1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
5 */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
20 #include "trace.h"
21
22 #include "../internal.h"
23
24 #define IOEND_BATCH_SIZE 4096
25
26 /*
27 * Structure allocated for each folio when block size < folio size
28 * to track sub-folio uptodate status and I/O completions.
29 */
30 struct iomap_page {
31 atomic_t read_bytes_pending;
32 atomic_t write_bytes_pending;
33 spinlock_t uptodate_lock;
34 unsigned long uptodate[];
35 };
36
to_iomap_page(struct folio * folio)37 static inline struct iomap_page *to_iomap_page(struct folio *folio)
38 {
39 if (folio_test_private(folio))
40 return folio_get_private(folio);
41 return NULL;
42 }
43
44 static struct bio_set iomap_ioend_bioset;
45
46 static struct iomap_page *
iomap_page_create(struct inode * inode,struct folio * folio,unsigned int flags)47 iomap_page_create(struct inode *inode, struct folio *folio, unsigned int flags)
48 {
49 struct iomap_page *iop = to_iomap_page(folio);
50 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
51 gfp_t gfp;
52
53 if (iop || nr_blocks <= 1)
54 return iop;
55
56 if (flags & IOMAP_NOWAIT)
57 gfp = GFP_NOWAIT;
58 else
59 gfp = GFP_NOFS | __GFP_NOFAIL;
60
61 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
62 gfp);
63 if (iop) {
64 spin_lock_init(&iop->uptodate_lock);
65 if (folio_test_uptodate(folio))
66 bitmap_fill(iop->uptodate, nr_blocks);
67 folio_attach_private(folio, iop);
68 }
69 return iop;
70 }
71
iomap_page_release(struct folio * folio)72 static void iomap_page_release(struct folio *folio)
73 {
74 struct iomap_page *iop = folio_detach_private(folio);
75 struct inode *inode = folio->mapping->host;
76 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
77
78 if (!iop)
79 return;
80 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
81 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
82 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
83 folio_test_uptodate(folio));
84 kfree(iop);
85 }
86
87 /*
88 * Calculate the range inside the folio that we actually need to read.
89 */
iomap_adjust_read_range(struct inode * inode,struct folio * folio,loff_t * pos,loff_t length,size_t * offp,size_t * lenp)90 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
91 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
92 {
93 struct iomap_page *iop = to_iomap_page(folio);
94 loff_t orig_pos = *pos;
95 loff_t isize = i_size_read(inode);
96 unsigned block_bits = inode->i_blkbits;
97 unsigned block_size = (1 << block_bits);
98 size_t poff = offset_in_folio(folio, *pos);
99 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
100 unsigned first = poff >> block_bits;
101 unsigned last = (poff + plen - 1) >> block_bits;
102
103 /*
104 * If the block size is smaller than the page size, we need to check the
105 * per-block uptodate status and adjust the offset and length if needed
106 * to avoid reading in already uptodate ranges.
107 */
108 if (iop) {
109 unsigned int i;
110
111 /* move forward for each leading block marked uptodate */
112 for (i = first; i <= last; i++) {
113 if (!test_bit(i, iop->uptodate))
114 break;
115 *pos += block_size;
116 poff += block_size;
117 plen -= block_size;
118 first++;
119 }
120
121 /* truncate len if we find any trailing uptodate block(s) */
122 for ( ; i <= last; i++) {
123 if (test_bit(i, iop->uptodate)) {
124 plen -= (last - i + 1) * block_size;
125 last = i - 1;
126 break;
127 }
128 }
129 }
130
131 /*
132 * If the extent spans the block that contains the i_size, we need to
133 * handle both halves separately so that we properly zero data in the
134 * page cache for blocks that are entirely outside of i_size.
135 */
136 if (orig_pos <= isize && orig_pos + length > isize) {
137 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
138
139 if (first <= end && last > end)
140 plen -= (last - end) * block_size;
141 }
142
143 *offp = poff;
144 *lenp = plen;
145 }
146
iomap_iop_set_range_uptodate(struct folio * folio,struct iomap_page * iop,size_t off,size_t len)147 static void iomap_iop_set_range_uptodate(struct folio *folio,
148 struct iomap_page *iop, size_t off, size_t len)
149 {
150 struct inode *inode = folio->mapping->host;
151 unsigned first = off >> inode->i_blkbits;
152 unsigned last = (off + len - 1) >> inode->i_blkbits;
153 unsigned long flags;
154
155 spin_lock_irqsave(&iop->uptodate_lock, flags);
156 bitmap_set(iop->uptodate, first, last - first + 1);
157 if (bitmap_full(iop->uptodate, i_blocks_per_folio(inode, folio)))
158 folio_mark_uptodate(folio);
159 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
160 }
161
iomap_set_range_uptodate(struct folio * folio,struct iomap_page * iop,size_t off,size_t len)162 static void iomap_set_range_uptodate(struct folio *folio,
163 struct iomap_page *iop, size_t off, size_t len)
164 {
165 if (iop)
166 iomap_iop_set_range_uptodate(folio, iop, off, len);
167 else
168 folio_mark_uptodate(folio);
169 }
170
iomap_finish_folio_read(struct folio * folio,size_t offset,size_t len,int error)171 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
172 size_t len, int error)
173 {
174 struct iomap_page *iop = to_iomap_page(folio);
175
176 if (unlikely(error)) {
177 folio_clear_uptodate(folio);
178 folio_set_error(folio);
179 } else {
180 iomap_set_range_uptodate(folio, iop, offset, len);
181 }
182
183 if (!iop || atomic_sub_and_test(len, &iop->read_bytes_pending))
184 folio_unlock(folio);
185 }
186
iomap_read_end_io(struct bio * bio)187 static void iomap_read_end_io(struct bio *bio)
188 {
189 int error = blk_status_to_errno(bio->bi_status);
190 struct folio_iter fi;
191
192 bio_for_each_folio_all(fi, bio)
193 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
194 bio_put(bio);
195 }
196
197 struct iomap_readpage_ctx {
198 struct folio *cur_folio;
199 bool cur_folio_in_bio;
200 struct bio *bio;
201 struct readahead_control *rac;
202 };
203
204 /**
205 * iomap_read_inline_data - copy inline data into the page cache
206 * @iter: iteration structure
207 * @folio: folio to copy to
208 *
209 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
210 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
211 * Returns zero for success to complete the read, or the usual negative errno.
