• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * A fairly generic DMA-API to IOMMU-API glue layer.
4  *
5  * Copyright (C) 2014-2015 ARM Ltd.
6  *
7  * based in part on arch/arm/mm/dma-mapping.c:
8  * Copyright (C) 2000-2004 Russell King
9  */
10 
11 #include <linux/acpi_iort.h>
12 #include <linux/atomic.h>
13 #include <linux/crash_dump.h>
14 #include <linux/device.h>
15 #include <linux/dma-direct.h>
16 #include <linux/dma-map-ops.h>
17 #include <linux/gfp.h>
18 #include <linux/huge_mm.h>
19 #include <linux/iommu.h>
20 #include <linux/iova.h>
21 #include <linux/irq.h>
22 #include <linux/list_sort.h>
23 #include <linux/memremap.h>
24 #include <linux/mm.h>
25 #include <linux/mutex.h>
26 #include <linux/of_iommu.h>
27 #include <linux/pci.h>
28 #include <linux/scatterlist.h>
29 #include <linux/spinlock.h>
30 #include <linux/swiotlb.h>
31 #include <linux/vmalloc.h>
32 #ifndef __GENKSYMS__
33 #include <trace/events/swiotlb.h>
34 #endif
35 #include <trace/hooks/iommu.h>
36 
37 #include "dma-iommu.h"
38 
39 struct iommu_dma_msi_page {
40 	struct list_head	list;
41 	dma_addr_t		iova;
42 	phys_addr_t		phys;
43 };
44 
45 enum iommu_dma_cookie_type {
46 	IOMMU_DMA_IOVA_COOKIE,
47 	IOMMU_DMA_MSI_COOKIE,
48 };
49 
50 struct iommu_dma_cookie {
51 	enum iommu_dma_cookie_type	type;
52 	union {
53 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
54 		struct {
55 			struct iova_domain	iovad;
56 
57 			struct iova_fq __percpu *fq;	/* Flush queue */
58 			/* Number of TLB flushes that have been started */
59 			atomic64_t		fq_flush_start_cnt;
60 			/* Number of TLB flushes that have been finished */
61 			atomic64_t		fq_flush_finish_cnt;
62 			/* Timer to regularily empty the flush queues */
63 			struct timer_list	fq_timer;
64 			/* 1 when timer is active, 0 when not */
65 			atomic_t		fq_timer_on;
66 		};
67 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
68 		dma_addr_t		msi_iova;
69 	};
70 	struct list_head		msi_page_list;
71 
72 	/* Domain for flush queue callback; NULL if flush queue not in use */
73 	struct iommu_domain		*fq_domain;
74 	struct mutex			mutex;
75 };
76 
77 static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
78 bool iommu_dma_forcedac __read_mostly;
79 
iommu_dma_forcedac_setup(char * str)80 static int __init iommu_dma_forcedac_setup(char *str)
81 {
82 	int ret = kstrtobool(str, &iommu_dma_forcedac);
83 
84 	if (!ret && iommu_dma_forcedac)
85 		pr_info("Forcing DAC for PCI devices\n");
86 	return ret;
87 }
88 early_param("iommu.forcedac", iommu_dma_forcedac_setup);
89 
90 /* Number of entries per flush queue */
91 #define IOVA_FQ_SIZE	256
92 
93 /* Timeout (in ms) after which entries are flushed from the queue */
94 #define IOVA_FQ_TIMEOUT	10
95 
96 /* Flush queue entry for deferred flushing */
97 struct iova_fq_entry {
98 	unsigned long iova_pfn;
99 	unsigned long pages;
100 	struct list_head freelist;
101 	u64 counter; /* Flush counter when this entry was added */
102 };
103 
104 /* Per-CPU flush queue structure */
105 struct iova_fq {
106 	struct iova_fq_entry entries[IOVA_FQ_SIZE];
107 	unsigned int head, tail;
108 	spinlock_t lock;
109 };
110 
111 #define fq_ring_for_each(i, fq) \
112 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) % IOVA_FQ_SIZE)
113 
fq_full(struct iova_fq * fq)114 static inline bool fq_full(struct iova_fq *fq)
115 {
116 	assert_spin_locked(&fq->lock);
117 	return (((fq->tail + 1) % IOVA_FQ_SIZE) == fq->head);
118 }
119 
fq_ring_add(struct iova_fq * fq)120 static inline unsigned int fq_ring_add(struct iova_fq *fq)
121 {
122 	unsigned int idx = fq->tail;
123 
124 	assert_spin_locked(&fq->lock);
125 
126 	fq->tail = (idx + 1) % IOVA_FQ_SIZE;
127 
128 	return idx;
129 }
130 
fq_ring_free(struct iommu_dma_cookie * cookie,struct iova_fq * fq)131 static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
132 {
133 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
134 	unsigned int idx;
135 
136 	assert_spin_locked(&fq->lock);
137 
138 	fq_ring_for_each(idx, fq) {
139 
140 		if (fq->entries[idx].counter >= counter)
141 			break;
142 
143 		put_pages_list(&fq->entries[idx].freelist);
144 		free_iova_fast(&cookie->iovad,
145 			       fq->entries[idx].iova_pfn,
146 			       fq->entries[idx].pages);
147 
148 		fq->head = (fq->head + 1) % IOVA_FQ_SIZE;
149 	}
150 }
151 
fq_flush_iotlb(struct iommu_dma_cookie * cookie)152 static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
153 {
154 	atomic64_inc(&cookie->fq_flush_start_cnt);
155 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
156 	atomic64_inc(&cookie->fq_flush_finish_cnt);
157 }
158 
fq_flush_timeout(struct timer_list * t)159 static void fq_flush_timeout(struct timer_list *t)
160 {
161 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
162 	int cpu;
163 
164 	atomic_set(&cookie->fq_timer_on, 0);
165 	fq_flush_iotlb(cookie);
166 
167 	for_each_possible_cpu(cpu) {
168 		unsigned long flags;
169 		struct iova_fq *fq;
170 
171 		fq = per_cpu_ptr(cookie->fq, cpu);
172 		spin_lock_irqsave(&fq->lock, flags);
173 		fq_ring_free(cookie, fq);
174 		spin_unlock_irqrestore(&fq->lock, flags);
175 	}
176 }
177 
queue_iova(struct iommu_dma_cookie * cookie,unsigned long pfn,unsigned long pages,struct list_head * freelist)178 static void queue_iova(struct iommu_dma_cookie *cookie,
179 		unsigned long pfn, unsigned long pages,
180 		struct list_head *freelist)
181 {
182 	struct iova_fq *fq;
183 	unsigned long flags;
184 	unsigned int idx;
185 
186 	/*
187 	 * Order against the IOMMU driver's pagetable update from unmapping
188 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
189 	 * from a different CPU before we release the lock below. Full barrier
190 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
191 	 * written fq state here.
192 	 */
193 	smp_mb();
194 
195 	fq = raw_cpu_ptr(cookie->fq);
196 	spin_lock_irqsave(&fq->lock, flags);
197 
198 	/*
199 	 * First remove all entries from the flush queue that have already been
200 	 * flushed out on another CPU. This makes the fq_full() check below less
201 	 * likely to be true.
