1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2016 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/drm_print.h>
9
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34 * valid. Now, docs explain in dwords what is in the context object. The full
35 * size is 70720 bytes, however, the power context and execlist context will
36 * never be saved (power context is stored elsewhere, and execlists don't work
37 * on HSW) - so the final size, including the extra state required for the
38 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39 */
40 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
41
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
46
47 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
48
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51 u8 class;
52 u8 instance;
53 /* mmio bases table *must* be sorted in reverse graphics_ver order */
54 struct engine_mmio_base {
55 u32 graphics_ver : 8;
56 u32 base : 24;
57 } mmio_bases[MAX_MMIO_BASES];
58 };
59
60 static const struct engine_info intel_engines[] = {
61 [RCS0] = {
62 .class = RENDER_CLASS,
63 .instance = 0,
64 .mmio_bases = {
65 { .graphics_ver = 1, .base = RENDER_RING_BASE }
66 },
67 },
68 [BCS0] = {
69 .class = COPY_ENGINE_CLASS,
70 .instance = 0,
71 .mmio_bases = {
72 { .graphics_ver = 6, .base = BLT_RING_BASE }
73 },
74 },
75 [BCS1] = {
76 .class = COPY_ENGINE_CLASS,
77 .instance = 1,
78 .mmio_bases = {
79 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80 },
81 },
82 [BCS2] = {
83 .class = COPY_ENGINE_CLASS,
84 .instance = 2,
85 .mmio_bases = {
86 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87 },
88 },
89 [BCS3] = {
90 .class = COPY_ENGINE_CLASS,
91 .instance = 3,
92 .mmio_bases = {
93 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94 },
95 },
96 [BCS4] = {
97 .class = COPY_ENGINE_CLASS,
98 .instance = 4,
99 .mmio_bases = {
100 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101 },
102 },
103 [BCS5] = {
104 .class = COPY_ENGINE_CLASS,
105 .instance = 5,
106 .mmio_bases = {
107 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108 },
109 },
110 [BCS6] = {
111 .class = COPY_ENGINE_CLASS,
112 .instance = 6,
113 .mmio_bases = {
114 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115 },
116 },
117 [BCS7] = {
118 .class = COPY_ENGINE_CLASS,
119 .instance = 7,
120 .mmio_bases = {
121 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122 },
123 },
124 [BCS8] = {
125 .class = COPY_ENGINE_CLASS,
126 .instance = 8,
127 .mmio_bases = {
128 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129 },
130 },
131 [VCS0] = {
132 .class = VIDEO_DECODE_CLASS,
133 .instance = 0,
134 .mmio_bases = {
135 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 { .graphics_ver = 4, .base = BSD_RING_BASE }
138 },
139 },
140 [VCS1] = {
141 .class = VIDEO_DECODE_CLASS,
142 .instance = 1,
143 .mmio_bases = {
144 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146 },
147 },
148 [VCS2] = {
149 .class = VIDEO_DECODE_CLASS,
150 .instance = 2,
151 .mmio_bases = {
152 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153 },
154 },
155 [VCS3] = {
156 .class = VIDEO_DECODE_CLASS,
157 .instance = 3,
158 .mmio_bases = {
159 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160 },
161 },
162 [VCS4] = {
163 .class = VIDEO_DECODE_CLASS,
164 .instance = 4,
165 .mmio_bases = {
166 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167 },
168 },
169 [VCS5] = {
170 .class = VIDEO_DECODE_CLASS,
171 .instance = 5,
172 .mmio_bases = {
173 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174 },
175 },
176 [VCS6] = {
177 .class = VIDEO_DECODE_CLASS,
178 .instance = 6,
179 .mmio_bases = {
180 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181 },
182 },
183 [VCS7] = {
184 .class = VIDEO_DECODE_CLASS,
185 .instance = 7,
186 .mmio_bases = {
187 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188 },
189 },
190 [VECS0] = {
191 .class = VIDEO_ENHANCEMENT_CLASS,
192 .instance = 0,
193 .mmio_bases = {
194 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
196 },
197 },
198 [VECS1] = {
199 .class = VIDEO_ENHANCEMENT_CLASS,
200 .instance = 1,
201 .mmio_bases = {
202 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203 },
204 },
205 [VECS2] = {
206 .class = VIDEO_ENHANCEMENT_CLASS,
207 .instance = 2,
208 .mmio_bases = {
209 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210 },
211 },
212 [VECS3] = {
213 .class = VIDEO_ENHANCEMENT_CLASS,
214 .instance = 3,
215 .mmio_bases = {
216 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217 },
218 },
219 [CCS0] = {
220 .class = COMPUTE_CLASS,
221 .instance = 0,
222 .mmio_bases = {
223 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224 }
225 },
226 [CCS1] = {
227 .class = COMPUTE_CLASS,
228 .instance = 1,
229 .mmio_bases = {
230 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231 }
232 },
233 [CCS2] = {
234 .class = COMPUTE_CLASS,
235 .instance = 2,
236 .mmio_bases = {
237 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238 }
239 },
240 [CCS3] = {
241 .class = COMPUTE_CLASS,
242 .instance = 3,
243 .mmio_bases = {
244 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245 }
246 },
247 };
248
249 /**
250 * intel_engine_context_size() - return the size of the context for an engine
251 * @gt: the gt
252 * @class: engine class
253 *
254 * Each engine class may require a different amount of space for a context
255 * image.
256 *
257 * Return: size (in bytes) of an engine class specific context image
258 *
259 * Note: this size includes the HWSP, which is part of the context image
260 * in LRC mode, but does not include the "shared data page" used with
261 * GuC submission. The caller should account for this if using the GuC.
262 */
intel_engine_context_size(struct intel_gt * gt,u8 class)263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265 struct intel_uncore *uncore = gt->uncore;
266 u32 cxt_size;
267
268 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269
270 switch (class) {
271 case COMPUTE_CLASS:
272 fallthrough;
273 case RENDER_CLASS:
274 switch (GRAPHICS_VER(gt->i915)) {
275 default:
276 MISSING_CASE(GRAPHICS_VER(gt->i915));
277 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278 case 12:
279 case 11:
280 return GEN11_LR_CONTEXT_RENDER_SIZE;
281 case 9:
282 return GEN9_LR_CONTEXT_RENDER_SIZE;
283 case 8:
284 return GEN8_LR_CONTEXT_RENDER_SIZE;
285 case 7:
286 if (IS_HASWELL(gt->i915))
287 return HSW_CXT_TOTAL_SIZE;
288
289 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291 PAGE_SIZE);
292 case 6:
293 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295 PAGE_SIZE);
296 case 5:
297 case 4:
298 /*
299 * There is a discrepancy here between the size reported
300 * by the register and the size of the context layout
301 * in the docs. Both are described as authorative!
302 *
303 * The discrepancy is on the order of a few cachelines,
304 * but the total is under one page (4k), which is our
305 * minimum allocation anyway so it should all come
306 * out in the wash.
307 */
308 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 drm_dbg(>->i915->drm,
310 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 GRAPHICS_VER(gt->i915), cxt_size * 64,
312 cxt_size - 1);
313 return round_up(cxt_size * 64, PAGE_SIZE);
314 case 3:
315 case 2:
316 /* For the special day when i810 gets merged. */
317 case 1:
318 return 0;
319 }
320 break;
321 default:
322 MISSING_CASE(class);
323 fallthrough;
324 case VIDEO_DECODE_CLASS:
325 case VIDEO_ENHANCEMENT_CLASS:
326 case COPY_ENGINE_CLASS:
327 if (GRAPHICS_VER(gt->i915) < 8)
328 return 0;
329 return GEN8_LR_CONTEXT_OTHER_SIZE;
330 }
331 }
332
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 const struct engine_mmio_base *bases)
335 {
336 int i;
337
338 for (i = 0; i < MAX_MMIO_BASES; i++)
339 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340 break;
341
342 GEM_BUG_ON(i == MAX_MMIO_BASES);
343 GEM_BUG_ON(!bases[i].base);
344
345 return bases[i].base;
346 }
347
__sprint_engine_name(struct intel_engine_cs * engine)348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350 /*
351 * Before we know what the uABI name for this engine will be,
352 * we still would like to keep track of this engine in the debug logs.
353 * We throw in a ' here as a reminder that this isn't its final name.
354 */
355 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 intel_engine_class_repr(engine->class),
357 engine->instance) >= sizeof(engine->name));
358 }
359
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362 /*
363 * Though they added more rings on g4x/ilk, they did not add
364 * per-engine HWSTAM until gen6.
