1 /*
2 * Copyright © 2006 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drm_edid.h>
29 #include <drm/display/drm_dp_helper.h>
30 #include <drm/display/drm_dsc_helper.h>
31
32 #include "display/intel_display.h"
33 #include "display/intel_display_types.h"
34 #include "display/intel_gmbus.h"
35
36 #include "i915_drv.h"
37 #include "i915_reg.h"
38
39 #define _INTEL_BIOS_PRIVATE
40 #include "intel_vbt_defs.h"
41
42 /**
43 * DOC: Video BIOS Table (VBT)
44 *
45 * The Video BIOS Table, or VBT, provides platform and board specific
46 * configuration information to the driver that is not discoverable or available
47 * through other means. The configuration is mostly related to display
48 * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
49 * the PCI ROM.
50 *
51 * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
52 * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
53 * contain the actual configuration information. The VBT Header, and thus the
54 * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
55 * BDB Header. The data blocks are concatenated after the BDB Header. The data
56 * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
57 * data. (Block 53, the MIPI Sequence Block is an exception.)
58 *
59 * The driver parses the VBT during load. The relevant information is stored in
60 * driver private data for ease of use, and the actual VBT is not read after
61 * that.
62 */
63
64 /* Wrapper for VBT child device config */
65 struct intel_bios_encoder_data {
66 struct drm_i915_private *i915;
67
68 struct child_device_config child;
69 struct dsc_compression_parameters_entry *dsc;
70 struct list_head node;
71 };
72
73 #define SLAVE_ADDR1 0x70
74 #define SLAVE_ADDR2 0x72
75
76 /* Get BDB block size given a pointer to Block ID. */
_get_blocksize(const u8 * block_base)77 static u32 _get_blocksize(const u8 *block_base)
78 {
79 /* The MIPI Sequence Block v3+ has a separate size field. */
80 if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
81 return *((const u32 *)(block_base + 4));
82 else
83 return *((const u16 *)(block_base + 1));
84 }
85
86 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
get_blocksize(const void * block_data)87 static u32 get_blocksize(const void *block_data)
88 {
89 return _get_blocksize(block_data - 3);
90 }
91
92 static const void *
find_raw_section(const void * _bdb,enum bdb_block_id section_id)93 find_raw_section(const void *_bdb, enum bdb_block_id section_id)
94 {
95 const struct bdb_header *bdb = _bdb;
96 const u8 *base = _bdb;
97 int index = 0;
98 u32 total, current_size;
99 enum bdb_block_id current_id;
100
101 /* skip to first section */
102 index += bdb->header_size;
103 total = bdb->bdb_size;
104
105 /* walk the sections looking for section_id */
106 while (index + 3 < total) {
107 current_id = *(base + index);
108 current_size = _get_blocksize(base + index);
109 index += 3;
110
111 if (index + current_size > total)
112 return NULL;
113
114 if (current_id == section_id)
115 return base + index;
116
117 index += current_size;
118 }
119
120 return NULL;
121 }
122
123 /*
124 * Offset from the start of BDB to the start of the
125 * block data (just past the block header).
126 */
raw_block_offset(const void * bdb,enum bdb_block_id section_id)127 static u32 raw_block_offset(const void *bdb, enum bdb_block_id section_id)
128 {
129 const void *block;
130
131 block = find_raw_section(bdb, section_id);
132 if (!block)
133 return 0;
134
135 return block - bdb;
136 }
137
138 struct bdb_block_entry {
139 struct list_head node;
140 enum bdb_block_id section_id;
141 u8 data[];
142 };
143
144 static const void *
find_section(struct drm_i915_private * i915,enum bdb_block_id section_id)145 find_section(struct drm_i915_private *i915,
146 enum bdb_block_id section_id)
147 {
148 struct bdb_block_entry *entry;
149
150 list_for_each_entry(entry, &i915->display.vbt.bdb_blocks, node) {
151 if (entry->section_id == section_id)
152 return entry->data + 3;
153 }
154
155 return NULL;
156 }
157
158 static const struct {
159 enum bdb_block_id section_id;
160 size_t min_size;
161 } bdb_blocks[] = {
162 { .section_id = BDB_GENERAL_FEATURES,
163 .min_size = sizeof(struct bdb_general_features), },
164 { .section_id = BDB_GENERAL_DEFINITIONS,
165 .min_size = sizeof(struct bdb_general_definitions), },
166 { .section_id = BDB_PSR,
167 .min_size = sizeof(struct bdb_psr), },
168 { .section_id = BDB_DRIVER_FEATURES,
169 .min_size = sizeof(struct bdb_driver_features), },
170 { .section_id = BDB_SDVO_LVDS_OPTIONS,
171 .min_size = sizeof(struct bdb_sdvo_lvds_options), },
172 { .section_id = BDB_SDVO_PANEL_DTDS,
173 .min_size = sizeof(struct bdb_sdvo_panel_dtds), },
174 { .section_id = BDB_EDP,
175 .min_size = sizeof(struct bdb_edp), },
176 { .section_id = BDB_LVDS_OPTIONS,
177 .min_size = sizeof(struct bdb_lvds_options), },
178 /*
179 * BDB_LVDS_LFP_DATA depends on BDB_LVDS_LFP_DATA_PTRS,
180 * so keep the two ordered.
181 */
182 { .section_id = BDB_LVDS_LFP_DATA_PTRS,
183 .min_size = sizeof(struct bdb_lvds_lfp_data_ptrs), },
184 { .section_id = BDB_LVDS_LFP_DATA,
185 .min_size = 0, /* special case */ },
186 { .section_id = BDB_LVDS_BACKLIGHT,
187 .min_size = sizeof(struct bdb_lfp_backlight_data), },
188 { .section_id = BDB_LFP_POWER,
189 .min_size = sizeof(struct bdb_lfp_power), },
190 { .section_id = BDB_MIPI_CONFIG,
191 .min_size = sizeof(struct bdb_mipi_config), },
192 { .section_id = BDB_MIPI_SEQUENCE,
193 .min_size = sizeof(struct bdb_mipi_sequence) },
194 { .section_id = BDB_COMPRESSION_PARAMETERS,
195 .min_size = sizeof(struct bdb_compression_parameters), },
196 { .section_id = BDB_GENERIC_DTD,
197 .min_size = sizeof(struct bdb_generic_dtd), },
198 };
199
lfp_data_min_size(struct drm_i915_private * i915)200 static size_t lfp_data_min_size(struct drm_i915_private *i915)
201 {
202 const struct bdb_lvds_lfp_data_ptrs *ptrs;
203 size_t size;
204
205 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
206 if (!ptrs)
207 return 0;
208
209 size = sizeof(struct bdb_lvds_lfp_data);
210 if (ptrs->panel_name.table_size)
211 size = max(size, ptrs->panel_name.offset +
212 sizeof(struct bdb_lvds_lfp_data_tail));
213
214 return size;
215 }
216
validate_lfp_data_ptrs(const void * bdb,const struct bdb_lvds_lfp_data_ptrs * ptrs)217 static bool validate_lfp_data_ptrs(const void *bdb,
218 const struct bdb_lvds_lfp_data_ptrs *ptrs)
219 {
220 int fp_timing_size, dvo_timing_size, panel_pnp_id_size, panel_name_size;
221 int data_block_size, lfp_data_size;
222 const void *data_block;
223 int i;
224
225 data_block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
226 if (!data_block)
227 return false;
228
229 data_block_size = get_blocksize(data_block);
230 if (data_block_size == 0)
231 return false;
232
233 /* always 3 indicating the presence of fp_timing+dvo_timing+panel_pnp_id */
234 if (ptrs->lvds_entries != 3)
235 return false;
236
237 fp_timing_size = ptrs->ptr[0].fp_timing.table_size;
238 dvo_timing_size = ptrs->ptr[0].dvo_timing.table_size;
239 panel_pnp_id_size = ptrs->ptr[0].panel_pnp_id.table_size;
240 panel_name_size = ptrs->panel_name.table_size;
241
242 /* fp_timing has variable size */
243 if (fp_timing_size < 32 ||
244 dvo_timing_size != sizeof(struct lvds_dvo_timing) ||
245 panel_pnp_id_size != sizeof(struct lvds_pnp_id))
246 return false;
247
248 /* panel_name is not present in old VBTs */
249 if (panel_name_size != 0 &&
250 panel_name_size != sizeof(struct lvds_lfp_panel_name))
251 return false;
252
253 lfp_data_size = ptrs->ptr[1].fp_timing.offset - ptrs->ptr[0].fp_timing.offset;
254 if (16 * lfp_data_size > data_block_size)
255 return false;
256
257 /* make sure the table entries have uniform size */
258 for (i = 1; i < 16; i++) {
259 if (ptrs->ptr[i].fp_timing.table_size != fp_timing_size ||
260 ptrs->ptr[i].dvo_timing.table_size != dvo_timing_size ||
261 ptrs->ptr[i].panel_pnp_id.table_size != panel_pnp_id_size)
262 return false;
263
264 if (ptrs->ptr[i].fp_timing.offset - ptrs->ptr[i-1].fp_timing.offset != lfp_data_size ||
265 ptrs->ptr[i].dvo_timing.offset - ptrs->ptr[i-1].dvo_timing.offset != lfp_data_size ||
266 ptrs->ptr[i].panel_pnp_id.offset - ptrs->ptr[i-1].panel_pnp_id.offset != lfp_data_size)
267 return false;
268 }
269
270 /*
271 * Except for vlv/chv machines all real VBTs seem to have 6
272 * unaccounted bytes in the fp_timing table. And it doesn't
273 * appear to be a really intentional hole as the fp_timing
274 * 0xffff terminator is always within those 6 missing bytes.
275 */
276 if (fp_timing_size + 6 + dvo_timing_size + panel_pnp_id_size == lfp_data_size)
277 fp_timing_size += 6;
278
279 if (fp_timing_size + dvo_timing_size + panel_pnp_id_size != lfp_data_size)
280 return false;
281
282 if (ptrs->ptr[0].fp_timing.offset + fp_timing_size != ptrs->ptr[0].dvo_timing.offset ||
283 ptrs->ptr[0].dvo_timing.offset + dvo_timing_size != ptrs->ptr[0].panel_pnp_id.offset ||
284 ptrs->ptr[0].panel_pnp_id.offset + panel_pnp_id_size != lfp_data_size)
285 return false;
286
287 /* make sure the tables fit inside the data block */
288 for (i = 0; i < 16; i++) {
289 if (ptrs->ptr[i].fp_timing.offset + fp_timing_size > data_block_size ||
290 ptrs->ptr[i].dvo_timing.offset + dvo_timing_size > data_block_size ||
291 ptrs->ptr[i].panel_pnp_id.offset + panel_pnp_id_size > data_block_size)
292 return false;
293 }
294
295 if (ptrs->panel_name.offset + 16 * panel_name_size > data_block_size)
296 return false;
297
298 /* make sure fp_timing terminators are present at expected locations */
299 for (i = 0; i < 16; i++) {
300 const u16 *t = data_block + ptrs->ptr[i].fp_timing.offset +
301 fp_timing_size - 2;
302
303 if (*t != 0xffff)
304 return false;
305 }
306
307 return true;
308 }
309
310 /* make the data table offsets relative to the data block */
fixup_lfp_data_ptrs(const void * bdb,void * ptrs_block)311 static bool fixup_lfp_data_ptrs(const void *bdb, void *ptrs_block)
312 {
313 struct bdb_lvds_lfp_data_ptrs *ptrs = ptrs_block;
314 u32 offset;
315 int i;
316
317 offset = raw_block_offset(bdb, BDB_LVDS_LFP_DATA);
318
319 for (i = 0; i < 16; i++) {
320 if (ptrs->ptr[i].fp_timing.offset < offset ||
321 ptrs->ptr[i].dvo_timing.offset < offset ||
322 ptrs->ptr[i].panel_pnp_id.offset < offset)
323 return false;
324
325 ptrs->ptr[i].fp_timing.offset -= offset;
326 ptrs->ptr[i].dvo_timing.offset -= offset;
327 ptrs->ptr[i].panel_pnp_id.offset -= offset;
328 }
329
330 if (ptrs->panel_name.table_size) {
331 if (ptrs->panel_name.offset < offset)
332 return false;
333
334 ptrs->panel_name.offset -= offset;
335 }
336
337 return validate_lfp_data_ptrs(bdb, ptrs);
338 }
339
make_lfp_data_ptr(struct lvds_lfp_data_ptr_table * table,int table_size,int total_size)340 static int make_lfp_data_ptr(struct lvds_lfp_data_ptr_table *table,
341 int table_size, int total_size)
342 {
343 if (total_size < table_size)
344 return total_size;
345
346 table->table_size = table_size;
347 table->offset = total_size - table_size;
348
349 return total_size - table_size;
350 }
351
next_lfp_data_ptr(struct lvds_lfp_data_ptr_table * next,const struct lvds_lfp_data_ptr_table * prev,int size)352 static void next_lfp_data_ptr(struct lvds_lfp_data_ptr_table *next,
353 const struct lvds_lfp_data_ptr_table *prev,
354 int size)
355 {
356 next->table_size = prev->table_size;
357 next->offset = prev->offset + size;
358 }
359
generate_lfp_data_ptrs(struct drm_i915_private * i915,const void * bdb)360 static void *generate_lfp_data_ptrs(struct drm_i915_private *i915,
361 const void *bdb)
362 {
363 int i, size, table_size, block_size, offset, fp_timing_size;
364 struct bdb_lvds_lfp_data_ptrs *ptrs;
365 const void *block;
366 void *ptrs_block;
367
368 /*
369 * The hardcoded fp_timing_size is only valid for
370 * modernish VBTs. All older VBTs definitely should
371 * include block 41 and thus we don't need to
372 * generate one.
373 */
374 if (i915->display.vbt.version < 155)
375 return NULL;
376
377 fp_timing_size = 38;
378
379 block = find_raw_section(bdb, BDB_LVDS_LFP_DATA);
380 if (!block)
381 return NULL;
382
383 drm_dbg_kms(&i915->drm, "Generating LFP data table pointers\n");
384
385 block_size = get_blocksize(block);
386
387 size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
388 sizeof(struct lvds_pnp_id);
389 if (size * 16 > block_size)
390 return NULL;
391
392 ptrs_block = kzalloc(sizeof(*ptrs) + 3, GFP_KERNEL);
393 if (!ptrs_block)
394 return NULL;
395
396 *(u8 *)(ptrs_block + 0) = BDB_LVDS_LFP_DATA_PTRS;
397 *(u16 *)(ptrs_block + 1) = sizeof(*ptrs);
398 ptrs = ptrs_block + 3;
399
400 table_size = sizeof(struct lvds_pnp_id);
401 size = make_lfp_data_ptr(&ptrs->ptr[0].panel_pnp_id, table_size, size);
402
403 table_size = sizeof(struct lvds_dvo_timing);
404 size = make_lfp_data_ptr(&ptrs->ptr[0].dvo_timing, table_size, size);
405
406 table_size = fp_timing_size;
407 size = make_lfp_data_ptr(&ptrs->ptr[0].fp_timing, table_size, size);
408
409 if (ptrs->ptr[0].fp_timing.table_size)
410 ptrs->lvds_entries++;
411 if (ptrs->ptr[0].dvo_timing.table_size)
412 ptrs->lvds_entries++;
413 if (ptrs->ptr[0].panel_pnp_id.table_size)
414 ptrs->lvds_entries++;
415
416 if (size != 0 || ptrs->lvds_entries != 3) {
417 kfree(ptrs_block);
418 return NULL;
419 }
420
421 size = fp_timing_size + sizeof(struct lvds_dvo_timing) +
422 sizeof(struct lvds_pnp_id);
423 for (i = 1; i < 16; i++) {
424 next_lfp_data_ptr(&ptrs->ptr[i].fp_timing, &ptrs->ptr[i-1].fp_timing, size);
425 next_lfp_data_ptr(&ptrs->ptr[i].dvo_timing, &ptrs->ptr[i-1].dvo_timing, size);
426 next_lfp_data_ptr(&ptrs->ptr[i].panel_pnp_id, &ptrs->ptr[i-1].panel_pnp_id, size);
427 }
428
429 table_size = sizeof(struct lvds_lfp_panel_name);
430
431 if (16 * (size + table_size) <= block_size) {
432 ptrs->panel_name.table_size = table_size;
433 ptrs->panel_name.offset = size * 16;
434 }
435
436 offset = block - bdb;
437
438 for (i = 0; i < 16; i++) {
439 ptrs->ptr[i].fp_timing.offset += offset;
440 ptrs->ptr[i].dvo_timing.offset += offset;
441 ptrs->ptr[i].panel_pnp_id.offset += offset;
442 }
443
444 if (ptrs->panel_name.table_size)
445 ptrs->panel_name.offset += offset;
446
447 return ptrs_block;
448 }
449
450 static void
init_bdb_block(struct drm_i915_private * i915,const void * bdb,enum bdb_block_id section_id,size_t min_size)451 init_bdb_block(struct drm_i915_private *i915,
452 const void *bdb, enum bdb_block_id section_id,
453 size_t min_size)
454 {
455 struct bdb_block_entry *entry;
456 void *temp_block = NULL;
457 const void *block;
458 size_t block_size;
459
460 block = find_raw_section(bdb, section_id);
461
462 /* Modern VBTs lack the LFP data table pointers block, make one up */
463 if (!block && section_id == BDB_LVDS_LFP_DATA_PTRS) {
464 temp_block = generate_lfp_data_ptrs(i915, bdb);
465 if (temp_block)
466 block = temp_block + 3;
467 }
468 if (!block)
469 return;
470
471 drm_WARN(&i915->drm, min_size == 0,
472 "Block %d min_size is zero\n", section_id);
473
474 block_size = get_blocksize(block);
475
476 /*
477 * Version number and new block size are considered
478 * part of the header for MIPI sequenece block v3+.