202 	 */
203 	fq_ring_free(cookie, fq);
204 
205 	if (fq_full(fq)) {
206 		fq_flush_iotlb(cookie);
207 		fq_ring_free(cookie, fq);
208 	}
209 
210 	idx = fq_ring_add(fq);
211 
212 	fq->entries[idx].iova_pfn = pfn;
213 	fq->entries[idx].pages    = pages;
214 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
215 	list_splice(freelist, &fq->entries[idx].freelist);
216 
217 	spin_unlock_irqrestore(&fq->lock, flags);
218 
219 	/* Avoid false sharing as much as possible. */
220 	if (!atomic_read(&cookie->fq_timer_on) &&
221 	    !atomic_xchg(&cookie->fq_timer_on, 1))
222 		mod_timer(&cookie->fq_timer,
223 			  jiffies + msecs_to_jiffies(IOVA_FQ_TIMEOUT));
224 }
225 
iommu_dma_free_fq(struct iommu_dma_cookie * cookie)226 static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
227 {
228 	int cpu, idx;
229 
230 	if (!cookie->fq)
231 		return;
232 
233 	del_timer_sync(&cookie->fq_timer);
234 	/* The IOVAs will be torn down separately, so just free our queued pages */
235 	for_each_possible_cpu(cpu) {
236 		struct iova_fq *fq = per_cpu_ptr(cookie->fq, cpu);
237 
238 		fq_ring_for_each(idx, fq)
239 			put_pages_list(&fq->entries[idx].freelist);
240 	}
241 
242 	free_percpu(cookie->fq);
243 }
244 
245 /* sysfs updates are serialised by the mutex of the group owning @domain */
iommu_dma_init_fq(struct iommu_domain * domain)246 int iommu_dma_init_fq(struct iommu_domain *domain)
247 {
248 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
249 	struct iova_fq __percpu *queue;
250 	int i, cpu;
251 
252 	if (cookie->fq_domain)
253 		return 0;
254 
255 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
256 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
257 
258 	queue = alloc_percpu(struct iova_fq);
259 	if (!queue) {
260 		pr_warn("iova flush queue initialization failed\n");
261 		return -ENOMEM;
262 	}
263 
264 	for_each_possible_cpu(cpu) {
265 		struct iova_fq *fq = per_cpu_ptr(queue, cpu);
266 
267 		fq->head = 0;
268 		fq->tail = 0;
269 
270 		spin_lock_init(&fq->lock);
271 
272 		for (i = 0; i < IOVA_FQ_SIZE; i++)
273 			INIT_LIST_HEAD(&fq->entries[i].freelist);
274 	}
275 
276 	cookie->fq = queue;
277 
278 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
279 	atomic_set(&cookie->fq_timer_on, 0);
280 	/*
281 	 * Prevent incomplete fq state being observable. Pairs with path from
282 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
283 	 */
284 	smp_wmb();
285 	WRITE_ONCE(cookie->fq_domain, domain);
286 	return 0;
287 }
288 
cookie_msi_granule(struct iommu_dma_cookie * cookie)289 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
290 {
291 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
292 		return cookie->iovad.granule;
293 	return PAGE_SIZE;
294 }
295 
cookie_alloc(enum iommu_dma_cookie_type type)296 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
297 {
298 	struct iommu_dma_cookie *cookie;
299 
300 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
301 	if (cookie) {
302 		INIT_LIST_HEAD(&cookie->msi_page_list);
303 		cookie->type = type;
304 	}
305 	return cookie;
306 }
307 
308 /**
309  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
310  * @domain: IOMMU domain to prepare for DMA-API usage
311  */
iommu_get_dma_cookie(struct iommu_domain * domain)312 int iommu_get_dma_cookie(struct iommu_domain *domain)
313 {
314 	if (domain->iova_cookie)
315 		return -EEXIST;
316 
317 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
318 	if (!domain->iova_cookie)
319 		return -ENOMEM;
320 
321 	mutex_init(&domain->iova_cookie->mutex);
322 	return 0;
323 }
324 
325 /**
326  * iommu_get_msi_cookie - Acquire just MSI remapping resources
327  * @domain: IOMMU domain to prepare
328  * @base: Start address of IOVA region for MSI mappings
329  *
330  * Users who manage their own IOVA allocation and do not want DMA API support,
331  * but would still like to take advantage of automatic MSI remapping, can use
332  * this to initialise their own domain appropriately. Users should reserve a
333  * contiguous IOVA region, starting at @base, large enough to accommodate the
334  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
335  * used by the devices attached to @domain.
336  */
iommu_get_msi_cookie(struct iommu_domain * domain,dma_addr_t base)337 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
338 {
339 	struct iommu_dma_cookie *cookie;
340 
341 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
342 		return -EINVAL;
343 
344 	if (domain->iova_cookie)
345 		return -EEXIST;
346 
347 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
348 	if (!cookie)
349 		return -ENOMEM;
350 
351 	cookie->msi_iova = base;
352 	domain->iova_cookie = cookie;
353 	return 0;
354 }
355 EXPORT_SYMBOL(iommu_get_msi_cookie);
356 
357 /**
358  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
359  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
360  *          iommu_get_msi_cookie()
361  */
iommu_put_dma_cookie(struct iommu_domain * domain)362 void iommu_put_dma_cookie(struct iommu_domain *domain)
363 {
364 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
365 	struct iommu_dma_msi_page *msi, *tmp;
366 
367 	if (!cookie)
368 		return;
369 
370 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
371 		iommu_dma_free_fq(cookie);
372 		put_iova_domain(&cookie->iovad);
373 	}
374 
375 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
376 		list_del(&msi->list);
377 		kfree(msi);
378 	}
379 	kfree(cookie);
380 	domain->iova_cookie = NULL;
381 }
382 
383 /**
384  * iommu_dma_get_resv_regions - Reserved region driver helper
385  * @dev: Device from iommu_get_resv_regions()
386  * @list: Reserved region list from iommu_get_resv_regions()
387  *
388  * IOMMU drivers can use this to implement their .get_resv_regions callback
389  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
390  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
391  * reservation.
