1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/bvec.h>
60 #include <linux/net.h>
61 #include <net/sock.h>
62 #include <net/af_unix.h>
63 #include <net/scm.h>
64 #include <linux/anon_inodes.h>
65 #include <linux/sched/mm.h>
66 #include <linux/uaccess.h>
67 #include <linux/nospec.h>
68 #include <linux/highmem.h>
69 #include <linux/fsnotify.h>
70 #include <linux/fadvise.h>
71 #include <linux/task_work.h>
72 #include <linux/io_uring.h>
73 #include <linux/audit.h>
74 #include <linux/security.h>
75 #include <asm/shmparam.h>
76
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/io_uring.h>
79
80 #include <uapi/linux/io_uring.h>
81
82 #include "io-wq.h"
83
84 #include "io_uring.h"
85 #include "opdef.h"
86 #include "refs.h"
87 #include "tctx.h"
88 #include "sqpoll.h"
89 #include "fdinfo.h"
90 #include "kbuf.h"
91 #include "rsrc.h"
92 #include "cancel.h"
93 #include "net.h"
94 #include "notif.h"
95
96 #include "timeout.h"
97 #include "poll.h"
98 #include "alloc_cache.h"
99
100 #define IORING_MAX_ENTRIES 32768
101 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
102
103 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
104 IORING_REGISTER_LAST + IORING_OP_LAST)
105
106 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
108
109 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
110 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
111
112 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
113 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
114 REQ_F_ASYNC_DATA)
115
116 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
117 IO_REQ_CLEAN_FLAGS)
118
119 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
120
121 #define IO_COMPL_BATCH 32
122 #define IO_REQ_ALLOC_BATCH 8
123
124 enum {
125 IO_CHECK_CQ_OVERFLOW_BIT,
126 IO_CHECK_CQ_DROPPED_BIT,
127 };
128
129 enum {
130 IO_EVENTFD_OP_SIGNAL_BIT,
131 IO_EVENTFD_OP_FREE_BIT,
132 };
133
134 struct io_defer_entry {
135 struct list_head list;
136 struct io_kiocb *req;
137 u32 seq;
138 };
139
140 /* requests with any of those set should undergo io_disarm_next() */
141 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
142 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
143
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
145 struct task_struct *task,
146 bool cancel_all);
147
148 static void io_dismantle_req(struct io_kiocb *req);
149 static void io_clean_op(struct io_kiocb *req);
150 static void io_queue_sqe(struct io_kiocb *req);
151 static void io_move_task_work_from_local(struct io_ring_ctx *ctx);
152 static void __io_submit_flush_completions(struct io_ring_ctx *ctx);
153
154 static struct kmem_cache *req_cachep;
155
io_uring_get_socket(struct file * file)156 struct sock *io_uring_get_socket(struct file *file)
157 {
158 #if defined(CONFIG_UNIX)
159 if (io_is_uring_fops(file)) {
160 struct io_ring_ctx *ctx = file->private_data;
161
162 return ctx->ring_sock->sk;
163 }
164 #endif
165 return NULL;
166 }
167 EXPORT_SYMBOL(io_uring_get_socket);
168
io_submit_flush_completions(struct io_ring_ctx * ctx)169 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
170 {
171 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
172 __io_submit_flush_completions(ctx);
173 }
174
__io_cqring_events(struct io_ring_ctx * ctx)175 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
176 {
177 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
178 }
179
__io_cqring_events_user(struct io_ring_ctx * ctx)180 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
181 {
182 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
183 }
184
io_match_linked(struct io_kiocb * head)185 static bool io_match_linked(struct io_kiocb *head)
186 {
187 struct io_kiocb *req;
188
189 io_for_each_link(req, head) {
190 if (req->flags & REQ_F_INFLIGHT)
191 return true;
192 }
193 return false;
194 }
195
196 /*
197 * As io_match_task() but protected against racing with linked timeouts.
198 * User must not hold timeout_lock.
199 */
io_match_task_safe(struct io_kiocb * head,struct task_struct * task,bool cancel_all)200 bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
201 bool cancel_all)
202 {
203 bool matched;
204
205 if (task && head->task != task)
206 return false;
207 if (cancel_all)
208 return true;
209
210 if (head->flags & REQ_F_LINK_TIMEOUT) {
211 struct io_ring_ctx *ctx = head->ctx;
212
213 /* protect against races with linked timeouts */
214 spin_lock_irq(&ctx->timeout_lock);
215 matched = io_match_linked(head);
216 spin_unlock_irq(&ctx->timeout_lock);
217 } else {
218 matched = io_match_linked(head);
219 }
220 return matched;
221 }
222
req_fail_link_node(struct io_kiocb * req,int res)223 static inline void req_fail_link_node(struct io_kiocb *req, int res)
224 {
225 req_set_fail(req);
226 io_req_set_res(req, res, 0);
227 }
228
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)229 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
230 {
231 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
232 }
233
io_ring_ctx_ref_free(struct percpu_ref * ref)234 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
235 {
236 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
237
238 complete(&ctx->ref_comp);
239 }
240
io_fallback_req_func(struct work_struct * work)241 static __cold void io_fallback_req_func(struct work_struct *work)
242 {
243 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
244 fallback_work.work);
245 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
246 struct io_kiocb *req, *tmp;
247 bool locked = false;
248
249 percpu_ref_get(&ctx->refs);
250 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
251 req->io_task_work.func(req, &locked);
252
253 if (locked) {
254 io_submit_flush_completions(ctx);
255 mutex_unlock(&ctx->uring_lock);
256 }
257 percpu_ref_put(&ctx->refs);
258 }
259
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)260 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
261 {
262 unsigned hash_buckets = 1U << bits;
263 size_t hash_size = hash_buckets * sizeof(table->hbs[0]);
264
265 table->hbs = kmalloc(hash_size, GFP_KERNEL);
266 if (!table->hbs)
267 return -ENOMEM;
268
269 table->hash_bits = bits;
270 init_hash_table(table, hash_buckets);
271 return 0;
272 }
273
io_ring_ctx_alloc(struct io_uring_params * p)274 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
275 {
276 struct io_ring_ctx *ctx;
277 int hash_bits;
278
279 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
280 if (!ctx)
281 return NULL;
282
283 xa_init(&ctx->io_bl_xa);
284
285 /*
286 * Use 5 bits less than the max cq entries, that should give us around
287 * 32 entries per hash list if totally full and uniformly spread, but
288 * don't keep too many buckets to not overconsume memory.
289 */
290 hash_bits = ilog2(p->cq_entries) - 5;
291 hash_bits = clamp(hash_bits, 1, 8);
292 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
293 goto err;
294 if (io_alloc_hash_table(&ctx->cancel_table_locked, hash_bits))
295 goto err;
296
297 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
298 if (!ctx->dummy_ubuf)
299 goto err;
300 /* set invalid range, so io_import_fixed() fails meeting it */
301 ctx->dummy_ubuf->ubuf = -1UL;
302
303 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
304 0, GFP_KERNEL))
305 goto err;
306
307 ctx->flags = p->flags;
308 init_waitqueue_head(&ctx->sqo_sq_wait);
309 INIT_LIST_HEAD(&ctx->sqd_list);
310 INIT_LIST_HEAD(&ctx->cq_overflow_list);
311 INIT_LIST_HEAD(&ctx->io_buffers_cache);
312 io_alloc_cache_init(&ctx->apoll_cache);
313 io_alloc_cache_init(&ctx->netmsg_cache);
314 init_completion(&ctx->ref_comp);
315 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
316 mutex_init(&ctx->uring_lock);
317 init_waitqueue_head(&ctx->cq_wait);
318 spin_lock_init(&ctx->completion_lock);
319 spin_lock_init(&ctx->timeout_lock);
320 INIT_WQ_LIST(&ctx->iopoll_list);
321 INIT_LIST_HEAD(&ctx->io_buffers_pages);
322 INIT_LIST_HEAD(&ctx->io_buffers_comp);
323 INIT_LIST_HEAD(&ctx->defer_list);
324 INIT_LIST_HEAD(&ctx->timeout_list);
325 INIT_LIST_HEAD(&ctx->ltimeout_list);
326 spin_lock_init(&ctx->rsrc_ref_lock);
327 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
328 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
329 init_llist_head(&ctx->rsrc_put_llist);
330 init_llist_head(&ctx->work_llist);
331 INIT_LIST_HEAD(&ctx->tctx_list);
332 ctx->submit_state.free_list.next = NULL;
333 INIT_WQ_LIST(&ctx->locked_free_list);
334 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
335 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
336 return ctx;
337 err:
338 kfree(ctx->dummy_ubuf);
339 kfree(ctx->cancel_table.hbs);
340 kfree(ctx->cancel_table_locked.hbs);
341 kfree(ctx->io_bl);
342 xa_destroy(&ctx->io_bl_xa);
343 kfree(ctx);
344 return NULL;
345 }
346
io_account_cq_overflow(struct io_ring_ctx * ctx)347 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
348 {
349 struct io_rings *r = ctx->rings;
350
351 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
352 ctx->cq_extra--;
353 }
354
req_need_defer(struct io_kiocb * req,u32 seq)355 static bool req_need_defer(struct io_kiocb *req, u32 seq)
356 {
357 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
358 struct io_ring_ctx *ctx = req->ctx;
359
360 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
361 }
362
363 return false;
364 }
365
io_req_track_inflight(struct io_kiocb * req)366 static inline void io_req_track_inflight(struct io_kiocb *req)
367 {
368 if (!(req->flags & REQ_F_INFLIGHT)) {
369 req->flags |= REQ_F_INFLIGHT;
370 atomic_inc(&req->task->io_uring->inflight_tracked);
371 }
372 }
373
__io_prep_linked_timeout(struct io_kiocb * req)374 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
375 {
376 if (WARN_ON_ONCE(!req->link))
377 return NULL;
378
379 req->flags &= ~REQ_F_ARM_LTIMEOUT;
380 req->flags |= REQ_F_LINK_TIMEOUT;
381
382 /* linked timeouts should have two refs once prep'ed */
383 io_req_set_refcount(req);
384 __io_req_set_refcount(req->link, 2);
385 return req->link;
386 }
387
io_prep_linked_timeout(struct io_kiocb * req)388 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
389 {
390 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
391 return NULL;
392 return __io_prep_linked_timeout(req);
393 }
394
__io_arm_ltimeout(struct io_kiocb * req)395 static noinline void __io_arm_ltimeout(struct io_kiocb *req)
396 {
397 io_queue_linked_timeout(__io_prep_linked_timeout(req));
398 }
399
io_arm_ltimeout(struct io_kiocb * req)400 static inline void io_arm_ltimeout(struct io_kiocb *req)
401 {
402 if (unlikely(req->flags & REQ_F_ARM_LTIMEOUT))
403 __io_arm_ltimeout(req);
404 }
405
io_prep_async_work(struct io_kiocb * req)406 static void io_prep_async_work(struct io_kiocb *req)
407 {
408 const struct io_op_def *def = &io_op_defs[req->opcode];
409 struct io_ring_ctx *ctx = req->ctx;
410
411 if (!(req->flags & REQ_F_CREDS)) {
412 req->flags |= REQ_F_CREDS;
413 req->creds = get_current_cred();
414 }
415
416 req->work.list.next = NULL;
417 req->work.flags = 0;
418 req->work.cancel_seq = atomic_read(&ctx->cancel_seq);
419 if (req->flags & REQ_F_FORCE_ASYNC)
420 req->work.flags |= IO_WQ_WORK_CONCURRENT;
421
422 if (req->file && !io_req_ffs_set(req))
423 req->flags |= io_file_get_flags(req->file) << REQ_F_SUPPORT_NOWAIT_BIT;
424
425 if (req->flags & REQ_F_ISREG) {
426 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
427 io_wq_hash_work(&req->work, file_inode(req->file));
428 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
429 if (def->unbound_nonreg_file)
430 req->work.flags |= IO_WQ_WORK_UNBOUND;
431 }
432 }
433
io_prep_async_link(struct io_kiocb * req)434 static void io_prep_async_link(struct io_kiocb *req)
435 {
436 struct io_kiocb *cur;
437
438 if (req->flags & REQ_F_LINK_TIMEOUT) {
439 struct io_ring_ctx *ctx = req->ctx;
440
441 spin_lock_irq(&ctx->timeout_lock);
442 io_for_each_link(cur, req)
443 io_prep_async_work(cur);
444 spin_unlock_irq(&ctx->timeout_lock);
445 } else {
446 io_for_each_link(cur, req)
447 io_prep_async_work(cur);
448 }
449 }
450
io_queue_iowq(struct io_kiocb * req,bool * dont_use)451 void io_queue_iowq(struct io_kiocb *req, bool *dont_use)
452 {
453 struct io_kiocb *link = io_prep_linked_timeout(req);
454 struct io_uring_task *tctx = req->task->io_uring;
455
456 BUG_ON(!tctx);
457 BUG_ON(!tctx->io_wq);
458
459 /* init ->work of the whole link before punting */
460 io_prep_async_link(req);
461
462 /*
463 * Not expected to happen, but if we do have a bug where this _can_
464 * happen, catch it here and ensure the request is marked as
465 * canceled. That will make io-wq go through the usual work cancel
466 * procedure rather than attempt to run this request (or create a new
467 * worker for it).
468 */
469 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
470 req->work.flags |= IO_WQ_WORK_CANCEL;
471
472 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
473 io_wq_enqueue(tctx->io_wq, &req->work);
474 if (link)
475 io_queue_linked_timeout(link);
476 }
477
io_queue_deferred(struct io_ring_ctx * ctx)478 static __cold void io_queue_deferred(struct io_ring_ctx *ctx)
479 {
480 while (!list_empty(&ctx->defer_list)) {
481 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
482 struct io_defer_entry, list);
483
484 if (req_need_defer(de->req, de->seq))
485 break;
486 list_del_init(&de->list);
487 io_req_task_queue(de->req);
488 kfree(de);
489 }
490 }
491
492
io_eventfd_ops(struct rcu_head * rcu)493 static void io_eventfd_ops(struct rcu_head *rcu)
494 {
495 struct io_ev_fd *ev_fd = container_of(rcu, struct io_ev_fd, rcu);
496 int ops = atomic_xchg(&ev_fd->ops, 0);
497
498 if (ops & BIT(IO_EVENTFD_OP_SIGNAL_BIT))
499 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
500
501 /* IO_EVENTFD_OP_FREE_BIT may not be set here depending on callback
502 * ordering in a race but if references are 0 we know we have to free
503 * it regardless.
504 */
505 if (atomic_dec_and_test(&ev_fd->refs)) {
506 eventfd_ctx_put(ev_fd->cq_ev_fd);
507 kfree(ev_fd);
508 }
509 }
510
io_eventfd_signal(struct io_ring_ctx * ctx)511 static void io_eventfd_signal(struct io_ring_ctx *ctx)
512 {
513 struct io_ev_fd *ev_fd = NULL;
514
515 rcu_read_lock();
516 /*
517 * rcu_dereference ctx->io_ev_fd once and use it for both for checking
518 * and eventfd_signal
519 */
520 ev_fd = rcu_dereference(ctx->io_ev_fd);
521
522 /*
523 * Check again if ev_fd exists incase an io_eventfd_unregister call
524 * completed between the NULL check of ctx->io_ev_fd at the start of
525 * the function and rcu_read_lock.
526 */
527 if (unlikely(!ev_fd))
528 goto out;
529 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
530 goto out;
531 if (ev_fd->eventfd_async && !io_wq_current_is_worker())
532 goto out;
533
534 if (likely(eventfd_signal_allowed())) {
535 eventfd_signal_mask(ev_fd->cq_ev_fd, 1, EPOLL_URING_WAKE);
536 } else {
537 atomic_inc(&ev_fd->refs);
538 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_SIGNAL_BIT), &ev_fd->ops))
539 call_rcu_hurry(&ev_fd->rcu, io_eventfd_ops);
540 else
541 atomic_dec(&ev_fd->refs);
542 }
543
544 out:
545 rcu_read_unlock();
546 }
547
io_eventfd_flush_signal(struct io_ring_ctx * ctx)548 static void io_eventfd_flush_signal(struct io_ring_ctx *ctx)
549 {
550 bool skip;
551
552 spin_lock(&ctx->completion_lock);
553
554 /*
555 * Eventfd should only get triggered when at least one event has been
556 * posted. Some applications rely on the eventfd notification count
557 * only changing IFF a new CQE has been added to the CQ ring. There's
558 * no depedency on 1:1 relationship between how many times this
559 * function is called (and hence the eventfd count) and number of CQEs
560 * posted to the CQ ring.
