}
2385 	}
2386 
2387 	if (!e) {
2388 		/* Do slow search from root. */
2389 		struct indx_node *in;
2390 
2391 		fnd_clear(fnd);
2392 
2393 		in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2394 		if (IS_ERR(in)) {
2395 			err = PTR_ERR(in);
2396 			goto out;
2397 		}
2398 
2399 		if (in)
2400 			fnd_push(fnd, in, NULL);
2401 	}
2402 
2403 	/* Merge fnd2 -> fnd. */
2404 	for (level = 0; level < fnd2->level; level++) {
2405 		fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2406 		fnd2->nodes[level] = NULL;
2407 	}
2408 	fnd2->level = 0;
2409 
2410 	hdr = NULL;
2411 	for (level = fnd->level; level; level--) {
2412 		struct indx_node *in = fnd->nodes[level - 1];
2413 
2414 		ib = in->index;
2415 		if (ib_is_empty(ib)) {
2416 			sub_vbn = ib->vbn;
2417 		} else {
2418 			hdr = &ib->ihdr;
2419 			n2d = in;
2420 			level2 = level;
2421 			break;
2422 		}
2423 	}
2424 
2425 	if (!hdr)
2426 		hdr = &root->ihdr;
2427 
2428 	e = hdr_first_de(hdr);
2429 	if (!e) {
2430 		err = -EINVAL;
2431 		goto out;
2432 	}
2433 
2434 	if (hdr != &root->ihdr || !de_is_last(e)) {
2435 		prev = NULL;
2436 		while (!de_is_last(e)) {
2437 			if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2438 				break;
2439 			prev = e;
2440 			e = hdr_next_de(hdr, e);
2441 			if (!e) {
2442 				err = -EINVAL;
2443 				goto out;
2444 			}
2445 		}
2446 
2447 		if (sub_vbn != de_get_vbn_le(e)) {
2448 			/*
2449 			 * Didn't find the parent entry, although this buffer
2450 			 * is the parent trail. Something is corrupt.
2451 			 */
2452 			err = -EINVAL;
2453 			goto out;
2454 		}
2455 
2456 		if (de_is_last(e)) {
2457 			/*
2458 			 * Since we can't remove the end entry, we'll remove
2459 			 * its predecessor instead. This means we have to
2460 			 * transfer the predecessor's sub_vcn to the end entry.
2461 			 * Note: This index block is not empty, so the
2462 			 * predecessor must exist.
2463 			 */
2464 			if (!prev) {
2465 				err = -EINVAL;
2466 				goto out;
2467 			}
2468 
2469 			if (de_has_vcn(prev)) {
2470 				de_set_vbn_le(e, de_get_vbn_le(prev));
2471 			} else if (de_has_vcn(e)) {
2472 				le16_sub_cpu(&e->size, sizeof(u64));
2473 				e->flags &= ~NTFS_IE_HAS_SUBNODES;
2474 				le32_sub_cpu(&hdr->used, sizeof(u64));
2475 			}
2476 			e = prev;
2477 		}
2478 
2479 		/*
2480 		 * Copy the current entry into a temporary buffer (stripping
2481 		 * off its down-pointer, if any) and delete it from the current
2482 		 * buffer or root, as appropriate.
2483 		 */
2484 		e_size = le16_to_cpu(e->size);
2485 		me = kmemdup(e, e_size, GFP_NOFS);
2486 		if (!me) {
2487 			err = -ENOMEM;
2488 			goto out;
2489 		}
2490 
2491 		if (de_has_vcn(me)) {
2492 			me->flags &= ~NTFS_IE_HAS_SUBNODES;
2493 			le16_sub_cpu(&me->size, sizeof(u64));
2494 		}
2495 
2496 		hdr_delete_de(hdr, e);
2497 
2498 		if (hdr == &root->ihdr) {
2499 			level = 0;
2500 			hdr->total = hdr->used;
2501 
2502 			/* Shrink resident root attribute. */
2503 			mi_resize_attr(mi, attr, 0 - e_size);
2504 		} else {
2505 			indx_write(indx, ni, n2d, 0);
2506 			level = level2;
2507 		}
2508 
2509 		/* Mark unused buffers as free. */
2510 		trim_bit = -1;
2511 		for (; level < fnd->level; level++) {
2512 			ib = fnd->nodes[level]->index;
2513 			if (ib_is_empty(ib)) {
2514 				size_t k = le64_to_cpu(ib->vbn) >>
2515 					   indx->idx2vbn_bits;
2516 
2517 				indx_mark_free(indx, ni, k);
2518 				if (k < trim_bit)
2519 					trim_bit = k;
2520 			}
2521 		}
2522 
2523 		fnd_clear(fnd);
2524 		/*fnd->root_de = NULL;*/
2525 
2526 		/*
2527 		 * Re-insert the entry into the tree.