392  */
iommu_dma_get_resv_regions(struct device * dev,struct list_head * list)393 void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
394 {
395 
396 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
397 		iort_iommu_get_resv_regions(dev, list);
398 
399 	if (dev->of_node)
400 		of_iommu_get_resv_regions(dev, list);
401 }
402 EXPORT_SYMBOL(iommu_dma_get_resv_regions);
403 
cookie_init_hw_msi_region(struct iommu_dma_cookie * cookie,phys_addr_t start,phys_addr_t end)404 static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
405 		phys_addr_t start, phys_addr_t end)
406 {
407 	struct iova_domain *iovad = &cookie->iovad;
408 	struct iommu_dma_msi_page *msi_page;
409 	int i, num_pages;
410 
411 	start -= iova_offset(iovad, start);
412 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
413 
414 	for (i = 0; i < num_pages; i++) {
415 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
416 		if (!msi_page)
417 			return -ENOMEM;
418 
419 		msi_page->phys = start;
420 		msi_page->iova = start;
421 		INIT_LIST_HEAD(&msi_page->list);
422 		list_add(&msi_page->list, &cookie->msi_page_list);
423 		start += iovad->granule;
424 	}
425 
426 	return 0;
427 }
428 
iommu_dma_ranges_sort(void * priv,const struct list_head * a,const struct list_head * b)429 static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
430 		const struct list_head *b)
431 {
432 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
433 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
434 
435 	return res_a->res->start > res_b->res->start;
436 }
437 
iova_reserve_pci_windows(struct pci_dev * dev,struct iova_domain * iovad)438 static int iova_reserve_pci_windows(struct pci_dev *dev,
439 		struct iova_domain *iovad)
440 {
441 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
442 	struct resource_entry *window;
443 	unsigned long lo, hi;
444 	phys_addr_t start = 0, end;
445 
446 	resource_list_for_each_entry(window, &bridge->windows) {
447 		if (resource_type(window->res) != IORESOURCE_MEM)
448 			continue;
449 
450 		lo = iova_pfn(iovad, window->res->start - window->offset);
451 		hi = iova_pfn(iovad, window->res->end - window->offset);
452 		reserve_iova(iovad, lo, hi);
453 	}
454 
455 	/* Get reserved DMA windows from host bridge */
456 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
457 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
458 		end = window->res->start - window->offset;
459 resv_iova:
460 		if (end > start) {
461 			lo = iova_pfn(iovad, start);
462 			hi = iova_pfn(iovad, end);
463 			reserve_iova(iovad, lo, hi);
464 		} else if (end < start) {
465 			/* DMA ranges should be non-overlapping */
466 			dev_err(&dev->dev,
467 				"Failed to reserve IOVA [%pa-%pa]\n",
468 				&start, &end);
469 			return -EINVAL;
470 		}
471 
472 		start = window->res->end - window->offset + 1;
473 		/* If window is last entry */
474 		if (window->node.next == &bridge->dma_ranges &&
475 		    end != ~(phys_addr_t)0) {
476 			end = ~(phys_addr_t)0;
477 			goto resv_iova;
478 		}
479 	}
480 
481 	return 0;
482 }
483 
iova_reserve_iommu_regions(struct device * dev,struct iommu_domain * domain)484 static int iova_reserve_iommu_regions(struct device *dev,
485 		struct iommu_domain *domain)
486 {
487 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
488 	struct iova_domain *iovad = &cookie->iovad;
489 	struct iommu_resv_region *region;
490 	LIST_HEAD(resv_regions);
491 	int ret = 0;
492 
493 	if (dev_is_pci(dev)) {
494 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
495 		if (ret)
496 			return ret;
497 	}
498 
499 	iommu_get_resv_regions(dev, &resv_regions);
500 	list_for_each_entry(region, &resv_regions, list) {
501 		unsigned long lo, hi;
502 
503 		/* We ARE the software that manages these! */
504 		if (region->type == IOMMU_RESV_SW_MSI)
505 			continue;
506 
507 		lo = iova_pfn(iovad, region->start);
508 		hi = iova_pfn(iovad, region->start + region->length - 1);
509 		reserve_iova(iovad, lo, hi);
510 
511 		if (region->type == IOMMU_RESV_MSI)
512 			ret = cookie_init_hw_msi_region(cookie, region->start,
513 					region->start + region->length);
514 		if (ret)
515 			break;
516 	}
517 	iommu_put_resv_regions(dev, &resv_regions);
518 
519 	return ret;
520 }
521 
dev_is_untrusted(struct device * dev)522 static bool dev_is_untrusted(struct device *dev)
523 {
524 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
525 }
526 
dev_use_swiotlb(struct device * dev)527 static bool dev_use_swiotlb(struct device *dev)
528 {
529 	return IS_ENABLED(CONFIG_SWIOTLB) && dev_is_untrusted(dev);
530 }
531 
532 /**
533  * iommu_dma_init_domain - Initialise a DMA mapping domain
534  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
535  * @base: IOVA at which the mappable address space starts
536  * @limit: Last address of the IOVA space
537  * @dev: Device the domain is being initialised for
538  *
539  * @base and @limit + 1 should be exact multiples of IOMMU page granularity to
540  * avoid rounding surprises. If necessary, we reserve the page at address 0
541  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
542  * any change which could make prior IOVAs invalid will fail.
543  */
iommu_dma_init_domain(struct iommu_domain * domain,dma_addr_t base,dma_addr_t limit,struct device * dev)544 static int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
545 				 dma_addr_t limit, struct device *dev)
546 {
547 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
548 	unsigned long order, base_pfn;
549 	struct iova_domain *iovad;
550 	int ret;
551 
552 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
553 		return -EINVAL;
554 
555 	iovad = &cookie->iovad;
556 
557 	/* Use the smallest supported page size for IOVA granularity */
558 	order = __ffs(domain->pgsize_bitmap);
559 	base_pfn = max_t(unsigned long, 1, base >> order);
560 
561 	/* Check the domain allows at least some access to the device... */
562 	if (domain->geometry.force_aperture) {
563 		if (base > domain->geometry.aperture_end ||
564 		    limit < domain->geometry.aperture_start) {
565 			pr_warn("specified DMA range outside IOMMU capability\n");
566 			return -EFAULT;
567 		}
568 		/* ...then finally give it a kicking to make sure it fits */
569 		base_pfn = max_t(unsigned long, base_pfn,
570 				domain->geometry.aperture_start >> order);
571 	}
572 
573 	/* start_pfn is always nonzero for an already-initialised domain */
574 	mutex_lock(&cookie->mutex);
575 	if (iovad->start_pfn) {
576 		if (1UL << order != iovad->granule ||
577 		    base_pfn != iovad->start_pfn) {
578 			pr_warn("Incompatible range for DMA domain\n");
579 			ret = -EFAULT;
580 			goto done_unlock;
581 		}
582 
583 		ret = 0;
584 		goto done_unlock;
585 	}
586 
587 	init_iova_domain(iovad, 1UL << order, base_pfn);
588 
589 	trace_android_rvh_iommu_iovad_init_alloc_algo(dev, iovad);
590 
591 	ret = iova_domain_init_rcaches(iovad);
592 	if (ret)
593 		goto done_unlock;
594 
595 	/* If the FQ fails we can simply fall back to strict mode */
596 	if (domain->type == IOMMU_DOMAIN_DMA_FQ && iommu_dma_init_fq(domain))
597 		domain->type = IOMMU_DOMAIN_DMA;
598 
599 	ret = iova_reserve_iommu_regions(dev, domain);
600 
601 done_unlock:
602 	mutex_unlock(&cookie->mutex);
603 	return ret;
604 }
605 
606 /**
607  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
608  *                    page flags.
609  * @dir: Direction of DMA transfer
610  * @coherent: Is the DMA master cache-coherent?
