1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/fs.h>
11 #include <linux/kernel.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24 };
25
26 /*
27 * cmp_fnames - Compare two names in index.
28 *
29 * if l1 != 0
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
cmp_fnames(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36 {
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64 }
65
66 /*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
cmp_uint(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71 {
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83 }
84
85 /*
86 * cmp_sdh - $SDH of $Secure
87 */
cmp_sdh(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90 {
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
101 /* First value is a hash value itself. */
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
107 /* Second value is security Id. */
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118 }
119
120 /*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
cmp_uints(const void * key1,size_t l1,const void * key2,size_t l2,const void * data)123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125 {
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166 }
167
get_cmp_func(const struct INDEX_ROOT * root)168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
186 break;
187 default:
188 break;
189 }
190
191 return NULL;
192 }
193
194 struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202 };
203
bmp_buf_get(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit,struct bmp_buf * bbuf)204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206 {
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284 }
285
bmp_buf_put(struct bmp_buf * bbuf,bool dirty)286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308 out:
309 unlock_buffer(bh);
310 put_bh(bh);
311 }
312
313 /*
314 * indx_mark_used - Mark the bit @bit as used.
315 */
indx_mark_used(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318 {
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331 }
332
333 /*
334 * indx_mark_free - Mark the bit @bit as free.
335 */
indx_mark_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338 {
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351 }
352
353 /*
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
359 */
scan_nres_bitmap(struct ntfs_inode * ni,struct ATTRIB * bitmap,struct ntfs_index * indx,size_t from,bool (* fn)(const ulong * buf,u32 bit,u32 bits,size_t * ret),size_t * ret)360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365 {
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396 next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 : false;
436 put_bh(bh);
437
438 if (ok) {
439 *ret += 8 * vbo;
440 return 0;
441 }
442
443 if (++vblock >= eblock) {
444 *ret = MINUS_ONE_T;
445 return 0;
446 }
447 }
448 blk = 0;
449 vcn_next = vcn + clen;
450 down_read(lock);
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 if (!ok)
453 vcn = vcn_next;
454 up_read(lock);
455 goto next_run;
456 }
457
scan_for_free(const ulong * buf,u32 bit,u32 bits,size_t * ret)458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459 {
460 size_t pos = find_next_zero_bit(buf, bits, bit);
461
462 if (pos >= bits)
463 return false;
464 *ret = pos;
465 return true;
466 }
467
468 /*
469 * indx_find_free - Look for free bit.
470 *
471 * Return: -1 if no free bits.
472 */
indx_find_free(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit,struct ATTRIB ** bitmap)473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
475 {
476 struct ATTRIB *b;
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 int err;
480
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 NULL, NULL);
483
484 if (!b)
485 return -ENOENT;
486
487 *bitmap = b;
488 *bit = MINUS_ONE_T;
489
490 if (!b->non_res) {
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493
494 if (pos < nbits)
495 *bit = pos;
496 } else {
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498
499 if (err)
500 return err;
501 }
502
503 return 0;
504 }
505
scan_for_used(const ulong * buf,u32 bit,u32 bits,size_t * ret)506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507 {
508 size_t pos = find_next_bit(buf, bits, bit);
509
510 if (pos >= bits)
511 return false;
512 *ret = pos;
513 return true;
514 }
515
516 /*
517 * indx_used_bit - Look for used bit.
518 *
519 * Return: MINUS_ONE_T if no used bits.
520 */
indx_used_bit(struct ntfs_index * indx,struct ntfs_inode * ni,size_t * bit)521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522 {
523 struct ATTRIB *b;
524 struct ATTR_LIST_ENTRY *le = NULL;
525 size_t from = *bit;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 int err;
528
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 NULL, NULL);
531
532 if (!b)
533 return -ENOENT;
534
535 *bit = MINUS_ONE_T;
536
537 if (!b->non_res) {
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
540
541 if (pos < nbits)
542 *bit = pos;
543 } else {
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 if (err)
546 return err;
547 }
548
549 return 0;
550 }
551
552 /*
553 * hdr_find_split
554 *
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
557 */
hdr_find_split(const struct INDEX_HDR * hdr)558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559 {
560 size_t o;
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
563 u16 esize;
564
565 if (!e || de_is_last(e))
566 return NULL;
567
568 esize = le16_to_cpu(e->size);
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
571
572 e = Add2Ptr(hdr, o);
573
574 /* We must not return END entry. */
575 if (de_is_last(e))
576 return p;
577
578 esize = le16_to_cpu(e->size);
579 }
580
581 return e;
582 }
583
584 /*
585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
586 *
587 * It is used to insert entries into a newly-created buffer.
588 */
hdr_insert_head(struct INDEX_HDR * hdr,const void * ins,u32 ins_bytes)589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
591 {
592 u32 to_move;
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
595
596 if (!e)
597 return NULL;
598
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
604
605 return e;
606 }
607
608 /*
609 * index_hdr_check
610 *
611 * return true if INDEX_HDR is valid
612 */
index_hdr_check(const struct INDEX_HDR * hdr,u32 bytes)613 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
614 {
615 u32 end = le32_to_cpu(hdr->used);
616 u32 tot = le32_to_cpu(hdr->total);
617 u32 off = le32_to_cpu(hdr->de_off);
618
619 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
620 off + sizeof(struct NTFS_DE) > end) {
621 /* incorrect index buffer. */
622 return false;
623 }
624
625 return true;
626 }
627
628 /*
629 * index_buf_check
630 *
631 * return true if INDEX_BUFFER seems is valid
632 */
index_buf_check(const struct INDEX_BUFFER * ib,u32 bytes,const CLST * vbn)633 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
634 const CLST *vbn)
635 {
636 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
637 u16 fo = le16_to_cpu(rhdr->fix_off);
638 u16 fn = le16_to_cpu(rhdr->fix_num);
639
640 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
641 rhdr->sign != NTFS_INDX_SIGNATURE ||
642 fo < sizeof(struct INDEX_BUFFER)
643 /* Check index buffer vbn. */
644 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
645 fo + fn * sizeof(short) >= bytes ||
646 fn != ((bytes >> SECTOR_SHIFT) + 1)) {
647 /* incorrect index buffer. */
648 return false;
649 }
650
651 return index_hdr_check(&ib->ihdr,
652 bytes - offsetof(struct INDEX_BUFFER, ihdr));
653 }
654
fnd_clear(struct ntfs_fnd * fnd)655 void fnd_clear(struct ntfs_fnd *fnd)
656 {
657 int i;
658
659 for (i = fnd->level - 1; i >= 0; i--) {
660 struct indx_node *n = fnd->nodes[i];
661
662 if (!n)
663 continue;
664
665 put_indx_node(n);
666 fnd->nodes[i] = NULL;
667 }
668 fnd->level = 0;
669 fnd->root_de = NULL;
670 }
671
fnd_push(struct ntfs_fnd * fnd,struct indx_node * n,struct NTFS_DE * e)672 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
673 struct NTFS_DE *e)
674 {
675 int i;
676
677 i = fnd->level;
678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679 return -EINVAL;
680 fnd->nodes[i] = n;
681 fnd->de[i] = e;
682 fnd->level += 1;
683 return 0;
684 }
685
fnd_pop(struct ntfs_fnd * fnd)686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688 struct indx_node *n;
689 int i = fnd->level;
690
691 i -= 1;
692 n = fnd->nodes[i];
693 fnd->nodes[i] = NULL;
694 fnd->level = i;
695
696 return n;
697 }
698
fnd_is_empty(struct ntfs_fnd * fnd)699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701 if (!fnd->level)
702 return !fnd->root_de;
703
704 return !fnd->de[fnd->level - 1];
705 }
706
707 /*
708 * hdr_find_e - Locate an entry the index buffer.
709 *
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
713 * current index buffer, for the first entry that is <= to the search value.
714 *
715 * Return: NULL if error.
