• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13 
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "intel_breadcrumbs.h"
17 #include "intel_context.h"
18 #include "intel_engine.h"
19 #include "intel_engine_pm.h"
20 #include "intel_engine_regs.h"
21 #include "intel_engine_user.h"
22 #include "intel_execlists_submission.h"
23 #include "intel_gt.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_requests.h"
27 #include "intel_lrc.h"
28 #include "intel_lrc_reg.h"
29 #include "intel_reset.h"
30 #include "intel_ring.h"
31 #include "uc/intel_guc_submission.h"
32 
33 /* Haswell does have the CXT_SIZE register however it does not appear to be
34  * valid. Now, docs explain in dwords what is in the context object. The full
35  * size is 70720 bytes, however, the power context and execlist context will
36  * never be saved (power context is stored elsewhere, and execlists don't work
37  * on HSW) - so the final size, including the extra state required for the
38  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
39  */
40 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
41 
42 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
43 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
44 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
45 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
46 
47 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
48 
49 #define MAX_MMIO_BASES 3
50 struct engine_info {
51 	u8 class;
52 	u8 instance;
53 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
54 	struct engine_mmio_base {
55 		u32 graphics_ver : 8;
56 		u32 base : 24;
57 	} mmio_bases[MAX_MMIO_BASES];
58 };
59 
60 static const struct engine_info intel_engines[] = {
61 	[RCS0] = {
62 		.class = RENDER_CLASS,
63 		.instance = 0,
64 		.mmio_bases = {
65 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
66 		},
67 	},
68 	[BCS0] = {
69 		.class = COPY_ENGINE_CLASS,
70 		.instance = 0,
71 		.mmio_bases = {
72 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
73 		},
74 	},
75 	[BCS1] = {
76 		.class = COPY_ENGINE_CLASS,
77 		.instance = 1,
78 		.mmio_bases = {
79 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
80 		},
81 	},
82 	[BCS2] = {
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 2,
85 		.mmio_bases = {
86 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
87 		},
88 	},
89 	[BCS3] = {
90 		.class = COPY_ENGINE_CLASS,
91 		.instance = 3,
92 		.mmio_bases = {
93 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
94 		},
95 	},
96 	[BCS4] = {
97 		.class = COPY_ENGINE_CLASS,
98 		.instance = 4,
99 		.mmio_bases = {
100 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
101 		},
102 	},
103 	[BCS5] = {
104 		.class = COPY_ENGINE_CLASS,
105 		.instance = 5,
106 		.mmio_bases = {
107 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
108 		},
109 	},
110 	[BCS6] = {
111 		.class = COPY_ENGINE_CLASS,
112 		.instance = 6,
113 		.mmio_bases = {
114 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
115 		},
116 	},
117 	[BCS7] = {
118 		.class = COPY_ENGINE_CLASS,
119 		.instance = 7,
120 		.mmio_bases = {
121 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
122 		},
123 	},
124 	[BCS8] = {
125 		.class = COPY_ENGINE_CLASS,
126 		.instance = 8,
127 		.mmio_bases = {
128 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
129 		},
130 	},
131 	[VCS0] = {
132 		.class = VIDEO_DECODE_CLASS,
133 		.instance = 0,
134 		.mmio_bases = {
135 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
136 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
137 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
138 		},
139 	},
140 	[VCS1] = {
141 		.class = VIDEO_DECODE_CLASS,
142 		.instance = 1,
143 		.mmio_bases = {
144 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
145 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
146 		},
147 	},
148 	[VCS2] = {
149 		.class = VIDEO_DECODE_CLASS,
150 		.instance = 2,
151 		.mmio_bases = {
152 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
153 		},
154 	},
155 	[VCS3] = {
156 		.class = VIDEO_DECODE_CLASS,
157 		.instance = 3,
158 		.mmio_bases = {
159 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
160 		},
161 	},
162 	[VCS4] = {
163 		.class = VIDEO_DECODE_CLASS,
164 		.instance = 4,
165 		.mmio_bases = {
166 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
167 		},
168 	},
169 	[VCS5] = {
170 		.class = VIDEO_DECODE_CLASS,
171 		.instance = 5,
172 		.mmio_bases = {
173 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
174 		},
175 	},
176 	[VCS6] = {
177 		.class = VIDEO_DECODE_CLASS,
178 		.instance = 6,
179 		.mmio_bases = {
180 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
181 		},
182 	},
183 	[VCS7] = {
184 		.class = VIDEO_DECODE_CLASS,
185 		.instance = 7,
186 		.mmio_bases = {
187 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
188 		},
189 	},
190 	[VECS0] = {
191 		.class = VIDEO_ENHANCEMENT_CLASS,
192 		.instance = 0,
193 		.mmio_bases = {
194 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
195 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
196 		},
197 	},
198 	[VECS1] = {
199 		.class = VIDEO_ENHANCEMENT_CLASS,
200 		.instance = 1,
201 		.mmio_bases = {
202 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
203 		},
204 	},
205 	[VECS2] = {
206 		.class = VIDEO_ENHANCEMENT_CLASS,
207 		.instance = 2,
208 		.mmio_bases = {
209 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
210 		},
211 	},
212 	[VECS3] = {
213 		.class = VIDEO_ENHANCEMENT_CLASS,
214 		.instance = 3,
215 		.mmio_bases = {
216 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
217 		},
218 	},
219 	[CCS0] = {
220 		.class = COMPUTE_CLASS,
221 		.instance = 0,
222 		.mmio_bases = {
223 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
224 		}
225 	},
226 	[CCS1] = {
227 		.class = COMPUTE_CLASS,
228 		.instance = 1,
229 		.mmio_bases = {
230 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
231 		}
232 	},
233 	[CCS2] = {
234 		.class = COMPUTE_CLASS,
235 		.instance = 2,
236 		.mmio_bases = {
237 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
238 		}
239 	},
240 	[CCS3] = {
241 		.class = COMPUTE_CLASS,
242 		.instance = 3,
243 		.mmio_bases = {
244 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
245 		}
246 	},
247 };
248 
249 /**
250  * intel_engine_context_size() - return the size of the context for an engine
251  * @gt: the gt
252  * @class: engine class
253  *
254  * Each engine class may require a different amount of space for a context
255  * image.
256  *
257  * Return: size (in bytes) of an engine class specific context image
258  *
259  * Note: this size includes the HWSP, which is part of the context image
260  * in LRC mode, but does not include the "shared data page" used with
261  * GuC submission. The caller should account for this if using the GuC.
262  */
intel_engine_context_size(struct intel_gt * gt,u8 class)263 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
264 {
265 	struct intel_uncore *uncore = gt->uncore;
266 	u32 cxt_size;
267 
268 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
269 
270 	switch (class) {
271 	case COMPUTE_CLASS:
272 		fallthrough;
273 	case RENDER_CLASS:
274 		switch (GRAPHICS_VER(gt->i915)) {
275 		default:
276 			MISSING_CASE(GRAPHICS_VER(gt->i915));
277 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
278 		case 12:
279 		case 11:
280 			return GEN11_LR_CONTEXT_RENDER_SIZE;
281 		case 9:
282 			return GEN9_LR_CONTEXT_RENDER_SIZE;
283 		case 8:
284 			return GEN8_LR_CONTEXT_RENDER_SIZE;
285 		case 7:
286 			if (IS_HASWELL(gt->i915))
287 				return HSW_CXT_TOTAL_SIZE;
288 
289 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
290 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
291 					PAGE_SIZE);
292 		case 6:
293 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
294 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
295 					PAGE_SIZE);
296 		case 5:
297 		case 4:
298 			/*
299 			 * There is a discrepancy here between the size reported
300 			 * by the register and the size of the context layout
301 			 * in the docs. Both are described as authorative!
302 			 *
303 			 * The discrepancy is on the order of a few cachelines,
304 			 * but the total is under one page (4k), which is our
305 			 * minimum allocation anyway so it should all come
306 			 * out in the wash.
307 			 */
308 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
309 			drm_dbg(&gt->i915->drm,
310 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
311 				GRAPHICS_VER(gt->i915), cxt_size * 64,
312 				cxt_size - 1);
313 			return round_up(cxt_size * 64, PAGE_SIZE);
314 		case 3:
315 		case 2:
316 		/* For the special day when i810 gets merged. */
317 		case 1:
318 			return 0;
319 		}
320 		break;
321 	default:
322 		MISSING_CASE(class);
323 		fallthrough;
324 	case VIDEO_DECODE_CLASS:
325 	case VIDEO_ENHANCEMENT_CLASS:
326 	case COPY_ENGINE_CLASS:
327 		if (GRAPHICS_VER(gt->i915) < 8)
328 			return 0;
329 		return GEN8_LR_CONTEXT_OTHER_SIZE;
330 	}
331 }
332 
__engine_mmio_base(struct drm_i915_private * i915,const struct engine_mmio_base * bases)333 static u32 __engine_mmio_base(struct drm_i915_private *i915,
334 			      const struct engine_mmio_base *bases)
335 {
336 	int i;
337 
338 	for (i = 0; i < MAX_MMIO_BASES; i++)
339 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
340 			break;
341 
342 	GEM_BUG_ON(i == MAX_MMIO_BASES);
343 	GEM_BUG_ON(!bases[i].base);
344 
345 	return bases[i].base;
346 }
347 
__sprint_engine_name(struct intel_engine_cs * engine)348 static void __sprint_engine_name(struct intel_engine_cs *engine)
349 {
350 	/*
351 	 * Before we know what the uABI name for this engine will be,
352 	 * we still would like to keep track of this engine in the debug logs.