561 */
562 skip = ctx->cached_cq_tail == ctx->evfd_last_cq_tail;
563 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
564 spin_unlock(&ctx->completion_lock);
565 if (skip)
566 return;
567
568 io_eventfd_signal(ctx);
569 }
570
__io_commit_cqring_flush(struct io_ring_ctx * ctx)571 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
572 {
573 if (ctx->off_timeout_used || ctx->drain_active) {
574 spin_lock(&ctx->completion_lock);
575 if (ctx->off_timeout_used)
576 io_flush_timeouts(ctx);
577 if (ctx->drain_active)
578 io_queue_deferred(ctx);
579 spin_unlock(&ctx->completion_lock);
580 }
581 if (ctx->has_evfd)
582 io_eventfd_flush_signal(ctx);
583 }
584
io_cqring_ev_posted(struct io_ring_ctx * ctx)585 static inline void io_cqring_ev_posted(struct io_ring_ctx *ctx)
586 {
587 io_commit_cqring_flush(ctx);
588 io_cqring_wake(ctx);
589 }
590
__io_cq_unlock_post(struct io_ring_ctx * ctx)591 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
592 __releases(ctx->completion_lock)
593 {
594 io_commit_cqring(ctx);
595 spin_unlock(&ctx->completion_lock);
596 io_cqring_ev_posted(ctx);
597 }
598
io_cq_unlock_post(struct io_ring_ctx * ctx)599 void io_cq_unlock_post(struct io_ring_ctx *ctx)
600 {
601 __io_cq_unlock_post(ctx);
602 }
603
604 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)605 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
606 {
607 bool all_flushed;
608 size_t cqe_size = sizeof(struct io_uring_cqe);
609
610 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
611 return false;
612
613 if (ctx->flags & IORING_SETUP_CQE32)
614 cqe_size <<= 1;
615
616 io_cq_lock(ctx);
617 while (!list_empty(&ctx->cq_overflow_list)) {
618 struct io_uring_cqe *cqe = io_get_cqe_overflow(ctx, true);
619 struct io_overflow_cqe *ocqe;
620
621 if (!cqe && !force)
622 break;
623 ocqe = list_first_entry(&ctx->cq_overflow_list,
624 struct io_overflow_cqe, list);
625 if (cqe)
626 memcpy(cqe, &ocqe->cqe, cqe_size);
627 else
628 io_account_cq_overflow(ctx);
629
630 list_del(&ocqe->list);
631 kfree(ocqe);
632 }
633
634 all_flushed = list_empty(&ctx->cq_overflow_list);
635 if (all_flushed) {
636 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
637 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
638 }
639
640 io_cq_unlock_post(ctx);
641 return all_flushed;
642 }
643
io_cqring_overflow_flush(struct io_ring_ctx * ctx)644 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
645 {
646 bool ret = true;
647
648 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
649 /* iopoll syncs against uring_lock, not completion_lock */
650 if (ctx->flags & IORING_SETUP_IOPOLL)
651 mutex_lock(&ctx->uring_lock);
652 ret = __io_cqring_overflow_flush(ctx, false);
653 if (ctx->flags & IORING_SETUP_IOPOLL)
654 mutex_unlock(&ctx->uring_lock);
655 }
656
657 return ret;
658 }
659
__io_put_task(struct task_struct * task,int nr)660 void __io_put_task(struct task_struct *task, int nr)
661 {
662 struct io_uring_task *tctx = task->io_uring;
663
664 percpu_counter_sub(&tctx->inflight, nr);
665 if (unlikely(atomic_read(&tctx->in_idle)))
666 wake_up(&tctx->wait);
667 put_task_struct_many(task, nr);
668 }
669
io_task_refs_refill(struct io_uring_task * tctx)670 void io_task_refs_refill(struct io_uring_task *tctx)
671 {
672 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
673
674 percpu_counter_add(&tctx->inflight, refill);
675 refcount_add(refill, ¤t->usage);
676 tctx->cached_refs += refill;
677 }
678
io_uring_drop_tctx_refs(struct task_struct * task)679 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
680 {
681 struct io_uring_task *tctx = task->io_uring;
682 unsigned int refs = tctx->cached_refs;
683
684 if (refs) {
685 tctx->cached_refs = 0;
686 percpu_counter_sub(&tctx->inflight, refs);
687 put_task_struct_many(task, refs);
688 }
689 }
690
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)691 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
692 s32 res, u32 cflags, u64 extra1, u64 extra2)
693 {
694 struct io_overflow_cqe *ocqe;
695 size_t ocq_size = sizeof(struct io_overflow_cqe);
696 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
697
698 if (is_cqe32)
699 ocq_size += sizeof(struct io_uring_cqe);
700
701 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
702 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
703 if (!ocqe) {
704 /*
705 * If we're in ring overflow flush mode, or in task cancel mode,
706 * or cannot allocate an overflow entry, then we need to drop it
707 * on the floor.
708 */
709 io_account_cq_overflow(ctx);
710 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
711 return false;
712 }
713 if (list_empty(&ctx->cq_overflow_list)) {
714 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
715 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
716
717 }
718 ocqe->cqe.user_data = user_data;
719 ocqe->cqe.res = res;
720 ocqe->cqe.flags = cflags;
721 if (is_cqe32) {
722 ocqe->cqe.big_cqe[0] = extra1;
723 ocqe->cqe.big_cqe[1] = extra2;
724 }
725 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
726 return true;
727 }
728
io_req_cqe_overflow(struct io_kiocb * req)729 bool io_req_cqe_overflow(struct io_kiocb *req)
730 {
731 if (!(req->flags & REQ_F_CQE32_INIT)) {
732 req->extra1 = 0;
733 req->extra2 = 0;
734 }
735 return io_cqring_event_overflow(req->ctx, req->cqe.user_data,
736 req->cqe.res, req->cqe.flags,
737 req->extra1, req->extra2);
738 }
739
740 /*
741 * writes to the cq entry need to come after reading head; the
742 * control dependency is enough as we're using WRITE_ONCE to
743 * fill the cq entry
744 */
__io_get_cqe(struct io_ring_ctx * ctx,bool overflow)745 struct io_uring_cqe *__io_get_cqe(struct io_ring_ctx *ctx, bool overflow)
746 {
747 struct io_rings *rings = ctx->rings;
748 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
749 unsigned int free, queued, len;
750
751 /*
752 * Posting into the CQ when there are pending overflowed CQEs may break
753 * ordering guarantees, which will affect links, F_MORE users and more.
754 * Force overflow the completion.
755 */
756 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
757 return NULL;
758
759 /* userspace may cheat modifying the tail, be safe and do min */
760 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
761 free = ctx->cq_entries - queued;
762 /* we need a contiguous range, limit based on the current array offset */
763 len = min(free, ctx->cq_entries - off);
764 if (!len)
765 return NULL;
766
767 if (ctx->flags & IORING_SETUP_CQE32) {
768 off <<= 1;
769 len <<= 1;
770 }
771
772 ctx->cqe_cached = &rings->cqes[off];
773 ctx->cqe_sentinel = ctx->cqe_cached + len;
774
775 ctx->cached_cq_tail++;
776 ctx->cqe_cached++;
777 if (ctx->flags & IORING_SETUP_CQE32)
778 ctx->cqe_cached++;
779 return &rings->cqes[off];
780 }
781
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)782 bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags,
783 bool allow_overflow)
784 {
785 struct io_uring_cqe *cqe;
786
787 ctx->cq_extra++;
788
789 /*
790 * If we can't get a cq entry, userspace overflowed the
791 * submission (by quite a lot). Increment the overflow count in
792 * the ring.
793 */
794 cqe = io_get_cqe(ctx);
795 if (likely(cqe)) {
796 trace_io_uring_complete(ctx, NULL, user_data, res, cflags, 0, 0);
797
798 WRITE_ONCE(cqe->user_data, user_data);
799 WRITE_ONCE(cqe->res, res);
800 WRITE_ONCE(cqe->flags, cflags);
801
802 if (ctx->flags & IORING_SETUP_CQE32) {
803 WRITE_ONCE(cqe->big_cqe[0], 0);
804 WRITE_ONCE(cqe->big_cqe[1], 0);
805 }
806 return true;
807 }
808
809 if (allow_overflow)
810 return io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
811
812 return false;
813 }
814
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,bool allow_overflow)815 bool io_post_aux_cqe(struct io_ring_ctx *ctx,
816 u64 user_data, s32 res, u32 cflags,
817 bool allow_overflow)
818 {
819 bool filled;
820
821 io_cq_lock(ctx);
822 filled = io_fill_cqe_aux(ctx, user_data, res, cflags, allow_overflow);
823 io_cq_unlock_post(ctx);
824 return filled;
825 }
826
io_req_complete_post(struct io_kiocb * req)827 void io_req_complete_post(struct io_kiocb *req)
828 {
829 struct io_ring_ctx *ctx = req->ctx;
830
831 io_cq_lock(ctx);
832 if (!(req->flags & REQ_F_CQE_SKIP))
833 __io_fill_cqe_req(ctx, req);
834
835 /*
836 * If we're the last reference to this request, add to our locked
837 * free_list cache.
838 */
839 if (req_ref_put_and_test(req)) {
840 if (req->flags & IO_REQ_LINK_FLAGS) {
841 if (req->flags & IO_DISARM_MASK)
842 io_disarm_next(req);
843 if (req->link) {
844 io_req_task_queue(req->link);
845 req->link = NULL;
846 }
847 }
848 io_req_put_rsrc(req);
849 /*
850 * Selected buffer deallocation in io_clean_op() assumes that
851 * we don't hold ->completion_lock. Clean them here to avoid
852 * deadlocks.
853 */
854 io_put_kbuf_comp(req);
855 io_dismantle_req(req);
856 io_put_task(req->task, 1);
857 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
858 ctx->locked_free_nr++;
859 }
860 io_cq_unlock_post(ctx);
861 }
862
__io_req_complete(struct io_kiocb * req,unsigned issue_flags)863 inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags)
864 {
865 io_req_complete_post(req);
866 }
867
io_req_complete_failed(struct io_kiocb * req,s32 res)868 void io_req_complete_failed(struct io_kiocb *req, s32 res)
869 __must_hold(&ctx->uring_lock)
870 {
871 const struct io_op_def *def = &io_op_defs[req->opcode];
872
873 lockdep_assert_held(&req->ctx->uring_lock);
874
875 req_set_fail(req);
876 io_req_set_res(req, res, io_put_kbuf(req, IO_URING_F_UNLOCKED));
877 if (def->fail)
878 def->fail(req);
879 io_req_complete_post(req);
880 }
881
882 /*
883 * Don't initialise the fields below on every allocation, but do that in
884 * advance and keep them valid across allocations.
885 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)886 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
887 {
888 req->ctx = ctx;
889 req->link = NULL;
890 req->async_data = NULL;
891 /* not necessary, but safer to zero */
892 req->cqe.res = 0;
893 }
894
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)895 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
896 struct io_submit_state *state)
897 {
898 spin_lock(&ctx->completion_lock);
899 wq_list_splice(&ctx->locked_free_list, &state->free_list);
900 ctx->locked_free_nr = 0;
901 spin_unlock(&ctx->completion_lock);
902 }
903
904 /*
905 * A request might get retired back into the request caches even before opcode
906 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
907 * Because of that, io_alloc_req() should be called only under ->uring_lock
908 * and with extra caution to not get a request that is still worked on.
909 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)910 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
911 __must_hold(&ctx->uring_lock)
912 {
913 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
914 void *reqs[IO_REQ_ALLOC_BATCH];
915 int ret, i;
916
917 /*
918 * If we have more than a batch's worth of requests in our IRQ side
919 * locked cache, grab the lock and move them over to our submission
920 * side cache.
921 */
922 if (data_race(ctx->locked_free_nr) > IO_COMPL_BATCH) {
923 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
924 if (!io_req_cache_empty(ctx))
925 return true;
926 }
927
928 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
929
930 /*
931 * Bulk alloc is all-or-nothing. If we fail to get a batch,
932 * retry single alloc to be on the safe side.
933 */
934 if (unlikely(ret <= 0)) {
935 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
936 if (!reqs[0])
937 return false;
938 ret = 1;
939 }
940
941 percpu_ref_get_many(&ctx->refs, ret);
942 for (i = 0; i < ret; i++) {
943 struct io_kiocb *req = reqs[i];
944
945 io_preinit_req(req, ctx);
946 io_req_add_to_cache(req, ctx);
947 }
948 return true;
949 }
950
io_dismantle_req(struct io_kiocb * req)951 static inline void io_dismantle_req(struct io_kiocb *req)
952 {
953 unsigned int flags = req->flags;
954
955 if (unlikely(flags & IO_REQ_CLEAN_FLAGS))
956 io_clean_op(req);
957 if (!(flags & REQ_F_FIXED_FILE))
958 io_put_file(req->file);
959 }
960
io_free_req(struct io_kiocb * req)961 __cold void io_free_req(struct io_kiocb *req)
962 {
963 struct io_ring_ctx *ctx = req->ctx;
964
965 io_req_put_rsrc(req);
966 io_dismantle_req(req);
967 io_put_task(req->task, 1);
968
969 spin_lock(&ctx->completion_lock);
970 wq_list_add_head(&req->comp_list, &ctx->locked_free_list);
971 ctx->locked_free_nr++;
972 spin_unlock(&ctx->completion_lock);
973 }
974
__io_req_find_next_prep(struct io_kiocb * req)975 static void __io_req_find_next_prep(struct io_kiocb *req)
976 {
977 struct io_ring_ctx *ctx = req->ctx;
978
979 io_cq_lock(ctx);
980 io_disarm_next(req);
981 io_cq_unlock_post(ctx);
982 }
983
io_req_find_next(struct io_kiocb * req)984 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
985 {
986 struct io_kiocb *nxt;
987
988 /*
989 * If LINK is set, we have dependent requests in this chain. If we
990 * didn't fail this request, queue the first one up, moving any other
991 * dependencies to the next request. In case of failure, fail the rest
992 * of the chain.
993 */
994 if (unlikely(req->flags & IO_DISARM_MASK))
995 __io_req_find_next_prep(req);
996 nxt = req->link;
997 req->link = NULL;
998 return nxt;
999 }
1000
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)1001 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
1002 {
1003 if (!ctx)
1004 return;
1005 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1006 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1007 if (*locked) {
1008 io_submit_flush_completions(ctx);
1009 mutex_unlock(&ctx->uring_lock);
1010 *locked = false;
1011 }
1012 percpu_ref_put(&ctx->refs);
1013 }
1014
handle_tw_list(struct llist_node * node,struct io_ring_ctx ** ctx,bool * locked,struct llist_node * last)1015 static unsigned int handle_tw_list(struct llist_node *node,
1016 struct io_ring_ctx **ctx, bool *locked,
1017 struct llist_node *last)
1018 {
1019 unsigned int count = 0;
1020
1021 while (node != last) {
1022 struct llist_node *next = node->next;
1023 struct io_kiocb *req = container_of(node, struct io_kiocb,
1024 io_task_work.node);
1025
1026 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1027
1028 if (req->ctx != *ctx) {
1029 ctx_flush_and_put(*ctx, locked);
1030 *ctx = req->ctx;
1031 /* if not contended, grab and improve batching */
1032 *locked = mutex_trylock(&(*ctx)->uring_lock);
1033 percpu_ref_get(&(*ctx)->refs);
1034 } else if (!*locked)
1035 *locked = mutex_trylock(&(*ctx)->uring_lock);
1036 req->io_task_work.func(req, locked);
1037 node = next;
1038 count++;
1039 if (unlikely(need_resched())) {
1040 ctx_flush_and_put(*ctx, locked);
1041 *ctx = NULL;
1042 cond_resched();
1043 }
1044 }
1045
1046 return count;
1047 }
1048
1049 /**
1050 * io_llist_xchg - swap all entries in a lock-less list
1051 * @head: the head of lock-less list to delete all entries
1052 * @new: new entry as the head of the list
1053 *
1054 * If list is empty, return NULL, otherwise, return the pointer to the first entry.
1055 * The order of entries returned is from the newest to the oldest added one.
1056 */
io_llist_xchg(struct llist_head * head,struct llist_node * new)1057 static inline struct llist_node *io_llist_xchg(struct llist_head *head,
1058 struct llist_node *new)
1059 {
1060 return xchg(&head->first, new);
1061 }
1062
1063 /**
1064 * io_llist_cmpxchg - possibly swap all entries in a lock-less list
1065 * @head: the head of lock-less list to delete all entries
1066 * @old: expected old value of the first entry of the list
1067 * @new: new entry as the head of the list
1068 *
1069 * perform a cmpxchg on the first entry of the list.