716 */
hdr_find_e(const struct ntfs_index * indx,const struct INDEX_HDR * hdr,const void * key,size_t key_len,const void * ctx,int * diff)717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 const struct INDEX_HDR *hdr, const void *key,
719 size_t key_len, const void *ctx, int *diff)
720 {
721 struct NTFS_DE *e, *found = NULL;
722 NTFS_CMP_FUNC cmp = indx->cmp;
723 int min_idx = 0, mid_idx, max_idx = 0;
724 int diff2;
725 int table_size = 8;
726 u32 e_size, e_key_len;
727 u32 end = le32_to_cpu(hdr->used);
728 u32 off = le32_to_cpu(hdr->de_off);
729 u32 total = le32_to_cpu(hdr->total);
730 u16 offs[128];
731
732 if (unlikely(!cmp))
733 return NULL;
734
735 fill_table:
736 if (end > total)
737 return NULL;
738
739 if (off + sizeof(struct NTFS_DE) > end)
740 return NULL;
741
742 e = Add2Ptr(hdr, off);
743 e_size = le16_to_cpu(e->size);
744
745 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746 return NULL;
747
748 if (!de_is_last(e)) {
749 offs[max_idx] = off;
750 off += e_size;
751
752 max_idx++;
753 if (max_idx < table_size)
754 goto fill_table;
755
756 max_idx--;
757 }
758
759 binary_search:
760 e_key_len = le16_to_cpu(e->key_size);
761
762 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763 if (diff2 > 0) {
764 if (found) {
765 min_idx = mid_idx + 1;
766 } else {
767 if (de_is_last(e))
768 return NULL;
769
770 max_idx = 0;
771 table_size = min(table_size * 2,
772 (int)ARRAY_SIZE(offs));
773 goto fill_table;
774 }
775 } else if (diff2 < 0) {
776 if (found)
777 max_idx = mid_idx - 1;
778 else
779 max_idx--;
780
781 found = e;
782 } else {
783 *diff = 0;
784 return e;
785 }
786
787 if (min_idx > max_idx) {
788 *diff = -1;
789 return found;
790 }
791
792 mid_idx = (min_idx + max_idx) >> 1;
793 e = Add2Ptr(hdr, offs[mid_idx]);
794
795 goto binary_search;
796 }
797
798 /*
799 * hdr_insert_de - Insert an index entry into the buffer.
800 *
801 * 'before' should be a pointer previously returned from hdr_find_e.
802 */
hdr_insert_de(const struct ntfs_index * indx,struct INDEX_HDR * hdr,const struct NTFS_DE * de,struct NTFS_DE * before,const void * ctx)803 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
804 struct INDEX_HDR *hdr,
805 const struct NTFS_DE *de,
806 struct NTFS_DE *before, const void *ctx)
807 {
808 int diff;
809 size_t off = PtrOffset(hdr, before);
810 u32 used = le32_to_cpu(hdr->used);
811 u32 total = le32_to_cpu(hdr->total);
812 u16 de_size = le16_to_cpu(de->size);
813
814 /* First, check to see if there's enough room. */
815 if (used + de_size > total)
816 return NULL;
817
818 /* We know there's enough space, so we know we'll succeed. */
819 if (before) {
820 /* Check that before is inside Index. */
821 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
822 off + le16_to_cpu(before->size) > total) {
823 return NULL;
824 }
825 goto ok;
826 }
827 /* No insert point is applied. Get it manually. */
828 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
829 &diff);
830 if (!before)
831 return NULL;
832 off = PtrOffset(hdr, before);
833
834 ok:
835 /* Now we just make room for the entry and jam it in. */
836 memmove(Add2Ptr(before, de_size), before, used - off);
837
838 hdr->used = cpu_to_le32(used + de_size);
839 memcpy(before, de, de_size);
840
841 return before;
842 }
843
844 /*
845 * hdr_delete_de - Remove an entry from the index buffer.
846 */
hdr_delete_de(struct INDEX_HDR * hdr,struct NTFS_DE * re)847 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
848 struct NTFS_DE *re)
849 {
850 u32 used = le32_to_cpu(hdr->used);
851 u16 esize = le16_to_cpu(re->size);
852 u32 off = PtrOffset(hdr, re);
853 int bytes = used - (off + esize);
854
855 /* check INDEX_HDR valid before using INDEX_HDR */
856 if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
857 return NULL;
858
859 if (off >= used || esize < sizeof(struct NTFS_DE) ||
860 bytes < sizeof(struct NTFS_DE))
861 return NULL;
862
863 hdr->used = cpu_to_le32(used - esize);
864 memmove(re, Add2Ptr(re, esize), bytes);
865
866 return re;
867 }
868
indx_clear(struct ntfs_index * indx)869 void indx_clear(struct ntfs_index *indx)
870 {
871 run_close(&indx->alloc_run);
872 run_close(&indx->bitmap_run);
873 }
874
indx_init(struct ntfs_index * indx,struct ntfs_sb_info * sbi,const struct ATTRIB * attr,enum index_mutex_classed type)875 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
876 const struct ATTRIB *attr, enum index_mutex_classed type)
877 {
878 u32 t32;
879 const struct INDEX_ROOT *root = resident_data(attr);
880
881 t32 = le32_to_cpu(attr->res.data_size);
882 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
883 !index_hdr_check(&root->ihdr,
884 t32 - offsetof(struct INDEX_ROOT, ihdr))) {
885 goto out;
886 }
887
888 /* Check root fields. */
889 if (!root->index_block_clst)
890 goto out;
891
892 indx->type = type;
893 indx->idx2vbn_bits = __ffs(root->index_block_clst);
894
895 t32 = le32_to_cpu(root->index_block_size);
896 indx->index_bits = blksize_bits(t32);
897
898 /* Check index record size. */
899 if (t32 < sbi->cluster_size) {
900 /* Index record is smaller than a cluster, use 512 blocks. */
901 if (t32 != root->index_block_clst * SECTOR_SIZE)
902 goto out;
903
904 /* Check alignment to a cluster. */
905 if ((sbi->cluster_size >> SECTOR_SHIFT) &
906 (root->index_block_clst - 1)) {
907 goto out;
908 }
909
910 indx->vbn2vbo_bits = SECTOR_SHIFT;
911 } else {
912 /* Index record must be a multiple of cluster size. */
913 if (t32 != root->index_block_clst << sbi->cluster_bits)
914 goto out;
915
916 indx->vbn2vbo_bits = sbi->cluster_bits;
917 }
918
919 init_rwsem(&indx->run_lock);
920
921 indx->cmp = get_cmp_func(root);
922 if (!indx->cmp)
923 goto out;
924
925 return 0;
926
927 out:
928 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
929 return -EINVAL;
930 }
931
indx_new(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,const __le64 * sub_vbn)932 static struct indx_node *indx_new(struct ntfs_index *indx,
933 struct ntfs_inode *ni, CLST vbn,
934 const __le64 *sub_vbn)
935 {
936 int err;
937 struct NTFS_DE *e;
938 struct indx_node *r;
939 struct INDEX_HDR *hdr;
940 struct INDEX_BUFFER *index;
941 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
942 u32 bytes = 1u << indx->index_bits;
943 u16 fn;
944 u32 eo;
945
946 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
947 if (!r)
948 return ERR_PTR(-ENOMEM);
949
950 index = kzalloc(bytes, GFP_NOFS);
951 if (!index) {
952 kfree(r);
953 return ERR_PTR(-ENOMEM);
954 }
955
956 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
957
958 if (err) {
959 kfree(index);
960 kfree(r);
961 return ERR_PTR(err);
962 }
963
964 /* Create header. */
965 index->rhdr.sign = NTFS_INDX_SIGNATURE;
966 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
967 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
968 index->rhdr.fix_num = cpu_to_le16(fn);
969 index->vbn = cpu_to_le64(vbn);
970 hdr = &index->ihdr;
971 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
972 hdr->de_off = cpu_to_le32(eo);
973
974 e = Add2Ptr(hdr, eo);
975
976 if (sub_vbn) {
977 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
978 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
979 hdr->used =
980 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
981 de_set_vbn_le(e, *sub_vbn);
982 hdr->flags = 1;
983 } else {
984 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
985 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
986 e->flags = NTFS_IE_LAST;
987 }
988
989 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
990
991 r->index = index;
992 return r;
993 }
994
indx_get_root(struct ntfs_index * indx,struct ntfs_inode * ni,struct ATTRIB ** attr,struct mft_inode ** mi)995 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
996 struct ATTRIB **attr, struct mft_inode **mi)
997 {
998 struct ATTR_LIST_ENTRY *le = NULL;
999 struct ATTRIB *a;
1000 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1001
1002 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003 mi);
1004 if (!a)
1005 return NULL;
1006
1007 if (attr)
1008 *attr = a;
1009
1010 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011 }
1012
indx_write(struct ntfs_index * indx,struct ntfs_inode * ni,struct indx_node * node,int sync)1013 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1014 struct indx_node *node, int sync)
1015 {
1016 struct INDEX_BUFFER *ib = node->index;
1017
1018 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1019 }
1020
1021 /*
1022 * indx_read
1023 *
1024 * If ntfs_readdir calls this function
1025 * inode is shared locked and no ni_lock.