365 */
366 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367 return;
368
369 if (GRAPHICS_VER(engine->i915) >= 3)
370 ENGINE_WRITE(engine, RING_HWSTAM, mask);
371 else
372 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377 /* Mask off all writes into the unknown HWSP */
378 intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383 GEM_DEBUG_WARN_ON(iir);
384 }
385
get_reset_domain(u8 ver,enum intel_engine_id id)386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388 u32 reset_domain;
389
390 if (ver >= 11) {
391 static const u32 engine_reset_domains[] = {
392 [RCS0] = GEN11_GRDOM_RENDER,
393 [BCS0] = GEN11_GRDOM_BLT,
394 [BCS1] = XEHPC_GRDOM_BLT1,
395 [BCS2] = XEHPC_GRDOM_BLT2,
396 [BCS3] = XEHPC_GRDOM_BLT3,
397 [BCS4] = XEHPC_GRDOM_BLT4,
398 [BCS5] = XEHPC_GRDOM_BLT5,
399 [BCS6] = XEHPC_GRDOM_BLT6,
400 [BCS7] = XEHPC_GRDOM_BLT7,
401 [BCS8] = XEHPC_GRDOM_BLT8,
402 [VCS0] = GEN11_GRDOM_MEDIA,
403 [VCS1] = GEN11_GRDOM_MEDIA2,
404 [VCS2] = GEN11_GRDOM_MEDIA3,
405 [VCS3] = GEN11_GRDOM_MEDIA4,
406 [VCS4] = GEN11_GRDOM_MEDIA5,
407 [VCS5] = GEN11_GRDOM_MEDIA6,
408 [VCS6] = GEN11_GRDOM_MEDIA7,
409 [VCS7] = GEN11_GRDOM_MEDIA8,
410 [VECS0] = GEN11_GRDOM_VECS,
411 [VECS1] = GEN11_GRDOM_VECS2,
412 [VECS2] = GEN11_GRDOM_VECS3,
413 [VECS3] = GEN11_GRDOM_VECS4,
414 [CCS0] = GEN11_GRDOM_RENDER,
415 [CCS1] = GEN11_GRDOM_RENDER,
416 [CCS2] = GEN11_GRDOM_RENDER,
417 [CCS3] = GEN11_GRDOM_RENDER,
418 };
419 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 !engine_reset_domains[id]);
421 reset_domain = engine_reset_domains[id];
422 } else {
423 static const u32 engine_reset_domains[] = {
424 [RCS0] = GEN6_GRDOM_RENDER,
425 [BCS0] = GEN6_GRDOM_BLT,
426 [VCS0] = GEN6_GRDOM_MEDIA,
427 [VCS1] = GEN8_GRDOM_MEDIA2,
428 [VECS0] = GEN6_GRDOM_VECS,
429 };
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
433 }
434
435 return reset_domain;
436 }
437
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439 u8 logical_instance)
440 {
441 const struct engine_info *info = &intel_engines[id];
442 struct drm_i915_private *i915 = gt->i915;
443 struct intel_engine_cs *engine;
444 u8 guc_class;
445
446 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450
451 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452 return -EINVAL;
453
454 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455 return -EINVAL;
456
457 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458 return -EINVAL;
459
460 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461 return -EINVAL;
462
463 engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464 if (!engine)
465 return -ENOMEM;
466
467 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468
469 INIT_LIST_HEAD(&engine->pinned_contexts_list);
470 engine->id = id;
471 engine->legacy_idx = INVALID_ENGINE;
472 engine->mask = BIT(id);
473 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474 id);
475 engine->i915 = i915;
476 engine->gt = gt;
477 engine->uncore = gt->uncore;
478 guc_class = engine_class_to_guc_class(info->class);
479 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481
482 engine->irq_handler = nop_irq_handler;
483
484 engine->class = info->class;
485 engine->instance = info->instance;
486 engine->logical_mask = BIT(logical_instance);
487 __sprint_engine_name(engine);
488
489 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
490 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
491 engine->class == RENDER_CLASS)
492 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
493
494 /* features common between engines sharing EUs */
495 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
496 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
497 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
498 }
499
500 engine->props.heartbeat_interval_ms =
501 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
502 engine->props.max_busywait_duration_ns =
503 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
504 engine->props.preempt_timeout_ms =
505 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
506 engine->props.stop_timeout_ms =
507 CONFIG_DRM_I915_STOP_TIMEOUT;
508 engine->props.timeslice_duration_ms =
509 CONFIG_DRM_I915_TIMESLICE_DURATION;
510
511 /* Override to uninterruptible for OpenCL workloads. */
512 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
513 engine->props.preempt_timeout_ms = 0;
514
515 /* Cap properties according to any system limits */
516 #define CLAMP_PROP(field) \
517 do { \
518 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
519 if (clamp != engine->props.field) { \
520 drm_notice(&engine->i915->drm, \
521 "Warning, clamping %s to %lld to prevent overflow\n", \
522 #field, clamp); \
523 engine->props.field = clamp; \
524 } \
525 } while (0)
526
527 CLAMP_PROP(heartbeat_interval_ms);
528 CLAMP_PROP(max_busywait_duration_ns);
529 CLAMP_PROP(preempt_timeout_ms);
530 CLAMP_PROP(stop_timeout_ms);
531 CLAMP_PROP(timeslice_duration_ms);
532
533 #undef CLAMP_PROP
534
535 engine->defaults = engine->props; /* never to change again */
536
537 engine->context_size = intel_engine_context_size(gt, engine->class);
538 if (WARN_ON(engine->context_size > BIT(20)))
539 engine->context_size = 0;
540 if (engine->context_size)
541 DRIVER_CAPS(i915)->has_logical_contexts = true;
542
543 ewma__engine_latency_init(&engine->latency);
544
545 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
546
547 /* Scrub mmio state on takeover */
548 intel_engine_sanitize_mmio(engine);
549
550 gt->engine_class[info->class][info->instance] = engine;
551 gt->engine[id] = engine;
552
553 return 0;
554 }
555
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)556 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
557 {
558 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
559
560 return value;
561 }
562
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)563 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
564 {
565 value = min(value, jiffies_to_nsecs(2));
566
567 return value;
568 }
569
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)570 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
571 {
572 /*
573 * NB: The GuC API only supports 32bit values. However, the limit is further
574 * reduced due to internal calculations which would otherwise overflow.
575 */
576 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
577 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
578
579 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
580
581 return value;
582 }
583
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)584 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
585 {
586 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
587
588 return value;
589 }
590
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)591 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
592 {
593 /*
594 * NB: The GuC API only supports 32bit values. However, the limit is further
595 * reduced due to internal calculations which would otherwise overflow.
596 */
597 if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
598 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
599
600 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
601
602 return value;
603 }
604
__setup_engine_capabilities(struct intel_engine_cs * engine)605 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
606 {
607 struct drm_i915_private *i915 = engine->i915;
608
609 if (engine->class == VIDEO_DECODE_CLASS) {
610 /*
611 * HEVC support is present on first engine instance
612 * before Gen11 and on all instances afterwards.
613 */
614 if (GRAPHICS_VER(i915) >= 11 ||
615 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
616 engine->uabi_capabilities |=
617 I915_VIDEO_CLASS_CAPABILITY_HEVC;
618
619 /*
620 * SFC block is present only on even logical engine
621 * instances.
622 */
623 if ((GRAPHICS_VER(i915) >= 11 &&
624 (engine->gt->info.vdbox_sfc_access &
625 BIT(engine->instance))) ||
626 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
627 engine->uabi_capabilities |=
628 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
629 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
630 if (GRAPHICS_VER(i915) >= 9 &&
631 engine->gt->info.sfc_mask & BIT(engine->instance))
632 engine->uabi_capabilities |=
633 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
634 }
635 }
636
intel_setup_engine_capabilities(struct intel_gt * gt)637 static void intel_setup_engine_capabilities(struct intel_gt *gt)
638 {
639 struct intel_engine_cs *engine;
640 enum intel_engine_id id;
641
642 for_each_engine(engine, gt, id)
643 __setup_engine_capabilities(engine);
644 }
645
646 /**
647 * intel_engines_release() - free the resources allocated for Command Streamers
648 * @gt: pointer to struct intel_gt
649 */
intel_engines_release(struct intel_gt * gt)650 void intel_engines_release(struct intel_gt *gt)
651 {
652 struct intel_engine_cs *engine;
653 enum intel_engine_id id;
654
655 /*
656 * Before we release the resources held by engine, we must be certain
657 * that the HW is no longer accessing them -- having the GPU scribble
658 * to or read from a page being used for something else causes no end
659 * of fun.
660 *
661 * The GPU should be reset by this point, but assume the worst just
662 * in case we aborted before completely initialising the engines.