353 	 * We throw in a ' here as a reminder that this isn't its final name.
354 	 */
355 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
356 			     intel_engine_class_repr(engine->class),
357 			     engine->instance) >= sizeof(engine->name));
358 }
359 
intel_engine_set_hwsp_writemask(struct intel_engine_cs * engine,u32 mask)360 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
361 {
362 	/*
363 	 * Though they added more rings on g4x/ilk, they did not add
364 	 * per-engine HWSTAM until gen6.
365 	 */
366 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
367 		return;
368 
369 	if (GRAPHICS_VER(engine->i915) >= 3)
370 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
371 	else
372 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
373 }
374 
intel_engine_sanitize_mmio(struct intel_engine_cs * engine)375 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
376 {
377 	/* Mask off all writes into the unknown HWSP */
378 	intel_engine_set_hwsp_writemask(engine, ~0u);
379 }
380 
nop_irq_handler(struct intel_engine_cs * engine,u16 iir)381 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
382 {
383 	GEM_DEBUG_WARN_ON(iir);
384 }
385 
get_reset_domain(u8 ver,enum intel_engine_id id)386 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
387 {
388 	u32 reset_domain;
389 
390 	if (ver >= 11) {
391 		static const u32 engine_reset_domains[] = {
392 			[RCS0]  = GEN11_GRDOM_RENDER,
393 			[BCS0]  = GEN11_GRDOM_BLT,
394 			[BCS1]  = XEHPC_GRDOM_BLT1,
395 			[BCS2]  = XEHPC_GRDOM_BLT2,
396 			[BCS3]  = XEHPC_GRDOM_BLT3,
397 			[BCS4]  = XEHPC_GRDOM_BLT4,
398 			[BCS5]  = XEHPC_GRDOM_BLT5,
399 			[BCS6]  = XEHPC_GRDOM_BLT6,
400 			[BCS7]  = XEHPC_GRDOM_BLT7,
401 			[BCS8]  = XEHPC_GRDOM_BLT8,
402 			[VCS0]  = GEN11_GRDOM_MEDIA,
403 			[VCS1]  = GEN11_GRDOM_MEDIA2,
404 			[VCS2]  = GEN11_GRDOM_MEDIA3,
405 			[VCS3]  = GEN11_GRDOM_MEDIA4,
406 			[VCS4]  = GEN11_GRDOM_MEDIA5,
407 			[VCS5]  = GEN11_GRDOM_MEDIA6,
408 			[VCS6]  = GEN11_GRDOM_MEDIA7,
409 			[VCS7]  = GEN11_GRDOM_MEDIA8,
410 			[VECS0] = GEN11_GRDOM_VECS,
411 			[VECS1] = GEN11_GRDOM_VECS2,
412 			[VECS2] = GEN11_GRDOM_VECS3,
413 			[VECS3] = GEN11_GRDOM_VECS4,
414 			[CCS0]  = GEN11_GRDOM_RENDER,
415 			[CCS1]  = GEN11_GRDOM_RENDER,
416 			[CCS2]  = GEN11_GRDOM_RENDER,
417 			[CCS3]  = GEN11_GRDOM_RENDER,
418 		};
419 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
420 			   !engine_reset_domains[id]);
421 		reset_domain = engine_reset_domains[id];
422 	} else {
423 		static const u32 engine_reset_domains[] = {
424 			[RCS0]  = GEN6_GRDOM_RENDER,
425 			[BCS0]  = GEN6_GRDOM_BLT,
426 			[VCS0]  = GEN6_GRDOM_MEDIA,
427 			[VCS1]  = GEN8_GRDOM_MEDIA2,
428 			[VECS0] = GEN6_GRDOM_VECS,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	}
434 
435 	return reset_domain;
436 }
437 
intel_engine_setup(struct intel_gt * gt,enum intel_engine_id id,u8 logical_instance)438 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
439 			      u8 logical_instance)
440 {
441 	const struct engine_info *info = &intel_engines[id];
442 	struct drm_i915_private *i915 = gt->i915;
443 	struct intel_engine_cs *engine;
444 	u8 guc_class;
445 
446 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
447 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
448 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
449 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
450 
451 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
452 		return -EINVAL;
453 
454 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
455 		return -EINVAL;
456 
457 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
458 		return -EINVAL;
459 
460 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
461 		return -EINVAL;
462 
463 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
464 	if (!engine)
465 		return -ENOMEM;
466 
467 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
468 
469 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
470 	engine->id = id;
471 	engine->legacy_idx = INVALID_ENGINE;
472 	engine->mask = BIT(id);
473 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
474 						id);
475 	engine->i915 = i915;
476 	engine->gt = gt;
477 	engine->uncore = gt->uncore;
478 	guc_class = engine_class_to_guc_class(info->class);
479 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
480 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
481 
482 	engine->irq_handler = nop_irq_handler;
483 
484 	engine->class = info->class;
485 	engine->instance = info->instance;
486 	engine->logical_mask = BIT(logical_instance);
487 	__sprint_engine_name(engine);
488 
489 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
490 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
491 	     engine->class == RENDER_CLASS)
492 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
493 
494 	/* features common between engines sharing EUs */
495 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
496 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
497 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
498 	}
499 
500 	engine->props.heartbeat_interval_ms =
501 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
502 	engine->props.max_busywait_duration_ns =
503 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
504 	engine->props.preempt_timeout_ms =
505 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
506 	engine->props.stop_timeout_ms =
507 		CONFIG_DRM_I915_STOP_TIMEOUT;
508 	engine->props.timeslice_duration_ms =
509 		CONFIG_DRM_I915_TIMESLICE_DURATION;
510 
511 	/* Override to uninterruptible for OpenCL workloads. */
512 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
513 		engine->props.preempt_timeout_ms = 0;
514 
515 	/* Cap properties according to any system limits */
516 #define CLAMP_PROP(field) \
517 	do { \
518 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
519 		if (clamp != engine->props.field) { \
520 			drm_notice(&engine->i915->drm, \
521 				   "Warning, clamping %s to %lld to prevent overflow\n", \
522 				   #field, clamp); \
523 			engine->props.field = clamp; \
524 		} \
525 	} while (0)
526 
527 	CLAMP_PROP(heartbeat_interval_ms);
528 	CLAMP_PROP(max_busywait_duration_ns);
529 	CLAMP_PROP(preempt_timeout_ms);
530 	CLAMP_PROP(stop_timeout_ms);
531 	CLAMP_PROP(timeslice_duration_ms);
532 
533 #undef CLAMP_PROP
534 
535 	engine->defaults = engine->props; /* never to change again */
536 
537 	engine->context_size = intel_engine_context_size(gt, engine->class);
538 	if (WARN_ON(engine->context_size > BIT(20)))
539 		engine->context_size = 0;
540 	if (engine->context_size)
541 		DRIVER_CAPS(i915)->has_logical_contexts = true;
542 
543 	ewma__engine_latency_init(&engine->latency);
544 
545 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
546 
547 	/* Scrub mmio state on takeover */
548 	intel_engine_sanitize_mmio(engine);
549 
550 	gt->engine_class[info->class][info->instance] = engine;
551 	gt->engine[id] = engine;
552 
553 	return 0;
554 }
555 
intel_clamp_heartbeat_interval_ms(struct intel_engine_cs * engine,u64 value)556 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
557 {
558 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
559 
560 	return value;
561 }
562 
intel_clamp_max_busywait_duration_ns(struct intel_engine_cs * engine,u64 value)563 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
564 {
565 	value = min(value, jiffies_to_nsecs(2));
566 
567 	return value;
568 }
569 
intel_clamp_preempt_timeout_ms(struct intel_engine_cs * engine,u64 value)570 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
571 {
572 	/*
573 	 * NB: The GuC API only supports 32bit values. However, the limit is further
574 	 * reduced due to internal calculations which would otherwise overflow.
575 	 */
576 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
577 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
578 
579 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
580 
581 	return value;
582 }
583 
intel_clamp_stop_timeout_ms(struct intel_engine_cs * engine,u64 value)584 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
585 {
586 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
587 
588 	return value;
589 }
590 
intel_clamp_timeslice_duration_ms(struct intel_engine_cs * engine,u64 value)591 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
592 {
593 	/*
594 	 * NB: The GuC API only supports 32bit values. However, the limit is further
595 	 * reduced due to internal calculations which would otherwise overflow.
596 	 */
597 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
598 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
599 
600 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
601 
602 	return value;
603 }
604 
__setup_engine_capabilities(struct intel_engine_cs * engine)605 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
606 {
607 	struct drm_i915_private *i915 = engine->i915;
608 
609 	if (engine->class == VIDEO_DECODE_CLASS) {
610 		/*
611 		 * HEVC support is present on first engine instance
612 		 * before Gen11 and on all instances afterwards.
613 		 */
614 		if (GRAPHICS_VER(i915) >= 11 ||
615 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
616 			engine->uabi_capabilities |=
617 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
618 
619 		/*
620 		 * SFC block is present only on even logical engine
621 		 * instances.