479 */
480 if (section_id == BDB_MIPI_SEQUENCE && *(const u8 *)block >= 3)
481 block_size += 5;
482
483 entry = kzalloc(struct_size(entry, data, max(min_size, block_size) + 3),
484 GFP_KERNEL);
485 if (!entry) {
486 kfree(temp_block);
487 return;
488 }
489
490 entry->section_id = section_id;
491 memcpy(entry->data, block - 3, block_size + 3);
492
493 kfree(temp_block);
494
495 drm_dbg_kms(&i915->drm, "Found BDB block %d (size %zu, min size %zu)\n",
496 section_id, block_size, min_size);
497
498 if (section_id == BDB_LVDS_LFP_DATA_PTRS &&
499 !fixup_lfp_data_ptrs(bdb, entry->data + 3)) {
500 drm_err(&i915->drm, "VBT has malformed LFP data table pointers\n");
501 kfree(entry);
502 return;
503 }
504
505 list_add_tail(&entry->node, &i915->display.vbt.bdb_blocks);
506 }
507
init_bdb_blocks(struct drm_i915_private * i915,const void * bdb)508 static void init_bdb_blocks(struct drm_i915_private *i915,
509 const void *bdb)
510 {
511 int i;
512
513 for (i = 0; i < ARRAY_SIZE(bdb_blocks); i++) {
514 enum bdb_block_id section_id = bdb_blocks[i].section_id;
515 size_t min_size = bdb_blocks[i].min_size;
516
517 if (section_id == BDB_LVDS_LFP_DATA)
518 min_size = lfp_data_min_size(i915);
519
520 init_bdb_block(i915, bdb, section_id, min_size);
521 }
522 }
523
524 static void
fill_detail_timing_data(struct drm_display_mode * panel_fixed_mode,const struct lvds_dvo_timing * dvo_timing)525 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
526 const struct lvds_dvo_timing *dvo_timing)
527 {
528 panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
529 dvo_timing->hactive_lo;
530 panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
531 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
532 panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
533 ((dvo_timing->hsync_pulse_width_hi << 8) |
534 dvo_timing->hsync_pulse_width_lo);
535 panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
536 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
537
538 panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
539 dvo_timing->vactive_lo;
540 panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
541 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
542 panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
543 ((dvo_timing->vsync_pulse_width_hi << 4) |
544 dvo_timing->vsync_pulse_width_lo);
545 panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
546 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
547 panel_fixed_mode->clock = dvo_timing->clock * 10;
548 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
549
550 if (dvo_timing->hsync_positive)
551 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
552 else
553 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
554
555 if (dvo_timing->vsync_positive)
556 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
557 else
558 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
559
560 panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
561 dvo_timing->himage_lo;
562 panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
563 dvo_timing->vimage_lo;
564
565 /* Some VBTs have bogus h/vtotal values */
566 if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
567 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
568 if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
569 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
570
571 drm_mode_set_name(panel_fixed_mode);
572 }
573
574 static const struct lvds_dvo_timing *
get_lvds_dvo_timing(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)575 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *data,
576 const struct bdb_lvds_lfp_data_ptrs *ptrs,
577 int index)
578 {
579 return (const void *)data + ptrs->ptr[index].dvo_timing.offset;
580 }
581
582 static const struct lvds_fp_timing *
get_lvds_fp_timing(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)583 get_lvds_fp_timing(const struct bdb_lvds_lfp_data *data,
584 const struct bdb_lvds_lfp_data_ptrs *ptrs,
585 int index)
586 {
587 return (const void *)data + ptrs->ptr[index].fp_timing.offset;
588 }
589
590 static const struct lvds_pnp_id *
get_lvds_pnp_id(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs,int index)591 get_lvds_pnp_id(const struct bdb_lvds_lfp_data *data,
592 const struct bdb_lvds_lfp_data_ptrs *ptrs,
593 int index)
594 {
595 return (const void *)data + ptrs->ptr[index].panel_pnp_id.offset;
596 }
597
598 static const struct bdb_lvds_lfp_data_tail *
get_lfp_data_tail(const struct bdb_lvds_lfp_data * data,const struct bdb_lvds_lfp_data_ptrs * ptrs)599 get_lfp_data_tail(const struct bdb_lvds_lfp_data *data,
600 const struct bdb_lvds_lfp_data_ptrs *ptrs)
601 {
602 if (ptrs->panel_name.table_size)
603 return (const void *)data + ptrs->panel_name.offset;
604 else
605 return NULL;
606 }
607
dump_pnp_id(struct drm_i915_private * i915,const struct lvds_pnp_id * pnp_id,const char * name)608 static void dump_pnp_id(struct drm_i915_private *i915,
609 const struct lvds_pnp_id *pnp_id,
610 const char *name)
611 {
612 u16 mfg_name = be16_to_cpu((__force __be16)pnp_id->mfg_name);
613 char vend[4];
614
615 drm_dbg_kms(&i915->drm, "%s PNPID mfg: %s (0x%x), prod: %u, serial: %u, week: %d, year: %d\n",
616 name, drm_edid_decode_mfg_id(mfg_name, vend),
617 pnp_id->mfg_name, pnp_id->product_code, pnp_id->serial,
618 pnp_id->mfg_week, pnp_id->mfg_year + 1990);
619 }
620
opregion_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct edid * edid,bool use_fallback)621 static int opregion_get_panel_type(struct drm_i915_private *i915,
622 const struct intel_bios_encoder_data *devdata,
623 const struct edid *edid, bool use_fallback)
624 {
625 return intel_opregion_get_panel_type(i915);
626 }
627
vbt_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct edid * edid,bool use_fallback)628 static int vbt_get_panel_type(struct drm_i915_private *i915,
629 const struct intel_bios_encoder_data *devdata,
630 const struct edid *edid, bool use_fallback)
631 {
632 const struct bdb_lvds_options *lvds_options;
633
634 lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
635 if (!lvds_options)
636 return -1;
637
638 if (lvds_options->panel_type > 0xf &&
639 lvds_options->panel_type != 0xff) {
640 drm_dbg_kms(&i915->drm, "Invalid VBT panel type 0x%x\n",
641 lvds_options->panel_type);
642 return -1;
643 }
644
645 if (devdata && devdata->child.handle == DEVICE_HANDLE_LFP2)
646 return lvds_options->panel_type2;
647
648 drm_WARN_ON(&i915->drm, devdata && devdata->child.handle != DEVICE_HANDLE_LFP1);
649
650 return lvds_options->panel_type;
651 }
652
pnpid_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct edid * edid,bool use_fallback)653 static int pnpid_get_panel_type(struct drm_i915_private *i915,
654 const struct intel_bios_encoder_data *devdata,
655 const struct edid *edid, bool use_fallback)
656 {
657 const struct bdb_lvds_lfp_data *data;
658 const struct bdb_lvds_lfp_data_ptrs *ptrs;
659 const struct lvds_pnp_id *edid_id;
660 struct lvds_pnp_id edid_id_nodate;
661 int i, best = -1;
662
663 if (!edid)
664 return -1;
665
666 edid_id = (const void *)&edid->mfg_id[0];
667
668 edid_id_nodate = *edid_id;
669 edid_id_nodate.mfg_week = 0;
670 edid_id_nodate.mfg_year = 0;
671
672 dump_pnp_id(i915, edid_id, "EDID");
673
674 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
675 if (!ptrs)
676 return -1;
677
678 data = find_section(i915, BDB_LVDS_LFP_DATA);
679 if (!data)
680 return -1;
681
682 for (i = 0; i < 16; i++) {
683 const struct lvds_pnp_id *vbt_id =
684 get_lvds_pnp_id(data, ptrs, i);
685
686 /* full match? */
687 if (!memcmp(vbt_id, edid_id, sizeof(*vbt_id)))
688 return i;
689
690 /*
691 * Accept a match w/o date if no full match is found,
692 * and the VBT entry does not specify a date.
693 */
694 if (best < 0 &&
695 !memcmp(vbt_id, &edid_id_nodate, sizeof(*vbt_id)))
696 best = i;
697 }
698
699 return best;
700 }
701
fallback_get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct edid * edid,bool use_fallback)702 static int fallback_get_panel_type(struct drm_i915_private *i915,
703 const struct intel_bios_encoder_data *devdata,
704 const struct edid *edid, bool use_fallback)
705 {
706 return use_fallback ? 0 : -1;
707 }
708
709 enum panel_type {
710 PANEL_TYPE_OPREGION,
711 PANEL_TYPE_VBT,
712 PANEL_TYPE_PNPID,
713 PANEL_TYPE_FALLBACK,
714 };
715
get_panel_type(struct drm_i915_private * i915,const struct intel_bios_encoder_data * devdata,const struct edid * edid,bool use_fallback)716 static int get_panel_type(struct drm_i915_private *i915,
717 const struct intel_bios_encoder_data *devdata,
718 const struct edid *edid, bool use_fallback)
719 {
720 struct {
721 const char *name;
722 int (*get_panel_type)(struct drm_i915_private *i915,
723 const struct intel_bios_encoder_data *devdata,
724 const struct edid *edid, bool use_fallback);
725 int panel_type;
726 } panel_types[] = {
727 [PANEL_TYPE_OPREGION] = {
728 .name = "OpRegion",
729 .get_panel_type = opregion_get_panel_type,
730 },
731 [PANEL_TYPE_VBT] = {
732 .name = "VBT",
733 .get_panel_type = vbt_get_panel_type,
734 },
735 [PANEL_TYPE_PNPID] = {
736 .name = "PNPID",
737 .get_panel_type = pnpid_get_panel_type,
738 },
739 [PANEL_TYPE_FALLBACK] = {
740 .name = "fallback",
741 .get_panel_type = fallback_get_panel_type,
742 },
743 };
744 int i;
745
746 for (i = 0; i < ARRAY_SIZE(panel_types); i++) {
747 panel_types[i].panel_type = panel_types[i].get_panel_type(i915, devdata,
748 edid, use_fallback);
749
750 drm_WARN_ON(&i915->drm, panel_types[i].panel_type > 0xf &&
751 panel_types[i].panel_type != 0xff);
752
753 if (panel_types[i].panel_type >= 0)
754 drm_dbg_kms(&i915->drm, "Panel type (%s): %d\n",
755 panel_types[i].name, panel_types[i].panel_type);
756 }
757
758 if (panel_types[PANEL_TYPE_OPREGION].panel_type >= 0)
759 i = PANEL_TYPE_OPREGION;
760 else if (panel_types[PANEL_TYPE_VBT].panel_type == 0xff &&
761 panel_types[PANEL_TYPE_PNPID].panel_type >= 0)
762 i = PANEL_TYPE_PNPID;
763 else if (panel_types[PANEL_TYPE_VBT].panel_type != 0xff &&
764 panel_types[PANEL_TYPE_VBT].panel_type >= 0)
765 i = PANEL_TYPE_VBT;
766 else
767 i = PANEL_TYPE_FALLBACK;
768
769 drm_dbg_kms(&i915->drm, "Selected panel type (%s): %d\n",
770 panel_types[i].name, panel_types[i].panel_type);
771
772 return panel_types[i].panel_type;
773 }
774
panel_bits(unsigned int value,int panel_type,int num_bits)775 static unsigned int panel_bits(unsigned int value, int panel_type, int num_bits)
776 {
777 return (value >> (panel_type * num_bits)) & (BIT(num_bits) - 1);
778 }
779
panel_bool(unsigned int value,int panel_type)780 static bool panel_bool(unsigned int value, int panel_type)
781 {
782 return panel_bits(value, panel_type, 1);
783 }
784
785 /* Parse general panel options */
786 static void
parse_panel_options(struct drm_i915_private * i915,struct intel_panel * panel)787 parse_panel_options(struct drm_i915_private *i915,
788 struct intel_panel *panel)
789 {
790 const struct bdb_lvds_options *lvds_options;
791 int panel_type = panel->vbt.panel_type;
792 int drrs_mode;
793
794 lvds_options = find_section(i915, BDB_LVDS_OPTIONS);
795 if (!lvds_options)
796 return;
797
798 panel->vbt.lvds_dither = lvds_options->pixel_dither;
799
800 /*
801 * Empirical evidence indicates the block size can be
802 * either 4,14,16,24+ bytes. For older VBTs no clear
803 * relationship between the block size vs. BDB version.
804 */
805 if (get_blocksize(lvds_options) < 16)
806 return;
807
808 drrs_mode = panel_bits(lvds_options->dps_panel_type_bits,
809 panel_type, 2);
810 /*
811 * VBT has static DRRS = 0 and seamless DRRS = 2.
812 * The below piece of code is required to adjust vbt.drrs_type
813 * to match the enum drrs_support_type.