663 */
664 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
665 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
666 __intel_gt_reset(gt, ALL_ENGINES);
667
668 /* Decouple the backend; but keep the layout for late GPU resets */
669 for_each_engine(engine, gt, id) {
670 if (!engine->release)
671 continue;
672
673 intel_wakeref_wait_for_idle(&engine->wakeref);
674 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
675
676 engine->release(engine);
677 engine->release = NULL;
678
679 memset(&engine->reset, 0, sizeof(engine->reset));
680 }
681 }
682
intel_engine_free_request_pool(struct intel_engine_cs * engine)683 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
684 {
685 if (!engine->request_pool)
686 return;
687
688 kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
689 }
690
intel_engines_free(struct intel_gt * gt)691 void intel_engines_free(struct intel_gt *gt)
692 {
693 struct intel_engine_cs *engine;
694 enum intel_engine_id id;
695
696 /* Free the requests! dma-resv keeps fences around for an eternity */
697 rcu_barrier();
698
699 for_each_engine(engine, gt, id) {
700 intel_engine_free_request_pool(engine);
701 kfree(engine);
702 gt->engine[id] = NULL;
703 }
704 }
705
706 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)707 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
708 unsigned int physical_vdbox,
709 unsigned int logical_vdbox, u16 vdbox_mask)
710 {
711 struct drm_i915_private *i915 = gt->i915;
712
713 /*
714 * In Gen11, only even numbered logical VDBOXes are hooked
715 * up to an SFC (Scaler & Format Converter) unit.
716 * In Gen12, Even numbered physical instance always are connected
717 * to an SFC. Odd numbered physical instances have SFC only if
718 * previous even instance is fused off.
719 *
720 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
721 * in the fuse register that tells us whether a specific SFC is present.
722 */
723 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
724 return false;
725 else if (MEDIA_VER(i915) >= 12)
726 return (physical_vdbox % 2 == 0) ||
727 !(BIT(physical_vdbox - 1) & vdbox_mask);
728 else if (MEDIA_VER(i915) == 11)
729 return logical_vdbox % 2 == 0;
730
731 return false;
732 }
733
engine_mask_apply_media_fuses(struct intel_gt * gt)734 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
735 {
736 struct drm_i915_private *i915 = gt->i915;
737 unsigned int logical_vdbox = 0;
738 unsigned int i;
739 u32 media_fuse, fuse1;
740 u16 vdbox_mask;
741 u16 vebox_mask;
742
743 if (MEDIA_VER(gt->i915) < 11)
744 return;
745
746 /*
747 * On newer platforms the fusing register is called 'enable' and has
748 * enable semantics, while on older platforms it is called 'disable'
749 * and bits have disable semantices.
750 */
751 media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
752 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
753 media_fuse = ~media_fuse;
754
755 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
756 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
757 GEN11_GT_VEBOX_DISABLE_SHIFT;
758
759 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
760 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
761 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
762 } else {
763 gt->info.sfc_mask = ~0;
764 }
765
766 for (i = 0; i < I915_MAX_VCS; i++) {
767 if (!HAS_ENGINE(gt, _VCS(i))) {
768 vdbox_mask &= ~BIT(i);
769 continue;
770 }
771
772 if (!(BIT(i) & vdbox_mask)) {
773 gt->info.engine_mask &= ~BIT(_VCS(i));
774 drm_dbg(&i915->drm, "vcs%u fused off\n", i);
775 continue;
776 }
777
778 if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
779 gt->info.vdbox_sfc_access |= BIT(i);
780 logical_vdbox++;
781 }
782 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
783 vdbox_mask, VDBOX_MASK(gt));
784 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
785
786 for (i = 0; i < I915_MAX_VECS; i++) {
787 if (!HAS_ENGINE(gt, _VECS(i))) {
788 vebox_mask &= ~BIT(i);
789 continue;
790 }
791
792 if (!(BIT(i) & vebox_mask)) {
793 gt->info.engine_mask &= ~BIT(_VECS(i));
794 drm_dbg(&i915->drm, "vecs%u fused off\n", i);
795 }
796 }
797 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
798 vebox_mask, VEBOX_MASK(gt));
799 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
800 }
801
engine_mask_apply_compute_fuses(struct intel_gt * gt)802 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
803 {
804 struct drm_i915_private *i915 = gt->i915;
805 struct intel_gt_info *info = >->info;
806 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
807 unsigned long ccs_mask;
808 unsigned int i;
809
810 if (GRAPHICS_VER(i915) < 11)
811 return;
812
813 if (hweight32(CCS_MASK(gt)) <= 1)
814 return;
815
816 ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
817 ss_per_ccs);
818 /*
819 * If all DSS in a quadrant are fused off, the corresponding CCS
820 * engine is not available for use.
821 */
822 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
823 info->engine_mask &= ~BIT(_CCS(i));
824 drm_dbg(&i915->drm, "ccs%u fused off\n", i);
825 }
826 }
827
engine_mask_apply_copy_fuses(struct intel_gt * gt)828 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
829 {
830 struct drm_i915_private *i915 = gt->i915;
831 struct intel_gt_info *info = >->info;
832 unsigned long meml3_mask;
833 unsigned long quad;
834
835 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
836 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
837 return;
838
839 meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
840 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
841
842 /*
843 * Link Copy engines may be fused off according to meml3_mask. Each
844 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
845 */
846 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
847 unsigned int instance = quad * 2 + 1;
848 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
849 _BCS(instance));
850
851 if (mask & info->engine_mask) {
852 drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
853 drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
854
855 info->engine_mask &= ~mask;
856 }
857 }
858 }
859
860 /*
861 * Determine which engines are fused off in our particular hardware.
862 * Note that we have a catch-22 situation where we need to be able to access
863 * the blitter forcewake domain to read the engine fuses, but at the same time
864 * we need to know which engines are available on the system to know which
865 * forcewake domains are present. We solve this by intializing the forcewake
866 * domains based on the full engine mask in the platform capabilities before
867 * calling this function and pruning the domains for fused-off engines
868 * afterwards.
869 */
init_engine_mask(struct intel_gt * gt)870 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
871 {
872 struct intel_gt_info *info = >->info;
873
874 GEM_BUG_ON(!info->engine_mask);
875
876 engine_mask_apply_media_fuses(gt);
877 engine_mask_apply_compute_fuses(gt);
878 engine_mask_apply_copy_fuses(gt);
879
880 return info->engine_mask;
881 }
882
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)883 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
884 u8 class, const u8 *map, u8 num_instances)
885 {
886 int i, j;
887 u8 current_logical_id = 0;
888
889 for (j = 0; j < num_instances; ++j) {
890 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
891 if (!HAS_ENGINE(gt, i) ||
892 intel_engines[i].class != class)
893 continue;
894
895 if (intel_engines[i].instance == map[j]) {
896 logical_ids[intel_engines[i].instance] =
897 current_logical_id++;
898 break;
899 }
900 }
901 }
902 }
903
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)904 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
905 {
906 /*
907 * Logical to physical mapping is needed for proper support
908 * to split-frame feature.
909 */
910 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
911 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
912
913 populate_logical_ids(gt, logical_ids, class,
914 map, ARRAY_SIZE(map));
915 } else {
916 int i;
917 u8 map[MAX_ENGINE_INSTANCE + 1];
918
919 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
920 map[i] = i;
921 populate_logical_ids(gt, logical_ids, class,
922 map, ARRAY_SIZE(map));
923 }
924 }
925
926 /**
927 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
928 * @gt: pointer to struct intel_gt
929 *
930 * Return: non-zero if the initialization failed.
931 */
intel_engines_init_mmio(struct intel_gt * gt)932 int intel_engines_init_mmio(struct intel_gt *gt)
933 {
934 struct drm_i915_private *i915 = gt->i915;
935 const unsigned int engine_mask = init_engine_mask(gt);
936 unsigned int mask = 0;
937 unsigned int i, class;
938 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
939 int err;
940
941 drm_WARN_ON(&i915->drm, engine_mask == 0);
942 drm_WARN_ON(&i915->drm, engine_mask &
943 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
944
945 if (i915_inject_probe_failure(i915))
946 return -ENODEV;
947
948 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
949 setup_logical_ids(gt, logical_ids, class);
950
951 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
952 u8 instance = intel_engines[i].instance;
953
954 if (intel_engines[i].class != class ||
955 !HAS_ENGINE(gt, i))
956 continue;
957
958 err = intel_engine_setup(gt, i,
959 logical_ids[instance]);
960 if (err)
961 goto cleanup;
962
963 mask |= BIT(i);
964 }
965 }
966
967 /*
968 * Catch failures to update intel_engines table when the new engines
969 * are added to the driver by a warning and disabling the forgotten
970 * engines.