212 */
iomap_read_inline_data(const struct iomap_iter * iter,struct folio * folio)213 static int iomap_read_inline_data(const struct iomap_iter *iter,
214 struct folio *folio)
215 {
216 struct iomap_page *iop;
217 const struct iomap *iomap = iomap_iter_srcmap(iter);
218 size_t size = i_size_read(iter->inode) - iomap->offset;
219 size_t poff = offset_in_page(iomap->offset);
220 size_t offset = offset_in_folio(folio, iomap->offset);
221 void *addr;
222
223 if (folio_test_uptodate(folio))
224 return 0;
225
226 if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
227 return -EIO;
228 if (WARN_ON_ONCE(size > PAGE_SIZE -
229 offset_in_page(iomap->inline_data)))
230 return -EIO;
231 if (WARN_ON_ONCE(size > iomap->length))
232 return -EIO;
233 if (offset > 0)
234 iop = iomap_page_create(iter->inode, folio, iter->flags);
235 else
236 iop = to_iomap_page(folio);
237
238 addr = kmap_local_folio(folio, offset);
239 memcpy(addr, iomap->inline_data, size);
240 memset(addr + size, 0, PAGE_SIZE - poff - size);
241 kunmap_local(addr);
242 iomap_set_range_uptodate(folio, iop, offset, PAGE_SIZE - poff);
243 return 0;
244 }
245
iomap_block_needs_zeroing(const struct iomap_iter * iter,loff_t pos)246 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
247 loff_t pos)
248 {
249 const struct iomap *srcmap = iomap_iter_srcmap(iter);
250
251 return srcmap->type != IOMAP_MAPPED ||
252 (srcmap->flags & IOMAP_F_NEW) ||
253 pos >= i_size_read(iter->inode);
254 }
255
iomap_readpage_iter(const struct iomap_iter * iter,struct iomap_readpage_ctx * ctx,loff_t offset)256 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
257 struct iomap_readpage_ctx *ctx, loff_t offset)
258 {
259 const struct iomap *iomap = &iter->iomap;
260 loff_t pos = iter->pos + offset;
261 loff_t length = iomap_length(iter) - offset;
262 struct folio *folio = ctx->cur_folio;
263 struct iomap_page *iop;
264 loff_t orig_pos = pos;
265 size_t poff, plen;
266 sector_t sector;
267
268 if (iomap->type == IOMAP_INLINE)
269 return iomap_read_inline_data(iter, folio);
270
271 /* zero post-eof blocks as the page may be mapped */
272 iop = iomap_page_create(iter->inode, folio, iter->flags);
273 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
274 if (plen == 0)
275 goto done;
276
277 if (iomap_block_needs_zeroing(iter, pos)) {
278 folio_zero_range(folio, poff, plen);
279 iomap_set_range_uptodate(folio, iop, poff, plen);
280 goto done;
281 }
282
283 ctx->cur_folio_in_bio = true;
284 if (iop)
285 atomic_add(plen, &iop->read_bytes_pending);
286
287 sector = iomap_sector(iomap, pos);
288 if (!ctx->bio ||
289 bio_end_sector(ctx->bio) != sector ||
290 !bio_add_folio(ctx->bio, folio, plen, poff)) {
291 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
292 gfp_t orig_gfp = gfp;
293 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
294
295 if (ctx->bio)
296 submit_bio(ctx->bio);
297
298 if (ctx->rac) /* same as readahead_gfp_mask */
299 gfp |= __GFP_NORETRY | __GFP_NOWARN;
300 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
301 REQ_OP_READ, gfp);
302 /*
303 * If the bio_alloc fails, try it again for a single page to
304 * avoid having to deal with partial page reads. This emulates
305 * what do_mpage_read_folio does.
306 */
307 if (!ctx->bio) {
308 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
309 orig_gfp);
310 }
311 if (ctx->rac)
312 ctx->bio->bi_opf |= REQ_RAHEAD;
313 ctx->bio->bi_iter.bi_sector = sector;
314 ctx->bio->bi_end_io = iomap_read_end_io;
315 bio_add_folio(ctx->bio, folio, plen, poff);
316 }
317
318 done:
319 /*
320 * Move the caller beyond our range so that it keeps making progress.
321 * For that, we have to include any leading non-uptodate ranges, but
322 * we can skip trailing ones as they will be handled in the next
323 * iteration.
324 */
325 return pos - orig_pos + plen;
326 }
327
iomap_read_folio(struct folio * folio,const struct iomap_ops * ops)328 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
329 {
330 struct iomap_iter iter = {
331 .inode = folio->mapping->host,
332 .pos = folio_pos(folio),
333 .len = folio_size(folio),
334 };
335 struct iomap_readpage_ctx ctx = {
336 .cur_folio = folio,
337 };
338 int ret;
339
340 trace_iomap_readpage(iter.inode, 1);
341
342 while ((ret = iomap_iter(&iter, ops)) > 0)
343 iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
344
345 if (ret < 0)
346 folio_set_error(folio);
347
348 if (ctx.bio) {
349 submit_bio(ctx.bio);
350 WARN_ON_ONCE(!ctx.cur_folio_in_bio);
351 } else {
352 WARN_ON_ONCE(ctx.cur_folio_in_bio);
353 folio_unlock(folio);
354 }
355
356 /*
357 * Just like mpage_readahead and block_read_full_folio, we always
358 * return 0 and just set the folio error flag on errors. This
359 * should be cleaned up throughout the stack eventually.
360 */
361 return 0;
362 }
363 EXPORT_SYMBOL_GPL(iomap_read_folio);
364
iomap_readahead_iter(const struct iomap_iter * iter,struct iomap_readpage_ctx * ctx)365 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
366 struct iomap_readpage_ctx *ctx)
367 {
368 loff_t length = iomap_length(iter);
369 loff_t done, ret;
370
371 for (done = 0; done < length; done += ret) {
372 if (ctx->cur_folio &&
373 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
374 if (!ctx->cur_folio_in_bio)
375 folio_unlock(ctx->cur_folio);
376 ctx->cur_folio = NULL;
377 }
378 if (!ctx->cur_folio) {
379 ctx->cur_folio = readahead_folio(ctx->rac);
380 ctx->cur_folio_in_bio = false;
381 }
382 ret = iomap_readpage_iter(iter, ctx, done);
383 if (ret <= 0)
384 return ret;
385 }
386
387 return done;
388 }
389
390 /**
391 * iomap_readahead - Attempt to read pages from a file.