622 		 */
623 		if ((GRAPHICS_VER(i915) >= 11 &&
624 		     (engine->gt->info.vdbox_sfc_access &
625 		      BIT(engine->instance))) ||
626 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
627 			engine->uabi_capabilities |=
628 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
629 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
630 		if (GRAPHICS_VER(i915) >= 9 &&
631 		    engine->gt->info.sfc_mask & BIT(engine->instance))
632 			engine->uabi_capabilities |=
633 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
634 	}
635 }
636 
intel_setup_engine_capabilities(struct intel_gt * gt)637 static void intel_setup_engine_capabilities(struct intel_gt *gt)
638 {
639 	struct intel_engine_cs *engine;
640 	enum intel_engine_id id;
641 
642 	for_each_engine(engine, gt, id)
643 		__setup_engine_capabilities(engine);
644 }
645 
646 /**
647  * intel_engines_release() - free the resources allocated for Command Streamers
648  * @gt: pointer to struct intel_gt
649  */
intel_engines_release(struct intel_gt * gt)650 void intel_engines_release(struct intel_gt *gt)
651 {
652 	struct intel_engine_cs *engine;
653 	enum intel_engine_id id;
654 
655 	/*
656 	 * Before we release the resources held by engine, we must be certain
657 	 * that the HW is no longer accessing them -- having the GPU scribble
658 	 * to or read from a page being used for something else causes no end
659 	 * of fun.
660 	 *
661 	 * The GPU should be reset by this point, but assume the worst just
662 	 * in case we aborted before completely initialising the engines.
663 	 */
664 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
665 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
666 		__intel_gt_reset(gt, ALL_ENGINES);
667 
668 	/* Decouple the backend; but keep the layout for late GPU resets */
669 	for_each_engine(engine, gt, id) {
670 		if (!engine->release)
671 			continue;
672 
673 		intel_wakeref_wait_for_idle(&engine->wakeref);
674 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
675 
676 		engine->release(engine);
677 		engine->release = NULL;
678 
679 		memset(&engine->reset, 0, sizeof(engine->reset));
680 	}
681 }
682 
intel_engine_free_request_pool(struct intel_engine_cs * engine)683 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
684 {
685 	if (!engine->request_pool)
686 		return;
687 
688 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
689 }
690 
intel_engines_free(struct intel_gt * gt)691 void intel_engines_free(struct intel_gt *gt)
692 {
693 	struct intel_engine_cs *engine;
694 	enum intel_engine_id id;
695 
696 	/* Free the requests! dma-resv keeps fences around for an eternity */
697 	rcu_barrier();
698 
699 	for_each_engine(engine, gt, id) {
700 		intel_engine_free_request_pool(engine);
701 		kfree(engine);
702 		gt->engine[id] = NULL;
703 	}
704 }
705 
706 static
gen11_vdbox_has_sfc(struct intel_gt * gt,unsigned int physical_vdbox,unsigned int logical_vdbox,u16 vdbox_mask)707 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
708 			 unsigned int physical_vdbox,
709 			 unsigned int logical_vdbox, u16 vdbox_mask)
710 {
711 	struct drm_i915_private *i915 = gt->i915;
712 
713 	/*
714 	 * In Gen11, only even numbered logical VDBOXes are hooked
715 	 * up to an SFC (Scaler & Format Converter) unit.
716 	 * In Gen12, Even numbered physical instance always are connected
717 	 * to an SFC. Odd numbered physical instances have SFC only if
718 	 * previous even instance is fused off.
719 	 *
720 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
721 	 * in the fuse register that tells us whether a specific SFC is present.
722 	 */
723 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
724 		return false;
725 	else if (MEDIA_VER(i915) >= 12)
726 		return (physical_vdbox % 2 == 0) ||
727 			!(BIT(physical_vdbox - 1) & vdbox_mask);
728 	else if (MEDIA_VER(i915) == 11)
729 		return logical_vdbox % 2 == 0;
730 
731 	return false;
732 }
733 
engine_mask_apply_media_fuses(struct intel_gt * gt)734 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
735 {
736 	struct drm_i915_private *i915 = gt->i915;
737 	unsigned int logical_vdbox = 0;
738 	unsigned int i;
739 	u32 media_fuse, fuse1;
740 	u16 vdbox_mask;
741 	u16 vebox_mask;
742 
743 	if (MEDIA_VER(gt->i915) < 11)
744 		return;
745 
746 	/*
747 	 * On newer platforms the fusing register is called 'enable' and has
748 	 * enable semantics, while on older platforms it is called 'disable'
749 	 * and bits have disable semantices.
750 	 */
751 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
752 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
753 		media_fuse = ~media_fuse;
754 
755 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
756 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
757 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
758 
759 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
760 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
761 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
762 	} else {
763 		gt->info.sfc_mask = ~0;
764 	}
765 
766 	for (i = 0; i < I915_MAX_VCS; i++) {
767 		if (!HAS_ENGINE(gt, _VCS(i))) {
768 			vdbox_mask &= ~BIT(i);
769 			continue;
770 		}
771 
772 		if (!(BIT(i) & vdbox_mask)) {
773 			gt->info.engine_mask &= ~BIT(_VCS(i));
774 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
775 			continue;
776 		}
777 
778 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
779 			gt->info.vdbox_sfc_access |= BIT(i);
780 		logical_vdbox++;
781 	}
782 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
783 		vdbox_mask, VDBOX_MASK(gt));
784 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
785 
786 	for (i = 0; i < I915_MAX_VECS; i++) {
787 		if (!HAS_ENGINE(gt, _VECS(i))) {
788 			vebox_mask &= ~BIT(i);
789 			continue;
790 		}
791 
792 		if (!(BIT(i) & vebox_mask)) {
793 			gt->info.engine_mask &= ~BIT(_VECS(i));
794 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
795 		}
796 	}
797 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
798 		vebox_mask, VEBOX_MASK(gt));
799 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
800 }
801 
engine_mask_apply_compute_fuses(struct intel_gt * gt)802 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
803 {
804 	struct drm_i915_private *i915 = gt->i915;
805 	struct intel_gt_info *info = &gt->info;
806 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
807 	unsigned long ccs_mask;
808 	unsigned int i;
809 
810 	if (GRAPHICS_VER(i915) < 11)
811 		return;
812 
813 	if (hweight32(CCS_MASK(gt)) <= 1)
814 		return;
815 
816 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
817 						     ss_per_ccs);
818 	/*
819 	 * If all DSS in a quadrant are fused off, the corresponding CCS
820 	 * engine is not available for use.
821 	 */
822 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
823 		info->engine_mask &= ~BIT(_CCS(i));
824 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
825 	}
826 }
827 
engine_mask_apply_copy_fuses(struct intel_gt * gt)828 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
829 {
830 	struct drm_i915_private *i915 = gt->i915;
831 	struct intel_gt_info *info = &gt->info;
832 	unsigned long meml3_mask;
833 	unsigned long quad;
834 
835 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
836 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
837 		return;
838 
839 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
840 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
841 
842 	/*
843 	 * Link Copy engines may be fused off according to meml3_mask. Each
844 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
845 	 */
846 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
847 		unsigned int instance = quad * 2 + 1;
848 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
849 						   _BCS(instance));
850 
851 		if (mask & info->engine_mask) {
852 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
853 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
854 
855 			info->engine_mask &= ~mask;
856 		}
857 	}
858 }
859 
860 /*
861  * Determine which engines are fused off in our particular hardware.
862  * Note that we have a catch-22 situation where we need to be able to access
863  * the blitter forcewake domain to read the engine fuses, but at the same time
864  * we need to know which engines are available on the system to know which
865  * forcewake domains are present. We solve this by intializing the forcewake
866  * domains based on the full engine mask in the platform capabilities before
867  * calling this function and pruning the domains for fused-off engines
868  * afterwards.
869  */
init_engine_mask(struct intel_gt * gt)870 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
871 {
872 	struct intel_gt_info *info = &gt->info;
873 
874 	GEM_BUG_ON(!info->engine_mask);
875 
876 	engine_mask_apply_media_fuses(gt);
877 	engine_mask_apply_compute_fuses(gt);
878 	engine_mask_apply_copy_fuses(gt);
879 
880 	return info->engine_mask;
881 }
882 
populate_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class,const u8 * map,u8 num_instances)883 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
884 				 u8 class, const u8 *map, u8 num_instances)
885 {
886 	int i, j;
887 	u8 current_logical_id = 0;
888 
889 	for (j = 0; j < num_instances; ++j) {
890 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
891 			if (!HAS_ENGINE(gt, i) ||
892 			    intel_engines[i].class != class)
893 				continue;
894 
895 			if (intel_engines[i].instance == map[j]) {
896 				logical_ids[intel_engines[i].instance] =
897 					current_logical_id++;
898 				break;
899 			}
900 		}
901 	}
902 }
903 
setup_logical_ids(struct intel_gt * gt,u8 * logical_ids,u8 class)904 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
905 {
906 	/*
907 	 * Logical to physical mapping is needed for proper support
908 	 * to split-frame feature.
909 	 */
910 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
911 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
912 
913 		populate_logical_ids(gt, logical_ids, class,
914 				     map, ARRAY_SIZE(map));
915 	} else {
916 		int i;
917 		u8 map[MAX_ENGINE_INSTANCE + 1];
918 
919 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
920 			map[i] = i;
921 		populate_logical_ids(gt, logical_ids, class,
922 				     map, ARRAY_SIZE(map));
923 	}
924 }
925 
926 /**
927  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
928  * @gt: pointer to struct intel_gt
929  *
930  * Return: non-zero if the initialization failed.