971 */
972 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
973 gt->info.engine_mask = mask;
974
975 gt->info.num_engines = hweight32(mask);
976
977 intel_gt_check_and_clear_faults(gt);
978
979 intel_setup_engine_capabilities(gt);
980
981 intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
982
983 return 0;
984
985 cleanup:
986 intel_engines_free(gt);
987 return err;
988 }
989
intel_engine_init_execlists(struct intel_engine_cs * engine)990 void intel_engine_init_execlists(struct intel_engine_cs *engine)
991 {
992 struct intel_engine_execlists * const execlists = &engine->execlists;
993
994 execlists->port_mask = 1;
995 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
996 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
997
998 memset(execlists->pending, 0, sizeof(execlists->pending));
999 execlists->active =
1000 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1001 }
1002
cleanup_status_page(struct intel_engine_cs * engine)1003 static void cleanup_status_page(struct intel_engine_cs *engine)
1004 {
1005 struct i915_vma *vma;
1006
1007 /* Prevent writes into HWSP after returning the page to the system */
1008 intel_engine_set_hwsp_writemask(engine, ~0u);
1009
1010 vma = fetch_and_zero(&engine->status_page.vma);
1011 if (!vma)
1012 return;
1013
1014 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1015 i915_vma_unpin(vma);
1016
1017 i915_gem_object_unpin_map(vma->obj);
1018 i915_gem_object_put(vma->obj);
1019 }
1020
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1021 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1022 struct i915_gem_ww_ctx *ww,
1023 struct i915_vma *vma)
1024 {
1025 unsigned int flags;
1026
1027 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1028 /*
1029 * On g33, we cannot place HWS above 256MiB, so
1030 * restrict its pinning to the low mappable arena.
1031 * Though this restriction is not documented for
1032 * gen4, gen5, or byt, they also behave similarly
1033 * and hang if the HWS is placed at the top of the
1034 * GTT. To generalise, it appears that all !llc
1035 * platforms have issues with us placing the HWS
1036 * above the mappable region (even though we never
1037 * actually map it).
1038 */
1039 flags = PIN_MAPPABLE;
1040 else
1041 flags = PIN_HIGH;
1042
1043 return i915_ggtt_pin(vma, ww, 0, flags);
1044 }
1045
init_status_page(struct intel_engine_cs * engine)1046 static int init_status_page(struct intel_engine_cs *engine)
1047 {
1048 struct drm_i915_gem_object *obj;
1049 struct i915_gem_ww_ctx ww;
1050 struct i915_vma *vma;
1051 void *vaddr;
1052 int ret;
1053
1054 INIT_LIST_HEAD(&engine->status_page.timelines);
1055
1056 /*
1057 * Though the HWS register does support 36bit addresses, historically
1058 * we have had hangs and corruption reported due to wild writes if
1059 * the HWS is placed above 4G. We only allow objects to be allocated
1060 * in GFP_DMA32 for i965, and no earlier physical address users had
1061 * access to more than 4G.
1062 */
1063 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1064 if (IS_ERR(obj)) {
1065 drm_err(&engine->i915->drm,
1066 "Failed to allocate status page\n");
1067 return PTR_ERR(obj);
1068 }
1069
1070 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1071
1072 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1073 if (IS_ERR(vma)) {
1074 ret = PTR_ERR(vma);
1075 goto err_put;
1076 }
1077
1078 i915_gem_ww_ctx_init(&ww, true);
1079 retry:
1080 ret = i915_gem_object_lock(obj, &ww);
1081 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1082 ret = pin_ggtt_status_page(engine, &ww, vma);
1083 if (ret)
1084 goto err;
1085
1086 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1087 if (IS_ERR(vaddr)) {
1088 ret = PTR_ERR(vaddr);
1089 goto err_unpin;
1090 }
1091
1092 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1093 engine->status_page.vma = vma;
1094
1095 err_unpin:
1096 if (ret)
1097 i915_vma_unpin(vma);
1098 err:
1099 if (ret == -EDEADLK) {
1100 ret = i915_gem_ww_ctx_backoff(&ww);
1101 if (!ret)
1102 goto retry;
1103 }
1104 i915_gem_ww_ctx_fini(&ww);
1105 err_put:
1106 if (ret)
1107 i915_gem_object_put(obj);
1108 return ret;
1109 }
1110
engine_setup_common(struct intel_engine_cs * engine)1111 static int engine_setup_common(struct intel_engine_cs *engine)
1112 {
1113 int err;
1114
1115 init_llist_head(&engine->barrier_tasks);
1116
1117 err = init_status_page(engine);
1118 if (err)
1119 return err;
1120
1121 engine->breadcrumbs = intel_breadcrumbs_create(engine);
1122 if (!engine->breadcrumbs) {
1123 err = -ENOMEM;
1124 goto err_status;
1125 }
1126
1127 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1128 if (!engine->sched_engine) {
1129 err = -ENOMEM;
1130 goto err_sched_engine;
1131 }
1132 engine->sched_engine->private_data = engine;
1133
1134 err = intel_engine_init_cmd_parser(engine);
1135 if (err)
1136 goto err_cmd_parser;
1137
1138 intel_engine_init_execlists(engine);
1139 intel_engine_init__pm(engine);
1140 intel_engine_init_retire(engine);
1141
1142 /* Use the whole device by default */
1143 engine->sseu =
1144 intel_sseu_from_device_info(&engine->gt->info.sseu);
1145
1146 intel_engine_init_workarounds(engine);
1147 intel_engine_init_whitelist(engine);
1148 intel_engine_init_ctx_wa(engine);
1149
1150 if (GRAPHICS_VER(engine->i915) >= 12)
1151 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1152
1153 return 0;
1154
1155 err_cmd_parser:
1156 i915_sched_engine_put(engine->sched_engine);
1157 err_sched_engine:
1158 intel_breadcrumbs_put(engine->breadcrumbs);
1159 err_status:
1160 cleanup_status_page(engine);
1161 return err;
1162 }
1163
1164 struct measure_breadcrumb {
1165 struct i915_request rq;
1166 struct intel_ring ring;
1167 u32 cs[2048];
1168 };
1169
measure_breadcrumb_dw(struct intel_context * ce)1170 static int measure_breadcrumb_dw(struct intel_context *ce)
1171 {
1172 struct intel_engine_cs *engine = ce->engine;
1173 struct measure_breadcrumb *frame;
1174 int dw;
1175
1176 GEM_BUG_ON(!engine->gt->scratch);
1177
1178 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1179 if (!frame)
1180 return -ENOMEM;
1181
1182 frame->rq.engine = engine;
1183 frame->rq.context = ce;
1184 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1185 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1186
1187 frame->ring.vaddr = frame->cs;
1188 frame->ring.size = sizeof(frame->cs);
1189 frame->ring.wrap =
1190 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1191 frame->ring.effective_size = frame->ring.size;
1192 intel_ring_update_space(&frame->ring);
1193 frame->rq.ring = &frame->ring;
1194
1195 mutex_lock(&ce->timeline->mutex);
1196 spin_lock_irq(&engine->sched_engine->lock);
1197
1198 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1199
1200 spin_unlock_irq(&engine->sched_engine->lock);
1201 mutex_unlock(&ce->timeline->mutex);
1202
1203 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1204
1205 kfree(frame);
1206 return dw;
1207 }
1208
1209 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1210 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1211 struct i915_address_space *vm,
1212 unsigned int ring_size,
1213 unsigned int hwsp,
1214 struct lock_class_key *key,
1215 const char *name)
1216 {
1217 struct intel_context *ce;
1218 int err;
1219
1220 ce = intel_context_create(engine);
1221 if (IS_ERR(ce))
1222 return ce;
1223
1224 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1225 ce->timeline = page_pack_bits(NULL, hwsp);
1226 ce->ring = NULL;
1227 ce->ring_size = ring_size;
1228
1229 i915_vm_put(ce->vm);
1230 ce->vm = i915_vm_get(vm);
1231
1232 err = intel_context_pin(ce); /* perma-pin so it is always available */
1233 if (err) {
1234 intel_context_put(ce);
1235 return ERR_PTR(err);
1236 }
1237
1238 list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1239
1240 /*
1241 * Give our perma-pinned kernel timelines a separate lockdep class,
1242 * so that we can use them from within the normal user timelines
1243 * should we need to inject GPU operations during their request
1244 * construction.
1245 */
1246 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1247
1248 return ce;
1249 }
1250
intel_engine_destroy_pinned_context(struct intel_context * ce)1251 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1252 {
1253 struct intel_engine_cs *engine = ce->engine;
1254 struct i915_vma *hwsp = engine->status_page.vma;
1255
1256 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1257
1258 mutex_lock(&hwsp->vm->mutex);
1259 list_del(&ce->timeline->engine_link);
1260 mutex_unlock(&hwsp->vm->mutex);
1261
1262 list_del(&ce->pinned_contexts_link);
1263 intel_context_unpin(ce);
1264 intel_context_put(ce);
1265 }
1266
1267 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1268 create_kernel_context(struct intel_engine_cs *engine)
1269 {
1270 static struct lock_class_key kernel;
1271
1272 return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1273 I915_GEM_HWS_SEQNO_ADDR,
1274 &kernel, "kernel_context");
1275 }
1276
1277 /**
1278 * intel_engines_init_common - initialize cengine state which might require hw access
1279 * @engine: Engine to initialize.