392 * @rac: Describes the pages to be read.
393 * @ops: The operations vector for the filesystem.
394 *
395 * This function is for filesystems to call to implement their readahead
396 * address_space operation.
397 *
398 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
399 * blocks from disc), and may wait for it. The caller may be trying to
400 * access a different page, and so sleeping excessively should be avoided.
401 * It may allocate memory, but should avoid costly allocations. This
402 * function is called with memalloc_nofs set, so allocations will not cause
403 * the filesystem to be reentered.
404 */
iomap_readahead(struct readahead_control * rac,const struct iomap_ops * ops)405 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
406 {
407 struct iomap_iter iter = {
408 .inode = rac->mapping->host,
409 .pos = readahead_pos(rac),
410 .len = readahead_length(rac),
411 };
412 struct iomap_readpage_ctx ctx = {
413 .rac = rac,
414 };
415
416 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
417
418 while (iomap_iter(&iter, ops) > 0)
419 iter.processed = iomap_readahead_iter(&iter, &ctx);
420
421 if (ctx.bio)
422 submit_bio(ctx.bio);
423 if (ctx.cur_folio) {
424 if (!ctx.cur_folio_in_bio)
425 folio_unlock(ctx.cur_folio);
426 }
427 }
428 EXPORT_SYMBOL_GPL(iomap_readahead);
429
430 /*
431 * iomap_is_partially_uptodate checks whether blocks within a folio are
432 * uptodate or not.
433 *
434 * Returns true if all blocks which correspond to the specified part
435 * of the folio are uptodate.
436 */
iomap_is_partially_uptodate(struct folio * folio,size_t from,size_t count)437 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
438 {
439 struct iomap_page *iop = to_iomap_page(folio);
440 struct inode *inode = folio->mapping->host;
441 unsigned first, last, i;
442
443 if (!iop)
444 return false;
445
446 /* Caller's range may extend past the end of this folio */
447 count = min(folio_size(folio) - from, count);
448
449 /* First and last blocks in range within folio */
450 first = from >> inode->i_blkbits;
451 last = (from + count - 1) >> inode->i_blkbits;
452
453 for (i = first; i <= last; i++)
454 if (!test_bit(i, iop->uptodate))
455 return false;
456 return true;
457 }
458 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
459
iomap_release_folio(struct folio * folio,gfp_t gfp_flags)460 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
461 {
462 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
463 folio_size(folio));
464
465 /*
466 * mm accommodates an old ext3 case where clean folios might
467 * not have had the dirty bit cleared. Thus, it can send actual
468 * dirty folios to ->release_folio() via shrink_active_list();
469 * skip those here.
470 */
471 if (folio_test_dirty(folio) || folio_test_writeback(folio))
472 return false;
473 iomap_page_release(folio);
474 return true;
475 }
476 EXPORT_SYMBOL_GPL(iomap_release_folio);
477
iomap_invalidate_folio(struct folio * folio,size_t offset,size_t len)478 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
479 {
480 trace_iomap_invalidate_folio(folio->mapping->host,
481 folio_pos(folio) + offset, len);
482
483 /*
484 * If we're invalidating the entire folio, clear the dirty state
485 * from it and release it to avoid unnecessary buildup of the LRU.
486 */
487 if (offset == 0 && len == folio_size(folio)) {
488 WARN_ON_ONCE(folio_test_writeback(folio));
489 folio_cancel_dirty(folio);
490 iomap_page_release(folio);
491 }
492 }
493 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
494
495 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)496 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
497 {
498 loff_t i_size = i_size_read(inode);
499
500 /*
501 * Only truncate newly allocated pages beyoned EOF, even if the
502 * write started inside the existing inode size.
503 */
504 if (pos + len > i_size)
505 truncate_pagecache_range(inode, max(pos, i_size),
506 pos + len - 1);
507 }
508
iomap_read_folio_sync(loff_t block_start,struct folio * folio,size_t poff,size_t plen,const struct iomap * iomap)509 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
510 size_t poff, size_t plen, const struct iomap *iomap)
511 {
512 struct bio_vec bvec;
513 struct bio bio;
514
515 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
516 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
517 bio_add_folio(&bio, folio, plen, poff);
518 return submit_bio_wait(&bio);
519 }
520
__iomap_write_begin(const struct iomap_iter * iter,loff_t pos,size_t len,struct folio * folio)521 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
522 size_t len, struct folio *folio)
523 {
524 const struct iomap *srcmap = iomap_iter_srcmap(iter);
525 struct iomap_page *iop;
526 loff_t block_size = i_blocksize(iter->inode);
527 loff_t block_start = round_down(pos, block_size);
528 loff_t block_end = round_up(pos + len, block_size);
529 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
530 size_t from = offset_in_folio(folio, pos), to = from + len;
531 size_t poff, plen;
532
533 if (folio_test_uptodate(folio))
534 return 0;
535 folio_clear_error(folio);
536
537 iop = iomap_page_create(iter->inode, folio, iter->flags);
538 if ((iter->flags & IOMAP_NOWAIT) && !iop && nr_blocks > 1)
539 return -EAGAIN;
540
541 do {
542 iomap_adjust_read_range(iter->inode, folio, &block_start,
543 block_end - block_start, &poff, &plen);
544 if (plen == 0)
545 break;
546
547 if (!(iter->flags & IOMAP_UNSHARE) &&
548 (from <= poff || from >= poff + plen) &&
549 (to <= poff || to >= poff + plen))
550 continue;
551
552 if (iomap_block_needs_zeroing(iter, block_start)) {
553 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
554 return -EIO;
555 folio_zero_segments(folio, poff, from, to, poff + plen);
556 } else {
557 int status;
558
559 if (iter->flags & IOMAP_NOWAIT)
560 return -EAGAIN;
561
562 status = iomap_read_folio_sync(block_start, folio,
563 poff, plen, srcmap);
564 if (status)
565 return status;
566 }
567 iomap_set_range_uptodate(folio, iop, poff, plen);
568 } while ((block_start += plen) < block_end);
569
570 return 0;
571 }
572
iomap_write_begin_inline(const struct iomap_iter * iter,struct folio * folio)573 static int iomap_write_begin_inline(const struct iomap_iter *iter,
574 struct folio *folio)
575 {
576 /* needs more work for the tailpacking case; disable for now */
577 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
578 return -EIO;
579 return iomap_read_inline_data(iter, folio);