611  * @attrs: DMA attributes for the mapping
612  *
613  * Return: corresponding IOMMU API page protection flags
614  */
dma_info_to_prot(enum dma_data_direction dir,bool coherent,unsigned long attrs)615 static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
616 		     unsigned long attrs)
617 {
618 	int prot = coherent ? IOMMU_CACHE : 0;
619 
620 	if (attrs & DMA_ATTR_PRIVILEGED)
621 		prot |= IOMMU_PRIV;
622 	if (attrs & DMA_ATTR_SYS_CACHE)
623 		prot |= IOMMU_SYS_CACHE;
624 	if (attrs & DMA_ATTR_SYS_CACHE_NWA)
625 		prot |= IOMMU_SYS_CACHE_NWA;
626 
627 	switch (dir) {
628 	case DMA_BIDIRECTIONAL:
629 		return prot | IOMMU_READ | IOMMU_WRITE;
630 	case DMA_TO_DEVICE:
631 		return prot | IOMMU_READ;
632 	case DMA_FROM_DEVICE:
633 		return prot | IOMMU_WRITE;
634 	default:
635 		return 0;
636 	}
637 }
638 
iommu_dma_alloc_iova(struct iommu_domain * domain,size_t size,u64 dma_limit,struct device * dev)639 static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
640 		size_t size, u64 dma_limit, struct device *dev)
641 {
642 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
643 	struct iova_domain *iovad = &cookie->iovad;
644 	unsigned long shift, iova_len, iova = 0;
645 
646 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
647 		cookie->msi_iova += size;
648 		return cookie->msi_iova - size;
649 	}
650 
651 	shift = iova_shift(iovad);
652 	iova_len = size >> shift;
653 
654 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
655 
656 	if (domain->geometry.force_aperture)
657 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
658 
659 	/* Try to get PCI devices a SAC address */
660 	if (dma_limit > DMA_BIT_MASK(32) && !iommu_dma_forcedac && dev_is_pci(dev))
661 		iova = alloc_iova_fast(iovad, iova_len,
662 				       DMA_BIT_MASK(32) >> shift, false);
663 
664 	if (!iova)
665 		iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift,
666 				       true);
667 
668 	trace_android_vh_iommu_iovad_alloc_iova(dev, iovad, (dma_addr_t)iova << shift, size);
669 
670 	return (dma_addr_t)iova << shift;
671 }
672 
iommu_dma_free_iova(struct iommu_dma_cookie * cookie,dma_addr_t iova,size_t size,struct iommu_iotlb_gather * gather)673 static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
674 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
675 {
676 	struct iova_domain *iovad = &cookie->iovad;
677 
678 	/* The MSI case is only ever cleaning up its most recent allocation */
679 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
680 		cookie->msi_iova -= size;
681 	else if (gather && gather->queued)
682 		queue_iova(cookie, iova_pfn(iovad, iova),
683 				size >> iova_shift(iovad),
684 				&gather->freelist);
685 	else
686 		free_iova_fast(iovad, iova_pfn(iovad, iova),
687 				size >> iova_shift(iovad));
688 
689 	trace_android_vh_iommu_iovad_free_iova(iovad, iova, size);
690 }
691 
__iommu_dma_unmap(struct device * dev,dma_addr_t dma_addr,size_t size)692 static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
693 		size_t size)
694 {
695 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
696 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
697 	struct iova_domain *iovad = &cookie->iovad;
698 	size_t iova_off = iova_offset(iovad, dma_addr);
699 	struct iommu_iotlb_gather iotlb_gather;
700 	size_t unmapped;
701 
702 	dma_addr -= iova_off;
703 	size = iova_align(iovad, size + iova_off);
704 	iommu_iotlb_gather_init(&iotlb_gather);
705 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
706 
707 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
708 	WARN_ON(unmapped != size);
709 
710 	if (!iotlb_gather.queued)
711 		iommu_iotlb_sync(domain, &iotlb_gather);
712 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
713 }
714 
__iommu_dma_map(struct device * dev,phys_addr_t phys,size_t size,int prot,u64 dma_mask)715 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
716 		size_t size, int prot, u64 dma_mask)
717 {
718 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
719 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
720 	struct iova_domain *iovad = &cookie->iovad;
721 	size_t iova_off = iova_offset(iovad, phys);
722 	dma_addr_t iova;
723 
724 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
725 	    iommu_deferred_attach(dev, domain))
726 		return DMA_MAPPING_ERROR;
727 
728 	size = iova_align(iovad, size + iova_off);
729 
730 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
731 	if (!iova)
732 		return DMA_MAPPING_ERROR;
733 
734 	if (iommu_map_atomic(domain, iova, phys - iova_off, size, prot)) {
735 		iommu_dma_free_iova(cookie, iova, size, NULL);
736 		return DMA_MAPPING_ERROR;
737 	}
738 	return iova + iova_off;
739 }
740 
__iommu_dma_free_pages(struct page ** pages,int count)741 static void __iommu_dma_free_pages(struct page **pages, int count)
742 {
743 	while (count--)
744 		__free_page(pages[count]);
745 	kvfree(pages);
746 }
747 
__iommu_dma_alloc_pages(struct device * dev,unsigned int count,unsigned long order_mask,gfp_t gfp)748 static struct page **__iommu_dma_alloc_pages(struct device *dev,
749 		unsigned int count, unsigned long order_mask, gfp_t gfp)
750 {
751 	struct page **pages;
752 	unsigned int i = 0, nid = dev_to_node(dev);
753 
754 	order_mask &= (2U << MAX_ORDER) - 1;
755 	if (!order_mask)
756 		return NULL;
757 
758 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
759 	if (!pages)
760 		return NULL;
761 
762 	/* IOMMU can map any pages, so himem can also be used here */
763 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
764 
765 	/* It makes no sense to muck about with huge pages */
766 	gfp &= ~__GFP_COMP;
767 
768 	while (count) {
769 		struct page *page = NULL;
770 		unsigned int order_size;
771 
772 		/*
773 		 * Higher-order allocations are a convenience rather
774 		 * than a necessity, hence using __GFP_NORETRY until
775 		 * falling back to minimum-order allocations.
776 		 */
777 		for (order_mask &= (2U << __fls(count)) - 1;
778 		     order_mask; order_mask &= ~order_size) {
779 			unsigned int order = __fls(order_mask);
780 			gfp_t alloc_flags = gfp;
781 
782 			order_size = 1U << order;
783 			if (order_mask > order_size)
784 				alloc_flags |= __GFP_NORETRY;
785 			trace_android_vh_adjust_alloc_flags(order, &alloc_flags);
786 			page = alloc_pages_node(nid, alloc_flags, order);
787 			if (!page)
788 				continue;
789 			if (order)
790 				split_page(page, order);
791 			break;
792 		}
793 		if (!page) {
794 			__iommu_dma_free_pages(pages, i);
795 			return NULL;
796 		}
797 		count -= order_size;
798 		while (order_size--)
799 			pages[i++] = page++;
800 	}
801 	return pages;
802 }
803 
804 /*
805  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
806  * but an IOMMU which supports smaller pages might not map the whole thing.