931  */
intel_engines_init_mmio(struct intel_gt * gt)932 int intel_engines_init_mmio(struct intel_gt *gt)
933 {
934 	struct drm_i915_private *i915 = gt->i915;
935 	const unsigned int engine_mask = init_engine_mask(gt);
936 	unsigned int mask = 0;
937 	unsigned int i, class;
938 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
939 	int err;
940 
941 	drm_WARN_ON(&i915->drm, engine_mask == 0);
942 	drm_WARN_ON(&i915->drm, engine_mask &
943 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
944 
945 	if (i915_inject_probe_failure(i915))
946 		return -ENODEV;
947 
948 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
949 		setup_logical_ids(gt, logical_ids, class);
950 
951 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
952 			u8 instance = intel_engines[i].instance;
953 
954 			if (intel_engines[i].class != class ||
955 			    !HAS_ENGINE(gt, i))
956 				continue;
957 
958 			err = intel_engine_setup(gt, i,
959 						 logical_ids[instance]);
960 			if (err)
961 				goto cleanup;
962 
963 			mask |= BIT(i);
964 		}
965 	}
966 
967 	/*
968 	 * Catch failures to update intel_engines table when the new engines
969 	 * are added to the driver by a warning and disabling the forgotten
970 	 * engines.
971 	 */
972 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
973 		gt->info.engine_mask = mask;
974 
975 	gt->info.num_engines = hweight32(mask);
976 
977 	intel_gt_check_and_clear_faults(gt);
978 
979 	intel_setup_engine_capabilities(gt);
980 
981 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
982 
983 	return 0;
984 
985 cleanup:
986 	intel_engines_free(gt);
987 	return err;
988 }
989 
intel_engine_init_execlists(struct intel_engine_cs * engine)990 void intel_engine_init_execlists(struct intel_engine_cs *engine)
991 {
992 	struct intel_engine_execlists * const execlists = &engine->execlists;
993 
994 	execlists->port_mask = 1;
995 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
996 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
997 
998 	memset(execlists->pending, 0, sizeof(execlists->pending));
999 	execlists->active =
1000 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1001 }
1002 
cleanup_status_page(struct intel_engine_cs * engine)1003 static void cleanup_status_page(struct intel_engine_cs *engine)
1004 {
1005 	struct i915_vma *vma;
1006 
1007 	/* Prevent writes into HWSP after returning the page to the system */
1008 	intel_engine_set_hwsp_writemask(engine, ~0u);
1009 
1010 	vma = fetch_and_zero(&engine->status_page.vma);
1011 	if (!vma)
1012 		return;
1013 
1014 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1015 		i915_vma_unpin(vma);
1016 
1017 	i915_gem_object_unpin_map(vma->obj);
1018 	i915_gem_object_put(vma->obj);
1019 }
1020 
pin_ggtt_status_page(struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,struct i915_vma * vma)1021 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1022 				struct i915_gem_ww_ctx *ww,
1023 				struct i915_vma *vma)
1024 {
1025 	unsigned int flags;
1026 
1027 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1028 		/*
1029 		 * On g33, we cannot place HWS above 256MiB, so
1030 		 * restrict its pinning to the low mappable arena.
1031 		 * Though this restriction is not documented for
1032 		 * gen4, gen5, or byt, they also behave similarly
1033 		 * and hang if the HWS is placed at the top of the
1034 		 * GTT. To generalise, it appears that all !llc
1035 		 * platforms have issues with us placing the HWS
1036 		 * above the mappable region (even though we never
1037 		 * actually map it).
1038 		 */
1039 		flags = PIN_MAPPABLE;
1040 	else
1041 		flags = PIN_HIGH;
1042 
1043 	return i915_ggtt_pin(vma, ww, 0, flags);
1044 }
1045 
init_status_page(struct intel_engine_cs * engine)1046 static int init_status_page(struct intel_engine_cs *engine)
1047 {
1048 	struct drm_i915_gem_object *obj;
1049 	struct i915_gem_ww_ctx ww;
1050 	struct i915_vma *vma;
1051 	void *vaddr;
1052 	int ret;
1053 
1054 	INIT_LIST_HEAD(&engine->status_page.timelines);
1055 
1056 	/*
1057 	 * Though the HWS register does support 36bit addresses, historically
1058 	 * we have had hangs and corruption reported due to wild writes if
1059 	 * the HWS is placed above 4G. We only allow objects to be allocated
1060 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1061 	 * access to more than 4G.
1062 	 */
1063 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1064 	if (IS_ERR(obj)) {
1065 		drm_err(&engine->i915->drm,
1066 			"Failed to allocate status page\n");
1067 		return PTR_ERR(obj);
1068 	}
1069 
1070 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1071 
1072 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1073 	if (IS_ERR(vma)) {
1074 		ret = PTR_ERR(vma);
1075 		goto err_put;
1076 	}
1077 
1078 	i915_gem_ww_ctx_init(&ww, true);
1079 retry:
1080 	ret = i915_gem_object_lock(obj, &ww);
1081 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1082 		ret = pin_ggtt_status_page(engine, &ww, vma);
1083 	if (ret)
1084 		goto err;
1085 
1086 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1087 	if (IS_ERR(vaddr)) {
1088 		ret = PTR_ERR(vaddr);
1089 		goto err_unpin;
1090 	}
1091 
1092 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1093 	engine->status_page.vma = vma;
1094 
1095 err_unpin:
1096 	if (ret)
1097 		i915_vma_unpin(vma);
1098 err:
1099 	if (ret == -EDEADLK) {
1100 		ret = i915_gem_ww_ctx_backoff(&ww);
1101 		if (!ret)
1102 			goto retry;
1103 	}
1104 	i915_gem_ww_ctx_fini(&ww);
1105 err_put:
1106 	if (ret)
1107 		i915_gem_object_put(obj);
1108 	return ret;
1109 }
1110 
engine_setup_common(struct intel_engine_cs * engine)1111 static int engine_setup_common(struct intel_engine_cs *engine)
1112 {
1113 	int err;
1114 
1115 	init_llist_head(&engine->barrier_tasks);
1116 
1117 	err = init_status_page(engine);
1118 	if (err)
1119 		return err;
1120 
1121 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1122 	if (!engine->breadcrumbs) {
1123 		err = -ENOMEM;
1124 		goto err_status;
1125 	}
1126 
1127 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1128 	if (!engine->sched_engine) {
1129 		err = -ENOMEM;
1130 		goto err_sched_engine;
1131 	}
1132 	engine->sched_engine->private_data = engine;
1133 
1134 	err = intel_engine_init_cmd_parser(engine);
1135 	if (err)
1136 		goto err_cmd_parser;
1137 
1138 	intel_engine_init_execlists(engine);
1139 	intel_engine_init__pm(engine);
1140 	intel_engine_init_retire(engine);
1141 
1142 	/* Use the whole device by default */
1143 	engine->sseu =
1144 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1145 
1146 	intel_engine_init_workarounds(engine);
1147 	intel_engine_init_whitelist(engine);
1148 	intel_engine_init_ctx_wa(engine);
1149 
1150 	if (GRAPHICS_VER(engine->i915) >= 12)
1151 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1152 
1153 	return 0;
1154 
1155 err_cmd_parser:
1156 	i915_sched_engine_put(engine->sched_engine);
1157 err_sched_engine:
1158 	intel_breadcrumbs_put(engine->breadcrumbs);
1159 err_status:
1160 	cleanup_status_page(engine);
1161 	return err;
1162 }
1163 
1164 struct measure_breadcrumb {
1165 	struct i915_request rq;
1166 	struct intel_ring ring;
1167 	u32 cs[2048];
1168 };
1169 
measure_breadcrumb_dw(struct intel_context * ce)1170 static int measure_breadcrumb_dw(struct intel_context *ce)
1171 {
1172 	struct intel_engine_cs *engine = ce->engine;
1173 	struct measure_breadcrumb *frame;
1174 	int dw;
1175 
1176 	GEM_BUG_ON(!engine->gt->scratch);
1177 
1178 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1179 	if (!frame)
1180 		return -ENOMEM;
1181 
1182 	frame->rq.engine = engine;
1183 	frame->rq.context = ce;
1184 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1185 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1186 
1187 	frame->ring.vaddr = frame->cs;
1188 	frame->ring.size = sizeof(frame->cs);
1189 	frame->ring.wrap =
1190 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1191 	frame->ring.effective_size = frame->ring.size;
1192 	intel_ring_update_space(&frame->ring);
1193 	frame->rq.ring = &frame->ring;
1194 
1195 	mutex_lock(&ce->timeline->mutex);
1196 	spin_lock_irq(&engine->sched_engine->lock);
1197 
1198 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1199 
1200 	spin_unlock_irq(&engine->sched_engine->lock);
1201 	mutex_unlock(&ce->timeline->mutex);
1202 
1203 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1204 
1205 	kfree(frame);
1206 	return dw;
1207 }
1208 
1209 struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs * engine,struct i915_address_space * vm,unsigned int ring_size,unsigned int hwsp,struct lock_class_key * key,const char * name)1210 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1211 				   struct i915_address_space *vm,
1212 				   unsigned int ring_size,
1213 				   unsigned int hwsp,
1214 				   struct lock_class_key *key,
1215 				   const char *name)
1216 {
1217 	struct intel_context *ce;
1218 	int err;
1219 
1220 	ce = intel_context_create(engine);
1221 	if (IS_ERR(ce))
1222 		return ce;
1223 
1224 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1225 	ce->timeline = page_pack_bits(NULL, hwsp);
1226 	ce->ring = NULL;
1227 	ce->ring_size = ring_size;
1228 
1229 	i915_vm_put(ce->vm);
1230 	ce->vm = i915_vm_get(vm);
1231 
1232 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1233 	if (err) {
1234 		intel_context_put(ce);
1235 		return ERR_PTR(err);
1236 	}
1237 
1238 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1239 
1240 	/*
1241 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1242 	 * so that we can use them from within the normal user timelines
1243 	 * should we need to inject GPU operations during their request
1244 	 * construction.