1070 */
1071
io_llist_cmpxchg(struct llist_head * head,struct llist_node * old,struct llist_node * new)1072 static inline struct llist_node *io_llist_cmpxchg(struct llist_head *head,
1073 struct llist_node *old,
1074 struct llist_node *new)
1075 {
1076 return cmpxchg(&head->first, old, new);
1077 }
1078
tctx_task_work(struct callback_head * cb)1079 void tctx_task_work(struct callback_head *cb)
1080 {
1081 bool uring_locked = false;
1082 struct io_ring_ctx *ctx = NULL;
1083 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1084 task_work);
1085 struct llist_node fake = {};
1086 struct llist_node *node = io_llist_xchg(&tctx->task_list, &fake);
1087 unsigned int loops = 1;
1088 unsigned int count = handle_tw_list(node, &ctx, &uring_locked, NULL);
1089
1090 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1091 while (node != &fake) {
1092 loops++;
1093 node = io_llist_xchg(&tctx->task_list, &fake);
1094 count += handle_tw_list(node, &ctx, &uring_locked, &fake);
1095 node = io_llist_cmpxchg(&tctx->task_list, &fake, NULL);
1096 }
1097
1098 ctx_flush_and_put(ctx, &uring_locked);
1099
1100 /* relaxed read is enough as only the task itself sets ->in_idle */
1101 if (unlikely(atomic_read(&tctx->in_idle)))
1102 io_uring_drop_tctx_refs(current);
1103
1104 trace_io_uring_task_work_run(tctx, count, loops);
1105 }
1106
io_req_local_work_add(struct io_kiocb * req)1107 static void io_req_local_work_add(struct io_kiocb *req)
1108 {
1109 struct io_ring_ctx *ctx = req->ctx;
1110
1111 percpu_ref_get(&ctx->refs);
1112
1113 if (!llist_add(&req->io_task_work.node, &ctx->work_llist)) {
1114 percpu_ref_put(&ctx->refs);
1115 return;
1116 }
1117 /* need it for the following io_cqring_wake() */
1118 smp_mb__after_atomic();
1119
1120 if (unlikely(atomic_read(&req->task->io_uring->in_idle))) {
1121 io_move_task_work_from_local(ctx);
1122 percpu_ref_put(&ctx->refs);
1123 return;
1124 }
1125
1126 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1127 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1128
1129 if (ctx->has_evfd)
1130 io_eventfd_signal(ctx);
1131 __io_cqring_wake(ctx);
1132 percpu_ref_put(&ctx->refs);
1133 }
1134
__io_req_task_work_add(struct io_kiocb * req,bool allow_local)1135 void __io_req_task_work_add(struct io_kiocb *req, bool allow_local)
1136 {
1137 struct io_uring_task *tctx = req->task->io_uring;
1138 struct io_ring_ctx *ctx = req->ctx;
1139 struct llist_node *node;
1140
1141 if (allow_local && ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
1142 io_req_local_work_add(req);
1143 return;
1144 }
1145
1146 /* task_work already pending, we're done */
1147 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1148 return;
1149
1150 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1151 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1152
1153 if (likely(!task_work_add(req->task, &tctx->task_work, ctx->notify_method)))
1154 return;
1155
1156 node = llist_del_all(&tctx->task_list);
1157
1158 while (node) {
1159 req = container_of(node, struct io_kiocb, io_task_work.node);
1160 node = node->next;
1161 if (llist_add(&req->io_task_work.node,
1162 &req->ctx->fallback_llist))
1163 schedule_delayed_work(&req->ctx->fallback_work, 1);
1164 }
1165 }
1166
io_move_task_work_from_local(struct io_ring_ctx * ctx)1167 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1168 {
1169 struct llist_node *node;
1170
1171 node = llist_del_all(&ctx->work_llist);
1172 while (node) {
1173 struct io_kiocb *req = container_of(node, struct io_kiocb,
1174 io_task_work.node);
1175
1176 node = node->next;
1177 __io_req_task_work_add(req, false);
1178 }
1179 }
1180
__io_run_local_work(struct io_ring_ctx * ctx,bool * locked)1181 int __io_run_local_work(struct io_ring_ctx *ctx, bool *locked)
1182 {
1183 struct llist_node *node;
1184 struct llist_node fake;
1185 struct llist_node *current_final = NULL;
1186 int ret;
1187 unsigned int loops = 1;
1188
1189 if (unlikely(ctx->submitter_task != current))
1190 return -EEXIST;
1191
1192 node = io_llist_xchg(&ctx->work_llist, &fake);
1193 ret = 0;
1194 again:
1195 while (node != current_final) {
1196 struct llist_node *next = node->next;
1197 struct io_kiocb *req = container_of(node, struct io_kiocb,
1198 io_task_work.node);
1199 prefetch(container_of(next, struct io_kiocb, io_task_work.node));
1200 req->io_task_work.func(req, locked);
1201 ret++;
1202 node = next;
1203 }
1204
1205 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1206 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1207
1208 node = io_llist_cmpxchg(&ctx->work_llist, &fake, NULL);
1209 if (node != &fake) {
1210 loops++;
1211 current_final = &fake;
1212 node = io_llist_xchg(&ctx->work_llist, &fake);
1213 goto again;
1214 }
1215
1216 if (*locked)
1217 io_submit_flush_completions(ctx);
1218 trace_io_uring_local_work_run(ctx, ret, loops);
1219 return ret;
1220
1221 }
1222
io_run_local_work(struct io_ring_ctx * ctx)1223 int io_run_local_work(struct io_ring_ctx *ctx)
1224 {
1225 bool locked;
1226 int ret;
1227
1228 if (llist_empty(&ctx->work_llist))
1229 return 0;
1230
1231 __set_current_state(TASK_RUNNING);
1232 locked = mutex_trylock(&ctx->uring_lock);
1233 ret = __io_run_local_work(ctx, &locked);
1234 if (locked)
1235 mutex_unlock(&ctx->uring_lock);
1236
1237 return ret;
1238 }
1239
io_req_task_cancel(struct io_kiocb * req,bool * locked)1240 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
1241 {
1242 /* not needed for normal modes, but SQPOLL depends on it */
1243 io_tw_lock(req->ctx, locked);
1244 io_req_complete_failed(req, req->cqe.res);
1245 }
1246
io_req_task_submit(struct io_kiocb * req,bool * locked)1247 void io_req_task_submit(struct io_kiocb *req, bool *locked)
1248 {
1249 io_tw_lock(req->ctx, locked);
1250 /* req->task == current here, checking PF_EXITING is safe */
1251 if (likely(!(req->task->flags & PF_EXITING)))
1252 io_queue_sqe(req);
1253 else
1254 io_req_complete_failed(req, -EFAULT);
1255 }
1256
io_req_task_queue_fail(struct io_kiocb * req,int ret)1257 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1258 {
1259 io_req_set_res(req, ret, 0);
1260 req->io_task_work.func = io_req_task_cancel;
1261 io_req_task_work_add(req);
1262 }
1263
io_req_task_queue(struct io_kiocb * req)1264 void io_req_task_queue(struct io_kiocb *req)
1265 {
1266 req->io_task_work.func = io_req_task_submit;
1267 io_req_task_work_add(req);
1268 }
1269
io_queue_next(struct io_kiocb * req)1270 void io_queue_next(struct io_kiocb *req)
1271 {
1272 struct io_kiocb *nxt = io_req_find_next(req);
1273
1274 if (nxt)
1275 io_req_task_queue(nxt);
1276 }
1277
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1278 void io_free_batch_list(struct io_ring_ctx *ctx, struct io_wq_work_node *node)
1279 __must_hold(&ctx->uring_lock)
1280 {
1281 struct task_struct *task = NULL;
1282 int task_refs = 0;
1283
1284 do {
1285 struct io_kiocb *req = container_of(node, struct io_kiocb,
1286 comp_list);
1287
1288 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1289 if (req->flags & REQ_F_REFCOUNT) {
1290 node = req->comp_list.next;
1291 if (!req_ref_put_and_test(req))
1292 continue;
1293 }
1294 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1295 struct async_poll *apoll = req->apoll;
1296
1297 if (apoll->double_poll)
1298 kfree(apoll->double_poll);
1299 if (!io_alloc_cache_put(&ctx->apoll_cache, &apoll->cache))
1300 kfree(apoll);
1301 req->flags &= ~REQ_F_POLLED;
1302 }
1303 if (req->flags & IO_REQ_LINK_FLAGS)
1304 io_queue_next(req);
1305 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1306 io_clean_op(req);
1307 }
1308 if (!(req->flags & REQ_F_FIXED_FILE))
1309 io_put_file(req->file);
1310
1311 io_req_put_rsrc_locked(req, ctx);
1312
1313 if (req->task != task) {
1314 if (task)
1315 io_put_task(task, task_refs);
1316 task = req->task;
1317 task_refs = 0;
1318 }
1319 task_refs++;
1320 node = req->comp_list.next;
1321 io_req_add_to_cache(req, ctx);
1322 } while (node);
1323
1324 if (task)
1325 io_put_task(task, task_refs);
1326 }
1327
__io_submit_flush_completions(struct io_ring_ctx * ctx)1328 static void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1329 __must_hold(&ctx->uring_lock)
1330 {
1331 struct io_wq_work_node *node, *prev;
1332 struct io_submit_state *state = &ctx->submit_state;
1333
1334 io_cq_lock(ctx);
1335 wq_list_for_each(node, prev, &state->compl_reqs) {
1336 struct io_kiocb *req = container_of(node, struct io_kiocb,
1337 comp_list);
1338
1339 if (!(req->flags & REQ_F_CQE_SKIP))
1340 __io_fill_cqe_req(ctx, req);
1341 }
1342 __io_cq_unlock_post(ctx);
1343
1344 io_free_batch_list(ctx, state->compl_reqs.first);
1345 INIT_WQ_LIST(&state->compl_reqs);
1346 }
1347
1348 /*
1349 * Drop reference to request, return next in chain (if there is one) if this
1350 * was the last reference to this request.
1351 */
io_put_req_find_next(struct io_kiocb * req)1352 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
1353 {
1354 struct io_kiocb *nxt = NULL;
1355
1356 if (req_ref_put_and_test(req)) {
1357 if (unlikely(req->flags & IO_REQ_LINK_FLAGS))
1358 nxt = io_req_find_next(req);
1359 io_free_req(req);
1360 }
1361 return nxt;
1362 }
1363
io_cqring_events(struct io_ring_ctx * ctx)1364 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1365 {
1366 /* See comment at the top of this file */
1367 smp_rmb();
1368 return __io_cqring_events(ctx);
1369 }
1370
1371 /*
1372 * We can't just wait for polled events to come to us, we have to actively
1373 * find and complete them.
1374 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1375 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1376 {
1377 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1378 return;
1379
1380 percpu_ref_get(&ctx->refs);
1381 mutex_lock(&ctx->uring_lock);
1382 while (!wq_list_empty(&ctx->iopoll_list)) {
1383 /* let it sleep and repeat later if can't complete a request */
1384 if (io_do_iopoll(ctx, true) == 0)
1385 break;
1386 /*
1387 * Ensure we allow local-to-the-cpu processing to take place,
1388 * in this case we need to ensure that we reap all events.
1389 * Also let task_work, etc. to progress by releasing the mutex
1390 */
1391 if (need_resched()) {
1392 mutex_unlock(&ctx->uring_lock);
1393 cond_resched();
1394 mutex_lock(&ctx->uring_lock);
1395 }
1396 }
1397 mutex_unlock(&ctx->uring_lock);
1398 percpu_ref_put(&ctx->refs);
1399 }
1400
io_iopoll_check(struct io_ring_ctx * ctx,long min)1401 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
1402 {
1403 unsigned int nr_events = 0;
1404 int ret = 0;
1405 unsigned long check_cq;
1406
1407 if (!io_allowed_run_tw(ctx))
1408 return -EEXIST;
1409
1410 check_cq = READ_ONCE(ctx->check_cq);
1411 if (unlikely(check_cq)) {
1412 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1413 __io_cqring_overflow_flush(ctx, false);
1414 /*
1415 * Similarly do not spin if we have not informed the user of any
1416 * dropped CQE.
1417 */
1418 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1419 return -EBADR;
1420 }
1421 /*
1422 * Don't enter poll loop if we already have events pending.
1423 * If we do, we can potentially be spinning for commands that
1424 * already triggered a CQE (eg in error).
1425 */
1426 if (io_cqring_events(ctx))
1427 return 0;
1428
1429 do {
1430 /*
1431 * If a submit got punted to a workqueue, we can have the
1432 * application entering polling for a command before it gets
1433 * issued. That app will hold the uring_lock for the duration
1434 * of the poll right here, so we need to take a breather every
1435 * now and then to ensure that the issue has a chance to add
1436 * the poll to the issued list. Otherwise we can spin here
1437 * forever, while the workqueue is stuck trying to acquire the
1438 * very same mutex.
1439 */
1440 if (wq_list_empty(&ctx->iopoll_list) ||
1441 io_task_work_pending(ctx)) {
1442 u32 tail = ctx->cached_cq_tail;
1443
1444 (void) io_run_local_work_locked(ctx);
1445
1446 if (task_work_pending(current) ||
1447 wq_list_empty(&ctx->iopoll_list)) {
1448 mutex_unlock(&ctx->uring_lock);
1449 io_run_task_work();
1450 mutex_lock(&ctx->uring_lock);
1451 }
1452 /* some requests don't go through iopoll_list */
1453 if (tail != ctx->cached_cq_tail ||
1454 wq_list_empty(&ctx->iopoll_list))
1455 break;
1456 }
1457 ret = io_do_iopoll(ctx, !min);
1458 if (ret < 0)
1459 break;
1460 nr_events += ret;
1461 ret = 0;
1462
1463 if (task_sigpending(current))
1464 return -EINTR;
1465 } while (nr_events < min && !need_resched());
1466
1467 return ret;
1468 }
1469
io_req_task_complete(struct io_kiocb * req,bool * locked)1470 void io_req_task_complete(struct io_kiocb *req, bool *locked)
1471 {
1472 if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) {
1473 unsigned issue_flags = *locked ? 0 : IO_URING_F_UNLOCKED;
1474
1475 req->cqe.flags |= io_put_kbuf(req, issue_flags);
1476 }
1477
1478 if (*locked)
1479 io_req_complete_defer(req);
1480 else
1481 io_req_complete_post(req);
1482 }
1483
1484 /*
1485 * After the iocb has been issued, it's safe to be found on the poll list.
1486 * Adding the kiocb to the list AFTER submission ensures that we don't
1487 * find it from a io_do_iopoll() thread before the issuer is done
1488 * accessing the kiocb cookie.
1489 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1490 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1491 {
1492 struct io_ring_ctx *ctx = req->ctx;
1493 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1494
1495 /* workqueue context doesn't hold uring_lock, grab it now */
1496 if (unlikely(needs_lock))
1497 mutex_lock(&ctx->uring_lock);
1498
1499 /*
1500 * Track whether we have multiple files in our lists. This will impact
1501 * how we do polling eventually, not spinning if we're on potentially
1502 * different devices.
1503 */
1504 if (wq_list_empty(&ctx->iopoll_list)) {
1505 ctx->poll_multi_queue = false;
1506 } else if (!ctx->poll_multi_queue) {
1507 struct io_kiocb *list_req;
1508
1509 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1510 comp_list);
1511 if (list_req->file != req->file)
1512 ctx->poll_multi_queue = true;
1513 }
1514
1515 /*
1516 * For fast devices, IO may have already completed. If it has, add
1517 * it to the front so we find it first.
1518 */
1519 if (READ_ONCE(req->iopoll_completed))
1520 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1521 else
1522 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1523
1524 if (unlikely(needs_lock)) {
1525 /*
1526 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1527 * in sq thread task context or in io worker task context. If
1528 * current task context is sq thread, we don't need to check
1529 * whether should wake up sq thread.
1530 */
1531 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1532 wq_has_sleeper(&ctx->sq_data->wait))
1533 wake_up(&ctx->sq_data->wait);
1534
1535 mutex_unlock(&ctx->uring_lock);
1536 }
1537 }
1538
io_bdev_nowait(struct block_device * bdev)1539 static bool io_bdev_nowait(struct block_device *bdev)
1540 {
1541 return !bdev || bdev_nowait(bdev);
1542 }
1543
1544 /*
1545 * If we tracked the file through the SCM inflight mechanism, we could support
1546 * any file. For now, just ensure that anything potentially problematic is done
1547 * inline.
1548 */
__io_file_supports_nowait(struct file * file,umode_t mode)1549 static bool __io_file_supports_nowait(struct file *file, umode_t mode)
1550 {
1551 if (S_ISBLK(mode)) {
1552 if (IS_ENABLED(CONFIG_BLOCK) &&
1553 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
1554 return true;
1555 return false;
1556 }
1557 if (S_ISSOCK(mode))
1558 return true;
1559 if (S_ISREG(mode)) {
1560 if (IS_ENABLED(CONFIG_BLOCK) &&
1561 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
1562 !io_is_uring_fops(file))
1563 return true;
1564 return false;
1565 }
1566
1567 /* any ->read/write should understand O_NONBLOCK */
1568 if (file->f_flags & O_NONBLOCK)
1569 return true;
1570 return file->f_mode & FMODE_NOWAIT;
1571 }
1572
1573 /*
1574 * If we tracked the file through the SCM inflight mechanism, we could support
1575 * any file. For now, just ensure that anything potentially problematic is done
1576 * inline.