2528 		 * Find the spot the tree where we want to insert the new entry.
2529 		 */
2530 		err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2531 		kfree(me);
2532 		if (err)
2533 			goto out;
2534 
2535 		if (trim_bit != -1)
2536 			indx_shrink(indx, ni, trim_bit);
2537 	} else {
2538 		/*
2539 		 * This tree needs to be collapsed down to an empty root.
2540 		 * Recreate the index root as an empty leaf and free all
2541 		 * the bits the index allocation bitmap.
2542 		 */
2543 		fnd_clear(fnd);
2544 		fnd_clear(fnd2);
2545 
2546 		in = &s_index_names[indx->type];
2547 
2548 		err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2549 				    &indx->alloc_run, 0, NULL, false, NULL);
2550 		err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2551 				     false, NULL);
2552 		run_close(&indx->alloc_run);
2553 
2554 		err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2555 				    &indx->bitmap_run, 0, NULL, false, NULL);
2556 		err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2557 				     false, NULL);
2558 		run_close(&indx->bitmap_run);
2559 
2560 		root = indx_get_root(indx, ni, &attr, &mi);
2561 		if (!root) {
2562 			err = -EINVAL;
2563 			goto out;
2564 		}
2565 
2566 		root_size = le32_to_cpu(attr->res.data_size);
2567 		new_root_size =
2568 			sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2569 
2570 		if (new_root_size != root_size &&
2571 		    !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2572 			err = -EINVAL;
2573 			goto out;
2574 		}
2575 
2576 		/* Fill first entry. */
2577 		e = (struct NTFS_DE *)(root + 1);
2578 		e->ref.low = 0;
2579 		e->ref.high = 0;
2580 		e->ref.seq = 0;
2581 		e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2582 		e->flags = NTFS_IE_LAST; // 0x02
2583 		e->key_size = 0;
2584 		e->res = 0;
2585 
2586 		hdr = &root->ihdr;
2587 		hdr->flags = 0;
2588 		hdr->used = hdr->total = cpu_to_le32(
2589 			new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2590 		mi->dirty = true;
2591 	}
2592 
2593 out:
2594 	fnd_put(fnd2);
2595 out1:
2596 	fnd_put(fnd);
2597 out2:
2598 	return err;
2599 }
2600 
2601 /*
2602  * Update duplicated information in directory entry
2603  * 'dup' - info from MFT record
2604  */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2605 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2606 		    const struct ATTR_FILE_NAME *fname,
2607 		    const struct NTFS_DUP_INFO *dup, int sync)
2608 {
2609 	int err, diff;
2610 	struct NTFS_DE *e = NULL;
2611 	struct ATTR_FILE_NAME *e_fname;
2612 	struct ntfs_fnd *fnd;
2613 	struct INDEX_ROOT *root;
2614 	struct mft_inode *mi;
2615 	struct ntfs_index *indx = &ni->dir;
2616 
2617 	fnd = fnd_get();
2618 	if (!fnd)
2619 		return -ENOMEM;
2620 
2621 	root = indx_get_root(indx, ni, NULL, &mi);
2622 	if (!root) {
2623 		err = -EINVAL;
2624 		goto out;
2625 	}
2626 
2627 	/* Find entry in directory. */
2628 	err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2629 			&diff, &e, fnd);
2630 	if (err)
2631 		goto out;
2632 
2633 	if (!e) {
2634 		err = -EINVAL;
2635 		goto out;
2636 	}
2637 
2638 	if (diff) {
2639 		err = -EINVAL;
2640 		goto out;
2641 	}
2642 
2643 	e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2644 
2645 	if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2646 		/*
2647 		 * Nothing to update in index! Try to avoid this call.
2648 		 */
2649 		goto out;
2650 	}
2651 
2652 	memcpy(&e_fname->dup, dup, sizeof(*dup));
2653 
2654 	if (fnd->level) {
2655 		/* Directory entry in index. */
2656 		err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2657 	} else {
2658 		/* Directory entry in directory MFT record. */
2659 		mi->dirty = true;
2660 		if (sync)
2661 			err = mi_write(mi, 1);
2662 		else
2663 			mark_inode_dirty(&ni->vfs_inode);
2664 	}
2665 
2666 out:
2667 	fnd_put(fnd);
2668 	return err;
2669 }
2670