1245 	 */
1246 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1247 
1248 	return ce;
1249 }
1250 
intel_engine_destroy_pinned_context(struct intel_context * ce)1251 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1252 {
1253 	struct intel_engine_cs *engine = ce->engine;
1254 	struct i915_vma *hwsp = engine->status_page.vma;
1255 
1256 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1257 
1258 	mutex_lock(&hwsp->vm->mutex);
1259 	list_del(&ce->timeline->engine_link);
1260 	mutex_unlock(&hwsp->vm->mutex);
1261 
1262 	list_del(&ce->pinned_contexts_link);
1263 	intel_context_unpin(ce);
1264 	intel_context_put(ce);
1265 }
1266 
1267 static struct intel_context *
create_kernel_context(struct intel_engine_cs * engine)1268 create_kernel_context(struct intel_engine_cs *engine)
1269 {
1270 	static struct lock_class_key kernel;
1271 
1272 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1273 						  I915_GEM_HWS_SEQNO_ADDR,
1274 						  &kernel, "kernel_context");
1275 }
1276 
1277 /**
1278  * intel_engines_init_common - initialize cengine state which might require hw access
1279  * @engine: Engine to initialize.
1280  *
1281  * Initializes @engine@ structure members shared between legacy and execlists
1282  * submission modes which do require hardware access.
1283  *
1284  * Typcally done at later stages of submission mode specific engine setup.
1285  *
1286  * Returns zero on success or an error code on failure.
1287  */
engine_init_common(struct intel_engine_cs * engine)1288 static int engine_init_common(struct intel_engine_cs *engine)
1289 {
1290 	struct intel_context *ce;
1291 	int ret;
1292 
1293 	engine->set_default_submission(engine);
1294 
1295 	/*
1296 	 * We may need to do things with the shrinker which
1297 	 * require us to immediately switch back to the default
1298 	 * context. This can cause a problem as pinning the
1299 	 * default context also requires GTT space which may not
1300 	 * be available. To avoid this we always pin the default
1301 	 * context.
1302 	 */
1303 	ce = create_kernel_context(engine);
1304 	if (IS_ERR(ce))
1305 		return PTR_ERR(ce);
1306 
1307 	ret = measure_breadcrumb_dw(ce);
1308 	if (ret < 0)
1309 		goto err_context;
1310 
1311 	engine->emit_fini_breadcrumb_dw = ret;
1312 	engine->kernel_context = ce;
1313 
1314 	return 0;
1315 
1316 err_context:
1317 	intel_engine_destroy_pinned_context(ce);
1318 	return ret;
1319 }
1320 
intel_engines_init(struct intel_gt * gt)1321 int intel_engines_init(struct intel_gt *gt)
1322 {
1323 	int (*setup)(struct intel_engine_cs *engine);
1324 	struct intel_engine_cs *engine;
1325 	enum intel_engine_id id;
1326 	int err;
1327 
1328 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1329 		gt->submission_method = INTEL_SUBMISSION_GUC;
1330 		setup = intel_guc_submission_setup;
1331 	} else if (HAS_EXECLISTS(gt->i915)) {
1332 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1333 		setup = intel_execlists_submission_setup;
1334 	} else {
1335 		gt->submission_method = INTEL_SUBMISSION_RING;
1336 		setup = intel_ring_submission_setup;
1337 	}
1338 
1339 	for_each_engine(engine, gt, id) {
1340 		err = engine_setup_common(engine);
1341 		if (err)
1342 			return err;
1343 
1344 		err = setup(engine);
1345 		if (err) {
1346 			intel_engine_cleanup_common(engine);
1347 			return err;
1348 		}
1349 
1350 		/* The backend should now be responsible for cleanup */
1351 		GEM_BUG_ON(engine->release == NULL);
1352 
1353 		err = engine_init_common(engine);
1354 		if (err)
1355 			return err;
1356 
1357 		intel_engine_add_user(engine);
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 /**
1364  * intel_engines_cleanup_common - cleans up the engine state created by
1365  *                                the common initiailizers.
1366  * @engine: Engine to cleanup.
1367  *
1368  * This cleans up everything created by the common helpers.
1369  */
intel_engine_cleanup_common(struct intel_engine_cs * engine)1370 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1371 {
1372 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1373 
1374 	i915_sched_engine_put(engine->sched_engine);
1375 	intel_breadcrumbs_put(engine->breadcrumbs);
1376 
1377 	intel_engine_fini_retire(engine);
1378 	intel_engine_cleanup_cmd_parser(engine);
1379 
1380 	if (engine->default_state)
1381 		fput(engine->default_state);
1382 
1383 	if (engine->kernel_context)
1384 		intel_engine_destroy_pinned_context(engine->kernel_context);
1385 
1386 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1387 	cleanup_status_page(engine);
1388 
1389 	intel_wa_list_free(&engine->ctx_wa_list);
1390 	intel_wa_list_free(&engine->wa_list);
1391 	intel_wa_list_free(&engine->whitelist);
1392 }
1393 
1394 /**
1395  * intel_engine_resume - re-initializes the HW state of the engine
1396  * @engine: Engine to resume.
1397  *
1398  * Returns zero on success or an error code on failure.
1399  */
intel_engine_resume(struct intel_engine_cs * engine)1400 int intel_engine_resume(struct intel_engine_cs *engine)
1401 {
1402 	intel_engine_apply_workarounds(engine);
1403 	intel_engine_apply_whitelist(engine);
1404 
1405 	return engine->resume(engine);
1406 }
1407 
intel_engine_get_active_head(const struct intel_engine_cs * engine)1408 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1409 {
1410 	struct drm_i915_private *i915 = engine->i915;
1411 
1412 	u64 acthd;
1413 
1414 	if (GRAPHICS_VER(i915) >= 8)
1415 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1416 	else if (GRAPHICS_VER(i915) >= 4)
1417 		acthd = ENGINE_READ(engine, RING_ACTHD);
1418 	else
1419 		acthd = ENGINE_READ(engine, ACTHD);
1420 
1421 	return acthd;
1422 }
1423 
intel_engine_get_last_batch_head(const struct intel_engine_cs * engine)1424 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1425 {
1426 	u64 bbaddr;
1427 
1428 	if (GRAPHICS_VER(engine->i915) >= 8)
1429 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1430 	else
1431 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1432 
1433 	return bbaddr;
1434 }
1435 
stop_timeout(const struct intel_engine_cs * engine)1436 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1437 {
1438 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1439 		return 0;
1440 
1441 	/*
1442 	 * If we are doing a normal GPU reset, we can take our time and allow
1443 	 * the engine to quiesce. We've stopped submission to the engine, and
1444 	 * if we wait long enough an innocent context should complete and
1445 	 * leave the engine idle. So they should not be caught unaware by
1446 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1447 	 */
1448 	return READ_ONCE(engine->props.stop_timeout_ms);
1449 }
1450 
__intel_engine_stop_cs(struct intel_engine_cs * engine,int fast_timeout_us,int slow_timeout_ms)1451 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1452 				  int fast_timeout_us,
1453 				  int slow_timeout_ms)
1454 {
1455 	struct intel_uncore *uncore = engine->uncore;
1456 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1457 	int err;
1458 
1459 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1460 
1461 	/*
1462 	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1463 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1464 	 */
1465 	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1466 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1467 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1468 
1469 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1470 					   MODE_IDLE, MODE_IDLE,
1471 					   fast_timeout_us,
1472 					   slow_timeout_ms,
1473 					   NULL);
1474 
1475 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1476 	intel_uncore_posting_read_fw(uncore, mode);
1477 	return err;
1478 }
1479 
intel_engine_stop_cs(struct intel_engine_cs * engine)1480 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1481 {
1482 	int err = 0;
1483 
1484 	if (GRAPHICS_VER(engine->i915) < 3)
1485 		return -ENODEV;
1486 
1487 	ENGINE_TRACE(engine, "\n");
1488 	/*
1489 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1490 	 * especially with gem_eio tests.
1491 	 *
1492 	 * Occasionally trying to stop the cs times out, but does not adversely
1493 	 * affect functionality. The timeout is set as a config parameter that
1494 	 * defaults to 100ms. In most cases the follow up operation is to wait
1495 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1496 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1497 	 * caused, the caller must check and handle the return from this
1498 	 * function.
1499 	 */
1500 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1501 		ENGINE_TRACE(engine,
1502 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1503 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1504 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1505 
1506 		/*
1507 		 * Sometimes we observe that the idle flag is not
1508 		 * set even though the ring is empty. So double
1509 		 * check before giving up.