1280 *
1281 * Initializes @engine@ structure members shared between legacy and execlists
1282 * submission modes which do require hardware access.
1283 *
1284 * Typcally done at later stages of submission mode specific engine setup.
1285 *
1286 * Returns zero on success or an error code on failure.
1287 */
engine_init_common(struct intel_engine_cs * engine)1288 static int engine_init_common(struct intel_engine_cs *engine)
1289 {
1290 struct intel_context *ce;
1291 int ret;
1292
1293 engine->set_default_submission(engine);
1294
1295 /*
1296 * We may need to do things with the shrinker which
1297 * require us to immediately switch back to the default
1298 * context. This can cause a problem as pinning the
1299 * default context also requires GTT space which may not
1300 * be available. To avoid this we always pin the default
1301 * context.
1302 */
1303 ce = create_kernel_context(engine);
1304 if (IS_ERR(ce))
1305 return PTR_ERR(ce);
1306
1307 ret = measure_breadcrumb_dw(ce);
1308 if (ret < 0)
1309 goto err_context;
1310
1311 engine->emit_fini_breadcrumb_dw = ret;
1312 engine->kernel_context = ce;
1313
1314 return 0;
1315
1316 err_context:
1317 intel_engine_destroy_pinned_context(ce);
1318 return ret;
1319 }
1320
intel_engines_init(struct intel_gt * gt)1321 int intel_engines_init(struct intel_gt *gt)
1322 {
1323 int (*setup)(struct intel_engine_cs *engine);
1324 struct intel_engine_cs *engine;
1325 enum intel_engine_id id;
1326 int err;
1327
1328 if (intel_uc_uses_guc_submission(>->uc)) {
1329 gt->submission_method = INTEL_SUBMISSION_GUC;
1330 setup = intel_guc_submission_setup;
1331 } else if (HAS_EXECLISTS(gt->i915)) {
1332 gt->submission_method = INTEL_SUBMISSION_ELSP;
1333 setup = intel_execlists_submission_setup;
1334 } else {
1335 gt->submission_method = INTEL_SUBMISSION_RING;
1336 setup = intel_ring_submission_setup;
1337 }
1338
1339 for_each_engine(engine, gt, id) {
1340 err = engine_setup_common(engine);
1341 if (err)
1342 return err;
1343
1344 err = setup(engine);
1345 if (err) {
1346 intel_engine_cleanup_common(engine);
1347 return err;
1348 }
1349
1350 /* The backend should now be responsible for cleanup */
1351 GEM_BUG_ON(engine->release == NULL);
1352
1353 err = engine_init_common(engine);
1354 if (err)
1355 return err;
1356
1357 intel_engine_add_user(engine);
1358 }
1359
1360 return 0;
1361 }
1362
1363 /**
1364 * intel_engines_cleanup_common - cleans up the engine state created by
1365 * the common initiailizers.
1366 * @engine: Engine to cleanup.
1367 *
1368 * This cleans up everything created by the common helpers.
1369 */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1370 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1371 {
1372 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1373
1374 i915_sched_engine_put(engine->sched_engine);
1375 intel_breadcrumbs_put(engine->breadcrumbs);
1376
1377 intel_engine_fini_retire(engine);
1378 intel_engine_cleanup_cmd_parser(engine);
1379
1380 if (engine->default_state)
1381 fput(engine->default_state);
1382
1383 if (engine->kernel_context)
1384 intel_engine_destroy_pinned_context(engine->kernel_context);
1385
1386 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1387 cleanup_status_page(engine);
1388
1389 intel_wa_list_free(&engine->ctx_wa_list);
1390 intel_wa_list_free(&engine->wa_list);
1391 intel_wa_list_free(&engine->whitelist);
1392 }
1393
1394 /**
1395 * intel_engine_resume - re-initializes the HW state of the engine
1396 * @engine: Engine to resume.
1397 *
1398 * Returns zero on success or an error code on failure.
1399 */
intel_engine_resume(struct intel_engine_cs * engine)1400 int intel_engine_resume(struct intel_engine_cs *engine)
1401 {
1402 intel_engine_apply_workarounds(engine);
1403 intel_engine_apply_whitelist(engine);
1404
1405 return engine->resume(engine);
1406 }
1407
intel_engine_get_active_head(const struct intel_engine_cs * engine)1408 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1409 {
1410 struct drm_i915_private *i915 = engine->i915;
1411
1412 u64 acthd;
1413
1414 if (GRAPHICS_VER(i915) >= 8)
1415 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1416 else if (GRAPHICS_VER(i915) >= 4)
1417 acthd = ENGINE_READ(engine, RING_ACTHD);
1418 else
1419 acthd = ENGINE_READ(engine, ACTHD);
1420
1421 return acthd;
1422 }
1423
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1424 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1425 {
1426 u64 bbaddr;
1427
1428 if (GRAPHICS_VER(engine->i915) >= 8)
1429 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1430 else
1431 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1432
1433 return bbaddr;
1434 }
1435
stop_timeout(const struct intel_engine_cs * engine)1436 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1437 {
1438 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1439 return 0;
1440
1441 /*
1442 * If we are doing a normal GPU reset, we can take our time and allow
1443 * the engine to quiesce. We've stopped submission to the engine, and
1444 * if we wait long enough an innocent context should complete and
1445 * leave the engine idle. So they should not be caught unaware by
1446 * the forthcoming GPU reset (which usually follows the stop_cs)!
1447 */
1448 return READ_ONCE(engine->props.stop_timeout_ms);
1449 }
1450
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1451 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1452 int fast_timeout_us,
1453 int slow_timeout_ms)
1454 {
1455 struct intel_uncore *uncore = engine->uncore;
1456 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1457 int err;
1458
1459 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1460
1461 /*
1462 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1463 * stopped, set ring stop bit and prefetch disable bit to halt CS
1464 */
1465 if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1466 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1467 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1468
1469 err = __intel_wait_for_register_fw(engine->uncore, mode,
1470 MODE_IDLE, MODE_IDLE,
1471 fast_timeout_us,
1472 slow_timeout_ms,
1473 NULL);
1474
1475 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1476 intel_uncore_posting_read_fw(uncore, mode);
1477 return err;
1478 }
1479
intel_engine_stop_cs(struct intel_engine_cs * engine)1480 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1481 {
1482 int err = 0;
1483
1484 if (GRAPHICS_VER(engine->i915) < 3)
1485 return -ENODEV;
1486
1487 ENGINE_TRACE(engine, "\n");
1488 /*
1489 * TODO: Find out why occasionally stopping the CS times out. Seen
1490 * especially with gem_eio tests.
1491 *
1492 * Occasionally trying to stop the cs times out, but does not adversely
1493 * affect functionality. The timeout is set as a config parameter that
1494 * defaults to 100ms. In most cases the follow up operation is to wait
1495 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1496 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1497 * caused, the caller must check and handle the return from this
1498 * function.
1499 */
1500 if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1501 ENGINE_TRACE(engine,
1502 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1503 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1504 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1505
1506 /*
1507 * Sometimes we observe that the idle flag is not
1508 * set even though the ring is empty. So double
1509 * check before giving up.
1510 */
1511 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1512 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1513 err = -ETIMEDOUT;
1514 }
1515
1516 return err;
1517 }
1518
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1519 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1520 {
1521 ENGINE_TRACE(engine, "\n");
1522
1523 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1524 }
1525
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1526 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1527 {
1528 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1529 [RCS0] = MSG_IDLE_CS,
1530 [BCS0] = MSG_IDLE_BCS,
1531 [VCS0] = MSG_IDLE_VCS0,
1532 [VCS1] = MSG_IDLE_VCS1,
1533 [VCS2] = MSG_IDLE_VCS2,
1534 [VCS3] = MSG_IDLE_VCS3,
1535 [VCS4] = MSG_IDLE_VCS4,
1536 [VCS5] = MSG_IDLE_VCS5,
1537 [VCS6] = MSG_IDLE_VCS6,
1538 [VCS7] = MSG_IDLE_VCS7,
1539 [VECS0] = MSG_IDLE_VECS0,
1540 [VECS1] = MSG_IDLE_VECS1,
1541 [VECS2] = MSG_IDLE_VECS2,
1542 [VECS3] = MSG_IDLE_VECS3,
1543 [CCS0] = MSG_IDLE_CS,
1544 [CCS1] = MSG_IDLE_CS,
1545 [CCS2] = MSG_IDLE_CS,
1546 [CCS3] = MSG_IDLE_CS,
1547 };
1548 u32 val;
1549
1550 if (!_reg[engine->id].reg) {
1551 drm_err(&engine->i915->drm,
1552 "MSG IDLE undefined for engine id %u\n", engine->id);
1553 return 0;
1554 }
1555
1556 val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1557
1558 /* bits[29:25] & bits[13:9] >> shift */
1559 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1560 }
1561
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1562 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1563 {
1564 int ret;
1565
1566 /* Ensure GPM receives fw up/down after CS is stopped */
1567 udelay(1);
1568
1569 /* Wait for forcewake request to complete in GPM */
1570 ret = __intel_wait_for_register_fw(gt->uncore,
1571 GEN9_PWRGT_DOMAIN_STATUS,
1572 fw_mask, fw_mask, 5000, 0, NULL);
1573
1574 /* Ensure CS receives fw ack from GPM */
1575 udelay(1);
1576
1577 if (ret)
1578 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1579 }
1580
1581 /*
1582 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1583 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1584 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1585 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1586 * are concerned only with the gt reset here, we use a logical OR of pending
1587 * forcewakeups from all reset domains and then wait for them to complete by
1588 * querying PWRGT_DOMAIN_STATUS.