814 */
815 switch (drrs_mode) {
816 case 0:
817 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
818 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
819 break;
820 case 2:
821 panel->vbt.drrs_type = DRRS_TYPE_SEAMLESS;
822 drm_dbg_kms(&i915->drm,
823 "DRRS supported mode is seamless\n");
824 break;
825 default:
826 panel->vbt.drrs_type = DRRS_TYPE_NONE;
827 drm_dbg_kms(&i915->drm,
828 "DRRS not supported (VBT input)\n");
829 break;
830 }
831 }
832
833 static void
parse_lfp_panel_dtd(struct drm_i915_private * i915,struct intel_panel * panel,const struct bdb_lvds_lfp_data * lvds_lfp_data,const struct bdb_lvds_lfp_data_ptrs * lvds_lfp_data_ptrs)834 parse_lfp_panel_dtd(struct drm_i915_private *i915,
835 struct intel_panel *panel,
836 const struct bdb_lvds_lfp_data *lvds_lfp_data,
837 const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs)
838 {
839 const struct lvds_dvo_timing *panel_dvo_timing;
840 const struct lvds_fp_timing *fp_timing;
841 struct drm_display_mode *panel_fixed_mode;
842 int panel_type = panel->vbt.panel_type;
843
844 panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
845 lvds_lfp_data_ptrs,
846 panel_type);
847
848 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
849 if (!panel_fixed_mode)
850 return;
851
852 fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
853
854 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
855
856 drm_dbg_kms(&i915->drm,
857 "Found panel mode in BIOS VBT legacy lfp table: " DRM_MODE_FMT "\n",
858 DRM_MODE_ARG(panel_fixed_mode));
859
860 fp_timing = get_lvds_fp_timing(lvds_lfp_data,
861 lvds_lfp_data_ptrs,
862 panel_type);
863
864 /* check the resolution, just to be sure */
865 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
866 fp_timing->y_res == panel_fixed_mode->vdisplay) {
867 panel->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
868 drm_dbg_kms(&i915->drm,
869 "VBT initial LVDS value %x\n",
870 panel->vbt.bios_lvds_val);
871 }
872 }
873
874 static void
parse_lfp_data(struct drm_i915_private * i915,struct intel_panel * panel)875 parse_lfp_data(struct drm_i915_private *i915,
876 struct intel_panel *panel)
877 {
878 const struct bdb_lvds_lfp_data *data;
879 const struct bdb_lvds_lfp_data_tail *tail;
880 const struct bdb_lvds_lfp_data_ptrs *ptrs;
881 const struct lvds_pnp_id *pnp_id;
882 int panel_type = panel->vbt.panel_type;
883
884 ptrs = find_section(i915, BDB_LVDS_LFP_DATA_PTRS);
885 if (!ptrs)
886 return;
887
888 data = find_section(i915, BDB_LVDS_LFP_DATA);
889 if (!data)
890 return;
891
892 if (!panel->vbt.lfp_lvds_vbt_mode)
893 parse_lfp_panel_dtd(i915, panel, data, ptrs);
894
895 pnp_id = get_lvds_pnp_id(data, ptrs, panel_type);
896 dump_pnp_id(i915, pnp_id, "Panel");
897
898 tail = get_lfp_data_tail(data, ptrs);
899 if (!tail)
900 return;
901
902 drm_dbg_kms(&i915->drm, "Panel name: %.*s\n",
903 (int)sizeof(tail->panel_name[0].name),
904 tail->panel_name[panel_type].name);
905
906 if (i915->display.vbt.version >= 188) {
907 panel->vbt.seamless_drrs_min_refresh_rate =
908 tail->seamless_drrs_min_refresh_rate[panel_type];
909 drm_dbg_kms(&i915->drm,
910 "Seamless DRRS min refresh rate: %d Hz\n",
911 panel->vbt.seamless_drrs_min_refresh_rate);
912 }
913 }
914
915 static void
parse_generic_dtd(struct drm_i915_private * i915,struct intel_panel * panel)916 parse_generic_dtd(struct drm_i915_private *i915,
917 struct intel_panel *panel)
918 {
919 const struct bdb_generic_dtd *generic_dtd;
920 const struct generic_dtd_entry *dtd;
921 struct drm_display_mode *panel_fixed_mode;
922 int num_dtd;
923
924 /*
925 * Older VBTs provided DTD information for internal displays through
926 * the "LFP panel tables" block (42). As of VBT revision 229 the
927 * DTD information should be provided via a newer "generic DTD"
928 * block (58). Just to be safe, we'll try the new generic DTD block
929 * first on VBT >= 229, but still fall back to trying the old LFP
930 * block if that fails.
931 */
932 if (i915->display.vbt.version < 229)
933 return;
934
935 generic_dtd = find_section(i915, BDB_GENERIC_DTD);
936 if (!generic_dtd)
937 return;
938
939 if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
940 drm_err(&i915->drm, "GDTD size %u is too small.\n",
941 generic_dtd->gdtd_size);
942 return;
943 } else if (generic_dtd->gdtd_size !=
944 sizeof(struct generic_dtd_entry)) {
945 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
946 generic_dtd->gdtd_size);
947 /* DTD has unknown fields, but keep going */
948 }
949
950 num_dtd = (get_blocksize(generic_dtd) -
951 sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
952 if (panel->vbt.panel_type >= num_dtd) {
953 drm_err(&i915->drm,
954 "Panel type %d not found in table of %d DTD's\n",
955 panel->vbt.panel_type, num_dtd);
956 return;
957 }
958
959 dtd = &generic_dtd->dtd[panel->vbt.panel_type];
960
961 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
962 if (!panel_fixed_mode)
963 return;
964
965 panel_fixed_mode->hdisplay = dtd->hactive;
966 panel_fixed_mode->hsync_start =
967 panel_fixed_mode->hdisplay + dtd->hfront_porch;
968 panel_fixed_mode->hsync_end =
969 panel_fixed_mode->hsync_start + dtd->hsync;
970 panel_fixed_mode->htotal =
971 panel_fixed_mode->hdisplay + dtd->hblank;
972
973 panel_fixed_mode->vdisplay = dtd->vactive;
974 panel_fixed_mode->vsync_start =
975 panel_fixed_mode->vdisplay + dtd->vfront_porch;
976 panel_fixed_mode->vsync_end =
977 panel_fixed_mode->vsync_start + dtd->vsync;
978 panel_fixed_mode->vtotal =
979 panel_fixed_mode->vdisplay + dtd->vblank;
980
981 panel_fixed_mode->clock = dtd->pixel_clock;
982 panel_fixed_mode->width_mm = dtd->width_mm;
983 panel_fixed_mode->height_mm = dtd->height_mm;
984
985 panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
986 drm_mode_set_name(panel_fixed_mode);
987
988 if (dtd->hsync_positive_polarity)
989 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
990 else
991 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
992
993 if (dtd->vsync_positive_polarity)
994 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
995 else
996 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
997
998 drm_dbg_kms(&i915->drm,
999 "Found panel mode in BIOS VBT generic dtd table: " DRM_MODE_FMT "\n",
1000 DRM_MODE_ARG(panel_fixed_mode));
1001
1002 panel->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
1003 }
1004
1005 static void
parse_lfp_backlight(struct drm_i915_private * i915,struct intel_panel * panel)1006 parse_lfp_backlight(struct drm_i915_private *i915,
1007 struct intel_panel *panel)
1008 {
1009 const struct bdb_lfp_backlight_data *backlight_data;
1010 const struct lfp_backlight_data_entry *entry;
1011 int panel_type = panel->vbt.panel_type;
1012 u16 level;
1013
1014 backlight_data = find_section(i915, BDB_LVDS_BACKLIGHT);
1015 if (!backlight_data)
1016 return;
1017
1018 if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
1019 drm_dbg_kms(&i915->drm,
1020 "Unsupported backlight data entry size %u\n",
1021 backlight_data->entry_size);
1022 return;
1023 }
1024
1025 entry = &backlight_data->data[panel_type];
1026
1027 panel->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
1028 if (!panel->vbt.backlight.present) {
1029 drm_dbg_kms(&i915->drm,
1030 "PWM backlight not present in VBT (type %u)\n",
1031 entry->type);
1032 return;
1033 }
1034
1035 panel->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
1036 if (i915->display.vbt.version >= 191) {
1037 size_t exp_size;
1038
1039 if (i915->display.vbt.version >= 236)
1040 exp_size = sizeof(struct bdb_lfp_backlight_data);
1041 else if (i915->display.vbt.version >= 234)
1042 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_234;
1043 else
1044 exp_size = EXP_BDB_LFP_BL_DATA_SIZE_REV_191;
1045
1046 if (get_blocksize(backlight_data) >= exp_size) {
1047 const struct lfp_backlight_control_method *method;
1048
1049 method = &backlight_data->backlight_control[panel_type];
1050 panel->vbt.backlight.type = method->type;
1051 panel->vbt.backlight.controller = method->controller;
1052 }
1053 }
1054
1055 panel->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
1056 panel->vbt.backlight.active_low_pwm = entry->active_low_pwm;
1057
1058 if (i915->display.vbt.version >= 234) {
1059 u16 min_level;
1060 bool scale;
1061
1062 level = backlight_data->brightness_level[panel_type].level;
1063 min_level = backlight_data->brightness_min_level[panel_type].level;
1064
1065 if (i915->display.vbt.version >= 236)
1066 scale = backlight_data->brightness_precision_bits[panel_type] == 16;
1067 else
1068 scale = level > 255;
1069
1070 if (scale)
1071 min_level = min_level / 255;
1072
1073 if (min_level > 255) {
1074 drm_warn(&i915->drm, "Brightness min level > 255\n");
1075 level = 255;
1076 }
1077 panel->vbt.backlight.min_brightness = min_level;
1078
1079 panel->vbt.backlight.brightness_precision_bits =
1080 backlight_data->brightness_precision_bits[panel_type];
1081 } else {
1082 level = backlight_data->level[panel_type];
1083 panel->vbt.backlight.min_brightness = entry->min_brightness;
1084 }
1085
1086 drm_dbg_kms(&i915->drm,
1087 "VBT backlight PWM modulation frequency %u Hz, "
1088 "active %s, min brightness %u, level %u, controller %u\n",
1089 panel->vbt.backlight.pwm_freq_hz,
1090 panel->vbt.backlight.active_low_pwm ? "low" : "high",
1091 panel->vbt.backlight.min_brightness,
1092 level,
1093 panel->vbt.backlight.controller);
1094 }
1095
1096 /* Try to find sdvo panel data */
1097 static void
parse_sdvo_panel_data(struct drm_i915_private * i915,struct intel_panel * panel)1098 parse_sdvo_panel_data(struct drm_i915_private *i915,
1099 struct intel_panel *panel)
1100 {
1101 const struct bdb_sdvo_panel_dtds *dtds;
1102 struct drm_display_mode *panel_fixed_mode;
1103 int index;
1104
1105 index = i915->params.vbt_sdvo_panel_type;
1106 if (index == -2) {
1107 drm_dbg_kms(&i915->drm,
1108 "Ignore SDVO panel mode from BIOS VBT tables.\n");
1109 return;
1110 }
1111
1112 if (index == -1) {
1113 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
1114
1115 sdvo_lvds_options = find_section(i915, BDB_SDVO_LVDS_OPTIONS);
1116 if (!sdvo_lvds_options)
1117 return;
1118
1119 index = sdvo_lvds_options->panel_type;
1120 }
1121
1122 dtds = find_section(i915, BDB_SDVO_PANEL_DTDS);
1123 if (!dtds)
1124 return;
1125
1126 panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
1127 if (!panel_fixed_mode)
1128 return;
1129
1130 fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
1131
1132 panel->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
1133
1134 drm_dbg_kms(&i915->drm,
1135 "Found SDVO panel mode in BIOS VBT tables: " DRM_MODE_FMT "\n",
1136 DRM_MODE_ARG(panel_fixed_mode));
1137 }
1138
intel_bios_ssc_frequency(struct drm_i915_private * i915,bool alternate)1139 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
1140 bool alternate)
1141 {
1142 switch (DISPLAY_VER(i915)) {
1143 case 2:
1144 return alternate ? 66667 : 48000;
1145 case 3:
1146 case 4:
1147 return alternate ? 100000 : 96000;
1148 default:
1149 return alternate ? 100000 : 120000;
1150 }
1151 }
1152
1153 static void
parse_general_features(struct drm_i915_private * i915)1154 parse_general_features(struct drm_i915_private *i915)
1155 {
1156 const struct bdb_general_features *general;
1157
1158 general = find_section(i915, BDB_GENERAL_FEATURES);
1159 if (!general)
1160 return;
1161
1162 i915->display.vbt.int_tv_support = general->int_tv_support;
1163 /* int_crt_support can't be trusted on earlier platforms */
1164 if (i915->display.vbt.version >= 155 &&
1165 (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
1166 i915->display.vbt.int_crt_support = general->int_crt_support;
1167 i915->display.vbt.lvds_use_ssc = general->enable_ssc;
1168 i915->display.vbt.lvds_ssc_freq =
1169 intel_bios_ssc_frequency(i915, general->ssc_freq);
1170 i915->display.vbt.display_clock_mode = general->display_clock_mode;
1171 i915->display.vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
1172 if (i915->display.vbt.version >= 181) {
1173 i915->display.vbt.orientation = general->rotate_180 ?
1174 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
1175 DRM_MODE_PANEL_ORIENTATION_NORMAL;
1176 } else {
1177 i915->display.vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1178 }
1179
1180 if (i915->display.vbt.version >= 249 && general->afc_startup_config) {
1181 i915->display.vbt.override_afc_startup = true;
1182 i915->display.vbt.override_afc_startup_val = general->afc_startup_config == 0x1 ? 0x0 : 0x7;
1183 }
1184
1185 drm_dbg_kms(&i915->drm,
1186 "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
1187 i915->display.vbt.int_tv_support,
1188 i915->display.vbt.int_crt_support,
1189 i915->display.vbt.lvds_use_ssc,
1190 i915->display.vbt.lvds_ssc_freq,
1191 i915->display.vbt.display_clock_mode,
1192 i915->display.vbt.fdi_rx_polarity_inverted);
1193 }
1194
1195 static const struct child_device_config *
child_device_ptr(const struct bdb_general_definitions * defs,int i)1196 child_device_ptr(const struct bdb_general_definitions *defs, int i)
1197 {
1198 return (const void *) &defs->devices[i * defs->child_dev_size];
1199 }
1200
1201 static void
parse_sdvo_device_mapping(struct drm_i915_private * i915)1202 parse_sdvo_device_mapping(struct drm_i915_private *i915)
1203 {
1204 struct sdvo_device_mapping *mapping;
1205 const struct intel_bios_encoder_data *devdata;
1206 const struct child_device_config *child;
1207 int count = 0;
1208
1209 /*
1210 * Only parse SDVO mappings on gens that could have SDVO. This isn't
1211 * accurate and doesn't have to be, as long as it's not too strict.
1212 */
1213 if (!IS_DISPLAY_VER(i915, 3, 7)) {
1214 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
1215 return;
1216 }
1217
1218 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
1219 child = &devdata->child;
1220
1221 if (child->slave_addr != SLAVE_ADDR1 &&
1222 child->slave_addr != SLAVE_ADDR2) {
1223 /*
1224 * If the slave address is neither 0x70 nor 0x72,
1225 * it is not a SDVO device. Skip it.
1226 */
1227 continue;
1228 }
1229 if (child->dvo_port != DEVICE_PORT_DVOB &&
1230 child->dvo_port != DEVICE_PORT_DVOC) {
1231 /* skip the incorrect SDVO port */
1232 drm_dbg_kms(&i915->drm,
1233 "Incorrect SDVO port. Skip it\n");
1234 continue;
1235 }
1236 drm_dbg_kms(&i915->drm,
1237 "the SDVO device with slave addr %2x is found on"
1238 " %s port\n",
1239 child->slave_addr,
1240 (child->dvo_port == DEVICE_PORT_DVOB) ?
1241 "SDVOB" : "SDVOC");
1242 mapping = &i915->display.vbt.sdvo_mappings[child->dvo_port - 1];
1243 if (!mapping->initialized) {
1244 mapping->dvo_port = child->dvo_port;
1245 mapping->slave_addr = child->slave_addr;
1246 mapping->dvo_wiring = child->dvo_wiring;
1247 mapping->ddc_pin = child->ddc_pin;
1248 mapping->i2c_pin = child->i2c_pin;
1249 mapping->initialized = 1;
1250 drm_dbg_kms(&i915->drm,
1251 "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
1252 mapping->dvo_port, mapping->slave_addr,
1253 mapping->dvo_wiring, mapping->ddc_pin,
1254 mapping->i2c_pin);
1255 } else {
1256 drm_dbg_kms(&i915->drm,
1257 "Maybe one SDVO port is shared by "
1258 "two SDVO device.\n");
1259 }
1260 if (child->slave2_addr) {
1261 /* Maybe this is a SDVO device with multiple inputs */
1262 /* And the mapping info is not added */
1263 drm_dbg_kms(&i915->drm,
1264 "there exists the slave2_addr. Maybe this"
1265 " is a SDVO device with multiple inputs.\n");
1266 }
1267 count++;
1268 }
1269
1270 if (!count) {
1271 /* No SDVO device info is found */
1272 drm_dbg_kms(&i915->drm,
1273 "No SDVO device info is found in VBT\n");
1274 }
1275 }
1276
1277 static void
parse_driver_features(struct drm_i915_private * i915)1278 parse_driver_features(struct drm_i915_private *i915)
1279 {
1280 const struct bdb_driver_features *driver;
1281
1282 driver = find_section(i915, BDB_DRIVER_FEATURES);
1283 if (!driver)
1284 return;
1285
1286 if (DISPLAY_VER(i915) >= 5) {
1287 /*
1288 * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
1289 * to mean "eDP". The VBT spec doesn't agree with that
1290 * interpretation, but real world VBTs seem to.
1291 */
1292 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
1293 i915->display.vbt.int_lvds_support = 0;
1294 } else {
1295 /*
1296 * FIXME it's not clear which BDB version has the LVDS config
1297 * bits defined. Revision history in the VBT spec says:
1298 * "0.92 | Add two definitions for VBT value of LVDS Active
1299 * Config (00b and 11b values defined) | 06/13/2005"
1300 * but does not the specify the BDB version.
1301 *
1302 * So far version 134 (on i945gm) is the oldest VBT observed
1303 * in the wild with the bits correctly populated. Version
1304 * 108 (on i85x) does not have the bits correctly populated.