580 }
581
iomap_write_begin(const struct iomap_iter * iter,loff_t pos,size_t len,struct folio ** foliop)582 static int iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
583 size_t len, struct folio **foliop)
584 {
585 const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
586 const struct iomap *srcmap = iomap_iter_srcmap(iter);
587 struct folio *folio;
588 unsigned fgp = FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE | FGP_NOFS;
589 int status = 0;
590
591 if (iter->flags & IOMAP_NOWAIT)
592 fgp |= FGP_NOWAIT;
593
594 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
595 if (srcmap != &iter->iomap)
596 BUG_ON(pos + len > srcmap->offset + srcmap->length);
597
598 if (fatal_signal_pending(current))
599 return -EINTR;
600
601 if (!mapping_large_folio_support(iter->inode->i_mapping))
602 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
603
604 if (page_ops && page_ops->page_prepare) {
605 status = page_ops->page_prepare(iter->inode, pos, len);
606 if (status)
607 return status;
608 }
609
610 folio = __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
611 fgp, mapping_gfp_mask(iter->inode->i_mapping));
612 if (!folio) {
613 status = (iter->flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOMEM;
614 goto out_no_page;
615 }
616 if (pos + len > folio_pos(folio) + folio_size(folio))
617 len = folio_pos(folio) + folio_size(folio) - pos;
618
619 if (srcmap->type == IOMAP_INLINE)
620 status = iomap_write_begin_inline(iter, folio);
621 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
622 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
623 else
624 status = __iomap_write_begin(iter, pos, len, folio);
625
626 if (unlikely(status))
627 goto out_unlock;
628
629 *foliop = folio;
630 return 0;
631
632 out_unlock:
633 folio_unlock(folio);
634 folio_put(folio);
635 iomap_write_failed(iter->inode, pos, len);
636
637 out_no_page:
638 if (page_ops && page_ops->page_done)
639 page_ops->page_done(iter->inode, pos, 0, NULL);
640 return status;
641 }
642
__iomap_write_end(struct inode * inode,loff_t pos,size_t len,size_t copied,struct folio * folio)643 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
644 size_t copied, struct folio *folio)
645 {
646 struct iomap_page *iop = to_iomap_page(folio);
647 flush_dcache_folio(folio);
648
649 /*
650 * The blocks that were entirely written will now be uptodate, so we
651 * don't have to worry about a read_folio reading them and overwriting a
652 * partial write. However, if we've encountered a short write and only
653 * partially written into a block, it will not be marked uptodate, so a
654 * read_folio might come in and destroy our partial write.
655 *
656 * Do the simplest thing and just treat any short write to a
657 * non-uptodate page as a zero-length write, and force the caller to
658 * redo the whole thing.
659 */
660 if (unlikely(copied < len && !folio_test_uptodate(folio)))
661 return 0;
662 iomap_set_range_uptodate(folio, iop, offset_in_folio(folio, pos), len);
663 filemap_dirty_folio(inode->i_mapping, folio);
664 return copied;
665 }
666
iomap_write_end_inline(const struct iomap_iter * iter,struct folio * folio,loff_t pos,size_t copied)667 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
668 struct folio *folio, loff_t pos, size_t copied)
669 {
670 const struct iomap *iomap = &iter->iomap;
671 void *addr;
672
673 WARN_ON_ONCE(!folio_test_uptodate(folio));
674 BUG_ON(!iomap_inline_data_valid(iomap));
675
676 flush_dcache_folio(folio);
677 addr = kmap_local_folio(folio, pos);
678 memcpy(iomap_inline_data(iomap, pos), addr, copied);
679 kunmap_local(addr);
680
681 mark_inode_dirty(iter->inode);
682 return copied;
683 }
684
685 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
iomap_write_end(struct iomap_iter * iter,loff_t pos,size_t len,size_t copied,struct folio * folio)686 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
687 size_t copied, struct folio *folio)
688 {
689 const struct iomap_page_ops *page_ops = iter->iomap.page_ops;
690 const struct iomap *srcmap = iomap_iter_srcmap(iter);
691 loff_t old_size = iter->inode->i_size;
692 size_t ret;
693
694 if (srcmap->type == IOMAP_INLINE) {
695 ret = iomap_write_end_inline(iter, folio, pos, copied);
696 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
697 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
698 copied, &folio->page, NULL);
699 } else {
700 ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
701 }
702
703 /*
704 * Update the in-memory inode size after copying the data into the page
705 * cache. It's up to the file system to write the updated size to disk,
706 * preferably after I/O completion so that no stale data is exposed.
707 */
708 if (pos + ret > old_size) {
709 i_size_write(iter->inode, pos + ret);
710 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
711 }
712 folio_unlock(folio);
713
714 if (old_size < pos)
715 pagecache_isize_extended(iter->inode, old_size, pos);
716 if (page_ops && page_ops->page_done)
717 page_ops->page_done(iter->inode, pos, ret, &folio->page);
718 folio_put(folio);
719
720 if (ret < len)
721 iomap_write_failed(iter->inode, pos + ret, len - ret);
722 return ret;
723 }
724
iomap_write_iter(struct iomap_iter * iter,struct iov_iter * i)725 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
726 {
727 loff_t length = iomap_length(iter);
728 loff_t pos = iter->pos;
729 ssize_t written = 0;
730 long status = 0;
731 struct address_space *mapping = iter->inode->i_mapping;
732 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
733
734 do {
735 struct folio *folio;
736 struct page *page;
737 unsigned long offset; /* Offset into pagecache page */
738 unsigned long bytes; /* Bytes to write to page */
739 size_t copied; /* Bytes copied from user */
740
741 offset = offset_in_page(pos);
742 bytes = min_t(unsigned long, PAGE_SIZE - offset,
743 iov_iter_count(i));
744 again:
745 status = balance_dirty_pages_ratelimited_flags(mapping,
746 bdp_flags);
747 if (unlikely(status))
748 break;
749
750 if (bytes > length)
751 bytes = length;
752
753 /*
754 * Bring in the user page that we'll copy from _first_.
755 * Otherwise there's a nasty deadlock on copying from the
756 * same page as we're writing to, without it being marked
757 * up-to-date.
758 *
759 * For async buffered writes the assumption is that the user
760 * page has already been faulted in. This can be optimized by
761 * faulting the user page.