1577 */
io_file_get_flags(struct file * file)1578 unsigned int io_file_get_flags(struct file *file)
1579 {
1580 umode_t mode = file_inode(file)->i_mode;
1581 unsigned int res = 0;
1582
1583 if (S_ISREG(mode))
1584 res |= FFS_ISREG;
1585 if (__io_file_supports_nowait(file, mode))
1586 res |= FFS_NOWAIT;
1587 return res;
1588 }
1589
io_alloc_async_data(struct io_kiocb * req)1590 bool io_alloc_async_data(struct io_kiocb *req)
1591 {
1592 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
1593 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
1594 if (req->async_data) {
1595 req->flags |= REQ_F_ASYNC_DATA;
1596 return false;
1597 }
1598 return true;
1599 }
1600
io_req_prep_async(struct io_kiocb * req)1601 int io_req_prep_async(struct io_kiocb *req)
1602 {
1603 const struct io_op_def *def = &io_op_defs[req->opcode];
1604
1605 /* assign early for deferred execution for non-fixed file */
1606 if (def->needs_file && !(req->flags & REQ_F_FIXED_FILE) && !req->file)
1607 req->file = io_file_get_normal(req, req->cqe.fd);
1608 if (!def->prep_async)
1609 return 0;
1610 if (WARN_ON_ONCE(req_has_async_data(req)))
1611 return -EFAULT;
1612 if (!io_op_defs[req->opcode].manual_alloc) {
1613 if (io_alloc_async_data(req))
1614 return -EAGAIN;
1615 }
1616 return def->prep_async(req);
1617 }
1618
io_get_sequence(struct io_kiocb * req)1619 static u32 io_get_sequence(struct io_kiocb *req)
1620 {
1621 u32 seq = req->ctx->cached_sq_head;
1622 struct io_kiocb *cur;
1623
1624 /* need original cached_sq_head, but it was increased for each req */
1625 io_for_each_link(cur, req)
1626 seq--;
1627 return seq;
1628 }
1629
io_drain_req(struct io_kiocb * req)1630 static __cold void io_drain_req(struct io_kiocb *req)
1631 __must_hold(&ctx->uring_lock)
1632 {
1633 struct io_ring_ctx *ctx = req->ctx;
1634 struct io_defer_entry *de;
1635 int ret;
1636 u32 seq = io_get_sequence(req);
1637
1638 /* Still need defer if there is pending req in defer list. */
1639 spin_lock(&ctx->completion_lock);
1640 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1641 spin_unlock(&ctx->completion_lock);
1642 queue:
1643 ctx->drain_active = false;
1644 io_req_task_queue(req);
1645 return;
1646 }
1647 spin_unlock(&ctx->completion_lock);
1648
1649 io_prep_async_link(req);
1650 de = kmalloc(sizeof(*de), GFP_KERNEL);
1651 if (!de) {
1652 ret = -ENOMEM;
1653 io_req_complete_failed(req, ret);
1654 return;
1655 }
1656
1657 spin_lock(&ctx->completion_lock);
1658 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1659 spin_unlock(&ctx->completion_lock);
1660 kfree(de);
1661 goto queue;
1662 }
1663
1664 trace_io_uring_defer(req);
1665 de->req = req;
1666 de->seq = seq;
1667 list_add_tail(&de->list, &ctx->defer_list);
1668 spin_unlock(&ctx->completion_lock);
1669 }
1670
io_clean_op(struct io_kiocb * req)1671 static void io_clean_op(struct io_kiocb *req)
1672 {
1673 if (req->flags & REQ_F_BUFFER_SELECTED) {
1674 spin_lock(&req->ctx->completion_lock);
1675 io_put_kbuf_comp(req);
1676 spin_unlock(&req->ctx->completion_lock);
1677 }
1678
1679 if (req->flags & REQ_F_NEED_CLEANUP) {
1680 const struct io_op_def *def = &io_op_defs[req->opcode];
1681
1682 if (def->cleanup)
1683 def->cleanup(req);
1684 }
1685 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1686 kfree(req->apoll->double_poll);
1687 kfree(req->apoll);
1688 req->apoll = NULL;
1689 }
1690 if (req->flags & REQ_F_INFLIGHT) {
1691 struct io_uring_task *tctx = req->task->io_uring;
1692
1693 atomic_dec(&tctx->inflight_tracked);
1694 }
1695 if (req->flags & REQ_F_CREDS)
1696 put_cred(req->creds);
1697 if (req->flags & REQ_F_ASYNC_DATA) {
1698 kfree(req->async_data);
1699 req->async_data = NULL;
1700 }
1701 req->flags &= ~IO_REQ_CLEAN_FLAGS;
1702 }
1703
io_assign_file(struct io_kiocb * req,unsigned int issue_flags)1704 static bool io_assign_file(struct io_kiocb *req, unsigned int issue_flags)
1705 {
1706 if (req->file || !io_op_defs[req->opcode].needs_file)
1707 return true;
1708
1709 if (req->flags & REQ_F_FIXED_FILE)
1710 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1711 else
1712 req->file = io_file_get_normal(req, req->cqe.fd);
1713
1714 return !!req->file;
1715 }
1716
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1717 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1718 {
1719 const struct io_op_def *def = &io_op_defs[req->opcode];
1720 const struct cred *creds = NULL;
1721 int ret;
1722
1723 if (unlikely(!io_assign_file(req, issue_flags)))
1724 return -EBADF;
1725
1726 if (unlikely((req->flags & REQ_F_CREDS) && req->creds != current_cred()))
1727 creds = override_creds(req->creds);
1728
1729 if (!def->audit_skip)
1730 audit_uring_entry(req->opcode);
1731
1732 ret = def->issue(req, issue_flags);
1733
1734 if (!def->audit_skip)
1735 audit_uring_exit(!ret, ret);
1736
1737 if (creds)
1738 revert_creds(creds);
1739
1740 if (ret == IOU_OK) {
1741 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1742 io_req_complete_defer(req);
1743 else
1744 io_req_complete_post(req);
1745 } else if (ret != IOU_ISSUE_SKIP_COMPLETE)
1746 return ret;
1747
1748 /* If the op doesn't have a file, we're not polling for it */
1749 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1750 io_iopoll_req_issued(req, issue_flags);
1751
1752 return 0;
1753 }
1754
io_poll_issue(struct io_kiocb * req,bool * locked)1755 int io_poll_issue(struct io_kiocb *req, bool *locked)
1756 {
1757 io_tw_lock(req->ctx, locked);
1758 if (unlikely(req->task->flags & PF_EXITING))
1759 return -EFAULT;
1760 return io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_MULTISHOT);
1761 }
1762
io_wq_free_work(struct io_wq_work * work)1763 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1764 {
1765 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1766
1767 req = io_put_req_find_next(req);
1768 return req ? &req->work : NULL;
1769 }
1770
io_wq_submit_work(struct io_wq_work * work)1771 void io_wq_submit_work(struct io_wq_work *work)
1772 {
1773 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1774 const struct io_op_def *def = &io_op_defs[req->opcode];
1775 unsigned int issue_flags = IO_URING_F_UNLOCKED;
1776 bool needs_poll = false;
1777 int ret = 0, err = -ECANCELED;
1778
1779 /* one will be dropped by ->io_free_work() after returning to io-wq */
1780 if (!(req->flags & REQ_F_REFCOUNT))
1781 __io_req_set_refcount(req, 2);
1782 else
1783 req_ref_get(req);
1784
1785 io_arm_ltimeout(req);
1786
1787 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1788 if (work->flags & IO_WQ_WORK_CANCEL) {
1789 fail:
1790 io_req_task_queue_fail(req, err);
1791 return;
1792 }
1793 if (!io_assign_file(req, issue_flags)) {
1794 err = -EBADF;
1795 work->flags |= IO_WQ_WORK_CANCEL;
1796 goto fail;
1797 }
1798
1799 if (req->flags & REQ_F_FORCE_ASYNC) {
1800 bool opcode_poll = def->pollin || def->pollout;
1801
1802 if (opcode_poll && file_can_poll(req->file)) {
1803 needs_poll = true;
1804 issue_flags |= IO_URING_F_NONBLOCK;
1805 }
1806 }
1807
1808 do {
1809 ret = io_issue_sqe(req, issue_flags);
1810 if (ret != -EAGAIN)
1811 break;
1812
1813 /*
1814 * If REQ_F_NOWAIT is set, then don't wait or retry with
1815 * poll. -EAGAIN is final for that case.
1816 */
1817 if (req->flags & REQ_F_NOWAIT)
1818 break;
1819
1820 /*
1821 * We can get EAGAIN for iopolled IO even though we're
1822 * forcing a sync submission from here, since we can't
1823 * wait for request slots on the block side.
1824 */
1825 if (!needs_poll) {
1826 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1827 break;
1828 if (io_wq_worker_stopped())
1829 break;
1830 cond_resched();
1831 continue;
1832 }
1833
1834 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1835 return;
1836 /* aborted or ready, in either case retry blocking */
1837 needs_poll = false;
1838 issue_flags &= ~IO_URING_F_NONBLOCK;
1839 } while (1);
1840
1841 /* avoid locking problems by failing it from a clean context */
1842 if (ret < 0)
1843 io_req_task_queue_fail(req, ret);
1844 }
1845
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1846 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1847 unsigned int issue_flags)
1848 {
1849 struct io_ring_ctx *ctx = req->ctx;
1850 struct file *file = NULL;
1851 unsigned long file_ptr;
1852
1853 io_ring_submit_lock(ctx, issue_flags);
1854
1855 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
1856 goto out;
1857 fd = array_index_nospec(fd, ctx->nr_user_files);
1858 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
1859 file = (struct file *) (file_ptr & FFS_MASK);
1860 file_ptr &= ~FFS_MASK;
1861 /* mask in overlapping REQ_F and FFS bits */
1862 req->flags |= (file_ptr << REQ_F_SUPPORT_NOWAIT_BIT);
1863 io_req_set_rsrc_node(req, ctx, 0);
1864 out:
1865 io_ring_submit_unlock(ctx, issue_flags);
1866 return file;
1867 }
1868
io_file_get_normal(struct io_kiocb * req,int fd)1869 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1870 {
1871 struct file *file = fget(fd);
1872
1873 trace_io_uring_file_get(req, fd);
1874
1875 /* we don't allow fixed io_uring files */
1876 if (file && io_is_uring_fops(file))
1877 io_req_track_inflight(req);
1878 return file;
1879 }
1880
io_queue_async(struct io_kiocb * req,int ret)1881 static void io_queue_async(struct io_kiocb *req, int ret)
1882 __must_hold(&req->ctx->uring_lock)
1883 {
1884 struct io_kiocb *linked_timeout;
1885
1886 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1887 io_req_complete_failed(req, ret);
1888 return;
1889 }
1890
1891 linked_timeout = io_prep_linked_timeout(req);
1892
1893 switch (io_arm_poll_handler(req, 0)) {
1894 case IO_APOLL_READY:
1895 io_kbuf_recycle(req, 0);
1896 io_req_task_queue(req);
1897 break;
1898 case IO_APOLL_ABORTED:
1899 io_kbuf_recycle(req, 0);
1900 io_queue_iowq(req, NULL);
1901 break;
1902 case IO_APOLL_OK:
1903 break;
1904 }
1905
1906 if (linked_timeout)
1907 io_queue_linked_timeout(linked_timeout);
1908 }
1909
io_queue_sqe(struct io_kiocb * req)1910 static inline void io_queue_sqe(struct io_kiocb *req)
1911 __must_hold(&req->ctx->uring_lock)
1912 {
1913 int ret;
1914
1915 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1916
1917 /*
1918 * We async punt it if the file wasn't marked NOWAIT, or if the file
1919 * doesn't support non-blocking read/write attempts
1920 */
1921 if (likely(!ret))
1922 io_arm_ltimeout(req);
1923 else
1924 io_queue_async(req, ret);
1925 }
1926
io_queue_sqe_fallback(struct io_kiocb * req)1927 static void io_queue_sqe_fallback(struct io_kiocb *req)
1928 __must_hold(&req->ctx->uring_lock)
1929 {
1930 if (unlikely(req->flags & REQ_F_FAIL)) {
1931 /*
1932 * We don't submit, fail them all, for that replace hardlinks
1933 * with normal links. Extra REQ_F_LINK is tolerated.
1934 */
1935 req->flags &= ~REQ_F_HARDLINK;
1936 req->flags |= REQ_F_LINK;
1937 io_req_complete_failed(req, req->cqe.res);
1938 } else {
1939 int ret = io_req_prep_async(req);
1940
1941 if (unlikely(ret)) {
1942 io_req_complete_failed(req, ret);
1943 return;
1944 }
1945
1946 if (unlikely(req->ctx->drain_active))
1947 io_drain_req(req);
1948 else
1949 io_queue_iowq(req, NULL);
1950 }
1951 }
1952
1953 /*
1954 * Check SQE restrictions (opcode and flags).
1955 *
1956 * Returns 'true' if SQE is allowed, 'false' otherwise.
1957 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1958 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1959 struct io_kiocb *req,
1960 unsigned int sqe_flags)
1961 {
1962 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
1963 return false;
1964
1965 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
1966 ctx->restrictions.sqe_flags_required)
1967 return false;
1968
1969 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
1970 ctx->restrictions.sqe_flags_required))
1971 return false;
1972
1973 return true;
1974 }
1975
io_init_req_drain(struct io_kiocb * req)1976 static void io_init_req_drain(struct io_kiocb *req)
1977 {
1978 struct io_ring_ctx *ctx = req->ctx;
1979 struct io_kiocb *head = ctx->submit_state.link.head;
1980
1981 ctx->drain_active = true;
1982 if (head) {
1983 /*
1984 * If we need to drain a request in the middle of a link, drain
1985 * the head request and the next request/link after the current
1986 * link. Considering sequential execution of links,
1987 * REQ_F_IO_DRAIN will be maintained for every request of our
1988 * link.
1989 */
1990 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
1991 ctx->drain_next = true;
1992 }
1993 }
1994
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)1995 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
1996 const struct io_uring_sqe *sqe)
1997 __must_hold(&ctx->uring_lock)
1998 {
1999 const struct io_op_def *def;
2000 unsigned int sqe_flags;
2001 int personality;
2002 u8 opcode;
2003
2004 /* req is partially pre-initialised, see io_preinit_req() */
2005 req->opcode = opcode = READ_ONCE(sqe->opcode);
2006 /* same numerical values with corresponding REQ_F_*, safe to copy */
2007 req->flags = sqe_flags = READ_ONCE(sqe->flags);
2008 req->cqe.user_data = READ_ONCE(sqe->user_data);
2009 req->file = NULL;
2010 req->rsrc_node = NULL;
2011 req->task = current;
2012
2013 if (unlikely(opcode >= IORING_OP_LAST)) {
2014 req->opcode = 0;
2015 return -EINVAL;
2016 }
2017 def = &io_op_defs[opcode];
2018 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2019 /* enforce forwards compatibility on users */
2020 if (sqe_flags & ~SQE_VALID_FLAGS)
2021 return -EINVAL;
2022 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2023 if (!def->buffer_select)
2024 return -EOPNOTSUPP;
2025 req->buf_index = READ_ONCE(sqe->buf_group);
2026 }
2027 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2028 ctx->drain_disabled = true;
2029 if (sqe_flags & IOSQE_IO_DRAIN) {
2030 if (ctx->drain_disabled)
2031 return -EOPNOTSUPP;
2032 io_init_req_drain(req);
2033 }
2034 }
2035 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2036 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2037 return -EACCES;
2038 /* knock it to the slow queue path, will be drained there */
2039 if (ctx->drain_active)
2040 req->flags |= REQ_F_FORCE_ASYNC;
2041 /* if there is no link, we're at "next" request and need to drain */
2042 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2043 ctx->drain_next = false;
2044 ctx->drain_active = true;
2045 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2046 }
2047 }
2048
2049 if (!def->ioprio && sqe->ioprio)
2050 return -EINVAL;
2051 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2052 return -EINVAL;
2053
2054 if (def->needs_file) {
2055 struct io_submit_state *state = &ctx->submit_state;
2056
2057 req->cqe.fd = READ_ONCE(sqe->fd);
2058
2059 /*
2060 * Plug now if we have more than 2 IO left after this, and the
2061 * target is potentially a read/write to block based storage.
2062 */
2063 if (state->need_plug && def->plug) {
2064 state->plug_started = true;
2065 state->need_plug = false;
2066 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2067 }
2068 }
2069
2070 personality = READ_ONCE(sqe->personality);
2071 if (personality) {
2072 int ret;
2073
2074 req->creds = xa_load(&ctx->personalities, personality);
2075 if (!req->creds)
2076 return -EINVAL;
2077 get_cred(req->creds);
2078 ret = security_uring_override_creds(req->creds);
2079 if (ret) {
2080 put_cred(req->creds);
2081 return ret;
2082 }
2083 req->flags |= REQ_F_CREDS;
2084 }
2085
2086 return def->prep(req, sqe);
2087 }
2088
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2089 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2090 struct io_kiocb *req, int ret)
2091 {
2092 struct io_ring_ctx *ctx = req->ctx;
2093 struct io_submit_link *link = &ctx->submit_state.link;
2094 struct io_kiocb *head = link->head;
2095
2096 trace_io_uring_req_failed(sqe, req, ret);
2097
2098 /*
2099 * Avoid breaking links in the middle as it renders links with SQPOLL
2100 * unusable. Instead of failing eagerly, continue assembling the link if
2101 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2102 * should find the flag and handle the rest.