1305 */
1306 if (i915->display.vbt.version >= 134 &&
1307 driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
1308 driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
1309 i915->display.vbt.int_lvds_support = 0;
1310 }
1311 }
1312
1313 static void
parse_panel_driver_features(struct drm_i915_private * i915,struct intel_panel * panel)1314 parse_panel_driver_features(struct drm_i915_private *i915,
1315 struct intel_panel *panel)
1316 {
1317 const struct bdb_driver_features *driver;
1318
1319 driver = find_section(i915, BDB_DRIVER_FEATURES);
1320 if (!driver)
1321 return;
1322
1323 if (i915->display.vbt.version < 228) {
1324 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
1325 driver->drrs_enabled);
1326 /*
1327 * If DRRS is not supported, drrs_type has to be set to 0.
1328 * This is because, VBT is configured in such a way that
1329 * static DRRS is 0 and DRRS not supported is represented by
1330 * driver->drrs_enabled=false
1331 */
1332 if (!driver->drrs_enabled && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1333 /*
1334 * FIXME Should DMRRS perhaps be treated as seamless
1335 * but without the automatic downclocking?
1336 */
1337 if (driver->dmrrs_enabled)
1338 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1339 else
1340 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1341 }
1342
1343 panel->vbt.psr.enable = driver->psr_enabled;
1344 }
1345 }
1346
1347 static void
parse_power_conservation_features(struct drm_i915_private * i915,struct intel_panel * panel)1348 parse_power_conservation_features(struct drm_i915_private *i915,
1349 struct intel_panel *panel)
1350 {
1351 const struct bdb_lfp_power *power;
1352 u8 panel_type = panel->vbt.panel_type;
1353
1354 panel->vbt.vrr = true; /* matches Windows behaviour */
1355
1356 if (i915->display.vbt.version < 228)
1357 return;
1358
1359 power = find_section(i915, BDB_LFP_POWER);
1360 if (!power)
1361 return;
1362
1363 panel->vbt.psr.enable = panel_bool(power->psr, panel_type);
1364
1365 /*
1366 * If DRRS is not supported, drrs_type has to be set to 0.
1367 * This is because, VBT is configured in such a way that
1368 * static DRRS is 0 and DRRS not supported is represented by
1369 * power->drrs & BIT(panel_type)=false
1370 */
1371 if (!panel_bool(power->drrs, panel_type) && panel->vbt.drrs_type != DRRS_TYPE_NONE) {
1372 /*
1373 * FIXME Should DMRRS perhaps be treated as seamless
1374 * but without the automatic downclocking?
1375 */
1376 if (panel_bool(power->dmrrs, panel_type))
1377 panel->vbt.drrs_type = DRRS_TYPE_STATIC;
1378 else
1379 panel->vbt.drrs_type = DRRS_TYPE_NONE;
1380 }
1381
1382 if (i915->display.vbt.version >= 232)
1383 panel->vbt.edp.hobl = panel_bool(power->hobl, panel_type);
1384
1385 if (i915->display.vbt.version >= 233)
1386 panel->vbt.vrr = panel_bool(power->vrr_feature_enabled,
1387 panel_type);
1388 }
1389
1390 static void
parse_edp(struct drm_i915_private * i915,struct intel_panel * panel)1391 parse_edp(struct drm_i915_private *i915,
1392 struct intel_panel *panel)
1393 {
1394 const struct bdb_edp *edp;
1395 const struct edp_power_seq *edp_pps;
1396 const struct edp_fast_link_params *edp_link_params;
1397 int panel_type = panel->vbt.panel_type;
1398
1399 edp = find_section(i915, BDB_EDP);
1400 if (!edp)
1401 return;
1402
1403 switch (panel_bits(edp->color_depth, panel_type, 2)) {
1404 case EDP_18BPP:
1405 panel->vbt.edp.bpp = 18;
1406 break;
1407 case EDP_24BPP:
1408 panel->vbt.edp.bpp = 24;
1409 break;
1410 case EDP_30BPP:
1411 panel->vbt.edp.bpp = 30;
1412 break;
1413 }
1414
1415 /* Get the eDP sequencing and link info */
1416 edp_pps = &edp->power_seqs[panel_type];
1417 edp_link_params = &edp->fast_link_params[panel_type];
1418
1419 panel->vbt.edp.pps = *edp_pps;
1420
1421 if (i915->display.vbt.version >= 224) {
1422 panel->vbt.edp.rate =
1423 edp->edp_fast_link_training_rate[panel_type] * 20;
1424 } else {
1425 switch (edp_link_params->rate) {
1426 case EDP_RATE_1_62:
1427 panel->vbt.edp.rate = 162000;
1428 break;
1429 case EDP_RATE_2_7:
1430 panel->vbt.edp.rate = 270000;
1431 break;
1432 case EDP_RATE_5_4:
1433 panel->vbt.edp.rate = 540000;
1434 break;
1435 default:
1436 drm_dbg_kms(&i915->drm,
1437 "VBT has unknown eDP link rate value %u\n",
1438 edp_link_params->rate);
1439 break;
1440 }
1441 }
1442
1443 switch (edp_link_params->lanes) {
1444 case EDP_LANE_1:
1445 panel->vbt.edp.lanes = 1;
1446 break;
1447 case EDP_LANE_2:
1448 panel->vbt.edp.lanes = 2;
1449 break;
1450 case EDP_LANE_4:
1451 panel->vbt.edp.lanes = 4;
1452 break;
1453 default:
1454 drm_dbg_kms(&i915->drm,
1455 "VBT has unknown eDP lane count value %u\n",
1456 edp_link_params->lanes);
1457 break;
1458 }
1459
1460 switch (edp_link_params->preemphasis) {
1461 case EDP_PREEMPHASIS_NONE:
1462 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
1463 break;
1464 case EDP_PREEMPHASIS_3_5dB:
1465 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
1466 break;
1467 case EDP_PREEMPHASIS_6dB:
1468 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
1469 break;
1470 case EDP_PREEMPHASIS_9_5dB:
1471 panel->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
1472 break;
1473 default:
1474 drm_dbg_kms(&i915->drm,
1475 "VBT has unknown eDP pre-emphasis value %u\n",
1476 edp_link_params->preemphasis);
1477 break;
1478 }
1479
1480 switch (edp_link_params->vswing) {
1481 case EDP_VSWING_0_4V:
1482 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
1483 break;
1484 case EDP_VSWING_0_6V:
1485 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
1486 break;
1487 case EDP_VSWING_0_8V:
1488 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
1489 break;
1490 case EDP_VSWING_1_2V:
1491 panel->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
1492 break;
1493 default:
1494 drm_dbg_kms(&i915->drm,
1495 "VBT has unknown eDP voltage swing value %u\n",
1496 edp_link_params->vswing);
1497 break;
1498 }
1499
1500 if (i915->display.vbt.version >= 173) {
1501 u8 vswing;
1502
1503 /* Don't read from VBT if module parameter has valid value*/
1504 if (i915->params.edp_vswing) {
1505 panel->vbt.edp.low_vswing =
1506 i915->params.edp_vswing == 1;
1507 } else {
1508 vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
1509 panel->vbt.edp.low_vswing = vswing == 0;
1510 }
1511 }
1512
1513 panel->vbt.edp.drrs_msa_timing_delay =
1514 panel_bits(edp->sdrrs_msa_timing_delay, panel_type, 2);
1515
1516 if (i915->display.vbt.version >= 244)
1517 panel->vbt.edp.max_link_rate =
1518 edp->edp_max_port_link_rate[panel_type] * 20;
1519 }
1520
1521 static void
parse_psr(struct drm_i915_private * i915,struct intel_panel * panel)1522 parse_psr(struct drm_i915_private *i915,
1523 struct intel_panel *panel)
1524 {
1525 const struct bdb_psr *psr;
1526 const struct psr_table *psr_table;
1527 int panel_type = panel->vbt.panel_type;
1528
1529 psr = find_section(i915, BDB_PSR);
1530 if (!psr) {
1531 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
1532 return;
1533 }
1534
1535 psr_table = &psr->psr_table[panel_type];
1536
1537 panel->vbt.psr.full_link = psr_table->full_link;
1538 panel->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
1539
1540 /* Allowed VBT values goes from 0 to 15 */
1541 panel->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
1542 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
1543
1544 /*
1545 * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
1546 * Old decimal value is wake up time in multiples of 100 us.
1547 */
1548 if (i915->display.vbt.version >= 205 &&
1549 (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
1550 switch (psr_table->tp1_wakeup_time) {
1551 case 0:
1552 panel->vbt.psr.tp1_wakeup_time_us = 500;
1553 break;
1554 case 1:
1555 panel->vbt.psr.tp1_wakeup_time_us = 100;
1556 break;
1557 case 3:
1558 panel->vbt.psr.tp1_wakeup_time_us = 0;
1559 break;
1560 default:
1561 drm_dbg_kms(&i915->drm,
1562 "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1563 psr_table->tp1_wakeup_time);
1564 fallthrough;
1565 case 2:
1566 panel->vbt.psr.tp1_wakeup_time_us = 2500;
1567 break;
1568 }
1569
1570 switch (psr_table->tp2_tp3_wakeup_time) {
1571 case 0:
1572 panel->vbt.psr.tp2_tp3_wakeup_time_us = 500;
1573 break;
1574 case 1:
1575 panel->vbt.psr.tp2_tp3_wakeup_time_us = 100;
1576 break;
1577 case 3:
1578 panel->vbt.psr.tp2_tp3_wakeup_time_us = 0;
1579 break;
1580 default:
1581 drm_dbg_kms(&i915->drm,
1582 "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
1583 psr_table->tp2_tp3_wakeup_time);
1584 fallthrough;
1585 case 2:
1586 panel->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
1587 break;
1588 }
1589 } else {
1590 panel->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
1591 panel->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
1592 }
1593
1594 if (i915->display.vbt.version >= 226) {
1595 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
1596
1597 wakeup_time = panel_bits(wakeup_time, panel_type, 2);
1598 switch (wakeup_time) {
1599 case 0:
1600 wakeup_time = 500;
1601 break;
1602 case 1:
1603 wakeup_time = 100;
1604 break;
1605 case 3:
1606 wakeup_time = 50;
1607 break;
1608 default:
1609 case 2:
1610 wakeup_time = 2500;
1611 break;
1612 }
1613 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
1614 } else {
1615 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
1616 panel->vbt.psr.psr2_tp2_tp3_wakeup_time_us = panel->vbt.psr.tp2_tp3_wakeup_time_us;
1617 }
1618 }
1619
parse_dsi_backlight_ports(struct drm_i915_private * i915,struct intel_panel * panel,enum port port)1620 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
1621 struct intel_panel *panel,
1622 enum port port)
1623 {
1624 enum port port_bc = DISPLAY_VER(i915) >= 11 ? PORT_B : PORT_C;
1625
1626 if (!panel->vbt.dsi.config->dual_link || i915->display.vbt.version < 197) {
1627 panel->vbt.dsi.bl_ports = BIT(port);
1628 if (panel->vbt.dsi.config->cabc_supported)
1629 panel->vbt.dsi.cabc_ports = BIT(port);
1630
1631 return;
1632 }
1633
1634 switch (panel->vbt.dsi.config->dl_dcs_backlight_ports) {
1635 case DL_DCS_PORT_A:
1636 panel->vbt.dsi.bl_ports = BIT(PORT_A);
1637 break;
1638 case DL_DCS_PORT_C:
1639 panel->vbt.dsi.bl_ports = BIT(port_bc);
1640 break;
1641 default:
1642 case DL_DCS_PORT_A_AND_C:
1643 panel->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(port_bc);
1644 break;
1645 }
1646
1647 if (!panel->vbt.dsi.config->cabc_supported)
1648 return;
1649
1650 switch (panel->vbt.dsi.config->dl_dcs_cabc_ports) {
1651 case DL_DCS_PORT_A:
1652 panel->vbt.dsi.cabc_ports = BIT(PORT_A);
1653 break;
1654 case DL_DCS_PORT_C:
1655 panel->vbt.dsi.cabc_ports = BIT(port_bc);
1656 break;
1657 default:
1658 case DL_DCS_PORT_A_AND_C:
1659 panel->vbt.dsi.cabc_ports =
1660 BIT(PORT_A) | BIT(port_bc);
1661 break;
1662 }
1663 }
1664
1665 static void
parse_mipi_config(struct drm_i915_private * i915,struct intel_panel * panel)1666 parse_mipi_config(struct drm_i915_private *i915,
1667 struct intel_panel *panel)
1668 {
1669 const struct bdb_mipi_config *start;
1670 const struct mipi_config *config;
1671 const struct mipi_pps_data *pps;
1672 int panel_type = panel->vbt.panel_type;
1673 enum port port;
1674
1675 /* parse MIPI blocks only if LFP type is MIPI */
1676 if (!intel_bios_is_dsi_present(i915, &port))
1677 return;
1678
1679 /* Initialize this to undefined indicating no generic MIPI support */
1680 panel->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1681
1682 /* Block #40 is already parsed and panel_fixed_mode is
1683 * stored in i915->lfp_lvds_vbt_mode
1684 * resuse this when needed
1685 */
1686
1687 /* Parse #52 for panel index used from panel_type already
1688 * parsed
1689 */
1690 start = find_section(i915, BDB_MIPI_CONFIG);
1691 if (!start) {
1692 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1693 return;
1694 }
1695
1696 drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1697 panel_type);
1698
1699 /*
1700 * get hold of the correct configuration block and pps data as per
1701 * the panel_type as index
1702 */
1703 config = &start->config[panel_type];
1704 pps = &start->pps[panel_type];
1705
1706 /* store as of now full data. Trim when we realise all is not needed */
1707 panel->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1708 if (!panel->vbt.dsi.config)
1709 return;
1710
1711 panel->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1712 if (!panel->vbt.dsi.pps) {
1713 kfree(panel->vbt.dsi.config);
1714 return;
1715 }
1716
1717 parse_dsi_backlight_ports(i915, panel, port);
1718
1719 /* FIXME is the 90 vs. 270 correct? */
1720 switch (config->rotation) {
1721 case ENABLE_ROTATION_0:
1722 /*
1723 * Most (all?) VBTs claim 0 degrees despite having
1724 * an upside down panel, thus we do not trust this.
1725 */
1726 panel->vbt.dsi.orientation =
1727 DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1728 break;
1729 case ENABLE_ROTATION_90:
1730 panel->vbt.dsi.orientation =
1731 DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1732 break;
1733 case ENABLE_ROTATION_180:
1734 panel->vbt.dsi.orientation =
1735 DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1736 break;
1737 case ENABLE_ROTATION_270:
1738 panel->vbt.dsi.orientation =
1739 DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1740 break;
1741 }
1742
1743 /* We have mandatory mipi config blocks. Initialize as generic panel */
1744 panel->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1745 }
1746
1747 /* Find the sequence block and size for the given panel. */
1748 static const u8 *
find_panel_sequence_block(const struct bdb_mipi_sequence * sequence,u16 panel_id,u32 * seq_size)1749 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1750 u16 panel_id, u32 *seq_size)
1751 {
1752 u32 total = get_blocksize(sequence);
1753 const u8 *data = &sequence->data[0];
1754 u8 current_id;
1755 u32 current_size;
1756 int header_size = sequence->version >= 3 ? 5 : 3;
1757 int index = 0;
1758 int i;
1759
1760 /* skip new block size */
1761 if (sequence->version >= 3)
1762 data += 4;
1763
1764 for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1765 if (index + header_size > total) {
1766 DRM_ERROR("Invalid sequence block (header)\n");
1767 return NULL;
1768 }
1769
1770 current_id = *(data + index);
1771 if (sequence->version >= 3)
1772 current_size = *((const u32 *)(data + index + 1));
1773 else
1774 current_size = *((const u16 *)(data + index + 1));
1775
1776 index += header_size;
1777
1778 if (index + current_size > total) {
1779 DRM_ERROR("Invalid sequence block\n");
1780 return NULL;
1781 }
1782
1783 if (current_id == panel_id) {
1784 *seq_size = current_size;
1785 return data + index;
1786 }
1787
1788 index += current_size;
1789 }
1790
1791 DRM_ERROR("Sequence block detected but no valid configuration\n");
1792
1793 return NULL;
1794 }
1795
goto_next_sequence(const u8 * data,int index,int total)1796 static int goto_next_sequence(const u8 *data, int index, int total)
1797 {
1798 u16 len;
1799
1800 /* Skip Sequence Byte. */
1801 for (index = index + 1; index < total; index += len) {
1802 u8 operation_byte = *(data + index);
1803 index++;
1804
1805 switch (operation_byte) {
1806 case MIPI_SEQ_ELEM_END:
1807 return index;
1808 case MIPI_SEQ_ELEM_SEND_PKT:
1809 if (index + 4 > total)
1810 return 0;
1811
1812 len = *((const u16 *)(data + index + 2)) + 4;
1813 break;
1814 case MIPI_SEQ_ELEM_DELAY:
1815 len = 4;
1816 break;
1817 case MIPI_SEQ_ELEM_GPIO:
1818 len = 2;
1819 break;
1820 case MIPI_SEQ_ELEM_I2C:
1821 if (index + 7 > total)
1822 return 0;
1823 len = *(data + index + 6) + 7;
1824 break;
1825 default:
1826 DRM_ERROR("Unknown operation byte\n");
1827 return 0;
1828 }
1829 }
1830
1831 return 0;
1832 }
1833
goto_next_sequence_v3(const u8 * data,int index,int total)1834 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1835 {
1836 int seq_end;
1837 u16 len;
1838 u32 size_of_sequence;
1839
1840 /*
1841 * Could skip sequence based on Size of Sequence alone, but also do some
1842 * checking on the structure.