1510 		 */
1511 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1512 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1513 			err = -ETIMEDOUT;
1514 	}
1515 
1516 	return err;
1517 }
1518 
intel_engine_cancel_stop_cs(struct intel_engine_cs * engine)1519 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1520 {
1521 	ENGINE_TRACE(engine, "\n");
1522 
1523 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1524 }
1525 
__cs_pending_mi_force_wakes(struct intel_engine_cs * engine)1526 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1527 {
1528 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1529 		[RCS0] = MSG_IDLE_CS,
1530 		[BCS0] = MSG_IDLE_BCS,
1531 		[VCS0] = MSG_IDLE_VCS0,
1532 		[VCS1] = MSG_IDLE_VCS1,
1533 		[VCS2] = MSG_IDLE_VCS2,
1534 		[VCS3] = MSG_IDLE_VCS3,
1535 		[VCS4] = MSG_IDLE_VCS4,
1536 		[VCS5] = MSG_IDLE_VCS5,
1537 		[VCS6] = MSG_IDLE_VCS6,
1538 		[VCS7] = MSG_IDLE_VCS7,
1539 		[VECS0] = MSG_IDLE_VECS0,
1540 		[VECS1] = MSG_IDLE_VECS1,
1541 		[VECS2] = MSG_IDLE_VECS2,
1542 		[VECS3] = MSG_IDLE_VECS3,
1543 		[CCS0] = MSG_IDLE_CS,
1544 		[CCS1] = MSG_IDLE_CS,
1545 		[CCS2] = MSG_IDLE_CS,
1546 		[CCS3] = MSG_IDLE_CS,
1547 	};
1548 	u32 val;
1549 
1550 	if (!_reg[engine->id].reg) {
1551 		drm_err(&engine->i915->drm,
1552 			"MSG IDLE undefined for engine id %u\n", engine->id);
1553 		return 0;
1554 	}
1555 
1556 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1557 
1558 	/* bits[29:25] & bits[13:9] >> shift */
1559 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1560 }
1561 
__gpm_wait_for_fw_complete(struct intel_gt * gt,u32 fw_mask)1562 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1563 {
1564 	int ret;
1565 
1566 	/* Ensure GPM receives fw up/down after CS is stopped */
1567 	udelay(1);
1568 
1569 	/* Wait for forcewake request to complete in GPM */
1570 	ret =  __intel_wait_for_register_fw(gt->uncore,
1571 					    GEN9_PWRGT_DOMAIN_STATUS,
1572 					    fw_mask, fw_mask, 5000, 0, NULL);
1573 
1574 	/* Ensure CS receives fw ack from GPM */
1575 	udelay(1);
1576 
1577 	if (ret)
1578 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1579 }
1580 
1581 /*
1582  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1583  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1584  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1585  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1586  * are concerned only with the gt reset here, we use a logical OR of pending
1587  * forcewakeups from all reset domains and then wait for them to complete by
1588  * querying PWRGT_DOMAIN_STATUS.
1589  */
intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs * engine)1590 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1591 {
1592 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1593 
1594 	if (fw_pending)
1595 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1596 }
1597 
1598 /* NB: please notice the memset */
intel_engine_get_instdone(const struct intel_engine_cs * engine,struct intel_instdone * instdone)1599 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1600 			       struct intel_instdone *instdone)
1601 {
1602 	struct drm_i915_private *i915 = engine->i915;
1603 	struct intel_uncore *uncore = engine->uncore;
1604 	u32 mmio_base = engine->mmio_base;
1605 	int slice;
1606 	int subslice;
1607 	int iter;
1608 
1609 	memset(instdone, 0, sizeof(*instdone));
1610 
1611 	if (GRAPHICS_VER(i915) >= 8) {
1612 		instdone->instdone =
1613 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1614 
1615 		if (engine->id != RCS0)
1616 			return;
1617 
1618 		instdone->slice_common =
1619 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1620 		if (GRAPHICS_VER(i915) >= 12) {
1621 			instdone->slice_common_extra[0] =
1622 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1623 			instdone->slice_common_extra[1] =
1624 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1625 		}
1626 
1627 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1628 			instdone->sampler[slice][subslice] =
1629 				intel_gt_mcr_read(engine->gt,
1630 						  GEN7_SAMPLER_INSTDONE,
1631 						  slice, subslice);
1632 			instdone->row[slice][subslice] =
1633 				intel_gt_mcr_read(engine->gt,
1634 						  GEN7_ROW_INSTDONE,
1635 						  slice, subslice);
1636 		}
1637 
1638 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1639 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1640 				instdone->geom_svg[slice][subslice] =
1641 					intel_gt_mcr_read(engine->gt,
1642 							  XEHPG_INSTDONE_GEOM_SVG,
1643 							  slice, subslice);
1644 		}
1645 	} else if (GRAPHICS_VER(i915) >= 7) {
1646 		instdone->instdone =
1647 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1648 
1649 		if (engine->id != RCS0)
1650 			return;
1651 
1652 		instdone->slice_common =
1653 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1654 		instdone->sampler[0][0] =
1655 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1656 		instdone->row[0][0] =
1657 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1658 	} else if (GRAPHICS_VER(i915) >= 4) {
1659 		instdone->instdone =
1660 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1661 		if (engine->id == RCS0)
1662 			/* HACK: Using the wrong struct member */
1663 			instdone->slice_common =
1664 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1665 	} else {
1666 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1667 	}
1668 }
1669 
ring_is_idle(struct intel_engine_cs * engine)1670 static bool ring_is_idle(struct intel_engine_cs *engine)
1671 {
1672 	bool idle = true;
1673 
1674 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1675 		return true;
1676 
1677 	if (!intel_engine_pm_get_if_awake(engine))
1678 		return true;
1679 
1680 	/* First check that no commands are left in the ring */
1681 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1682 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1683 		idle = false;
1684 
1685 	/* No bit for gen2, so assume the CS parser is idle */
1686 	if (GRAPHICS_VER(engine->i915) > 2 &&
1687 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1688 		idle = false;
1689 
1690 	intel_engine_pm_put(engine);
1691 
1692 	return idle;
1693 }
1694 
__intel_engine_flush_submission(struct intel_engine_cs * engine,bool sync)1695 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1696 {
1697 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1698 
1699 	if (!t->callback)
1700 		return;
1701 
1702 	local_bh_disable();
1703 	if (tasklet_trylock(t)) {
1704 		/* Must wait for any GPU reset in progress. */
1705 		if (__tasklet_is_enabled(t))
1706 			t->callback(t);
1707 		tasklet_unlock(t);
1708 	}
1709 	local_bh_enable();
1710 
1711 	/* Synchronise and wait for the tasklet on another CPU */
1712 	if (sync)
1713 		tasklet_unlock_wait(t);
1714 }
1715 
1716 /**
1717  * intel_engine_is_idle() - Report if the engine has finished process all work
1718  * @engine: the intel_engine_cs
1719  *
1720  * Return true if there are no requests pending, nothing left to be submitted
1721  * to hardware, and that the engine is idle.
1722  */
intel_engine_is_idle(struct intel_engine_cs * engine)1723 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1724 {
1725 	/* More white lies, if wedged, hw state is inconsistent */
1726 	if (intel_gt_is_wedged(engine->gt))
1727 		return true;
1728 
1729 	if (!intel_engine_pm_is_awake(engine))
1730 		return true;
1731 
1732 	/* Waiting to drain ELSP? */
1733 	intel_synchronize_hardirq(engine->i915);
1734 	intel_engine_flush_submission(engine);
1735 
1736 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1737 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1738 		return false;
1739 
1740 	/* Ring stopped? */
1741 	return ring_is_idle(engine);
1742 }
1743 
intel_engines_are_idle(struct intel_gt * gt)1744 bool intel_engines_are_idle(struct intel_gt *gt)
1745 {
1746 	struct intel_engine_cs *engine;
1747 	enum intel_engine_id id;
1748 
1749 	/*
1750 	 * If the driver is wedged, HW state may be very inconsistent and
1751 	 * report that it is still busy, even though we have stopped using it.
1752 	 */
1753 	if (intel_gt_is_wedged(gt))
1754 		return true;
1755 
1756 	/* Already parked (and passed an idleness test); must still be idle */
1757 	if (!READ_ONCE(gt->awake))
1758 		return true;
1759 
1760 	for_each_engine(engine, gt, id) {
1761 		if (!intel_engine_is_idle(engine))
1762 			return false;
1763 	}
1764 
1765 	return true;
1766 }
1767 
intel_engine_irq_enable(struct intel_engine_cs * engine)1768 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1769 {
1770 	if (!engine->irq_enable)
1771 		return false;
1772 
1773 	/* Caller disables interrupts */
1774 	spin_lock(engine->gt->irq_lock);
1775 	engine->irq_enable(engine);
1776 	spin_unlock(engine->gt->irq_lock);
1777 
1778 	return true;
1779 }
1780 
intel_engine_irq_disable(struct intel_engine_cs * engine)1781 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1782 {
1783 	if (!engine->irq_disable)
1784 		return;
1785 
1786 	/* Caller disables interrupts */
1787 	spin_lock(engine->gt->irq_lock);
1788 	engine->irq_disable(engine);
1789 	spin_unlock(engine->gt->irq_lock);
1790 }
1791 
intel_engines_reset_default_submission(struct intel_gt * gt)1792 void intel_engines_reset_default_submission(struct intel_gt *gt)
1793 {
1794 	struct intel_engine_cs *engine;
1795 	enum intel_engine_id id;
1796 
1797 	for_each_engine(engine, gt, id) {
1798 		if (engine->sanitize)
1799 			engine->sanitize(engine);
1800 
1801 		engine->set_default_submission(engine);
1802 	}
1803 }
1804 
intel_engine_can_store_dword(struct intel_engine_cs * engine)1805 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1806 {
1807 	switch (GRAPHICS_VER(engine->i915)) {
1808 	case 2:
1809 		return false; /* uses physical not virtual addresses */
1810 	case 3:
1811 		/* maybe only uses physical not virtual addresses */
1812 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1813 	case 4:
1814 		return !IS_I965G(engine->i915); /* who knows! */
1815 	case 6:
1816 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1817 	default:
1818 		return true;
1819 	}
1820 }
1821 
get_timeline(struct i915_request * rq)1822 static struct intel_timeline *get_timeline(struct i915_request *rq)
1823 {
1824 	struct intel_timeline *tl;
1825 
1826 	/*
1827 	 * Even though we are holding the engine->sched_engine->lock here, there
1828 	 * is no control over the submission queue per-se and we are
1829 	 * inspecting the active state at a random point in time, with an
1830 	 * unknown queue. Play safe and make sure the timeline remains valid.