762 */
763 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
764 status = -EFAULT;
765 break;
766 }
767
768 status = iomap_write_begin(iter, pos, bytes, &folio);
769 if (unlikely(status))
770 break;
771
772 page = folio_file_page(folio, pos >> PAGE_SHIFT);
773 if (mapping_writably_mapped(mapping))
774 flush_dcache_page(page);
775
776 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
777
778 status = iomap_write_end(iter, pos, bytes, copied, folio);
779
780 if (unlikely(copied != status))
781 iov_iter_revert(i, copied - status);
782
783 cond_resched();
784 if (unlikely(status == 0)) {
785 /*
786 * A short copy made iomap_write_end() reject the
787 * thing entirely. Might be memory poisoning
788 * halfway through, might be a race with munmap,
789 * might be severe memory pressure.
790 */
791 if (copied)
792 bytes = copied;
793 goto again;
794 }
795 pos += status;
796 written += status;
797 length -= status;
798 } while (iov_iter_count(i) && length);
799
800 if (status == -EAGAIN) {
801 iov_iter_revert(i, written);
802 return -EAGAIN;
803 }
804 return written ? written : status;
805 }
806
807 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * i,const struct iomap_ops * ops)808 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
809 const struct iomap_ops *ops)
810 {
811 struct iomap_iter iter = {
812 .inode = iocb->ki_filp->f_mapping->host,
813 .pos = iocb->ki_pos,
814 .len = iov_iter_count(i),
815 .flags = IOMAP_WRITE,
816 };
817 int ret;
818
819 if (iocb->ki_flags & IOCB_NOWAIT)
820 iter.flags |= IOMAP_NOWAIT;
821
822 while ((ret = iomap_iter(&iter, ops)) > 0)
823 iter.processed = iomap_write_iter(&iter, i);
824 if (iter.pos == iocb->ki_pos)
825 return ret;
826 return iter.pos - iocb->ki_pos;
827 }
828 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
829
iomap_unshare_iter(struct iomap_iter * iter)830 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
831 {
832 struct iomap *iomap = &iter->iomap;
833 const struct iomap *srcmap = iomap_iter_srcmap(iter);
834 loff_t pos = iter->pos;
835 loff_t length = iomap_length(iter);
836 long status = 0;
837 loff_t written = 0;
838
839 /* don't bother with blocks that are not shared to start with */
840 if (!(iomap->flags & IOMAP_F_SHARED))
841 return length;
842 /* don't bother with holes or unwritten extents */
843 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
844 return length;
845
846 do {
847 unsigned long offset = offset_in_page(pos);
848 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
849 struct folio *folio;
850
851 status = iomap_write_begin(iter, pos, bytes, &folio);
852 if (unlikely(status))
853 return status;
854
855 status = iomap_write_end(iter, pos, bytes, bytes, folio);
856 if (WARN_ON_ONCE(status == 0))
857 return -EIO;
858
859 cond_resched();
860
861 pos += status;
862 written += status;
863 length -= status;
864
865 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
866 } while (length);
867
868 return written;
869 }
870
871 int
iomap_file_unshare(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)872 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
873 const struct iomap_ops *ops)
874 {
875 struct iomap_iter iter = {
876 .inode = inode,
877 .pos = pos,
878 .len = len,
879 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
880 };
881 int ret;
882
883 while ((ret = iomap_iter(&iter, ops)) > 0)
884 iter.processed = iomap_unshare_iter(&iter);
885 return ret;
886 }
887 EXPORT_SYMBOL_GPL(iomap_file_unshare);
888
iomap_zero_iter(struct iomap_iter * iter,bool * did_zero)889 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
890 {
891 const struct iomap *srcmap = iomap_iter_srcmap(iter);
892 loff_t pos = iter->pos;
893 loff_t length = iomap_length(iter);
894 loff_t written = 0;
895
896 /* already zeroed? we're done. */
897 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
898 return length;
899
900 do {
901 struct folio *folio;
902 int status;
903 size_t offset;
904 size_t bytes = min_t(u64, SIZE_MAX, length);
905
906 status = iomap_write_begin(iter, pos, bytes, &folio);
907 if (status)
908 return status;
909
910 offset = offset_in_folio(folio, pos);
911 if (bytes > folio_size(folio) - offset)
912 bytes = folio_size(folio) - offset;
913
914 folio_zero_range(folio, offset, bytes);
915 folio_mark_accessed(folio);
916
917 bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
918 if (WARN_ON_ONCE(bytes == 0))
919 return -EIO;
920
921 pos += bytes;
922 length -= bytes;
923 written += bytes;
924 } while (length > 0);
925
926 if (did_zero)
927 *did_zero = true;
928 return written;
929 }
930
931 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)932 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
933 const struct iomap_ops *ops)
934 {
935 struct iomap_iter iter = {
936 .inode = inode,
937 .pos = pos,
938 .len = len,
939 .flags = IOMAP_ZERO,
940 };
941 int ret;
942
943 while ((ret = iomap_iter(&iter, ops)) > 0)
944 iter.processed = iomap_zero_iter(&iter, did_zero);
945 return ret;
946 }
947 EXPORT_SYMBOL_GPL(iomap_zero_range);
948
949 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)950 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
951 const struct iomap_ops *ops)
952 {
953 unsigned int blocksize = i_blocksize(inode);
954 unsigned int off = pos & (blocksize - 1);
955
956 /* Block boundary? Nothing to do */
957 if (!off)
958 return 0;
959 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
960 }
961 EXPORT_SYMBOL_GPL(iomap_truncate_page);
962
iomap_folio_mkwrite_iter(struct iomap_iter * iter,struct folio * folio)963 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
964 struct folio *folio)
965 {
966 loff_t length = iomap_length(iter);
967 int ret;
968
969 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
970 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
971 &iter->iomap);
972 if (ret)
973 return ret;
974 block_commit_write(&folio->page, 0, length);
975 } else {
976 WARN_ON_ONCE(!folio_test_uptodate(folio));
977 folio_mark_dirty(folio);
978 }
979
980 return length;
981 }
982
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)983 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
984 {
985 struct iomap_iter iter = {
986 .inode = file_inode(vmf->vma->vm_file),
987 .flags = IOMAP_WRITE | IOMAP_FAULT,
988 };
989 struct folio *folio = page_folio(vmf->page);
990 ssize_t ret;
991
992 folio_lock(folio);
993 ret = folio_mkwrite_check_truncate(folio, iter.inode);
994 if (ret < 0)
995 goto out_unlock;
996 iter.pos = folio_pos(folio);
997 iter.len = ret;
998 while ((ret = iomap_iter(&iter, ops)) > 0)
999 iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1000
1001 if (ret < 0)
1002 goto out_unlock;
1003 folio_wait_stable(folio);
1004 return VM_FAULT_LOCKED;
1005 out_unlock:
1006 folio_unlock(folio);
1007 return block_page_mkwrite_return(ret);
1008 }
1009 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1010
iomap_finish_folio_write(struct inode * inode,struct folio * folio,size_t len,int error)1011 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1012 size_t len, int error)
1013 {
1014 struct iomap_page *iop = to_iomap_page(folio);
1015
1016 if (error) {
1017 folio_set_error(folio);
1018 mapping_set_error(inode->i_mapping, error);
1019 }
1020
1021 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !iop);
1022 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1023
1024 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1025 folio_end_writeback(folio);
1026 }
1027
1028 /*
1029 * We're now finished for good with this ioend structure. Update the page
1030 * state, release holds on bios, and finally free up memory. Do not use the
1031 * ioend after this.