1026 * Use rw_semaphore for read/write access to alloc_run.
1027 */
indx_read(struct ntfs_index * indx,struct ntfs_inode * ni,CLST vbn,struct indx_node ** node)1028 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1029 struct indx_node **node)
1030 {
1031 int err;
1032 struct INDEX_BUFFER *ib;
1033 struct runs_tree *run = &indx->alloc_run;
1034 struct rw_semaphore *lock = &indx->run_lock;
1035 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1036 u32 bytes = 1u << indx->index_bits;
1037 struct indx_node *in = *node;
1038 const struct INDEX_NAMES *name;
1039
1040 if (!in) {
1041 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1042 if (!in)
1043 return -ENOMEM;
1044 } else {
1045 nb_put(&in->nb);
1046 }
1047
1048 ib = in->index;
1049 if (!ib) {
1050 ib = kmalloc(bytes, GFP_NOFS);
1051 if (!ib) {
1052 err = -ENOMEM;
1053 goto out;
1054 }
1055 }
1056
1057 down_read(lock);
1058 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1059 up_read(lock);
1060 if (!err)
1061 goto ok;
1062
1063 if (err == -E_NTFS_FIXUP)
1064 goto ok;
1065
1066 if (err != -ENOENT)
1067 goto out;
1068
1069 name = &s_index_names[indx->type];
1070 down_write(lock);
1071 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1072 run, vbo, vbo + bytes);
1073 up_write(lock);
1074 if (err)
1075 goto out;
1076
1077 down_read(lock);
1078 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1079 up_read(lock);
1080 if (err == -E_NTFS_FIXUP)
1081 goto ok;
1082
1083 if (err)
1084 goto out;
1085
1086 ok:
1087 if (!index_buf_check(ib, bytes, &vbn)) {
1088 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1089 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1090 err = -EINVAL;
1091 goto out;
1092 }
1093
1094 if (err == -E_NTFS_FIXUP) {
1095 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1096 err = 0;
1097 }
1098
1099 /* check for index header length */
1100 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1101 bytes) {
1102 err = -EINVAL;
1103 goto out;
1104 }
1105
1106 in->index = ib;
1107 *node = in;
1108
1109 out:
1110 if (err == -E_NTFS_CORRUPT) {
1111 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1112 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1113 err = -EINVAL;
1114 }
1115
1116 if (ib != in->index)
1117 kfree(ib);
1118
1119 if (*node != in) {
1120 nb_put(&in->nb);
1121 kfree(in);
1122 }
1123
1124 return err;
1125 }
1126
1127 /*
1128 * indx_find - Scan NTFS directory for given entry.
1129 */
indx_find(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,const void * key,size_t key_len,const void * ctx,int * diff,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1130 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1131 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1132 const void *ctx, int *diff, struct NTFS_DE **entry,
1133 struct ntfs_fnd *fnd)
1134 {
1135 int err;
1136 struct NTFS_DE *e;
1137 struct indx_node *node;
1138
1139 if (!root)
1140 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1141
1142 if (!root) {
1143 /* Should not happen. */
1144 return -EINVAL;
1145 }
1146
1147 /* Check cache. */
1148 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1149 if (e && !de_is_last(e) &&
1150 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1151 *entry = e;
1152 *diff = 0;
1153 return 0;
1154 }
1155
1156 /* Soft finder reset. */
1157 fnd_clear(fnd);
1158
1159 /* Lookup entry that is <= to the search value. */
1160 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1161 if (!e)
1162 return -EINVAL;
1163
1164 fnd->root_de = e;
1165
1166 for (;;) {
1167 node = NULL;
1168 if (*diff >= 0 || !de_has_vcn_ex(e))
1169 break;
1170
1171 /* Read next level. */
1172 err = indx_read(indx, ni, de_get_vbn(e), &node);
1173 if (err)
1174 return err;
1175
1176 /* Lookup entry that is <= to the search value. */
1177 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1178 diff);
1179 if (!e) {
1180 put_indx_node(node);
1181 return -EINVAL;
1182 }
1183
1184 fnd_push(fnd, node, e);
1185 }
1186
1187 *entry = e;
1188 return 0;
1189 }
1190
indx_find_sort(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,struct ntfs_fnd * fnd)1191 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1192 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1193 struct ntfs_fnd *fnd)
1194 {
1195 int err;
1196 struct indx_node *n = NULL;
1197 struct NTFS_DE *e;
1198 size_t iter = 0;
1199 int level = fnd->level;
1200
1201 if (!*entry) {
1202 /* Start find. */
1203 e = hdr_first_de(&root->ihdr);
1204 if (!e)
1205 return 0;
1206 fnd_clear(fnd);
1207 fnd->root_de = e;
1208 } else if (!level) {
1209 if (de_is_last(fnd->root_de)) {
1210 *entry = NULL;
1211 return 0;
1212 }
1213
1214 e = hdr_next_de(&root->ihdr, fnd->root_de);
1215 if (!e)
1216 return -EINVAL;
1217 fnd->root_de = e;
1218 } else {
1219 n = fnd->nodes[level - 1];
1220 e = fnd->de[level - 1];
1221
1222 if (de_is_last(e))
1223 goto pop_level;
1224
1225 e = hdr_next_de(&n->index->ihdr, e);
1226 if (!e)
1227 return -EINVAL;
1228
1229 fnd->de[level - 1] = e;
1230 }
1231
1232 /* Just to avoid tree cycle. */
1233 next_iter:
1234 if (iter++ >= 1000)
1235 return -EINVAL;
1236
1237 while (de_has_vcn_ex(e)) {
1238 if (le16_to_cpu(e->size) <
1239 sizeof(struct NTFS_DE) + sizeof(u64)) {
1240 if (n) {
1241 fnd_pop(fnd);
1242 kfree(n);
1243 }
1244 return -EINVAL;
1245 }
1246
1247 /* Read next level. */
1248 err = indx_read(indx, ni, de_get_vbn(e), &n);
1249 if (err)
1250 return err;
1251
1252 /* Try next level. */
1253 e = hdr_first_de(&n->index->ihdr);
1254 if (!e) {
1255 kfree(n);
1256 return -EINVAL;
1257 }
1258
1259 fnd_push(fnd, n, e);
1260 }
1261
1262 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1263 *entry = e;
1264 return 0;
1265 }
1266
1267 pop_level:
1268 for (;;) {
1269 if (!de_is_last(e))
1270 goto next_iter;
1271
1272 /* Pop one level. */
1273 if (n) {
1274 fnd_pop(fnd);
1275 kfree(n);
1276 }
1277
1278 level = fnd->level;
1279
1280 if (level) {
1281 n = fnd->nodes[level - 1];
1282 e = fnd->de[level - 1];
1283 } else if (fnd->root_de) {
1284 n = NULL;
1285 e = fnd->root_de;
1286 fnd->root_de = NULL;
1287 } else {
1288 *entry = NULL;
1289 return 0;
1290 }
1291
1292 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1293 *entry = e;
1294 if (!fnd->root_de)
1295 fnd->root_de = e;
1296 return 0;
1297 }
1298 }
1299 }
1300
indx_find_raw(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,struct NTFS_DE ** entry,size_t * off,struct ntfs_fnd * fnd)1301 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1302 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1303 size_t *off, struct ntfs_fnd *fnd)
1304 {
1305 int err;
1306 struct indx_node *n = NULL;
1307 struct NTFS_DE *e = NULL;
1308 struct NTFS_DE *e2;
1309 size_t bit;
1310 CLST next_used_vbn;
1311 CLST next_vbn;
1312 u32 record_size = ni->mi.sbi->record_size;
1313
1314 /* Use non sorted algorithm. */