1843 */
1844 if (total < 5) {
1845 DRM_ERROR("Too small sequence size\n");
1846 return 0;
1847 }
1848
1849 /* Skip Sequence Byte. */
1850 index++;
1851
1852 /*
1853 * Size of Sequence. Excludes the Sequence Byte and the size itself,
1854 * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1855 * byte.
1856 */
1857 size_of_sequence = *((const u32 *)(data + index));
1858 index += 4;
1859
1860 seq_end = index + size_of_sequence;
1861 if (seq_end > total) {
1862 DRM_ERROR("Invalid sequence size\n");
1863 return 0;
1864 }
1865
1866 for (; index < total; index += len) {
1867 u8 operation_byte = *(data + index);
1868 index++;
1869
1870 if (operation_byte == MIPI_SEQ_ELEM_END) {
1871 if (index != seq_end) {
1872 DRM_ERROR("Invalid element structure\n");
1873 return 0;
1874 }
1875 return index;
1876 }
1877
1878 len = *(data + index);
1879 index++;
1880
1881 /*
1882 * FIXME: Would be nice to check elements like for v1/v2 in
1883 * goto_next_sequence() above.
1884 */
1885 switch (operation_byte) {
1886 case MIPI_SEQ_ELEM_SEND_PKT:
1887 case MIPI_SEQ_ELEM_DELAY:
1888 case MIPI_SEQ_ELEM_GPIO:
1889 case MIPI_SEQ_ELEM_I2C:
1890 case MIPI_SEQ_ELEM_SPI:
1891 case MIPI_SEQ_ELEM_PMIC:
1892 break;
1893 default:
1894 DRM_ERROR("Unknown operation byte %u\n",
1895 operation_byte);
1896 break;
1897 }
1898 }
1899
1900 return 0;
1901 }
1902
1903 /*
1904 * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1905 * skip all delay + gpio operands and stop at the first DSI packet op.
1906 */
get_init_otp_deassert_fragment_len(struct drm_i915_private * i915,struct intel_panel * panel)1907 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915,
1908 struct intel_panel *panel)
1909 {
1910 const u8 *data = panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1911 int index, len;
1912
1913 if (drm_WARN_ON(&i915->drm,
1914 !data || panel->vbt.dsi.seq_version != 1))
1915 return 0;
1916
1917 /* index = 1 to skip sequence byte */
1918 for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1919 switch (data[index]) {
1920 case MIPI_SEQ_ELEM_SEND_PKT:
1921 return index == 1 ? 0 : index;
1922 case MIPI_SEQ_ELEM_DELAY:
1923 len = 5; /* 1 byte for operand + uint32 */
1924 break;
1925 case MIPI_SEQ_ELEM_GPIO:
1926 len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1927 break;
1928 default:
1929 return 0;
1930 }
1931 }
1932
1933 return 0;
1934 }
1935
1936 /*
1937 * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1938 * The deassert must be done before calling intel_dsi_device_ready, so for
1939 * these devices we split the init OTP sequence into a deassert sequence and
1940 * the actual init OTP part.
1941 */
fixup_mipi_sequences(struct drm_i915_private * i915,struct intel_panel * panel)1942 static void fixup_mipi_sequences(struct drm_i915_private *i915,
1943 struct intel_panel *panel)
1944 {
1945 u8 *init_otp;
1946 int len;
1947
1948 /* Limit this to VLV for now. */
1949 if (!IS_VALLEYVIEW(i915))
1950 return;
1951
1952 /* Limit this to v1 vid-mode sequences */
1953 if (panel->vbt.dsi.config->is_cmd_mode ||
1954 panel->vbt.dsi.seq_version != 1)
1955 return;
1956
1957 /* Only do this if there are otp and assert seqs and no deassert seq */
1958 if (!panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1959 !panel->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1960 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1961 return;
1962
1963 /* The deassert-sequence ends at the first DSI packet */
1964 len = get_init_otp_deassert_fragment_len(i915, panel);
1965 if (!len)
1966 return;
1967
1968 drm_dbg_kms(&i915->drm,
1969 "Using init OTP fragment to deassert reset\n");
1970
1971 /* Copy the fragment, update seq byte and terminate it */
1972 init_otp = (u8 *)panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1973 panel->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1974 if (!panel->vbt.dsi.deassert_seq)
1975 return;
1976 panel->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1977 panel->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1978 /* Use the copy for deassert */
1979 panel->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1980 panel->vbt.dsi.deassert_seq;
1981 /* Replace the last byte of the fragment with init OTP seq byte */
1982 init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1983 /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1984 panel->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1985 }
1986
1987 static void
parse_mipi_sequence(struct drm_i915_private * i915,struct intel_panel * panel)1988 parse_mipi_sequence(struct drm_i915_private *i915,
1989 struct intel_panel *panel)
1990 {
1991 int panel_type = panel->vbt.panel_type;
1992 const struct bdb_mipi_sequence *sequence;
1993 const u8 *seq_data;
1994 u32 seq_size;
1995 u8 *data;
1996 int index = 0;
1997
1998 /* Only our generic panel driver uses the sequence block. */
1999 if (panel->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
2000 return;
2001
2002 sequence = find_section(i915, BDB_MIPI_SEQUENCE);
2003 if (!sequence) {
2004 drm_dbg_kms(&i915->drm,
2005 "No MIPI Sequence found, parsing complete\n");
2006 return;
2007 }
2008
2009 /* Fail gracefully for forward incompatible sequence block. */
2010 if (sequence->version >= 4) {
2011 drm_err(&i915->drm,
2012 "Unable to parse MIPI Sequence Block v%u\n",
2013 sequence->version);
2014 return;
2015 }
2016
2017 drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
2018 sequence->version);
2019
2020 seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
2021 if (!seq_data)
2022 return;
2023
2024 data = kmemdup(seq_data, seq_size, GFP_KERNEL);
2025 if (!data)
2026 return;
2027
2028 /* Parse the sequences, store pointers to each sequence. */
2029 for (;;) {
2030 u8 seq_id = *(data + index);
2031 if (seq_id == MIPI_SEQ_END)
2032 break;
2033
2034 if (seq_id >= MIPI_SEQ_MAX) {
2035 drm_err(&i915->drm, "Unknown sequence %u\n",
2036 seq_id);
2037 goto err;
2038 }
2039
2040 /* Log about presence of sequences we won't run. */
2041 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
2042 drm_dbg_kms(&i915->drm,
2043 "Unsupported sequence %u\n", seq_id);
2044
2045 panel->vbt.dsi.sequence[seq_id] = data + index;
2046
2047 if (sequence->version >= 3)
2048 index = goto_next_sequence_v3(data, index, seq_size);
2049 else
2050 index = goto_next_sequence(data, index, seq_size);
2051 if (!index) {
2052 drm_err(&i915->drm, "Invalid sequence %u\n",
2053 seq_id);
2054 goto err;
2055 }
2056 }
2057
2058 panel->vbt.dsi.data = data;
2059 panel->vbt.dsi.size = seq_size;
2060 panel->vbt.dsi.seq_version = sequence->version;
2061
2062 fixup_mipi_sequences(i915, panel);
2063
2064 drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
2065 return;
2066
2067 err:
2068 kfree(data);
2069 memset(panel->vbt.dsi.sequence, 0, sizeof(panel->vbt.dsi.sequence));
2070 }
2071
2072 static void
parse_compression_parameters(struct drm_i915_private * i915)2073 parse_compression_parameters(struct drm_i915_private *i915)
2074 {
2075 const struct bdb_compression_parameters *params;
2076 struct intel_bios_encoder_data *devdata;
2077 const struct child_device_config *child;
2078 u16 block_size;
2079 int index;
2080
2081 if (i915->display.vbt.version < 198)
2082 return;
2083
2084 params = find_section(i915, BDB_COMPRESSION_PARAMETERS);
2085 if (params) {
2086 /* Sanity checks */
2087 if (params->entry_size != sizeof(params->data[0])) {
2088 drm_dbg_kms(&i915->drm,
2089 "VBT: unsupported compression param entry size\n");
2090 return;
2091 }
2092
2093 block_size = get_blocksize(params);
2094 if (block_size < sizeof(*params)) {
2095 drm_dbg_kms(&i915->drm,
2096 "VBT: expected 16 compression param entries\n");
2097 return;
2098 }
2099 }
2100
2101 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
2102 child = &devdata->child;
2103
2104 if (!child->compression_enable)
2105 continue;
2106
2107 if (!params) {
2108 drm_dbg_kms(&i915->drm,
2109 "VBT: compression params not available\n");
2110 continue;
2111 }
2112
2113 if (child->compression_method_cps) {
2114 drm_dbg_kms(&i915->drm,
2115 "VBT: CPS compression not supported\n");
2116 continue;
2117 }
2118
2119 index = child->compression_structure_index;
2120
2121 devdata->dsc = kmemdup(¶ms->data[index],
2122 sizeof(*devdata->dsc), GFP_KERNEL);
2123 }
2124 }
2125
translate_iboost(u8 val)2126 static u8 translate_iboost(u8 val)
2127 {
2128 static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
2129
2130 if (val >= ARRAY_SIZE(mapping)) {
2131 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
2132 return 0;
2133 }
2134 return mapping[val];
2135 }
2136
2137 static const u8 cnp_ddc_pin_map[] = {
2138 [0] = 0, /* N/A */
2139 [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
2140 [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
2141 [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
2142 [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
2143 };
2144
2145 static const u8 icp_ddc_pin_map[] = {
2146 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2147 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2148 [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
2149 [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
2150 [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
2151 [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
2152 [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
2153 [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
2154 [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
2155 };
2156
2157 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
2158 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2159 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2160 [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
2161 [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
2162 };
2163
2164 static const u8 adls_ddc_pin_map[] = {
2165 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2166 [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2167 [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2168 [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2169 [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2170 };
2171
2172 static const u8 gen9bc_tgp_ddc_pin_map[] = {
2173 [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2174 [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
2175 [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
2176 };
2177
2178 static const u8 adlp_ddc_pin_map[] = {
2179 [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
2180 [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
2181 [ADLP_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
2182 [ADLP_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
2183 [ADLP_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
2184 [ADLP_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
2185 };
2186
map_ddc_pin(struct drm_i915_private * i915,u8 vbt_pin)2187 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
2188 {
2189 const u8 *ddc_pin_map;
2190 int n_entries;
2191
2192 if (IS_ALDERLAKE_P(i915)) {
2193 ddc_pin_map = adlp_ddc_pin_map;
2194 n_entries = ARRAY_SIZE(adlp_ddc_pin_map);
2195 } else if (IS_ALDERLAKE_S(i915)) {
2196 ddc_pin_map = adls_ddc_pin_map;
2197 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
2198 } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
2199 return vbt_pin;
2200 } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
2201 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
2202 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
2203 } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
2204 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
2205 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
2206 } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
2207 ddc_pin_map = icp_ddc_pin_map;
2208 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
2209 } else if (HAS_PCH_CNP(i915)) {
2210 ddc_pin_map = cnp_ddc_pin_map;
2211 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
2212 } else {
2213 /* Assuming direct map */
2214 return vbt_pin;
2215 }
2216
2217 if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
2218 return ddc_pin_map[vbt_pin];
2219
2220 drm_dbg_kms(&i915->drm,
2221 "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
2222 vbt_pin);
2223 return 0;
2224 }
2225
get_port_by_ddc_pin(struct drm_i915_private * i915,u8 ddc_pin)2226 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
2227 {
2228 const struct intel_bios_encoder_data *devdata;
2229 enum port port;
2230
2231 if (!ddc_pin)
2232 return PORT_NONE;
2233
2234 for_each_port(port) {
2235 devdata = i915->display.vbt.ports[port];
2236
2237 if (devdata && ddc_pin == devdata->child.ddc_pin)
2238 return port;
2239 }
2240
2241 return PORT_NONE;
2242 }
2243
sanitize_ddc_pin(struct intel_bios_encoder_data * devdata,enum port port)2244 static void sanitize_ddc_pin(struct intel_bios_encoder_data *devdata,
2245 enum port port)
2246 {
2247 struct drm_i915_private *i915 = devdata->i915;
2248 struct child_device_config *child;
2249 u8 mapped_ddc_pin;
2250 enum port p;
2251
2252 if (!devdata->child.ddc_pin)
2253 return;
2254
2255 mapped_ddc_pin = map_ddc_pin(i915, devdata->child.ddc_pin);
2256 if (!intel_gmbus_is_valid_pin(i915, mapped_ddc_pin)) {
2257 drm_dbg_kms(&i915->drm,
2258 "Port %c has invalid DDC pin %d, "
2259 "sticking to defaults\n",
2260 port_name(port), mapped_ddc_pin);
2261 devdata->child.ddc_pin = 0;
2262 return;
2263 }
2264
2265 p = get_port_by_ddc_pin(i915, devdata->child.ddc_pin);
2266 if (p == PORT_NONE)
2267 return;
2268
2269 drm_dbg_kms(&i915->drm,
2270 "port %c trying to use the same DDC pin (0x%x) as port %c, "
2271 "disabling port %c DVI/HDMI support\n",
2272 port_name(port), mapped_ddc_pin,
2273 port_name(p), port_name(p));
2274
2275 /*
2276 * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
2277 * couldn't exist on the shared port. Otherwise they share the same ddc
2278 * pin and system couldn't communicate with them separately.
2279 *
2280 * Give inverse child device order the priority, last one wins. Yes,
2281 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2282 * port A and port E with the same AUX ch and we must pick port E :(
2283 */
2284 child = &i915->display.vbt.ports[p]->child;
2285
2286 child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2287 child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2288
2289 child->ddc_pin = 0;
2290 }
2291
get_port_by_aux_ch(struct drm_i915_private * i915,u8 aux_ch)2292 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
2293 {
2294 const struct intel_bios_encoder_data *devdata;
2295 enum port port;
2296
2297 if (!aux_ch)
2298 return PORT_NONE;
2299
2300 for_each_port(port) {
2301 devdata = i915->display.vbt.ports[port];
2302
2303 if (devdata && aux_ch == devdata->child.aux_channel)
2304 return port;
2305 }
2306
2307 return PORT_NONE;
2308 }
2309
sanitize_aux_ch(struct intel_bios_encoder_data * devdata,enum port port)2310 static void sanitize_aux_ch(struct intel_bios_encoder_data *devdata,
2311 enum port port)
2312 {
2313 struct drm_i915_private *i915 = devdata->i915;
2314 struct child_device_config *child;
2315 enum port p;
2316
2317 p = get_port_by_aux_ch(i915, devdata->child.aux_channel);
2318 if (p == PORT_NONE)
2319 return;
2320
2321 drm_dbg_kms(&i915->drm,
2322 "port %c trying to use the same AUX CH (0x%x) as port %c, "
2323 "disabling port %c DP support\n",
2324 port_name(port), devdata->child.aux_channel,
2325 port_name(p), port_name(p));
2326
2327 /*
2328 * If we have multiple ports supposedly sharing the aux channel, then DP
2329 * couldn't exist on the shared port. Otherwise they share the same aux
2330 * channel and system couldn't communicate with them separately.