2103 */
2104 req_fail_link_node(req, ret);
2105 if (head && !(head->flags & REQ_F_FAIL))
2106 req_fail_link_node(head, -ECANCELED);
2107
2108 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2109 if (head) {
2110 link->last->link = req;
2111 link->head = NULL;
2112 req = head;
2113 }
2114 io_queue_sqe_fallback(req);
2115 return ret;
2116 }
2117
2118 if (head)
2119 link->last->link = req;
2120 else
2121 link->head = req;
2122 link->last = req;
2123 return 0;
2124 }
2125
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2126 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2127 const struct io_uring_sqe *sqe)
2128 __must_hold(&ctx->uring_lock)
2129 {
2130 struct io_submit_link *link = &ctx->submit_state.link;
2131 int ret;
2132
2133 ret = io_init_req(ctx, req, sqe);
2134 if (unlikely(ret))
2135 return io_submit_fail_init(sqe, req, ret);
2136
2137 /* don't need @sqe from now on */
2138 trace_io_uring_submit_sqe(req, true);
2139
2140 /*
2141 * If we already have a head request, queue this one for async
2142 * submittal once the head completes. If we don't have a head but
2143 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2144 * submitted sync once the chain is complete. If none of those
2145 * conditions are true (normal request), then just queue it.
2146 */
2147 if (unlikely(link->head)) {
2148 ret = io_req_prep_async(req);
2149 if (unlikely(ret))
2150 return io_submit_fail_init(sqe, req, ret);
2151
2152 trace_io_uring_link(req, link->head);
2153 link->last->link = req;
2154 link->last = req;
2155
2156 if (req->flags & IO_REQ_LINK_FLAGS)
2157 return 0;
2158 /* last request of the link, flush it */
2159 req = link->head;
2160 link->head = NULL;
2161 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2162 goto fallback;
2163
2164 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2165 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2166 if (req->flags & IO_REQ_LINK_FLAGS) {
2167 link->head = req;
2168 link->last = req;
2169 } else {
2170 fallback:
2171 io_queue_sqe_fallback(req);
2172 }
2173 return 0;
2174 }
2175
2176 io_queue_sqe(req);
2177 return 0;
2178 }
2179
2180 /*
2181 * Batched submission is done, ensure local IO is flushed out.
2182 */
io_submit_state_end(struct io_ring_ctx * ctx)2183 static void io_submit_state_end(struct io_ring_ctx *ctx)
2184 {
2185 struct io_submit_state *state = &ctx->submit_state;
2186
2187 if (unlikely(state->link.head))
2188 io_queue_sqe_fallback(state->link.head);
2189 /* flush only after queuing links as they can generate completions */
2190 io_submit_flush_completions(ctx);
2191 if (state->plug_started)
2192 blk_finish_plug(&state->plug);
2193 }
2194
2195 /*
2196 * Start submission side cache.
2197 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2198 static void io_submit_state_start(struct io_submit_state *state,
2199 unsigned int max_ios)
2200 {
2201 state->plug_started = false;
2202 state->need_plug = max_ios > 2;
2203 state->submit_nr = max_ios;
2204 /* set only head, no need to init link_last in advance */
2205 state->link.head = NULL;
2206 }
2207
io_commit_sqring(struct io_ring_ctx * ctx)2208 static void io_commit_sqring(struct io_ring_ctx *ctx)
2209 {
2210 struct io_rings *rings = ctx->rings;
2211
2212 /*
2213 * Ensure any loads from the SQEs are done at this point,
2214 * since once we write the new head, the application could
2215 * write new data to them.
2216 */
2217 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2218 }
2219
2220 /*
2221 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2222 * that is mapped by userspace. This means that care needs to be taken to
2223 * ensure that reads are stable, as we cannot rely on userspace always
2224 * being a good citizen. If members of the sqe are validated and then later
2225 * used, it's important that those reads are done through READ_ONCE() to
2226 * prevent a re-load down the line.
2227 */
io_get_sqe(struct io_ring_ctx * ctx)2228 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
2229 {
2230 unsigned head, mask = ctx->sq_entries - 1;
2231 unsigned sq_idx = ctx->cached_sq_head++ & mask;
2232
2233 /*
2234 * The cached sq head (or cq tail) serves two purposes:
2235 *
2236 * 1) allows us to batch the cost of updating the user visible
2237 * head updates.
2238 * 2) allows the kernel side to track the head on its own, even
2239 * though the application is the one updating it.
2240 */
2241 head = READ_ONCE(ctx->sq_array[sq_idx]);
2242 if (likely(head < ctx->sq_entries)) {
2243 /* double index for 128-byte SQEs, twice as long */
2244 if (ctx->flags & IORING_SETUP_SQE128)
2245 head <<= 1;
2246 return &ctx->sq_sqes[head];
2247 }
2248
2249 /* drop invalid entries */
2250 spin_lock(&ctx->completion_lock);
2251 ctx->cq_extra--;
2252 spin_unlock(&ctx->completion_lock);
2253 WRITE_ONCE(ctx->rings->sq_dropped,
2254 READ_ONCE(ctx->rings->sq_dropped) + 1);
2255 return NULL;
2256 }
2257
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2258 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2259 __must_hold(&ctx->uring_lock)
2260 {
2261 unsigned int entries = io_sqring_entries(ctx);
2262 unsigned int left;
2263 int ret;
2264
2265 if (unlikely(!entries))
2266 return 0;
2267 /* make sure SQ entry isn't read before tail */
2268 ret = left = min3(nr, ctx->sq_entries, entries);
2269 io_get_task_refs(left);
2270 io_submit_state_start(&ctx->submit_state, left);
2271
2272 do {
2273 const struct io_uring_sqe *sqe;
2274 struct io_kiocb *req;
2275
2276 if (unlikely(!io_alloc_req_refill(ctx)))
2277 break;
2278 req = io_alloc_req(ctx);
2279 sqe = io_get_sqe(ctx);
2280 if (unlikely(!sqe)) {
2281 io_req_add_to_cache(req, ctx);
2282 break;
2283 }
2284
2285 /*
2286 * Continue submitting even for sqe failure if the
2287 * ring was setup with IORING_SETUP_SUBMIT_ALL
2288 */
2289 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2290 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2291 left--;
2292 break;
2293 }
2294 } while (--left);
2295
2296 if (unlikely(left)) {
2297 ret -= left;
2298 /* try again if it submitted nothing and can't allocate a req */
2299 if (!ret && io_req_cache_empty(ctx))
2300 ret = -EAGAIN;
2301 current->io_uring->cached_refs += left;
2302 }
2303
2304 io_submit_state_end(ctx);
2305 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2306 io_commit_sqring(ctx);
2307 return ret;
2308 }
2309
2310 struct io_wait_queue {
2311 struct wait_queue_entry wq;
2312 struct io_ring_ctx *ctx;
2313 unsigned cq_tail;
2314 unsigned nr_timeouts;
2315 };
2316
io_has_work(struct io_ring_ctx * ctx)2317 static inline bool io_has_work(struct io_ring_ctx *ctx)
2318 {
2319 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
2320 ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
2321 !llist_empty(&ctx->work_llist));
2322 }
2323
io_should_wake(struct io_wait_queue * iowq)2324 static inline bool io_should_wake(struct io_wait_queue *iowq)
2325 {
2326 struct io_ring_ctx *ctx = iowq->ctx;
2327 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
2328
2329 /*
2330 * Wake up if we have enough events, or if a timeout occurred since we
2331 * started waiting. For timeouts, we always want to return to userspace,
2332 * regardless of event count.
2333 */
2334 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2335 }
2336
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2337 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2338 int wake_flags, void *key)
2339 {
2340 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2341 wq);
2342 struct io_ring_ctx *ctx = iowq->ctx;
2343
2344 /*
2345 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2346 * the task, and the next invocation will do it.
2347 */
2348 if (io_should_wake(iowq) || io_has_work(ctx))
2349 return autoremove_wake_function(curr, mode, wake_flags, key);
2350 return -1;
2351 }
2352
io_run_task_work_sig(struct io_ring_ctx * ctx)2353 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2354 {
2355 if (io_run_task_work_ctx(ctx) > 0)
2356 return 1;
2357 if (task_sigpending(current))
2358 return -EINTR;
2359 return 0;
2360 }
2361
current_pending_io(void)2362 static bool current_pending_io(void)
2363 {
2364 struct io_uring_task *tctx = current->io_uring;
2365
2366 if (!tctx)
2367 return false;
2368 return percpu_counter_read_positive(&tctx->inflight);
2369 }
2370
2371 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,ktime_t * timeout)2372 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2373 struct io_wait_queue *iowq,
2374 ktime_t *timeout)
2375 {
2376 int io_wait, ret;
2377 unsigned long check_cq;
2378
2379 /* make sure we run task_work before checking for signals */
2380 ret = io_run_task_work_sig(ctx);
2381 if (ret || io_should_wake(iowq))
2382 return ret;
2383
2384 check_cq = READ_ONCE(ctx->check_cq);
2385 if (unlikely(check_cq)) {
2386 /* let the caller flush overflows, retry */
2387 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2388 return 1;
2389 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
2390 return -EBADR;
2391 }
2392
2393 /*
2394 * Mark us as being in io_wait if we have pending requests, so cpufreq
2395 * can take into account that the task is waiting for IO - turns out
2396 * to be important for low QD IO.
2397 */
2398 io_wait = current->in_iowait;
2399 if (current_pending_io())
2400 current->in_iowait = 1;
2401 ret = 1;
2402 if (!schedule_hrtimeout(timeout, HRTIMER_MODE_ABS))
2403 ret = -ETIME;
2404 current->in_iowait = io_wait;
2405 return ret;
2406 }
2407
2408 /*
2409 * Wait until events become available, if we don't already have some. The
2410 * application must reap them itself, as they reside on the shared cq ring.
2411 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)2412 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2413 const sigset_t __user *sig, size_t sigsz,
2414 struct __kernel_timespec __user *uts)
2415 {
2416 struct io_wait_queue iowq;
2417 struct io_rings *rings = ctx->rings;
2418 ktime_t timeout = KTIME_MAX;
2419 int ret;
2420
2421 if (!io_allowed_run_tw(ctx))
2422 return -EEXIST;
2423
2424 do {
2425 /* always run at least 1 task work to process local work */
2426 ret = io_run_task_work_ctx(ctx);
2427 if (ret < 0)
2428 return ret;
2429 io_cqring_overflow_flush(ctx);
2430
2431 /* if user messes with these they will just get an early return */
2432 if (__io_cqring_events_user(ctx) >= min_events)
2433 return 0;
2434 } while (ret > 0);
2435
2436 if (sig) {
2437 #ifdef CONFIG_COMPAT
2438 if (in_compat_syscall())
2439 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2440 sigsz);
2441 else
2442 #endif
2443 ret = set_user_sigmask(sig, sigsz);
2444
2445 if (ret)
2446 return ret;
2447 }
2448
2449 if (uts) {
2450 struct timespec64 ts;
2451
2452 if (get_timespec64(&ts, uts))
2453 return -EFAULT;
2454 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
2455 }
2456
2457 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2458 iowq.wq.private = current;
2459 INIT_LIST_HEAD(&iowq.wq.entry);
2460 iowq.ctx = ctx;
2461 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2462 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2463
2464 trace_io_uring_cqring_wait(ctx, min_events);
2465 do {
2466 /* if we can't even flush overflow, don't wait for more */
2467 if (!io_cqring_overflow_flush(ctx)) {
2468 ret = -EBUSY;
2469 break;
2470 }
2471 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2472 TASK_INTERRUPTIBLE);
2473 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
2474 cond_resched();
2475 } while (ret > 0);
2476
2477 finish_wait(&ctx->cq_wait, &iowq.wq);
2478 restore_saved_sigmask_unless(ret == -EINTR);
2479
2480 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2481 }
2482
io_mem_free(void * ptr)2483 static void io_mem_free(void *ptr)
2484 {
2485 struct page *page;
2486
2487 if (!ptr)
2488 return;
2489
2490 page = virt_to_head_page(ptr);
2491 if (put_page_testzero(page))
2492 free_compound_page(page);
2493 }
2494
io_mem_alloc(size_t size)2495 static void *io_mem_alloc(size_t size)
2496 {
2497 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
2498
2499 return (void *) __get_free_pages(gfp, get_order(size));
2500 }
2501
rings_size(struct io_ring_ctx * ctx,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2502 static unsigned long rings_size(struct io_ring_ctx *ctx, unsigned int sq_entries,
2503 unsigned int cq_entries, size_t *sq_offset)
2504 {
2505 struct io_rings *rings;
2506 size_t off, sq_array_size;
2507
2508 off = struct_size(rings, cqes, cq_entries);
2509 if (off == SIZE_MAX)
2510 return SIZE_MAX;
2511 if (ctx->flags & IORING_SETUP_CQE32) {
2512 if (check_shl_overflow(off, 1, &off))
2513 return SIZE_MAX;
2514 }
2515
2516 #ifdef CONFIG_SMP
2517 off = ALIGN(off, SMP_CACHE_BYTES);
2518 if (off == 0)
2519 return SIZE_MAX;
2520 #endif
2521
2522 if (sq_offset)
2523 *sq_offset = off;
2524
2525 sq_array_size = array_size(sizeof(u32), sq_entries);
2526 if (sq_array_size == SIZE_MAX)
2527 return SIZE_MAX;
2528
2529 if (check_add_overflow(off, sq_array_size, &off))
2530 return SIZE_MAX;
2531
2532 return off;
2533 }
2534
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int eventfd_async)2535 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg,
2536 unsigned int eventfd_async)
2537 {
2538 struct io_ev_fd *ev_fd;
2539 __s32 __user *fds = arg;
2540 int fd;
2541
2542 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2543 lockdep_is_held(&ctx->uring_lock));
2544 if (ev_fd)
2545 return -EBUSY;
2546
2547 if (copy_from_user(&fd, fds, sizeof(*fds)))
2548 return -EFAULT;
2549
2550 ev_fd = kmalloc(sizeof(*ev_fd), GFP_KERNEL);
2551 if (!ev_fd)
2552 return -ENOMEM;
2553
2554 ev_fd->cq_ev_fd = eventfd_ctx_fdget(fd);
2555 if (IS_ERR(ev_fd->cq_ev_fd)) {
2556 int ret = PTR_ERR(ev_fd->cq_ev_fd);
2557 kfree(ev_fd);
2558 return ret;
2559 }
2560
2561 spin_lock(&ctx->completion_lock);
2562 ctx->evfd_last_cq_tail = ctx->cached_cq_tail;
2563 spin_unlock(&ctx->completion_lock);
2564
2565 ev_fd->eventfd_async = eventfd_async;
2566 ctx->has_evfd = true;
2567 rcu_assign_pointer(ctx->io_ev_fd, ev_fd);
2568 atomic_set(&ev_fd->refs, 1);
2569 atomic_set(&ev_fd->ops, 0);
2570 return 0;
2571 }
2572
io_eventfd_unregister(struct io_ring_ctx * ctx)2573 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
2574 {
2575 struct io_ev_fd *ev_fd;
2576
2577 ev_fd = rcu_dereference_protected(ctx->io_ev_fd,
2578 lockdep_is_held(&ctx->uring_lock));
2579 if (ev_fd) {
2580 ctx->has_evfd = false;
2581 rcu_assign_pointer(ctx->io_ev_fd, NULL);
2582 if (!atomic_fetch_or(BIT(IO_EVENTFD_OP_FREE_BIT), &ev_fd->ops))
2583 call_rcu(&ev_fd->rcu, io_eventfd_ops);
2584 return 0;
2585 }
2586
2587 return -ENXIO;
2588 }
2589
io_req_caches_free(struct io_ring_ctx * ctx)2590 static void io_req_caches_free(struct io_ring_ctx *ctx)
2591 {
2592 int nr = 0;
2593
2594 mutex_lock(&ctx->uring_lock);
2595 io_flush_cached_locked_reqs(ctx, &ctx->submit_state);
2596
2597 while (!io_req_cache_empty(ctx)) {
2598 struct io_kiocb *req = io_alloc_req(ctx);
2599
2600 kmem_cache_free(req_cachep, req);
2601 nr++;
2602 }
2603 if (nr)
2604 percpu_ref_put_many(&ctx->refs, nr);
2605 mutex_unlock(&ctx->uring_lock);
2606 }
2607
io_ring_ctx_free(struct io_ring_ctx * ctx)2608 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2609 {
2610 io_sq_thread_finish(ctx);
2611 io_rsrc_refs_drop(ctx);
2612 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
2613 io_wait_rsrc_data(ctx->buf_data);
2614 io_wait_rsrc_data(ctx->file_data);
2615
2616 mutex_lock(&ctx->uring_lock);
2617 if (ctx->buf_data)
2618 __io_sqe_buffers_unregister(ctx);
2619 if (ctx->file_data)
2620 __io_sqe_files_unregister(ctx);
2621 if (ctx->rings)
2622 __io_cqring_overflow_flush(ctx, true);
2623 io_eventfd_unregister(ctx);
2624 io_alloc_cache_free(&ctx->apoll_cache, io_apoll_cache_free);
2625 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
2626 io_destroy_buffers(ctx);
2627 mutex_unlock(&ctx->uring_lock);
2628 if (ctx->sq_creds)
2629 put_cred(ctx->sq_creds);
2630 if (ctx->submitter_task)
2631 put_task_struct(ctx->submitter_task);
2632
2633 /* there are no registered resources left, nobody uses it */
2634 if (ctx->rsrc_node)
2635 io_rsrc_node_destroy(ctx->rsrc_node);
2636 if (ctx->rsrc_backup_node)
2637 io_rsrc_node_destroy(ctx->rsrc_backup_node);
2638 flush_delayed_work(&ctx->rsrc_put_work);
2639 flush_delayed_work(&ctx->fallback_work);
2640
2641 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
2642 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
2643
2644 #if defined(CONFIG_UNIX)
2645 if (ctx->ring_sock) {
2646 ctx->ring_sock->file = NULL; /* so that iput() is called */
2647 sock_release(ctx->ring_sock);
2648 }
2649 #endif
2650 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2651
2652 if (ctx->mm_account) {
2653 mmdrop(ctx->mm_account);
2654 ctx->mm_account = NULL;
2655 }
2656 io_mem_free(ctx->rings);
2657 io_mem_free(ctx->sq_sqes);
2658
2659 percpu_ref_exit(&ctx->refs);
2660 free_uid(ctx->user);
2661 io_req_caches_free(ctx);
2662 if (ctx->hash_map)
2663 io_wq_put_hash(ctx->hash_map);
2664 kfree(ctx->cancel_table.hbs);
2665 kfree(ctx->cancel_table_locked.hbs);
2666 kfree(ctx->dummy_ubuf);
2667 kfree(ctx->io_bl);
2668 xa_destroy(&ctx->io_bl_xa);
2669 kfree(ctx);
2670 }
2671
io_uring_poll(struct file * file,poll_table * wait)2672 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2673 {
2674 struct io_ring_ctx *ctx = file->private_data;
2675 __poll_t mask = 0;
2676
2677 poll_wait(file, &ctx->cq_wait, wait);
2678 /*
2679 * synchronizes with barrier from wq_has_sleeper call in
2680 * io_commit_cqring
2681 */
2682 smp_rmb();
2683 if (!io_sqring_full(ctx))
2684 mask |= EPOLLOUT | EPOLLWRNORM;
2685
2686 /*
2687 * Don't flush cqring overflow list here, just do a simple check.