807  */
__iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,gfp_t gfp,pgprot_t prot,unsigned long attrs)808 static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
809 		size_t size, struct sg_table *sgt, gfp_t gfp, pgprot_t prot,
810 		unsigned long attrs)
811 {
812 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
813 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
814 	struct iova_domain *iovad = &cookie->iovad;
815 	bool coherent = dev_is_dma_coherent(dev);
816 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
817 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
818 	struct page **pages;
819 	dma_addr_t iova;
820 	ssize_t ret;
821 
822 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
823 	    iommu_deferred_attach(dev, domain))
824 		return NULL;
825 
826 	min_size = alloc_sizes & -alloc_sizes;
827 	if (min_size < PAGE_SIZE) {
828 		min_size = PAGE_SIZE;
829 		alloc_sizes |= PAGE_SIZE;
830 	} else {
831 		size = ALIGN(size, min_size);
832 	}
833 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
834 		alloc_sizes = min_size;
835 
836 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
837 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
838 					gfp);
839 	if (!pages)
840 		return NULL;
841 
842 	size = iova_align(iovad, size);
843 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
844 	if (!iova)
845 		goto out_free_pages;
846 
847 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, GFP_KERNEL))
848 		goto out_free_iova;
849 
850 	if (!(ioprot & IOMMU_CACHE)) {
851 		struct scatterlist *sg;
852 		int i;
853 
854 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
855 			arch_dma_prep_coherent(sg_page(sg), sg->length);
856 	}
857 
858 	ret = iommu_map_sg_atomic(domain, iova, sgt->sgl, sgt->orig_nents, ioprot);
859 	if (ret < 0 || ret < size)
860 		goto out_free_sg;
861 
862 	sgt->sgl->dma_address = iova;
863 	sgt->sgl->dma_length = size;
864 	return pages;
865 
866 out_free_sg:
867 	sg_free_table(sgt);
868 out_free_iova:
869 	iommu_dma_free_iova(cookie, iova, size, NULL);
870 out_free_pages:
871 	__iommu_dma_free_pages(pages, count);
872 	return NULL;
873 }
874 
iommu_dma_alloc_remap(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,pgprot_t prot,unsigned long attrs)875 static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
876 		dma_addr_t *dma_handle, gfp_t gfp, pgprot_t prot,
877 		unsigned long attrs)
878 {
879 	struct page **pages;
880 	struct sg_table sgt;
881 	void *vaddr;
882 
883 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, prot,
884 						attrs);
885 	if (!pages)
886 		return NULL;
887 	*dma_handle = sgt.sgl->dma_address;
888 	sg_free_table(&sgt);
889 	vaddr = dma_common_pages_remap(pages, size, prot,
890 			__builtin_return_address(0));
891 	if (!vaddr)
892 		goto out_unmap;
893 	return vaddr;
894 
895 out_unmap:
896 	__iommu_dma_unmap(dev, *dma_handle, size);
897 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
898 	return NULL;
899 }
900 
iommu_dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)901 static struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev,
902 		size_t size, enum dma_data_direction dir, gfp_t gfp,
903 		unsigned long attrs)
904 {
905 	struct dma_sgt_handle *sh;
906 
907 	sh = kmalloc(sizeof(*sh), gfp);
908 	if (!sh)
909 		return NULL;
910 
911 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp,
912 						    PAGE_KERNEL, attrs);
913 	if (!sh->pages) {
914 		kfree(sh);
915 		return NULL;
916 	}
917 	return &sh->sgt;
918 }
919 
iommu_dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)920 static void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
921 		struct sg_table *sgt, enum dma_data_direction dir)
922 {
923 	struct dma_sgt_handle *sh = sgt_handle(sgt);
924 
925 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
926 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
927 	sg_free_table(&sh->sgt);
928 	kfree(sh);
929 }
930 
iommu_dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)931 static void iommu_dma_sync_single_for_cpu(struct device *dev,
932 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
933 {
934 	phys_addr_t phys;
935 
936 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
937 		return;
938 
939 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
940 	if (!dev_is_dma_coherent(dev))
941 		arch_sync_dma_for_cpu(phys, size, dir);
942 
943 	if (is_swiotlb_buffer(dev, phys))
944 		swiotlb_sync_single_for_cpu(dev, phys, size, dir);
945 }
946 
iommu_dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir)947 static void iommu_dma_sync_single_for_device(struct device *dev,
948 		dma_addr_t dma_handle, size_t size, enum dma_data_direction dir)
949 {
950 	phys_addr_t phys;
951 
952 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev))
953 		return;
954 
955 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
956 	if (is_swiotlb_buffer(dev, phys))
957 		swiotlb_sync_single_for_device(dev, phys, size, dir);
958 
959 	if (!dev_is_dma_coherent(dev))
960 		arch_sync_dma_for_device(phys, size, dir);
961 }
962 
iommu_dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)963 static void iommu_dma_sync_sg_for_cpu(struct device *dev,
964 		struct scatterlist *sgl, int nelems,
965 		enum dma_data_direction dir)
966 {
967 	struct scatterlist *sg;
968 	int i;
969 
970 	if (dev_use_swiotlb(dev))
971 		for_each_sg(sgl, sg, nelems, i)
972 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
973 						      sg->length, dir);
974 	else if (!dev_is_dma_coherent(dev))
975 		for_each_sg(sgl, sg, nelems, i)
976 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
977 }
978 
iommu_dma_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nelems,enum dma_data_direction dir)979 static void iommu_dma_sync_sg_for_device(struct device *dev,
980 		struct scatterlist *sgl, int nelems,
981 		enum dma_data_direction dir)
982 {
983 	struct scatterlist *sg;
984 	int i;
985 
986 	if (dev_use_swiotlb(dev))
987 		for_each_sg(sgl, sg, nelems, i)
988 			iommu_dma_sync_single_for_device(dev,
989 							 sg_dma_address(sg),
990 							 sg->length, dir);
991 	else if (!dev_is_dma_coherent(dev))
992 		for_each_sg(sgl, sg, nelems, i)
993 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
994 }
995 
iommu_dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction dir,unsigned long attrs)996 static dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
997 		unsigned long offset, size_t size, enum dma_data_direction dir,
998 		unsigned long attrs)
999 {
1000 	phys_addr_t phys = page_to_phys(page) + offset;
1001 	bool coherent = dev_is_dma_coherent(dev);
1002 	int prot = dma_info_to_prot(dir, coherent, attrs);
1003 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1004 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1005 	struct iova_domain *iovad = &cookie->iovad;
1006 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
1007 
1008 	/*
1009 	 * If both the physical buffer start address and size are
1010 	 * page aligned, we don't need to use a bounce page.
1011 	 */
1012 	if (dev_use_swiotlb(dev) && iova_offset(iovad, phys | size)) {
1013 		void *padding_start;
1014 		size_t padding_size, aligned_size;
1015 
1016 		if (!is_swiotlb_active(dev)) {
1017 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
1018 			return DMA_MAPPING_ERROR;
1019 		}
1020 
1021 		trace_swiotlb_bounced(dev, phys, size);
1022 
1023 		aligned_size = iova_align(iovad, size);
1024 		phys = swiotlb_tbl_map_single(dev, phys, size, aligned_size,
1025 					      iova_mask(iovad), dir, attrs);
1026 
1027 		if (phys == DMA_MAPPING_ERROR)
1028 			return DMA_MAPPING_ERROR;
1029 
1030 		/* Cleanup the padding area. */
1031 		padding_start = phys_to_virt(phys);
1032 		padding_size = aligned_size;
1033 
1034 		if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
1035 		    (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)) {
1036 			padding_start += size;
1037 			padding_size -= size;
1038 		}
1039 
1040 		memset(padding_start, 0, padding_size);
1041 	}
1042 
1043 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1044 		arch_sync_dma_for_device(phys, size, dir);
1045 
1046 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
1047 	if (iova == DMA_MAPPING_ERROR && is_swiotlb_buffer(dev, phys))
1048 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1049 	return iova;
1050 }
1051 
iommu_dma_unmap_page(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1052 static void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
1053 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1054 {
1055 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1056 	phys_addr_t phys;
1057 
1058 	phys = iommu_iova_to_phys(domain, dma_handle);
1059 	if (WARN_ON(!phys))
1060 		return;
1061 
1062 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
1063 		arch_sync_dma_for_cpu(phys, size, dir);
1064 
1065 	__iommu_dma_unmap(dev, dma_handle, size);
1066 
1067 	if (unlikely(is_swiotlb_buffer(dev, phys)))
1068 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
1069 }
1070 
1071 /*
1072  * Prepare a successfully-mapped scatterlist to give back to the caller.
1073  *
1074  * At this point the segments are already laid out by iommu_dma_map_sg() to
1075  * avoid individually crossing any boundaries, so we merely need to check a
1076  * segment's start address to avoid concatenating across one.