2331 *
2332 * Give inverse child device order the priority, last one wins. Yes,
2333 * there are real machines (eg. Asrock B250M-HDV) where VBT has both
2334 * port A and port E with the same AUX ch and we must pick port E :(
2335 */
2336 child = &i915->display.vbt.ports[p]->child;
2337
2338 child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2339 child->aux_channel = 0;
2340 }
2341
dvo_port_type(u8 dvo_port)2342 static u8 dvo_port_type(u8 dvo_port)
2343 {
2344 switch (dvo_port) {
2345 case DVO_PORT_HDMIA:
2346 case DVO_PORT_HDMIB:
2347 case DVO_PORT_HDMIC:
2348 case DVO_PORT_HDMID:
2349 case DVO_PORT_HDMIE:
2350 case DVO_PORT_HDMIF:
2351 case DVO_PORT_HDMIG:
2352 case DVO_PORT_HDMIH:
2353 case DVO_PORT_HDMII:
2354 return DVO_PORT_HDMIA;
2355 case DVO_PORT_DPA:
2356 case DVO_PORT_DPB:
2357 case DVO_PORT_DPC:
2358 case DVO_PORT_DPD:
2359 case DVO_PORT_DPE:
2360 case DVO_PORT_DPF:
2361 case DVO_PORT_DPG:
2362 case DVO_PORT_DPH:
2363 case DVO_PORT_DPI:
2364 return DVO_PORT_DPA;
2365 case DVO_PORT_MIPIA:
2366 case DVO_PORT_MIPIB:
2367 case DVO_PORT_MIPIC:
2368 case DVO_PORT_MIPID:
2369 return DVO_PORT_MIPIA;
2370 default:
2371 return dvo_port;
2372 }
2373 }
2374
__dvo_port_to_port(int n_ports,int n_dvo,const int port_mapping[][3],u8 dvo_port)2375 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
2376 const int port_mapping[][3], u8 dvo_port)
2377 {
2378 enum port port;
2379 int i;
2380
2381 for (port = PORT_A; port < n_ports; port++) {
2382 for (i = 0; i < n_dvo; i++) {
2383 if (port_mapping[port][i] == -1)
2384 break;
2385
2386 if (dvo_port == port_mapping[port][i])
2387 return port;
2388 }
2389 }
2390
2391 return PORT_NONE;
2392 }
2393
dvo_port_to_port(struct drm_i915_private * i915,u8 dvo_port)2394 static enum port dvo_port_to_port(struct drm_i915_private *i915,
2395 u8 dvo_port)
2396 {
2397 /*
2398 * Each DDI port can have more than one value on the "DVO Port" field,
2399 * so look for all the possible values for each port.
2400 */
2401 static const int port_mapping[][3] = {
2402 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2403 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2404 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2405 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2406 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
2407 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2408 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2409 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2410 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2411 };
2412 /*
2413 * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
2414 * map to DDI A,B,TC1,TC2 respectively.
2415 */
2416 static const int rkl_port_mapping[][3] = {
2417 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2418 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2419 [PORT_C] = { -1 },
2420 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2421 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2422 };
2423 /*
2424 * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
2425 * PORT_F and PORT_G, we need to map that to correct VBT sections.
2426 */
2427 static const int adls_port_mapping[][3] = {
2428 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2429 [PORT_B] = { -1 },
2430 [PORT_C] = { -1 },
2431 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2432 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2433 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2434 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2435 };
2436 static const int xelpd_port_mapping[][3] = {
2437 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
2438 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
2439 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
2440 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
2441 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
2442 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
2443 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
2444 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
2445 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
2446 };
2447
2448 if (DISPLAY_VER(i915) >= 13)
2449 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
2450 ARRAY_SIZE(xelpd_port_mapping[0]),
2451 xelpd_port_mapping,
2452 dvo_port);
2453 else if (IS_ALDERLAKE_S(i915))
2454 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
2455 ARRAY_SIZE(adls_port_mapping[0]),
2456 adls_port_mapping,
2457 dvo_port);
2458 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2459 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
2460 ARRAY_SIZE(rkl_port_mapping[0]),
2461 rkl_port_mapping,
2462 dvo_port);
2463 else
2464 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
2465 ARRAY_SIZE(port_mapping[0]),
2466 port_mapping,
2467 dvo_port);
2468 }
2469
2470 static enum port
dsi_dvo_port_to_port(struct drm_i915_private * i915,u8 dvo_port)2471 dsi_dvo_port_to_port(struct drm_i915_private *i915, u8 dvo_port)
2472 {
2473 switch (dvo_port) {
2474 case DVO_PORT_MIPIA:
2475 return PORT_A;
2476 case DVO_PORT_MIPIC:
2477 if (DISPLAY_VER(i915) >= 11)
2478 return PORT_B;
2479 else
2480 return PORT_C;
2481 default:
2482 return PORT_NONE;
2483 }
2484 }
2485
parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)2486 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
2487 {
2488 switch (vbt_max_link_rate) {
2489 default:
2490 case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
2491 return 0;
2492 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
2493 return 2000000;
2494 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
2495 return 1350000;
2496 case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
2497 return 1000000;
2498 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
2499 return 810000;
2500 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
2501 return 540000;
2502 case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
2503 return 270000;
2504 case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
2505 return 162000;
2506 }
2507 }
2508
parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)2509 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
2510 {
2511 switch (vbt_max_link_rate) {
2512 default:
2513 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
2514 return 810000;
2515 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
2516 return 540000;
2517 case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
2518 return 270000;
2519 case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
2520 return 162000;
2521 }
2522 }
2523
_intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data * devdata)2524 static int _intel_bios_dp_max_link_rate(const struct intel_bios_encoder_data *devdata)
2525 {
2526 if (!devdata || devdata->i915->display.vbt.version < 216)
2527 return 0;
2528
2529 if (devdata->i915->display.vbt.version >= 230)
2530 return parse_bdb_230_dp_max_link_rate(devdata->child.dp_max_link_rate);
2531 else
2532 return parse_bdb_216_dp_max_link_rate(devdata->child.dp_max_link_rate);
2533 }
2534
_intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data * devdata)2535 static int _intel_bios_dp_max_lane_count(const struct intel_bios_encoder_data *devdata)
2536 {
2537 if (!devdata || devdata->i915->display.vbt.version < 244)
2538 return 0;
2539
2540 return devdata->child.dp_max_lane_count + 1;
2541 }
2542
sanitize_device_type(struct intel_bios_encoder_data * devdata,enum port port)2543 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
2544 enum port port)
2545 {
2546 struct drm_i915_private *i915 = devdata->i915;
2547 bool is_hdmi;
2548
2549 if (port != PORT_A || DISPLAY_VER(i915) >= 12)
2550 return;
2551
2552 if (!intel_bios_encoder_supports_dvi(devdata))
2553 return;
2554
2555 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2556
2557 drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
2558 is_hdmi ? "/HDMI" : "");
2559
2560 devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
2561 devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
2562 }
2563
2564 static bool
intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data * devdata)2565 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
2566 {
2567 return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
2568 }
2569
2570 bool
intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data * devdata)2571 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
2572 {
2573 return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
2574 }
2575
2576 bool
intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data * devdata)2577 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
2578 {
2579 return intel_bios_encoder_supports_dvi(devdata) &&
2580 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
2581 }
2582
2583 bool
intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data * devdata)2584 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
2585 {
2586 return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2587 }
2588
2589 static bool
intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data * devdata)2590 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
2591 {
2592 return intel_bios_encoder_supports_dp(devdata) &&
2593 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
2594 }
2595
2596 static bool
intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data * devdata)2597 intel_bios_encoder_supports_dsi(const struct intel_bios_encoder_data *devdata)
2598 {
2599 return devdata->child.device_type & DEVICE_TYPE_MIPI_OUTPUT;
2600 }
2601
_intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data * devdata)2602 static int _intel_bios_hdmi_level_shift(const struct intel_bios_encoder_data *devdata)
2603 {
2604 if (!devdata || devdata->i915->display.vbt.version < 158)
2605 return -1;
2606
2607 return devdata->child.hdmi_level_shifter_value;
2608 }
2609
_intel_bios_max_tmds_clock(const struct intel_bios_encoder_data * devdata)2610 static int _intel_bios_max_tmds_clock(const struct intel_bios_encoder_data *devdata)
2611 {
2612 if (!devdata || devdata->i915->display.vbt.version < 204)
2613 return 0;
2614
2615 switch (devdata->child.hdmi_max_data_rate) {
2616 default:
2617 MISSING_CASE(devdata->child.hdmi_max_data_rate);
2618 fallthrough;
2619 case HDMI_MAX_DATA_RATE_PLATFORM:
2620 return 0;
2621 case HDMI_MAX_DATA_RATE_594:
2622 return 594000;
2623 case HDMI_MAX_DATA_RATE_340:
2624 return 340000;
2625 case HDMI_MAX_DATA_RATE_300:
2626 return 300000;
2627 case HDMI_MAX_DATA_RATE_297:
2628 return 297000;
2629 case HDMI_MAX_DATA_RATE_165:
2630 return 165000;
2631 }
2632 }
2633
is_port_valid(struct drm_i915_private * i915,enum port port)2634 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
2635 {
2636 /*
2637 * On some ICL SKUs port F is not present, but broken VBTs mark
2638 * the port as present. Only try to initialize port F for the
2639 * SKUs that may actually have it.
2640 */
2641 if (port == PORT_F && IS_ICELAKE(i915))
2642 return IS_ICL_WITH_PORT_F(i915);
2643
2644 return true;
2645 }
2646
print_ddi_port(const struct intel_bios_encoder_data * devdata,enum port port)2647 static void print_ddi_port(const struct intel_bios_encoder_data *devdata,
2648 enum port port)
2649 {
2650 struct drm_i915_private *i915 = devdata->i915;
2651 const struct child_device_config *child = &devdata->child;
2652 bool is_dvi, is_hdmi, is_dp, is_edp, is_dsi, is_crt, supports_typec_usb, supports_tbt;
2653 int dp_boost_level, dp_max_link_rate, hdmi_boost_level, hdmi_level_shift, max_tmds_clock;
2654
2655 is_dvi = intel_bios_encoder_supports_dvi(devdata);
2656 is_dp = intel_bios_encoder_supports_dp(devdata);
2657 is_crt = intel_bios_encoder_supports_crt(devdata);
2658 is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
2659 is_edp = intel_bios_encoder_supports_edp(devdata);
2660 is_dsi = intel_bios_encoder_supports_dsi(devdata);
2661
2662 supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
2663 supports_tbt = intel_bios_encoder_supports_tbt(devdata);
2664
2665 drm_dbg_kms(&i915->drm,
2666 "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d DSI:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
2667 port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp, is_dsi,
2668 HAS_LSPCON(i915) && child->lspcon,
2669 supports_typec_usb, supports_tbt,
2670 devdata->dsc != NULL);
2671
2672 hdmi_level_shift = _intel_bios_hdmi_level_shift(devdata);
2673 if (hdmi_level_shift >= 0) {
2674 drm_dbg_kms(&i915->drm,
2675 "Port %c VBT HDMI level shift: %d\n",
2676 port_name(port), hdmi_level_shift);
2677 }
2678
2679 max_tmds_clock = _intel_bios_max_tmds_clock(devdata);
2680 if (max_tmds_clock)
2681 drm_dbg_kms(&i915->drm,
2682 "Port %c VBT HDMI max TMDS clock: %d kHz\n",
2683 port_name(port), max_tmds_clock);
2684
2685 /* I_boost config for SKL and above */
2686 dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
2687 if (dp_boost_level)
2688 drm_dbg_kms(&i915->drm,
2689 "Port %c VBT (e)DP boost level: %d\n",
2690 port_name(port), dp_boost_level);
2691
2692 hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
2693 if (hdmi_boost_level)
2694 drm_dbg_kms(&i915->drm,
2695 "Port %c VBT HDMI boost level: %d\n",
2696 port_name(port), hdmi_boost_level);
2697
2698 dp_max_link_rate = _intel_bios_dp_max_link_rate(devdata);
2699 if (dp_max_link_rate)
2700 drm_dbg_kms(&i915->drm,
2701 "Port %c VBT DP max link rate: %d\n",
2702 port_name(port), dp_max_link_rate);
2703 }
2704
parse_ddi_port(struct intel_bios_encoder_data * devdata)2705 static void parse_ddi_port(struct intel_bios_encoder_data *devdata)
2706 {
2707 struct drm_i915_private *i915 = devdata->i915;
2708 const struct child_device_config *child = &devdata->child;
2709 enum port port;
2710
2711 port = dvo_port_to_port(i915, child->dvo_port);
2712 if (port == PORT_NONE && DISPLAY_VER(i915) >= 11)
2713 port = dsi_dvo_port_to_port(i915, child->dvo_port);
2714 if (port == PORT_NONE)
2715 return;
2716
2717 if (!is_port_valid(i915, port)) {
2718 drm_dbg_kms(&i915->drm,
2719 "VBT reports port %c as supported, but that can't be true: skipping\n",
2720 port_name(port));
2721 return;
2722 }
2723
2724 if (i915->display.vbt.ports[port]) {
2725 drm_dbg_kms(&i915->drm,
2726 "More than one child device for port %c in VBT, using the first.\n",
2727 port_name(port));
2728 return;
2729 }
2730
2731 sanitize_device_type(devdata, port);
2732
2733 if (intel_bios_encoder_supports_dvi(devdata))
2734 sanitize_ddc_pin(devdata, port);
2735
2736 if (intel_bios_encoder_supports_dp(devdata))
2737 sanitize_aux_ch(devdata, port);
2738
2739 i915->display.vbt.ports[port] = devdata;
2740 }
2741
has_ddi_port_info(struct drm_i915_private * i915)2742 static bool has_ddi_port_info(struct drm_i915_private *i915)
2743 {
2744 return DISPLAY_VER(i915) >= 5 || IS_G4X(i915);
2745 }
2746
parse_ddi_ports(struct drm_i915_private * i915)2747 static void parse_ddi_ports(struct drm_i915_private *i915)
2748 {
2749 struct intel_bios_encoder_data *devdata;
2750 enum port port;
2751
2752 if (!has_ddi_port_info(i915))
2753 return;
2754
2755 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node)
2756 parse_ddi_port(devdata);
2757
2758 for_each_port(port) {
2759 if (i915->display.vbt.ports[port])
2760 print_ddi_port(i915->display.vbt.ports[port], port);
2761 }
2762 }
2763
2764 static void
parse_general_definitions(struct drm_i915_private * i915)2765 parse_general_definitions(struct drm_i915_private *i915)
2766 {
2767 const struct bdb_general_definitions *defs;
2768 struct intel_bios_encoder_data *devdata;
2769 const struct child_device_config *child;
2770 int i, child_device_num;
2771 u8 expected_size;
2772 u16 block_size;
2773 int bus_pin;
2774
2775 defs = find_section(i915, BDB_GENERAL_DEFINITIONS);
2776 if (!defs) {
2777 drm_dbg_kms(&i915->drm,
2778 "No general definition block is found, no devices defined.\n");
2779 return;
2780 }
2781
2782 block_size = get_blocksize(defs);
2783 if (block_size < sizeof(*defs)) {
2784 drm_dbg_kms(&i915->drm,
2785 "General definitions block too small (%u)\n",
2786 block_size);
2787 return;
2788 }
2789
2790 bus_pin = defs->crt_ddc_gmbus_pin;
2791 drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2792 if (intel_gmbus_is_valid_pin(i915, bus_pin))
2793 i915->display.vbt.crt_ddc_pin = bus_pin;
2794
2795 if (i915->display.vbt.version < 106) {
2796 expected_size = 22;
2797 } else if (i915->display.vbt.version < 111) {
2798 expected_size = 27;
2799 } else if (i915->display.vbt.version < 195) {
2800 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2801 } else if (i915->display.vbt.version == 195) {
2802 expected_size = 37;
2803 } else if (i915->display.vbt.version <= 215) {
2804 expected_size = 38;
2805 } else if (i915->display.vbt.version <= 237) {
2806 expected_size = 39;
2807 } else {
2808 expected_size = sizeof(*child);
2809 BUILD_BUG_ON(sizeof(*child) < 39);
2810 drm_dbg(&i915->drm,
2811 "Expected child device config size for VBT version %u not known; assuming %u\n",
2812 i915->display.vbt.version, expected_size);
2813 }
2814
2815 /* Flag an error for unexpected size, but continue anyway. */
2816 if (defs->child_dev_size != expected_size)
2817 drm_err(&i915->drm,
2818 "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2819 defs->child_dev_size, expected_size, i915->display.vbt.version);
2820
2821 /* The legacy sized child device config is the minimum we need. */
2822 if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2823 drm_dbg_kms(&i915->drm,
2824 "Child device config size %u is too small.\n",
2825 defs->child_dev_size);
2826 return;
2827 }
2828
2829 /* get the number of child device */
2830 child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2831
2832 for (i = 0; i < child_device_num; i++) {
2833 child = child_device_ptr(defs, i);
2834 if (!child->device_type)
2835 continue;
2836
2837 drm_dbg_kms(&i915->drm,
2838 "Found VBT child device with type 0x%x\n",
2839 child->device_type);
2840
2841 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2842 if (!devdata)
2843 break;
2844
2845 devdata->i915 = i915;
2846
2847 /*
2848 * Copy as much as we know (sizeof) and is available
2849 * (child_dev_size) of the child device config. Accessing the
2850 * data must depend on VBT version.