1315 if (!*entry) {
1316 /* This is the first call. */
1317 e = hdr_first_de(&root->ihdr);
1318 if (!e)
1319 return 0;
1320 fnd_clear(fnd);
1321 fnd->root_de = e;
1322
1323 /* The first call with setup of initial element. */
1324 if (*off >= record_size) {
1325 next_vbn = (((*off - record_size) >> indx->index_bits))
1326 << indx->idx2vbn_bits;
1327 /* Jump inside cycle 'for'. */
1328 goto next;
1329 }
1330
1331 /* Start enumeration from root. */
1332 *off = 0;
1333 } else if (!fnd->root_de)
1334 return -EINVAL;
1335
1336 for (;;) {
1337 /* Check if current entry can be used. */
1338 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1339 goto ok;
1340
1341 if (!fnd->level) {
1342 /* Continue to enumerate root. */
1343 if (!de_is_last(fnd->root_de)) {
1344 e = hdr_next_de(&root->ihdr, fnd->root_de);
1345 if (!e)
1346 return -EINVAL;
1347 fnd->root_de = e;
1348 continue;
1349 }
1350
1351 /* Start to enumerate indexes from 0. */
1352 next_vbn = 0;
1353 } else {
1354 /* Continue to enumerate indexes. */
1355 e2 = fnd->de[fnd->level - 1];
1356
1357 n = fnd->nodes[fnd->level - 1];
1358
1359 if (!de_is_last(e2)) {
1360 e = hdr_next_de(&n->index->ihdr, e2);
1361 if (!e)
1362 return -EINVAL;
1363 fnd->de[fnd->level - 1] = e;
1364 continue;
1365 }
1366
1367 /* Continue with next index. */
1368 next_vbn = le64_to_cpu(n->index->vbn) +
1369 root->index_block_clst;
1370 }
1371
1372 next:
1373 /* Release current index. */
1374 if (n) {
1375 fnd_pop(fnd);
1376 put_indx_node(n);
1377 n = NULL;
1378 }
1379
1380 /* Skip all free indexes. */
1381 bit = next_vbn >> indx->idx2vbn_bits;
1382 err = indx_used_bit(indx, ni, &bit);
1383 if (err == -ENOENT || bit == MINUS_ONE_T) {
1384 /* No used indexes. */
1385 *entry = NULL;
1386 return 0;
1387 }
1388
1389 next_used_vbn = bit << indx->idx2vbn_bits;
1390
1391 /* Read buffer into memory. */
1392 err = indx_read(indx, ni, next_used_vbn, &n);
1393 if (err)
1394 return err;
1395
1396 e = hdr_first_de(&n->index->ihdr);
1397 fnd_push(fnd, n, e);
1398 if (!e)
1399 return -EINVAL;
1400 }
1401
1402 ok:
1403 /* Return offset to restore enumerator if necessary. */
1404 if (!n) {
1405 /* 'e' points in root, */
1406 *off = PtrOffset(&root->ihdr, e);
1407 } else {
1408 /* 'e' points in index, */
1409 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1410 record_size + PtrOffset(&n->index->ihdr, e);
1411 }
1412
1413 *entry = e;
1414 return 0;
1415 }
1416
1417 /*
1418 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1419 */
indx_create_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1420 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1421 CLST *vbn)
1422 {
1423 int err;
1424 struct ntfs_sb_info *sbi = ni->mi.sbi;
1425 struct ATTRIB *bitmap;
1426 struct ATTRIB *alloc;
1427 u32 data_size = 1u << indx->index_bits;
1428 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1429 CLST len = alloc_size >> sbi->cluster_bits;
1430 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1431 CLST alen;
1432 struct runs_tree run;
1433
1434 run_init(&run);
1435
1436 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1437 NULL);
1438 if (err)
1439 goto out;
1440
1441 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1442 &run, 0, len, 0, &alloc, NULL, NULL);
1443 if (err)
1444 goto out1;
1445
1446 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1447
1448 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1449 in->name_len, &bitmap, NULL, NULL);
1450 if (err)
1451 goto out2;
1452
1453 if (in->name == I30_NAME) {
1454 ni->vfs_inode.i_size = data_size;
1455 inode_set_bytes(&ni->vfs_inode, alloc_size);
1456 }
1457
1458 memcpy(&indx->alloc_run, &run, sizeof(run));
1459
1460 *vbn = 0;
1461
1462 return 0;
1463
1464 out2:
1465 mi_remove_attr(NULL, &ni->mi, alloc);
1466
1467 out1:
1468 run_deallocate(sbi, &run, false);
1469
1470 out:
1471 return err;
1472 }
1473
1474 /*
1475 * indx_add_allocate - Add clusters to index.
1476 */
indx_add_allocate(struct ntfs_index * indx,struct ntfs_inode * ni,CLST * vbn)1477 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1478 CLST *vbn)
1479 {
1480 int err;
1481 size_t bit;
1482 u64 data_size;
1483 u64 bmp_size, bmp_size_v;
1484 struct ATTRIB *bmp, *alloc;
1485 struct mft_inode *mi;
1486 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1487
1488 err = indx_find_free(indx, ni, &bit, &bmp);
1489 if (err)
1490 goto out1;
1491
1492 if (bit != MINUS_ONE_T) {
1493 bmp = NULL;
1494 } else {
1495 if (bmp->non_res) {
1496 bmp_size = le64_to_cpu(bmp->nres.data_size);
1497 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1498 } else {
1499 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1500 }
1501
1502 bit = bmp_size << 3;
1503 }
1504
1505 data_size = (u64)(bit + 1) << indx->index_bits;
1506
1507 if (bmp) {
1508 /* Increase bitmap. */
1509 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1510 &indx->bitmap_run, bitmap_size(bit + 1),
1511 NULL, true, NULL);
1512 if (err)
1513 goto out1;
1514 }
1515
1516 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1517 NULL, &mi);
1518 if (!alloc) {
1519 err = -EINVAL;
1520 if (bmp)
1521 goto out2;
1522 goto out1;
1523 }
1524
1525 /* Increase allocation. */
1526 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1527 &indx->alloc_run, data_size, &data_size, true,
1528 NULL);
1529 if (err) {
1530 if (bmp)
1531 goto out2;
1532 goto out1;
1533 }
1534
1535 *vbn = bit << indx->idx2vbn_bits;
1536
1537 return 0;
1538
1539 out2:
1540 /* Ops. No space? */
1541 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1542 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1543
1544 out1:
1545 return err;
1546 }
1547
1548 /*
1549 * indx_insert_into_root - Attempt to insert an entry into the index root.
1550 *
1551 * @undo - True if we undoing previous remove.
1552 * If necessary, it will twiddle the index b-tree.
1553 */
indx_insert_into_root(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,struct NTFS_DE * root_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1554 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1555 const struct NTFS_DE *new_de,
1556 struct NTFS_DE *root_de, const void *ctx,
1557 struct ntfs_fnd *fnd, bool undo)
1558 {
1559 int err = 0;
1560 struct NTFS_DE *e, *e0, *re;
1561 struct mft_inode *mi;
1562 struct ATTRIB *attr;
1563 struct INDEX_HDR *hdr;
1564 struct indx_node *n;
1565 CLST new_vbn;
1566 __le64 *sub_vbn, t_vbn;
1567 u16 new_de_size;
1568 u32 hdr_used, hdr_total, asize, to_move;
1569 u32 root_size, new_root_size;
1570 struct ntfs_sb_info *sbi;
1571 int ds_root;
1572 struct INDEX_ROOT *root, *a_root;
1573
1574 /* Get the record this root placed in. */
1575 root = indx_get_root(indx, ni, &attr, &mi);
1576 if (!root)
1577 return -EINVAL;
1578
1579 /*
1580 * Try easy case:
1581 * hdr_insert_de will succeed if there's
1582 * room the root for the new entry.