1077  */
__finalise_sg(struct device * dev,struct scatterlist * sg,int nents,dma_addr_t dma_addr)1078 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
1079 		dma_addr_t dma_addr)
1080 {
1081 	struct scatterlist *s, *cur = sg;
1082 	unsigned long seg_mask = dma_get_seg_boundary(dev);
1083 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
1084 	int i, count = 0;
1085 
1086 	for_each_sg(sg, s, nents, i) {
1087 		/* Restore this segment's original unaligned fields first */
1088 		dma_addr_t s_dma_addr = sg_dma_address(s);
1089 		unsigned int s_iova_off = sg_dma_address(s);
1090 		unsigned int s_length = sg_dma_len(s);
1091 		unsigned int s_iova_len = s->length;
1092 
1093 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1094 		sg_dma_len(s) = 0;
1095 
1096 		if (sg_is_dma_bus_address(s)) {
1097 			if (i > 0)
1098 				cur = sg_next(cur);
1099 
1100 			sg_dma_unmark_bus_address(s);
1101 			sg_dma_address(cur) = s_dma_addr;
1102 			sg_dma_len(cur) = s_length;
1103 			sg_dma_mark_bus_address(cur);
1104 			count++;
1105 			cur_len = 0;
1106 			continue;
1107 		}
1108 
1109 		s->offset += s_iova_off;
1110 		s->length = s_length;
1111 
1112 		/*
1113 		 * Now fill in the real DMA data. If...
1114 		 * - there is a valid output segment to append to
1115 		 * - and this segment starts on an IOVA page boundary
1116 		 * - but doesn't fall at a segment boundary
1117 		 * - and wouldn't make the resulting output segment too long
1118 		 */
1119 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
1120 		    (max_len - cur_len >= s_length)) {
1121 			/* ...then concatenate it with the previous one */
1122 			cur_len += s_length;
1123 		} else {
1124 			/* Otherwise start the next output segment */
1125 			if (i > 0)
1126 				cur = sg_next(cur);
1127 			cur_len = s_length;
1128 			count++;
1129 
1130 			sg_dma_address(cur) = dma_addr + s_iova_off;
1131 		}
1132 
1133 		sg_dma_len(cur) = cur_len;
1134 		dma_addr += s_iova_len;
1135 
1136 		if (s_length + s_iova_off < s_iova_len)
1137 			cur_len = 0;
1138 	}
1139 	return count;
1140 }
1141 
1142 /*
1143  * If mapping failed, then just restore the original list,
1144  * but making sure the DMA fields are invalidated.
1145  */
__invalidate_sg(struct scatterlist * sg,int nents)1146 static void __invalidate_sg(struct scatterlist *sg, int nents)
1147 {
1148 	struct scatterlist *s;
1149 	int i;
1150 
1151 	for_each_sg(sg, s, nents, i) {
1152 		if (sg_is_dma_bus_address(s)) {
1153 			sg_dma_unmark_bus_address(s);
1154 		} else {
1155 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
1156 				s->offset += sg_dma_address(s);
1157 			if (sg_dma_len(s))
1158 				s->length = sg_dma_len(s);
1159 		}
1160 		sg_dma_address(s) = DMA_MAPPING_ERROR;
1161 		sg_dma_len(s) = 0;
1162 	}
1163 }
1164 
iommu_dma_unmap_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1165 static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1166 		int nents, enum dma_data_direction dir, unsigned long attrs)
1167 {
1168 	struct scatterlist *s;
1169 	int i;
1170 
1171 	for_each_sg(sg, s, nents, i)
1172 		iommu_dma_unmap_page(dev, sg_dma_address(s),
1173 				sg_dma_len(s), dir, attrs);
1174 }
1175 
iommu_dma_map_sg_swiotlb(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1176 static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
1177 		int nents, enum dma_data_direction dir, unsigned long attrs)
1178 {
1179 	struct scatterlist *s;
1180 	int i;
1181 
1182 	for_each_sg(sg, s, nents, i) {
1183 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
1184 				s->offset, s->length, dir, attrs);
1185 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
1186 			goto out_unmap;
1187 		sg_dma_len(s) = s->length;
1188 	}
1189 
1190 	return nents;
1191 
1192 out_unmap:
1193 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
1194 	return -EIO;
1195 }
1196 
1197 /*
1198  * The DMA API client is passing in a scatterlist which could describe
1199  * any old buffer layout, but the IOMMU API requires everything to be
1200  * aligned to IOMMU pages. Hence the need for this complicated bit of
1201  * impedance-matching, to be able to hand off a suitably-aligned list,
1202  * but still preserve the original offsets and sizes for the caller.
1203  */
iommu_dma_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1204 static int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
1205 		int nents, enum dma_data_direction dir, unsigned long attrs)
1206 {
1207 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1208 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1209 	struct iova_domain *iovad = &cookie->iovad;
1210 	struct scatterlist *s, *prev = NULL;
1211 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
1212 	struct pci_p2pdma_map_state p2pdma_state = {};
1213 	enum pci_p2pdma_map_type map;
1214 	dma_addr_t iova;
1215 	size_t iova_len = 0;
1216 	unsigned long mask = dma_get_seg_boundary(dev);
1217 	ssize_t ret;
1218 	int i;
1219 
1220 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
1221 		ret = iommu_deferred_attach(dev, domain);
1222 		if (ret)
1223 			goto out;
1224 	}
1225 
1226 	if (dev_use_swiotlb(dev))
1227 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
1228 
1229 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1230 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
1231 
1232 	/*
1233 	 * Work out how much IOVA space we need, and align the segments to
1234 	 * IOVA granules for the IOMMU driver to handle. With some clever
1235 	 * trickery we can modify the list in-place, but reversibly, by
1236 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
1237 	 */
1238 	for_each_sg(sg, s, nents, i) {
1239 		size_t s_iova_off = iova_offset(iovad, s->offset);
1240 		size_t s_length = s->length;
1241 		size_t pad_len = (mask - iova_len + 1) & mask;
1242 
1243 		if (is_pci_p2pdma_page(sg_page(s))) {
1244 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
1245 			switch (map) {
1246 			case PCI_P2PDMA_MAP_BUS_ADDR:
1247 				/*
1248 				 * iommu_map_sg() will skip this segment as
1249 				 * it is marked as a bus address,
1250 				 * __finalise_sg() will copy the dma address
1251 				 * into the output segment.
1252 				 */
1253 				continue;
1254 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
1255 				/*
1256 				 * Mapping through host bridge should be
1257 				 * mapped with regular IOVAs, thus we
1258 				 * do nothing here and continue below.
1259 				 */
1260 				break;
1261 			default:
1262 				ret = -EREMOTEIO;
1263 				goto out_restore_sg;
1264 			}
1265 		}
1266 
1267 		sg_dma_address(s) = s_iova_off;
1268 		sg_dma_len(s) = s_length;
1269 		s->offset -= s_iova_off;
1270 		s_length = iova_align(iovad, s_length + s_iova_off);
1271 		s->length = s_length;
1272 
1273 		/*
1274 		 * Due to the alignment of our single IOVA allocation, we can
1275 		 * depend on these assumptions about the segment boundary mask:
1276 		 * - If mask size >= IOVA size, then the IOVA range cannot
1277 		 *   possibly fall across a boundary, so we don't care.
1278 		 * - If mask size < IOVA size, then the IOVA range must start
1279 		 *   exactly on a boundary, therefore we can lay things out
1280 		 *   based purely on segment lengths without needing to know
1281 		 *   the actual addresses beforehand.
1282 		 * - The mask must be a power of 2, so pad_len == 0 if
1283 		 *   iova_len == 0, thus we cannot dereference prev the first
1284 		 *   time through here (i.e. before it has a meaningful value).