1032 */
1033 static u32
iomap_finish_ioend(struct iomap_ioend * ioend,int error)1034 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1035 {
1036 struct inode *inode = ioend->io_inode;
1037 struct bio *bio = &ioend->io_inline_bio;
1038 struct bio *last = ioend->io_bio, *next;
1039 u64 start = bio->bi_iter.bi_sector;
1040 loff_t offset = ioend->io_offset;
1041 bool quiet = bio_flagged(bio, BIO_QUIET);
1042 u32 folio_count = 0;
1043
1044 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1045 struct folio_iter fi;
1046
1047 /*
1048 * For the last bio, bi_private points to the ioend, so we
1049 * need to explicitly end the iteration here.
1050 */
1051 if (bio == last)
1052 next = NULL;
1053 else
1054 next = bio->bi_private;
1055
1056 /* walk all folios in bio, ending page IO on them */
1057 bio_for_each_folio_all(fi, bio) {
1058 iomap_finish_folio_write(inode, fi.folio, fi.length,
1059 error);
1060 folio_count++;
1061 }
1062 bio_put(bio);
1063 }
1064 /* The ioend has been freed by bio_put() */
1065
1066 if (unlikely(error && !quiet)) {
1067 printk_ratelimited(KERN_ERR
1068 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1069 inode->i_sb->s_id, inode->i_ino, offset, start);
1070 }
1071 return folio_count;
1072 }
1073
1074 /*
1075 * Ioend completion routine for merged bios. This can only be called from task
1076 * contexts as merged ioends can be of unbound length. Hence we have to break up
1077 * the writeback completions into manageable chunks to avoid long scheduler
1078 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1079 * good batch processing throughput without creating adverse scheduler latency
1080 * conditions.
1081 */
1082 void
iomap_finish_ioends(struct iomap_ioend * ioend,int error)1083 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1084 {
1085 struct list_head tmp;
1086 u32 completions;
1087
1088 might_sleep();
1089
1090 list_replace_init(&ioend->io_list, &tmp);
1091 completions = iomap_finish_ioend(ioend, error);
1092
1093 while (!list_empty(&tmp)) {
1094 if (completions > IOEND_BATCH_SIZE * 8) {
1095 cond_resched();
1096 completions = 0;
1097 }
1098 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1099 list_del_init(&ioend->io_list);
1100 completions += iomap_finish_ioend(ioend, error);
1101 }
1102 }
1103 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1104
1105 /*
1106 * We can merge two adjacent ioends if they have the same set of work to do.
1107 */
1108 static bool
iomap_ioend_can_merge(struct iomap_ioend * ioend,struct iomap_ioend * next)1109 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1110 {
1111 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1112 return false;
1113 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1114 (next->io_flags & IOMAP_F_SHARED))
1115 return false;
1116 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1117 (next->io_type == IOMAP_UNWRITTEN))
1118 return false;
1119 if (ioend->io_offset + ioend->io_size != next->io_offset)
1120 return false;
1121 /*
1122 * Do not merge physically discontiguous ioends. The filesystem
1123 * completion functions will have to iterate the physical
1124 * discontiguities even if we merge the ioends at a logical level, so
1125 * we don't gain anything by merging physical discontiguities here.
1126 *
1127 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1128 * submission so does not point to the start sector of the bio at
1129 * completion.
1130 */
1131 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1132 return false;
1133 return true;
1134 }
1135
1136 void
iomap_ioend_try_merge(struct iomap_ioend * ioend,struct list_head * more_ioends)1137 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1138 {
1139 struct iomap_ioend *next;
1140
1141 INIT_LIST_HEAD(&ioend->io_list);
1142
1143 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1144 io_list))) {
1145 if (!iomap_ioend_can_merge(ioend, next))
1146 break;
1147 list_move_tail(&next->io_list, &ioend->io_list);
1148 ioend->io_size += next->io_size;
1149 }
1150 }
1151 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1152
1153 static int
iomap_ioend_compare(void * priv,const struct list_head * a,const struct list_head * b)1154 iomap_ioend_compare(void *priv, const struct list_head *a,
1155 const struct list_head *b)
1156 {
1157 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1158 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1159
1160 if (ia->io_offset < ib->io_offset)
1161 return -1;
1162 if (ia->io_offset > ib->io_offset)
1163 return 1;
1164 return 0;
1165 }
1166
1167 void
iomap_sort_ioends(struct list_head * ioend_list)1168 iomap_sort_ioends(struct list_head *ioend_list)
1169 {
1170 list_sort(NULL, ioend_list, iomap_ioend_compare);
1171 }
1172 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1173
iomap_writepage_end_bio(struct bio * bio)1174 static void iomap_writepage_end_bio(struct bio *bio)
1175 {
1176 struct iomap_ioend *ioend = bio->bi_private;
1177
1178 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1179 }
1180
1181 /*
1182 * Submit the final bio for an ioend.
1183 *
1184 * If @error is non-zero, it means that we have a situation where some part of
1185 * the submission process has failed after we've marked pages for writeback
1186 * and unlocked them. In this situation, we need to fail the bio instead of
1187 * submitting it. This typically only happens on a filesystem shutdown.