1831 	 * (Only being used for pretty printing, one extra kref shouldn't
1832 	 * cause a camel stampede!)
1833 	 */
1834 	rcu_read_lock();
1835 	tl = rcu_dereference(rq->timeline);
1836 	if (!kref_get_unless_zero(&tl->kref))
1837 		tl = NULL;
1838 	rcu_read_unlock();
1839 
1840 	return tl;
1841 }
1842 
print_ring(char * buf,int sz,struct i915_request * rq)1843 static int print_ring(char *buf, int sz, struct i915_request *rq)
1844 {
1845 	int len = 0;
1846 
1847 	if (!i915_request_signaled(rq)) {
1848 		struct intel_timeline *tl = get_timeline(rq);
1849 
1850 		len = scnprintf(buf, sz,
1851 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1852 				i915_ggtt_offset(rq->ring->vma),
1853 				tl ? tl->hwsp_offset : 0,
1854 				hwsp_seqno(rq),
1855 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1856 						      1000 * 1000));
1857 
1858 		if (tl)
1859 			intel_timeline_put(tl);
1860 	}
1861 
1862 	return len;
1863 }
1864 
hexdump(struct drm_printer * m,const void * buf,size_t len)1865 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1866 {
1867 	const size_t rowsize = 8 * sizeof(u32);
1868 	const void *prev = NULL;
1869 	bool skip = false;
1870 	size_t pos;
1871 
1872 	for (pos = 0; pos < len; pos += rowsize) {
1873 		char line[128];
1874 
1875 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1876 			if (!skip) {
1877 				drm_printf(m, "*\n");
1878 				skip = true;
1879 			}
1880 			continue;
1881 		}
1882 
1883 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1884 						rowsize, sizeof(u32),
1885 						line, sizeof(line),
1886 						false) >= sizeof(line));
1887 		drm_printf(m, "[%04zx] %s\n", pos, line);
1888 
1889 		prev = buf + pos;
1890 		skip = false;
1891 	}
1892 }
1893 
repr_timer(const struct timer_list * t)1894 static const char *repr_timer(const struct timer_list *t)
1895 {
1896 	if (!READ_ONCE(t->expires))
1897 		return "inactive";
1898 
1899 	if (timer_pending(t))
1900 		return "active";
1901 
1902 	return "expired";
1903 }
1904 
intel_engine_print_registers(struct intel_engine_cs * engine,struct drm_printer * m)1905 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1906 					 struct drm_printer *m)
1907 {
1908 	struct drm_i915_private *dev_priv = engine->i915;
1909 	struct intel_engine_execlists * const execlists = &engine->execlists;
1910 	u64 addr;
1911 
1912 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1913 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1914 	if (HAS_EXECLISTS(dev_priv)) {
1915 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1916 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1917 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1918 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1919 	}
1920 	drm_printf(m, "\tRING_START: 0x%08x\n",
1921 		   ENGINE_READ(engine, RING_START));
1922 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1923 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1924 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1925 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1926 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1927 		   ENGINE_READ(engine, RING_CTL),
1928 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1929 	if (GRAPHICS_VER(engine->i915) > 2) {
1930 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1931 			   ENGINE_READ(engine, RING_MI_MODE),
1932 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1933 	}
1934 
1935 	if (GRAPHICS_VER(dev_priv) >= 6) {
1936 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1937 			   ENGINE_READ(engine, RING_IMR));
1938 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1939 			   ENGINE_READ(engine, RING_ESR));
1940 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1941 			   ENGINE_READ(engine, RING_EMR));
1942 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1943 			   ENGINE_READ(engine, RING_EIR));
1944 	}
1945 
1946 	addr = intel_engine_get_active_head(engine);
1947 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1948 		   upper_32_bits(addr), lower_32_bits(addr));
1949 	addr = intel_engine_get_last_batch_head(engine);
1950 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1951 		   upper_32_bits(addr), lower_32_bits(addr));
1952 	if (GRAPHICS_VER(dev_priv) >= 8)
1953 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1954 	else if (GRAPHICS_VER(dev_priv) >= 4)
1955 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1956 	else
1957 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1958 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1959 		   upper_32_bits(addr), lower_32_bits(addr));
1960 	if (GRAPHICS_VER(dev_priv) >= 4) {
1961 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1962 			   ENGINE_READ(engine, RING_IPEIR));
1963 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1964 			   ENGINE_READ(engine, RING_IPEHR));
1965 	} else {
1966 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1967 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1968 	}
1969 
1970 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1971 		struct i915_request * const *port, *rq;
1972 		const u32 *hws =
1973 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1974 		const u8 num_entries = execlists->csb_size;
1975 		unsigned int idx;
1976 		u8 read, write;
1977 
1978 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1979 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1980 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1981 			   repr_timer(&engine->execlists.preempt),
1982 			   repr_timer(&engine->execlists.timer));
1983 
1984 		read = execlists->csb_head;
1985 		write = READ_ONCE(*execlists->csb_write);
1986 
1987 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1988 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1989 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1990 			   read, write, num_entries);
1991 
1992 		if (read >= num_entries)
1993 			read = 0;
1994 		if (write >= num_entries)
1995 			write = 0;
1996 		if (read > write)
1997 			write += num_entries;
1998 		while (read < write) {
1999 			idx = ++read % num_entries;
2000 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2001 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2002 		}
2003 
2004 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2005 		rcu_read_lock();
2006 		for (port = execlists->active; (rq = *port); port++) {
2007 			char hdr[160];
2008 			int len;
2009 
2010 			len = scnprintf(hdr, sizeof(hdr),
2011 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2012 					(int)(port - execlists->active),
2013 					rq->context->lrc.ccid,
2014 					intel_context_is_closed(rq->context) ? "!" : "",
2015 					intel_context_is_banned(rq->context) ? "*" : "");
2016 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2017 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2018 			i915_request_show(m, rq, hdr, 0);
2019 		}
2020 		for (port = execlists->pending; (rq = *port); port++) {
2021 			char hdr[160];
2022 			int len;
2023 
2024 			len = scnprintf(hdr, sizeof(hdr),
2025 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2026 					(int)(port - execlists->pending),
2027 					rq->context->lrc.ccid,
2028 					intel_context_is_closed(rq->context) ? "!" : "",
2029 					intel_context_is_banned(rq->context) ? "*" : "");
2030 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2031 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2032 			i915_request_show(m, rq, hdr, 0);
2033 		}
2034 		rcu_read_unlock();
2035 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2036 	} else if (GRAPHICS_VER(dev_priv) > 6) {
2037 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2038 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2039 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2040 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2041 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2042 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2043 	}
2044 }
2045 
print_request_ring(struct drm_printer * m,struct i915_request * rq)2046 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2047 {
2048 	struct i915_vma_resource *vma_res = rq->batch_res;
2049 	void *ring;
2050 	int size;
2051 
2052 	drm_printf(m,
2053 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2054 		   rq->head, rq->postfix, rq->tail,
2055 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2056 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2057 
2058 	size = rq->tail - rq->head;
2059 	if (rq->tail < rq->head)
2060 		size += rq->ring->size;
2061 
2062 	ring = kmalloc(size, GFP_ATOMIC);
2063 	if (ring) {
2064 		const void *vaddr = rq->ring->vaddr;
2065 		unsigned int head = rq->head;
2066 		unsigned int len = 0;
2067 
2068 		if (rq->tail < head) {
2069 			len = rq->ring->size - head;
2070 			memcpy(ring, vaddr + head, len);
2071 			head = 0;
2072 		}
2073 		memcpy(ring + len, vaddr + head, size - len);
2074 
2075 		hexdump(m, ring, size);
2076 		kfree(ring);
2077 	}
2078 }
2079 
read_ul(void * p,size_t x)2080 static unsigned long read_ul(void *p, size_t x)
2081 {
2082 	return *(unsigned long *)(p + x);
2083 }
2084 
print_properties(struct intel_engine_cs * engine,struct drm_printer * m)2085 static void print_properties(struct intel_engine_cs *engine,
2086 			     struct drm_printer *m)
2087 {
2088 	static const struct pmap {
2089 		size_t offset;
2090 		const char *name;
2091 	} props[] = {
2092 #define P(x) { \
2093 	.offset = offsetof(typeof(engine->props), x), \
2094 	.name = #x \
2095 }
2096 		P(heartbeat_interval_ms),
2097 		P(max_busywait_duration_ns),
2098 		P(preempt_timeout_ms),
2099 		P(stop_timeout_ms),
2100 		P(timeslice_duration_ms),
2101 
2102 		{},
2103 #undef P
2104 	};
2105 	const struct pmap *p;
2106 
2107 	drm_printf(m, "\tProperties:\n");
2108 	for (p = props; p->name; p++)
2109 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2110 			   p->name,
2111 			   read_ul(&engine->props, p->offset),
2112 			   read_ul(&engine->defaults, p->offset));