1285 		 */
1286 		if (pad_len && pad_len < s_length - 1) {
1287 			prev->length += pad_len;
1288 			iova_len += pad_len;
1289 		}
1290 
1291 		iova_len += s_length;
1292 		prev = s;
1293 	}
1294 
1295 	if (!iova_len)
1296 		return __finalise_sg(dev, sg, nents, 0);
1297 
1298 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
1299 	if (!iova) {
1300 		ret = -ENOMEM;
1301 		goto out_restore_sg;
1302 	}
1303 
1304 	/*
1305 	 * We'll leave any physical concatenation to the IOMMU driver's
1306 	 * implementation - it knows better than we do.
1307 	 */
1308 	ret = iommu_map_sg_atomic(domain, iova, sg, nents, prot);
1309 	if (ret < 0 || ret < iova_len)
1310 		goto out_free_iova;
1311 
1312 	return __finalise_sg(dev, sg, nents, iova);
1313 
1314 out_free_iova:
1315 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
1316 out_restore_sg:
1317 	__invalidate_sg(sg, nents);
1318 out:
1319 	if (ret != -ENOMEM && ret != -EREMOTEIO)
1320 		return -EINVAL;
1321 	return ret;
1322 }
1323 
iommu_dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1324 static void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
1325 		int nents, enum dma_data_direction dir, unsigned long attrs)
1326 {
1327 	dma_addr_t end = 0, start;
1328 	struct scatterlist *tmp;
1329 	int i;
1330 
1331 	if (dev_use_swiotlb(dev)) {
1332 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
1333 		return;
1334 	}
1335 
1336 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1337 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
1338 
1339 	/*
1340 	 * The scatterlist segments are mapped into a single
1341 	 * contiguous IOVA allocation, the start and end points
1342 	 * just have to be determined.
1343 	 */
1344 	for_each_sg(sg, tmp, nents, i) {
1345 		if (sg_is_dma_bus_address(tmp)) {
1346 			sg_dma_unmark_bus_address(tmp);
1347 			continue;
1348 		}
1349 
1350 		if (sg_dma_len(tmp) == 0)
1351 			break;
1352 
1353 		start = sg_dma_address(tmp);
1354 		break;
1355 	}
1356 
1357 	nents -= i;
1358 	for_each_sg(tmp, tmp, nents, i) {
1359 		if (sg_is_dma_bus_address(tmp)) {
1360 			sg_dma_unmark_bus_address(tmp);
1361 			continue;
1362 		}
1363 
1364 		if (sg_dma_len(tmp) == 0)
1365 			break;
1366 
1367 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
1368 	}
1369 
1370 	if (end)
1371 		__iommu_dma_unmap(dev, start, end - start);
1372 }
1373 
iommu_dma_map_resource(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1374 static dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
1375 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1376 {
1377 	return __iommu_dma_map(dev, phys, size,
1378 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
1379 			dma_get_mask(dev));
1380 }
1381 
iommu_dma_unmap_resource(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1382 static void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
1383 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1384 {
1385 	__iommu_dma_unmap(dev, handle, size);
1386 }
1387 
__iommu_dma_free(struct device * dev,size_t size,void * cpu_addr)1388 static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
1389 {
1390 	size_t alloc_size = PAGE_ALIGN(size);
1391 	int count = alloc_size >> PAGE_SHIFT;
1392 	struct page *page = NULL, **pages = NULL;
1393 
1394 	/* Non-coherent atomic allocation? Easy */
1395 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1396 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
1397 		return;
1398 
1399 	if (is_vmalloc_addr(cpu_addr)) {
1400 		/*
1401 		 * If it the address is remapped, then it's either non-coherent
1402 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
1403 		 */
1404 		pages = dma_common_find_pages(cpu_addr);
1405 		if (!pages)
1406 			page = vmalloc_to_page(cpu_addr);
1407 		dma_common_free_remap(cpu_addr, alloc_size);
1408 	} else {
1409 		/* Lowmem means a coherent atomic or CMA allocation */
1410 		page = virt_to_page(cpu_addr);
1411 	}
1412 
1413 	if (pages)
1414 		__iommu_dma_free_pages(pages, count);
1415 	if (page)
1416 		dma_free_contiguous(dev, page, alloc_size);
1417 }
1418 
iommu_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1419 static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
1420 		dma_addr_t handle, unsigned long attrs)
1421 {
1422 	__iommu_dma_unmap(dev, handle, size);
1423 	__iommu_dma_free(dev, size, cpu_addr);
1424 }
1425 
iommu_dma_alloc_pages(struct device * dev,size_t size,struct page ** pagep,gfp_t gfp,unsigned long attrs)1426 static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
1427 		struct page **pagep, gfp_t gfp, unsigned long attrs)
1428 {
1429 	bool coherent = dev_is_dma_coherent(dev);
1430 	size_t alloc_size = PAGE_ALIGN(size);
1431 	int node = dev_to_node(dev);
1432 	struct page *page = NULL;
1433 	void *cpu_addr;
1434 
1435 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
1436 	if (!page)
1437 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
1438 	if (!page)
1439 		return NULL;
1440 
1441 	if (!coherent || PageHighMem(page)) {
1442 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
1443 
1444 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
1445 				prot, __builtin_return_address(0));
1446 		if (!cpu_addr)
1447 			goto out_free_pages;
1448 
1449 		if (!coherent)
1450 			arch_dma_prep_coherent(page, size);
1451 	} else {
1452 		cpu_addr = page_address(page);
1453 	}
1454 
1455 	*pagep = page;
1456 	memset(cpu_addr, 0, alloc_size);
1457 	return cpu_addr;
1458 out_free_pages:
1459 	dma_free_contiguous(dev, page, alloc_size);
1460 	return NULL;
1461 }
1462 
iommu_dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1463 static void *iommu_dma_alloc(struct device *dev, size_t size,
1464 		dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1465 {
1466 	bool coherent = dev_is_dma_coherent(dev);
1467 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
1468 	struct page *page = NULL;
1469 	void *cpu_addr;
1470 
1471 	gfp |= __GFP_ZERO;
1472 
1473 	if (gfpflags_allow_blocking(gfp) &&
1474 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
1475 		return iommu_dma_alloc_remap(dev, size, handle, gfp,
1476 				dma_pgprot(dev, PAGE_KERNEL, attrs), attrs);
1477 	}
1478 
1479 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
1480 	    !gfpflags_allow_blocking(gfp) && !coherent)
1481 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
1482 					       gfp, NULL);
1483 	else
1484 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
1485 	if (!cpu_addr)
1486 		return NULL;
1487 
1488 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
1489 			dev->coherent_dma_mask);
1490 	if (*handle == DMA_MAPPING_ERROR) {
1491 		__iommu_dma_free(dev, size, cpu_addr);
1492 		return NULL;
1493 	}
1494 
1495 	return cpu_addr;
1496 }
1497 
iommu_dma_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1498 static int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
1499 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1500 		unsigned long attrs)
1501 {
1502 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1503 	unsigned long pfn, off = vma->vm_pgoff;
1504 	int ret;
1505 
1506 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
1507 
1508 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
1509 		return ret;
1510 
1511 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