2688 * Otherwise there could possible be ABBA deadlock:
2689 * CPU0 CPU1
2690 * ---- ----
2691 * lock(&ctx->uring_lock);
2692 * lock(&ep->mtx);
2693 * lock(&ctx->uring_lock);
2694 * lock(&ep->mtx);
2695 *
2696 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2697 * pushs them to do the flush.
2698 */
2699
2700 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2701 mask |= EPOLLIN | EPOLLRDNORM;
2702
2703 return mask;
2704 }
2705
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)2706 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
2707 {
2708 const struct cred *creds;
2709
2710 creds = xa_erase(&ctx->personalities, id);
2711 if (creds) {
2712 put_cred(creds);
2713 return 0;
2714 }
2715
2716 return -EINVAL;
2717 }
2718
2719 struct io_tctx_exit {
2720 struct callback_head task_work;
2721 struct completion completion;
2722 struct io_ring_ctx *ctx;
2723 };
2724
io_tctx_exit_cb(struct callback_head * cb)2725 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2726 {
2727 struct io_uring_task *tctx = current->io_uring;
2728 struct io_tctx_exit *work;
2729
2730 work = container_of(cb, struct io_tctx_exit, task_work);
2731 /*
2732 * When @in_idle, we're in cancellation and it's racy to remove the
2733 * node. It'll be removed by the end of cancellation, just ignore it.
2734 * tctx can be NULL if the queueing of this task_work raced with
2735 * work cancelation off the exec path.
2736 */
2737 if (tctx && !atomic_read(&tctx->in_idle))
2738 io_uring_del_tctx_node((unsigned long)work->ctx);
2739 complete(&work->completion);
2740 }
2741
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2742 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2743 {
2744 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2745
2746 return req->ctx == data;
2747 }
2748
io_ring_exit_work(struct work_struct * work)2749 static __cold void io_ring_exit_work(struct work_struct *work)
2750 {
2751 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2752 unsigned long timeout = jiffies + HZ * 60 * 5;
2753 unsigned long interval = HZ / 20;
2754 struct io_tctx_exit exit;
2755 struct io_tctx_node *node;
2756 int ret;
2757
2758 /*
2759 * If we're doing polled IO and end up having requests being
2760 * submitted async (out-of-line), then completions can come in while
2761 * we're waiting for refs to drop. We need to reap these manually,
2762 * as nobody else will be looking for them.
2763 */
2764 do {
2765 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2766 io_move_task_work_from_local(ctx);
2767
2768 while (io_uring_try_cancel_requests(ctx, NULL, true))
2769 cond_resched();
2770
2771 if (ctx->sq_data) {
2772 struct io_sq_data *sqd = ctx->sq_data;
2773 struct task_struct *tsk;
2774
2775 io_sq_thread_park(sqd);
2776 tsk = sqd->thread;
2777 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2778 io_wq_cancel_cb(tsk->io_uring->io_wq,
2779 io_cancel_ctx_cb, ctx, true);
2780 io_sq_thread_unpark(sqd);
2781 }
2782
2783 io_req_caches_free(ctx);
2784
2785 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2786 /* there is little hope left, don't run it too often */
2787 interval = HZ * 60;
2788 }
2789 /*
2790 * This is really an uninterruptible wait, as it has to be
2791 * complete. But it's also run from a kworker, which doesn't
2792 * take signals, so it's fine to make it interruptible. This
2793 * avoids scenarios where we knowingly can wait much longer
2794 * on completions, for example if someone does a SIGSTOP on
2795 * a task that needs to finish task_work to make this loop
2796 * complete. That's a synthetic situation that should not
2797 * cause a stuck task backtrace, and hence a potential panic
2798 * on stuck tasks if that is enabled.
2799 */
2800 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2801
2802 init_completion(&exit.completion);
2803 init_task_work(&exit.task_work, io_tctx_exit_cb);
2804 exit.ctx = ctx;
2805
2806 mutex_lock(&ctx->uring_lock);
2807 while (!list_empty(&ctx->tctx_list)) {
2808 WARN_ON_ONCE(time_after(jiffies, timeout));
2809
2810 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2811 ctx_node);
2812 /* don't spin on a single task if cancellation failed */
2813 list_rotate_left(&ctx->tctx_list);
2814 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2815 if (WARN_ON_ONCE(ret))
2816 continue;
2817
2818 mutex_unlock(&ctx->uring_lock);
2819 /*
2820 * See comment above for
2821 * wait_for_completion_interruptible_timeout() on why this
2822 * wait is marked as interruptible.
2823 */
2824 wait_for_completion_interruptible(&exit.completion);
2825 mutex_lock(&ctx->uring_lock);
2826 }
2827 mutex_unlock(&ctx->uring_lock);
2828 spin_lock(&ctx->completion_lock);
2829 spin_unlock(&ctx->completion_lock);
2830
2831 io_ring_ctx_free(ctx);
2832 }
2833
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2834 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2835 {
2836 unsigned long index;
2837 struct creds *creds;
2838
2839 mutex_lock(&ctx->uring_lock);
2840 percpu_ref_kill(&ctx->refs);
2841 if (ctx->rings)
2842 __io_cqring_overflow_flush(ctx, true);
2843 xa_for_each(&ctx->personalities, index, creds)
2844 io_unregister_personality(ctx, index);
2845 if (ctx->rings)
2846 io_poll_remove_all(ctx, NULL, true);
2847 mutex_unlock(&ctx->uring_lock);
2848
2849 /*
2850 * If we failed setting up the ctx, we might not have any rings
2851 * and therefore did not submit any requests
2852 */
2853 if (ctx->rings)
2854 io_kill_timeouts(ctx, NULL, true);
2855
2856 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2857 /*
2858 * Use system_unbound_wq to avoid spawning tons of event kworkers
2859 * if we're exiting a ton of rings at the same time. It just adds
2860 * noise and overhead, there's no discernable change in runtime
2861 * over using system_wq.
2862 */
2863 queue_work(system_unbound_wq, &ctx->exit_work);
2864 }
2865
io_uring_release(struct inode * inode,struct file * file)2866 static int io_uring_release(struct inode *inode, struct file *file)
2867 {
2868 struct io_ring_ctx *ctx = file->private_data;
2869
2870 file->private_data = NULL;
2871 io_ring_ctx_wait_and_kill(ctx);
2872 return 0;
2873 }
2874
2875 struct io_task_cancel {
2876 struct task_struct *task;
2877 bool all;
2878 };
2879
io_cancel_task_cb(struct io_wq_work * work,void * data)2880 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
2881 {
2882 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2883 struct io_task_cancel *cancel = data;
2884
2885 return io_match_task_safe(req, cancel->task, cancel->all);
2886 }
2887
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)2888 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
2889 struct task_struct *task,
2890 bool cancel_all)
2891 {
2892 struct io_defer_entry *de;
2893 LIST_HEAD(list);
2894
2895 spin_lock(&ctx->completion_lock);
2896 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
2897 if (io_match_task_safe(de->req, task, cancel_all)) {
2898 list_cut_position(&list, &ctx->defer_list, &de->list);
2899 break;
2900 }
2901 }
2902 spin_unlock(&ctx->completion_lock);
2903 if (list_empty(&list))
2904 return false;
2905
2906 while (!list_empty(&list)) {
2907 de = list_first_entry(&list, struct io_defer_entry, list);
2908 list_del_init(&de->list);
2909 io_req_task_queue_fail(de->req, -ECANCELED);
2910 kfree(de);
2911 }
2912 return true;
2913 }
2914
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)2915 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
2916 {
2917 struct io_tctx_node *node;
2918 enum io_wq_cancel cret;
2919 bool ret = false;
2920
2921 mutex_lock(&ctx->uring_lock);
2922 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
2923 struct io_uring_task *tctx = node->task->io_uring;
2924
2925 /*
2926 * io_wq will stay alive while we hold uring_lock, because it's
2927 * killed after ctx nodes, which requires to take the lock.
2928 */
2929 if (!tctx || !tctx->io_wq)
2930 continue;
2931 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
2932 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2933 }
2934 mutex_unlock(&ctx->uring_lock);
2935
2936 return ret;
2937 }
2938
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)2939 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
2940 struct task_struct *task,
2941 bool cancel_all)
2942 {
2943 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
2944 struct io_uring_task *tctx = task ? task->io_uring : NULL;
2945 enum io_wq_cancel cret;
2946 bool ret = false;
2947
2948 /* failed during ring init, it couldn't have issued any requests */
2949 if (!ctx->rings)
2950 return false;
2951
2952 if (!task) {
2953 ret |= io_uring_try_cancel_iowq(ctx);
2954 } else if (tctx && tctx->io_wq) {
2955 /*
2956 * Cancels requests of all rings, not only @ctx, but
2957 * it's fine as the task is in exit/exec.
2958 */
2959 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
2960 &cancel, true);
2961 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
2962 }
2963
2964 /* SQPOLL thread does its own polling */
2965 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
2966 (ctx->sq_data && ctx->sq_data->thread == current)) {
2967 while (!wq_list_empty(&ctx->iopoll_list)) {
2968 io_iopoll_try_reap_events(ctx);
2969 ret = true;
2970 cond_resched();
2971 }
2972 }
2973
2974 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2975 ret |= io_run_local_work(ctx) > 0;
2976 ret |= io_cancel_defer_files(ctx, task, cancel_all);
2977 mutex_lock(&ctx->uring_lock);
2978 ret |= io_poll_remove_all(ctx, task, cancel_all);
2979 mutex_unlock(&ctx->uring_lock);
2980 ret |= io_kill_timeouts(ctx, task, cancel_all);
2981 if (task)
2982 ret |= io_run_task_work() > 0;
2983 return ret;
2984 }
2985
tctx_inflight(struct io_uring_task * tctx,bool tracked)2986 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
2987 {
2988 if (tracked)
2989 return atomic_read(&tctx->inflight_tracked);
2990 return percpu_counter_sum(&tctx->inflight);
2991 }
2992
2993 /*
2994 * Find any io_uring ctx that this task has registered or done IO on, and cancel
2995 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
2996 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)2997 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
2998 {
2999 struct io_uring_task *tctx = current->io_uring;
3000 struct io_ring_ctx *ctx;
3001 s64 inflight;
3002 DEFINE_WAIT(wait);
3003
3004 WARN_ON_ONCE(sqd && sqd->thread != current);
3005
3006 if (!current->io_uring)
3007 return;
3008 if (tctx->io_wq)
3009 io_wq_exit_start(tctx->io_wq);
3010
3011 atomic_inc(&tctx->in_idle);
3012 do {
3013 bool loop = false;
3014
3015 io_uring_drop_tctx_refs(current);
3016 /* read completions before cancelations */
3017 inflight = tctx_inflight(tctx, !cancel_all);
3018 if (!inflight)
3019 break;
3020
3021 if (!sqd) {
3022 struct io_tctx_node *node;
3023 unsigned long index;
3024
3025 xa_for_each(&tctx->xa, index, node) {
3026 /* sqpoll task will cancel all its requests */
3027 if (node->ctx->sq_data)
3028 continue;
3029 loop |= io_uring_try_cancel_requests(node->ctx,
3030 current, cancel_all);
3031 }
3032 } else {
3033 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3034 loop |= io_uring_try_cancel_requests(ctx,
3035 current,
3036 cancel_all);
3037 }
3038
3039 if (loop) {
3040 cond_resched();
3041 continue;
3042 }
3043
3044 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3045 io_run_task_work();
3046 io_uring_drop_tctx_refs(current);
3047
3048 /*
3049 * If we've seen completions, retry without waiting. This
3050 * avoids a race where a completion comes in before we did
3051 * prepare_to_wait().
3052 */
3053 if (inflight == tctx_inflight(tctx, !cancel_all))
3054 schedule();
3055 finish_wait(&tctx->wait, &wait);
3056 } while (1);
3057
3058 io_uring_clean_tctx(tctx);
3059 if (cancel_all) {
3060 /*
3061 * We shouldn't run task_works after cancel, so just leave
3062 * ->in_idle set for normal exit.
3063 */
3064 atomic_dec(&tctx->in_idle);
3065 /* for exec all current's requests should be gone, kill tctx */
3066 __io_uring_free(current);
3067 }
3068 }
3069
__io_uring_cancel(bool cancel_all)3070 void __io_uring_cancel(bool cancel_all)
3071 {
3072 io_uring_cancel_generic(cancel_all, NULL);
3073 }
3074
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)3075 static void *io_uring_validate_mmap_request(struct file *file,
3076 loff_t pgoff, size_t sz)
3077 {
3078 struct io_ring_ctx *ctx = file->private_data;
3079 loff_t offset = pgoff << PAGE_SHIFT;
3080 struct page *page;
3081 void *ptr;
3082
3083 switch (offset) {
3084 case IORING_OFF_SQ_RING:
3085 case IORING_OFF_CQ_RING:
3086 ptr = ctx->rings;
3087 break;
3088 case IORING_OFF_SQES:
3089 ptr = ctx->sq_sqes;
3090 break;
3091 default:
3092 return ERR_PTR(-EINVAL);
3093 }
3094
3095 page = virt_to_head_page(ptr);
3096 if (sz > page_size(page))
3097 return ERR_PTR(-EINVAL);
3098
3099 return ptr;
3100 }
3101
3102 #ifdef CONFIG_MMU
3103
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3104 static __cold int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3105 {
3106 size_t sz = vma->vm_end - vma->vm_start;
3107 unsigned long pfn;
3108 void *ptr;
3109
3110 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
3111 if (IS_ERR(ptr))
3112 return PTR_ERR(ptr);
3113
3114 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3115 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3116 }
3117
io_uring_mmu_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3118 static unsigned long io_uring_mmu_get_unmapped_area(struct file *filp,
3119 unsigned long addr, unsigned long len,
3120 unsigned long pgoff, unsigned long flags)
3121 {
3122 void *ptr;
3123
3124 /*
3125 * Do not allow to map to user-provided address to avoid breaking the
3126 * aliasing rules. Userspace is not able to guess the offset address of
3127 * kernel kmalloc()ed memory area.
3128 */
3129 if (addr)
3130 return -EINVAL;
3131
3132 ptr = io_uring_validate_mmap_request(filp, pgoff, len);
3133 if (IS_ERR(ptr))
3134 return -ENOMEM;
3135
3136 /*
3137 * Some architectures have strong cache aliasing requirements.