1583 */
1584 hdr = &root->ihdr;
1585 sbi = ni->mi.sbi;
1586 new_de_size = le16_to_cpu(new_de->size);
1587 hdr_used = le32_to_cpu(hdr->used);
1588 hdr_total = le32_to_cpu(hdr->total);
1589 asize = le32_to_cpu(attr->size);
1590 root_size = le32_to_cpu(attr->res.data_size);
1591
1592 ds_root = new_de_size + hdr_used - hdr_total;
1593
1594 /* If 'undo' is set then reduce requirements. */
1595 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1596 mi_resize_attr(mi, attr, ds_root)) {
1597 hdr->total = cpu_to_le32(hdr_total + ds_root);
1598 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1599 WARN_ON(!e);
1600 fnd_clear(fnd);
1601 fnd->root_de = e;
1602
1603 return 0;
1604 }
1605
1606 /* Make a copy of root attribute to restore if error. */
1607 a_root = kmemdup(attr, asize, GFP_NOFS);
1608 if (!a_root)
1609 return -ENOMEM;
1610
1611 /*
1612 * Copy all the non-end entries from
1613 * the index root to the new buffer.
1614 */
1615 to_move = 0;
1616 e0 = hdr_first_de(hdr);
1617
1618 /* Calculate the size to copy. */
1619 for (e = e0;; e = hdr_next_de(hdr, e)) {
1620 if (!e) {
1621 err = -EINVAL;
1622 goto out_free_root;
1623 }
1624
1625 if (de_is_last(e))
1626 break;
1627 to_move += le16_to_cpu(e->size);
1628 }
1629
1630 if (!to_move) {
1631 re = NULL;
1632 } else {
1633 re = kmemdup(e0, to_move, GFP_NOFS);
1634 if (!re) {
1635 err = -ENOMEM;
1636 goto out_free_root;
1637 }
1638 }
1639
1640 sub_vbn = NULL;
1641 if (de_has_vcn(e)) {
1642 t_vbn = de_get_vbn_le(e);
1643 sub_vbn = &t_vbn;
1644 }
1645
1646 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1647 sizeof(u64);
1648 ds_root = new_root_size - root_size;
1649
1650 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1651 /* Make root external. */
1652 err = -EOPNOTSUPP;
1653 goto out_free_re;
1654 }
1655
1656 if (ds_root)
1657 mi_resize_attr(mi, attr, ds_root);
1658
1659 /* Fill first entry (vcn will be set later). */
1660 e = (struct NTFS_DE *)(root + 1);
1661 memset(e, 0, sizeof(struct NTFS_DE));
1662 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1663 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1664
1665 hdr->flags = 1;
1666 hdr->used = hdr->total =
1667 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1668
1669 fnd->root_de = hdr_first_de(hdr);
1670 mi->dirty = true;
1671
1672 /* Create alloc and bitmap attributes (if not). */
1673 err = run_is_empty(&indx->alloc_run)
1674 ? indx_create_allocate(indx, ni, &new_vbn)
1675 : indx_add_allocate(indx, ni, &new_vbn);
1676
1677 /* Layout of record may be changed, so rescan root. */
1678 root = indx_get_root(indx, ni, &attr, &mi);
1679 if (!root) {
1680 /* Bug? */
1681 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1682 err = -EINVAL;
1683 goto out_free_re;
1684 }
1685
1686 if (err) {
1687 /* Restore root. */
1688 if (mi_resize_attr(mi, attr, -ds_root)) {
1689 memcpy(attr, a_root, asize);
1690 } else {
1691 /* Bug? */
1692 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1693 }
1694 goto out_free_re;
1695 }
1696
1697 e = (struct NTFS_DE *)(root + 1);
1698 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1699 mi->dirty = true;
1700
1701 /* Now we can create/format the new buffer and copy the entries into. */
1702 n = indx_new(indx, ni, new_vbn, sub_vbn);
1703 if (IS_ERR(n)) {
1704 err = PTR_ERR(n);
1705 goto out_free_re;
1706 }
1707
1708 hdr = &n->index->ihdr;
1709 hdr_used = le32_to_cpu(hdr->used);
1710 hdr_total = le32_to_cpu(hdr->total);
1711
1712 /* Copy root entries into new buffer. */
1713 hdr_insert_head(hdr, re, to_move);
1714
1715 /* Update bitmap attribute. */
1716 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1717
1718 /* Check if we can insert new entry new index buffer. */
1719 if (hdr_used + new_de_size > hdr_total) {
1720 /*
1721 * This occurs if MFT record is the same or bigger than index
1722 * buffer. Move all root new index and have no space to add
1723 * new entry classic case when MFT record is 1K and index
1724 * buffer 4K the problem should not occurs.
1725 */
1726 kfree(re);
1727 indx_write(indx, ni, n, 0);
1728
1729 put_indx_node(n);
1730 fnd_clear(fnd);
1731 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1732 goto out_free_root;
1733 }
1734
1735 /*
1736 * Now root is a parent for new index buffer.
1737 * Insert NewEntry a new buffer.
1738 */
1739 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1740 if (!e) {
1741 err = -EINVAL;
1742 goto out_put_n;
1743 }
1744 fnd_push(fnd, n, e);
1745
1746 /* Just write updates index into disk. */
1747 indx_write(indx, ni, n, 0);
1748
1749 n = NULL;
1750
1751 out_put_n:
1752 put_indx_node(n);
1753 out_free_re:
1754 kfree(re);
1755 out_free_root:
1756 kfree(a_root);
1757 return err;
1758 }
1759
1760 /*
1761 * indx_insert_into_buffer
1762 *
1763 * Attempt to insert an entry into an Index Allocation Buffer.
1764 * If necessary, it will split the buffer.
1765 */
1766 static int
indx_insert_into_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,struct INDEX_ROOT * root,const struct NTFS_DE * new_de,const void * ctx,int level,struct ntfs_fnd * fnd)1767 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1768 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1769 const void *ctx, int level, struct ntfs_fnd *fnd)
1770 {
1771 int err;
1772 const struct NTFS_DE *sp;
1773 struct NTFS_DE *e, *de_t, *up_e;
1774 struct indx_node *n2;
1775 struct indx_node *n1 = fnd->nodes[level];
1776 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1777 struct INDEX_HDR *hdr2;
1778 u32 to_copy, used;
1779 CLST new_vbn;
1780 __le64 t_vbn, *sub_vbn;
1781 u16 sp_size;
1782
1783 /* Try the most easy case. */
1784 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1785 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1786 fnd->de[level] = e;
1787 if (e) {
1788 /* Just write updated index into disk. */
1789 indx_write(indx, ni, n1, 0);
1790 return 0;
1791 }
1792
1793 /*
1794 * No space to insert into buffer. Split it.
1795 * To split we:
1796 * - Save split point ('cause index buffers will be changed)
1797 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1798 * - Remove all entries (sp including) from TargetBuffer
1799 * - Insert NewEntry into left or right buffer (depending on sp <=>
1800 * NewEntry)
1801 * - Insert sp into parent buffer (or root)
1802 * - Make sp a parent for new buffer
1803 */
1804 sp = hdr_find_split(hdr1);
1805 if (!sp)
1806 return -EINVAL;
1807
1808 sp_size = le16_to_cpu(sp->size);
1809 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1810 if (!up_e)
1811 return -ENOMEM;
1812 memcpy(up_e, sp, sp_size);
1813
1814 if (!hdr1->flags) {
1815 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1816 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1817 sub_vbn = NULL;
1818 } else {
1819 t_vbn = de_get_vbn_le(up_e);
1820 sub_vbn = &t_vbn;
1821 }
1822
1823 /* Allocate on disk a new index allocation buffer. */
1824 err = indx_add_allocate(indx, ni, &new_vbn);
1825 if (err)
1826 goto out;
1827
1828 /* Allocate and format memory a new index buffer. */
1829 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1830 if (IS_ERR(n2)) {
1831 err = PTR_ERR(n2);
1832 goto out;
1833 }
1834
1835 hdr2 = &n2->index->ihdr;
1836
1837 /* Make sp a parent for new buffer. */
1838 de_set_vbn(up_e, new_vbn);
1839
1840 /* Copy all the entries <= sp into the new buffer. */
1841 de_t = hdr_first_de(hdr1);
1842 to_copy = PtrOffset(de_t, sp);
1843 hdr_insert_head(hdr2, de_t, to_copy);
1844
1845 /* Remove all entries (sp including) from hdr1. */
1846 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1847 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1848 hdr1->used = cpu_to_le32(used);
1849
1850 /*
1851 * Insert new entry into left or right buffer
1852 * (depending on sp <=> new_de).