1188 */
1189 static int
iomap_submit_ioend(struct iomap_writepage_ctx * wpc,struct iomap_ioend * ioend,int error)1190 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1191 int error)
1192 {
1193 ioend->io_bio->bi_private = ioend;
1194 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1195
1196 if (wpc->ops->prepare_ioend)
1197 error = wpc->ops->prepare_ioend(ioend, error);
1198 if (error) {
1199 /*
1200 * If we're failing the IO now, just mark the ioend with an
1201 * error and finish it. This will run IO completion immediately
1202 * as there is only one reference to the ioend at this point in
1203 * time.
1204 */
1205 ioend->io_bio->bi_status = errno_to_blk_status(error);
1206 bio_endio(ioend->io_bio);
1207 return error;
1208 }
1209
1210 submit_bio(ioend->io_bio);
1211 return 0;
1212 }
1213
1214 static struct iomap_ioend *
iomap_alloc_ioend(struct inode * inode,struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector,struct writeback_control * wbc)1215 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1216 loff_t offset, sector_t sector, struct writeback_control *wbc)
1217 {
1218 struct iomap_ioend *ioend;
1219 struct bio *bio;
1220
1221 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1222 REQ_OP_WRITE | wbc_to_write_flags(wbc),
1223 GFP_NOFS, &iomap_ioend_bioset);
1224 bio->bi_iter.bi_sector = sector;
1225 wbc_init_bio(wbc, bio);
1226
1227 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1228 INIT_LIST_HEAD(&ioend->io_list);
1229 ioend->io_type = wpc->iomap.type;
1230 ioend->io_flags = wpc->iomap.flags;
1231 ioend->io_inode = inode;
1232 ioend->io_size = 0;
1233 ioend->io_folios = 0;
1234 ioend->io_offset = offset;
1235 ioend->io_bio = bio;
1236 ioend->io_sector = sector;
1237 return ioend;
1238 }
1239
1240 /*
1241 * Allocate a new bio, and chain the old bio to the new one.
1242 *
1243 * Note that we have to perform the chaining in this unintuitive order
1244 * so that the bi_private linkage is set up in the right direction for the
1245 * traversal in iomap_finish_ioend().
1246 */
1247 static struct bio *
iomap_chain_bio(struct bio * prev)1248 iomap_chain_bio(struct bio *prev)
1249 {
1250 struct bio *new;
1251
1252 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1253 bio_clone_blkg_association(new, prev);
1254 new->bi_iter.bi_sector = bio_end_sector(prev);
1255
1256 bio_chain(prev, new);
1257 bio_get(prev); /* for iomap_finish_ioend */
1258 submit_bio(prev);
1259 return new;
1260 }
1261
1262 static bool
iomap_can_add_to_ioend(struct iomap_writepage_ctx * wpc,loff_t offset,sector_t sector)1263 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1264 sector_t sector)
1265 {
1266 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1267 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1268 return false;
1269 if (wpc->iomap.type != wpc->ioend->io_type)
1270 return false;
1271 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1272 return false;
1273 if (sector != bio_end_sector(wpc->ioend->io_bio))
1274 return false;
1275 /*
1276 * Limit ioend bio chain lengths to minimise IO completion latency. This
1277 * also prevents long tight loops ending page writeback on all the
1278 * folios in the ioend.
1279 */
1280 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1281 return false;
1282 return true;
1283 }
1284
1285 /*
1286 * Test to see if we have an existing ioend structure that we could append to
1287 * first; otherwise finish off the current ioend and start another.
1288 */
1289 static void
iomap_add_to_ioend(struct inode * inode,loff_t pos,struct folio * folio,struct iomap_page * iop,struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)1290 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1291 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1292 struct writeback_control *wbc, struct list_head *iolist)
1293 {
1294 sector_t sector = iomap_sector(&wpc->iomap, pos);
1295 unsigned len = i_blocksize(inode);
1296 size_t poff = offset_in_folio(folio, pos);
1297
1298 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1299 if (wpc->ioend)
1300 list_add(&wpc->ioend->io_list, iolist);
1301 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1302 }
1303
1304 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1305 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1306 bio_add_folio(wpc->ioend->io_bio, folio, len, poff);
1307 }
1308
1309 if (iop)
1310 atomic_add(len, &iop->write_bytes_pending);
1311 wpc->ioend->io_size += len;
1312 wbc_account_cgroup_owner(wbc, &folio->page, len);
1313 }
1314
1315 /*
1316 * We implement an immediate ioend submission policy here to avoid needing to
1317 * chain multiple ioends and hence nest mempool allocations which can violate
1318 * the forward progress guarantees we need to provide. The current ioend we're
1319 * adding blocks to is cached in the writepage context, and if the new block
1320 * doesn't append to the cached ioend, it will create a new ioend and cache that
1321 * instead.
1322 *
1323 * If a new ioend is created and cached, the old ioend is returned and queued
1324 * locally for submission once the entire page is processed or an error has been
1325 * detected. While ioends are submitted immediately after they are completed,
1326 * batching optimisations are provided by higher level block plugging.
1327 *
1328 * At the end of a writeback pass, there will be a cached ioend remaining on the
1329 * writepage context that the caller will need to submit.
1330 */
1331 static int
iomap_writepage_map(struct iomap_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct folio * folio,u64 end_pos)1332 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1333 struct writeback_control *wbc, struct inode *inode,
1334 struct folio *folio, u64 end_pos)
1335 {
1336 struct iomap_page *iop = iomap_page_create(inode, folio, 0);
1337 struct iomap_ioend *ioend, *next;
1338 unsigned len = i_blocksize(inode);
1339 unsigned nblocks = i_blocks_per_folio(inode, folio);
1340 u64 pos = folio_pos(folio);
1341 int error = 0, count = 0, i;
1342 LIST_HEAD(submit_list);
1343
1344 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1345
1346 /*
1347 * Walk through the folio to find areas to write back. If we
1348 * run off the end of the current map or find the current map
1349 * invalid, grab a new one.