1589 */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1590 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1591 {
1592 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1593
1594 if (fw_pending)
1595 __gpm_wait_for_fw_complete(engine->gt, fw_pending);
1596 }
1597
1598 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1599 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1600 struct intel_instdone *instdone)
1601 {
1602 struct drm_i915_private *i915 = engine->i915;
1603 struct intel_uncore *uncore = engine->uncore;
1604 u32 mmio_base = engine->mmio_base;
1605 int slice;
1606 int subslice;
1607 int iter;
1608
1609 memset(instdone, 0, sizeof(*instdone));
1610
1611 if (GRAPHICS_VER(i915) >= 8) {
1612 instdone->instdone =
1613 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1614
1615 if (engine->id != RCS0)
1616 return;
1617
1618 instdone->slice_common =
1619 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1620 if (GRAPHICS_VER(i915) >= 12) {
1621 instdone->slice_common_extra[0] =
1622 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1623 instdone->slice_common_extra[1] =
1624 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1625 }
1626
1627 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1628 instdone->sampler[slice][subslice] =
1629 intel_gt_mcr_read(engine->gt,
1630 GEN7_SAMPLER_INSTDONE,
1631 slice, subslice);
1632 instdone->row[slice][subslice] =
1633 intel_gt_mcr_read(engine->gt,
1634 GEN7_ROW_INSTDONE,
1635 slice, subslice);
1636 }
1637
1638 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1639 for_each_ss_steering(iter, engine->gt, slice, subslice)
1640 instdone->geom_svg[slice][subslice] =
1641 intel_gt_mcr_read(engine->gt,
1642 XEHPG_INSTDONE_GEOM_SVG,
1643 slice, subslice);
1644 }
1645 } else if (GRAPHICS_VER(i915) >= 7) {
1646 instdone->instdone =
1647 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1648
1649 if (engine->id != RCS0)
1650 return;
1651
1652 instdone->slice_common =
1653 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1654 instdone->sampler[0][0] =
1655 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1656 instdone->row[0][0] =
1657 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1658 } else if (GRAPHICS_VER(i915) >= 4) {
1659 instdone->instdone =
1660 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1661 if (engine->id == RCS0)
1662 /* HACK: Using the wrong struct member */
1663 instdone->slice_common =
1664 intel_uncore_read(uncore, GEN4_INSTDONE1);
1665 } else {
1666 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1667 }
1668 }
1669
ring_is_idle(struct intel_engine_cs * engine)1670 static bool ring_is_idle(struct intel_engine_cs *engine)
1671 {
1672 bool idle = true;
1673
1674 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1675 return true;
1676
1677 if (!intel_engine_pm_get_if_awake(engine))
1678 return true;
1679
1680 /* First check that no commands are left in the ring */
1681 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1682 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1683 idle = false;
1684
1685 /* No bit for gen2, so assume the CS parser is idle */
1686 if (GRAPHICS_VER(engine->i915) > 2 &&
1687 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1688 idle = false;
1689
1690 intel_engine_pm_put(engine);
1691
1692 return idle;
1693 }
1694
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1695 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1696 {
1697 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1698
1699 if (!t->callback)
1700 return;
1701
1702 local_bh_disable();
1703 if (tasklet_trylock(t)) {
1704 /* Must wait for any GPU reset in progress. */
1705 if (__tasklet_is_enabled(t))
1706 t->callback(t);
1707 tasklet_unlock(t);
1708 }
1709 local_bh_enable();
1710
1711 /* Synchronise and wait for the tasklet on another CPU */
1712 if (sync)
1713 tasklet_unlock_wait(t);
1714 }
1715
1716 /**
1717 * intel_engine_is_idle() - Report if the engine has finished process all work
1718 * @engine: the intel_engine_cs
1719 *
1720 * Return true if there are no requests pending, nothing left to be submitted
1721 * to hardware, and that the engine is idle.
1722 */
intel_engine_is_idle(struct intel_engine_cs * engine)1723 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1724 {
1725 /* More white lies, if wedged, hw state is inconsistent */
1726 if (intel_gt_is_wedged(engine->gt))
1727 return true;
1728
1729 if (!intel_engine_pm_is_awake(engine))
1730 return true;
1731
1732 /* Waiting to drain ELSP? */
1733 intel_synchronize_hardirq(engine->i915);
1734 intel_engine_flush_submission(engine);
1735
1736 /* ELSP is empty, but there are ready requests? E.g. after reset */
1737 if (!i915_sched_engine_is_empty(engine->sched_engine))
1738 return false;
1739
1740 /* Ring stopped? */
1741 return ring_is_idle(engine);
1742 }
1743
intel_engines_are_idle(struct intel_gt * gt)1744 bool intel_engines_are_idle(struct intel_gt *gt)
1745 {
1746 struct intel_engine_cs *engine;
1747 enum intel_engine_id id;
1748
1749 /*
1750 * If the driver is wedged, HW state may be very inconsistent and
1751 * report that it is still busy, even though we have stopped using it.
1752 */
1753 if (intel_gt_is_wedged(gt))
1754 return true;
1755
1756 /* Already parked (and passed an idleness test); must still be idle */
1757 if (!READ_ONCE(gt->awake))
1758 return true;
1759
1760 for_each_engine(engine, gt, id) {
1761 if (!intel_engine_is_idle(engine))
1762 return false;
1763 }
1764
1765 return true;
1766 }
1767
intel_engine_irq_enable(struct intel_engine_cs * engine)1768 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1769 {
1770 if (!engine->irq_enable)
1771 return false;
1772
1773 /* Caller disables interrupts */
1774 spin_lock(engine->gt->irq_lock);
1775 engine->irq_enable(engine);
1776 spin_unlock(engine->gt->irq_lock);
1777
1778 return true;
1779 }
1780
intel_engine_irq_disable(struct intel_engine_cs * engine)1781 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1782 {
1783 if (!engine->irq_disable)
1784 return;
1785
1786 /* Caller disables interrupts */
1787 spin_lock(engine->gt->irq_lock);
1788 engine->irq_disable(engine);
1789 spin_unlock(engine->gt->irq_lock);
1790 }
1791
intel_engines_reset_default_submission(struct intel_gt * gt)1792 void intel_engines_reset_default_submission(struct intel_gt *gt)
1793 {
1794 struct intel_engine_cs *engine;
1795 enum intel_engine_id id;
1796
1797 for_each_engine(engine, gt, id) {
1798 if (engine->sanitize)
1799 engine->sanitize(engine);
1800
1801 engine->set_default_submission(engine);
1802 }
1803 }
1804
intel_engine_can_store_dword(struct intel_engine_cs * engine)1805 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1806 {
1807 switch (GRAPHICS_VER(engine->i915)) {
1808 case 2:
1809 return false; /* uses physical not virtual addresses */
1810 case 3:
1811 /* maybe only uses physical not virtual addresses */
1812 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1813 case 4:
1814 return !IS_I965G(engine->i915); /* who knows! */
1815 case 6:
1816 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1817 default:
1818 return true;
1819 }
1820 }
1821
get_timeline(struct i915_request * rq)1822 static struct intel_timeline *get_timeline(struct i915_request *rq)
1823 {
1824 struct intel_timeline *tl;
1825
1826 /*
1827 * Even though we are holding the engine->sched_engine->lock here, there
1828 * is no control over the submission queue per-se and we are
1829 * inspecting the active state at a random point in time, with an
1830 * unknown queue. Play safe and make sure the timeline remains valid.
1831 * (Only being used for pretty printing, one extra kref shouldn't
1832 * cause a camel stampede!)