1853 */
1854 hdr_insert_de(indx,
1855 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1856 up_e + 1, le16_to_cpu(up_e->key_size),
1857 ctx) < 0
1858 ? hdr2
1859 : hdr1,
1860 new_de, NULL, ctx);
1861
1862 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1863
1864 indx_write(indx, ni, n1, 0);
1865 indx_write(indx, ni, n2, 0);
1866
1867 put_indx_node(n2);
1868
1869 /*
1870 * We've finished splitting everybody, so we are ready to
1871 * insert the promoted entry into the parent.
1872 */
1873 if (!level) {
1874 /* Insert in root. */
1875 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1876 if (err)
1877 goto out;
1878 } else {
1879 /*
1880 * The target buffer's parent is another index buffer.
1881 * TODO: Remove recursion.
1882 */
1883 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1884 level - 1, fnd);
1885 if (err)
1886 goto out;
1887 }
1888
1889 out:
1890 kfree(up_e);
1891
1892 return err;
1893 }
1894
1895 /*
1896 * indx_insert_entry - Insert new entry into index.
1897 *
1898 * @undo - True if we undoing previous remove.
1899 */
indx_insert_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * new_de,const void * ctx,struct ntfs_fnd * fnd,bool undo)1900 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1901 const struct NTFS_DE *new_de, const void *ctx,
1902 struct ntfs_fnd *fnd, bool undo)
1903 {
1904 int err;
1905 int diff;
1906 struct NTFS_DE *e;
1907 struct ntfs_fnd *fnd_a = NULL;
1908 struct INDEX_ROOT *root;
1909
1910 if (!fnd) {
1911 fnd_a = fnd_get();
1912 if (!fnd_a) {
1913 err = -ENOMEM;
1914 goto out1;
1915 }
1916 fnd = fnd_a;
1917 }
1918
1919 root = indx_get_root(indx, ni, NULL, NULL);
1920 if (!root) {
1921 err = -EINVAL;
1922 goto out;
1923 }
1924
1925 if (fnd_is_empty(fnd)) {
1926 /*
1927 * Find the spot the tree where we want to
1928 * insert the new entry.
1929 */
1930 err = indx_find(indx, ni, root, new_de + 1,
1931 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1932 fnd);
1933 if (err)
1934 goto out;
1935
1936 if (!diff) {
1937 err = -EEXIST;
1938 goto out;
1939 }
1940 }
1941
1942 if (!fnd->level) {
1943 /*
1944 * The root is also a leaf, so we'll insert the
1945 * new entry into it.
1946 */
1947 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1948 fnd, undo);
1949 if (err)
1950 goto out;
1951 } else {
1952 /*
1953 * Found a leaf buffer, so we'll insert the new entry into it.
1954 */
1955 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1956 fnd->level - 1, fnd);
1957 if (err)
1958 goto out;
1959 }
1960
1961 out:
1962 fnd_put(fnd_a);
1963 out1:
1964 return err;
1965 }
1966
1967 /*
1968 * indx_find_buffer - Locate a buffer from the tree.
1969 */
indx_find_buffer(struct ntfs_index * indx,struct ntfs_inode * ni,const struct INDEX_ROOT * root,__le64 vbn,struct indx_node * n)1970 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1971 struct ntfs_inode *ni,
1972 const struct INDEX_ROOT *root,
1973 __le64 vbn, struct indx_node *n)
1974 {
1975 int err;
1976 const struct NTFS_DE *e;
1977 struct indx_node *r;
1978 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1979
1980 /* Step 1: Scan one level. */
1981 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1982 if (!e)
1983 return ERR_PTR(-EINVAL);
1984
1985 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1986 return n;
1987
1988 if (de_is_last(e))
1989 break;
1990 }
1991
1992 /* Step2: Do recursion. */
1993 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1994 for (;;) {
1995 if (de_has_vcn_ex(e)) {
1996 err = indx_read(indx, ni, de_get_vbn(e), &n);
1997 if (err)
1998 return ERR_PTR(err);
1999
2000 r = indx_find_buffer(indx, ni, root, vbn, n);
2001 if (r)
2002 return r;
2003 }
2004
2005 if (de_is_last(e))
2006 break;
2007
2008 e = Add2Ptr(e, le16_to_cpu(e->size));
2009 }
2010
2011 return NULL;
2012 }
2013
2014 /*
2015 * indx_shrink - Deallocate unused tail indexes.
2016 */
indx_shrink(struct ntfs_index * indx,struct ntfs_inode * ni,size_t bit)2017 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2018 size_t bit)
2019 {
2020 int err = 0;
2021 u64 bpb, new_data;
2022 size_t nbits;
2023 struct ATTRIB *b;
2024 struct ATTR_LIST_ENTRY *le = NULL;
2025 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2026
2027 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2028 NULL, NULL);
2029
2030 if (!b)
2031 return -ENOENT;
2032
2033 if (!b->non_res) {
2034 unsigned long pos;
2035 const unsigned long *bm = resident_data(b);
2036
2037 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2038
2039 if (bit >= nbits)
2040 return 0;
2041
2042 pos = find_next_bit(bm, nbits, bit);
2043 if (pos < nbits)
2044 return 0;
2045 } else {
2046 size_t used = MINUS_ONE_T;
2047
2048 nbits = le64_to_cpu(b->nres.data_size) * 8;
2049
2050 if (bit >= nbits)
2051 return 0;
2052
2053 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2054 if (err)
2055 return err;
2056
2057 if (used != MINUS_ONE_T)
2058 return 0;
2059 }
2060
2061 new_data = (u64)bit << indx->index_bits;
2062
2063 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2064 &indx->alloc_run, new_data, &new_data, false, NULL);
2065 if (err)
2066 return err;
2067
2068 bpb = bitmap_size(bit);
2069 if (bpb * 8 == nbits)
2070 return 0;
2071
2072 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2073 &indx->bitmap_run, bpb, &bpb, false, NULL);
2074
2075 return err;
2076 }
2077
indx_free_children(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * e,bool trim)2078 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2079 const struct NTFS_DE *e, bool trim)
2080 {
2081 int err;
2082 struct indx_node *n = NULL;
2083 struct INDEX_HDR *hdr;
2084 CLST vbn = de_get_vbn(e);
2085 size_t i;
2086
2087 err = indx_read(indx, ni, vbn, &n);
2088 if (err)
2089 return err;
2090
2091 hdr = &n->index->ihdr;
2092 /* First, recurse into the children, if any. */
2093 if (hdr_has_subnode(hdr)) {
2094 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2095 indx_free_children(indx, ni, e, false);
2096 if (de_is_last(e))
2097 break;
2098 }
2099 }
2100
2101 put_indx_node(n);
2102
2103 i = vbn >> indx->idx2vbn_bits;
2104 /*
2105 * We've gotten rid of the children; add this buffer to the free list.
2106 */
2107 indx_mark_free(indx, ni, i);
2108
2109 if (!trim)
2110 return 0;
2111
2112 /*
2113 * If there are no used indexes after current free index
2114 * then we can truncate allocation and bitmap.
2115 * Use bitmap to estimate the case.
2116 */
2117 indx_shrink(indx, ni, i + 1);
2118 return 0;
2119 }
2120
2121 /*
2122 * indx_get_entry_to_replace
2123 *
2124 * Find a replacement entry for a deleted entry.