1350 */
1351 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1352 if (iop && !test_bit(i, iop->uptodate))
1353 continue;
1354
1355 error = wpc->ops->map_blocks(wpc, inode, pos);
1356 if (error)
1357 break;
1358 trace_iomap_writepage_map(inode, &wpc->iomap);
1359 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1360 continue;
1361 if (wpc->iomap.type == IOMAP_HOLE)
1362 continue;
1363 iomap_add_to_ioend(inode, pos, folio, iop, wpc, wbc,
1364 &submit_list);
1365 count++;
1366 }
1367 if (count)
1368 wpc->ioend->io_folios++;
1369
1370 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1371 WARN_ON_ONCE(!folio_test_locked(folio));
1372 WARN_ON_ONCE(folio_test_writeback(folio));
1373 WARN_ON_ONCE(folio_test_dirty(folio));
1374
1375 /*
1376 * We cannot cancel the ioend directly here on error. We may have
1377 * already set other pages under writeback and hence we have to run I/O
1378 * completion to mark the error state of the pages under writeback
1379 * appropriately.
1380 */
1381 if (unlikely(error)) {
1382 /*
1383 * Let the filesystem know what portion of the current page
1384 * failed to map. If the page hasn't been added to ioend, it
1385 * won't be affected by I/O completion and we must unlock it
1386 * now.
1387 */
1388 if (wpc->ops->discard_folio)
1389 wpc->ops->discard_folio(folio, pos);
1390 if (!count) {
1391 folio_unlock(folio);
1392 goto done;
1393 }
1394 }
1395
1396 folio_start_writeback(folio);
1397 folio_unlock(folio);
1398
1399 /*
1400 * Preserve the original error if there was one; catch
1401 * submission errors here and propagate into subsequent ioend
1402 * submissions.
1403 */
1404 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1405 int error2;
1406
1407 list_del_init(&ioend->io_list);
1408 error2 = iomap_submit_ioend(wpc, ioend, error);
1409 if (error2 && !error)
1410 error = error2;
1411 }
1412
1413 /*
1414 * We can end up here with no error and nothing to write only if we race
1415 * with a partial page truncate on a sub-page block sized filesystem.
1416 */
1417 if (!count)
1418 folio_end_writeback(folio);
1419 done:
1420 mapping_set_error(inode->i_mapping, error);
1421 return error;
1422 }
1423
1424 /*
1425 * Write out a dirty page.
1426 *
1427 * For delalloc space on the page, we need to allocate space and flush it.
1428 * For unwritten space on the page, we need to start the conversion to
1429 * regular allocated space.
1430 */
1431 static int
iomap_do_writepage(struct page * page,struct writeback_control * wbc,void * data)1432 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1433 {
1434 struct folio *folio = page_folio(page);
1435 struct iomap_writepage_ctx *wpc = data;
1436 struct inode *inode = folio->mapping->host;
1437 u64 end_pos, isize;
1438
1439 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1440
1441 /*
1442 * Refuse to write the folio out if we're called from reclaim context.
1443 *
1444 * This avoids stack overflows when called from deeply used stacks in
1445 * random callers for direct reclaim or memcg reclaim. We explicitly
1446 * allow reclaim from kswapd as the stack usage there is relatively low.
1447 *
1448 * This should never happen except in the case of a VM regression so
1449 * warn about it.
1450 */
1451 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1452 PF_MEMALLOC))
1453 goto redirty;
1454
1455 /*
1456 * Is this folio beyond the end of the file?
1457 *
1458 * The folio index is less than the end_index, adjust the end_pos
1459 * to the highest offset that this folio should represent.
1460 * -----------------------------------------------------
1461 * | file mapping | <EOF> |
1462 * -----------------------------------------------------
1463 * | Page ... | Page N-2 | Page N-1 | Page N | |
1464 * ^--------------------------------^----------|--------
1465 * | desired writeback range | see else |
1466 * ---------------------------------^------------------|
1467 */
1468 isize = i_size_read(inode);
1469 end_pos = folio_pos(folio) + folio_size(folio);
1470 if (end_pos > isize) {
1471 /*
1472 * Check whether the page to write out is beyond or straddles
1473 * i_size or not.
1474 * -------------------------------------------------------
1475 * | file mapping | <EOF> |
1476 * -------------------------------------------------------
1477 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1478 * ^--------------------------------^-----------|---------
1479 * | | Straddles |
1480 * ---------------------------------^-----------|--------|
1481 */
1482 size_t poff = offset_in_folio(folio, isize);
1483 pgoff_t end_index = isize >> PAGE_SHIFT;
1484
1485 /*
1486 * Skip the page if it's fully outside i_size, e.g.
1487 * due to a truncate operation that's in progress. We've
1488 * cleaned this page and truncate will finish things off for
1489 * us.
1490 *
1491 * Note that the end_index is unsigned long. If the given
1492 * offset is greater than 16TB on a 32-bit system then if we
1493 * checked if the page is fully outside i_size with
1494 * "if (page->index >= end_index + 1)", "end_index + 1" would
1495 * overflow and evaluate to 0. Hence this page would be
1496 * redirtied and written out repeatedly, which would result in
1497 * an infinite loop; the user program performing this operation
1498 * would hang. Instead, we can detect this situation by
1499 * checking if the page is totally beyond i_size or if its
1500 * offset is just equal to the EOF.
1501 */
1502 if (folio->index > end_index ||
1503 (folio->index == end_index && poff == 0))
1504 goto unlock;
1505
1506 /*
1507 * The page straddles i_size. It must be zeroed out on each
1508 * and every writepage invocation because it may be mmapped.
1509 * "A file is mapped in multiples of the page size. For a file
1510 * that is not a multiple of the page size, the remaining
1511 * memory is zeroed when mapped, and writes to that region are
1512 * not written out to the file."
1513 */
1514 folio_zero_segment(folio, poff, folio_size(folio));
1515 end_pos = isize;
1516 }
1517
1518 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1519
1520 redirty:
1521 folio_redirty_for_writepage(wbc, folio);
1522 unlock:
1523 folio_unlock(folio);
1524 return 0;
1525 }
1526
1527 int
iomap_writepages(struct address_space * mapping,struct writeback_control * wbc,struct iomap_writepage_ctx * wpc,const struct iomap_writeback_ops * ops)1528 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1529 struct iomap_writepage_ctx *wpc,
1530 const struct iomap_writeback_ops *ops)
1531 {
1532 int ret;
1533
1534 wpc->ops = ops;
1535 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1536 if (!wpc->ioend)
1537 return ret;
1538 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1539 }
1540 EXPORT_SYMBOL_GPL(iomap_writepages);
1541
iomap_init(void)1542 static int __init iomap_init(void)
1543 {
1544 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1545 offsetof(struct iomap_ioend, io_inline_bio),
1546 BIOSET_NEED_BVECS);
1547 }
1548 fs_initcall(iomap_init);
1549