3138 * For such architectures we need a coherent mapping which aliases
3139 * kernel memory *and* userspace memory. To achieve that:
3140 * - use a NULL file pointer to reference physical memory, and
3141 * - use the kernel virtual address of the shared io_uring context
3142 * (instead of the userspace-provided address, which has to be 0UL
3143 * anyway).
3144 * - use the same pgoff which the get_unmapped_area() uses to
3145 * calculate the page colouring.
3146 * For architectures without such aliasing requirements, the
3147 * architecture will return any suitable mapping because addr is 0.
3148 */
3149 filp = NULL;
3150 flags |= MAP_SHARED;
3151 pgoff = 0; /* has been translated to ptr above */
3152 #ifdef SHM_COLOUR
3153 addr = (uintptr_t) ptr;
3154 pgoff = addr >> PAGE_SHIFT;
3155 #else
3156 addr = 0UL;
3157 #endif
3158 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
3159 }
3160
3161 #else /* !CONFIG_MMU */
3162
io_uring_mmap(struct file * file,struct vm_area_struct * vma)3163 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3164 {
3165 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
3166 }
3167
io_uring_nommu_mmap_capabilities(struct file * file)3168 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
3169 {
3170 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
3171 }
3172
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3173 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
3174 unsigned long addr, unsigned long len,
3175 unsigned long pgoff, unsigned long flags)
3176 {
3177 void *ptr;
3178
3179 ptr = io_uring_validate_mmap_request(file, pgoff, len);
3180 if (IS_ERR(ptr))
3181 return PTR_ERR(ptr);
3182
3183 return (unsigned long) ptr;
3184 }
3185
3186 #endif /* !CONFIG_MMU */
3187
io_validate_ext_arg(unsigned flags,const void __user * argp,size_t argsz)3188 static int io_validate_ext_arg(unsigned flags, const void __user *argp, size_t argsz)
3189 {
3190 if (flags & IORING_ENTER_EXT_ARG) {
3191 struct io_uring_getevents_arg arg;
3192
3193 if (argsz != sizeof(arg))
3194 return -EINVAL;
3195 if (copy_from_user(&arg, argp, sizeof(arg)))
3196 return -EFAULT;
3197 }
3198 return 0;
3199 }
3200
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)3201 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
3202 struct __kernel_timespec __user **ts,
3203 const sigset_t __user **sig)
3204 {
3205 struct io_uring_getevents_arg arg;
3206
3207 /*
3208 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3209 * is just a pointer to the sigset_t.
3210 */
3211 if (!(flags & IORING_ENTER_EXT_ARG)) {
3212 *sig = (const sigset_t __user *) argp;
3213 *ts = NULL;
3214 return 0;
3215 }
3216
3217 /*
3218 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3219 * timespec and sigset_t pointers if good.
3220 */
3221 if (*argsz != sizeof(arg))
3222 return -EINVAL;
3223 if (copy_from_user(&arg, argp, sizeof(arg)))
3224 return -EFAULT;
3225 if (arg.pad)
3226 return -EINVAL;
3227 *sig = u64_to_user_ptr(arg.sigmask);
3228 *argsz = arg.sigmask_sz;
3229 *ts = u64_to_user_ptr(arg.ts);
3230 return 0;
3231 }
3232
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3233 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3234 u32, min_complete, u32, flags, const void __user *, argp,
3235 size_t, argsz)
3236 {
3237 struct io_ring_ctx *ctx;
3238 struct fd f;
3239 long ret;
3240
3241 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3242 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3243 IORING_ENTER_REGISTERED_RING)))
3244 return -EINVAL;
3245
3246 /*
3247 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3248 * need only dereference our task private array to find it.
3249 */
3250 if (flags & IORING_ENTER_REGISTERED_RING) {
3251 struct io_uring_task *tctx = current->io_uring;
3252
3253 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3254 return -EINVAL;
3255 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3256 f.file = tctx->registered_rings[fd];
3257 f.flags = 0;
3258 if (unlikely(!f.file))
3259 return -EBADF;
3260 } else {
3261 f = fdget(fd);
3262 if (unlikely(!f.file))
3263 return -EBADF;
3264 ret = -EOPNOTSUPP;
3265 if (unlikely(!io_is_uring_fops(f.file)))
3266 goto out;
3267 }
3268
3269 ctx = f.file->private_data;
3270 ret = -EBADFD;
3271 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3272 goto out;
3273
3274 /*
3275 * For SQ polling, the thread will do all submissions and completions.
3276 * Just return the requested submit count, and wake the thread if
3277 * we were asked to.
3278 */
3279 ret = 0;
3280 if (ctx->flags & IORING_SETUP_SQPOLL) {
3281 io_cqring_overflow_flush(ctx);
3282
3283 if (unlikely(ctx->sq_data->thread == NULL)) {
3284 ret = -EOWNERDEAD;
3285 goto out;
3286 }
3287 if (flags & IORING_ENTER_SQ_WAKEUP)
3288 wake_up(&ctx->sq_data->wait);
3289 if (flags & IORING_ENTER_SQ_WAIT) {
3290 ret = io_sqpoll_wait_sq(ctx);
3291 if (ret)
3292 goto out;
3293 }
3294 ret = to_submit;
3295 } else if (to_submit) {
3296 ret = io_uring_add_tctx_node(ctx);
3297 if (unlikely(ret))
3298 goto out;
3299
3300 mutex_lock(&ctx->uring_lock);
3301 ret = io_submit_sqes(ctx, to_submit);
3302 if (ret != to_submit) {
3303 mutex_unlock(&ctx->uring_lock);
3304 goto out;
3305 }
3306 if (flags & IORING_ENTER_GETEVENTS) {
3307 if (ctx->syscall_iopoll)
3308 goto iopoll_locked;
3309 /*
3310 * Ignore errors, we'll soon call io_cqring_wait() and
3311 * it should handle ownership problems if any.
3312 */
3313 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3314 (void)io_run_local_work_locked(ctx);
3315 }
3316 mutex_unlock(&ctx->uring_lock);
3317 }
3318
3319 if (flags & IORING_ENTER_GETEVENTS) {
3320 int ret2;
3321
3322 if (ctx->syscall_iopoll) {
3323 /*
3324 * We disallow the app entering submit/complete with
3325 * polling, but we still need to lock the ring to
3326 * prevent racing with polled issue that got punted to
3327 * a workqueue.
3328 */
3329 mutex_lock(&ctx->uring_lock);
3330 iopoll_locked:
3331 ret2 = io_validate_ext_arg(flags, argp, argsz);
3332 if (likely(!ret2)) {
3333 min_complete = min(min_complete,
3334 ctx->cq_entries);
3335 ret2 = io_iopoll_check(ctx, min_complete);
3336 }
3337 mutex_unlock(&ctx->uring_lock);
3338 } else {
3339 const sigset_t __user *sig;
3340 struct __kernel_timespec __user *ts;
3341
3342 ret2 = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
3343 if (likely(!ret2)) {
3344 min_complete = min(min_complete,
3345 ctx->cq_entries);
3346 ret2 = io_cqring_wait(ctx, min_complete, sig,
3347 argsz, ts);
3348 }
3349 }
3350
3351 if (!ret) {
3352 ret = ret2;
3353
3354 /*
3355 * EBADR indicates that one or more CQE were dropped.
3356 * Once the user has been informed we can clear the bit
3357 * as they are obviously ok with those drops.
3358 */
3359 if (unlikely(ret2 == -EBADR))
3360 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3361 &ctx->check_cq);
3362 }
3363 }
3364 out:
3365 fdput(f);
3366 return ret;
3367 }
3368
3369 static const struct file_operations io_uring_fops = {
3370 .release = io_uring_release,
3371 .mmap = io_uring_mmap,
3372 #ifndef CONFIG_MMU
3373 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
3374 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3375 #else
3376 .get_unmapped_area = io_uring_mmu_get_unmapped_area,
3377 #endif
3378 .poll = io_uring_poll,
3379 #ifdef CONFIG_PROC_FS
3380 .show_fdinfo = io_uring_show_fdinfo,
3381 #endif
3382 };
3383
io_is_uring_fops(struct file * file)3384 bool io_is_uring_fops(struct file *file)
3385 {
3386 return file->f_op == &io_uring_fops;
3387 }
3388
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3389 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3390 struct io_uring_params *p)
3391 {
3392 struct io_rings *rings;
3393 size_t size, sq_array_offset;
3394
3395 /* make sure these are sane, as we already accounted them */
3396 ctx->sq_entries = p->sq_entries;
3397 ctx->cq_entries = p->cq_entries;
3398
3399 size = rings_size(ctx, p->sq_entries, p->cq_entries, &sq_array_offset);
3400 if (size == SIZE_MAX)
3401 return -EOVERFLOW;
3402
3403 rings = io_mem_alloc(size);
3404 if (!rings)
3405 return -ENOMEM;
3406
3407 ctx->rings = rings;
3408 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3409 rings->sq_ring_mask = p->sq_entries - 1;
3410 rings->cq_ring_mask = p->cq_entries - 1;
3411 rings->sq_ring_entries = p->sq_entries;
3412 rings->cq_ring_entries = p->cq_entries;
3413
3414 if (p->flags & IORING_SETUP_SQE128)
3415 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3416 else
3417 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3418 if (size == SIZE_MAX) {
3419 io_mem_free(ctx->rings);
3420 ctx->rings = NULL;
3421 return -EOVERFLOW;
3422 }
3423
3424 ctx->sq_sqes = io_mem_alloc(size);
3425 if (!ctx->sq_sqes) {
3426 io_mem_free(ctx->rings);
3427 ctx->rings = NULL;
3428 return -ENOMEM;
3429 }
3430
3431 return 0;
3432 }
3433
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)3434 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
3435 {
3436 int ret, fd;
3437
3438 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3439 if (fd < 0)
3440 return fd;
3441
3442 ret = __io_uring_add_tctx_node(ctx);
3443 if (ret) {
3444 put_unused_fd(fd);
3445 return ret;
3446 }
3447 fd_install(fd, file);
3448 return fd;
3449 }
3450
3451 /*
3452 * Allocate an anonymous fd, this is what constitutes the application
3453 * visible backing of an io_uring instance. The application mmaps this
3454 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3455 * we have to tie this fd to a socket for file garbage collection purposes.
3456 */
io_uring_get_file(struct io_ring_ctx * ctx)3457 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3458 {
3459 struct file *file;
3460 #if defined(CONFIG_UNIX)
3461 int ret;
3462
3463 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3464 &ctx->ring_sock);
3465 if (ret)
3466 return ERR_PTR(ret);
3467 #endif
3468
3469 file = anon_inode_getfile_secure("[io_uring]", &io_uring_fops, ctx,
3470 O_RDWR | O_CLOEXEC, NULL);
3471 #if defined(CONFIG_UNIX)
3472 if (IS_ERR(file)) {
3473 sock_release(ctx->ring_sock);
3474 ctx->ring_sock = NULL;
3475 } else {
3476 ctx->ring_sock->file = file;
3477 }
3478 #endif
3479 return file;
3480 }
3481
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3482 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3483 struct io_uring_params __user *params)
3484 {
3485 struct io_ring_ctx *ctx;
3486 struct file *file;
3487 int ret;
3488
3489 if (!entries)
3490 return -EINVAL;
3491 if (entries > IORING_MAX_ENTRIES) {
3492 if (!(p->flags & IORING_SETUP_CLAMP))
3493 return -EINVAL;
3494 entries = IORING_MAX_ENTRIES;
3495 }
3496
3497 /*
3498 * Use twice as many entries for the CQ ring. It's possible for the
3499 * application to drive a higher depth than the size of the SQ ring,
3500 * since the sqes are only used at submission time. This allows for
3501 * some flexibility in overcommitting a bit. If the application has
3502 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3503 * of CQ ring entries manually.
3504 */
3505 p->sq_entries = roundup_pow_of_two(entries);
3506 if (p->flags & IORING_SETUP_CQSIZE) {
3507 /*
3508 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3509 * to a power-of-two, if it isn't already. We do NOT impose
3510 * any cq vs sq ring sizing.
3511 */
3512 if (!p->cq_entries)
3513 return -EINVAL;
3514 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3515 if (!(p->flags & IORING_SETUP_CLAMP))
3516 return -EINVAL;
3517 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3518 }
3519 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3520 if (p->cq_entries < p->sq_entries)
3521 return -EINVAL;
3522 } else {
3523 p->cq_entries = 2 * p->sq_entries;
3524 }
3525
3526 ctx = io_ring_ctx_alloc(p);
3527 if (!ctx)
3528 return -ENOMEM;
3529
3530 /*
3531 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3532 * space applications don't need to do io completion events
3533 * polling again, they can rely on io_sq_thread to do polling
3534 * work, which can reduce cpu usage and uring_lock contention.
3535 */
3536 if (ctx->flags & IORING_SETUP_IOPOLL &&
3537 !(ctx->flags & IORING_SETUP_SQPOLL))
3538 ctx->syscall_iopoll = 1;
3539
3540 ctx->compat = in_compat_syscall();
3541 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3542 ctx->user = get_uid(current_user());
3543
3544 /*
3545 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3546 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3547 */
3548 ret = -EINVAL;
3549 if (ctx->flags & IORING_SETUP_SQPOLL) {
3550 /* IPI related flags don't make sense with SQPOLL */
3551 if (ctx->flags & (IORING_SETUP_COOP_TASKRUN |
3552 IORING_SETUP_TASKRUN_FLAG |
3553 IORING_SETUP_DEFER_TASKRUN))
3554 goto err;
3555 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3556 } else if (ctx->flags & IORING_SETUP_COOP_TASKRUN) {
3557 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3558 } else {
3559 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG &&
3560 !(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
3561 goto err;
3562 ctx->notify_method = TWA_SIGNAL;
3563 }
3564
3565 /*
3566 * For DEFER_TASKRUN we require the completion task to be the same as the
3567 * submission task. This implies that there is only one submitter, so enforce
3568 * that.
3569 */
3570 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN &&
3571 !(ctx->flags & IORING_SETUP_SINGLE_ISSUER)) {
3572 goto err;
3573 }
3574
3575 /*
3576 * This is just grabbed for accounting purposes. When a process exits,
3577 * the mm is exited and dropped before the files, hence we need to hang
3578 * on to this mm purely for the purposes of being able to unaccount
3579 * memory (locked/pinned vm). It's not used for anything else.
3580 */
3581 mmgrab(current->mm);
3582 ctx->mm_account = current->mm;
3583
3584 ret = io_allocate_scq_urings(ctx, p);
3585 if (ret)
3586 goto err;
3587
3588 ret = io_sq_offload_create(ctx, p);
3589 if (ret)
3590 goto err;
3591 /* always set a rsrc node */
3592 ret = io_rsrc_node_switch_start(ctx);
3593 if (ret)
3594 goto err;
3595 io_rsrc_node_switch(ctx, NULL);
3596
3597 memset(&p->sq_off, 0, sizeof(p->sq_off));
3598 p->sq_off.head = offsetof(struct io_rings, sq.head);
3599 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3600 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3601 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3602 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3603 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3604 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3605
3606 memset(&p->cq_off, 0, sizeof(p->cq_off));
3607 p->cq_off.head = offsetof(struct io_rings, cq.head);
3608 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3609 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3610 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3611 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3612 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3613 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3614
3615 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3616 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3617 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3618 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3619 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3620 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3621 IORING_FEAT_LINKED_FILE;
3622
3623 if (copy_to_user(params, p, sizeof(*p))) {
3624 ret = -EFAULT;
3625 goto err;
3626 }
3627
3628 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3629 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3630 ctx->submitter_task = get_task_struct(current);
3631
3632 file = io_uring_get_file(ctx);
3633 if (IS_ERR(file)) {
3634 ret = PTR_ERR(file);
3635 goto err;
3636 }
3637
3638 /*
3639 * Install ring fd as the very last thing, so we don't risk someone
3640 * having closed it before we finish setup
3641 */
3642 ret = io_uring_install_fd(ctx, file);
3643 if (ret < 0) {
3644 /* fput will clean it up */
3645 fput(file);
3646 return ret;
3647 }
3648
3649 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3650 return ret;
3651 err:
3652 io_ring_ctx_wait_and_kill(ctx);
3653 return ret;
3654 }
3655
3656 /*
3657 * Sets up an aio uring context, and returns the fd. Applications asks for a
3658 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3659 * params structure passed in.