2125 * Always returns a node entry:
2126 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2127 */
indx_get_entry_to_replace(struct ntfs_index * indx,struct ntfs_inode * ni,const struct NTFS_DE * de_next,struct NTFS_DE ** de_to_replace,struct ntfs_fnd * fnd)2128 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2129 struct ntfs_inode *ni,
2130 const struct NTFS_DE *de_next,
2131 struct NTFS_DE **de_to_replace,
2132 struct ntfs_fnd *fnd)
2133 {
2134 int err;
2135 int level = -1;
2136 CLST vbn;
2137 struct NTFS_DE *e, *te, *re;
2138 struct indx_node *n;
2139 struct INDEX_BUFFER *ib;
2140
2141 *de_to_replace = NULL;
2142
2143 /* Find first leaf entry down from de_next. */
2144 vbn = de_get_vbn(de_next);
2145 for (;;) {
2146 n = NULL;
2147 err = indx_read(indx, ni, vbn, &n);
2148 if (err)
2149 goto out;
2150
2151 e = hdr_first_de(&n->index->ihdr);
2152 fnd_push(fnd, n, e);
2153
2154 if (!de_is_last(e)) {
2155 /*
2156 * This buffer is non-empty, so its first entry
2157 * could be used as the replacement entry.
2158 */
2159 level = fnd->level - 1;
2160 }
2161
2162 if (!de_has_vcn(e))
2163 break;
2164
2165 /* This buffer is a node. Continue to go down. */
2166 vbn = de_get_vbn(e);
2167 }
2168
2169 if (level == -1)
2170 goto out;
2171
2172 n = fnd->nodes[level];
2173 te = hdr_first_de(&n->index->ihdr);
2174 /* Copy the candidate entry into the replacement entry buffer. */
2175 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2176 if (!re) {
2177 err = -ENOMEM;
2178 goto out;
2179 }
2180
2181 *de_to_replace = re;
2182 memcpy(re, te, le16_to_cpu(te->size));
2183
2184 if (!de_has_vcn(re)) {
2185 /*
2186 * The replacement entry we found doesn't have a sub_vcn.
2187 * increase its size to hold one.
2188 */
2189 le16_add_cpu(&re->size, sizeof(u64));
2190 re->flags |= NTFS_IE_HAS_SUBNODES;
2191 } else {
2192 /*
2193 * The replacement entry we found was a node entry, which
2194 * means that all its child buffers are empty. Return them
2195 * to the free pool.
2196 */
2197 indx_free_children(indx, ni, te, true);
2198 }
2199
2200 /*
2201 * Expunge the replacement entry from its former location,
2202 * and then write that buffer.
2203 */
2204 ib = n->index;
2205 e = hdr_delete_de(&ib->ihdr, te);
2206
2207 fnd->de[level] = e;
2208 indx_write(indx, ni, n, 0);
2209
2210 /* Check to see if this action created an empty leaf. */
2211 if (ib_is_leaf(ib) && ib_is_empty(ib))
2212 return 0;
2213
2214 out:
2215 fnd_clear(fnd);
2216 return err;
2217 }
2218
2219 /*
2220 * indx_delete_entry - Delete an entry from the index.
2221 */
indx_delete_entry(struct ntfs_index * indx,struct ntfs_inode * ni,const void * key,u32 key_len,const void * ctx)2222 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2223 const void *key, u32 key_len, const void *ctx)
2224 {
2225 int err, diff;
2226 struct INDEX_ROOT *root;
2227 struct INDEX_HDR *hdr;
2228 struct ntfs_fnd *fnd, *fnd2;
2229 struct INDEX_BUFFER *ib;
2230 struct NTFS_DE *e, *re, *next, *prev, *me;
2231 struct indx_node *n, *n2d = NULL;
2232 __le64 sub_vbn;
2233 int level, level2;
2234 struct ATTRIB *attr;
2235 struct mft_inode *mi;
2236 u32 e_size, root_size, new_root_size;
2237 size_t trim_bit;
2238 const struct INDEX_NAMES *in;
2239
2240 fnd = fnd_get();
2241 if (!fnd) {
2242 err = -ENOMEM;
2243 goto out2;
2244 }
2245
2246 fnd2 = fnd_get();
2247 if (!fnd2) {
2248 err = -ENOMEM;
2249 goto out1;
2250 }
2251
2252 root = indx_get_root(indx, ni, &attr, &mi);
2253 if (!root) {
2254 err = -EINVAL;
2255 goto out;
2256 }
2257
2258 /* Locate the entry to remove. */
2259 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2260 if (err)
2261 goto out;
2262
2263 if (!e || diff) {
2264 err = -ENOENT;
2265 goto out;
2266 }
2267
2268 level = fnd->level;
2269
2270 if (level) {
2271 n = fnd->nodes[level - 1];
2272 e = fnd->de[level - 1];
2273 ib = n->index;
2274 hdr = &ib->ihdr;
2275 } else {
2276 hdr = &root->ihdr;
2277 e = fnd->root_de;
2278 n = NULL;
2279 }
2280
2281 e_size = le16_to_cpu(e->size);
2282
2283 if (!de_has_vcn_ex(e)) {
2284 /* The entry to delete is a leaf, so we can just rip it out. */
2285 hdr_delete_de(hdr, e);
2286
2287 if (!level) {
2288 hdr->total = hdr->used;
2289
2290 /* Shrink resident root attribute. */
2291 mi_resize_attr(mi, attr, 0 - e_size);
2292 goto out;
2293 }
2294
2295 indx_write(indx, ni, n, 0);
2296
2297 /*
2298 * Check to see if removing that entry made
2299 * the leaf empty.
2300 */
2301 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2302 fnd_pop(fnd);
2303 fnd_push(fnd2, n, e);
2304 }
2305 } else {
2306 /*
2307 * The entry we wish to delete is a node buffer, so we
2308 * have to find a replacement for it.
2309 */
2310 next = de_get_next(e);
2311
2312 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2313 if (err)
2314 goto out;
2315
2316 if (re) {
2317 de_set_vbn_le(re, de_get_vbn_le(e));
2318 hdr_delete_de(hdr, e);
2319
2320 err = level ? indx_insert_into_buffer(indx, ni, root,
2321 re, ctx,
2322 fnd->level - 1,
2323 fnd)
2324 : indx_insert_into_root(indx, ni, re, e,
2325 ctx, fnd, 0);
2326 kfree(re);
2327
2328 if (err)
2329 goto out;
2330 } else {
2331 /*
2332 * There is no replacement for the current entry.
2333 * This means that the subtree rooted at its node
2334 * is empty, and can be deleted, which turn means
2335 * that the node can just inherit the deleted
2336 * entry sub_vcn.