2851 */
2852 memcpy(&devdata->child, child,
2853 min_t(size_t, defs->child_dev_size, sizeof(*child)));
2854
2855 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2856 }
2857
2858 if (list_empty(&i915->display.vbt.display_devices))
2859 drm_dbg_kms(&i915->drm,
2860 "no child dev is parsed from VBT\n");
2861 }
2862
2863 /* Common defaults which may be overridden by VBT. */
2864 static void
init_vbt_defaults(struct drm_i915_private * i915)2865 init_vbt_defaults(struct drm_i915_private *i915)
2866 {
2867 i915->display.vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2868
2869 /* general features */
2870 i915->display.vbt.int_tv_support = 1;
2871 i915->display.vbt.int_crt_support = 1;
2872
2873 /* driver features */
2874 i915->display.vbt.int_lvds_support = 1;
2875
2876 /* Default to using SSC */
2877 i915->display.vbt.lvds_use_ssc = 1;
2878 /*
2879 * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2880 * clock for LVDS.
2881 */
2882 i915->display.vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2883 !HAS_PCH_SPLIT(i915));
2884 drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2885 i915->display.vbt.lvds_ssc_freq);
2886 }
2887
2888 /* Common defaults which may be overridden by VBT. */
2889 static void
init_vbt_panel_defaults(struct intel_panel * panel)2890 init_vbt_panel_defaults(struct intel_panel *panel)
2891 {
2892 /* Default to having backlight */
2893 panel->vbt.backlight.present = true;
2894
2895 /* LFP panel data */
2896 panel->vbt.lvds_dither = true;
2897 }
2898
2899 /* Defaults to initialize only if there is no VBT. */
2900 static void
init_vbt_missing_defaults(struct drm_i915_private * i915)2901 init_vbt_missing_defaults(struct drm_i915_private *i915)
2902 {
2903 enum port port;
2904 int ports = BIT(PORT_A) | BIT(PORT_B) | BIT(PORT_C) |
2905 BIT(PORT_D) | BIT(PORT_E) | BIT(PORT_F);
2906
2907 if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2908 return;
2909
2910 for_each_port_masked(port, ports) {
2911 struct intel_bios_encoder_data *devdata;
2912 struct child_device_config *child;
2913 enum phy phy = intel_port_to_phy(i915, port);
2914
2915 /*
2916 * VBT has the TypeC mode (native,TBT/USB) and we don't want
2917 * to detect it.
2918 */
2919 if (intel_phy_is_tc(i915, phy))
2920 continue;
2921
2922 /* Create fake child device config */
2923 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2924 if (!devdata)
2925 break;
2926
2927 devdata->i915 = i915;
2928 child = &devdata->child;
2929
2930 if (port == PORT_F)
2931 child->dvo_port = DVO_PORT_HDMIF;
2932 else if (port == PORT_E)
2933 child->dvo_port = DVO_PORT_HDMIE;
2934 else
2935 child->dvo_port = DVO_PORT_HDMIA + port;
2936
2937 if (port != PORT_A && port != PORT_E)
2938 child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2939
2940 if (port != PORT_E)
2941 child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2942
2943 if (port == PORT_A)
2944 child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2945
2946 list_add_tail(&devdata->node, &i915->display.vbt.display_devices);
2947
2948 drm_dbg_kms(&i915->drm,
2949 "Generating default VBT child device with type 0x04%x on port %c\n",
2950 child->device_type, port_name(port));
2951 }
2952
2953 /* Bypass some minimum baseline VBT version checks */
2954 i915->display.vbt.version = 155;
2955 }
2956
get_bdb_header(const struct vbt_header * vbt)2957 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2958 {
2959 const void *_vbt = vbt;
2960
2961 return _vbt + vbt->bdb_offset;
2962 }
2963
2964 /**
2965 * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2966 * @buf: pointer to a buffer to validate
2967 * @size: size of the buffer
2968 *
2969 * Returns true on valid VBT.
2970 */
intel_bios_is_valid_vbt(const void * buf,size_t size)2971 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2972 {
2973 const struct vbt_header *vbt = buf;
2974 const struct bdb_header *bdb;
2975
2976 if (!vbt)
2977 return false;
2978
2979 if (sizeof(struct vbt_header) > size) {
2980 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2981 return false;
2982 }
2983
2984 if (memcmp(vbt->signature, "$VBT", 4)) {
2985 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2986 return false;
2987 }
2988
2989 if (vbt->vbt_size > size) {
2990 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2991 return false;
2992 }
2993
2994 size = vbt->vbt_size;
2995
2996 if (range_overflows_t(size_t,
2997 vbt->bdb_offset,
2998 sizeof(struct bdb_header),
2999 size)) {
3000 DRM_DEBUG_DRIVER("BDB header incomplete\n");
3001 return false;
3002 }
3003
3004 bdb = get_bdb_header(vbt);
3005 if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
3006 DRM_DEBUG_DRIVER("BDB incomplete\n");
3007 return false;
3008 }
3009
3010 return vbt;
3011 }
3012
spi_oprom_get_vbt(struct drm_i915_private * i915)3013 static struct vbt_header *spi_oprom_get_vbt(struct drm_i915_private *i915)
3014 {
3015 u32 count, data, found, store = 0;
3016 u32 static_region, oprom_offset;
3017 u32 oprom_size = 0x200000;
3018 u16 vbt_size;
3019 u32 *vbt;
3020
3021 static_region = intel_uncore_read(&i915->uncore, SPI_STATIC_REGIONS);
3022 static_region &= OPTIONROM_SPI_REGIONID_MASK;
3023 intel_uncore_write(&i915->uncore, PRIMARY_SPI_REGIONID, static_region);
3024
3025 oprom_offset = intel_uncore_read(&i915->uncore, OROM_OFFSET);
3026 oprom_offset &= OROM_OFFSET_MASK;
3027
3028 for (count = 0; count < oprom_size; count += 4) {
3029 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, oprom_offset + count);
3030 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3031
3032 if (data == *((const u32 *)"$VBT")) {
3033 found = oprom_offset + count;
3034 break;
3035 }
3036 }
3037
3038 if (count >= oprom_size)
3039 goto err_not_found;
3040
3041 /* Get VBT size and allocate space for the VBT */
3042 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found +
3043 offsetof(struct vbt_header, vbt_size));
3044 vbt_size = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3045 vbt_size &= 0xffff;
3046
3047 vbt = kzalloc(round_up(vbt_size, 4), GFP_KERNEL);
3048 if (!vbt)
3049 goto err_not_found;
3050
3051 for (count = 0; count < vbt_size; count += 4) {
3052 intel_uncore_write(&i915->uncore, PRIMARY_SPI_ADDRESS, found + count);
3053 data = intel_uncore_read(&i915->uncore, PRIMARY_SPI_TRIGGER);
3054 *(vbt + store++) = data;
3055 }
3056
3057 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3058 goto err_free_vbt;
3059
3060 drm_dbg_kms(&i915->drm, "Found valid VBT in SPI flash\n");
3061
3062 return (struct vbt_header *)vbt;
3063
3064 err_free_vbt:
3065 kfree(vbt);
3066 err_not_found:
3067 return NULL;
3068 }
3069
oprom_get_vbt(struct drm_i915_private * i915)3070 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
3071 {
3072 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
3073 void __iomem *p = NULL, *oprom;
3074 struct vbt_header *vbt;
3075 u16 vbt_size;
3076 size_t i, size;
3077
3078 oprom = pci_map_rom(pdev, &size);
3079 if (!oprom)
3080 return NULL;
3081
3082 /* Scour memory looking for the VBT signature. */
3083 for (i = 0; i + 4 < size; i += 4) {
3084 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
3085 continue;
3086
3087 p = oprom + i;
3088 size -= i;
3089 break;
3090 }
3091
3092 if (!p)
3093 goto err_unmap_oprom;
3094
3095 if (sizeof(struct vbt_header) > size) {
3096 drm_dbg(&i915->drm, "VBT header incomplete\n");
3097 goto err_unmap_oprom;
3098 }
3099
3100 vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
3101 if (vbt_size > size) {
3102 drm_dbg(&i915->drm,
3103 "VBT incomplete (vbt_size overflows)\n");
3104 goto err_unmap_oprom;
3105 }
3106
3107 /* The rest will be validated by intel_bios_is_valid_vbt() */
3108 vbt = kmalloc(vbt_size, GFP_KERNEL);
3109 if (!vbt)
3110 goto err_unmap_oprom;
3111
3112 memcpy_fromio(vbt, p, vbt_size);
3113
3114 if (!intel_bios_is_valid_vbt(vbt, vbt_size))
3115 goto err_free_vbt;
3116
3117 pci_unmap_rom(pdev, oprom);
3118
3119 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
3120
3121 return vbt;
3122
3123 err_free_vbt:
3124 kfree(vbt);
3125 err_unmap_oprom:
3126 pci_unmap_rom(pdev, oprom);
3127
3128 return NULL;
3129 }
3130
3131 /**
3132 * intel_bios_init - find VBT and initialize settings from the BIOS
3133 * @i915: i915 device instance
3134 *
3135 * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
3136 * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
3137 * initialize some defaults if the VBT is not present at all.
3138 */
intel_bios_init(struct drm_i915_private * i915)3139 void intel_bios_init(struct drm_i915_private *i915)
3140 {
3141 const struct vbt_header *vbt = i915->display.opregion.vbt;
3142 struct vbt_header *oprom_vbt = NULL;
3143 const struct bdb_header *bdb;
3144
3145 INIT_LIST_HEAD(&i915->display.vbt.display_devices);
3146 INIT_LIST_HEAD(&i915->display.vbt.bdb_blocks);
3147
3148 if (!HAS_DISPLAY(i915)) {
3149 drm_dbg_kms(&i915->drm,
3150 "Skipping VBT init due to disabled display.\n");
3151 return;
3152 }
3153
3154 init_vbt_defaults(i915);
3155
3156 /*
3157 * If the OpRegion does not have VBT, look in SPI flash through MMIO or
3158 * PCI mapping
3159 */
3160 if (!vbt && IS_DGFX(i915)) {
3161 oprom_vbt = spi_oprom_get_vbt(i915);
3162 vbt = oprom_vbt;
3163 }
3164
3165 if (!vbt) {
3166 oprom_vbt = oprom_get_vbt(i915);
3167 vbt = oprom_vbt;
3168 }
3169
3170 if (!vbt)
3171 goto out;
3172
3173 bdb = get_bdb_header(vbt);
3174 i915->display.vbt.version = bdb->version;
3175
3176 drm_dbg_kms(&i915->drm,
3177 "VBT signature \"%.*s\", BDB version %d\n",
3178 (int)sizeof(vbt->signature), vbt->signature, i915->display.vbt.version);
3179
3180 init_bdb_blocks(i915, bdb);
3181
3182 /* Grab useful general definitions */
3183 parse_general_features(i915);
3184 parse_general_definitions(i915);
3185 parse_driver_features(i915);
3186
3187 /* Depends on child device list */
3188 parse_compression_parameters(i915);
3189
3190 out:
3191 if (!vbt) {
3192 drm_info(&i915->drm,
3193 "Failed to find VBIOS tables (VBT)\n");
3194 init_vbt_missing_defaults(i915);
3195 }
3196
3197 /* Further processing on pre-parsed or generated child device data */
3198 parse_sdvo_device_mapping(i915);
3199 parse_ddi_ports(i915);
3200
3201 kfree(oprom_vbt);
3202 }
3203
intel_bios_init_panel(struct drm_i915_private * i915,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct edid * edid,bool use_fallback)3204 static void intel_bios_init_panel(struct drm_i915_private *i915,
3205 struct intel_panel *panel,
3206 const struct intel_bios_encoder_data *devdata,
3207 const struct edid *edid,
3208 bool use_fallback)
3209 {
3210 /* already have it? */
3211 if (panel->vbt.panel_type >= 0) {
3212 drm_WARN_ON(&i915->drm, !use_fallback);
3213 return;
3214 }
3215
3216 panel->vbt.panel_type = get_panel_type(i915, devdata,
3217 edid, use_fallback);
3218 if (panel->vbt.panel_type < 0) {
3219 drm_WARN_ON(&i915->drm, use_fallback);
3220 return;
3221 }
3222
3223 init_vbt_panel_defaults(panel);
3224
3225 parse_panel_options(i915, panel);
3226 parse_generic_dtd(i915, panel);
3227 parse_lfp_data(i915, panel);
3228 parse_lfp_backlight(i915, panel);
3229 parse_sdvo_panel_data(i915, panel);
3230 parse_panel_driver_features(i915, panel);
3231 parse_power_conservation_features(i915, panel);
3232 parse_edp(i915, panel);
3233 parse_psr(i915, panel);
3234 parse_mipi_config(i915, panel);
3235 parse_mipi_sequence(i915, panel);
3236 }
3237
intel_bios_init_panel_early(struct drm_i915_private * i915,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata)3238 void intel_bios_init_panel_early(struct drm_i915_private *i915,
3239 struct intel_panel *panel,
3240 const struct intel_bios_encoder_data *devdata)
3241 {
3242 intel_bios_init_panel(i915, panel, devdata, NULL, false);
3243 }
3244
intel_bios_init_panel_late(struct drm_i915_private * i915,struct intel_panel * panel,const struct intel_bios_encoder_data * devdata,const struct edid * edid)3245 void intel_bios_init_panel_late(struct drm_i915_private *i915,
3246 struct intel_panel *panel,
3247 const struct intel_bios_encoder_data *devdata,
3248 const struct edid *edid)
3249 {
3250 intel_bios_init_panel(i915, panel, devdata, edid, true);
3251 }
3252
3253 /**
3254 * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
3255 * @i915: i915 device instance
3256 */
intel_bios_driver_remove(struct drm_i915_private * i915)3257 void intel_bios_driver_remove(struct drm_i915_private *i915)
3258 {
3259 struct intel_bios_encoder_data *devdata, *nd;
3260 struct bdb_block_entry *entry, *ne;
3261
3262 list_for_each_entry_safe(devdata, nd, &i915->display.vbt.display_devices, node) {
3263 list_del(&devdata->node);
3264 kfree(devdata->dsc);
3265 kfree(devdata);
3266 }
3267
3268 list_for_each_entry_safe(entry, ne, &i915->display.vbt.bdb_blocks, node) {
3269 list_del(&entry->node);
3270 kfree(entry);
3271 }
3272 }
3273
intel_bios_fini_panel(struct intel_panel * panel)3274 void intel_bios_fini_panel(struct intel_panel *panel)
3275 {
3276 kfree(panel->vbt.sdvo_lvds_vbt_mode);
3277 panel->vbt.sdvo_lvds_vbt_mode = NULL;
3278 kfree(panel->vbt.lfp_lvds_vbt_mode);
3279 panel->vbt.lfp_lvds_vbt_mode = NULL;
3280 kfree(panel->vbt.dsi.data);
3281 panel->vbt.dsi.data = NULL;
3282 kfree(panel->vbt.dsi.pps);
3283 panel->vbt.dsi.pps = NULL;
3284 kfree(panel->vbt.dsi.config);
3285 panel->vbt.dsi.config = NULL;
3286 kfree(panel->vbt.dsi.deassert_seq);
3287 panel->vbt.dsi.deassert_seq = NULL;
3288 }
3289
3290 /**
3291 * intel_bios_is_tv_present - is integrated TV present in VBT
3292 * @i915: i915 device instance
3293 *
3294 * Return true if TV is present. If no child devices were parsed from VBT,
3295 * assume TV is present.