3660 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3661 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3662 {
3663 struct io_uring_params p;
3664 int i;
3665
3666 if (copy_from_user(&p, params, sizeof(p)))
3667 return -EFAULT;
3668 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3669 if (p.resv[i])
3670 return -EINVAL;
3671 }
3672
3673 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3674 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3675 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3676 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3677 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3678 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3679 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN))
3680 return -EINVAL;
3681
3682 return io_uring_create(entries, &p, params);
3683 }
3684
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3685 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3686 struct io_uring_params __user *, params)
3687 {
3688 return io_uring_setup(entries, params);
3689 }
3690
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)3691 static __cold int io_probe(struct io_ring_ctx *ctx, void __user *arg,
3692 unsigned nr_args)
3693 {
3694 struct io_uring_probe *p;
3695 size_t size;
3696 int i, ret;
3697
3698 size = struct_size(p, ops, nr_args);
3699 if (size == SIZE_MAX)
3700 return -EOVERFLOW;
3701 p = kzalloc(size, GFP_KERNEL);
3702 if (!p)
3703 return -ENOMEM;
3704
3705 ret = -EFAULT;
3706 if (copy_from_user(p, arg, size))
3707 goto out;
3708 ret = -EINVAL;
3709 if (memchr_inv(p, 0, size))
3710 goto out;
3711
3712 p->last_op = IORING_OP_LAST - 1;
3713 if (nr_args > IORING_OP_LAST)
3714 nr_args = IORING_OP_LAST;
3715
3716 for (i = 0; i < nr_args; i++) {
3717 p->ops[i].op = i;
3718 if (!io_op_defs[i].not_supported)
3719 p->ops[i].flags = IO_URING_OP_SUPPORTED;
3720 }
3721 p->ops_len = i;
3722
3723 ret = 0;
3724 if (copy_to_user(arg, p, size))
3725 ret = -EFAULT;
3726 out:
3727 kfree(p);
3728 return ret;
3729 }
3730
io_register_personality(struct io_ring_ctx * ctx)3731 static int io_register_personality(struct io_ring_ctx *ctx)
3732 {
3733 const struct cred *creds;
3734 u32 id;
3735 int ret;
3736
3737 creds = get_current_cred();
3738
3739 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
3740 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
3741 if (ret < 0) {
3742 put_cred(creds);
3743 return ret;
3744 }
3745 return id;
3746 }
3747
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)3748 static __cold int io_register_restrictions(struct io_ring_ctx *ctx,
3749 void __user *arg, unsigned int nr_args)
3750 {
3751 struct io_uring_restriction *res;
3752 size_t size;
3753 int i, ret;
3754
3755 /* Restrictions allowed only if rings started disabled */
3756 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3757 return -EBADFD;
3758
3759 /* We allow only a single restrictions registration */
3760 if (ctx->restrictions.registered)
3761 return -EBUSY;
3762
3763 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
3764 return -EINVAL;
3765
3766 size = array_size(nr_args, sizeof(*res));
3767 if (size == SIZE_MAX)
3768 return -EOVERFLOW;
3769
3770 res = memdup_user(arg, size);
3771 if (IS_ERR(res))
3772 return PTR_ERR(res);
3773
3774 ret = 0;
3775
3776 for (i = 0; i < nr_args; i++) {
3777 switch (res[i].opcode) {
3778 case IORING_RESTRICTION_REGISTER_OP:
3779 if (res[i].register_op >= IORING_REGISTER_LAST) {
3780 ret = -EINVAL;
3781 goto out;
3782 }
3783
3784 __set_bit(res[i].register_op,
3785 ctx->restrictions.register_op);
3786 break;
3787 case IORING_RESTRICTION_SQE_OP:
3788 if (res[i].sqe_op >= IORING_OP_LAST) {
3789 ret = -EINVAL;
3790 goto out;
3791 }
3792
3793 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
3794 break;
3795 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
3796 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
3797 break;
3798 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
3799 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
3800 break;
3801 default:
3802 ret = -EINVAL;
3803 goto out;
3804 }
3805 }
3806
3807 out:
3808 /* Reset all restrictions if an error happened */
3809 if (ret != 0)
3810 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
3811 else
3812 ctx->restrictions.registered = true;
3813
3814 kfree(res);
3815 return ret;
3816 }
3817
io_register_enable_rings(struct io_ring_ctx * ctx)3818 static int io_register_enable_rings(struct io_ring_ctx *ctx)
3819 {
3820 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
3821 return -EBADFD;
3822
3823 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER && !ctx->submitter_task)
3824 ctx->submitter_task = get_task_struct(current);
3825
3826 if (ctx->restrictions.registered)
3827 ctx->restricted = 1;
3828
3829 ctx->flags &= ~IORING_SETUP_R_DISABLED;
3830 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
3831 wake_up(&ctx->sq_data->wait);
3832 return 0;
3833 }
3834
__io_register_iowq_aff(struct io_ring_ctx * ctx,cpumask_var_t new_mask)3835 static __cold int __io_register_iowq_aff(struct io_ring_ctx *ctx,
3836 cpumask_var_t new_mask)
3837 {
3838 int ret;
3839
3840 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
3841 ret = io_wq_cpu_affinity(current->io_uring, new_mask);
3842 } else {
3843 mutex_unlock(&ctx->uring_lock);
3844 ret = io_sqpoll_wq_cpu_affinity(ctx, new_mask);
3845 mutex_lock(&ctx->uring_lock);
3846 }
3847
3848 return ret;
3849 }
3850
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)3851 static __cold int io_register_iowq_aff(struct io_ring_ctx *ctx,
3852 void __user *arg, unsigned len)
3853 {
3854 cpumask_var_t new_mask;
3855 int ret;
3856
3857 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3858 return -ENOMEM;
3859
3860 cpumask_clear(new_mask);
3861 if (len > cpumask_size())
3862 len = cpumask_size();
3863
3864 if (in_compat_syscall()) {
3865 ret = compat_get_bitmap(cpumask_bits(new_mask),
3866 (const compat_ulong_t __user *)arg,
3867 len * 8 /* CHAR_BIT */);
3868 } else {
3869 ret = copy_from_user(new_mask, arg, len);
3870 }
3871
3872 if (ret) {
3873 free_cpumask_var(new_mask);
3874 return -EFAULT;
3875 }
3876
3877 ret = __io_register_iowq_aff(ctx, new_mask);
3878 free_cpumask_var(new_mask);
3879 return ret;
3880 }
3881
io_unregister_iowq_aff(struct io_ring_ctx * ctx)3882 static __cold int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
3883 {
3884 return __io_register_iowq_aff(ctx, NULL);
3885 }
3886
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)3887 static __cold int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
3888 void __user *arg)
3889 __must_hold(&ctx->uring_lock)
3890 {
3891 struct io_tctx_node *node;
3892 struct io_uring_task *tctx = NULL;
3893 struct io_sq_data *sqd = NULL;
3894 __u32 new_count[2];
3895 int i, ret;
3896
3897 if (copy_from_user(new_count, arg, sizeof(new_count)))
3898 return -EFAULT;
3899 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3900 if (new_count[i] > INT_MAX)
3901 return -EINVAL;
3902
3903 if (ctx->flags & IORING_SETUP_SQPOLL) {
3904 sqd = ctx->sq_data;
3905 if (sqd) {
3906 /*
3907 * Observe the correct sqd->lock -> ctx->uring_lock
3908 * ordering. Fine to drop uring_lock here, we hold
3909 * a ref to the ctx.
3910 */
3911 refcount_inc(&sqd->refs);
3912 mutex_unlock(&ctx->uring_lock);
3913 mutex_lock(&sqd->lock);
3914 mutex_lock(&ctx->uring_lock);
3915 if (sqd->thread)
3916 tctx = sqd->thread->io_uring;
3917 }
3918 } else {
3919 tctx = current->io_uring;
3920 }
3921
3922 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
3923
3924 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3925 if (new_count[i])
3926 ctx->iowq_limits[i] = new_count[i];
3927 ctx->iowq_limits_set = true;
3928
3929 if (tctx && tctx->io_wq) {
3930 ret = io_wq_max_workers(tctx->io_wq, new_count);
3931 if (ret)
3932 goto err;
3933 } else {
3934 memset(new_count, 0, sizeof(new_count));
3935 }
3936
3937 if (sqd) {
3938 mutex_unlock(&sqd->lock);
3939 io_put_sq_data(sqd);
3940 }
3941
3942 if (copy_to_user(arg, new_count, sizeof(new_count)))
3943 return -EFAULT;
3944
3945 /* that's it for SQPOLL, only the SQPOLL task creates requests */
3946 if (sqd)
3947 return 0;
3948
3949 /* now propagate the restriction to all registered users */
3950 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3951 struct io_uring_task *tctx = node->task->io_uring;
3952
3953 if (WARN_ON_ONCE(!tctx->io_wq))
3954 continue;
3955
3956 for (i = 0; i < ARRAY_SIZE(new_count); i++)
3957 new_count[i] = ctx->iowq_limits[i];
3958 /* ignore errors, it always returns zero anyway */
3959 (void)io_wq_max_workers(tctx->io_wq, new_count);
3960 }
3961 return 0;
3962 err:
3963 if (sqd) {
3964 mutex_unlock(&sqd->lock);
3965 io_put_sq_data(sqd);
3966 }
3967 return ret;
3968 }
3969
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)3970 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3971 void __user *arg, unsigned nr_args)
3972 __releases(ctx->uring_lock)
3973 __acquires(ctx->uring_lock)
3974 {
3975 int ret;
3976
3977 /*
3978 * We don't quiesce the refs for register anymore and so it can't be
3979 * dying as we're holding a file ref here.
3980 */
3981 if (WARN_ON_ONCE(percpu_ref_is_dying(&ctx->refs)))
3982 return -ENXIO;
3983
3984 if (ctx->submitter_task && ctx->submitter_task != current)
3985 return -EEXIST;
3986
3987 if (ctx->restricted) {
3988 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
3989 if (!test_bit(opcode, ctx->restrictions.register_op))
3990 return -EACCES;
3991 }
3992
3993 switch (opcode) {
3994 case IORING_REGISTER_BUFFERS:
3995 ret = -EFAULT;
3996 if (!arg)
3997 break;
3998 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
3999 break;
4000 case IORING_UNREGISTER_BUFFERS:
4001 ret = -EINVAL;
4002 if (arg || nr_args)
4003 break;
4004 ret = io_sqe_buffers_unregister(ctx);
4005 break;
4006 case IORING_REGISTER_FILES:
4007 ret = -EFAULT;
4008 if (!arg)
4009 break;
4010 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
4011 break;
4012 case IORING_UNREGISTER_FILES:
4013 ret = -EINVAL;
4014 if (arg || nr_args)
4015 break;
4016 ret = io_sqe_files_unregister(ctx);
4017 break;
4018 case IORING_REGISTER_FILES_UPDATE:
4019 ret = io_register_files_update(ctx, arg, nr_args);
4020 break;
4021 case IORING_REGISTER_EVENTFD:
4022 ret = -EINVAL;
4023 if (nr_args != 1)
4024 break;
4025 ret = io_eventfd_register(ctx, arg, 0);
4026 break;
4027 case IORING_REGISTER_EVENTFD_ASYNC:
4028 ret = -EINVAL;
4029 if (nr_args != 1)
4030 break;
4031 ret = io_eventfd_register(ctx, arg, 1);
4032 break;
4033 case IORING_UNREGISTER_EVENTFD:
4034 ret = -EINVAL;
4035 if (arg || nr_args)
4036 break;
4037 ret = io_eventfd_unregister(ctx);
4038 break;
4039 case IORING_REGISTER_PROBE:
4040 ret = -EINVAL;
4041 if (!arg || nr_args > 256)
4042 break;
4043 ret = io_probe(ctx, arg, nr_args);
4044 break;
4045 case IORING_REGISTER_PERSONALITY:
4046 ret = -EINVAL;
4047 if (arg || nr_args)
4048 break;
4049 ret = io_register_personality(ctx);
4050 break;
4051 case IORING_UNREGISTER_PERSONALITY:
4052 ret = -EINVAL;
4053 if (arg)
4054 break;
4055 ret = io_unregister_personality(ctx, nr_args);
4056 break;
4057 case IORING_REGISTER_ENABLE_RINGS:
4058 ret = -EINVAL;
4059 if (arg || nr_args)
4060 break;
4061 ret = io_register_enable_rings(ctx);
4062 break;
4063 case IORING_REGISTER_RESTRICTIONS:
4064 ret = io_register_restrictions(ctx, arg, nr_args);
4065 break;
4066 case IORING_REGISTER_FILES2:
4067 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
4068 break;
4069 case IORING_REGISTER_FILES_UPDATE2:
4070 ret = io_register_rsrc_update(ctx, arg, nr_args,
4071 IORING_RSRC_FILE);
4072 break;
4073 case IORING_REGISTER_BUFFERS2:
4074 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
4075 break;
4076 case IORING_REGISTER_BUFFERS_UPDATE:
4077 ret = io_register_rsrc_update(ctx, arg, nr_args,
4078 IORING_RSRC_BUFFER);
4079 break;
4080 case IORING_REGISTER_IOWQ_AFF:
4081 ret = -EINVAL;
4082 if (!arg || !nr_args)
4083 break;
4084 ret = io_register_iowq_aff(ctx, arg, nr_args);
4085 break;
4086 case IORING_UNREGISTER_IOWQ_AFF:
4087 ret = -EINVAL;
4088 if (arg || nr_args)
4089 break;
4090 ret = io_unregister_iowq_aff(ctx);
4091 break;
4092 case IORING_REGISTER_IOWQ_MAX_WORKERS:
4093 ret = -EINVAL;
4094 if (!arg || nr_args != 2)
4095 break;
4096 ret = io_register_iowq_max_workers(ctx, arg);
4097 break;
4098 case IORING_REGISTER_RING_FDS:
4099 ret = io_ringfd_register(ctx, arg, nr_args);
4100 break;
4101 case IORING_UNREGISTER_RING_FDS:
4102 ret = io_ringfd_unregister(ctx, arg, nr_args);
4103 break;
4104 case IORING_REGISTER_PBUF_RING:
4105 ret = -EINVAL;
4106 if (!arg || nr_args != 1)
4107 break;
4108 ret = io_register_pbuf_ring(ctx, arg);
4109 break;
4110 case IORING_UNREGISTER_PBUF_RING:
4111 ret = -EINVAL;
4112 if (!arg || nr_args != 1)
4113 break;
4114 ret = io_unregister_pbuf_ring(ctx, arg);
4115 break;
4116 case IORING_REGISTER_SYNC_CANCEL:
4117 ret = -EINVAL;
4118 if (!arg || nr_args != 1)
4119 break;
4120 ret = io_sync_cancel(ctx, arg);
4121 break;
4122 case IORING_REGISTER_FILE_ALLOC_RANGE:
4123 ret = -EINVAL;
4124 if (!arg || nr_args)
4125 break;
4126 ret = io_register_file_alloc_range(ctx, arg);
4127 break;
4128 default:
4129 ret = -EINVAL;
4130 break;
4131 }
4132
4133 return ret;
4134 }
4135
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)4136 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
4137 void __user *, arg, unsigned int, nr_args)
4138 {
4139 struct io_ring_ctx *ctx;
4140 long ret = -EBADF;
4141 struct fd f;
4142
4143 if (opcode >= IORING_REGISTER_LAST)
4144 return -EINVAL;
4145
4146 f = fdget(fd);
4147 if (!f.file)
4148 return -EBADF;
4149
4150 ret = -EOPNOTSUPP;
4151 if (!io_is_uring_fops(f.file))
4152 goto out_fput;
4153
4154 ctx = f.file->private_data;
4155
4156 io_run_task_work_ctx(ctx);
4157
4158 mutex_lock(&ctx->uring_lock);
4159 ret = __io_uring_register(ctx, opcode, arg, nr_args);
4160 mutex_unlock(&ctx->uring_lock);
4161 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs, ret);
4162 out_fput:
4163 fdput(f);
4164 return ret;
4165 }
4166
io_uring_init(void)4167 static int __init io_uring_init(void)
4168 {
4169 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
4170 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
4171 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
4172 } while (0)
4173
4174 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
4175 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
4176 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
4177 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
4178 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
4179 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
4180 BUILD_BUG_SQE_ELEM(1, __u8, flags);
4181 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
4182 BUILD_BUG_SQE_ELEM(4, __s32, fd);
4183 BUILD_BUG_SQE_ELEM(8, __u64, off);
4184 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
4185 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
4186 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
4187 BUILD_BUG_SQE_ELEM(16, __u64, addr);
4188 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
4189 BUILD_BUG_SQE_ELEM(24, __u32, len);
4190 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
4191 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
4192 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
4193 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
4194 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
4195 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
4196 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
4197 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
4198 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
4199 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
4200 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
4201 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
4202 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
4203 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
4204 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
4205 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
4206 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
4207 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
4208 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
4209 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
4210 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
4211 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
4212 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
4213 BUILD_BUG_SQE_ELEM(42, __u16, personality);
4214 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
4215 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
4216 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
4217 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
4218 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
4219 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
4220 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
4221
4222 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
4223 sizeof(struct io_uring_rsrc_update));
4224 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
4225 sizeof(struct io_uring_rsrc_update2));
4226
4227 /* ->buf_index is u16 */
4228 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4229 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4230 offsetof(struct io_uring_buf_ring, tail));
4231
4232 /* should fit into one byte */
4233 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4234 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4235 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4236
4237 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
4238
4239 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4240
4241 io_uring_optable_init();
4242
4243 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4244 SLAB_ACCOUNT);
4245 return 0;
4246 };
4247 __initcall(io_uring_init);
4248