1512 		return -ENXIO;
1513 
1514 	if (is_vmalloc_addr(cpu_addr)) {
1515 		struct page **pages = dma_common_find_pages(cpu_addr);
1516 
1517 		if (pages)
1518 			return vm_map_pages(vma, pages, nr_pages);
1519 		pfn = vmalloc_to_pfn(cpu_addr);
1520 	} else {
1521 		pfn = page_to_pfn(virt_to_page(cpu_addr));
1522 	}
1523 
1524 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
1525 			       vma->vm_end - vma->vm_start,
1526 			       vma->vm_page_prot);
1527 }
1528 
iommu_dma_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1529 static int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
1530 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
1531 		unsigned long attrs)
1532 {
1533 	struct page *page;
1534 	int ret;
1535 
1536 	if (is_vmalloc_addr(cpu_addr)) {
1537 		struct page **pages = dma_common_find_pages(cpu_addr);
1538 
1539 		if (pages) {
1540 			return sg_alloc_table_from_pages(sgt, pages,
1541 					PAGE_ALIGN(size) >> PAGE_SHIFT,
1542 					0, size, GFP_KERNEL);
1543 		}
1544 
1545 		page = vmalloc_to_page(cpu_addr);
1546 	} else {
1547 		page = virt_to_page(cpu_addr);
1548 	}
1549 
1550 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
1551 	if (!ret)
1552 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
1553 	return ret;
1554 }
1555 
iommu_dma_get_merge_boundary(struct device * dev)1556 static unsigned long iommu_dma_get_merge_boundary(struct device *dev)
1557 {
1558 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
1559 
1560 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
1561 }
1562 
iommu_dma_opt_mapping_size(void)1563 static size_t iommu_dma_opt_mapping_size(void)
1564 {
1565 	return iova_rcache_range();
1566 }
1567 
1568 static const struct dma_map_ops iommu_dma_ops = {
1569 	.flags			= DMA_F_PCI_P2PDMA_SUPPORTED,
1570 	.alloc			= iommu_dma_alloc,
1571 	.free			= iommu_dma_free,
1572 	.alloc_pages		= dma_common_alloc_pages,
1573 	.free_pages		= dma_common_free_pages,
1574 	.alloc_noncontiguous	= iommu_dma_alloc_noncontiguous,
1575 	.free_noncontiguous	= iommu_dma_free_noncontiguous,
1576 	.mmap			= iommu_dma_mmap,
1577 	.get_sgtable		= iommu_dma_get_sgtable,
1578 	.map_page		= iommu_dma_map_page,
1579 	.unmap_page		= iommu_dma_unmap_page,
1580 	.map_sg			= iommu_dma_map_sg,
1581 	.unmap_sg		= iommu_dma_unmap_sg,
1582 	.sync_single_for_cpu	= iommu_dma_sync_single_for_cpu,
1583 	.sync_single_for_device	= iommu_dma_sync_single_for_device,
1584 	.sync_sg_for_cpu	= iommu_dma_sync_sg_for_cpu,
1585 	.sync_sg_for_device	= iommu_dma_sync_sg_for_device,
1586 	.map_resource		= iommu_dma_map_resource,
1587 	.unmap_resource		= iommu_dma_unmap_resource,
1588 	.get_merge_boundary	= iommu_dma_get_merge_boundary,
1589 	.opt_mapping_size	= iommu_dma_opt_mapping_size,
1590 };
1591 
1592 /*
1593  * The IOMMU core code allocates the default DMA domain, which the underlying
1594  * IOMMU driver needs to support via the dma-iommu layer.
1595  */
iommu_setup_dma_ops(struct device * dev,u64 dma_base,u64 dma_limit)1596 void iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 dma_limit)
1597 {
1598 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1599 
1600 	if (!domain)
1601 		goto out_err;
1602 
1603 	/*
1604 	 * The IOMMU core code allocates the default DMA domain, which the
1605 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
1606 	 */
1607 	if (iommu_is_dma_domain(domain)) {
1608 		if (iommu_dma_init_domain(domain, dma_base, dma_limit, dev))
1609 			goto out_err;
1610 		dev->dma_ops = &iommu_dma_ops;
1611 	}
1612 
1613 	return;
1614 out_err:
1615 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
1616 		 dev_name(dev));
1617 }
1618 EXPORT_SYMBOL_GPL(iommu_setup_dma_ops);
1619 
iommu_dma_get_msi_page(struct device * dev,phys_addr_t msi_addr,struct iommu_domain * domain)1620 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
1621 		phys_addr_t msi_addr, struct iommu_domain *domain)
1622 {
1623 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
1624 	struct iommu_dma_msi_page *msi_page;
1625 	dma_addr_t iova;
1626 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1627 	size_t size = cookie_msi_granule(cookie);
1628 
1629 	msi_addr &= ~(phys_addr_t)(size - 1);
1630 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
1631 		if (msi_page->phys == msi_addr)
1632 			return msi_page;
1633 
1634 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
1635 	if (!msi_page)
1636 		return NULL;
1637 
1638 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
1639 	if (!iova)
1640 		goto out_free_page;
1641 
1642 	if (iommu_map(domain, iova, msi_addr, size, prot))
1643 		goto out_free_iova;
1644 
1645 	INIT_LIST_HEAD(&msi_page->list);
1646 	msi_page->phys = msi_addr;
1647 	msi_page->iova = iova;
1648 	list_add(&msi_page->list, &cookie->msi_page_list);
1649 	return msi_page;
1650 
1651 out_free_iova:
1652 	iommu_dma_free_iova(cookie, iova, size, NULL);
1653 out_free_page:
1654 	kfree(msi_page);
1655 	return NULL;
1656 }
1657 
1658 /**
1659  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
1660  * @desc: MSI descriptor, will store the MSI page
1661  * @msi_addr: MSI target address to be mapped
1662  *
1663  * Return: 0 on success or negative error code if the mapping failed.
1664  */
iommu_dma_prepare_msi(struct msi_desc * desc,phys_addr_t msi_addr)1665 int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
1666 {
1667 	struct device *dev = msi_desc_to_dev(desc);
1668 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1669 	struct iommu_dma_msi_page *msi_page;
1670 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
1671 
1672 	if (!domain || !domain->iova_cookie) {
1673 		desc->iommu_cookie = NULL;
1674 		return 0;
1675 	}
1676 
1677 	/*
1678 	 * In fact the whole prepare operation should already be serialised by
1679 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
1680 	 * on its own, so consider this locking as failsafe documentation...
1681 	 */
1682 	mutex_lock(&msi_prepare_lock);
1683 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
1684 	mutex_unlock(&msi_prepare_lock);
1685 
1686 	msi_desc_set_iommu_cookie(desc, msi_page);
1687 
1688 	if (!msi_page)
1689 		return -ENOMEM;
1690 	return 0;
1691 }
1692 
1693 /**
1694  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
1695  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
1696  * @msg: MSI message containing target physical address
1697  */
iommu_dma_compose_msi_msg(struct msi_desc * desc,struct msi_msg * msg)1698 void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
1699 {
1700 	struct device *dev = msi_desc_to_dev(desc);
1701 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
1702 	const struct iommu_dma_msi_page *msi_page;
1703 
1704 	msi_page = msi_desc_get_iommu_cookie(desc);
1705 
1706 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
1707 		return;
1708 
1709 	msg->address_hi = upper_32_bits(msi_page->iova);
1710 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
1711 	msg->address_lo += lower_32_bits(msi_page->iova);
1712 }
1713 
iommu_dma_init(void)1714 static int iommu_dma_init(void)
1715 {
1716 	if (is_kdump_kernel())
1717 		static_branch_enable(&iommu_deferred_attach_enabled);
1718 
1719 	return iova_cache_get();
1720 }
1721 arch_initcall(iommu_dma_init);
1722