1833 */
1834 rcu_read_lock();
1835 tl = rcu_dereference(rq->timeline);
1836 if (!kref_get_unless_zero(&tl->kref))
1837 tl = NULL;
1838 rcu_read_unlock();
1839
1840 return tl;
1841 }
1842
print_ring(char * buf,int sz,struct i915_request * rq)1843 static int print_ring(char *buf, int sz, struct i915_request *rq)
1844 {
1845 int len = 0;
1846
1847 if (!i915_request_signaled(rq)) {
1848 struct intel_timeline *tl = get_timeline(rq);
1849
1850 len = scnprintf(buf, sz,
1851 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1852 i915_ggtt_offset(rq->ring->vma),
1853 tl ? tl->hwsp_offset : 0,
1854 hwsp_seqno(rq),
1855 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1856 1000 * 1000));
1857
1858 if (tl)
1859 intel_timeline_put(tl);
1860 }
1861
1862 return len;
1863 }
1864
hexdump(struct drm_printer * m,const void * buf,size_t len)1865 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1866 {
1867 const size_t rowsize = 8 * sizeof(u32);
1868 const void *prev = NULL;
1869 bool skip = false;
1870 size_t pos;
1871
1872 for (pos = 0; pos < len; pos += rowsize) {
1873 char line[128];
1874
1875 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1876 if (!skip) {
1877 drm_printf(m, "*\n");
1878 skip = true;
1879 }
1880 continue;
1881 }
1882
1883 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1884 rowsize, sizeof(u32),
1885 line, sizeof(line),
1886 false) >= sizeof(line));
1887 drm_printf(m, "[%04zx] %s\n", pos, line);
1888
1889 prev = buf + pos;
1890 skip = false;
1891 }
1892 }
1893
repr_timer(const struct timer_list * t)1894 static const char *repr_timer(const struct timer_list *t)
1895 {
1896 if (!READ_ONCE(t->expires))
1897 return "inactive";
1898
1899 if (timer_pending(t))
1900 return "active";
1901
1902 return "expired";
1903 }
1904
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1905 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1906 struct drm_printer *m)
1907 {
1908 struct drm_i915_private *dev_priv = engine->i915;
1909 struct intel_engine_execlists * const execlists = &engine->execlists;
1910 u64 addr;
1911
1912 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1913 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1914 if (HAS_EXECLISTS(dev_priv)) {
1915 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1916 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1917 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1918 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1919 }
1920 drm_printf(m, "\tRING_START: 0x%08x\n",
1921 ENGINE_READ(engine, RING_START));
1922 drm_printf(m, "\tRING_HEAD: 0x%08x\n",
1923 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1924 drm_printf(m, "\tRING_TAIL: 0x%08x\n",
1925 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1926 drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
1927 ENGINE_READ(engine, RING_CTL),
1928 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1929 if (GRAPHICS_VER(engine->i915) > 2) {
1930 drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
1931 ENGINE_READ(engine, RING_MI_MODE),
1932 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1933 }
1934
1935 if (GRAPHICS_VER(dev_priv) >= 6) {
1936 drm_printf(m, "\tRING_IMR: 0x%08x\n",
1937 ENGINE_READ(engine, RING_IMR));
1938 drm_printf(m, "\tRING_ESR: 0x%08x\n",
1939 ENGINE_READ(engine, RING_ESR));
1940 drm_printf(m, "\tRING_EMR: 0x%08x\n",
1941 ENGINE_READ(engine, RING_EMR));
1942 drm_printf(m, "\tRING_EIR: 0x%08x\n",
1943 ENGINE_READ(engine, RING_EIR));
1944 }
1945
1946 addr = intel_engine_get_active_head(engine);
1947 drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
1948 upper_32_bits(addr), lower_32_bits(addr));
1949 addr = intel_engine_get_last_batch_head(engine);
1950 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1951 upper_32_bits(addr), lower_32_bits(addr));
1952 if (GRAPHICS_VER(dev_priv) >= 8)
1953 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1954 else if (GRAPHICS_VER(dev_priv) >= 4)
1955 addr = ENGINE_READ(engine, RING_DMA_FADD);
1956 else
1957 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1958 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1959 upper_32_bits(addr), lower_32_bits(addr));
1960 if (GRAPHICS_VER(dev_priv) >= 4) {
1961 drm_printf(m, "\tIPEIR: 0x%08x\n",
1962 ENGINE_READ(engine, RING_IPEIR));
1963 drm_printf(m, "\tIPEHR: 0x%08x\n",
1964 ENGINE_READ(engine, RING_IPEHR));
1965 } else {
1966 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1967 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1968 }
1969
1970 if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1971 struct i915_request * const *port, *rq;
1972 const u32 *hws =
1973 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1974 const u8 num_entries = execlists->csb_size;
1975 unsigned int idx;
1976 u8 read, write;
1977
1978 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1979 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1980 str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1981 repr_timer(&engine->execlists.preempt),
1982 repr_timer(&engine->execlists.timer));
1983
1984 read = execlists->csb_head;
1985 write = READ_ONCE(*execlists->csb_write);
1986
1987 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1988 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1989 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1990 read, write, num_entries);
1991
1992 if (read >= num_entries)
1993 read = 0;
1994 if (write >= num_entries)
1995 write = 0;
1996 if (read > write)
1997 write += num_entries;
1998 while (read < write) {
1999 idx = ++read % num_entries;
2000 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2001 idx, hws[idx * 2], hws[idx * 2 + 1]);
2002 }
2003
2004 i915_sched_engine_active_lock_bh(engine->sched_engine);
2005 rcu_read_lock();
2006 for (port = execlists->active; (rq = *port); port++) {
2007 char hdr[160];
2008 int len;
2009
2010 len = scnprintf(hdr, sizeof(hdr),
2011 "\t\tActive[%d]: ccid:%08x%s%s, ",
2012 (int)(port - execlists->active),
2013 rq->context->lrc.ccid,
2014 intel_context_is_closed(rq->context) ? "!" : "",
2015 intel_context_is_banned(rq->context) ? "*" : "");
2016 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2017 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2018 i915_request_show(m, rq, hdr, 0);
2019 }
2020 for (port = execlists->pending; (rq = *port); port++) {
2021 char hdr[160];
2022 int len;
2023
2024 len = scnprintf(hdr, sizeof(hdr),
2025 "\t\tPending[%d]: ccid:%08x%s%s, ",
2026 (int)(port - execlists->pending),
2027 rq->context->lrc.ccid,
2028 intel_context_is_closed(rq->context) ? "!" : "",
2029 intel_context_is_banned(rq->context) ? "*" : "");
2030 len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2031 scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2032 i915_request_show(m, rq, hdr, 0);
2033 }
2034 rcu_read_unlock();
2035 i915_sched_engine_active_unlock_bh(engine->sched_engine);
2036 } else if (GRAPHICS_VER(dev_priv) > 6) {
2037 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2038 ENGINE_READ(engine, RING_PP_DIR_BASE));
2039 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2040 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2041 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2042 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2043 }
2044 }
2045
print_request_ring(struct drm_printer * m,struct i915_request * rq)2046 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2047 {
2048 struct i915_vma_resource *vma_res = rq->batch_res;
2049 void *ring;
2050 int size;
2051
2052 drm_printf(m,
2053 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2054 rq->head, rq->postfix, rq->tail,
2055 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2056 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2057
2058 size = rq->tail - rq->head;
2059 if (rq->tail < rq->head)
2060 size += rq->ring->size;
2061
2062 ring = kmalloc(size, GFP_ATOMIC);
2063 if (ring) {
2064 const void *vaddr = rq->ring->vaddr;
2065 unsigned int head = rq->head;
2066 unsigned int len = 0;
2067
2068 if (rq->tail < head) {
2069 len = rq->ring->size - head;
2070 memcpy(ring, vaddr + head, len);
2071 head = 0;
2072 }
2073 memcpy(ring + len, vaddr + head, size - len);
2074
2075 hexdump(m, ring, size);
2076 kfree(ring);
2077 }
2078 }
2079
read_ul(void * p,size_t x)2080 static unsigned long read_ul(void *p, size_t x)
2081 {
2082 return *(unsigned long *)(p + x);
2083 }
2084
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2085 static void print_properties(struct intel_engine_cs *engine,
2086 struct drm_printer *m)
2087 {
2088 static const struct pmap {
2089 size_t offset;
2090 const char *name;
2091 } props[] = {
2092 #define P(x) { \
2093 .offset = offsetof(typeof(engine->props), x), \
2094 .name = #x \
2095 }
2096 P(heartbeat_interval_ms),
2097 P(max_busywait_duration_ns),
2098 P(preempt_timeout_ms),
2099 P(stop_timeout_ms),
2100 P(timeslice_duration_ms),
2101
2102 {},
2103 #undef P
2104 };
2105 const struct pmap *p;
2106
2107 drm_printf(m, "\tProperties:\n");
2108 for (p = props; p->name; p++)
2109 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2110 p->name,
2111 read_ul(&engine->props, p->offset),
2112 read_ul(&engine->defaults, p->offset));
2113 }
2114
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2115 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2116 {
2117 struct intel_timeline *tl = get_timeline(rq);
2118
2119 i915_request_show(m, rq, msg, 0);
2120
2121 drm_printf(m, "\t\tring->start: 0x%08x\n",
2122 i915_ggtt_offset(rq->ring->vma));
2123 drm_printf(m, "\t\tring->head: 0x%08x\n",
2124 rq->ring->head);
2125 drm_printf(m, "\t\tring->tail: 0x%08x\n",
2126 rq->ring->tail);
2127 drm_printf(m, "\t\tring->emit: 0x%08x\n",
2128 rq->ring->emit);
2129 drm_printf(m, "\t\tring->space: 0x%08x\n",
2130 rq->ring->space);
2131
2132 if (tl) {
2133 drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
2134 tl->hwsp_offset);
2135 intel_timeline_put(tl);
2136 }
2137
2138 print_request_ring(m, rq);
2139
2140 if (rq->context->lrc_reg_state) {
2141 drm_printf(m, "Logical Ring Context:\n");
2142 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2143 }
2144 }
2145
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2146 void intel_engine_dump_active_requests(struct list_head *requests,
2147 struct i915_request *hung_rq,
2148 struct drm_printer *m)
2149 {
2150 struct i915_request *rq;
2151 const char *msg;
2152 enum i915_request_state state;
2153
2154 list_for_each_entry(rq, requests, sched.link) {
2155 if (rq == hung_rq)
2156 continue;
2157
2158 state = i915_test_request_state(rq);
2159 if (state < I915_REQUEST_QUEUED)
2160 continue;
2161
2162 if (state == I915_REQUEST_ACTIVE)
2163 msg = "\t\tactive on engine";
2164 else
2165 msg = "\t\tactive in queue";
2166
2167 engine_dump_request(rq, m, msg);
2168 }
2169 }
2170
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2171 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2172 struct drm_printer *m)
2173 {
2174 struct intel_context *hung_ce = NULL;
2175 struct i915_request *hung_rq = NULL;
2176
2177 /*
2178 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2179 * The GPU is still running so requests are still executing and any
2180 * hardware reads will be out of date by the time they are reported.