2337 */
2338 indx_free_children(indx, ni, next, true);
2339
2340 de_set_vbn_le(next, de_get_vbn_le(e));
2341 hdr_delete_de(hdr, e);
2342 if (level) {
2343 indx_write(indx, ni, n, 0);
2344 } else {
2345 hdr->total = hdr->used;
2346
2347 /* Shrink resident root attribute. */
2348 mi_resize_attr(mi, attr, 0 - e_size);
2349 }
2350 }
2351 }
2352
2353 /* Delete a branch of tree. */
2354 if (!fnd2 || !fnd2->level)
2355 goto out;
2356
2357 /* Reinit root 'cause it can be changed. */
2358 root = indx_get_root(indx, ni, &attr, &mi);
2359 if (!root) {
2360 err = -EINVAL;
2361 goto out;
2362 }
2363
2364 n2d = NULL;
2365 sub_vbn = fnd2->nodes[0]->index->vbn;
2366 level2 = 0;
2367 level = fnd->level;
2368
2369 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2370
2371 /* Scan current level. */
2372 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2373 if (!e) {
2374 err = -EINVAL;
2375 goto out;
2376 }
2377
2378 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2379 break;
2380
2381 if (de_is_last(e)) {
2382 e = NULL;
2383 break;
2384 }
2385 }
2386
2387 if (!e) {
2388 /* Do slow search from root. */
2389 struct indx_node *in;
2390
2391 fnd_clear(fnd);
2392
2393 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2394 if (IS_ERR(in)) {
2395 err = PTR_ERR(in);
2396 goto out;
2397 }
2398
2399 if (in)
2400 fnd_push(fnd, in, NULL);
2401 }
2402
2403 /* Merge fnd2 -> fnd. */
2404 for (level = 0; level < fnd2->level; level++) {
2405 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2406 fnd2->nodes[level] = NULL;
2407 }
2408 fnd2->level = 0;
2409
2410 hdr = NULL;
2411 for (level = fnd->level; level; level--) {
2412 struct indx_node *in = fnd->nodes[level - 1];
2413
2414 ib = in->index;
2415 if (ib_is_empty(ib)) {
2416 sub_vbn = ib->vbn;
2417 } else {
2418 hdr = &ib->ihdr;
2419 n2d = in;
2420 level2 = level;
2421 break;
2422 }
2423 }
2424
2425 if (!hdr)
2426 hdr = &root->ihdr;
2427
2428 e = hdr_first_de(hdr);
2429 if (!e) {
2430 err = -EINVAL;
2431 goto out;
2432 }
2433
2434 if (hdr != &root->ihdr || !de_is_last(e)) {
2435 prev = NULL;
2436 while (!de_is_last(e)) {
2437 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2438 break;
2439 prev = e;
2440 e = hdr_next_de(hdr, e);
2441 if (!e) {
2442 err = -EINVAL;
2443 goto out;
2444 }
2445 }
2446
2447 if (sub_vbn != de_get_vbn_le(e)) {
2448 /*
2449 * Didn't find the parent entry, although this buffer
2450 * is the parent trail. Something is corrupt.
2451 */
2452 err = -EINVAL;
2453 goto out;
2454 }
2455
2456 if (de_is_last(e)) {
2457 /*
2458 * Since we can't remove the end entry, we'll remove
2459 * its predecessor instead. This means we have to
2460 * transfer the predecessor's sub_vcn to the end entry.
2461 * Note: This index block is not empty, so the
2462 * predecessor must exist.
2463 */
2464 if (!prev) {
2465 err = -EINVAL;
2466 goto out;
2467 }
2468
2469 if (de_has_vcn(prev)) {
2470 de_set_vbn_le(e, de_get_vbn_le(prev));
2471 } else if (de_has_vcn(e)) {
2472 le16_sub_cpu(&e->size, sizeof(u64));
2473 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2474 le32_sub_cpu(&hdr->used, sizeof(u64));
2475 }
2476 e = prev;
2477 }
2478
2479 /*
2480 * Copy the current entry into a temporary buffer (stripping
2481 * off its down-pointer, if any) and delete it from the current
2482 * buffer or root, as appropriate.
2483 */
2484 e_size = le16_to_cpu(e->size);
2485 me = kmemdup(e, e_size, GFP_NOFS);
2486 if (!me) {
2487 err = -ENOMEM;
2488 goto out;
2489 }
2490
2491 if (de_has_vcn(me)) {
2492 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2493 le16_sub_cpu(&me->size, sizeof(u64));
2494 }
2495
2496 hdr_delete_de(hdr, e);
2497
2498 if (hdr == &root->ihdr) {
2499 level = 0;
2500 hdr->total = hdr->used;
2501
2502 /* Shrink resident root attribute. */
2503 mi_resize_attr(mi, attr, 0 - e_size);
2504 } else {
2505 indx_write(indx, ni, n2d, 0);
2506 level = level2;
2507 }
2508
2509 /* Mark unused buffers as free. */
2510 trim_bit = -1;
2511 for (; level < fnd->level; level++) {
2512 ib = fnd->nodes[level]->index;
2513 if (ib_is_empty(ib)) {
2514 size_t k = le64_to_cpu(ib->vbn) >>
2515 indx->idx2vbn_bits;
2516
2517 indx_mark_free(indx, ni, k);
2518 if (k < trim_bit)
2519 trim_bit = k;
2520 }
2521 }
2522
2523 fnd_clear(fnd);
2524 /*fnd->root_de = NULL;*/
2525
2526 /*
2527 * Re-insert the entry into the tree.
2528 * Find the spot the tree where we want to insert the new entry.
2529 */
2530 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2531 kfree(me);
2532 if (err)
2533 goto out;
2534
2535 if (trim_bit != -1)
2536 indx_shrink(indx, ni, trim_bit);
2537 } else {
2538 /*
2539 * This tree needs to be collapsed down to an empty root.
2540 * Recreate the index root as an empty leaf and free all
2541 * the bits the index allocation bitmap.
2542 */
2543 fnd_clear(fnd);
2544 fnd_clear(fnd2);
2545
2546 in = &s_index_names[indx->type];
2547
2548 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2549 &indx->alloc_run, 0, NULL, false, NULL);
2550 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2551 false, NULL);
2552 run_close(&indx->alloc_run);
2553
2554 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2555 &indx->bitmap_run, 0, NULL, false, NULL);
2556 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2557 false, NULL);
2558 run_close(&indx->bitmap_run);
2559
2560 root = indx_get_root(indx, ni, &attr, &mi);
2561 if (!root) {
2562 err = -EINVAL;
2563 goto out;
2564 }
2565
2566 root_size = le32_to_cpu(attr->res.data_size);
2567 new_root_size =
2568 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2569
2570 if (new_root_size != root_size &&
2571 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2572 err = -EINVAL;
2573 goto out;
2574 }
2575
2576 /* Fill first entry. */
2577 e = (struct NTFS_DE *)(root + 1);
2578 e->ref.low = 0;
2579 e->ref.high = 0;
2580 e->ref.seq = 0;
2581 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2582 e->flags = NTFS_IE_LAST; // 0x02
2583 e->key_size = 0;
2584 e->res = 0;
2585
2586 hdr = &root->ihdr;
2587 hdr->flags = 0;
2588 hdr->used = hdr->total = cpu_to_le32(
2589 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2590 mi->dirty = true;
2591 }
2592
2593 out:
2594 fnd_put(fnd2);
2595 out1:
2596 fnd_put(fnd);
2597 out2:
2598 return err;
2599 }
2600
2601 /*
2602 * Update duplicated information in directory entry
2603 * 'dup' - info from MFT record
2604 */
indx_update_dup(struct ntfs_inode * ni,struct ntfs_sb_info * sbi,const struct ATTR_FILE_NAME * fname,const struct NTFS_DUP_INFO * dup,int sync)2605 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2606 const struct ATTR_FILE_NAME *fname,
2607 const struct NTFS_DUP_INFO *dup, int sync)
2608 {
2609 int err, diff;
2610 struct NTFS_DE *e = NULL;
2611 struct ATTR_FILE_NAME *e_fname;
2612 struct ntfs_fnd *fnd;
2613 struct INDEX_ROOT *root;
2614 struct mft_inode *mi;
2615 struct ntfs_index *indx = &ni->dir;
2616
2617 fnd = fnd_get();
2618 if (!fnd)
2619 return -ENOMEM;
2620
2621 root = indx_get_root(indx, ni, NULL, &mi);
2622 if (!root) {
2623 err = -EINVAL;
2624 goto out;
2625 }
2626
2627 /* Find entry in directory. */
2628 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2629 &diff, &e, fnd);
2630 if (err)
2631 goto out;
2632
2633 if (!e) {
2634 err = -EINVAL;
2635 goto out;
2636 }
2637
2638 if (diff) {
2639 err = -EINVAL;
2640 goto out;
2641 }
2642
2643 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2644
2645 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2646 /*
2647 * Nothing to update in index! Try to avoid this call.
2648 */
2649 goto out;
2650 }
2651
2652 memcpy(&e_fname->dup, dup, sizeof(*dup));
2653
2654 if (fnd->level) {
2655 /* Directory entry in index. */
2656 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2657 } else {
2658 /* Directory entry in directory MFT record. */
2659 mi->dirty = true;
2660 if (sync)
2661 err = mi_write(mi, 1);
2662 else
2663 mark_inode_dirty(&ni->vfs_inode);
2664 }
2665
2666 out:
2667 fnd_put(fnd);
2668 return err;
2669 }
2670