2113 }
2114 
engine_dump_request(struct i915_request * rq,struct drm_printer * m,const char * msg)2115 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2116 {
2117 	struct intel_timeline *tl = get_timeline(rq);
2118 
2119 	i915_request_show(m, rq, msg, 0);
2120 
2121 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2122 		   i915_ggtt_offset(rq->ring->vma));
2123 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2124 		   rq->ring->head);
2125 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2126 		   rq->ring->tail);
2127 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2128 		   rq->ring->emit);
2129 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2130 		   rq->ring->space);
2131 
2132 	if (tl) {
2133 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2134 			   tl->hwsp_offset);
2135 		intel_timeline_put(tl);
2136 	}
2137 
2138 	print_request_ring(m, rq);
2139 
2140 	if (rq->context->lrc_reg_state) {
2141 		drm_printf(m, "Logical Ring Context:\n");
2142 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2143 	}
2144 }
2145 
intel_engine_dump_active_requests(struct list_head * requests,struct i915_request * hung_rq,struct drm_printer * m)2146 void intel_engine_dump_active_requests(struct list_head *requests,
2147 				       struct i915_request *hung_rq,
2148 				       struct drm_printer *m)
2149 {
2150 	struct i915_request *rq;
2151 	const char *msg;
2152 	enum i915_request_state state;
2153 
2154 	list_for_each_entry(rq, requests, sched.link) {
2155 		if (rq == hung_rq)
2156 			continue;
2157 
2158 		state = i915_test_request_state(rq);
2159 		if (state < I915_REQUEST_QUEUED)
2160 			continue;
2161 
2162 		if (state == I915_REQUEST_ACTIVE)
2163 			msg = "\t\tactive on engine";
2164 		else
2165 			msg = "\t\tactive in queue";
2166 
2167 		engine_dump_request(rq, m, msg);
2168 	}
2169 }
2170 
engine_dump_active_requests(struct intel_engine_cs * engine,struct drm_printer * m)2171 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2172 					struct drm_printer *m)
2173 {
2174 	struct intel_context *hung_ce = NULL;
2175 	struct i915_request *hung_rq = NULL;
2176 
2177 	/*
2178 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2179 	 * The GPU is still running so requests are still executing and any
2180 	 * hardware reads will be out of date by the time they are reported.
2181 	 * But the intention here is just to report an instantaneous snapshot
2182 	 * so that's fine.
2183 	 */
2184 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2185 
2186 	drm_printf(m, "\tRequests:\n");
2187 
2188 	if (hung_rq)
2189 		engine_dump_request(hung_rq, m, "\t\thung");
2190 	else if (hung_ce)
2191 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2192 
2193 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2194 		intel_guc_dump_active_requests(engine, hung_rq, m);
2195 	else
2196 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2197 
2198 	if (hung_rq)
2199 		i915_request_put(hung_rq);
2200 }
2201 
intel_engine_dump(struct intel_engine_cs * engine,struct drm_printer * m,const char * header,...)2202 void intel_engine_dump(struct intel_engine_cs *engine,
2203 		       struct drm_printer *m,
2204 		       const char *header, ...)
2205 {
2206 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2207 	struct i915_request *rq;
2208 	intel_wakeref_t wakeref;
2209 	ktime_t dummy;
2210 
2211 	if (header) {
2212 		va_list ap;
2213 
2214 		va_start(ap, header);
2215 		drm_vprintf(m, header, &ap);
2216 		va_end(ap);
2217 	}
2218 
2219 	if (intel_gt_is_wedged(engine->gt))
2220 		drm_printf(m, "*** WEDGED ***\n");
2221 
2222 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2223 	drm_printf(m, "\tBarriers?: %s\n",
2224 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2225 	drm_printf(m, "\tLatency: %luus\n",
2226 		   ewma__engine_latency_read(&engine->latency));
2227 	if (intel_engine_supports_stats(engine))
2228 		drm_printf(m, "\tRuntime: %llums\n",
2229 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2230 								  &dummy)));
2231 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2232 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2233 
2234 	rcu_read_lock();
2235 	rq = READ_ONCE(engine->heartbeat.systole);
2236 	if (rq)
2237 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2238 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2239 	rcu_read_unlock();
2240 	drm_printf(m, "\tReset count: %d (global %d)\n",
2241 		   i915_reset_engine_count(error, engine),
2242 		   i915_reset_count(error));
2243 	print_properties(engine, m);
2244 
2245 	engine_dump_active_requests(engine, m);
2246 
2247 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2248 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2249 	if (wakeref) {
2250 		intel_engine_print_registers(engine, m);
2251 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2252 	} else {
2253 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2254 	}
2255 
2256 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2257 
2258 	drm_printf(m, "HWSP:\n");
2259 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2260 
2261 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2262 
2263 	intel_engine_print_breadcrumbs(engine, m);
2264 }
2265 
2266 /**
2267  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2268  * @engine: engine to report on
2269  * @now: monotonic timestamp of sampling
2270  *
2271  * Returns accumulated time @engine was busy since engine stats were enabled.
2272  */
intel_engine_get_busy_time(struct intel_engine_cs * engine,ktime_t * now)2273 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2274 {
2275 	return engine->busyness(engine, now);
2276 }
2277 
2278 struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs ** siblings,unsigned int count,unsigned long flags)2279 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2280 			    unsigned int count, unsigned long flags)
2281 {
2282 	if (count == 0)
2283 		return ERR_PTR(-EINVAL);
2284 
2285 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2286 		return intel_context_create(siblings[0]);
2287 
2288 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2289 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2290 }
2291 
engine_execlist_find_hung_request(struct intel_engine_cs * engine)2292 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2293 {
2294 	struct i915_request *request, *active = NULL;
2295 
2296 	/*
2297 	 * This search does not work in GuC submission mode. However, the GuC
2298 	 * will report the hanging context directly to the driver itself. So
2299 	 * the driver should never get here when in GuC mode.
2300 	 */
2301 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2302 
2303 	/*
2304 	 * We are called by the error capture, reset and to dump engine
2305 	 * state at random points in time. In particular, note that neither is
2306 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2307 	 * and we assume that no more writes can happen (we waited long enough
2308 	 * for all writes that were in transaction to be flushed) - adding an
2309 	 * extra delay for a recent interrupt is pointless. Hence, we do
2310 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2311 	 * At all other times, we must assume the GPU is still running, but
2312 	 * we only care about the snapshot of this moment.
2313 	 */
2314 	lockdep_assert_held(&engine->sched_engine->lock);
2315 
2316 	rcu_read_lock();
2317 	request = execlists_active(&engine->execlists);
2318 	if (request) {
2319 		struct intel_timeline *tl = request->context->timeline;
2320 
2321 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2322 			if (__i915_request_is_complete(request))
2323 				break;
2324 
2325 			active = request;
2326 		}
2327 	}
2328 	rcu_read_unlock();
2329 	if (active)
2330 		return active;
2331 
2332 	list_for_each_entry(request, &engine->sched_engine->requests,
2333 			    sched.link) {
2334 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2335 			continue;
2336 
2337 		active = request;
2338 		break;
2339 	}
2340 
2341 	return active;
2342 }
2343 
intel_engine_get_hung_entity(struct intel_engine_cs * engine,struct intel_context ** ce,struct i915_request ** rq)2344 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2345 				  struct intel_context **ce, struct i915_request **rq)
2346 {
2347 	unsigned long flags;
2348 
2349 	*ce = intel_engine_get_hung_context(engine);
2350 	if (*ce) {
2351 		intel_engine_clear_hung_context(engine);
2352 
2353 		*rq = intel_context_get_active_request(*ce);
2354 		return;
2355 	}
2356 
2357 	/*
2358 	 * Getting here with GuC enabled means it is a forced error capture
2359 	 * with no actual hang. So, no need to attempt the execlist search.
2360 	 */
2361 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2362 		return;
2363 
2364 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2365 	*rq = engine_execlist_find_hung_request(engine);
2366 	if (*rq)
2367 		*rq = i915_request_get_rcu(*rq);
2368 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2369 }
2370 
xehp_enable_ccs_engines(struct intel_engine_cs * engine)2371 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2372 {
2373 	/*
2374 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2375 	 * support in the RCU_MODE register.  This only needs to be done once,
2376 	 * so for simplicity we'll take care of this in the RCS engine's
2377 	 * resume handler; since the RCS and all CCS engines belong to the
2378 	 * same reset domain and are reset together, this will also take care
2379 	 * of re-applying the setting after i915-triggered resets.
2380 	 */
2381 	if (!CCS_MASK(engine->gt))
2382 		return;
2383 
2384 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2385 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2386 }
2387 
2388 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2389 #include "mock_engine.c"
2390 #include "selftest_engine.c"
2391 #include "selftest_engine_cs.c"
2392 #endif
2393