2181 * But the intention here is just to report an instantaneous snapshot
2182 * so that's fine.
2183 */
2184 intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2185
2186 drm_printf(m, "\tRequests:\n");
2187
2188 if (hung_rq)
2189 engine_dump_request(hung_rq, m, "\t\thung");
2190 else if (hung_ce)
2191 drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2192
2193 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2194 intel_guc_dump_active_requests(engine, hung_rq, m);
2195 else
2196 intel_execlists_dump_active_requests(engine, hung_rq, m);
2197
2198 if (hung_rq)
2199 i915_request_put(hung_rq);
2200 }
2201
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2202 void intel_engine_dump(struct intel_engine_cs *engine,
2203 struct drm_printer *m,
2204 const char *header, ...)
2205 {
2206 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2207 struct i915_request *rq;
2208 intel_wakeref_t wakeref;
2209 ktime_t dummy;
2210
2211 if (header) {
2212 va_list ap;
2213
2214 va_start(ap, header);
2215 drm_vprintf(m, header, &ap);
2216 va_end(ap);
2217 }
2218
2219 if (intel_gt_is_wedged(engine->gt))
2220 drm_printf(m, "*** WEDGED ***\n");
2221
2222 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2223 drm_printf(m, "\tBarriers?: %s\n",
2224 str_yes_no(!llist_empty(&engine->barrier_tasks)));
2225 drm_printf(m, "\tLatency: %luus\n",
2226 ewma__engine_latency_read(&engine->latency));
2227 if (intel_engine_supports_stats(engine))
2228 drm_printf(m, "\tRuntime: %llums\n",
2229 ktime_to_ms(intel_engine_get_busy_time(engine,
2230 &dummy)));
2231 drm_printf(m, "\tForcewake: %x domains, %d active\n",
2232 engine->fw_domain, READ_ONCE(engine->fw_active));
2233
2234 rcu_read_lock();
2235 rq = READ_ONCE(engine->heartbeat.systole);
2236 if (rq)
2237 drm_printf(m, "\tHeartbeat: %d ms ago\n",
2238 jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2239 rcu_read_unlock();
2240 drm_printf(m, "\tReset count: %d (global %d)\n",
2241 i915_reset_engine_count(error, engine),
2242 i915_reset_count(error));
2243 print_properties(engine, m);
2244
2245 engine_dump_active_requests(engine, m);
2246
2247 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
2248 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2249 if (wakeref) {
2250 intel_engine_print_registers(engine, m);
2251 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2252 } else {
2253 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2254 }
2255
2256 intel_execlists_show_requests(engine, m, i915_request_show, 8);
2257
2258 drm_printf(m, "HWSP:\n");
2259 hexdump(m, engine->status_page.addr, PAGE_SIZE);
2260
2261 drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2262
2263 intel_engine_print_breadcrumbs(engine, m);
2264 }
2265
2266 /**
2267 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2268 * @engine: engine to report on
2269 * @now: monotonic timestamp of sampling
2270 *
2271 * Returns accumulated time @engine was busy since engine stats were enabled.
2272 */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2273 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2274 {
2275 return engine->busyness(engine, now);
2276 }
2277
2278 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2279 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2280 unsigned int count, unsigned long flags)
2281 {
2282 if (count == 0)
2283 return ERR_PTR(-EINVAL);
2284
2285 if (count == 1 && !(flags & FORCE_VIRTUAL))
2286 return intel_context_create(siblings[0]);
2287
2288 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2289 return siblings[0]->cops->create_virtual(siblings, count, flags);
2290 }
2291
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2292 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2293 {
2294 struct i915_request *request, *active = NULL;
2295
2296 /*
2297 * This search does not work in GuC submission mode. However, the GuC
2298 * will report the hanging context directly to the driver itself. So
2299 * the driver should never get here when in GuC mode.
2300 */
2301 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2302
2303 /*
2304 * We are called by the error capture, reset and to dump engine
2305 * state at random points in time. In particular, note that neither is
2306 * crucially ordered with an interrupt. After a hang, the GPU is dead
2307 * and we assume that no more writes can happen (we waited long enough
2308 * for all writes that were in transaction to be flushed) - adding an
2309 * extra delay for a recent interrupt is pointless. Hence, we do
2310 * not need an engine->irq_seqno_barrier() before the seqno reads.
2311 * At all other times, we must assume the GPU is still running, but
2312 * we only care about the snapshot of this moment.
2313 */
2314 lockdep_assert_held(&engine->sched_engine->lock);
2315
2316 rcu_read_lock();
2317 request = execlists_active(&engine->execlists);
2318 if (request) {
2319 struct intel_timeline *tl = request->context->timeline;
2320
2321 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2322 if (__i915_request_is_complete(request))
2323 break;
2324
2325 active = request;
2326 }
2327 }
2328 rcu_read_unlock();
2329 if (active)
2330 return active;
2331
2332 list_for_each_entry(request, &engine->sched_engine->requests,
2333 sched.link) {
2334 if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2335 continue;
2336
2337 active = request;
2338 break;
2339 }
2340
2341 return active;
2342 }
2343
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2344 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2345 struct intel_context **ce, struct i915_request **rq)
2346 {
2347 unsigned long flags;
2348
2349 *ce = intel_engine_get_hung_context(engine);
2350 if (*ce) {
2351 intel_engine_clear_hung_context(engine);
2352
2353 *rq = intel_context_get_active_request(*ce);
2354 return;
2355 }
2356
2357 /*
2358 * Getting here with GuC enabled means it is a forced error capture
2359 * with no actual hang. So, no need to attempt the execlist search.
2360 */
2361 if (intel_uc_uses_guc_submission(&engine->gt->uc))
2362 return;
2363
2364 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2365 *rq = engine_execlist_find_hung_request(engine);
2366 if (*rq)
2367 *rq = i915_request_get_rcu(*rq);
2368 spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2369 }
2370
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2371 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2372 {
2373 /*
2374 * If there are any non-fused-off CCS engines, we need to enable CCS
2375 * support in the RCU_MODE register. This only needs to be done once,
2376 * so for simplicity we'll take care of this in the RCS engine's
2377 * resume handler; since the RCS and all CCS engines belong to the
2378 * same reset domain and are reset together, this will also take care
2379 * of re-applying the setting after i915-triggered resets.
2380 */
2381 if (!CCS_MASK(engine->gt))
2382 return;
2383
2384 intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2385 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2386 }
2387
2388 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2389 #include "mock_engine.c"
2390 #include "selftest_engine.c"
2391 #include "selftest_engine_cs.c"
2392 #endif
2393