3296 */
intel_bios_is_tv_present(struct drm_i915_private * i915)3297 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
3298 {
3299 const struct intel_bios_encoder_data *devdata;
3300 const struct child_device_config *child;
3301
3302 if (!i915->display.vbt.int_tv_support)
3303 return false;
3304
3305 if (list_empty(&i915->display.vbt.display_devices))
3306 return true;
3307
3308 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3309 child = &devdata->child;
3310
3311 /*
3312 * If the device type is not TV, continue.
3313 */
3314 switch (child->device_type) {
3315 case DEVICE_TYPE_INT_TV:
3316 case DEVICE_TYPE_TV:
3317 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
3318 break;
3319 default:
3320 continue;
3321 }
3322 /* Only when the addin_offset is non-zero, it is regarded
3323 * as present.
3324 */
3325 if (child->addin_offset)
3326 return true;
3327 }
3328
3329 return false;
3330 }
3331
3332 /**
3333 * intel_bios_is_lvds_present - is LVDS present in VBT
3334 * @i915: i915 device instance
3335 * @i2c_pin: i2c pin for LVDS if present
3336 *
3337 * Return true if LVDS is present. If no child devices were parsed from VBT,
3338 * assume LVDS is present.
3339 */
intel_bios_is_lvds_present(struct drm_i915_private * i915,u8 * i2c_pin)3340 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
3341 {
3342 const struct intel_bios_encoder_data *devdata;
3343 const struct child_device_config *child;
3344
3345 if (list_empty(&i915->display.vbt.display_devices))
3346 return true;
3347
3348 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3349 child = &devdata->child;
3350
3351 /* If the device type is not LFP, continue.
3352 * We have to check both the new identifiers as well as the
3353 * old for compatibility with some BIOSes.
3354 */
3355 if (child->device_type != DEVICE_TYPE_INT_LFP &&
3356 child->device_type != DEVICE_TYPE_LFP)
3357 continue;
3358
3359 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
3360 *i2c_pin = child->i2c_pin;
3361
3362 /* However, we cannot trust the BIOS writers to populate
3363 * the VBT correctly. Since LVDS requires additional
3364 * information from AIM blocks, a non-zero addin offset is
3365 * a good indicator that the LVDS is actually present.
3366 */
3367 if (child->addin_offset)
3368 return true;
3369
3370 /* But even then some BIOS writers perform some black magic
3371 * and instantiate the device without reference to any
3372 * additional data. Trust that if the VBT was written into
3373 * the OpRegion then they have validated the LVDS's existence.
3374 */
3375 if (i915->display.opregion.vbt)
3376 return true;
3377 }
3378
3379 return false;
3380 }
3381
3382 /**
3383 * intel_bios_is_port_present - is the specified digital port present
3384 * @i915: i915 device instance
3385 * @port: port to check
3386 *
3387 * Return true if the device in %port is present.
3388 */
intel_bios_is_port_present(struct drm_i915_private * i915,enum port port)3389 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
3390 {
3391 if (WARN_ON(!has_ddi_port_info(i915)))
3392 return true;
3393
3394 return i915->display.vbt.ports[port];
3395 }
3396
3397 /**
3398 * intel_bios_is_port_edp - is the device in given port eDP
3399 * @i915: i915 device instance
3400 * @port: port to check
3401 *
3402 * Return true if the device in %port is eDP.
3403 */
intel_bios_is_port_edp(struct drm_i915_private * i915,enum port port)3404 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
3405 {
3406 const struct intel_bios_encoder_data *devdata =
3407 intel_bios_encoder_data_lookup(i915, port);
3408
3409 return devdata && intel_bios_encoder_supports_edp(devdata);
3410 }
3411
intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data * devdata)3412 static bool intel_bios_encoder_supports_dp_dual_mode(const struct intel_bios_encoder_data *devdata)
3413 {
3414 const struct child_device_config *child = &devdata->child;
3415
3416 if (!intel_bios_encoder_supports_dp(devdata) ||
3417 !intel_bios_encoder_supports_hdmi(devdata))
3418 return false;
3419
3420 if (dvo_port_type(child->dvo_port) == DVO_PORT_DPA)
3421 return true;
3422
3423 /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
3424 if (dvo_port_type(child->dvo_port) == DVO_PORT_HDMIA &&
3425 child->aux_channel != 0)
3426 return true;
3427
3428 return false;
3429 }
3430
intel_bios_is_port_dp_dual_mode(struct drm_i915_private * i915,enum port port)3431 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
3432 enum port port)
3433 {
3434 const struct intel_bios_encoder_data *devdata =
3435 intel_bios_encoder_data_lookup(i915, port);
3436
3437 return devdata && intel_bios_encoder_supports_dp_dual_mode(devdata);
3438 }
3439
3440 /**
3441 * intel_bios_is_dsi_present - is DSI present in VBT
3442 * @i915: i915 device instance
3443 * @port: port for DSI if present
3444 *
3445 * Return true if DSI is present, and return the port in %port.
3446 */
intel_bios_is_dsi_present(struct drm_i915_private * i915,enum port * port)3447 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
3448 enum port *port)
3449 {
3450 const struct intel_bios_encoder_data *devdata;
3451 const struct child_device_config *child;
3452 u8 dvo_port;
3453
3454 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3455 child = &devdata->child;
3456
3457 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3458 continue;
3459
3460 dvo_port = child->dvo_port;
3461
3462 if (dsi_dvo_port_to_port(i915, dvo_port) == PORT_NONE) {
3463 drm_dbg_kms(&i915->drm,
3464 "VBT has unsupported DSI port %c\n",
3465 port_name(dvo_port - DVO_PORT_MIPIA));
3466 continue;
3467 }
3468
3469 if (port)
3470 *port = dsi_dvo_port_to_port(i915, dvo_port);
3471 return true;
3472 }
3473
3474 return false;
3475 }
3476
fill_dsc(struct intel_crtc_state * crtc_state,struct dsc_compression_parameters_entry * dsc,int dsc_max_bpc)3477 static void fill_dsc(struct intel_crtc_state *crtc_state,
3478 struct dsc_compression_parameters_entry *dsc,
3479 int dsc_max_bpc)
3480 {
3481 struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
3482 int bpc = 8;
3483
3484 vdsc_cfg->dsc_version_major = dsc->version_major;
3485 vdsc_cfg->dsc_version_minor = dsc->version_minor;
3486
3487 if (dsc->support_12bpc && dsc_max_bpc >= 12)
3488 bpc = 12;
3489 else if (dsc->support_10bpc && dsc_max_bpc >= 10)
3490 bpc = 10;
3491 else if (dsc->support_8bpc && dsc_max_bpc >= 8)
3492 bpc = 8;
3493 else
3494 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
3495 dsc_max_bpc);
3496
3497 crtc_state->pipe_bpp = bpc * 3;
3498
3499 crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
3500 VBT_DSC_MAX_BPP(dsc->max_bpp));
3501
3502 /*
3503 * FIXME: This is ugly, and slice count should take DSC engine
3504 * throughput etc. into account.
3505 *
3506 * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
3507 */
3508 if (dsc->slices_per_line & BIT(2)) {
3509 crtc_state->dsc.slice_count = 4;
3510 } else if (dsc->slices_per_line & BIT(1)) {
3511 crtc_state->dsc.slice_count = 2;
3512 } else {
3513 /* FIXME */
3514 if (!(dsc->slices_per_line & BIT(0)))
3515 DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
3516
3517 crtc_state->dsc.slice_count = 1;
3518 }
3519
3520 if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
3521 crtc_state->dsc.slice_count != 0)
3522 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
3523 crtc_state->hw.adjusted_mode.crtc_hdisplay,
3524 crtc_state->dsc.slice_count);
3525
3526 /*
3527 * The VBT rc_buffer_block_size and rc_buffer_size definitions
3528 * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
3529 */
3530 vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
3531 dsc->rc_buffer_size);
3532
3533 /* FIXME: DSI spec says bpc + 1 for this one */
3534 vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
3535
3536 vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
3537
3538 vdsc_cfg->slice_height = dsc->slice_height;
3539 }
3540
3541 /* FIXME: initially DSI specific */
intel_bios_get_dsc_params(struct intel_encoder * encoder,struct intel_crtc_state * crtc_state,int dsc_max_bpc)3542 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
3543 struct intel_crtc_state *crtc_state,
3544 int dsc_max_bpc)
3545 {
3546 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3547 const struct intel_bios_encoder_data *devdata;
3548 const struct child_device_config *child;
3549
3550 list_for_each_entry(devdata, &i915->display.vbt.display_devices, node) {
3551 child = &devdata->child;
3552
3553 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
3554 continue;
3555
3556 if (dsi_dvo_port_to_port(i915, child->dvo_port) == encoder->port) {
3557 if (!devdata->dsc)
3558 return false;
3559
3560 if (crtc_state)
3561 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
3562
3563 return true;
3564 }
3565 }
3566
3567 return false;
3568 }
3569
3570 /**
3571 * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
3572 * @i915: i915 device instance
3573 * @port: port to check
3574 *
3575 * Return true if HPD should be inverted for %port.
3576 */
3577 bool
intel_bios_is_port_hpd_inverted(const struct drm_i915_private * i915,enum port port)3578 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
3579 enum port port)
3580 {
3581 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3582
3583 if (drm_WARN_ON_ONCE(&i915->drm,
3584 !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
3585 return false;
3586
3587 return devdata && devdata->child.hpd_invert;
3588 }
3589
3590 /**
3591 * intel_bios_is_lspcon_present - if LSPCON is attached on %port
3592 * @i915: i915 device instance
3593 * @port: port to check
3594 *
3595 * Return true if LSPCON is present on this port
3596 */
3597 bool
intel_bios_is_lspcon_present(const struct drm_i915_private * i915,enum port port)3598 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
3599 enum port port)
3600 {
3601 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3602
3603 return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
3604 }
3605
3606 /**
3607 * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
3608 * @i915: i915 device instance
3609 * @port: port to check
3610 *
3611 * Return true if port requires lane reversal
3612 */
3613 bool
intel_bios_is_lane_reversal_needed(const struct drm_i915_private * i915,enum port port)3614 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
3615 enum port port)
3616 {
3617 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3618
3619 return devdata && devdata->child.lane_reversal;
3620 }
3621
intel_bios_port_aux_ch(struct drm_i915_private * i915,enum port port)3622 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
3623 enum port port)
3624 {
3625 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[port];
3626 enum aux_ch aux_ch;
3627
3628 if (!devdata || !devdata->child.aux_channel) {
3629 aux_ch = (enum aux_ch)port;
3630
3631 drm_dbg_kms(&i915->drm,
3632 "using AUX %c for port %c (platform default)\n",
3633 aux_ch_name(aux_ch), port_name(port));
3634 return aux_ch;
3635 }
3636
3637 /*
3638 * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
3639 * map to DDI A,B,TC1,TC2 respectively.
3640 *
3641 * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
3642 * map to DDI A,TC1,TC2,TC3,TC4 respectively.
3643 */
3644 switch (devdata->child.aux_channel) {
3645 case DP_AUX_A:
3646 aux_ch = AUX_CH_A;
3647 break;
3648 case DP_AUX_B:
3649 if (IS_ALDERLAKE_S(i915))
3650 aux_ch = AUX_CH_USBC1;
3651 else
3652 aux_ch = AUX_CH_B;
3653 break;
3654 case DP_AUX_C:
3655 if (IS_ALDERLAKE_S(i915))
3656 aux_ch = AUX_CH_USBC2;
3657 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3658 aux_ch = AUX_CH_USBC1;
3659 else
3660 aux_ch = AUX_CH_C;
3661 break;
3662 case DP_AUX_D:
3663 if (DISPLAY_VER(i915) >= 13)
3664 aux_ch = AUX_CH_D_XELPD;
3665 else if (IS_ALDERLAKE_S(i915))
3666 aux_ch = AUX_CH_USBC3;
3667 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
3668 aux_ch = AUX_CH_USBC2;
3669 else
3670 aux_ch = AUX_CH_D;
3671 break;
3672 case DP_AUX_E:
3673 if (DISPLAY_VER(i915) >= 13)
3674 aux_ch = AUX_CH_E_XELPD;
3675 else if (IS_ALDERLAKE_S(i915))
3676 aux_ch = AUX_CH_USBC4;
3677 else
3678 aux_ch = AUX_CH_E;
3679 break;
3680 case DP_AUX_F:
3681 if (DISPLAY_VER(i915) >= 13)
3682 aux_ch = AUX_CH_USBC1;
3683 else
3684 aux_ch = AUX_CH_F;
3685 break;
3686 case DP_AUX_G:
3687 if (DISPLAY_VER(i915) >= 13)
3688 aux_ch = AUX_CH_USBC2;
3689 else
3690 aux_ch = AUX_CH_G;
3691 break;
3692 case DP_AUX_H:
3693 if (DISPLAY_VER(i915) >= 13)
3694 aux_ch = AUX_CH_USBC3;
3695 else
3696 aux_ch = AUX_CH_H;
3697 break;
3698 case DP_AUX_I:
3699 if (DISPLAY_VER(i915) >= 13)
3700 aux_ch = AUX_CH_USBC4;
3701 else
3702 aux_ch = AUX_CH_I;
3703 break;
3704 default:
3705 MISSING_CASE(devdata->child.aux_channel);
3706 aux_ch = AUX_CH_A;
3707 break;
3708 }
3709
3710 drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
3711 aux_ch_name(aux_ch), port_name(port));
3712
3713 return aux_ch;
3714 }
3715
intel_bios_max_tmds_clock(struct intel_encoder * encoder)3716 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
3717 {
3718 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3719 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3720
3721 return _intel_bios_max_tmds_clock(devdata);
3722 }
3723
3724 /* This is an index in the HDMI/DVI DDI buffer translation table, or -1 */
intel_bios_hdmi_level_shift(struct intel_encoder * encoder)3725 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
3726 {
3727 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3728 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3729
3730 return _intel_bios_hdmi_level_shift(devdata);
3731 }
3732
intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data * devdata)3733 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
3734 {
3735 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3736 return 0;
3737
3738 return translate_iboost(devdata->child.dp_iboost_level);
3739 }
3740
intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data * devdata)3741 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
3742 {
3743 if (!devdata || devdata->i915->display.vbt.version < 196 || !devdata->child.iboost)
3744 return 0;
3745
3746 return translate_iboost(devdata->child.hdmi_iboost_level);
3747 }
3748
intel_bios_dp_max_link_rate(struct intel_encoder * encoder)3749 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
3750 {
3751 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3752 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3753
3754 return _intel_bios_dp_max_link_rate(devdata);
3755 }
3756
intel_bios_dp_max_lane_count(struct intel_encoder * encoder)3757 int intel_bios_dp_max_lane_count(struct intel_encoder *encoder)
3758 {
3759 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3760 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3761
3762 return _intel_bios_dp_max_lane_count(devdata);
3763 }
3764
intel_bios_alternate_ddc_pin(struct intel_encoder * encoder)3765 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
3766 {
3767 struct drm_i915_private *i915 = to_i915(encoder->base.dev);
3768 const struct intel_bios_encoder_data *devdata = i915->display.vbt.ports[encoder->port];
3769
3770 if (!devdata || !devdata->child.ddc_pin)
3771 return 0;
3772
3773 return map_ddc_pin(i915, devdata->child.ddc_pin);
3774 }
3775
intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data * devdata)3776 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
3777 {
3778 return devdata->i915->display.vbt.version >= 195 && devdata->child.dp_usb_type_c;
3779 }
3780
intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data * devdata)3781 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
3782 {
3783 return devdata->i915->display.vbt.version >= 209 && devdata->child.tbt;
3784 }
3785
3786 const struct intel_bios_encoder_data *
intel_bios_encoder_data_lookup(struct drm_i915_private * i915,enum port port)3787 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3788 {
3789 return i915->display.vbt.ports[port];
3790 }
3791